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Abstract I 

 

Abstract 

Peptide vaccination is a promising immunotherapeutic approach for the treatment of 

malignancies. In this project, the unique opportunity to analyze HLA ligandomes of 

samples from tumor and adjacent benign tissue of renal cell carcinoma (RCC) patients by 

mass spectrometry was given. This allowed for the establishment of a novel approach of 

antigen definition by comparative profiling of malignant and benign HLA ligandomes. 

Analyses were performed for HLA class I and II of tumor and benign tissue sample pairs in 

a cohort of 33 RCC patients. Altogether, the acquired dataset includes 35.543 unique 

HLA class I ligand identifications derived from 11.279 unique source proteins and 8.344 

unique HLA class II ligand identifications derived from 2.199 unique source proteins. 

Comparative analysis revealed a new class of tumor antigens based on tumor-exclusive 

representation of HLA ligand source proteins, termed ligandome-derived tumor-

associated antigens (LiTAAs). A selection of LiTAA-derived HLA ligands (ligandome-derived 

tumor-associated peptides, LiTAPs) were tested for immunogenicity in high-throughput 

priming experiments using artificial antigen-presenting cells (aAPCs). Immunogenic LiTAPs 

will eventually provide a ‘warehouse’ of suitable vaccination peptides and allow for a 

personalized vaccination approach based on individual HLA typing and actual target 

expression on tumor cells. Furthermore, analysis of healthy (benign) tissue HLA 

ligandomes is a step towards a comprehensive map of the healthy human 

immunopeptidome, an important prerequisite for the definition of tumor-specific 

immunotherapy targets. 

In a second project, naturally presented HLA ligands derived from mycobacterium 

tuberculosis (Mtb) were identified by infection experiments. HLA ligands derived from 

Mtb antigens encoded in a viral vector could be identified, whereas analysis of 

macrophages infected with live Mtb did not reveal any new Mtb-derived HLA ligands. 

Such HLA ligands may provide the basis for the design of more efficient subunit vaccines 

against tuberculosis as well as development of enhanced infection screening assays. 
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Zusammenfassung 

Die Peptidimpfung ist ein vielversprechender immuntherapeutischer Ansatz für die 

Behandlung maligner Erkrankungen. In diesem Projekt bestand die einmalige Möglichkeit, 

die HLA-Ligandome von Proben aus Tumor und benignem Gewebe am Nierenzellkarzinom 

erkrankter Patienten massenspektrometrisch zu analysieren. So konnte ein neuer Ansatz 

zur Antigendefinition durch vergleichende Analyse maligner und benigner HLA-Ligandome 

entwickelt werden. Die Analysen wurden für HLA Klasse I und II in Probenpaaren von 

Tumor und benignem Gewebe einer Kohorte von 33 Nierenzellkarzinom-Patienten 

durchgeführt. Insgesamt umfasst der erhaltene Datensatz 35.543 identifizierte 

unterschiedliche HLA Klasse I-Liganden die 11.279 verschiedenen Quellproteinen 

entstammen, sowie 8.344 unterschiedliche HLA Klasse II-Liganden, die 2.199 

verschiedenen Quellproteinen entstammen. Die vergleichende Analyse offenbarte eine 

neue Klasse von Tumorantigenen, basierend auf einer Tumor-exklusiven Repräsentation 

der Quellproteine der HLA-Liganden, genannt Ligandom-abgeleitete Tumor-assoziierte 

Antigene (LiTAAs). Eine Auswahl von LiTAA-entstammenden HLA-Liganden (Ligandom-

abgeleitete Tumor-assoziierte Peptide, LiTAPs) wurden auf ihre Immunogenität in 

hochdurchsatz-priming Experimenten mit künstlichen antigenpräsentierenden Zellen 

(aAPCs) untersucht. Immunogene LiTAPs werden letztendlich eine ‚Lagerhalle‘ mit 

geeigneten Impfpeptiden bilden und eine personalisierte Impfung basierend auf HLA-

Typisierung und tatsächlicher Expression der Zielstrukturen auf Tumorzellen ermöglichen. 

Weiterhin ist die Analyse gesunder (benigner) HLA-Ligandome ein Schritt Richtung einer 

umfassenden Karte des gesunden humanen Immunpeptidoms, eine wichtige 

Voraussetzung für die Definition tumorspezifischer immuntherapeutischer Zielstrukturen. 

In einem zweiten Projekt wurden natürlich präsentierte HLA-Liganden aus Mycobacterium 

tuberculosis (Mtb) in Infektionsexperimenten identifiziert. HLA-Liganden aus in einem 

viralen Vektor codierten Mtb-Antigenen konnten identifiziert werden, während die 

Analyse mit lebenden Mtb infizierter Makrophagen keine neuen HLA-Liganden aus Mtb 

ergab. Solche HLA-Liganden können sowohl die Basis für das Design effizienterer subunit-

Impfungen gegen Tuberkulose als auch für die Entwicklung verbesserter Infektions-

Überprüfungen bilden. 
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1 Introduction 

1.1 The immune system 

The immune system has evolved as a protection mechanism of organisms against the 

invasion by other organisms. It is therefore in general a system of discrimination of ‘self’ 

and ‘non-self’ components within an organism. The evolution of complex life itself is 

thought to have been dependent on such invasion events. Eukaryotic cells probably 

evolved by symbiogenesis of unicellular prokaryotes. Cell organelles of eukaryotic cells 

such as mitochondria or chloroplasts are most likely of bacterial origin [1]. However, the 

evolution of multicellular eukaryotic organisms was dependent on the ability to exclude 

external organisms from their interior life. In the course of evolution of complex life, a 

multitude of mechanisms have evolved to achieve distinction of ‘self’ and ‘non-self’. 

These range from simple physical barriers, enzymes, enzyme cascades and proteins to 

highly sophisticated immune cells. In higher organisms, the immune system constitutes 

the defense against a whole array of invasive organisms called pathogens, involving many 

bacteria, viruses, fungi and parasites. The immune system’s task is to recognize pathogens 

as extrinsic intruders and clear them from the host organism. To accomplish this duty, 

two distinct systems have developed. The innate immune system is evolutionarily older 

and is present in all plants and animals. Innate immune responses are immediate and 

strong however they rely on the detection of conserved danger signals and are therefore 

rather unspecific. The adaptive immune system has developed later and can only be 

found in jawed vertebrates. Adaptive immune responses are delayed, but highly specific 

and establish an immunological memory to a particular pathogen after its clearance. The 

activation and induction of adaptive responses depends on the interplay with innate 

immunity. 

1.1.1 The human innate immune system 

The innate immune system is the first line of defense of the human body against 

infections. It is a compendium of physical, biological and chemical barriers as well as 

humoral and cellular defense mechanisms. All contact surfaces of the human body with 
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the environment constitute barriers. The largest surface is the skin, being not only a 

physical barrier but also a biological and chemical one: intruding pathogens are repelled 

by the stratum corneum and the epidermis [2]. Colonialization of pathogens is further 

aggravated by commensal bacteria. Those commensals compete with pathogens for 

space and nutrients and furthermore metabolize lipids to fatty acids. The resulting acidic 

pH value of the skin is hostile to many pathogens [3]. Additionally, the skin can produce 

and secrete antimicrobial peptides like β-defensins [4]. These basic mechanisms are also 

present at the more vulnerable barriers like intestine, genitourinary tract and lungs. 

Furthermore, antimicrobial enzymes like lysozyme can be secreted in bodily fluids [5]. 

In case pathogens manage to breach these barriers, the body reacts with inflammation. 

Infected cells and immune cells can recognize pathogens by detection of unique 

molecular structures. These molecules are referred to as pathogen-associated molecular 

patterns (PAMPs). PAMPs are widely conserved between groups of microorganisms and 

therefore represent a distinguishing feature for the immune system. The molecular 

patterns range from bacterial cell wall components such as peptidoglycan, 

lipopolysaccharides and flagellins to viral nucleic acids [6]. 

PAMPs are recognized by pattern recognition receptors (PRRs). These receptors can be 

expressed intracellularly as well as on the cell surface. The most prominent 

representatives of PRRs are the toll-like receptors (TLRs), which were originally discovered 

in drosophila [7] and later shown to play a role in the activation of the immune system in 

drosophila [8] and in humans [9]. Upon recognition of a cognate ligand, signaling 

cascades, mainly the NF-κB and AP-1 pathways are induced to promote expression of 

inflammatory genes like pro-inflammatory cytokines and type I interferons. The initial 

local inflammation reaction has several purposes: the release of prostaglandins 

permeabilizes blood vessels to facilitate extravasation of immune cells into the 

surrounding tissue. Additionally, leukotrienes and chemokines exert attractant effects on 

leukocytes. These leukocytes represent the cellular defense of the innate immune system. 

It consists of cells from the myeloid lineage like eosinophils, basophils, mast cells and 

specialized phagocytes like monocytes, macrophages, dendritic cells (DCs) and 

neutrophils. Natural killer cells (NK cells) and innate lymphoid cells (ILCs) are cells of the 

lymphoid lineage and complement the innate cellular defense. While most innate 

immune mechanisms rely on direct recognition and elimination of pathogens, NK cells can 
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detect and kill infected cells. The activation and triggering of NK cells is controlled by a 

delicate balance of activating and inhibitory signals [10, 11]. Of note, the strongest 

inhibitory signal for NK cells is the surface expression of MHC molecules on target cells. 

MHC expression is altered in some viral and bacterial infections and in certain tumors, 

whereby NK cell inhibition gets attenuated enabling the recognition and lysis of target 

cells [12]. A second cytotoxic feature of NK cells is antibody-dependent cellular 

cytotoxicity (ADCC). Antibody-marked cells are recognized by binding of the Fc-part of 

antibodies to the activating Fc-Receptor CD16 on NK cells and thereby mediate 

cytotoxicity [13]. 

While NK cells serve as direct cytotoxic killers of infected cells, phagocytes recognize free 

pathogens, particles and cell debris. Several modes of recognition of pathogens have 

been described for phagocytes: first, conventional receptor-ligand interactions via formyl-

peptide receptors (FPRs) [14] or TLRs can direct phagocytes to pathogens by chemotaxis 

and induce an activated phenotype. Second, pathogens can be opsonized for 

phagocytosis by complement proteins or antibodies. Binding of these immune complexes 

to complement receptors and Fc receptors expressed on phagocytes induces 

phagocytosis [15]. The resulting phagosomes or endosomes merge with lysosomes within 

the cell, thereby destroying the contained pathogens by acidification, enzymatic digestion 

and reactive oxygen species (respiratory burst) [16, 17]. Furthermore, phagocytes are 

responsible for the clearance of dead host cells and cell debris. 

While neutrophils are the most prominent representatives and mainly have scavenging 

function in the circulation, macrophages and dendritic cells are highly specialized 

phagocytes with important additional features. These cells express an array of PRRs and 

other receptors for sensing of pathogens and danger signals [18]. They orchestrate the 

initial immune response by amplification of danger signals and represent the interface 

between innate and adaptive immune response [19]. These cells are therefore termed 

antigen-presenting cells (APCs). They have the ability to process antigens and (cross-) 

present peptides in the context of MHC on the cell surface. Upon activation by 

recognition of pathogen- or danger-associated molecular patterns (PAMPs or DAMPs), 

especially DCs become highly efficient in priming of naïve T cells [20]. The activation leads 

to increased antigen processing properties, as well as to the expression of costimulatory 

molecules and cytokines necessary for efficient T cell priming. 
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1.1.2 The human adaptive immune system 

In contrast to the innate immune system with its reliance on germline encoded receptors 

and recognition of conserved pathogenic structures, adaptive immune responses are 

antigen-specific and develop within the course of an infection. Adaptive immunity is 

constituted of two major components, a humoral and a cellular response. The humoral 

response is mediated by antibody-producing B cells, while the cellular response is 

mediated by T cells. Both cell types belong to the lymphoid line and originate from 

hematopoietic stem cells. The induction of adaptive immune responses is always 

dependent on precedent innate immune responses. Hence, adaptive responses are 

delayed in comparison to immediate innate responses. In the course of an infection, 

antigens are taken up by APCs and these cells become activated and mature. They 

migrate from peripheral tissues to lymphoid organs where they present antigenic 

peptides in the context of MHC to T cells. This process of priming of naïve T cells involves 

three major signals: First, the T cell needs to express a cognate T cell receptor (TCR) for 

the respective MHC:peptide complex [21]. Second, a costimulatory signal is necessary. 

This is provided by the expression of CD80 and CD86 on activated APCs and the 

interaction of these molecules with CD28 on the T cell [22]. Of note, a lack of the co-

stimulus leads to T cell anergy [23]. Third, activated APCs produce an array of cytokines 

that can bind to respective receptors on the T cell. The most important one for general 

priming of T cells seems to be interleukin 12 (IL-12) [24]. For CD8+ T cells, the priming 

process results in differentiation into mature cytotoxic T lymphocytes (CTL), whereas for 

CD4+ T cells the situation is more complex. CD4+ T cells can differentiate into several 

subsets of T helper cells (Th cells) and the composition of APC-derived cytokines during 

priming seems to influence this [25]. There are at least three types of Th cells and 

regulatory T cells (Treg): 

• Th1 cells are polarized mainly by IL-12 and promote cell-mediated immunity 

against intracellular pathogens via the effector cytokines interleukin 2 (IL-2), 

interferon γ (IFN-γ), CD154 and tumor necrosis factor α (TNF-α) [26, 27]. 

• Th2 cells are polarized mainly by interleukin 4 (IL-4) and promote humoral 

immunity against extracellular parasites, pathogens and toxins via the effector 

cytokines IL-4, interleukin 5 (IL-5) and interleukin 13 (IL-13) [26, 28, 29]. 
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• Th17 cells are polarized by transforming growth factor β (TGF-β) and interleukin 6 

(IL-6) and promote cell-mediated inflammation against extracellular pathogens 

and fungi via interleukin 17 (IL-17) and interleukin 22 (IL-22). They might also play 

a role in autoimmune diseases [30]. 

• Treg cells are polarized by TGF-β and promote regulation of immune responses in 

the periphery via TGF-β and interleukin 10 (IL-10). They are further characterized 

by the expression of the transcription factor forkhead box p3 (FOXP3) [31]. 

Treg cells have immunosuppressive capabilities and maintain pheripheral tolerance 

to avoid autoimmune reactions [32]. 

After initial priming, T cells become highly activated, produce and secrete large amounts 

of IL-2 and additionally express the α-chain of the IL-2 receptor. Together with the 

constitutively expressed β- and γ-chain, the receptor becomes highly affine for the 

cytokine. Signaling of the IL-2 receptor triggers the entry of T cells into the cell cycle, 

promoting massive clonal expansion of the primed T cell. Clonal expansion produces huge 

amounts of T cells with identical TCRs which differentiate to effector cells within several 

days. Mature effector T cells can exert their functions upon recognition of their cognate 

antigen without co-stimulation. 

The function of CD8+ CTLs is detection and lysis of infected cells. CTLs express an altered 

array of adhesion molecules guiding them to activated endothelial cells at inflammation 

sites. Interaction of lymphocyte function-associated antigen 1 (LFA-1) and integrin α4β1 

(VLA-4) on CTLs with their respective ligands intercellular adhesion molecule 1 (ICAM-1) 

and vascular cell adhesion protein 1 (VCAM-1) on activated endothelium promotes 

extravasation of CTLs at inflammation sites. The same interaction of these unspecific 

adhesion molecules mediates contact of CTLs with target cells. This interaction is 

strengthened if the TCR of the CTL binds to its cognate MHC:peptide complex on the 

target cell. An immunological synapse forms at the contact area of effector and target cell 

with TCRs, co-receptors and MHC:peptide complexes clustering in the center and 

adhesion molecules in the periphery [33]. Aggregation of TCRs leads to activation of 

signaling pathways that polarize the CTL towards the target cell by reorganization of the 

cytoskeleton. The effector molecules granzyme B and perforin are stored in cytotoxic 

granules of the CTL and released specifically at the immunological synapse to take effect 
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on the target cell. Perforin binds to the plasma membrane of target cells and oligomerizes 

by establishment of disulfide bonds to form a pore [34] through which the pro-apoptotic 

serine protease granzyme B can enter the target cell. Granzyme B unleashes programmed 

cell death by activation of caspase cascades [35]. Additionally, CTLs can induce apoptosis 

by expression of CD95L (Fas ligand) and engagement of CD95 (Fas receptor) on target 

cells [36]. Apart from these direct mechanisms, CTLs are able to release cytokines after 

antigen encounter: members of the tumor necrosis factor (TNF) superfamily like TNF-α 

and TNF-β can elicit apoptosis in TNF receptor-expressing target cells [37]. IFN-γ has anti-

viral properties, induces upregulation of MHC expression and can activate other immune 

cells like macrophages and NK cells [38]. A distinct subset of cytotoxic CD4+ CTLs has also 

been reported [39]. 

The function of CD4+ Th cells differs from that of CD8+ CTLs as described above. While 

some subtypes leave the lymphatic tissue after priming to exert their effector function, 

others remain within those tissues. The TCR of CD4+ T cells recognizes peptides in the 

context of MHC class II, which is mainly present on APCs. Th1 cells have three major 

functions: first, they can activate macrophages in the periphery by secretion of IFN-γ and 

members of the TNF family [40]. Macrophages that have taken up pathogens or are 

infected need activation by Th1 cells to enhance their ability to neutralize intracellular 

pathogens by production of reactive oxygen species. In some cases, Th1 cells provide 

granulocyte-macrophage colony-stimulating factor (GM-CSF) which can induce 

differentiation of macrophages into DCs. The second function is to provide help for 

T cell priming. A lack of sufficient activation of an APC to prime CD8+ CTLs may be 

substituted by additional binding of an effector Th1 cell to the same APC. Upon 

recognition of the cognate MHC:peptide complex, the activated Th1 cell produces CD154 

(CD40L), a membrane-bound member of the TNF family. The interaction of CD154 with its 

receptor CD40 on the APC induces a higher expression of costimulatory molecules by the 

APC which facilitates priming of CD8+ CTLs [41]. The third function is the interaction with 

B cells causing these cells to produce certain opsonizing isotypes of antibodies (IgG1 and 

IgG3) [42]. The main objective of Th2 cells and follicular T helper cells (Tfh cells) is to 

activate B cells to induce antibody production. B cells are responsible for the humoral arm 

of the adaptive immune response. Naïve B cells mainly reside in lymphatic tissues and in 

the blood where they encounter antigens that are transported from infection sites to 
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lymphatic tissues by enhanced lymph flow. Soluble antigens like bacterial toxins but also 

cell surface antigens of pathogens can be bound by the B cell receptor (BCR). In contrast 

to the TCR, the BCR binds antigens in their native (unprocessed) form. The BCR of naïve 

B cells is membrane bound and upon binding of a cognate antigen, internalization of the 

complex is induced (receptor-mediated endocytosis). The antigen is processed within the 

B cell and peptide fragments are presented on the cell surface in the context of 

MHC class II molecules. These peptides can be recognized by antigen-specific 

Th2 and Tfh cells which in turn activate the B cell by expression of CD154, IL-4 and IL-21 

[43]. Activated B cells and antigen-specific Th cells form germinal centers in primary lymph 

follicles where they proliferate extensively. With the help of Th cells, B cells undergo 

several modifications: the affinity of the BCR for its antigen is enhanced by somatic 

hypermutation, a process in which point mutations are introduced in the genes encoding 

for the variable regions of the heavy and light chains (VH and VL) of the BCR [44]. 

B cell clones with enhanced BCR affinity for the respective antigen receive survival signals 

through BCR signaling while reduced antigen recognition leads to cell death. In a 

repetitive cycle B cells undergo this process of affinity maturation. A second modification 

is the switch of isotype classes to produce soluble BCRs (antibodies) with high affinity and 

variable effector functions. The main functions of the different Isotype classes are 

neutralization of extracellular pathogens and toxins (IgG and IgA), opsonization for 

phagocytosis or ADCC (IgG1 and IgG3), sensitization of mast cells (IgE) and activation of 

the complement system (IgM) [45]. After completion of affinity maturation and isotype 

switch, B cells differentiate to antibody-producing plasma cells which leave the lymphatic 

tissues and migrate to the bone marrow. 

Both humoral and cellular adaptive responses are highly antigen-specific and the 

generation of these responses takes time, however after clearance of the initial infection 

an immunologic memory develops. While most effector cells undergo apoptosis due to 

absence of their recognized antigens, some B- and T cells differentiate to long-lived 

memory cells. These cells are resting in lymphoid tissues and the bone marrow and can 

mount immediate and strong immune responses upon re-infection with the same 

pathogen. This immunological memory is the basis for the concept of vaccination. 
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1.1.3 The T cell receptor 

The T cell receptor (TCR) mediates recognition of peptide antigens presented on 

MHC molecules on the surface of nucleated cells [46]. The molecule is a heterodimer that 

belongs to the immunoglobulin superfamily and consists of a TCR α- and β-chain in 

approximately 95 % of all T lymphocytes (αβ T cells). The α- and β-chains consist of 

variable (V) regions at the N-terminus and the constant (C) regions at the C-terminus of 

the molecule. The V regions of the α- and β-chain are responsible for the interaction with 

MHC:peptide complexes and are therefore determining for the antigen specificity of a 

T cell. Antigen recognition is mediated by complementary determining regions (CDRs), of 

which each of the receptor chains possesses three (CDR1-3). The CDRs are hypervariable 

loops that originate from gene rearrangements of TCR genes during T cell development. 

The TCRα locus is located on chromosome 14 and consists of about 70-80 different Vα 

(variable) gene segments, 61 different Jα (joining) gene segments and a C segment. The 

TCRβ locus is located on chromosome 7 and consists of 52 different Vβ gene segments 

and two gene clusters that contain one Dβ(1/2) (diversity) gene segment, 6-7 Jβ(1/2) gene 

segments and one Cβ(1/2) gene segment each [47]. The V- (D-) and J gene segments are 

rearranged to a complete V-domain exon by somatic recombination. The combinatorial 

possibilities enhance the diversity of the TCR repertoire. However, somatic V(D)J 

recombination in lymphocytes is potentiated by a second unique mechanism: the 

individual gene segments are flanked by recombination signal sequences (RSSs) that can 

be recognized and bound by RAG proteins (recombination activating genes 1 and 2). 

These proteins are part of an enzyme complex called V(D)J recombinase [48]. Upon 

binding of the complex, recombination is initiated by a single strand DNA break between 

the RSS and the coding segment. Subsequently, the second strand is broken up and two 

DNA ends form, a blunt end at the RSS end and a hairpin at the coding end. In a second 

step, the coding ends of the gene segments are ligated. A complex of enzymes including 

DNA polymerases and DNA repair enzymes catalyzes the ligation process. In a crucial first 

step, hairpin DNA ends are opened by the enzyme artemis [49] resulting in blunt or sticky 

ends, depending on the site of strand break. The overhanging nucleotides are termed P-

nucleotides due to their palindromic nature. In a second step, the enzyme TdT (terminal 

deoxynucleotidyl transferase) adds random nucleotides to the single strand ends which 

are called N-nucleotides (non-templated) [50]. Finally, the two single strands pair by 
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addition of nucleotides or removal of P- and N-nucleotides mediated by DNA polymerases 

and exonucleases, respectively. The two strands are then ligated by DNA ligase IV to 

complete the recombination process. The random nucleotides at the junction sites of the 

gene segments lead to an almost infinite number of possible unique TCR genes although 

diversity is restricted by reading frame shifts. The whole process is called junctional 

diversity and is mostly similar for the B cell receptor (BCR) – where it was first described 

[51, 52]. Functional V(D)J exons are transcribed and spliced to the C segments which 

encode for the constant regions of the TCR chains, the linker site for bisulfide bonding of 

the α- and β-chains, the transmembrane domain and the cytoplasmic domain. They are 

not affected by gene rearrangement. The resulting mRNAs are subsequently translated to 

proteins and the α- and β-chains pair to form the TCR. In theory, about 1018 different TCR 

variants may arise by junctional diversity [45], a number that is only restricted by the 

T cell count of about 3x1011 in the human body [53]. As described, antigen recognition is 

mediated by the CDR regions. The CDR1 and 2 loops originate mainly from germline parts 

of the V-gene segments and have limited diversity. Thus, they mainly interact with the 

less variable parts of the MHC molecule. The CDR3 loop however has its origin in the 

highly variable junctional regions and constitutes the center of the antigen receptor and 

the contact surface with MHC peptide ligands [54, 55]. A small amount of T lymphocytes 

(about 5 %) express TCR γ- and δ-chains instead of α- and β-chains (γδ T cells). The 

process of gene rearrangement is similar for those cells however the amount of gene 

segments is smaller leading to reduced combinatorial variance. The γδ TCRs do not 

recognize MHC:peptide complexes and their CDR regions rather resemble those of 

antibodies [56]. The recognized antigens are subject of ongoing investigations and are 

diverse, including lipids in complex with CD1 molecules, phosphoantigens and stress-

induced cell surface molecules [57, 58]. 
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Figure 1: Schematic structure of T cell receptor complex components. The heterodimer of TCR α- and β-

chain is located in the center and is associated with six invariant accessory chains (γ-, δ- and ε-chains of the 

CD3 complex and the ζ-chain homodimer. ITAMs are necessary for the induction of signal cascades upon 

receptor engagement. Figure from [45]. 

The molecular weights of the TCR α- and β-chain are 50 and 38 kDa, respectively [59]. The 

chains are linked at the linker region by a disulfide bond to form the heterodimer. 

Together with additional proteins, the TCR forms the TCR complex: two ε-chains and one 

γ- and δ- chain associate to the CD3 complex. The CD3 complex stabilizes surface 

expression of the TCR and partakes in intracellular signaling. A second accessory molecule 

is a homodimer of ζ-chains located at the intracellular site of the TCR complex [60]. CD3 

and ζ-chains carry ITAMs (immunoreceptor tyrosine-based activation motif) at their 

cytoplasmic tails that mediate signal transduction within the cell upon receptor 

engagement through activation of an (auto-) phosphorylation cascade (see figure 1) [61]. 

Furthermore, proper T cell activation depends on signaling via co-receptors: CD4 is 

expressed on Th cells and Treg cells and is a monomer that binds to MHC class II molecules 

[62]. CD8 is expressed on CTLs and is a heterodimer that binds to MHC class I molecules 

[63, 64]. The co-receptors recruit important signaling molecules such as Src family kinases 

and phosphatases at their cytoplasmic residues. Signal transduction and activation of the 

TCR signal cascade is amplified massively by these molecules [65]. 
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1.1.4 The major histocompatibility complex 

The major histocompatibility complex (MHC) is a gene cluster present in the genome of 

almost all vertebrates. It was named after its function was first discovered in 

transplantation experiments. The MHC genes encode for proteins relevant for 

histocompatibility and immune recognition [66, 67]. The most important proteins are the 

MHC molecules which mediate antigen presentation to T cells. MHC molecules are 

membrane-bound proteins and are divided into two classes: MHC class I molecules are 

present on almost all nucleated cells and present peptide antigens to CTLs. MHC class II 

molecules are almost exclusively expressed on APCs and present peptide antigens to 

Th cells. In humans, the MHC is located on chromosome 6 and MHC molecules are 

referred to as HLA molecules (human leukocyte antigen, HLA) due to their discovery on 

leukocytes [68, 69]. Both classes of HLA molecules are polygenes that are further divided 

into major and minor subtypes: for class I, the major molecules are HLA-A, HLA-B and 

HLA-C, while minor molecules are HLA-E, HLA-F and HLA-G. For class II, the major 

molecules are HLA-DP, HLA-DQ and HLA-DR and the minor ones are HLA-DM and HLA-DO. 

Thus, every human individual has six gene loci for HLA class I molecules (α-chains) and ten 

to twelve gene loci for HLA class II molecules (α- and β-chains). Major HLA genes are 

highly polymorphic (see table 1) while minor HLA genes (and the gene for the α-chain of 

HLA-DR) show only few polymorphisms [70, 71]. 

Table 1: Statistics on major HLA class I and II gene polymorphism. Amount of known alleles for each of the 

different major HLA genes is listed (IMGT/HLA 10/2017). 

 HLA class I HLA class II 

A B C DRA DRB DQA1 DQB1 DPA1 DPB1 

Alleles 3997 4859 3605 7 2395 92 1152 56 942 

Proteins 2792 3518 2497 2 1751 35 779 26 655 

 

The high genetic polymorphism of HLA genes within the human population increases the 

likelihood of inheritance of different alleles for each of the major HLA genes. The genes 

are expressed codominantly, therefore the cells of an individual can express up to six 

different major HLA class I molecules. Expression of different major HLA class II molecules 

is more variable due to combinatorial pairing of the different α- and β-chains. The genetic 
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polymorphism of HLA genes does not affect gene regions encoding for the backbone of 

HLA molecules but rather for those encoding for the peptide binding cleft. This leads to 

altered peptide binding capabilities of different HLA allotypes. Thus, variance of HLA 

allotypes within a population potentiates the amount of presentable peptides from each 

protein, which enables efficient defense against pathogens on population level. Immune 

evasion of pathogens by mutation and sequence alteration of antigens is counteracted by 

the ability of variable peptide presentation on HLA molecules within a population. 

1.1.5 MHC structure and antigen processing 

MHC class I molecules are membrane-bound surface proteins consisting of a variable α-

chain (43 kDa) and β2-microglobulin (12 kDa). The α-chain is composed of three protein 

domains (α1, α2 and α3). The α3 domain is invariant and harbors a transmembrane region 

while the α1 and α2 domains are the highly variable parts and form the peptide binding 

cleft [72]. The cleft is formed by several protein folds with β-sheets at the basis and α-

helices at the sides (see figure 2) [73]. The conformation of the binding cleft restricts the 

length of peptide binders to eight to twelve amino acids. The N- and C-termini of bound 

peptides interact with conserved amino acids of the binding cleft forcing a linear 

conformation of the bound peptides [74]. The variable parts of distinct MHC allotypes add 

another prerequisite for peptide binding: diversity in the amino acid sequences leads to 

the formation of distinct protein pockets alongside the peptide binding groove. Amino 

acid side chains of the ligand need to interact with these pockets by formation of 

hydrogen bonds and hydrophobic interactions. Thus, each allotype preferentially binds 

peptides containing specified amino acids. These specified amino acids are termed anchor 

residues (mostly at position two and at the C-terminus of the peptide) which are specific 

for each MHC allotype and restrict peptide binding [75]. The combination of length, 

spacing and nature of anchor residues of a peptide required for binding to a specific MHC 

allotype is called peptide motif [76]. The knowledge of these peptide motifs allows for the 

in silico prediction of peptide binders for defined MHC allotypes from protein sequences 

with tools like SYFPEITHI [77] and NetMHC [78]. 
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Figure 2: Structure of MHC class I molecules. The α-chain with its three domains and the non-covalently 

bound β2-microglobulin are depicted. Unique secondary structures are visible in the band model (b). The 

peptide binding cleft is formed by the α1 and α2 domains (c). Schematic of the MHC molecule shows the 

transmembrane domain of the α3 domain (d). Figure adapted from [45]. 

MHC class I molecules preferentially present peptides derived from cytosolic proteins 

[79]. The protein repertoire of a cell underlies a constant turnover: proteins are 

synthesized, degraded and recycled with various turnover times for different protein 

species. Degradation is executed by the proteasome, a large protein complex (1700 kDa). 

It is built up of two subunits: the 20S subunit consists of four stacked rings that form a 

barrel-like structure. The outer rings have seven α-subunits (α1-α7) and mediate 

recognition and uptake of substrates, while the inner rings have seven β-subunits (β1-β7) 

and possess proteolytic capacities. The subunits β1, β2 and β5 are threonine proteases and 

cleave polypeptides after acidic, basic or hydrophobic amino acids forming the C-termini 

of MHC ligands. The 19S subunit forms a ‘lid’ for the barrel-like structure and mediates 

recognition of ubiquitinated proteins and protein unfolding, thereby regulating the 

activity of the proteasome [80]. Proteins are tagged for degradation by ubiquitination 

during the regular protein turnover or in case of erroneous protein synthesis or folding 

(defective ribosomal products, DRIPS). The resulting peptides have a length of about 25 

amino acids and are released into the cytosol, where they are further processed N-

terminally by cytosolic proteases [81, 82]. The cytosolic peptides are eventually 

transported into the endoplasmatic reticulum (ER) by the transporter associated with 

antigen processing (TAP) [83], where further processing by several peptidases such as the 

endoplasmatic reticulum aminopeptidase associated with antigen processing (ERAAP) 

may take place [84, 85]. Newly synthesized MHC class I α-chains get translocated to the 
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ER where they are held partly folded by the chaperone calnexin. Upon binding of β2-

microglobulin to the α-chain, calnexin dissociates and the MHC molecule binds to the PLC 

(peptide loading complex). The PLC consists of several proteins, including the chaperone 

calreticulin and tapasin, which directs the PLC to the TAP transporter. Binding of a peptide 

to the binding cleft of an MHC molecule stabilizes the MHC:peptide complex and it 

dissociates from the PLC. Peptide-loaded MHC class I molecules enter the secretory 

pathway and are transported in vesicles from the ER via the golgi apparatus to the cell 

surface (see figure 3) [86]. 

 

Figure 3: Antigen processing pathway for MHC class I peptide ligands. Ubiquitinated proteins are tagged 

for degradation by the proteasome (3). The resulting peptides are released into the cytosol and further 

processed before translocation to the ER by TAP (4). Empty MHC class I molecules are directed to TAP by 

the PLC and peptides bind to the empty binding clefts (5). The MHC:peptide complexes are stabilized and 

translocate to the cell surface by vesicular transport (6). Figure from [87]. 

MHC class II molecules are membrane-bound surface proteins like MHC class I molecules. 

They are heterodimers consisting of an α-chain (34 kDa) and a β-chain (29 kDa). Both 

chains are composed of two protein domains: while the α2 and β2 domains are invariant 

and possess transmembrane domains, the α1 and β1 domains are highly variable and form 

the peptide binding cleft [88, 89]. The binding cleft architecture is relatively similar to that 

of MHC class I molecules, however it is not completely closed at the edges (see figure 4). 

This more ‘open’ conformation allows binding of longer peptides with lengths from nine 
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to 25 amino acids [90]. As a result, the unspecific interactions that hold the peptide in 

place do not establish between peptide N- and C-termini and the edges of the binding 

cleft, but rather between the peptide backbone and the α-helices forming the binding 

cleft. Although peptide length is far more variable than for MHC class I molecules, 

MHC class II ligands harbor core sequences that exhibit similar binding motifs. The anchor 

residues are often located in positions one, four, six and nine of the core sequence [91]. 

The presence of a core sequence binding motif can lead to length variants of 

MHC class II peptide ligands. Furthermore, the specificity of the binding pockets for the 

anchor residues is far less restrictive, leading to promiscuous ligands (peptides may bind 

to various allotypes) [92]. 

 

Figure 4: Structure of MHC class II molecules. The α-chain and β-chain with their two respective domains 

are depicted. Unique secondary structures are visible in the band model (b). The peptide binding cleft is 

formed by the α1 and β1 domains and has an open conformation (c). Schematic of the MHC molecule shows 

the transmembrane domain of the α2 and β2 domains (d). Figure adapted from [45]. 

MHC class II molecules preferentially present peptides derived from exogenous proteins. 

Phagocytes like DCs, macrophages or B cells take up exogenous proteins by phagocytosis, 

pinocytosis or receptor-mediated endocytosis. The resulting endosomes fuse with 

lysosomes, which carry proteases and lower the pH of the merged vesicle. The exogenous 

proteins get unfolded by thiol reductases and degraded to peptides by proteases, mainly 

of the group of cathepsins [93]. MHC class II molecules are translocated to the ER after 

synthesis. The invariant chain (li, CD74) forms a homotrimer and binds to the peptide 

binding clefts of three MHC class II molecules to stabilize the proteins and avoid 

premature peptide loading within the ER. The invariant chain further acts as a sorting 

signal to guide the nonameric complexes from the ER to the endosomes. Fusion of an 
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endosome containing MHC class II molecules with a lysosomal vesicle generates a special 

compartment, the MHC II loading complex (MIIC) [94]. The lowered pH activates 

cathepsins that cleave the li leaving only the class II-associated invariant chain peptide 

(CLIP) within the peptide binding cleft. The minor MHC class II molecules HLA-DM and 

HLA-DO catalyze exchange of the CLIP with peptides contained in the MIIC. By fusion of 

the MIIC with the cell membrane, MHC class II molecules are translocated to the cell 

surface (see figure 5). 

 

Figure 5: Antigen processing pathway for MHC class II peptide ligands. Extracellular peptides, proteins and 

pathogens are taken up by phagocytosis, pinocytosis or receptor-mediated endocytosis (b). Phagosomes 

fuse with lysosomes and antigens get degraded by proteases to produce peptides (c). Fusion of this vesicle 

with a MHC class II-containing endosome generates the MIIC (d). Peptides are loaded onto MHC class II 

molecules by exchange of CLIPs with the help of HLA-DM and HLA-DO within the MIIC. Fusion of the MIIC 

with the cell membrane translocates MHC class II molecules to the cell surface. Figure from [95]. 

The classical ways of antigen processing for MHC class I and II molecules separates the 

origin of antigens into intracellular for MHC class I and extracellular for MHC class II. The 

origin of antigens correlates with the types of T cells that recognize those antigens. 

MHC class I molecules are present on all cells to showcase infection, cell stress or 

malignant transformation to CTLs and allow recognition and clearance of such cells [96]. 

MHC class II molecules on the other hand, mainly present extracellular antigens on APCs 
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to induce Th cell responses that help mounting antibody responses or support cellular 

immune responses. However, the separation of antigenic origin is circumvented by 

several alternative mechanisms. Antigen processing is influenced by the presence of pro-

inflammatory cytokines like IFN γ: the proteasome is activated by the expression of the 

activator PA28 and some of the proteasomal subunits are exchanged, changing the 

cleavage specificity. The immune proteasome alters the repertoire of presented peptides 

during inflammatory reactions [97, 98]. Intracellular proteins may enter the endosomal 

and lysosomal compartments through autophagy leading to presentation of peptides 

derived from these proteins on MHC class II molecules [99]. Furthermore, APCs are 

capable of cross presentation of peptides derived from exogenous antigens on 

MHC class I molecules [100]. 

1.1.6 Selection and development of T lymphocytes 

T cells originate from common lymphatic progenitor cells of the bone marrow. After initial 

differentiation steps, the early progenitor cells migrate via the bloodstream from the 

bone marrow to the thymus. The thymus is the most important organ in the development 

of mature T cells. It is located above the heart and is predominantly active during 

childhood and adolescence and degenerates with increasing age. It consists of numerous 

thymic lobules which are separated in two distinct regions, the outer cortex and the inner 

medulla. Within the cortex, thymocytes are tightly packed, while the medulla shows a 

more loose arrangement of cells intersected with Hassall’s corpuscles (see figure 6). 
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Figure 6: Tissue section of a thymic lobule. The cortex with tightly packed thymocytes is visible at the 

bottom and right side. The medulla is visible in the center with loosely packed cells and a Hassall’s 

corpuscle. Figure from [101]. 

Within the thymus stroma, progenitor cells start maturation to T lymphocytes by 

engagement of Notch-1 receptors [102]. The cells undergo a proliferation phase with 

gene rearrangement of the TCR β-chain and expression of lineage-specific proteins. The 

cells do not express the co-receptors CD4 and CD8, wherefore this development stadium 

is called “double negative thymocyte”. In case of successful gene rearrangement for the 

TCR β-chain, the cells express a pre-TCR, a heterodimer formed of the TCR β-chain and a 

pre-α-chain, together with CD3 and both co-receptors CD4 and CD8 [103]. During this 

“double positive thymocyte” stage gene rearrangement for the TCR α-chain ensues and 

the mature α:β TCR is expressed. Failed receptor chain pairing leads to apoptosis of the 

cells but may be rescued by additional recombination events using remaining Vα and Jα 

genes. At this developmental stage the thymocytes are located in the cortex of the 

thymus, where they undergo a positive selection procedure: the TCRs of the cells need 

the ability to bind to MHC molecules which provides survival signals to the cell by the TCR 

signaling cascade [104]. After positive selection, expression of the TCR is enforced, while 

expression of the co-receptors is suppressed and the thymocytes migrate to the thymic 

medulla. Here, a second, negative selection process takes place. The thymocytes interact 

with APCs like DCs and macrophages and thymic stromal cells which express MHC class I 
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and II molecules and the transcription factor AIRE (autoimmune regulator). AIRE enforces 

ectopic transcription and expression of almost all genes and thereby generates a 

projection of the peripheral tissues on MHC ligandome level of the APCs [105]. During 

negative selection, thymocytes first express CD4 and interaction of the TCR with 

MHC class II molecules is screened. If the interaction is too weak, CD4 is downregulated 

and CD8 is expressed and the TCR is screened for interaction with MHC class I molecules. 

Thus, by interaction of their TCRs and co-receptors with MHC class I or II molecules, 

thymocytes are destined to CD4+ or CD8+ lineages [106]. T cells expressing TCRs that bind 

MHC molecules with bound self-antigens with high avidity become apoptotic in this 

selection stage [107]. Negative selection prevents the release of autoreactive T cells into 

the periphery however the selection is not entirely exhaustive. Only about 2 % of initial 

precursor cells pass the thymic selection processes and leave the thymus as naïve T cells 

[108]. These cells circulate in the bloodstream and the lymphatic system until they 

encounter an APC presenting the cognate MHC:peptide complex for their TCR. After 

priming of a naïve T cell, it expands clonally and matures to an effector phenotype that 

can exert its effector function upon antigen encounter. To avoid autoimmunity, T cells are 

further regulated by peripheral tolerance mechanisms: naïve T cells that recognize their 

cognate MHC:peptide complex in the periphery without adequate costimulatory signals 

become anergic or undergo activation induced cell death (AICD) [109]. A second 

mechanism of peripheral tolerance is suppression of T cell activity by Treg cells or myeloid 

derived suppressor cells (MDSCs). 

1.2 Cancer immunotherapy 

Cancer is the second leading cause of death with about 14 million new cases in 2012 and 

about 8.8 million cancer-related deaths in 2015 [110]. In most cases, cancer is a disease 

that develops in elderly people due to a lifelong exposition to certain risk factors, such as 

radiation, chemical carcinogens and chronic infections [111]. The WHO estimates that the 

prevalence of cancer will rise by about 70 % in the next two decades due to the increase 

in life expectancy of the world population. Therapy of cancer usually includes surgical 

resection of the tumor and chemo- or radiotherapy to target residual tumor cells and 

undetectable micro-metastases. Chemotherapies are rather unspecific medications 
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targeting cell division which can cause severe side effects leading to high numbers of 

treatment-associated deaths. Nevertheless, treatment protocols for the various cancer 

types are continuously improved and higher standards of medical care facilitate early 

detection of tumors thereby increasing favorable treatment outcomes [112]. After 

decades of improvements on standard therapy protocols, the concept of cancer 

immunotherapy has become one of the most promising new treatment approaches. 

However, the idea that the immune system can recognize and eliminate tumor cells is not 

a new one. Already in 1893, the American surgeon William Coley observed remissions of 

cancer patients after acute bacterial infections. He started to treat sarcoma patients with 

his “Coley toxin”, in fact attenuated Streptococcus pyogenes cultures, which nowadays is 

considered as what has been the first cancer immunotherapy [113]. In 1909, Paul Ehrlich 

postulated the theory that the immune system is capable of tumor cell recognition and 

control of tumor growth [114]. In the late 1950s those early theories were adopted and 

further developed by Lewis Thomas and later by Frank Burnet leading to the 

immunosurveillance theory in 1967: cells of the immune system are constantly surveying 

host tissues and are capable to recognize tumor-associated antigens or neo-antigens that 

tumor cells acquire during malignant transformation [115, 116]. The theory of 

immunosurveillance is nowadays substantially acknowledged and is the foundation for 

the development of modern immunotherapies [117]. A prerequisite for the development 

of effective cancer immunotherapies is the understanding of the underlying mechanisms 

that lead to immune surveillance failure and tumor outgrowth. 

1.2.1 Tumor biology 

Malignant transformation of healthy cells is mainly caused by mutations in genes that 

regulate cell division and cell growth. Some groups of these genes were even named after 

their association with cancer, like (proto-) oncogenes or tumor suppressor genes [118]. 

Mutation of transcription regulators or molecules of certain signaling pathways likewise 

may induce malignant transformation. Furthermore, loss or impairment of DNA repair 

mechanisms can lead to accumulation of mutations and thereby to transformation of 

cells. For a minority of cancer cases, causative mutations are inherited and germline 

encoded, while for the majority of cases these mutations are acquired during lifetime by 

exposition to risk factors. The genetic instability of malignant cells fosters the 
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accumulation of mutations and alteration and deregulation of the DNA causes changes in 

the proteome of those cells. These alterations are showcased by MHC molecules on the 

cell surface and can be recognized by T cells. Antigens of tumor cells that can be 

recognized by T cells are termed tumor antigens and are subdivided into different classes: 

• Differentiation antigens: tissue-specific antigens only expressed in the tumor and 

the corresponding healthy tissue the tumor originates from. An example is the 

premelanosome protein (PMEL, gp100), which is almost exclusively expressed in 

melanocytes and plays an essential role in melanin production. The protein serves 

as target for immunotherapies against melanoma as this tumor originates from 

melanocytes. T cell responses against this antigen may also target healthy 

melanocytes inducing a vitiligo phenotype [119-121]. 

• Overexpressed antigens: proteins present in healthy tissues that are 

overrepresented in the tumor by altered gene expression. An example is VEGF, a 

protein that is overexpressed in a variety of tumors. It promotes tumor 

vascularization to counteract hypoxia and nutrient deficiency in solid tumors and 

serves as target for antibody- and kinase inhibitor-based therapies [122-124]. 

• Oncoviral antigens: some tumors originate from virus-infected cells. Viruses like 

the human papilloma virus (HPV) or the Epstein-Barr virus (EBV) can induce 

malignant transformation of infected cells [125-127]. Chronic infection with 

hepatitis B or C virus (HBV, HCV) is suspected as one cause of liver cancer. The 

antigens originate from the viral proteome and can act as oncogenes. The 

discovery that HPV infection is causative for cervical cancer was awarded with the 

nobel prize for medicine in 2008 for Harald zur Hausen and led to the first 

approved preventive anti-cancer vaccine in 2006 [128, 129]. 

• Cancer/testis antigens: expression is usually restricted to immune-privileged 

tissues of the reproduction apparatus like ovaries or testicular germ cells and is 

aberrantly reactivated in tumor cells. Proteins of the MAGE family for example are 

expressed in a variety of tumors and high expression usually correlates with poor 

prognosis. However, MAGE-specific T cells were described to be present in many 

cancer patients in peripheral blood as well as in TILs [130, 131]. 
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• Oncofetal antigens: expression is restricted to prenatal development and is 

aberrantly (re-) activated in tumor cells. The protein Six1 is a member of the 

homeoprotein family, a group of transcription regulators that control 

organogenesis and polarization during embryogenesis. Thus, expression of these 

proteins has pleiotropic effects and modulates the transcription of a wide range of 

target genes. Dysregulation of the developmental functions of such proteins in 

mature organs may initiate and/or promote tumorigenesis [132]. 

• Mutated antigens: the amino acid sequence of antigens is changed by 

nonsynonymous mutations. These antigens are highly tumor-specific and unique 

for individual tumors. Targeting of such antigens by immunotherapy is a promising 

approach of highly individualized tumor therapy [133]. Interestingly, one single 

mutated antigen may suffice as rejection antigen if antigen-specific T cells are 

present [134]. 

The antigen classes are characterized by different levels of tumor specificity. While less 

specific antigens are referred to as tumor-associated antigens (TAAs), the ones with high 

specificity are termed tumor-specific antigens (TSA). Examples of antigens from the 

different classes are listed in table 2. 
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Table 2: Classification of tumor antigens with examples. Modified from [135]. 

Classification Antigen Specificity 

Differentiation 

MELAN A/MART1 

TAA 
TYROSINASE 

GP100 

NY-BR1 

Overexpressed 

HER2/NEU 

TAA 

P53 

MUC-1 

EpCAM 

VEGF 

Oncoviral HPV E6 and E7 TAA/TSA 

Cancer/testis 

MAGE 

TAA/TSA 
BAGE 

NY-ESO-1 

SPAG9 

Oncofetal 
SIX1 

HOX 
TSA 

Mutated 

CDK4 

TSA P53 

RAS 

 
The antigenic signature of individual tumors is probably composed of antigens derived 

from different antigen classes and is dependent on individual genetic alterations. In 

general, development of a tumor can be understood as a failure of immunosurveillance or 

a lack or loss of immunogenic antigens expressed on tumor cells. This led to the 

expansion of the theory of immunosurveillance by Robert Schreiber, who postulated that 

tumors undergo selective pressure by the immune system and develop in a co-

evolutionary manner [117]. The process of cancer immunoediting has three stages: 

• Elimination: Malignant cells are recognized and eliminated by the immune system 

• Equilibrium: Malignant cells that survive the elimination stage persist in a latent or 

dormant stage. Further genetic alterations are acquired that lead to differentiated 

clones that are either immunologically rejected or ignored. The cellular 

composition of tumors is edited by this process. 

• Escape: Tumor cells that evade control by the immune system grow out to form 

established tumors. 



1 Introduction 24 

 

While immunogenic tumor cells are prone to elimination, those that avoid immune 

recognition have a selective advantage and continue to grow. The mechanisms that lead 

to immunologic ignorance of tumors are manifold. One escape mechanism is antigen loss, 

which is probably induced by selection through the immune system [136]. In some cases, 

tumors are dependent on single altered antigens that promote malignant transformation 

[137], however more often a multitude of alterations is causative. In those cases, 

selection against one antigen is compensated by usage of several altered signaling 

pathways (and other genetic alterations) maintaining the malignant phenotype of a cell. A 

second possibility for antigen loss is complete loss of MHC expression [138] or TAP 

deficiency, albeit making those cells targets for elimination by NK cells [139, 140]. 

Another tumor escape mechanism is the formation of a distinct tumor microenvironment. 

The microenvironment consists of normal cells that are recruited by tumor cells or by 

chronic inflammation processes at the tumor site and has direct effects on immunologic 

surveillance. The immune suppressive functions of the tumor microenvironment include 

formation of physical barriers by stromal cells, preventing the infiltration of tumors by 

immune cells [141] as well as the accumulation of regulatory cells like Tregs and MDSCs. 

Those cells produce anti-inflammatory cytokines like TGF-β [142] and IL-10 and other 

growth factors which impair T cell priming and function [143, 144]. Additionally, Tregs 

express cytotoxic T-lymphocyte antigen 4 (CTLA-4), a molecule that competes with CD28 

for the binding of the co-stimulatory molecules CD80 and CD86 [145] thereby preventing 

efficient priming of T cells. Several other molecules within the tumor microenvironment 

have direct effects on infiltrating T cells: proliferation is inhibited in the presence of 

indolamine-2,3-dioxygenase (IDO) [146] while constant activation of T cells leads to the 

expression of exhaustion markers like the Fas receptor or the programmed cell death 

proteins 1 and 2 (PD-1 and PD-2). Interaction of Fas with its receptor FasL induces AICD in 

T cells [147]. Engagement of PD-1 and PD-2 with their receptors (PD-L1 and PD-L2) leads 

to anergy of antigen-specific T cells [148, 149]. Immune evasion is acknowledged as a 

critical hallmark of cancer [150] and the composition of the tumor microenvironment in 

general and the infiltration of T cells in particular has significant influence on therapy 

outcomes [151]. As T cells are the key players in immunologic cancer recognition and 

rejection, most immunotherapeutic approaches aim at activating or restoring T cell 

activity against tumor cells. 
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1.2.2 Immunotherapeutic approaches 

Immunotherapies can be divided into active and passive approaches. The mode of action 

of passive immunotherapies in general is administration of immune cells or molecules 

that possess anti-tumoral properties while active immunotherapies aim at the in vivo (re-) 

activation of the patient’s own immune system. One of the first passive 

immunotherapeutic approaches was hematopoietic allogeneic stem cell transplantation 

(HSCT) for the treatment of leukemias and lymphomas [152]. During the therapy, stem 

cells of an HLA-matched donor are transferred into a conditioned patient (myeloablation 

by chemotherapy). T cells that originate from donor stem cells exert strong immune 

responses against leukemic blasts by recognition of tumor antigens and minor 

histocompatibility antigens (mHAs) [153]. This favorable graft-versus-leukemia effect 

(GvL) makes HSCT a powerful treatment opportunity however T cell reactivities often are 

not restricted to tumor cells but also target benign healthy tissues. The phenomenon of 

graft-versus-host disease (GvHD) can lead to severe side effects and is a major drawback 

of HSCT. Modern protocols for transplant generation therefore include T cell elimination 

to minimize alloreactive T cell contents and GvHD risk. Another passive approach is 

adoptive T cell transfer, where antigen-specific T cells are isolated directly from the 

patients’ tumor (tumor-infiltrating lymphocytes, TILs) or blood or from blood of an 

unrelated donor [154]. The isolated T cells are screened for tumor (antigen) reactivity in 

vitro and reactive cells are rapidly expanded using high amounts of IL-2, unspecific 

stimulation of CD3 and CD28 and sometimes irradiated feeder cells. The cell products are 

then (re-) infused into patients at high cell numbers. To enable engraftment and 

persistence of the cells, conditioning of patients by lymphodepletion and continuous IL-2 

administration is required [155, 156]. A more sophisticated form of adoptive cell transfer 

is the administration of genetically engineered T cells. These cells are modified by 

lentiviral transduction to express chimeric antigen receptors (CARs) [157] or TCRs [158]. 

CARs are constructs of an antibody single-chain variable fragment (scFv) for surface 

antigen recognition coupled to intracellular signaling domains that activate the effector 

cell for elimination of the target cell upon antigen encounter. The CAR approach is 

dependent on highly specific surface tumor antigens, currently limiting implementation to 

few cancer entities like B cell leukemias (CD19 as target is exclusively expressed on 

B cells) [159, 160]. Therapeutic monoclonal antibody technology is the most advanced 
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branch of passive immunotherapy. Antibodies against several tumor-associated surface 

antigens are approved for clinical application [161]. Classical antibody-mediated effector 

mechanisms like opsonization, receptor blockade, ADCC and complement activation 

provide anti-tumoral efficacy [162-164]. The development of bispecific antibody 

constructs of various formats further enhances the cytotoxic potential by recruitment of 

T cells as effector cells [165]. 

Active immunotherapy aims at the activation of a patient’s own immune system to 

recognize and eradicate tumors. A rather unspecific approach is cytokine therapy. 

Interferons like Interferon α (IFN-α) have anti-proliferative properties and thereby can 

inhibit tumor growth if applied systemically [166] while on the other hand, it has 

beneficial effects on T cell priming [167]. IFN-γ has pro-inflammatory properties and 

stimulates antigen processing and presentation. Immune recognition of tumor cells by 

CTLs is thereby enhanced [168]. Finally, IL-2 stimulates proliferation of T cells and NK cells 

[169]. Systemic administration of immune-stimulatory cytokines however also leads to 

severe side effects that originate from unspecific immune cell activation. 

Another systemic active immunotherapy is the application of checkpoint-inhibitory 

antibodies. Checkpoint molecules are natural components of peripheral tolerance and 

can shut down T cell responses or prevent efficient priming of T cells. In the tumor 

microenvironment however, beneficial anti-tumor T cell responses are inhibited by an 

excessive expression of checkpoint molecules. The first checkpoint blockade antibody 

that was approved for clinical application was Ipilimumab in 2011 for treatment of 

metastatic melanoma [170]. It binds to CTLA-4 on T cells and blocks the interaction with 

CD80 and CD86 on APCs, which leads to more efficient T cell priming and less 

transduction of inhibitory signals within T cells [171]. In 2014, two additional checkpoint-

blocking antibodies against PD-1, Pembrolizumab and Nivolumab, were approved for 

second-line melanoma therapy. PD-1 is expressed on T cells and is upregulated in the 

context of constant inflammation through high levels of IFN-γ [172, 173]. Engagement of 

PD-1 with one of its ligands, PD-L1 or PD-L2, leads to T cell anergy. PD-1 ligands are 

expressed to high extent within the tumor microenvironment and by tumor cells 

themselves, rendering TILs unresponsive and thereby evading immune recognition and 

elimination [174, 175]. Blockade of PD-1 interaction with its ligands can restore T cell 

activity leading to tumor elimination. Combination therapy with anti-CTLA-4 and anti-PD-
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1 seems to have synergistic effects showing unprecedented efficacy in melanoma patients 

[176]. However, as checkpoint blockade antibodies are administered systemically and 

interfere with central tolerance mechanisms, the side effects can be severe [177]. 

Melanoma was the first indication in which checkpoint blockade was tested and showed 

good responses. It is also one of the malignancies with the highest mutation count [178], 

possibly harboring the highest amounts of mutated or neo-antigens [179]. In the 

meantime, it has become apparent that the presence of T cells specific for those mutated 

antigens is a significant predictor for success of checkpoint therapy [180]. Restoration of 

T cell activity against such antigens improves the chance of tumor rejection [181, 182]. 

Thus, in tumor types with lower mutational burden checkpoint inhibition has heuristically 

lower prospects of therapy success [183]. 

Active tumor vaccination is the most diversified approach of active immunotherapy 

aiming to induce specific T cell responses against tumor antigens in vivo. First attempts 

were made to vaccinate with autologous tumor cells or tumor lysates in combination with 

immune-stimulatory cytokines [184, 185]. Direct delivery of antigens to APCs is used to 

enhance T cell priming. For this purpose, DCs are generated from autologous cells and 

loaded with tumor lysates, peptide pools or transfected with expression vectors coding 

for tumor antigens [186-188]. The first clinically approved immunotherapy of this kind 

was Sipuleucel-T in 2010 for treatment of metastatic prostate cancer. Here, DCs are 

generated from patient PBMCs, loaded with a fusion protein consisting of the tumor 

antigen prostatic acid phosphatase (PAP) and the immune modulator GM-CSF ex vivo, 

before re-infusion into the patient [189]. Major disadvantages of approaches involving 

the ex vivo or in vitro manipulation of cells are high costs and regulatory concerns, facts 

that often prevent clinical testing of such approaches (also true for adoptive cell transfer 

and CAR-T cell therapies). These drawbacks can be avoided by direct immunization with 

defined tumor antigens. A prerequisite for this approach is the knowledge of the actual 

tumor antigens of interest. Apart from whole proteins, peptides of various lengths 

derived from tumor antigens have been used for vaccination approaches. While longer 

peptide sequences of about 25 amino acids length can bind to MHC class II molecules, 

they may get processed by APCs at the vaccination site for presentation of embedded 

MHC class I ligands [190]. Additionally, overlapping peptides covering the complete 

sequence of a tumor antigen can be used for vaccination. The advantage of this approach 
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is that one does not necessarily need to know the exact determinants of immunogenicity 

of a tumor antigen. However, if the exact sequence of immunogenic HLA ligands is 

known, those peptides can be used for vaccination and constitute a defined drug that is 

relatively easy to produce [191]. Peptide vaccines have been tested extensively in a 

multitude of cancers however the results were quite disillusioning despite of single 

treatment successes [192-194]. The efficacy of peptide vaccines is dependent on several 

factors: first, most tumor antigens are of relatively low immunogenic nature, i.e. the 

frequencies of antigen-specific naїve T cells as well as TCR avidities are rather low. For the 

induction of strong antigen-specific T cell responses efficient adjuvant agents are 

therefore indispensable [195]. Unfortunately, availability of clinically approved 

substances is limited to a few agents, which restricts the possibilities for the design of 

peptide vaccine applications. Second, the selection of tumor antigens has enormous 

impact on the efficacy of peptide vaccines. Classical tumor-antigens are used for peptide 

vaccination based on expression analysis of tumor tissues however this does not take into 

account HLA polymorphism and actual HLA presentation. Careful selection and validation 

of targets can enhance immunogenicity and efficacy of peptide vaccines [196, 197]. Only 

recently, a highly personalized peptide vaccine against neo-epitopes in melanoma 

patients showed promising results in a phase I clinical trial [198]. Of note, vaccination 

against neo-epitopes was also successfully conducted by administration of RNAs coding 

for 27mer peptides harboring individual amino acid mutations. The RNAs were designed 

for each patient based on identified tumor-specific mutations and were administered 

directly to lymph nodes to target APCs [199]. Thus, selection of suitable antigens and 

higher levels of personalization have the potential to significantly improve the outcomes 

of active tumor vaccination in the future. Additionally, combination of different (immuno-

) therapeutic approaches is envisioned to further advance cancer therapies by synergistic 

effects [200-202]. 

1.3 Renal cell carcinoma 

Renal cancer is the twelfth most common cancer in the western world accounting for 

about around 3 % of all newly diagnosed malignancies [203]. The incidence rate in men is 

about twice as high as in women (16.9 vs. 8.0 cases per 100.000 individuals) and the 
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median 5-year survival rate was 76 % in men and 78 % in women in 2012 in Germany 

[204]. About 90 % of all renal cancers are renal cell carcinomas (RCC) and among RCCs, 

clear cell RCC (ccRCC) is the most common subtype accounting for about 75 % of cases. 

Papillary (15 %) and chromophobe (5 %) RCCs are two less frequent subtypes, as well as 

nephroblastoma [205]. RCCs are often diagnosed by chance as symptoms only develop in 

late stages of the disease. In cases of metastatic disease (mRCC), the median survival rate 

is poor with only about 22 months and the 5-year survival rate is less than 10 % [206]. 

RCCs originate from cells of the proximal renal tubular epithelium and are mostly 

resistant to chemotherapy and radiotherapy [207]. Thus, surgery is the most commonly 

applied first treatment. During complete (radical) or partial nephrectomy the tumor tissue 

as well as benign, unaffected renal tissue is removed. The fact that benign tissue is 

available for almost all tumor samples allowed for the conduction of this study with the 

unique possibility of a comparative analysis of benign and malignant sample pairs. RCC is 

regarded as a highly immunogenic tumor based on the observation of high amounts of 

tumor-infiltrating lymphocytes (TILs) [208] and spontaneous disease regressions [209]. 

Thus, RCC was one of the first cancer entities where unspecific immunotherapy with 

cytokines (IFN-α and IL-2) showed clinical benefit and was approved for first-line 

treatment of advanced disease [210]. Although since then a multitude of more specific 

immunotherapy approaches were tested in RCC patients, treatment modalities were 

solely changed by the introduction of small molecules and monoclonal antibodies with 

various targets: tyrosine kinase inhibitors (TKIs) like Sunitinib target vascular endothelial 

growth factor (VEGF) but also exhibit off-target effects and are prone to resistance 

development of tumors [211-213]. Inhibition of VEGF is thought to prevent tumor 

angiogenesis and metastatic transition of tumor cells. Other VEGF-targeting agents 

approved for the treatment of mRCC are Sorafenib [214], Pazopanib [215] and 

Bevacizumab in combination with IFN-α [216]. The other target is mammalian target of 

rapamycin (mTOR), a kinase that regulates cell growth and proliferation. The approved 

mTOR inhibitors Temsirolimus [217] and Everolimus [218] similarly show off-target effects 

and resistance development. Clinical studies testing more advanced treatment 

approaches were only recently conducted: Cabozantinib is a multikinase inhibitor 

targeting VEGFR, MET, RET and AXL [219] and Nivolumab is a checkpoint blockade 

antibody against PD-1 [220]. Both treatments outcompeted standard therapies by far: 
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Cabozantinib showed a 42 % reduction in the risk of progression or death and higher 

response rates (21 % vs. 5 %) compared to Everolimus. Nivolumab showed a reduction of 

27 % in the risk of death and higher tumor response rates (25 % vs. 5 %), as well as 

improved overall survival (OS) compared to Everolimus. Thus, the treatment modalities of 

mRCC are about to change in the near future [221]. However, complete remissions 

remained rare in these clinical trials, showing the medical need for innovative therapeutic 

options. 

1.4 Tuberculosis 

Tuberculosis (TB) is the infectious disease with the highest prevalence in the human 

population. About one-third of the world’s population is currently infected with 

Mycobacterium tuberculosis (Mtb), the germ causing the disease. Every year, about 9 

million new infections and 1.7 million deaths due to tuberculosis worldwide are 

estimated [222]. Infection rates and mortality are significantly increased in 

immunocompromised individuals, especially in HIV-infected patients, making tuberculosis 

a major health threat in developing and third-world countries. 

 

Figure 7: Estimated tuberculosis incidence rates in 2009. Figure adapted from [222]. 
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Infection is transmitted by Mtb-containing aerosol droplets that are produced by 

coughing, spitting or sneezing of infected individuals with an active disease state. Mtb is 

(depending on virulence of the strain) highly infective so that inhalation of only few of 

such droplets with low amounts of germs can cause transmission [223]. The majority of 

infections however (90-95 %) do not progress to cause active tuberculosis but remain 

asymptomatic (latent TB). The lifetime chance for latently infected individuals to develop 

active disease is about 10 % and untreated active disease has mortality rates above 50 % 

[224]. 

The cause of TB is infection with Mtb, an aerobic, non-motile bacillus that was first 

discovered by Robert Koch in 1882. It cannot be characterized by Gram staining as the cell 

wall is impermeable for basic dyes but instead is described as acid-fast since it withstands 

decolourisation with acidic organic solvents. Mtb has some unique features: first, it is 

characterized by very slow cell division cycles of 16-20 hours. Second, the cell wall 

contains high levels of mycolic acids and lipids, conferring resistance to hostile 

environments and antibiotics, but probably also to immune recognition and eradication 

[225-227]. Mycobacteria that enter the respiratory system infect macrophages present in 

pulmonary alveoli [228]. Macrophages recognize mycobacteria as foreign by engagement 

of scavenger and complement receptors leading to phagocytosis of the bacteria [229]. 

Under normal circumstances phagosomes mature and fuse with lysosomes, leading to 

digestion of phagosome content. However, Mtb has evolved strategies to circumvent 

destruction by interfering with normal vesicle trafficking within macrophages and 

developing resistance against reactive oxygen species and acidic environments [230-233]. 

Instead, Mtb uses macrophages as primary host cells and replicates within the cells, 

eventually leading to cell death. Infected macrophages provoke an innate and adaptive 

immune response however in most cases the immune system is not able to eradicate the 

pathogen. Immune recognition leads to the formation of caseous granulomas, the typical 

manifestation of latent TB. Necrotic infected macrophages at the center are surrounded 

by T cells, fibroblasts, neutrophils and giant cells. Thus, latent TB is characterized by an 

equilibrium state between immune response and immune evasion [234]. Disturbance of 

this delicate balance may lead to dissemination and active TB [235, 236]. 

Diagnosis of active TB requires a lung X-ray and sputum cultures for verification. The slow 

cell division of Mtb prolongs time to diagnosis therefore antibiotic treatment is indicated 
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prior to definitive diagnosis. Diagnosis of latent TB is even more difficult. The classical 

tuberculin skin test has limited reliability and newly developed IFN-γ release assays did 

not meet expectations in sensitivity and reliability either. Thus, a “gold standard” 

diagnosis tool for latent TB remains elusive [237]. Treatment of active TB involves a 

combination therapy with the antibiotics isoniazid, rifampicin, pyrazinamide and 

ethambutol for two months followed by another four months of a combination of 

rifampicin and isoniazid [222]. The emergence of strains with primary or acquired 

antibiotic resistance aggravates treatment. Multi-drug-resistant TB strains (MDR-TB) are 

resistant to the first-line drugs rifampicin and isoniazid, while extensively drug-resistant 

TB strains (XDR-TB) are additionally resistant to at least three of the second-line drug 

classes. Cases of totally drug-resistant TB strains have also been reported [238]. 

The only vaccine available against TB is Bacillus Calmette-Guérin (BCG), an avirulent strain 

that was isolated from Mycobacterium bovis cultures developed by subsequent 

subculturing by Albert Calmette and Camille Guérin in the early 20th century. The vaccine 

was first used in 1921 in children and is until now the most widely used vaccine 

worldwide. However, it only decreases the risk of infection by about 20 % and the risk of 

developing active disease by about 60 % [239, 240]. BCG is also used as an 

immunotherapeutic agent for the treatment of bladder cancer [241]. The BCG vaccine is 

not successful in containing the TB pandemic, and with the rise of antibiotic resistant 

strains there is an immanent need for effective preventive and therapeutic vaccines for 

TB. The two main strategies pursued in TB vaccine research are either replacement of 

BCG with an improved (genetically engineered) whole-organism priming vaccine or the 

use of BCG in combination with a boosting subunit vaccine [242, 243]. Both concepts are 

currently under investigation in clinical trials [244]. Better understanding of interactions 

of Mtb and the immune system and delineation of the Mtb genome pave the road for 

new approaches in the design of genetically engineered avirulent or attenuated strains 

for vaccination and subunit vaccines [245-248]. One additional approach emerging from 

recent studies is host-directed therapy. Fine-tuning of the cellular immune response to 

Mtb infection in combination with first-line therapies showed promising first results, even 

in MDR- and XDR-TB [249, 250]. 
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1.5 Aim of the study 

Peptide vaccination is a promising immunotherapeutic approach not only for treatment 

of malignancies but also for infectious diseases. Until now, selection of targets for peptide 

vaccination greatly relied on classical tumor-associated antigens that are thought to play 

substantial roles in tumor biology and development. Only few studies used naturally 

presented HLA ligands as targets for vaccination in humans, thus the selection criteria for 

suitable targets require research-based improvements to better exploit the potential of 

peptide vaccines. The availability of tumor and benign tissues from RCC specimens allows 

for the development of a comparative approach for the selection of suitable HLA ligands 

for peptide vaccination. Technical improvements in mass-spectrometric analysis of HLA-

binding peptides facilitate exhaustive analysis of HLA ligandomes not only of tumor but 

also benign tissue. HLA ligandomes could be profiled on single-patient level as well as on 

the level of a whole cohort of RCC patients. This may lead to a complete newly defined 

class of antigens, solely based on tumor-exclusive HLA presentation and irrespective of 

antigen function in tumorigenesis or (over-) expression in RNA profiles of tumor samples. 

Additionally, individual profiling might enhance possibilities of personalization of vaccine 

constituents based on individual tumor HLA ligandome profiles. For this purpose, HLA 

ligandomes of sample pairs of RCC patient tumor and benign tissues should be 

characterized by mass spectrometry. One special focus was on the improvement of 

peptide isolation and identification from normal tissues, as this objective was hampered 

in the past by smaller sample sizes, more difficult sample preparation and technical 

limitations of the mass spectrometry setup. An additional benefit of identification of HLA 

ligandomes of healthy tissues is that this will provide a database of the human HLA 

ligandome of healthy tissues in the future. This database will be of use for selection of 

ligandome-based peptide vaccine candidates for virtually any tumor entity, as antigens 

that are presented in a healthy state would represent negative selection criteria. To 

investigate the validity of antigen selection based on comparative profiling, a selection of 

peptide candidates should be tested for immunogenicity in in vitro priming experiments. 

Immunogenicity is a major hallmark for promising peptide vaccine candidates and 

describes the presence of antigen-specific naïve T cells in the T cell repertoire. The 

presence of such T cells should be verified by priming with artificial antigen-presenting 
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cells (aAPCS) followed by subsequent clonal expansion and detection using HLA tetramer 

staining and FACS analysis. 

The second part of this study dealt with the identification of naturally presented HLA 

ligands derived from mycobacterial antigens. For this purpose, two different approaches 

should be applied: first, a viral vector encoding for a set of mycobacterial antigens should 

be used to infect a B-lymphoblastoid cell line (B-LCL). Second, monocyte-derived 

macrophages should be generated from PBMCs of healthy individuals for infection with a 

live Mtb strain. Knowledge of naturally presented HLA ligands derived from mycobacterial 

antigens might not only provide evidence for the design of peptide vaccines or subunit 

booster vaccines against TB, but might furthermore provide the basis for the 

development of TB infection screening assays with superior sensitivity and specificity.
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2 Materials and methods 

2.1 Materials 

2.1.1 Renal cell carcinoma tissue samples 

Patient tissue samples were deployed by the University’s clinic for Urology Tübingen 

(head of department Prof. Dr. med. Arnulf Stenzl). All patients gave written informed 

consent for the scientific usage of resected tissues. This work is approved by the Ethics 

committee of the University Hospital Tübingen (Project number 27/2009BO2).Tissue 

samples were snap frozen in liquid nitrogen directly after surgery and stored at -80°C until 

further use. For each patient, malignant and benign tissue was deployed and analyzed. 

HLA typing was performed either by the Blood Bank Tübingen or the Section for 

Transplantation Immunology and Immune Hematology of the University Hospital 

Tübingen. 

Table 3: Analyzed tissue samples of RCC patients. Listed are patient’s pseudonyms, masses of malignant 

and benign tissue samples and HLA typing of the patients. For reasons of clarity and comprehensibility, HLA-

typings with a maximum of four digits are depicted. 

Sample 

ID 

tumor 

mass 

[g] 

benign 

mass 

[g] 

HLA class I HLA class II 

RCC301 2.5 2.4 A*23:01, 
B*14:02, 
C*04:01, 

A*33:01, 
B*44:03, 
C*08:02 

DRB1*01, DRB1*07, DRB4 

RCC302 3.0 2.4 A*03, 
B*07, 

A*32, 
B*15 

DRB1*04, 
DRB4 

DRB1*11, DRB3, 

RCC310 5.2 1.1 A*03:01, 
B*13:02, 
C*03:03, 

A*30:01, 
B*15:01, 
C*06:02 

DRB1*03, 
DRB4 

DRB1*07, DRB3, 

RCC318 7.3 2.2 A*02:01, 
B*08:01, 
C*02:02, 

A*24:02, 
B*51:01, 
C*07:01 

DRB1*03,  DRB1*11, DRB3 

RCC330 9.0 1.6 A*03:01, 
B*38:01, 
C*12:03, 

A*26:01, 
B*51:01, 
C*14:02 

DRB1*04, 
DRB5 

DRB1*16, DRB4, 

RCC352 8.5 3.3 A*24, 
B*35, 

A*68, 
B*55 

DRB1*12,  DRB1*13, DRB3 

RCC358 3.0 1.5 A*03:01, 
B*07:05, 
C*12:03, 

A*31:01, 
B*18:01, 
C*15:05 

n.a.   
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Sample 

ID 

tumor 

mass 

[g] 

benign 

mass 

[g] 

HLA class I HLA class II 

RCC370 5.3 3.0 A*02, 
B*07 

A*24, 
 

DRB1*08, DRB1*13, DRB3 

RCC376 16.8 4.5 A*02:01, 
B*44:03, 
C*16:01 

A*03:01, 
 
C*04:01, 

DRB1*07, DRB4  

RCC385 3.0 2.0 A*01:01, 
B*27:05, 
C*03:02, 

A*32:01, 
B*58:01, 
C*05:01 

DRB1*13, 
DRB5 

DRB1*15, DRB3, 

RCC792 3.1 1.4 A*02, 
B*15, 

A*03, 
B*27 

n.a.   

RCC349 3.0 2.0 A*24:02 
B*35:08 
C*03:04 

 
B*40:01 
C*04:01 

DRB1*03:01, 
DRB4*01:01, 
DQA1*03:01, 
DPB1*14:01 

DRB1*04:03, 
DQB1*02:01, 
DQA1*05:01, 
 

DRB3*02:02, 
DQB1*03:02, 
DPB1*02:01, 
 

RCC200 5.1 2.1 A*02:01, 
B*40:01, 
C*03:04, 

A*66:01, 
B*41:02, 
C*17:01 

DRB1*13:02, 
DRB3*03:01, 
DQA1*01:02, 
DPB1*03:01 

DRB1*13:03, 
DQB1*03:01, 
DQA1*05:01, 

DRB3*01:01, 
DQB1*06:04, 
DPB1*04:02, 

RCC227 7.1 6.1 A*02, 
B*07, 

A*03, 
B*41 

DRB1*01, DRB1*15, DRB5 

RCC441 1.0 0.2 A*01:01, 
B*08:01, 
C*04:01, 

A*03:26, 
B*35:01, 
C*07:01 

DRB1*03:01, 
DQB1*02:01, 
DQA1*05:01, 

DRB1*13:01, 
DQB1*06:03, 
DPB1*01:01, 

DRB3*01:01, 
DQA1*01:03, 
DPB1*04:01 

RCC299 1.7 1.0 A*02, 
B*44:03, 

A*26, 
B*49:01 

DRB1*07, 
DRB4 

DRB1*14, DRB3, 

RCC287 2.9 2.9 A*02, 
B*27, 

A*32, 
B*40 

DRB1*01, DRB1*04, DRB4 

RCC1138 6.0 5.5 A*02:01, 
B*40:01, 
C*03:04, 

A*68:01, 
B*47:01, 
C*06:02 

DRB1*07:01, 
DRB4*01:01, 
DQA1*02:01, 
DPB1*15:01 

DRB1*11:03, 
DQB1*02:02, 
DQA1*05:01, 

DRB3*02:02, 
DQB1*03:01, 
DPB1*04:01, 

RCC1147 2.5 1.2 A*02:01, 
B*40:01, 
C*02:01, 

A*24:02, 
B*40:02, 
C*03:04 

DRB1*13:02, 
DRB4*01:01, 
DQA1*02:01, 
DPB1*11:01 

DRB1*07:01, 
DQB1*06:04, 
DQA1*01:02, 
 

DRB3*03:01, 
DQB1*02:10, 
DPB1*03:01, 
 

RCC1131 2.8 0.6 A*02:01, 
B*07:02, 
C*03:04, 

A*03:01, 
B*40:01, 
C*07:02 

DRB1*15:01, 
DRB5*02:02, 
DQA1*01:02, 

DRB1*16:01, 
DQB1*05:02, 
DPB1*04:01 

DRB5*01:01, 
DQB1*06:02, 

RCC1148 5.6 0.4 A*01:01, 
B*07:02, 
C*07:02, 

A*11:01, 
B*44:03, 
C*16:01 

DRB1*07:01, 
DRB4*01:01, 
DQA1*01:02, 
DPB1*11:01 

DRB1*13:02, 
DQB1*02:10, 
DQA1*02:01, 
 

DRB3*03:01, 
DQB1*06:04, 
DPB1*03:01, 
 

RCC245 1.5 1.5 A*24, 
B*37, 

 
B*44:03 

DRB1*08   

RCC247 5.0 3.0 A*11, 
B*13, 

A*30, 
B*15 

DRB1*01, DRB1*07, DRB4 

RCC251 3.0 1.0 A*02:01, 
B*15:01, 
C*03:04, 

A*03:01, 
B*35:01, 
C*04:01 

DRB1*04:01, 
DQB1*02:02, 
DQA1*03:01, 

DRB1*07:01, 
DQB1*03:02, 
DPB1*04:01, 

DRB4*01:01, 
DQA1*02:01, 
DPB1*11:01 

RCC286 5.1 2.7 A*03, 
B*13, 

A*30, 
B*18 

DRB1*07, 
DRB5 

DRB1*15, DRB4, 

RCC291 8.0 1.2 A*02, 
B*18, 

A*03, 
B*44:02 

DRB1*13, DRB3  

RCC1157 1.8 1.4 A*02:01, A*24:02, DRB1*11:01, DRB1*15:01, DRB3*02:02, 
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Sample 

ID 

tumor 

mass 

[g] 

benign 

mass 

[g] 

HLA class I HLA class II 

B*07:02, 
C*02:02, 

B*51:01, 
C*07:02 

DRB5*01:01, 
DQA1*01:02, 

DQB1*03:01, 
DQA1*05:01, 

DQB1*06:02, 
DPB1*04:01 

RCC381 6.5 4.1 A*02, 
B*39, 

A*26, 
B*57 

DRB1*07, DRB1*08, DRB4 

RCC1154 1.6 1.4 A*01:01, 
B*08:01, 
C*02:02, 

A*02:01, 
B*27:05, 
C*07:01 

DRB1*03:01, 
DQB1*02:01, 
DQA1*01:01, 

DRB1*01:01, 
DQB1*05:01, 
DPB1*03:01, 

DRB3*01:01, 
DQA1*05:01, 
DPB1*04:02 

RCC1187 2.5 2.1 A*24:02, 
B*18:01, 
C*07:01, 

A*68:01, 
B*51:01, 
C*14:02 

DRB1*13:01, 
DRB4*01:01, 
DQA1*01:03, 
DPB1*04:02 

DRB1*07:01, 
DQB1*02:02, 
DQA1*02:01, 
 

DRB3*01:01, 
DQB1*06:03, 
DPB1*02:01, 
 

RCC1188 2.9 2.0 A*11:01, 
B*14:07N, 
C*07:01, 

A*24:02, 
B*18:01, 
C*08:02 

DRB1*11:01, 
DRB4*01:01, 
DQA1*05:01, 
DPB1*04:01 

DRB1*07:01, 
DQB1*02:02, 
DQA1*02:01, 
 

DRB3*02:02, 
DQB1*03:01, 
DPB1*03:01, 
 

RCC1203 5.0 1.0 A*02:01, 
B*40:01, 
C*03:04, 

A*68:02, 
B*53:01, 
C*04:01 

DRB1*13:02, 
DRB3*03:01, 
DQA1*01:02, 
DPB1*04:01 

DRB1*13:01, 
DQB1*06:04, 
DQA1*01:03, 
 

DRB3*01:01, 
DQB1*06:03, 
DPB1*13:01, 
 

RCC1223 3.7 1.9 A*02:01, 
B*39:01, 
C*03:03, 

B*15:01, 
 
C*12:03 

DRB1*13:01, 
DQB1*06:03, 
DQA1*01:03, 

DRB1*01:01, 
DQB1*05:01, 
DPB1*04:02, 

DRB3*02:02, 
DQA1*01:01, 
DPB1*03:01 

RCC1248 4.2 2.6 A*03:01, 
B*27:05, 
C*01:02, 

A*31:01, 
B*35:01, 
C*04:01 

DRB1*11:01, 
DQB1*03:01, 
DQA1*05:01, 

DRB1*01:01, 
DQB1*05:01, 
DPB1*04:02, 

DRB3*02:02, 
DQA1*01:01, 
DPB1*02:01 

RCC1238 1.5 1.5 A*68:01, 
B*44:02, 
C*07:04, 

 
B*51:01, 
C*15:02 

DRB1*13:01, 
DQB1*06:03, 
DQA1*01:03, 

DRB1*01:01, 
DQB1*05:01, 
DPB1*06:01, 

DRB3*02:02, 
DQA1*01:02, 
DPB1*02:01 

RCC1192 2.5 2.5 A*03:01, 
B*08:01, 
C*07:01, 

A*11:01, 
B*51:01, 
C*15:02 

DRB1*11:01, 
DRB3*02:02, 
DQA1*05:01, 

DRB1*03:01, 
DQB1*02:01, 
DPB1*02:01, 

DRB3*01:01, 
DQB1*03:01, 
DPB1*09:01 

RCC1198 2.4 1.8 A*02:01, 
B*27:05, 
C*01:02, 

A*26:01, 
B*57:02, 
C*04:01 

DRB1*01:01, 
DQB1*02:02, 
DQA1*01:01, 

DRB1*07:01, 
DQB1*05:01, 
DPB1*01:01, 

DRB4*01:01, 
DQA1*02:01, 
DPB1*04:01 

RCC1170 2.3 1.6 A*24:02, 
B*35:02, 
C*04:01 

A*68:02, 
B*53:01, 

DRB1*13:02, 
DRB3*02:02, 
DQA1*01:02, 

DRB1*11:04, 
DQB1*03:01, 
DQA1*05:01, 

DRB3*03:01, 
DQB1*06:04, 
DPB1*04:01 

RCC1152 5.0 2.0 A*25:01, 
B*07:05, 
C*05:01, 

A*29:01, 
B*44:02, 
C*15:05 

DRB1*04:01, 
DRB4*01:01, 
DQA1*05:01, 
DPB1*04:02 

DRB1*11:01, 
DQB1*03:02, 
DQA1*03:01, 
 

DRB3*02:02, 
DQB1*03:01, 
DPB1*04:01, 
 

2.1.2 Healthy blood donors 

Leukapheresis products (Leuka xx) and whole blood samples (J xxx) were provided by the 

transfusion medicine of the University Hospital Tübingen. 
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Table 4: Leukapheresis and whole blood samples. Leukapheresis samples were used for macrophage 

generation. Whole blood samples were used for CD8+ T-cell priming assays. 

Sample ID Cell 

count 

Monocyte 

count 

HLA class I 

Leuka 03 3.3*109 3.0*108 A*02, A*03, B*35, B*44, C*04 
Leuka 04 3.5*109 3.7*108 A*03, A*26, B*51, B*57, C*01, C*06 
Leuka 05 1.7*109 1.7*108 A*02, A*03, B*35, C*04 
Leuka 06 5.2*109 6.0*108 A*03, A*26, B*51, B*57, C*01, C*06 
Leuka 07 4.9*109 6.2*108 A*02, A*28, B*51, C*01, C*02 
Leuka 08 2.8*109 2.6*108 A*02, A*03, B*07, B*51 
J 136 n.a. n.a. A*02 
J 147 n.a. n.a. A*02, B*07 
J 154 n.a. n.a. A*02 
J 164 n.a. n.a. B*07 
J 171 n.a. n.a. A*02, B*07 
J 174 n.a. n.a. A*03, B*07 
J 185 n.a. n.a. B*44 
J 193 n.a. n.a. A*02 

2.1.3 B-LCL cell line JY 

The cell line JY originates from an Amish boy with pediatric B-cell leukemia. It was 

immortalized by infection with Epstein-Barr virus (EBV) and is therefore referenced as B-

lymphoblastoid cell line (B-LCL). JY is homozygous for the HLA class I genes and expresses 

high amounts of HLA class I molecules on the cell surface. The HLA class I typing is 

A*02:01, B*07:02 and C*07:02. These HLA class I alleles represent some of the most 

common alleles in the Caucasian population. These features make this cell line a valuable 

in vitro model for HLA ligandome analysis studies. JY is cultured as suspension cell line. 

2.1.4 Mycobacterium tuberculosis strain H37Rv 

H37Rv is the most commonly used pathogenic laboratory strain of mycobacteria. It was 

first isolated in 1905 and showed high pathogenicity in guinea pig models. In 1934, the 

strain H37 was separated in a pathogenic ‘Rv’-strain and an avirulent ‘Ra’-strain [251]. 

The H37 strains have since become the reference strains for studies in the field of 

mycobacteria and tuberculosis. Handling of H37Rv requires a qualified laboratory of 

security stage 3 (S3) after Infection Protection Act. Therefore, all work with pathogenic 

H37Rv was performed by Stephanie Kallert of the working group of Prof. Steffen Stengert 

at the University Hospital Ulm in an appropriate S3 laboratory. H37Rv is cultured on 

Lowenstein-Jenson or Middlebrock 7H10 medium. 
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2.1.5 Modified vaccinia Ankara (MVA) strain MVA-TBF 

MVA-TBF is a viral vector subunit-vaccine, developed to boost immune responses after 

BCG vaccination. MVA is an infectious living vaccinia strain which is unable to replicate in 

infected cells. It therefore can be used as a vector to vaccinate against various antigens. 

Since infected cells show classical behavior of virus infection, the vector itself serves as 

adjuvant in vaccination approaches. MVA-TBF encodes for four mycobacterial antigens: 

Ag85A  mycobacterial mycol-transferase A; Rv3804c 

TB9.8  ESAT-6 like protein ESXG; Rv0287 

TB10.4  low molecular weight protein antigen 7 ESXH; Rv0288 

Acr2  heat stress induced ribosome binding protein A; Rv0251c 

A predecessor of MVA-TBF, MVA-Ag85A [252] is currently under investigation in clinical 

trials [253, 254]. MVA-Ag85A contains only one mycobacterial antigen (Ag85A) and was 

shown to be highly immunogenic [255, 256]. It was also shown to be a safe and 

immunogenic booster vaccine in humans in clinical phase I trials [257]. MVA-TBF was 

kindly provided by Helen McShane from the University of Oxford. It was stored in 10 mM 

Tris pH 9.0 at -80°C until use. 

2.1.6 Devices 

Agitator with pestle RZR 2020 Heidolph Instruments 
Analytical balance AC 211 S Sartorius 

Autosampler Micro AS Thermo Scientific 

C18 Nano-LC column Acclaim PepMap RSLC, 2 µm 

100 Å, 75 µm I.D. x 25 cm 

Dionex 

C18 Nano-LC column Acclaim PepMap RSLC, 2 µm 

100 Å, 75 µm I.D. x 50 cm 

Dionex 

C18 Nano-LC trap column, Acclaim PepMap100, 5 µm 

100 Å, 300 µm I.D. x 5 mm 

Dionex 

Cell culture hood Technoflow, 

Integra Biosciences 

Centrifuge 5415R Eppendorf 

Cold trap KF-2-110 H. Saur Laborbedarf 

Cryo freezing container Nalgene 
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Cryotome Leica Biosystems 

ELISA reader Spectramax 340 Molecular Devices 

Flow cytometer FACS-Canto II Becton Dickinson 

FPLC system ÄKTA prime Amersham Biosciences 

Freezer -20°C Liebherr 

Freezer -80°C Forma 

Glass Econo-Columns 0.5 – 5 cm diameter for affinity 

chromatography 

BioRad Laboratories 

Incubator for agar plates Heraeus 

Incubator for cell cultures Heraeus BB 6220 CU with 

5 % CO2 gas supply 

Heraeus 

 

Light microscope Zeiss 

MACS columns and magnet Miltenyi Biotech 

Magnetic stirrer RCT basic IKA Labortechnik 

Mass spectrometer LTQ Orbitrap XL Thermo Scientific 

Mass spectrometer Q-Tof 2 Waters 

Multichannel pipette 200 µl Abimed 

Nano uHPLC Ultimate 3000 RSLC nano Dionex 

Nano HPLC NanoLC 2D Eksigent 

Neubauer counting chamber, 0.1 mm depth LO Laboroptik 

Peptide synthesizer EPS 221 Abimed 

pH-meter 765 Knick 

Pipettes 1, 10, 20, 100, 1000 µl Gilson 

Pipettor Pipetboy acu Integra Biosciences 

Peristaltic pump LKB P-1 Pharmacia 

Potter glass tubes 2, 5, 10, 20 ml Novodirect 

Precision balance Sartorius 

Quartz cuvette 10 mm layer thickness Hellma 

Refrigerator Liebherr 

Shaking incubator OMV-ROM Infors Multitron 

Small shaker Vibrax VXR IKA 

Spectrophotometer NanoDrop 1000 Thermo Scientific 

Speed vac vacuum concentrator Bachofer 

Spinning wheel Bachofer 

Stirring cell system Amicon Millipore 

Tabletop centrifuge Heraeus Biofuge fresco Heraeus 

Tabletop centrifuge Heraeus Biofuge pico Heraeus 

Tabletop centrifuge Megafuge 1.0 Heraeus 

Ultracentrifuge RC 5C Plus Sorvall 

Ultracentrifuge L-80 Beckman Coulter 
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Ultracentrifuge rotor Ti70 Beckman Coulter 

Ultrasonic cell disruptor Sonifier 250 Branson Ultrasonic 

UV-Vis-spectrometer Ultraspec 3000 Pharmacia 

Vortex  Minishaker MS 2 IKA Labortechnik 

Water bath GFL 

Water distiller Heraeus 

2.1.7 Consumables 

26G Needle Microlance Becton Dickinson 
50 ml reagent reservoir Corning 

96-well plates U-bottom, F-bottom Corning 

Cell culture flask 75 cm2, 175 cm2 Greiner bio-one 

Cell scraper Greiner bio-one 

Compensation beads Invitrogen (Life technologies) 

Cryotubes 2 ml Greiner bio-one 

Cryotubes dark Biozym 

FACS tubes 5 ml Becton Dickinson 

Filter top Stericup & Steritop Millipore 

Glass bottles & beakers Schott 

Low-bind tubes 0.5, 1.5, 2 ml Eppendorf 

MACS columns LS Miltenyi Biotec 

Nano-ESI Emitter PicoTip 360/20 µm New Objective 

Parafilm Pechiney Plastic Packaging 

Petri dish Greiner Bio-one 

Pipette tips 10, 200, 1000 µl Starlab 

Pipette tips PEG-reduced Diamond, 

10, 200, 1000 µl 

Gilson 

Reservoirs 50 ml, 100 ml Corning Incorporated 

Safe-lock tubes 0.5, 1.5, 2 ml Eppendorf 

Serological pipettes 2, 5, 10, 25, 50 ml Becton Dickinson 

Surgical disposable scalpel Braun 

Sterile filter 0.20 µm Sartorius 

Streptavidin-coated microspheres Bangs Laboratories 

Syringe-driven filter unit Millipore 

Syringe luer-lock 5 ml, 30 ml, 50 ml Beckton Dickinson 

Three-way valve for medical applications, Discofix C3 B. Braun Melsungen AG 

Tubes 15, 50 ml Greiner bio-one 

Ultrafiltration unit Amicon Ultra, 10 kDa NMWL, 0.5, 4, 

15 ml 

Millipore 
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ZipTip µ-C18, 10 µl Millipore 

2.1.8 Chemicals 

2-(4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 
(HEPES) 

Gibco Life Technologies 

2-propanol (Isopropanol) Merck 

Acetonitrile (MS-Grade) Thermo Scientific 

Ampicillin sulfate Roth 

ATP Sigma-Aldrich 

Bacto Tryptin Difco 

Bacto Yeast Extract Difco 

Bovine serum albumin, BSA Sigma-Aldrich 

Bradford reagent, Roti Nanoquant Roth 

CD8 MicroBeads, human (130-045-201) Miltenyi 

CHAPS AppliChem 

Chloramphenicol Sigma-Aldrich 

CNBr-activated sepharose GE Healthcare 

Complete Protease Inhibitor tablet Roche 

Cyclosporin A (Sandimmun) Novartis 

D-Biotin Sigma-Aldrich 

Descosept AF Dr. Schuhmacher GmbH 

Dimethyl sulfoxide (DMSO) WAK-Chemie 

DNAse Roche 

Ethanol SAV LP 

Ethylenediaminetetraacetic acid, EDTA Roth 

FCS (fetal calf serum) PAA Laboratories 

Ficoll (Biocoll) Millipore 

Formaldehyde Fluka 

Formic acid Merck 

Gentamycin Gibco 

Glycerol Roth 

Glycine Roth 

HSA (human serum albumin) Biotest 

Hydrochloric acid (HCl) Roth 

IMDM (Icove’s Modified Dulbecco’s Medium) Lonza 

Ionomycin Sigma-Aldrich 

L-arginine Sigma-Aldrich 

Leupeptin Roche 

L-glutamine Gibco (Life technologies) 
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LIVE/DEAD Fixable Dead Cell Stain Invitrogen (Life technologies) 

Methanol Merck 

Monosodium phosphate, NaH2PO4 Merck 

Oxidized glutathione Sigma-Aldrich 

PBS (Phosphate buffered saline) Gibco (Life technologies) 

Penicillin (103 x U/ml)/Streptomycin (10 g/ml), Pen/Strep Sigma-Aldrich 

Pepstatin Roche 

PMSF (Phenylmethylsulfonylfluoride) Roche 

Reduced glutathione Sigma-Aldrich 

RPMI 1640 + 25 mM HEPES + L-Glutamax Gibco (Life technologies) 

Sodium acetate, CH3COONa Roth 

Sodium azide, NaN3 Merck 

Sodium bicarbonate, NaHCO3 Sigma-Aldrich 

Sodium chloride, NaCl VWR Chemicals 

β-mercaptoethanol, β-ME Roth 

Streptavidin-PE (SAPE) Invitrogen (Life technologies) 

Trifluoroacetic acid, TFA Applied Biosystems 

Trypan blue Gibco (Life technologies) 

Trypsin/EDTA PAA Laboratories 

Urea Roth 

Water (MS-Grade) Baker 

2.1.9 Cytokines and growth factors 

GM-CSF, human recombinant R&D Systems 
IL-12, human recombinant PromoKine 

IL-2, human recombinant R&D Systems 

IL-4, human recombinant R&D Systems 

IL-7, human recombinant PromoKine 

IFN-γ, human recombinant R&D Systems 

TNF-α, human recombinant R&D Systems 

2.1.10 Media, buffers and solutions 

Coupling buffer 0.1 M NaHCO3, 0.5 M NaCl in ddH2O (pH 8.3) 
Desalting solution 1 % (v/v) FA in H2O (MS-Grade) 

Elution solution 1 % (v/v) FA, 50 % (v/v) AcN in H2O (MS-Grade) 

FACS buffer 0.01 % NaN3, 2 mM EDTA, 2 % FCS in PBS 

Freezing medium 10 % DMSO in FCS 

Injection buffer 10 mM Sodium acetate, 3 M Guanidinium chloride in 
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ddH2O 

LB medium 0.5 % NaCl, 0.5 % Bacto Yeast, 1 % Bacto Trypton in 

ddH2O 

LB – Amp/Cam agar plate 1.5 % agar, 100 µg/ml ampicillin sulfate, 50 µg/ml 

chloramphenicol in LB medium 

Loading solvent 0.05 % TFA, 1 % AcN in H2O (MS-Grade) 

Lysis buffer (2x) 1 tablet Roche Complete Protease Inhibitor, 400 mg 

CHAPS in 33 ml PBS 

MACS buffer 0.5 % BSA, 2 mM EDTA in PBS 

Macrophage differentiation 

medium 

1 % Pen/Strep, 10 ng/ml GM-CSF, 5 % HS in RPMI 1640 

PBS-BSA 0.5 % BSA in PBS 

PBSE 1 mM EDTA in PBS 

PBS-Tween 0.05 % Tween in PBS 

Permwash buffer 0.01 % NaN3, 0.1 % Saponin, 0.5 % BSA in PBS 

Refolding buffer 6.97 % L-arginine in ddH2O; pH 7.76 

Resuspension buffer 0.1 % NaN3, 1 mM EDTA, 1 mM DDT, 100 mM NaCl, 

50 mM Tris in ddH2O 

Solvent A 0.1 % TFA in H2O (MS-Grade) 

Solvent B 0.05 % TFA, 80 % AcN in H2O (MS-Grade) 

TBS (Tris buffered saline) 20 mM Tris, 150 mM NaCl in ddH2O; pH 8 

TCM (T cell medium) 50 µM β-ME, 1 % Pen/Strep, 10 % HS in IMDM 

Tetramer freezing buffer 48 % glycerol, 1.5 % HAS, 0.06 % NaN3, 1x protease 

inhibitor in 20 mM Tris 

Thawing medium 3 µg/ml DNAse, 50 µM β-ME, 1 % Pen/Strep, 10 % 

human plasma in IMDM 

Triton buffer 0.1 % NaN3, 1 mM EDTA, 1 mM DDT, 0.5 % Triton X 

100, 100 mM NaCl, 50 mM Tris in ddH2O 

TSB (tetramer staining buffer) 50 % FCS in PBS 

Urea buffer 8 M Urea, 10 mM Tris (pH 8.0), 10 mM NaH2PO4, 

0.1 mM EDTA, 0.1 mM DDT 

2.1.11 Antibodies 

Anti-human CD8, mouse, clone RPA-T8, 
PerCP conjugated 

Becton Dickinson 

Anti-human CD28, mouse, clone 9.3 In house production by C. Falkenburger 

Anti-human HLA class I, mouse, clone 

W6/32 

In house production by C. Falkenburger 

Anti-human HLA-DR, mouse, clone L243 In house production by C. Falkenburger 
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Anti-human HLA class II, mouse, clone Tü39 In house production by C. Falkenburger 

2.1.12 Software 

FACSDiva 6.1.3 Becton Dickinson 
FlowJo v.10 Miltenyi Biotech / TreeStar 

MASCOT Server 2.2.04 Matrix Science 

Office 2010 Microsoft 

Proteome Discoverer 1.3 / 1.4 Thermo Fisher Scientific 

Qual Browser Thermo Fisher Scientific 

XCalibur 2.0.7 Thermo Fisher Scientific 

GraphPad Prism 7 GraphPad Software 

2.2 Protein biochemical methods 

2.2.1 Synthesis of recombinant MHC class I heavy chains 

HLA allele DNA sequences were modified by addition of a BirA biotinylation sequence at 

the C-Terminus and deletion of the transmembrane domain. The modified DNA 

sequences were cloned into the expression vector pET-3d. 50 µl of BL21(DE3) E. coli cells 

were transformed with the plasmid pLysS and co-incubated with 0.2 µl of the respective 

vector for 20 min on ice. Afterwards, heat shock transformation was induced by 

incubation in a 42°C water bath for 90 s. After transformation, samples were chilled 

briefly on ice before addition of 1 ml of LB medium and further incubation for 30 min in a 

water bath at 37°C. 100 µl of the sample were transferred onto a LB-Amp/Cam agar plate 

and incubated overnight at 37°C. Growing colonies were picked the next day and 

inoculated into 5 ml LB-Amp/Cam medium. Cultures were incubated in the shaker for 8 h 

at 250 rpm and 37°C. Expanded Cultures were transferred into 100 or 200 ml LB-

Amp/Cam and further expanded overnight in the shaker at 180 rpm at 37°C. At the next 

day, ten 2 l Erlenmeyer flasks were filled with 1 l LB medium each, 1 ml ampicillin 1000x 

and 1 ml chloramphenicol 1000x were added and temperature was adjusted to 37°C. 

15 ml of the overnight cultures were inoculated into each of the flasks and cultures were 

incubated in the shaker at 180 rpm and 37°C. The OD600 was measured continuously 

until it reached a target value between 0.4 and 0.6. Expression of recombinant proteins 
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was induced by subsequent addition of 0.5 µl of a 1 M IPTG solution to each flask. 

Cultures were incubated for 4 h before collection and centrifugation in an ultracentrifuge 

SLA 3000 rotor for 20 min at 5000 rpm and 4°C. Supernatants were discarded and pellets 

were resuspended in 180 ml of PBS and stored in six aliquots of 30 ml at -80°C. Aliquots 

were thawed in a water bath at RT and treated with ultrasound three times for 2 min 

(output 5, 50 % duty cycle). DNA was digested by addition of 150 µl of 10 mg/ml DNAse I 

and 300 µl of 1 M MgCl2 and incubation for 20 min at 37°C. Lysates were centrifuged in an 

ultracentrifuge SS34 rotor for 20 min at 15000 rpm and 4°C. Supernatants were 

discarded, the pellets consisted of two distinct layers, the lighter, upper grey-brown layer 

consisting of cell debris and the denser, lower white layer consisting of inclusion bodies. 

The upper layer was discarded carefully by abrasion. Triton buffer was added to the 

inclusion bodies and the suspension was homogenized. The solution was centrifuged in 

an ultracentrifuge SS34 rotor for 20 min at 15000 rpm at 4°C. The washing step with 

triton buffer was repeated for at least three times until the inclusion body pellets became 

completely white. After another washing step with resuspension buffer, pellets were 

taken up in 20 – 40 ml of urea buffer, depending on the respective pellet size. The 

solution was rotated on a spinning wheel overnight at 4°C. Remaining insoluble parts 

were removed by another ultracentrifugation step in a SS34 rotor for 20 min at 

15000 rpm and 4°C. The purity of the protein solution was determined by comparison of 

the OD260 and OD280 values by nanodrop measurement. The ratio had to be below 0.6 

to suffice quality standards. Protein concentration was determined by Bradford assay 

(2.2.3) and adjusted to 2 mg/ml in urea buffer. Aliquots of 8 mg of protein were stored in 

cryotubes at -80°C. 

2.2.2 MHC:peptide complex refolding (monomer generation) 

Stable Monomers were generated by refolding of peptides to the respective recombinant 

HLA heavy chain and β2-microglobulin (β2m). Synthetic peptides were used in amounts of 

2.5 – 7.5 mg at a concentration of 10 mg/ml in DMSO. Peptide solutions, 385 mg of 

reduced glutathione, 77.5 mg of oxidized glutathione and 250 µl of PMSF 1000x were 

resolved in 250 ml of refolding buffer. An aliquot (8 mg) of the respective HLA heavy chain 

was thawed at RT, resolved in 780 µl of injection buffer and loaded into a 1 ml syringe 

equipped with a 26 G needle. An aliquot (7 mg) of recombinant β2m was resolved in 
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700 µl of injection buffer and loaded into another 1 ml syringe equipped with a 

26 G needle. The refolding buffer solution was stirred at high speed and HLA heavy chains 

and β2m were forcefully injected consecutively. Refolding solutions were incubated for 12 

h at 10°C on a slow shaker. After 12 and 24 h incubation, another aliquot of the respective 

HLA heavy chain was added as described above. On day three, refolding solutions were 

filtered through a 0.22 µm membrane vacuum filter to remove protein aggregates. 

Afterwards, refolding solutions were transferred into a stirring cell and processed through 

a NMWL 30000 filter membrane under a nitrogen atmosphere with 4 bar pressure. The 

solutions were concentrated to approx. 25 ml volume. The retentates were stored at 4°C 

while the permeates were used for a second refolding process. Peptides and glutathione 

remain in sufficient amounts in the permeates, only PMSF 1000x, HLA heavy chains and 

β2m need to be added again. Refolding and stirring cell processes were repeated as 

described above and the retentates were pooled. Retentates were further concentrated 

in a NMWL 10000 filtration tube (Amicon) at 4000 rpm and 4°C to a final volume of 5 ml. 

The concentrated retentates were subjected to a size exclusion chromatography on a 

Superdex 75 column at a flow rate of 3 ml/min of TBS. Eluates were collected in fractions 

of 4 ml and UV absorption at 280 nm was measured. Fractions of the monomer peak 

were pooled and PMSF 1000x, Leupeptin 1000x and Pepstatin 1000x were added 

immediately to generate a 1x final concentration. The solutions were again concentrated 

in a NMWL 10000 filtration tube (Amicon) at 4000 rpm and 4°C to a final volume of 5 ml. 

400 µl of 1 M Tris pH 8, 25 µl of 1 M MgCl2 and 250 µl of 100 mM ATP were added to the 

solutions and mixed by inversion. In the next step, monomers were biotinylated by 

addition of 10 – 20 µg BirA enzyme and 28.5 µl of 100 mM biotin to the solutions and 

incubation in a 27°C water bath for 12 – 16 h. After biotinylation a second size exclusion 

chromatography was performed as described above. Fractions from the biotinylated 

monomer peak were collected, pooled and PMSF, Leupeptin and Pepstatin were added to 

a final 1x concentration. The solutions were finally concentrated in a NMWL 10000 

filtration tube (Amicon) at 4000 rpm and 4°C to a final volume of 250 – 350 µl. Protein 

concentration was determined by Bradford assay (2.2.3) and adjusted to 2 mg/ml with 

TBS. Aliquots of 50 µg Monomer were stored at -80°C until use. A sample of the 

biotinylated monomer product was taken for mass spectrometric analysis to ensure 
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peptide content of the monomers. The analysis was performed on a QTof mass 

spectrometer by Claudia Falkenburger. 

2.2.3 Bradford assay 

The Bradford assay is a colorimetric assay and one of many assays to determine protein 

concentrations. The advantages of the assay are high sensitivity and simplicity. Like most 

assays for experimental protein concentration measurement, it is rather imprecise with 

deviations of up to 30 % from the actual values. The accuracy of the Bradford assay 

depends on the content of arginine, histidine, phenylalanine, tyrosine and tryptophan of 

the measured proteins, as the detection reagent binds to the cationic and unpolar 

aromatic residues of these amino acids. The assay is based on an absorbance shift of the 

dye Coomassie Brilliant Blue G-250. The cationic form is red and has its absorption 

maximum at 465 nm, while the anionic form is blue and has its absorption maximum at 

595 nm. Under acidic conditions, the dye converts to the anionic form and can bind to 

proteins by forming noncovalent complexes. Thus, the absorbance at 595 nm is 

proportional to the amount of protein in the sample. The protein concentration of a 

sample is determined by comparison of the measured OD595/OD465 ratio to a standard 

curve derived from standard protein solutions (BSA). 

The assay was used to determine protein concentrations of recombinant MHC heavy 

chains and biotinylated monomers. Calibration curves were generated with standard 

solutions of BSA with concentrations of 0 µg/ml, 20 µg/ml, 40 µg/ml, 60 µg/ml, 80 µg/ml 

and 100 µg/ml. BSA solutions were generated using the corresponding buffers of the 

samples (8 M Urea for recombinant MHC heavy chains and TBS for monomers). Samples 

had to be diluted to generate concentrations and values that lie within the range of the 

calibration curve (between 1:50 and 1:400). Assays were performed in a flat-bottom 96-

well plate. Measurements were performed in triplicate for each sample dilution. 5x 

Bradford reagent was diluted with ddH2O to a 1x concentration and 200 µl of the solution 

was mixed with 50 µl of sample in each well. Assays were incubated for 5 min at RT in the 

dark before measurement of the OD595/OD465 ratios in an ELISA reader. Protein 

concentrations were calculated by comparison to the calibration curve. 
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2.2.4 Tetramerization of biotinylated MHC:peptide monomers 

Tetramers can be used to detect T cells that express TCRs specific for a given 

MHC:peptide complex. Tetramers are generated by binding of biotinylated MHC:peptide 

complexes to streptavidin, a protein with four binding sites for biotin. Streptavidin can 

further be coupled to a fluorochrome, enabling its detection by flow cytometry. 

Tetramerization is necessary, as MHC:peptide monomers alone were shown to bind only 

weakly to TCRs [258]. The binding affinity is enhanced by the ability of tetramers to 

crosslink specific TCRs, thereby stabilizing the binding and the enhancing the staining 

intensity [259]. Tetramerization of biotinylated MHC:peptide complexes was achieved by 

conjugation with fluorochrome PE (R-phycoerithrin)-labeled streptavidin (SAPE). Since 

one molecule streptavidin can bind four monomers, the stoichiometric ratio for the 

reaction was 1:4. For one aliquot of 50 µg of a given monomer, 78.5 µl of the SAPE 

reagent were used to obtain the correct ratio of reactants. For maximum efficiency of the 

tetramerization reaction, SAPE was added in ten steps of 7.85 µl each. After each SAPE 

addition, samples were rotated on a spinning wheel in the dark for 30 min at 4°C. 

Tetramers were stored for up to eight weeks in the dark at 4°C. For longer storage times, 

tetramers had to be frozen in tetramer freezing buffer at -80°C. Tetramers were mixed 

with tetramer freezing buffer in a 3:1 ratio and aliquots of 10 – 20 µl were generated. 

Final concentration was 483 µg/ml for fresh tetramers and 322 µg/ml for frozen 

tetramers, respectively. 

2.2.5 Peptide synthesis 

All synthetic peptides were synthesized in-house by Patricia Hrstic, Nicole Bauer and 

Stefan Stevanović. Peptides were synthesized using the 9-fluorenylmethyl-

oxycarbonyl/tert-butyl (Fmoc/tBu) method as described before [260]. All peptides were 

synthesized on the automated peptide synthesizer EPS221 (Abimed) by solid-phase 

peptide synthesis [261]. All peptides were qualified for purity by HPLC analysis and for 

identity by mass spectrometry. Peptides were stored as lyophilisates at 4°C until further 

use. 
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2.2.6 Isolation of HLA ligands from primary tissues 

Isolation of HLA ligands from tissue samples is a multi-step protocol: First, tissue samples 

were homogenized by cutting, treatment with a tissue homogenizer and sonification. 

Membrane proteins were then isolated from tissue lysates by ultracentrifugation and 

sterile filtration. The solubilized protein fraction was subsequently processed through an 

immunoaffinity column to isolate MHC molecules. By acidic elution, Peptide:MHC 

complexes are destroyed and released from the column. The eluate was further 

processed through a 10 kDa filter to retain MHC chains and purify MHC ligands. MHC 

precipitation was performed on two subsequent days. On day one, tissue was 

homogenized and the immunoaffinity columns were prepared. Affinity chromatography 

was performed overnight. On day two, acidic elution of MHC:peptide complexes and 

sample preparation for LC/MS analysis were conducted. The general workflow for 

isolation of HLA ligands is demonstrated in figure 8. 

 

Figure 8: Workflow for the isolation of HLA ligands from primary tissue samples. Tissue samples are 

prepared to produce a homogenous tissue lysate. Solubilized proteins are purified by centrifugation and 

filtration. MHC:peptide complexes are isolated by affinity chromatography. HLA ligands and protein chains 

are eluted from the columns by acid addition. In a final step, HLA ligands are separated from MHC chains by 

size exclusion filtering. Figure from [101]. 
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2.2.7 Manufacture of HLA affinity chromatography columns 

HLA affinity chromatography columns consist of a stationary phase of CNBr-activated 

sepharose coupled to specific antibodies for HLA molecules of interest [262]. All steps 

were performed at room temperature. Centrifuge settings were 300 rpm for 5 min at RT. 

The ratio for coupling was 40 mg of CNBr-activated sepharose per 1 mg of antibody. 

CNBr-activated sepharose was weighed into a 50 ml tube, dissolved in 45 ml 1 mM HCl (in 

ddH2O) and rotated for 30 min for activation of binding sites. Activated sepharose was 

centrifuged and supernatant was discarded carefully by pipetting. The respective volume 

of antibody was dissolved in coupling buffer to a total volume of 45 ml and added to the 

sepharose. The mixture was rotated for 2 h for coupling of antibodies to the activated 

sepharose. Antibody-coupled sepharose was centrifuged and supernatant was discarded 

carefully by pipetting. 45 ml of 0.2 M Glycine (in ddH2O) was added to the antybody-

coupled sepharose and the mixture was rotated for 1 h for blockage of remaining binding 

sites. After another centrifugation, removal of the supernatant and two washing steps 

with PBS, antibody-coupled sepharose was resuspended in the respective volume (1 ml 

per 1 mg of antibody) of 0.02 % NaN3 (in PBS). Antibody-coupled sepharose was stored at 

4°C for up to two months. 

2.2.8 Preparation of tissue samples 

The preparation of tissue samples is a crucial step for successful MHC-precipitation. It is 

important to produce a homogenous tissue lysate to ensure high yields of MHC ligands by 

precipitation. All steps were carried out in a cooling chamber at 4°C. Reaction tubes and 

beakers were rinsed with 1x lysis buffer every time tissue lysate was transferred to 

prevent loss of material. Tissue samples were directly taken from -80°C storage on dry ice 

to processing in the cooling chamber. Tissue samples were put into a petri dish and 

covered with 2x lysis buffer to prevent proteolytic reactions. Samples were cut into small 

pieces using forceps and scalpel. In some experiments, the cutting process was performed 

in a cryotome. Temperature was set to -20°C and samples were cut into slices of 10 µm 

thickness. The slices were directly transferred to 2x lysis buffer. Tissue pieces were then 

transferred to a custom glass tube. Tissue was homogenized by shearing force by a fitting 

pestle that is agitated by a tissue homogenizer (Potter-Elvehjem method). 
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Homogenization was performed with samples on ice and for several intervals to prevent 

heating of samples. Tissue lysate was transferred to an appropriate glass beaker. Tissue 

lysate was stirred for 1 h on a magnetic stirrer. Next, tissue lysate was transferred to a 

50 ml tube and further homogenized by ultrasound treatment. Sonification was carried 

out on ice for 3 min at 150 W (medium power) and 33 % pulse frequency. Tissue lysate 

was transferred back to glass beakers and stirred for another 1 h. To remove cell debris, 

centrifugation steps were performed, depending on sample volumes: 

• for volumes ≤ 20 ml, lysate was apportioned into 2 ml reaction tubes and 

centrifuged at 13000 rpm for 99 min at 4°C; 

• for volumes ≥ 20 ml, lysate was first transferred to 50 ml reaction tubes and 

centrifuged at 4000 rpm for 20 min at 4°C. Supernatants were transferred to 

ultracentrifugation tubes and centrifuged at 40000 rpm for 70 min at 4°C. 

Supernatants of the centrifugation steps were processed through a 0.2 µm sterile filter to 

produce final lysate for affinity chromatography. 

2.2.9 Preparation of cell pellets 

Preparation of cell pellets was performed according to the protocol for tissue samples 

however the cutting and homogenization steps are not necessary. Cell pellets were 

washed with PBS twice before lysis. Single cells were lysed by adding lysis buffer to the 

cells and shaking of lysates for 1 h on a shaker. All further steps were performed similar to 

the protocol for tissues (2.2.8). For Mtb-infected Macrophages, all steps were performed 

in a qualified S3 laboratory at the University Hospital Ulm. The generated lysates were 

subjected to a sterility test and were stored at -20°C for the duration of the test (2 

weeks). As soon as sterility was verified, lysates were released for shipment on dry ice 

from the University Hospital Ulm to the Department of Immunology Tübingen. Here, 

lysates were thawed and processed to HLA affinity chromatography. 

2.2.10 HLA affinity chromatography 

Affinity chromatography of MHC molecules was performed overnight at 4°C in a cooling 

chamber. Columns were filled with appropriate amounts of antibody-coupled sepharose. 
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For this purpose, stored coupled sepharose was resuspended and transferred to the 

columns. 1 ml of the solution is equivalent to 1 mg of antibody and 1 mg of antibody was 

used per 1 mg of tissue or 1 ml of cell pellet, respectively. Affinity columns with different 

HLA specificities were connected in series by tubings with luer-lock connections. The 

column series was connected to a peristaltic pump and the system was washed for at 

least 30 min linearly with PBS. This step is also useful to detect leakages in the system. 

The system was then equilibrated with 1x lysis buffer before injection of the lysate. The 

system was closed to a circular system by placement of the suction and outlet tubes in 

the tissue lysate reaction tubes. Tissue lysate was circulating through the column system 

overnight at a low flowrate between 1 – 3 ml/min. At the next day, the system was rebuilt 

from circular to linear and lysate was washed out by injection of PBS. Lysate was collected 

and stored at 4°C until final assessment of results of the respective samples. The system 

was purged linearly with PBS for at least 30 min and afterwards with ddH2O for at least 

60 min. After the washing steps, columns were let run dry and collected for acidic elution. 

2.2.11 Elution of HLA affinity chromatography columns 

MHC:peptide complexes were eluted from the columns by addition of trifluoroacetic acid 

(TFA). Noncovalent bonds between antibodies and MHC molecules and between MHC 

molecules and bound peptide ligands are disrupted by lowering of the pH value. All steps 

were performed at 4°C in a cooling chamber. Column matrices were covered with 0.2 % 

TFA (approximately 40 µl per 1 mg of antibody). For the first elution, the pH value was 

further lowered by addition of 1 µl of 10 % TFA per 1 mg of antibody. Columns were 

incubated for 20 min on a shaker. Eluate was recovered from the columns by applying air 

pressure through a tubing-connected 50 ml syringe. The elution step was repeated for 

eight times to maximize recovery of MHC ligands from the columns. Eluates were 

collected in NMWL 10000 ultrafiltration units (Amicon) and centrifuged at highest speed 

for at least 30 min at 4°C. Amicons were washed three times with 3 ml of solvent A before 

usage (4000 rpm, 15 min at RT). Peptide ligands pass the molecular sieve whereas MHC 

chains and antibodies are retained. Retentates were stored for further experiments at -

80°C. The flowthroughs were frozen at -80°C and lyophilized. Lyophilisates were taken up 

in 250 – 500 µl of solvent A and transferred to low-bind Eppendorf tubes (1.5 ml volume). 

Samples were concentrated by vacuum centrifugation to volumes between 10 and 30 µl. 
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2.2.12 Sample preparation for LC-MS/MS 

Samples had to be cleaned and desalted prior to LC-MS/MS measurement. For this 

purpose, ZipTipµ-C18 columns were used. These 10 µl pipette tips contain a C18-matrix with 

a capacity of 2 µg to bind peptides by hydrophobic interactions. ZipTips were washed 10 

times with 10 µl elution solution and equilibrated 10 times with desalting solution. 

Peptides were loaded onto the ZipTip by pipetting samples up and down 10 times. 

Samples on ZipTip columns were desalted 5 times with 10 µl desalting solution. For 

elution of peptides, 25 µl of elution solution were put into an autosampler vial and 

elution solution was pipetted 10 times through the ZipTip columns. For each sample, the 

whole ZipTip procedure was repeated for 10 times. Samples were then concentrated in a 

vacuum centrifuge to a volume of 5 µl and resolved in appropriate volumes (depending 

on quantity of planned measurements) of loading solution. 

2.3 Mass spectrometry 

Mass spectrometry is an analytical method to determine mass-to-charge ratios of ionized 

molecules. Technical improvements have made it the technique of choice for the analysis 

of samples with high complexity. The combination of features like high mass accuracy, 

speed and sensitivity is superior to any other analytical method for complex mixtures of 

biomolecules. Modern LC-MS experiment setups reduce the complexity of samples by on-

line coupling of a high performance liquid chromatography (HPLC) to the mass 

spectrometer. Molecules are separated on a column by hydrophobicity and delivered to 

the mass spectrometer in a continuous nanoflow. Identical molecules are thereby focused 

and can be measured at the same time, which increases the identification probability. The 

detection limit of modern instruments for peptides lies in the sub-femtomolar range. 

2.3.1 Nanoflow reversed-phase (u)HPLC 

Two different RP-HPLC systems were used for this work: a Nano-LC 2D-HPLC (Eksigent) 

and an UltiMate 3000 RSLC Nano-uHPLC (Dionex). The principle of analyte separation by 

hydrophobic properties of the peptides is similar for both systems: the setup consists of a 

sample loop for acquisition, a precolumn for concentration and a C18 stationary phase 
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column for separation of the samples. Peptides bind to the stationary phase by 

hydrophobic interactions. They are eluted by continuously increasing proportions of non-

polar solvents in the mobile phase. Thus, peptides with higher hydrophobicity elute later 

from the column than hydrophilic peptides. This leads to considerations for the gradient 

settings: a steep gradient can lead to the co-elution of peptide fractions, while a flat 

gradient might broaden peptide peaks. The first could overload the mass spectrometer 

with too many peptide species at a time, while the latter might cause undercut of the 

detection threshold. Both events can lead to a decrease of identified peptide species in 

the sample. One way to increase separation performance is the reduction of particle size 

of the matrix within the separation column. Another possibility is to increase the 

theoretical floor count by extension of the column length. This leads to higher peak 

capacity and better separation of co-eluting peaks. However, both measures also increase 

the backpressure of the system, making more powerful pumps for the delivery of the 

mobile phase a requisite. The UltiMate 3000 RSLC Nano-uHPLC is the superior system 

with supported pressures of > 800 bar and columns with particle sizes ≤ 2 µm and lengths 

≥ 50 cm. Due to the low flowrates in nanoflow HPLC systems, equilibration of the 

separation column during gradient operation takes time. As a consequence, peptide 

fractions are focused and take more time to pass through the separation column than the 

actual flowrate, whereby retention times are delayed. Another variable influencing 

retention times is temperature. Therefore, most modern systems are equipped with a 

column oven to ensure retention time reproducibility. Eluting peptide fractions are 

transferred through a capillary from the separation column to the PicoTip, an accurately 

extended capillary. The PicoTip is faced towards the interface of the mass spectrometer. 

Here, the mobile phase leaves the HPLC system and solved peptide fractions are ionized 

for measurement. 

2.3.2 Electrospray ionization 

Electrospray ionization (ESI) is a gentle ionization technique which is most suitable for the 

analysis of biomolecules [263, 264]. Mass spectrometers can only measure charged 

molecules, therefore peptides have to be ionized prior to measurement. For this purpose 

the solvent needs to be electrically conductive and contain acid. Biomolecules are 

protonated by the acidic solvent and thereby gain positive charges. To guide ions into the 
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mass spectrometer, a high voltage from 1.6 – 2.2 kV is applied between the PicoTip and 

the interface plate of the mass spectrometer. As the analyte solvent enters this electric 

field, cations become accelerated towards the negative counter pole at the mass 

spectrometer interface. This leads to an excess of positively charged molecules at the tip 

of the emitter, producing a fine aerosol by charge repulsion, the Taylor cone. The ESI 

source of most mass spectrometers further support the application of sheath gas 

(nitrogen) in coaxial direction to the electrospray emitter to facilitate formation of 

droplets and curtain gas (heated nitrogen) in vertical direction to the electrospray emitter 

to support evaporation of the solvent and prevent entrance of neutral particles. The MS 

interface and the transfer capillary are heated to 200°C to aid solvent evaporation, 

whereby charged droplets become smaller in size but maintain the same amount of 

charged molecules. The droplets eventually reach their Rayleigh limit, a point at which 

the electrostatic repulsion of the cations becomes stronger than the surface tension of 

the droplets. At this point, the droplets become instable and a process known as Coulomb 

fission occurs, in which the droplets explode into many smaller and more stable droplets. 

Repetitive Coulomb fissions further reduce the size of the droplets. The production of 

single gas-phase analyte ions is described by two controversial models [265]: 

• The ion evaporation model (IEM) proposes emission of single ions from small 

droplets by increasing charge density at the surface [266]. 

• The charged residue model (CRM) proposes continuous evaporation and Coulomb 

fission cycles, until droplets with single ions emerge [267]. 

Smaller molecules form single analyte ions in the gas-phase more likely by IEM, while 

larger molecules produce these ions by CRM. ESI mostly produces multiply charged ions 

[M+nH+]n+, charge states are dependent on molecule size. For MHC-bound peptides with 

masses between 800 and 2000 Da, charge states usually range from 2+ to 4+. 

2.3.3 Tandem mass spectrometry 

All measurements in this work were performed on a LTQ Orbitrap XL. The machine 

consists of five main parts, as shown in figure 9. The unique advantage of the machine is 

its feature to perform tandem mass spectrometry [268]. This is possible due to the fact 
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that two distinct mass analyzers are integrated in one machine: the linear ion trap (LTQ) 

with relatively low mass accuracy but high sensitivity and the Orbitrap with superior mass 

accuracy. These features qualify the LTQ Orbitrap XL for the discovery of thousands of 

unique peptide species from a complex mixture. In the following paragraph, the duty 

cycle for measurements in this instrument is explained. 

 

Figure 9: Schematic depiction of the LTQ Orbitrap XL. The five main parts of the machine are depicted. The 

ion current is produced by the ESI source and enters the mass spectrometer through the transfer capillary. 

It passes the first two quadrupoles and enters the LTQ. Here, it is accelerated into the C-Trap. In the C-Trap, 

ions are decelerated and collected. The focused ion cloud is injected into the Orbitrap mass analyzer to 

perform high resolution survey scans with high mass accuracy. The most intense precursor ions detected in 

the survey scan are selected for further analysis in the LTQ. The selected precursor ion species are 

consecutively collected in the LTQ for fragmentation and measurement of fragment ions. Survey scans and 

measurements in the LTQ can be performed simultaneously. Analysis of fragment ions with high mass 

accuracy can be performed by fragmentation of ions in the HCD collision cell and subsequent measurement 

in the Orbitrap mass analyzer. Source: http://planetorbitrap.com/data/fe/image/LTQXL_Schema(1).png 

(figure adapted from [269]). 

The ESI source creates a continuous ion current that enters the mass spectrometer 

through the transfer capillary. From this point on, a high vacuum (< 10-5 Torr) is applied. 

The ions are focused by a system of electromagnetic lenses and pass through two 

quadrupoles to enter the LTQ. The ion current passes the LTQ in axial direction and is 

transferred through another quadrupole into the second ion trap, the C-Trap. Ion traps 

can trap ions in electric fields created by superposition of a direct current (DC) voltage 

and a high-frequency alternating current (AC) voltage. The C-Trap functions as an ion 

distributor between the LTQ, the HCD collision cell and the Orbitrap. Deceleration of ions 

is achieved by the electric trap field and the collision with N2 dampening gas within the 

trap. Thereby, focused ion packages form and are subsequently injected into the Orbitrap 

mass analyzer. The Orbitrap consists of a spindle-shaped central electrode and an outer 
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electrode with two bell-shaped parts that are connected by a ceramic ring (figure 10). The 

analyte ions are injected orthogonally to the central electrode and start to constantly 

orbit it within the electric field. Eccentric introduction causes them to oscillate 

orthogonally to the inner electrode along the z-axis (figure 10). 

 

Figure 10: Cut-away model of the Orbitrap mass analyzer. The Orbitrap is built of an inner spindle-shaped 

electrode (a) and an outer barrel-shaped electrode (b). The outer electrode consists of two parts, connected 

by an isolating ceramic ring (c). Analyte ions are injected orthogonally to the z-axis and decentrally. The 

central electrode (a) produces an electric field, causing the ions to constantly orbit the electrode (r = 

constant). The oscillation frequencies of the ions along the z-axis correlate with their respective m/z values. 

THhe oscillations cause an image current at the outer electrode (b). Figure from [269]. 

The oscillating ions generate a measureable image current at the outer electrodes. This 

current is produced by all ion species present in the Orbitrap at a given time point, thus 

the signal needs to be decomposed by Fourier transformation. The frequency of harmonic 

oscillations of an orbital trapped ion correlates directly with its m/z value: ω � �� ��� ∗ k 

(where ω is the angular velocity, z is the charge, m is the mass and k is the curvature of 

the field, a device constant) [270]. The identification of m/z values with this technique has 

two major advantages: first, the high mass accuracy for exact determination of m/z values 

of analyte ions. Second, the extremely high resolution allows differentiation of ions with 

almost similar m/z values. The mass accuracy of the Orbitrap is 3 ppm (parts per million), 

meaning for the measurement of a molecule with 1 kDa molecular weight, the deviation 

would not exceed 0.003 Da. The resolution is 60000 at an m/z value of 400, meaning the 

differentiation of two ions with m/z values differing in 



����� is possible. The “survey scan” 

performed in the Orbitrap identifies the m/z values of all ion species present at a given 

time point. However, absolute molecular masses of peptides are not sufficient for 
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unambiguous identification of peptide sequences. For this purpose, peptides have to be 

fragmented and mass spectra of the fragments need to be measured. Precursor ions for 

fragmentation are selected according to the settings of the instrument software (data 

dependent acquisition, DDA). Selection of ions with defined m/z values for measurement 

in the LTQ is achieved by a quadrupole. It consists of 4 parallel rod electrodes with 

opposite electrodes charged identically to apply an alternating electric field (see figure 

11). The voltage between neighboring electrodes consists of direct current and high 

frequency alternating current. By adjustment of the voltages, the alternating electric field 

is influenced to grant passage to ions with defined m/z values on a stable trajectory. Ions 

with differing m/z values have an instable trajectory, collide with the electrodes and are 

discharged [271]. 

 

Figure 11: Schematic of a quadrupole mass analyzer. Voltages can set stable trajectories for ions with 

defined m/z values. Source: https://www.chromservis.eu/i/gc-ms-tof-description?lang=EN, 16.02.2018. 

Selected ions pass the quadrupole and are decelerated and trapped in the LTQ. The linear 

ion trap consists of a quadrupole and two end electrodes. The ions get trapped in a 

potential well between the two-dimensional electric field of the quadrupole and the static 

potentials of the end electrodes. Undesired ions are removed by application of multi-

frequency resonance ejection waveforms. These ions get resonantly activated, start to 
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oscillate and are ejected from the LTQ [272]. The energy of the selected precursor ions is 

subsequently increased by application of their respective resonance excitation voltage. 

This causes oscillation and, by collision with inert gas atoms, dissociation (fragmentation) 

of the ions, a process called collision-induced dissociation (CID) [273]. Fragment ions are 

maintained within the ion trap. Measurement of the fragment ions is accomplished by 

linear increase of the RF voltage, whereby ions become instable and are ejected from the 

trapping field. The m/z values of ejected ions increase with increasing RF voltage. The 

ejected ions reach the detector: two conversion dynodes, where they produce secondary 

electrons. These electrons are detected by two secondary electron multipliers to generate 

an amplified signal. 

The strategy of identification of precursor masses with high mass accuracy and resolution 

and of fragment ions with lower mass accuracy but high sensitivity is referenced as the 

“high-low-strategy” [274]. In combination with dynamic exclusion, it is the superior 

method for the identification of HLA ligands from complex mixtures. The dynamic 

exclusion excludes precursor ions from measurement for a specified time after their first 

selection/measurement. In this way, less abundant co-eluting ions can be measured. The 

high sensitivity of the LTQ enables the generation of fragment spectra from low ion 

counts. 

2.3.4 Experimental setup 

In this passage, the settings for the performed LC-MS/MS measurements are elucidated. 

Samples were taken up in appropriate volumes of loading solution in an autosampler vial. 

One acquisition consumed 5 µl of sample, usually 20 % sample shares were measured (i.e. 

samples were taken up in 25 µl of loading solution). The autosampler vials were put into a 

tempered autosampler in a defined position. Samples were aspired by a needle into a 

10 µl sample loop using the “sandwich method”: prior and after the sample volume, 

loading buffer was aspired into the sample loop. 

For the Eksigent nanoLC 2D, samples were loaded for 30 min with a high flowrate of 

20 µl/min (solvent A) from the sample loop onto a 5 mm 

PepMap 100 C18 Nanotrap column. Peptides were subsequently loaded and separated on 

a 25 cm PepMap C18 column with 3 µm particle size. Separation was performed at RT. The 
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isocratic gradient ranged from 0–55 % of solvent B within 120 min at a flow rate of 

300 nl/min. 

For the Dionex UltiMate3000 RSLCnano, samples were loaded for 5.75 min with a high 

flowrate of 4 µl/min (3 % solvent B) from the sample loop onto a 2 cm 

PepMap 100 C18 Nanotrap column. Peptides were subsequently loaded and separated on 

a 25 or 50 cm PepMap C18 column with 2 µm particle size. Separation was performed at 

50°C. The isocratic gradient ranged from 2.4-32 % of solvent B within 140 min at flow 

rates of 175 - 300 nl/min. 

For the LTQ Orbitrap XL, DDA mode was used. Survey scans were performed with 1 s scan 

time in the Orbitrap mass analyzer. Ions were collected for 500 ms in the C-Trap before 

injection. Survey scans were conducted with a resolution of 60000 and a range of 400–

650 m/z for class I peptides and 300–1500 m/z for class II peptides. The five most intense 

mass peaks with a charge between 2+ and 3+ (for class I peptides) and ≥ 2+ (for class II 

peptides) from each survey scan were selected as precursor masses for subsequent 

fragmentation and measurement of fragment spectra in the LTQ (top five method [275]). 

Ions of each of the top five peptide species were collected for 200 ms. Peptides were 

fragmented by CID (normalized collision energy 35 %, activation time 30 ms, isolation 

width 1.3 m/z). Dynamic exclusion was enabled (exclusion list size 500) and set to values 

between 3–5 s. 

2.3.5 Computational processing of raw data 

Mass spectrometry data is stored in RAW-files, all information obtained in one 

measurement is contained in the file. The dataset covers information of all survey scans, 

selected precursor masses with respective retention times and all fragment scans. 

Thousands of fragment spectra are usually generated in one MS-run, therefore software-

based evaluation of the raw data is indispensable. The software ProteomeDiscoverer 1.4 

(Thermo Fisher Scientific) was used for processing of raw data. MS1 spectra and 

corresponding fragment spectra were transmitted to a local MASCOT server (MASCOT 

2.2.04, Matrix Science) and compared to theoretical fragment spectra of the entire 

proteome. A probability-based algorithm annotates experimental spectra to theoretical 

spectra [276]. The algorithm MOWSE (molecular weight search) was initially programmed 
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for processing of mass spectrometry data of proteolytic protein digests [277]. The ‘SWISS-

PROT’ database (www.uniprot.org, release date 27.09.2013) [278] was used for 

generation of theoretical precursor and fragment spectra of the respective taxonomy 

(homo sapiens, vaccinia virus and mycobacterium sp.). Data of technical replicates was 

combined for processing. Further settings for data processing were: 

1. Precursor mass tolerance 5 ppm 

2. Fragment mass tolerance 0.5 Da 

3. Signal-to-noise ration ≥ 3 

4. No enzymatic cleavage specificity 

5. Oxidized methionine allowed as dynamic modification 

6. Protein grouping disabled 

7. Rank 1 peptides only 

The quality of the resulting peptide sequences was assessed by two computational 

parameters, the false discovery rate (FDR) and the Ion Score. The FDR was determined by 

the percolator algorithm [279] by processing of data against a decoy database that 

consisted of a shuffled version of the target database. All peptide identifications with a 

value of q ≥ 0.05 were discarded from the result lists (5 % FDR). The IonScore S (or 

MASCOT score) is another parameter indicating the probability P that the matching of a 

theoretical and an experimental fragment spectrum is a stochastic event: 


 � 	−10 ∗ log� 

The IonScore inversely correlates with a high error probability of spectrum annotation, 

therefore all peptide identifications with S ≤ 20 were discarded from the result lists. 

Precursor ions of HLA peptide ligands are usually charged 2+, fragmentation of these ions 

results in two 1+ charged ions or one 2+ charged ion and one neutral fragment (neutral 

loss, not measureable). Ions with a charge at the N-terminus are termed a-, b- and c-ions, 

while ions with a charge at the C-terminus are termed x-, y-, and z-ions. The index 

indicates the number of remaining amino acid residues of the fragment. An ion may break 

at two sites, resulting in internal fragments. Further breaks include loss of H2O (indicated 
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by 0) or NH3 (indicated by *) [280, 281].The nomenclature of peptide fragments is 

depicted in figure 12. 

 

Figure 12: Peptide fragmentation and nomenclature of fragment ions. Ions with a charge at the N-

terminus are termed a-, b- and c-ions, while ions with a charge at the C-terminus are termed x-, y-, and z-

ions. Source: http://upload.wikimedia.org/wikipedia/commons/f/fb/Peptide_fragmentation.gif, 

16.02.2018. 

Collision induced fragmentation preferentially induces breaks at the peptide bond, 

resulting in b- and y-ions. Thus, a more or less complete series of b- and y-ions within an 

experimental spectrum will result in a lower probability of false annotation and therefore 

in a high IonScore. However, since processing algorithms were initially programmed for 

the identification of proteolytic peptides (with tryptic digest motif R or K at the C-

terminus), several drawbacks for the identification of HLA ligands are inherent. CID 

induces breaks at the weakest molecular bonds, resulting in preferential fragmentation 

prior to proline, aspartate and glutamate. This may lead to low intensities or complete 

loss of other ions resulting in lower IonScores. Additionally, internal fragments may occur 

in peptides with hydrophobic amino acid residues at the C- or N-terminus with adjacent 

charged amino acids, which is the case for some HLA binding motifs. Molecular masses 

and m/z values of internal fragments can be calculated by in silico fragmentation using 

the software ProteinProspector (http://prospector.ucsf.edu/prospector/mshome.htm). 

However, internal fragments are not considered for annotation by the 

ProteomeDiscoverer software. These remaining “unexplained” peaks in the fragment 
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spectrum lead to decreased IonScores. Other sources of unexplainable peaks may be 

interference with ions originating from other precursors or from ubiquitous contaminants 

like polyethylene glycol (PEG), polypropylene glycol (PPG), polysiloxanes and detergents 

(CHAPS, Triton). Those contaminant peaks can be identified by comparison with a list of 

ubiquitous contaminants in mass spectrometry [282]. False negative peptide 

identifications could be verified by manual validation using those information however 

this was not possible given the size of the datasets. 

Further filters were applied to the processed datasets: Peptide length was limited to 8–12 

amino acids for MHC class I ligands and 12–25 amino acids for MHC class II ligands. 

Finally, HLA annotation of MHC class I ligands was performed using SYFPEITHI [77]. 

Peptides that could not be assigned to a given HLA typing of the respective sample were 

discarded. 

2.4 Cell biological methods 

All steps for cell culture experiments were conducted under sterile conditions. Cells were 

cultured in incubators with constant parameters: a humidified atmosphere with 7.5 % 

CO2 at 37°C. Culturing of Mtb-infected macrophages was performed in an approved S3 

laboratory at the University Hospital Ulm. 

2.4.1 Isolation of PBMCs from leukapheresis products and whole blood samples 

Peripheral blood mononuclear cells (PBMCs) consist of cells of the lymphoid line (T cells, 

NK cells, B cells) and monocytes. PBMCs can be isolated from peripheral blood by density 

gradient centrifugation. To achieve separation of PBMCs, blood is layered over a dense 

sugar solution (Ficoll-Hypaque). During centrifugation, the more dense blood components 

pass the sugar solution, while the more lightweight ones remain on the top. This leads to 

separation of blood plasma and thrombocytes (top), PBMCs (intermediate) and 

granulocytes and erythrocytes (bottom). Whole blood samples were transferred to 50 ml 

tubes and centrifuged for 20 min at 2000 rpm and RT w/o brake to separate blood 

plasma. Plasma (top layer) was carefully taken off and transferred to 50 ml tubes. Plasma 

samples were heat-inactivated for 30 min in a 56°C water bath. Plasma samples were 
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subsequently centrifuged twice for 15 min at 2500 rpm and RT. The pellets were 

discarded (denatured proteins and complement factors). The serum samples were frozen 

at -20°C and later used in T cell priming experiments as autologous cell culture 

supplement. The remaining phase of PBMC, erythrocytes and granulocytes, as well as 

leukapheresis products were diluted 1:2 with PBS prior to PBMC isolation. 50 ml tubes 

were prepared with 15 ml of Ficoll and 35 ml of the diluted blood samples were carefully 

layered over the Ficoll solution. Tubes were centrifuged for 30 min at 2000 rpm and RT 

w/o brake. After centrifugation, the intermediate PBMC layers were collected and pooled 

in 50 ml tubes. PBMCs were washed three times with PBS with intermittent 

centrifugation steps with decreasing speed (10 min at 1500 rpm, 1300 rpm, 1100 rpm and 

RT). Cells were counted after isolation and could be used for further experiments. 

2.4.2 Cell counting 

Cells were counted microscopically in a glass Neubauer cell counting chamber with 

0.1 mm depth. Counting chamber and cover glass were cleaned and dried prior to 

counting. The chamber was assembled by moisturizing the chamber and application of 

the cover glass with pressure until formation of Newton rings at the contact surfaces 

could be observed. This ensured the correct volume of the counting chamber. Cell 

suspensions were diluted with PBS to concentrations eligible for manual counting. Cell 

dilutions were then mixed 1:1 or 1:10 (depending on cell concentration) with 0.05 % 

trypan blue (in PBS) for staining of dead cells. 10 µl of the mixture were pipetted into the 

counting chamber and cells were counted manually in two opposite large squares (each 

1 mm2) under the microscope. Cell count was determined by the formula: 

cell	count � 	 ����	��� !	!�!"�
#	�$	��� !�%	�"&'�	()�"&�( ∗ dilution	factor ∗ chamber	factor	21034 ∗ volume	cell	suspension  

2.4.3 Cell freezing and thawing 

Cells were harvested by centrifugation for 5 min at 1300 rpm and RT. Pellets were 

resuspended in appropriate volumes of cold freezing medium (5–10*106 cells/ml) stored 

in aliquots of 1–2 ml in cryotubes. Tubes were transferred into a cryo freezing container 
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with isopropanol isolation to provide a constant temperature decline of ~1°C/min. 

Freezing containers were stored at -80°C. 

For thawing of cells, aliquots were taken from -80°C and thawed slowly until a visible 

frozen ice core remained in the tubes. Aliquots were then taken up in 10 ml of thawing 

medium and centrifuged for 5 min at 1500 rpm and 4°C. These steps were performed 

quickly to avoid cell damage by freezing medium components (DMSO). The supernatants 

were discarded and cell pellets were washed in 10 ml of thawing medium and centrifuged 

again for 5 min at 1500 rpm and 4°C. Cell pellets were then resuspended in the respective 

culture medium at appropriate culturing densities. 

2.4.4 Infection of B-LCL with MVA-TBF 

The cell line JY was cultured as suspension culture in RPMI 1640 supplemented with 10 % 

heat-inactivated FCS and 1 % Penicillin/Streptomycin (P/S). Medium was changed after 

two days and cultures were split once a week. For infection, cells were harvested and 

washed twice with PBS (centrifugation for 10 min at 1300 rpm and RT). Cells were 

counted and adjusted to 1*109 cells/ml of PBS. Cell suspensions were mixed with 

respective amounts of MVA-TBF to achieve a MOI (multiplicity of infection) of 5. The 

suspensions were incubated gently shaking for 1 h at 37°C. Afterwards, suspensions were 

supplemented with warm culture medium (1*108 cells/ml) and incubated for 12 h. Cells 

were then harvested and washed twice with PBS (centrifugation for 10 min at 1300 rpm 

and RT). The cell pellets were either directly subjected to lysate generation for HLA 

affinity chromatography or snap frozen at -80°C until further use. For the “starvation 

experiment”, the aim was to induce autophagy and thereby cross presentation of MVA-

derived peptides on MHC class II. For this experiment, JY cells were incubated prior (3 d) 

and after infection in medium w/o FCS supplement. 

2.4.5 Generation of macrophages from PBMC 

Macrophages were generated from PBMC of leukapheresis products derived from healthy 

blood donors. Macrophages can be generated by differentiation of monocytes 

(monocyte-derived macrophages, MDM). PBMCs of healthy individuals consist to 10-15 % 
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of monocytes. Monocytes were isolated from PBMC by an adherence step. PBMCs were 

adjusted to 1*107 cells/ml of culture medium (RPMI 1640, supplemented with 5 % HS) 

and transferred to 250 cm2 cell culture flasks. The adherence step was performed for 

90 min with 20 ml of cell solution per culture flask and horizontal (maximum adherence 

surface) incubation. Non-adherent cells were removed, washed twice with PBS 

(centrifugation for 10 min at 1300 rpm and RT) and cryopreserved. The remaining 

adherent cells were rinsed twice with PBS in the culture flasks before 30 ml of 

macrophage differentiation medium was applied. Monocytes were differentiated into 

macrophages by culturing the cells for 5±1 days in the presence of 10 ng/ml GM-CSF. 

2.4.6 Infection of macrophages with H37Rv 

The macrophage cultures were transported to the University Hospital Ulm for infection 

with mycobacteria in an appropriate S3 laboratory. Here, cells were harvested using a cell 

scraper and counted. Cells were adjusted to a concentration of 1*107 /ml in culture 

medium w/o GM-CSF and antibiotics (RPMI 1640 with 10 % HS). Bacteria were thawed 

and incubated for 10 min in an ultrasound bath. Afterwards, bacteria were added to the 

cell culture with a MOI of 5 and cultures were incubated for 1-3 days. After infection, cells 

were harvested and processed for lysate generation (2.2.9). 

2.4.7 Magnetic activated cell sorting (MACS) of CD8+ T cells 

Cell sorting by MACS relies on surface expression of protein markers on target cell 

populations. In most cases these are CD molecules however techniques for activation 

markers and cytokines are also available. Superparamagnetic nanoparticles coated with 

antibodies against the desired surface markers are used for cell labelling. After incubation 

of the cells with the magnetic particles, the solution is loaded onto a column that is 

placed in a strong magnetic field. Labelled cells are retained in the column by magnetic 

attraction, while all other cells pass through. The sorted cells can then be recovered from 

the column by removal of the magnetic field. Cell separation was performed according to 

the manufacturers’ protocol. All steps were performed under sterile conditions on ice or 

at 4°C, using cold buffers. PBMCs were harvested in a 50 ml tube and washed in cold 

MACS buffer and centrifuged for 10 min at 1300 rpm and 4°C. Cell pellet was resuspended 
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in 80 µl of MACS buffer per 107 cells. 20 µl of CD8 MicroBeads were added per 107 cells 

and the mixture was incubated for 15 min at 4°C for cell labelling. Afterwards, cells were 

washed by addition of MACS buffer to a total volume of 50 ml. Cells were centrifuged for 

10 min at 1300 rpm and 4°C. The pellets were resuspended in in 500 µl of MACS buffer 

per 108 cells. Depending on cell counts, variable amounts of separation columns were 

used, as the LS column has a maximum capacity of 2*109 cells. LS columns were placed in 

a MACS separator and rinsed with 3 ml of MACS buffer. After rinsing, cell suspensions 

were applied to the columns. Flow through was collected separately and the columns 

were washed trice by addition of 3 ml of MACS buffer. Columns were subsequently 

removed from the magnetic separator and placed on a collection tube. Sorted cells were 

flushed from the column by addition of 5 ml of MACS buffer and firmly pushing the 

plunger into the column. After cell counting, cells were harvested for further 

experiments. 

2.4.8 In vitro priming of CD8+ T cells with artificial APCs 

The immunogenicity of HLA peptide ligands can be assessed by T cell priming 

experiments. Briefly, immunogenicity describes the presence of naïve T cells expressing a 

T cell receptor complementary for a certain HLA:peptide complex in the T cell repertoire 

and the ability of these naïve T cells to clonally expand and mature upon recognition of 

their cognate antigen. The process of antigen recognition, T cell activation and induction 

of clonal expansion is called T cell priming. It is usually mediated by professional APCs like 

DCs. These professional APCs express high amounts of MHC molecules on their cell 

surface, as well as costimulatory molecules like CD80 and CD86. Furthermore, they are 

characterized by the ability of antigen uptake (by phagocytosis) and antigen processing 

and (cross-) presentation. A third feature is the production of pro-inflammatory cytokines 

in response to activation by danger signals. The priming process is classically defined as a 

composition of three main signals: 

• Signal 1: Interaction of a T cell receptor with a cognate MHC:peptide complex. 

• Signal 2: Binding of the costimulatory molecule CD28 to its ligand CD80. 

• Signal 3: Engagement of cytokine receptors with pro-inflammatory cytokines. 
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After priming, the activated T cells produce IL-2 and promote their clonal expansion. The 

process of T cell priming by autologous APCs can be recapitulated in vitro however the 

process of DC generation from PBMCs is very time consuming and cost intensive. Further 

drawbacks are a broad range of donor variance in efficacy of DC generation and the 

inapplicability for high throughput screenings due to the needed cell counts. To 

circumvent these drawbacks, a priming technique using aAPCs was used to assess the 

immunogenicity of potential tumor-associated peptides. This approach enables for high 

throughput priming experiments. APCs are substituted by special streptavidin-coated 

polystyrene microspheres. These microspheres have the size of a natural cell and can be 

loaded with biotinylated molecules by binding to streptavidin. By loading of the beads 

with biotinylated HLA:peptide complexes (monomers) and a biotinylated stimulatory α-

CD28 antibody, signal 1 and 2 for T cell priming can be provided by the aAPCs. Signal 3 

can be provided by addition of the respective cytokines to the cell culture. The 

composition of the aAPCs is illustrated in figure 13. 

 

Figure 13: Schematic of an artificial antigen presenting cell. Polystyrene microspheres are customized to 

the size of a natural cell and coated with streptavidin. This enables binding of biotinylated molecules to the 

microspheres. To generate aAPCs, biotinylated HLA:peptide monomers and a stimulatory α-CD28 antibody 

were bound onto the microspheres. Figure from [283]. 

For priming experiments, freshly isolated PBMCs from whole blood samples of healthy 

donors were used (2.4.1). All steps were conducted under sterile conditions. PBMCs were 

cultured over night at a density of 1*107 cells/ml in TCM supplemented with 2.5 ng/ml IL-

7 and 10 U/ml IL-2 in 75 cm2 cell culture flasks in standing position. On day two, CD8+ 

T cells were isolated by MACS (2.4.7) and cultured over night at a density of 1*107cells/ml 
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in TCM supplemented with 2.5 ng/ml IL-7 and 10 U/ml IL-2 in 75 cm2 cell culture flasks in 

standing position. On day three, CD8+ T cells were harvested, counted and adjusted to 

1*107 cells/ml in TCM. 1*106 cells (100 µl) were seeded into each well of a 96-well plate 

with round bottoms (only the inner 60 wells were used per plate, the outer rows were 

filled with 200 µl PBS for evaporation protection). For each cell plate, a mirror plate (bead 

stock plate) containing the aAPCs was produced. All steps of the aAPC manufacture were 

performed on ice. The amount of produced aAPCs was sufficient for four restimulation 

cycles to compensate for pipetting losses. For each well (priming experiment), 800000 

beads were needed. The respective amount of beads was transferred into a 50 ml tube 

and washed twice with MACS buffer (centrifugation for 10 min at 2500 rpm and 4°C). 

After washing, beads were resuspended in appropriate amounts of MACS buffer (100 µl 

for each well/priming experiment) and seeded into a 96-well plate. The respective 

biotinylated HLA:peptide monomers were diluted to 200 ng/ml in MACS buffer and 

50 µl/well were added to the beads. The plates were incubated gently shaking for 30 min 

at RT. Next, the biotinylated stimulatory α-CD28 antibody was diluted to 600 ng/ml in 

MACS buffer and 50 µl/well were added. The plates were again incubated gently shaking 

for 30 min at RT. Afterwards, aAPC plates were washed four times with MACS buffer 

(centrifugation for 2 min at 2500 rpm and 4°C) to remove remaining unbound molecules. 

The aAPCs were resuspended in 200 µl of MACS buffer per well and the plates were 

covered in tin foil and stored at 4°C. For T cell stimulation, aAPCs were resuspended and 

50 µl of each well were transferred to a new 96-well plate. The aAPCs were washed twice 

with 150 µl of cold TCM w/o HS (centrifugation for 2 min at 2500 rpm and 4°C) and taken 

up in 100 µl of warm TCM supplemented with 5 ng/ml IL-12. Finally, the bead solution 

was transferred to the T-cell plate and mixed with the T cells. Every 2-3 days after 

stimulation, 100 µl of medium were substituted by fresh TCM supplemented with 

40 U/ml IL-2 to support T cell expansion. The aAPC stimulation was repeated every 7 days 

to a total of three stimulation cycles. The time schedule for the aAPC priming is depicted 

in figure 14. After 3 cycles of stimulation, T cells were rested for another week without 

cytokine supplements before flow cytometric analysis. 
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Figure 14: Schematic time schedule of the aAPC T-cell priming protocol. CD8+ T cells were stimulated once 

a week with aAPCs and IL-12 for a total time of three weeks. Medium was exchanged every 2-3 days after 

aAPC stimulation with supplement IL-2. After three stimulation cycles, T cells were analyzed by flow 

cytometry. Figure from [283]. 

2.5 Flow cytometry 

Flow cytometry is an analytical method for the characterization of single cells based on 

cell intrinsic properties like size, granularity and expression of distinct extra- and 

intracellular markers. The first devices were based on impedance [284] however modern 

devices are based on optical detection mechanisms. Today, flow cytometry is based on 

excitation of fluorochromes by light with defined wavelengths (lasers) and detection of 

light emissions of the fluorochromes. Several thousand cells can be analyzed per second 

on multiple parameters in a flow cytometer. The cell suspension is focused to a fine and 

constant stream of droplets each containing one cell by hydrodynamic focusing within the 

flow cell. The droplet stream passes on through the flow cell where focused laser beams 

cross the cell stream. Depending on the setup of the flow cytometer, different amounts of 

lasers and detection channels are available. A basic feature of all cytometers however, is 

the detection of light scattering by the individual cells when passing the laser beam. The 

forward scatter (FSC) is measured directly opposite to the light source and indicates cell 

size. The side scatter (SSC) is measured orthogonally to the light source and indicates cell 

granularity. These two features enable discrimination of cell populations like 

lymphocytes, monocytes, granulocytes and other cell types. For further discrimination of 
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subtypes, cells have to be labelled with fluorochrome-labelled antibodies specific for the 

cell markers of interest. The amount of emitted fluorescence correlates with the amount 

of bound antibody and thus with the marker density of the cell. Each fluorochrome has an 

excitation maximum and an emission maximum at defined wavelengths. Thus, the more 

lasers with different wavelengths a flow cytometer has, a greater variety of 

fluorochromes can be used for labelling and the greater the amount of markers that can 

be analyzed in a single experiment. After excitation, the light emissions are detected by 

photomultipliers and translated into digital signals. Flow cytometry is often referenced as 

FACS (fluorescence activated cell sorting), a technique for sorting of cells based on one or 

multiple markers. While flow cytometers are used for solely for cell analysis, cell sorters 

additionally provide the possibility to sort cell according to the analyzed markers. A 

schematic of a flow cytometer is depicted in figure 15. 

 

Figure 15: Schematic of a FACS machine. The cell stream passes the laser beam, FSC and SSC are detected 

and fluorescent labels are excited at different wavelenghts. The light emission of the fluorescents are 

detected by photomultipliers (F1-3) and translated into digital signals. Figure from https://www.creative-

diagnostics.com/flow-cytometry-guide.htm, 18.02.2018. 
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2.5.1 Tetramer staining of CD8+ T cells 

T cells from priming experiments (2.4.8) were analyzed by tetramer (2.2.4) staining. Cell 

culture plates were centrifuged for 2 min at 1800 rpm and 4°C. The supernatants were 

discarded by inverting the plates and flicking downwards. Remaining drops were removed 

by pressing the plate onto a towel. Cells were washed with PBSE (centrifugation for 2 min 

at 1800 rpm and 4°C) and supernatants were discarded as described above. During the 

centrifugation step, the live/dead staining was prepared. A stock solution of PBSE with 

diluted Aqua LiveDead (1:200-400) was prepared to provide 50 µl of staining solution per 

well. After addition of the staining solution, plates were incubated for 20 min at 4°C in the 

dark. Cells were washed with TSB as described above. During the centrifugation step, 

tetramer staining was prepared. Tetramers were centrifuged for 5 min at 13000 rpm and 

4°C to remove protein aggregates. Stock solutions of the respective tetramers were 

prepared in TSB with tetramer concentrations of 5 µg/ml to provide 50 µl of staining 

solution per well. After addition of the staining solution, plates were incubated for 30 min 

at RT in the dark. Cells were washed with FACS buffer as described above. During the 

centrifugation step, CD8 staining was prepared. A stock solution of FACS buffer with 

diluted α-CD8-PerCP (1:200) was prepared to provide 50 µl of staining solution per well. 

After addition of the staining solution, plates were incubated for 20 min at 4°C in the 

dark. Cells were washed with FACS buffer as described above. Cells were then 

resuspended in 200 µl of FACS buffer and subjected to flow cytometry. Cells were fixed by 

resuspension in FACS buffer with 1 % formaldehyde if flow cytometry was not performed 

at the same day. After incubation for 20 min at 4°C in the dark, cells were washed with 

FACS buffer as described above and could be stored at 4°C in the dark for up to three days 

prior to analysis. 

2.5.2 Analysis of Tetramer staining by flow cytometry 

All tetramer stainings were analyzed on a BD FACSCanto II flow cytometer. The setup of 

the machine contains three lasers (violet 405 nm, blue 488 nm and red 633 nm) and eight 

detection channels (two for violet, three for blue and red) plus the FSC/SSC laser and 

detectors. Emission spectra of fluorochromes may overlap, therefore compensation 

measurements have to be performed to calculate signal spillover of each fluorochrome to 



2 Materials and methods 74 

 

the other detection channels. To perform compensation measurements, compensation 

beads were labelled with the respective fluorochrome-labelled antibodies used for cell 

staining. During measurement of the beads, the voltages of the detectors were adjusted 

to produce reasonable signals for the respective fluorochromes. After measurement of all 

compensation controls, the software FACS Diva calculated the compensation matrix. Cells 

were measured at 2,000-4,000 Events per second and about 200,000 events were 

recorded per sample. Data analysis of the raw data (FCS files) was performed with the 

software FlowJo v.10. The gating strategy was as follows: first, lymphocytes were gated 

using the FSC(A) and SSC(A) parameters (A=area). Next, cells from the lymphocyte gate 

were gated for single cells using the FSC(A) versus the FSC(H) (H=height). Single cells were 

further gated for viability using the Aqua LiveDead marker (dead cells were stained by the 

marker). Finally, viable cells were analyzed for simultaneous staining of CD8::PerCP and 

the Tetramer::PE. 
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3  Results 

The results part is subdivided into several parts. First, results obtained during an attempt 

to improve peptide isolation from primary tissues are described. Second, results of HLA 

ligandome analysis of RCC specimen samples pairs (tumor/benign) are ensuing. In this 

context, the definition of RCC tumor antigens based on comparative HLA ligandome 

profiling for HLA class I and II is shown, as well as factors that influence antigen selection. 

In a third part, immunogenicity assays of selected peptides derived from ligandome-

defined tumor-associated antigens are described. In the last part, results of the 

approaches for identification of Mtb-derived HLA ligands are listed. 

3.1 Improvement of tissue preparation for HLA ligandomics 

Tissue preparation prior to isolation of HLA molecules is a crucial step influencing the 

exhaustive analysis of HLA ligandomes by mass spectrometry. To improve tissue 

preparation, the standard preparation method was compared to a method where a 

cryotome was used for primary tissue disintegration. Cryotomes produce thin slices of a 

snap-frozen tissue sample for microscopy or histology purposes. Here, it was used to cut 

whole samples into 10 µm slices to improve cellular disruption and accessibility. The 

tissue slices were subsequently transferred into lysis buffer and treated similarly for the 

following steps of tissue preparation and HLA isolation. Equivalent tumor and benign 

tissue samples from the same RCC specimen were used and isolated HLA ligands were 

identified by mass spectrometry. Five replicates of each sample were measured, each 

containing a 20 % sample share of the whole sample. The results are depicted in table 5. 
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Table 5: Results of cryotome preparation and standard preparation of HLA ligands. Equivalent shares of 

tumor and benign tissue samples from specimen RCC302 were prepared using either a cryotome or 

standard protocols. Results of five replicate measurements from each sample. Peptides: Identified unique 

peptide sequences, PSMs: peptide spectrum matches, Proteins: source proteins of peptides. 

 
 

Inter-replicate variance was relatively low except for replicate #2 of benign tissue of the 

cryotome preparation, probably due to technical issues of the LC-MS system. The results 

were filtered according to the established criteria for HLA ligandomics (see 2.3.5). Unique 

peptide identifications were consistently higher in the cryotome preparation MS runs for 

benign and tumor samples when compared to standard preparation. The same holds true 

for the amount of peptide spectrum matches (PSMs), an additive value counting all 

spectra in one run that were assigned to one of the unique peptide sequences. Along with 

higher peptide identifications, the number of peptide source proteins was elevated in 

cryotome preparation MS runs (see figure 16). 

 

Figure 16: Comparison of standard tissue preparation and cryotome preparation. Means of 5 replicate 

measurements of each sample with standard deviations. Unique peptide, PSM and peptide source protein 

values are given. Unpaired t-test was performed to assess significant differences between samples. 

Sample Peptides PSMs Proteins Peptides PSMs Proteins

RCC302 Benign W6/32 Rep#1 278 717 549 127 292 163

RCC302 Benign W6/32 Rep#2 25 63 36 99 238 148

RCC302 Benign W6/32 Rep#3 283 722 487 95 221 134

RCC302 Benign W6/32 Rep#4 294 726 515 161 395 209

RCC302 Benign W6/32 Rep#5 259 602 485 139 368 183

RCC302 Benign W6/32 5 Replicates CoProcessed 478 3091 688 262 1864 335

RCC302 Tumor W6/32 Rep#1 1317 5232 1256 408 1313 489

RCC302 Tumor W6/32 Rep#2 1299 5303 1272 448 1449 516

RCC302 Tumor W6/32 Rep#3 1331 5414 1290 424 1238 498

RCC302 Tumor W6/32 Rep#4 1298 5154 1260 400 1249 484

RCC302 Tumor W6/32 Rep#5 1296 5356 1271 468 1409 560

RCC302 Tumor W6/32 5 Replicates CoProcessed 1830 26473 1662 641 5859 726

Cryotome Standard Preparation
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To assess the actual impact of cryotome preparation on exhaustive HLA ligandome 

analysis, data of the replicates was co-processed and differences in identification counts 

were analyzed (see figure 17). 

 

Figure 17: Identifications from co-processed replicates. Complete values of unique peptide identifications, 

PSMs and unique peptide source protein identifications from standard preparation and cryotome 

preparation samples after combination of replicate data. 

Cryotome preparation yielded superior results in terms of unique peptide identifications, 

PSMs and unique source protein identifications. Proportional gains were higher in tumor 

samples than in benign samples with the highest increase in PSMs in the tumor sample. 

Nevertheless, cryotome preparation had a substantial beneficial impact on identifications 

in all perspectives and could improve exhaustive HLA ligandome analysis. To compare the 

entireties of identified peptides, overlap analyses were performed (see figure 18). 

 

Figure 18: Overlap analyses of peptide identifications from standard and cryotome preparation. Entireties 

of identified peptides in standard preparation samples are depicted in red, entireties of identified peptides 

in cryotome preparations are depicted in green. 



3  Results 78 

 

A minority of peptide identifications were only present in standard preparation samples. 

About 90 % of total peptide identifications were covered by the cryotome preparation 

samples. The loss of peptide identifications may be explainable by inherent 

reproducibility infirmities of mass spec replicate measurements. 

3.2 Exhaustive HLA class I ligandome analysis of RCC samples 

Technical improvements in HLA ligand isolation were not the only improvements to 

enhance immunopeptidome analysis. Upgrading the technical setup primarily boosted 

peptide identifications and allowed for reliable and more reproducible MS 

measurements. Implementation of a uHPLC system to the LC-MS setup allowed 

application of separation columns with superior peptide fractionation capabilities. 

Enhanced peptide peak focusing and reduced co-elution of peptide peaks contributed to 

an enormous increase in peptide identifications. The gradient settings of the uHPLC for 

peptide separation as well as the MS settings were adjusted and optimized for HLA ligand 

identification [285]. These technological advances for the first time enabled an exhaustive 

analysis of HLA ligandomes of tumor and benign tissues. However, the huge datasets also 

demanded new evaluation strategies to identify tumor-associated peptides and antigens. 

In the past, tumor-associated peptides were selected by validation of MS spectra and 

published tumor-association of the peptide source proteins. This strategy was not 

applicable for primary antigen selection from exhaustive HLA ligandomics and was 

replaced by comparative profiling. In this approach, tumor-associated antigens are 

defined solely on their representation in HLA ligandomes of tumor tissues and their 

absence in benign and normal tissues. Such antigens may be defined for individual 

patients as well as within a cohort of RCC patients. 

3.2.1 Peptide identifications in HLA class I preparations from RCC tumor and benign 

samples 

HLA preparation and characterization of HLA class I ligands was performed for tumor and 

benign tissue samples from 38 RCC specimen in total (see table 3). Raw data was 

processed and filtered according to the established standard criteria (see 2.3.5) to obtain 

high-confidence HLA ligands. The results are listed in table 6. 
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Table 6: Peptide identifications for HLA class I from the RCC cohort. Tumor and benign tissue samples of 38 

RCC specimen were analyzed. Unique peptide identifications (peptides), total peptide spectrum matches 

(PSMs) and peptide source protein identifications (Proteins) are listed for each sample. Samples with less 

than 200 peptide IDs are marked in grey and were excluded from further analyses. 

    Tumor     Benign   
Sample Peptides PSMs Proteins Peptides PSMs Proteins 
RCC301 2140 22124 1973 1172 8109 1195

RCC302 1915 30804 1732 541 5165 796

RCC310 1674 14379 1584 817 4158 905

RCC318 1722 21887 1653 211 2213 298

RCC330 2854 37997 2453 1172 11486 1183

RCC352 1262 7197 1272 856 10084 912

RCC358 2756 8573 2399 494 1074 644

RCC370 1224 3341 1215 451 850 541

RCC376 4911 22291 3476 2511 12392 2202

RCC385 2238 6517 2050 1176 3256 1284

RCC792 1297 19687 1297 165 1322 268

RCC200 1901 22662 1721 957 5961 1014

RCC227 1088 7246 1123 1577 11518 1500

RCC441 1224 8370 1232 97 398 160

RCC299 34 58 36 19 36 62

RCC287 Failed Failed Failed Failed Failed Failed

RCC1138 2977 35737 2319 1037 7457 1039

RCC1147 799 4039 841 511 2831 606

RCC1131 1175 5563 1189 38 83 115

RCC1148 2382 19232 1982 1760 10290 1688

RCC245 122 255 151 56 110 129

RCC247 1446 7318 1382 423 1297 504

RCC251 95 211 120 1304 6574 1179

RCC286 443 2543 480 673 4391 791

RCC291 1362 5507 1267 105 319 127

RCC1157 782 3884 825 16 29 20

RCC381 1658 24089 1549 1005 15642 1025

RCC1154 936 16704 947 548 6235 744

RCC1187 767 5357 800 960 6229 972

RCC1188 2079 17968 1920 1337 10698 1305

RCC1203 1399 33014 1349 809 9553 927

RCC1223 3432 30910 3155 655 4244 807

RCC1248 2020 14254 1782 1535 9569 1435

RCC1238 1801 12282 1687 1918 12366 1811

RCC1192 1427 13282 1202 1298 9275 1390

RCC1198 1156 8307 1254 716 5458 891

RCC1170 1150 8676 1146 990 4698 1066

RCC1152 3069 37097 2715 1394 11229 1424

Median 1641 14577 1494 846 5854 891
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Unique peptide IDs, PSMs and source protein IDs varied substantially between different 

samples. In general, identification rates were higher in tumor samples than in benign 

samples for all parameters. Median peptide IDs were approximately doubled in tumor 

samples when compared to benign samples. This might at least partly be accounted to 

higher sample masses of tumor samples. Samples in which unique peptide IDs did not 

exceed 200 identifications were excluded from further analysis to avoid artefacts from 

failed HLA preparations/MS measurements (marked grey in table 6). 

3.2.2 Exhaustive HLA ligandome analysis identifies tumor-exclusive HLA class I ligands 

for individual RCC patients 

HLA ligandomes of tumor and benign samples from individual patients were analyzed on 

the level of HLA ligands to identify tumor-associated peptides (TUMAPs). As this was done 

on the basis of naturally presented peptides and comparison of the HLA ligandomes of 

malignant and benign samples, the identified peptides are termed ligandome-derived 

tumor-associated peptides (LiTAPs). The data evaluation strategy is depicted in figure 19. 

 

Figure 19: Strategy for identification of LiTAPs. Tumor and benign samples are measured in replicates to 

perform exhaustive HLA ligandome analysis. The peptide identifications are subsequently compared in an 

overlap analysis. HLA ligands with high presentation frequencies (i.e. high PSM counts) in tumor tissue (red, 

left side of waterfall plot) and absent presentation in benign tissue (green, right side of waterfall plot) are 

defined as LiTAPs. 

To perform comparative analysis of tumor and benign HLA ligandomes for individual 

patients, peptide IDs were ranked based on the corresponding PSM values. PSM values 

indicate how many spectra that match to a unique peptide sequence were acquired 

during MS measurements. The values are therefore an indicator for the abundance of 

individual peptide species in the samples. Peptides that are highly abundant in tumor 
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samples and absent in benign samples were regarded as LiTAPs, which might be suitable 

targets for peptide vaccination approaches in individual patients. 

3.2.3 Population-specific antigen identification for HLA class I 

In a next step, ligandome-derived tumor-associated antigens (LiTAAs) were identified for 

RCC. For this purpose, data from the remaining 29 RCC specimen with high quality in 

tumor and benign samples were subjected to comparative analysis. To account for 

different HLA allotypes within the cohort and resulting peptide varieties, analysis was 

performed on the level of HLA ligand source proteins. This allowed for a population-wide 

analysis based on the frequency of HLA presentation of unique source proteins. The total 

values of identifications that were used for this analysis are listed in table 7. 

Table 7: HLA class I identification values for population-based comparative analysis. Combined values for 

the cohort of 29 RCC specimen of which appropriate data from tumor and benign tissue was available. 

 Unique peptide 

IDs 

PSMs Unique protein 

IDs 

Total Protein 

IDs 

Tumor 31601 508268 10616 49395 
Benign 15124 197532 7070 29667 

Total 35543 705800 11279 79062 

 
Comparative profiling altogether identified 4209 HLA class I ligand source proteins that 

were exclusively identified in tumor samples. Of those, 811 had a presentation frequency 

of over 10 %, i.e. they were identified in at least 3 out of 29 tumor samples. The top 115 

LiTAAs for HLA class I from this analysis have presentation frequencies of over 20 %, 

meaning they were identified in at least 6 out of 29 tumor samples (see figures 20 and 

21). 
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Figure 20: Presentation frequencies of HLA class I ligand source proteins in the RCC cohort. Protein 

accessions of each of the 11279 identified source proteins are displayed on the x-axis. Frequencies of 

detection of HLA ligands for each source protein are displayed on the y-axis. Identifications from tumor 

samples are displayed in the positive range above the x-axis in red, identifications from benign samples are 

displayed in the negative range below the x-axis in green. Source proteins on the far left were defined as 

LiTAAs. 

 

Figure 21: Word cloud of the top 115 HLA class I LiTAAs for RCC. Font size represents presentation 

frequency. Presentation frequencies ranged between 20.7 % and 41.4 % of all tumor samples (i.e. between 

6 and 12 of all 29 tumor samples). 

The top 11 LiTAAs are listed in table 8 with corresponding presentation frequencies and 

numbers of different identified HLA class I ligands. 
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Table 8: The top 11 HLA class I LiTAAs for RCC as defined by comparative profiling. Gene and protein 

names as well as presentation frequencies in tumor samples of the RCC cohort and numbers of different 

corresponding identified HLA ligands are listed. 

Rank Gene Protein 
Presentation 

frequency [%] 

# of different 

HLA ligands 

1 PLOD2 
Procollagen-lysine,2-oxoglutarate 5-

dioxygenase 2 
41.4 14 

1 FCGR3A 
Low affinity immunoglobulin gamma Fc region 

receptor III-A 
41.4 5 

1 ATP5C1 ATP synthase subunit gamma, mitochondrial 41.4 7 

1 PHKA2 
Phosphorylase b kinase regulatory subunit 

alpha, liver isoform 
41.4 10 

2 SLC16A3 Monocarboxylate transporter 4 37.9 9 

2 RPLP0 60S acidic ribosomal protein P0 37.9 9 

2 CTSD Cathepsin D 37.9 17 

2 HIPK3 Homeodomain-interacting protein kinase 3 37.9 12 

3 ALOX5 Arachidonate 5-lipoxygenase 34.5 9 

3 COMT Catechol O-methyltransferase 34.5 6 

3 ANP32A 
Acidic leucine-rich nuclear phosphoprotein 32 

family member A 
34.5 6 

 

3.2.4 Coverage estimations for the HLA class I ligandome of RCC 

Ligandome-based identification of suitable antigens for peptide vaccination is dependent 

on an exhaustive analysis of HLA ligandomes. To estimate the level of exhaustion that was 

achieved with the current cohort and technical setup, cumulative analyses on identified 

HLA class I ligands and respective source proteins for tumor and benign RCC samples 

were performed (see figure 22). 
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Figure 22: Estimations for the degree of exhaustion of HLA class I ligandome analysis in RCC. Nonlinear 

one-phase associations between cumulative numbers of identified source proteins and numbers of unique 

identified source proteins (A) and between cumulative numbers of identified peptides and numbers of 

unique identified peptides (B) in 29 RCC tumor and benign sample pairs. Red lines indicate calculated 

plateaus. R2 value indicates goodness of fit. 

On the level of HLA ligand source proteins, the estimated achievable plateaus for tumor 

and benign samples were almost reached with the analyzed cohort of 29 RCC sample 

pairs. The calculated plateau for HLA ligand source proteins was higher for tumor samples 

(10753) than for benign samples (7246), probably reflecting a more heterogeneous cell 

composition and aberrant protein expression in tumors. On the level of identified HLA 

ligands, the estimated plateaus were by far not reached for tumor and benign samples in 

the RCC cohort, reflecting HLA allotype heterogeneity and the affiliated peptide binding 

specificities. Thus, exhaustive analysis of HLA class I source protein level provides a 

reliable data basis for definition of LiTAAs, whereas exhaustive mapping of actual 

HLA class I ligands would demand for extension of the RCC cohort to account for HLA 

heterogeneity. 
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3.2.5 Enhanced LiTAA definition for RCC based on additional normal tissue HLA class I 

ligandomes 

The availability of tumor and benign tissue from RCC patients enabled the development 

of a novel approach for antigen definition, but only HLA ligandomes of kidney malignant 

and healthy tissues were taken into account so far. Immunization against the newly 

defined potential tumor-associated antigens (for example by peptide vaccination) 

however might induce a systemic T cell response against these antigens. In principle, 

selected antigens for vaccination should be as tumor-exclusive as possible. It was 

therefore necessary to define additional exclusion criteria for antigen selection, i.e. 

delineate the HLA ligandomes of any human tissue to exclude HLA ligands that are 

presented elsewhere in the body apart from the tumor. A database of such 

experimentally defined, naturally expressed HLA ligands of the human body demands 

huge efforts and its’ setup was initiated in a collaborative approach at the Department of 

Immunology. At the time of analysis, this database contained HLA ligands derived from 

138 normal tissues, including kidney, PBMC, bone marrow, liver, colon, ovary, bladder, 

heart, lung, small intestine, thyroid, spleen, brain and muscle. The input data for normal 

tissues contained 40172 unique HLA ligands derived from 11642 source proteins. People 

involved in the generation of this database were Daniel Kowalewski, Heiko Schuster, Nico 

Trautwein and Claudia Berlin. Comparative profiling was performed using all RCC datasets 

that passed quality criteria (see table 6) resulting in comparison of HLA ligandomes of 33 

RCC tumor samples to those of the 138 normal samples. Data analysis identified 14455 

unique HLA ligands originating from 1785 source proteins that were exclusively identified 

in tumor samples. Of those source proteins, 58 had a presentation frequency of over 

10 %, i.e. they were identified in at least 4 out of 33 tumor samples. Only the top 5 LiTAAs 

for HLA class I from this analysis had presentation frequencies of over 20 %, meaning they 

were identified in at least 7 out of 33 tumor samples (see figures 23 and 24). The total 

number of identified LiTAAs was greatly reduced when compared to the analysis of RCC 

samples alone as described in chapter 3.2.3, underlining the potential of the normal 

tissue database as exclusion criterion for antigen selection. 
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Figure 23: Presentation frequencies of HLA class I ligand source proteins of RCC samples compared to 

normal tissue samples. Protein accessions of each of the 13427 identified source proteins are displayed on 

the x-axis. Frequencies of detection of HLA ligands for each source protein are displayed on the y-axis. 

Identifications from tumor samples are displayed in the positive range above the x-axis in red, 

identifications from normal samples are displayed in the negative range below the x-axis in blue. Source 

proteins on the far left were defined as LiTAAs. 

 

Figure 24: Word cloud of the top 58 HLA class I LiTAAs for RCC based on comparative profiling with 138 

normal tissues. Font size represents presentation frequency. Presentation frequencies ranged between 

12.1 % and 27.3 % of all tumor samples (i.e. between 4 and 9 of all 33 tumor samples). 
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The Top 11 LiTAAs are listed in table 9 with corresponding presentation frequencies and 

numbers of different HLA class I ligands. 

Table 9: The top 11 HLA class I LiTAAs for RCC as defined by comparative profiling with 138 normal 

tissues. Gene and protein names, as well as presentation frequencies in tumor samples of the RCC cohort 

and numbers of different corresponding identified HLA ligands are listed. 

Rank Gene Protein 
Presentation 

frequency [%] 

# of different 

HLA ligands 

1 ANGPTL4 Angiopoietin-related protein 4 27.3 7 

2 CA12 Carbonic anhydrase 12 24.2 6 

3 ENTPD1 
Ectonucleoside triphosphate 

diphosphohydrolase 1 
21.2 6 

3 CA9 Carbonic anhydrase 9 21.2 6 

3 COMTD1 
Catechol O-methyltransferase domain-

containing protein 1 
21.2 4 

4 KDELR3 ER lumen protein-retaining receptor 3 18.2 6 

4 LOX Protein-lysine 6-oxidase 18.2 4 

4 MRPL55 39S ribosomal protein L55, mitochondrial 18.2 3 

4 PNO1 RNA-binding protein PNO1 18.2 6 

4 CRIPT Cysteine-rich PDZ-binding protein 18.2 2 

4 MTRR Methionine synthase reductase 18.2 7 

 

3.3 Exhaustive HLA class II ligandome analysis of RCC samples 

HLA class II ligandomes were analyzed and evaluated analogous to HLA class I albeit 

several restrictions are inherent to HLA class II ligands. First, peptide binding to 

HLA class II molecules is not as restrictive as it is for HLA class I as ligands are more 

promiscuous and may bind to different allotypes. Second, peptide length is not restricted, 

resulting in length variants of peptides with a shared core sequence and different N-

 and C-termini. Third, expression of HLA class II is more variable in RCC samples than 

expression of MHC class I, which influences the experimental outcome of HLA class II 

preparation and ligandome analysis. Owing to these constraints, data analysis was limited 

to HLA class II ligand source proteins and their tumor association. 
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3.3.1 Peptide identifications in HLA class II preparations from RCC tumor and benign 

samples 

HLA preparation and characterization of HLA class II ligands was performed for tumor and 

benign tissue samples from almost the entire RCC cohort (see table 3). Raw data was 

processed and filtered according to the established standard criteria (see 2.3.5) to obtain 

high-confidence HLA ligands. The results are listed in table 10. 
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Table 10: Peptide identifications for HLA class II from the RCC cohort. Tumor and benign tissue samples of 

38 RCC specimen were analyzed. Unique peptide identifications (Peptides), total peptide spectrum matches 

(PSMs) and peptide source protein identifications (Proteins) are listed for each sample. Samples with less 

than 100 peptide IDs are marked in grey and were excluded from further analyses. 

    Tumor     Benign   
Sample Peptides PSMs Proteins Peptides PSMs Proteins 
RCC301 744 7418 217 16 96 11

RCC302 443 10695 222 421 7108 267

RCC310 577 5523 284 652 7377 373

RCC318 Failed Failed Failed Failed Failed Failed

RCC330 1471 17998 653 250 2024 207

RCC352 Failed Failed Failed Failed Failed Failed

RCC358 Failed Failed Failed Failed Failed Failed

RCC370 Failed Failed Failed Failed Failed Failed

RCC376 1076 8442 511 702 5292 422

RCC385 Failed Failed Failed Failed Failed Failed

RCC792 246 5071 120 291 4594 163

RCC200 53 322 56 36 136 45

RCC227 233 1981 251 452 3902 326

RCC441 417 3071 280 Failed Failed Failed

RCC299 7 13 39 1 3 21

RCC287 Failed Failed Failed Failed Failed Failed

RCC1138 562 5848 371 24 129 14

RCC1147 8 19 14 25 103 72

RCC1131 272 2013 247 Failed Failed Failed

RCC1148 319 2075 175 9 21 13

RCC245 2 2 2 9 16 77

RCC247 539 2819 339 131 420 104

RCC251 328 2152 267 33 81 78

RCC286 70 235 50 508 4683 334

RCC291 851 6737 395 220 1327 110

RCC1157 55 266 55 3 5 20

RCC381 495 7787 269 479 7452 263

RCC1154 Failed Failed Failed Failed Failed Failed

RCC1187 Failed Failed Failed Failed Failed Failed

RCC1188 490 4093 326 274 2632 220

RCC1203 727 7690 346 256 1005 133

RCC1223 391 5368 234 432 5945 310

RCC1248 354 5966 208 276 2968 159

RCC1238 415 3428 216 448 3537 234

RCC1192 431 7077 212 511 6056 281

RCC1198 375 5828 357 256 213 2724

RCC1170 490 2983 274 433 1931 213

RCC1152 1151 17226 524 641 6115 398

Median 453 5005 250 278 2685 271
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As for HLA class I, unique peptide IDs, PSMs and source protein IDs also varied 

substantially between different samples and identification rates were higher in tumor 

samples than in benign samples for HLA class II. Median peptide IDs were as well 

approximately doubled in tumor samples when compared to benign samples. As 

preparations were performed from the same samples as for HLA class I analysis, higher 

masses of tumor samples in general may have influenced results. Differential or absent 

expression of HLA class II in some of the samples (especially the benign ones) may have 

been another influencing factor. Samples in which unique peptide IDs did not exceed 100 

identifications were excluded from further analysis to avoid artefacts from failed HLA 

preparations/MS measurements (marked grey in table 10). 

3.3.2 Population-specific antigen identification for HLA class II 

Comparative analysis was performed analogous for HLA class II to define LiTAAs for RCC. 

The amount of samples that had to be excluded from analysis was higher than for 

HLA class I: data from 18 RCC specimen with high quality in tumor and benign samples 

remained and was subjected to comparative analysis. The total values of identifications 

that were used for this analysis are listed in table 11. 

Table 11: HLA class II identification values for population-based comparative analysis. Combined values 

for the cohort of 18 RCC specimen of which appropriate data from tumor and benign tissue was available. 

 Unique peptide 

IDs 

PSMs Unique protein 

IDs 

Total Protein 

IDs 

Tumor 6553 120052 1793 5290 
Benign 4221 72411 1377 4043 

Total 8344 192463 2199 9333 

 
Comparative profiling altogether identified 822 HLA class II ligand source proteins that 

were exclusively identified in tumor samples. Of those, 159 had a presentation frequency 

of over 10 %, i.e. they were identified in at least 2 out of 18 tumor samples. The top 61 

LiTAAs for HLA class II from this analysis have presentation frequencies of over 15 %, 

meaning they were identified in at least 3 out of 18 tumor samples (see figures 25 and 

26). 
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Figure 25: Presentation frequencies of HLA class II ligand source proteins in the RCC cohort. Protein 

accessions of each of the 2199 identified source proteins are displayed on the x-axis. Frequencies of 

detection of HLA ligands for each source protein are displayed on the y-axis. Identifications from tumor 

samples are displayed in the positive range above the x-axis in red, identifications from benign samples are 

displayed in the negative range below the x-axis in green. Source proteins on the far left were defined as 

LiTAAs. 

 

Figure 26: Word cloud of the top 62 HLA class II LiTAAs for RCC. Font size represents presentation 

frequency. Presentation frequencies ranged between 16.6 % and 33.3 % of all tumor samples (i.e. between 

2 and 6 of all 18 evaluable tumor samples). 

The top 6 LiTAAs are listed in table 12 with corresponding presentation frequencies and 

numbers of different identified HLA class II ligands. 
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Table 12: The top 6 HLA class II LiTAAs for RCC as defined by comparative profiling. Gene and protein 

names, as well as presentation frequencies in tumor samples of the RCC cohort, numbers of different 

corresponding identified HLA ligands and core sequences are listed. 

Rank Gene Protein 

Presentation 

frequency 

[%] 

# of different 

HLA 

ligands/core 

sequences 

1 IGHG1 Immunoglobulin heavy constant gamma 1 33.3 16/5 

1 ENO1 Alpha-enolase 33.3 7/6 

1 GAA Lysosomal alpha-glucosidase 33.3 5/4 

1 EZR Ezrin 33.3 13/5 

1 HTRA1 Serine protease HTRA1 33.3 12/5 

2 LGALS3BP Galectin-3-binding protein 27.8 6/3 

 
At the time of analysis, no or only few data of HLA class II ligand preparations from other 

normal tissues were available. Thus, an enhanced LiTAA analysis based on additional 

normal tissue data was not feasible. 

3.3.3 Coverage estimations for the HLA class II ligandome of RCC 

To estimate the level of exhaustion that was achieved for HLA class II with the current 

cohort and technical setup, cumulative analyses on identified HLA class II ligands and 

respective source proteins for tumor and benign RCC samples were performed (see figure 

27). 
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Figure 27: Estimations for the degree of exhaustion of HLA class II ligandome analysis in RCC. Nonlinear 

one-phase associations between cumulative numbers of identified source proteins and numbers of unique 

identified source proteins (A) and between cumulative numbers of identified peptides and numbers of 

unique identified peptides (B) in 18 RCC tumor and benign sample pairs. Red lines indicate calculated 

plateaus. R2 value indicates goodness of fit. 

Due to the lower sample number with evaluable data for HLA class II, the general degree 

of exhaustion is lower when compared to HLA class I. Another observation is that 

numbers of unique source proteins as well as numbers of unique peptides are 

substantially lower in HLA class II ligandomes. On the level of HLA ligand source proteins, 

the estimated achievable plateaus for tumor and benign samples were approximated to a 

lesser extent than for HLA class I with the analyzed cohort of 18 RCC sample pairs. The 

calculated plateau for HLA ligand source proteins was higher for tumor samples (2039) 

than for benign samples (1582), as it was the case for HLA class I ligandomes. On the level 

of identified HLA ligands, the estimated plateaus were approached to a greater extent 

than in HLA class I for tumor and benign samples, reflecting promiscuous and less 

restrictive peptide binding. Thus, extensive measurements of further RCC samples will 

reveal additional source protein identifications that are necessary to amend LiTAA 

definition for HLA class II. 
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3.4 Immunogenicity testing of LiTAA-derived peptides 

In the course of development of the comparative approach, suitability of LiTAA-derived 

peptides for peptide vaccination have to be verified. The ability to induce peptide-specific 

T cell responses de novo is the most important requirement for peptide vaccines, 

indicating their immunogenicity. To test immunogenicity of LiTAA-derived HLA ligands, an 

interim analysis was performed and peptides were chosen to perform proof-of-principle 

priming experiments.  

3.4.1 Selected HLA ligands for immunogenicity testing 

Eleven peptides derived from various antigens that were identified as LiTAAs were 

selected and synthesized. The fragment spectra of synthetic peptides were compared to 

those of the naturally identified peptides for verification. Peptides were subsequently 

refolded to MHC monomers to perform priming experiments. The selected peptides are 

listed in table 13. 

Table 13: Selected LiTAA-derived HLA ligands for immunogenicity testing. Internal peptide ID, peptide 

sequence, peptide mass, protein source, isotope labelling of the synthetic peptide and HLA restriction are 

listed. After final analysis of comparative profiling, source proteins were checked for tumor-exclusive 

representation again, since antigens were selected from an interim analysis (-: antigen is not defined as 

LiTAA any more, +: antigen is still defined as LiTAA in final analysis of RCC tumor/benign pairs, ++: antigen is 

still defined as LiTAA in final analysis of RCC tumor vs. normal tissues). 

Peptide ID Sequence Mass Source LiTAA Isotope HLA 

130543 SLDVSAPKV 915.5073 AHNK2 + *V4 A*02 
130544 AEIEIVKDL 1029.5754 P4HA1 + *V6 B*44:03 
141031 GLADASLLKKV 1113.6758 ATX10 - - A*02 
141032 MPSASMTRL 992.4784 NDRG1 - - B*07/B*35 
141034 SMTLAIHEI 1013.5216 DEGS1 - - A*02 
140037 APGVGKSAL 799.4600 RAD + *V4 B*07 
141007 RTAFTLKQK 1091.6452 SLN13 - - A*03 
141012 IQAKKALDL 998.6125 COMTD1 ++ - A*03/A*33 
141018 NPNLRIISL 1038.6186 ASM3A + - B*07/B*14 
141019 KIKSPAKMAEK 1229.7166 RGS5 - - A*03 
141025 MPLLRQEEL 1127.6009 EHD2 - - B*07/B*08/B*14 

 
All selected peptide sequences were verified by comparison of fragment spectra of 

synthetic peptides and naturally presented peptides (see Annex A). However, since the 

peptides were selected from an interim analysis, not all of the source proteins can still be 
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regarded as LiTAAs after final data evaluation. Several of the antigens were excluded as 

LiTAAs by final analysis of the RCC tumor/benign cohort (indicated with “-“ in the LiTAA 

column in table 13). Others were still identified as LiTAAs in the RCC cohort but were 

excluded by comparative analysis with the complete normal tissue database (indicated 

with “+” in the LiTAA column in table 13). Of note, two of those antigens, AHNK2 and 

P4HA1, each had a single identification in the complete normal tissue database: the 

AHNK2-derived peptide ALEIPSGSQA was identified once (with one PSM) in a granulocyte 

sample but HLA typing of the sample (A*01, A*02, B*44, B*57) does not qualify this 

peptide as a binder. The P4HA1-derived peptide STIDKVSVL was identified once (with one 

PSM) in a benign liver sample but in this case also, HLA typing of the sample (A*03, A*68, 

B*15, B*40) does not qualify this peptide as a binder. Thus, these single identifications 

are probably false-positive identifications. The only LiTAA that was confirmed by 

comparative profiling with the normal tissue database was COMTD1 (marked with “++” in 

table 13). Despite neglection of the source proteins as LiTAAs, some of the used peptides 

remained tumor-exclusive (i.e. other peptides derived from their source proteins were 

identified in normal tissues). Those peptides might represent another class of tumor 

antigens that originate from differential antigen processing in malignant cells. This was 

the case for the peptides SLDVSAPKV, AEIEIVKDL, MPSASMTRL, IQAKKALDL and 

KIKSPAKMAEK. In fact, KIKSPAKMAEK is the highest-ranking tumor-exclusive peptide in 

the whole RCC cohort. It was identified in 10 different RCC samples (representing 30.3 % 

of all samples) and never on any of the 138 normal tissues used for exclusion in 

comparative profiling. 

3.4.2 Immunogenicity testing by aAPC priming experiments 

Synthetic peptides were refolded into HLA monomers as described in 2.2.2. This was 

successful for all but one peptide (IQAKKALDL). After biotinylation, HLA monomers were 

used to generate artificial antigen presenting cells for in vitro T cell priming and tetramers 

for experiment readout by FACS analysis. CD8+ T cells were isolated from whole blood 

samples of donors with matched HLA typings. For each donor, at least 24 priming 

experiments (wells) were conducted for each tested peptide to facilitate priming of low-

frequent, peptide-specific naïve T cells. Frequencies of peptide-specific naїve T cells are 

estimated to range between 10-5 to 10-7 [286, 287]. Hence, input of 24 million CD8+ T cells 
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should be sufficient for priming of low-frequent peptide-specific naїve precursors. After 

T cell priming, cells were analyzed by staining with respective tetramers to identify 

peptide-specific T cells. An example for FACS analysis is depicted in figure 28. 

 

Figure 28: Representative example of tetramer staining after aAPC priming. Cells were pre-gated for 

lymphocytes, single cells and viable cells. CD8 was stained with PerCP, the tetramer dye was PE. Tetramers 

were used to stain T cells ex vivo to exclude existing memory T cell responses in blood donors (left). 

Tetramers were used to stain T cells that were primed with an irrelevant peptide to exclude unspecific 

binding (middle). Cells that were CD8::PerCP and Tetramer::PE double-positive cells were regarded as 

peptide-specific CD8+ T cells (right). 

For each priming experiment, ex vivo stainings of PBMC with the corresponding tetramers 

were conducted to exclude existing memory T cell responses in blood donors. As a 

negative control, T cells from the same donor that were primed with an irrelevant peptide 

were tetramer stained to exclude unspecific binding of the tetramer. Cells that were 

stained double-positive for CD8 and tetramer were regarded as peptide-specific. Data 

was evaluated based on following criteria: the tetramer-positive population had to 

contain at least 0.2 % of all CD8+ T cells to be considered as positive priming result. 

Additionally, the percentage of tetramer-positive cells at least had to be doubled when 

compared to the negative control. The results of the priming experiments are 

summarized in table 14. 
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Table 14: Summary of aAPC T cell priming results. Immunogenicity testing was performed with T cells from 

eight whole blood samples (see table 4). Peptides were tested for immunogenicity in HLA matched donors. 

Priming results of tested peptides are indicated in the matrix below blood donor IDs. Red fields indicate 

negative priming results. Green fields indicate positive priming results. 

Sequence HLA # Tests # Positive 
# Positive 

wells 

Frequency 

[%] 

J

1

3

6 

J

1

4

7 

J

1

5

4 

J

1

6

4 

J

1

7

1 

J

1

7

4 

J

1

8

5 

J

1

9

3 

SLDVSAPKV A*02 4 3 34 75 0 1 1     1 
AEIEIVKDL B*44 1 0 0 0       0  

GLADASLLKKV A*02 5 4 11 80 0 1 1  1   1 
MPSASMTRL B*07 3 1 1 33  1   0 0   
SMTLAIHEI A*02 3 2 18 67   0  1   1 

APGVGKSAL B*07 2 2 2 100  1  1     
RTAFTLKQK A*03 2 0 0 0    0  0   
NPNLRIISL B*07 2 1 3 50     0 1   

KIKSPAKMAEK A*03 2 0 0 0    0  0   
MPLLRQEEL B*07 1 1 3 100    1     

 
All HLA-A*02 and –B*07-restricted peptides were proven to be immunogenic by in vitro 

aAPC primings. The HLA-B*44:03-restricted peptide could only be tested once, due to 

relatively low allele frequency of B*44 less blood donors were available. A second 

problem was the missing subtyping of HLA-B*44 positive donors. Subtypes of HLA-B*44 

exhibit different peptide binding restrictions, which could influence peptide recognition 

by T cells in case of a mismatch. Both HLA-A*03-restricted peptides were tested twice and 

immunogenicity could not be evidenced. This might partly have been due to bad quality 

of the HLA monomers, as elevated tetramer signals were also detectable in the negative 

controls. In general, immunogenicity testing should include at least five different blood 

donors for any peptide, so that no final conclusion could be made on the immunogenicity 

of those peptides that did not yield positive results yet. 

3.5 Identification of mycobacterial HLA ligands 

To identify HLA ligands derived from mycobacterial antigens, two approaches were 

employed. First, the B-LCL cell line JY was infected with a viral vector encoding for several 

mycobacterial antigens and HLA preparation was performed. Second, monocyte-derived 

macrophages were generated from healthy blood donors and subsequently infected with 

live mycobacteria, followed by HLA preparation. Analysis of MS data generated from 
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these samples was challenging since data had to be processed against Mtb (and Vaccinia) 

protein databases in addition to the human proteome. Fragment spectra had to be 

evaluated with focus on which suggested peptide sequence annotation was best fitting. 

3.5.1 HLA class I-presented peptides from B-LCL after infection with MVA-TBF 

The B-LCL cell line JY was infected with MVA-TBF with a MOI of 5 as described in 2.4.4. 

The use of this infection model had several advantages: JY is homozygous for HLA-A, -B 

and –C, thus possible binding motifs of identified HLA ligands were reduced. In addition JY 

has extraordinarily high expression of HLA molecules which facilitated HLA ligandome 

analysis. The viral vector MVA-TBF on the other hand encodes only for few antigens but 

possesses extreme virulence, which increased the probability of antigen expression. 

Furthermore, immune evasion mechanisms of live mycobacteria were circumvented by 

this approach. After HLA preparation and MS analysis, raw data was processed against 

three distinct protein databases containing human, mycobacterial and viral protein 

sequences. The software ProteomeDiscoverer gave out ranks indicating the probability 

for a fragment spectrum to match to each of the suggested peptide sequences from the 

three databases. These ranks, in combination with manual interpretation of fragment 

spectra and consideration of HLA ligand motifs, allowed for the assignment of fragment 

spectra to a suggested peptide sequence from one of the databases. As a proof for a 

working infection system many HLA ligands derived from MVA proteins were identified 

(see table 15). 
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Table 15: Identified MVA-derived HLA class I ligands. Suggested peptide identifications with matching HLA 

binding motifs and superior fragment spectrum annotation for MVA-derived peptide sequences. 

Sequence HLA # PSMs Protein 

IVIEAIHTV A*02 51 Thymidilate kinase 
GLNDYLHSV A*02 13 Protein O1 
SLKDVLVSV A*02 13 DNA-directed RNA polymerase 7 kDa subunit 
ALDEKLFLI A*02 11 Intermediate transcription factor 3 large subunit 
KLFSDISAI A*02 11 Protein E5 
KLIIHNPEL A*02 8 Surface antigen S 
ILDDNLYKV A*02 6 Putative nuclease G5 
ILSLPRIAL A*02 5 RNA helicase NPH-II 

KVDDTFYYV A*02 4 Interferon antagonist C7 
AAKGASMTL A*02 3 Thymidilate kinase 
DMMSLNLTI A*02 1 Interleukin-1-binding protein 

FVKFKLTL A*02 1 Protein B17 
ILSDENYLL A*02 1 Protein A6 
IVQEAILSL A*02 1 RNA helicase NPH-II 
KISNTTFEV A*02 1 3 beta-hydroxysteroid dehydrogenase/Delta 5�4-isomerase 

VMKANNSVI A*02 1 3 beta-hydroxysteroid dehydrogenase/Delta 5�4-isomerase 
YIIGNIKTV A*02 1 Protein A35 
APRSGLSL B*07 10 Deoxyuridine 5’-triphosphate nucleotidohydrolase 

SPRPTASSDSL B*07 7 Protein I3 
HPTSNSLNAL B*07 3 Protein B14 

IPSPGIML B*07 3 Pro-vaccinia growth factor 
SPRIGDQL B*07 1 Major core protein 4b 
IFLDYKKY C*07 1 mRNA-capping enzyme catalytic subunit 

 
Processing against the Mtb database revealed HLA-presented peptides from two of the 

four vector-encoded mycobacterial antigens (see table 16). The validity of identifications 

was verified by comparison of fragment spectra from naturally presented peptides and 

synthetic peptides. Spectral validation of the peptides was already performed prior to this 

work [288], as this was not the first infection experiment with MVA-TBF. First results were 

confirmed by this experiment, with additional identification of the TB9.8-derived peptide 

AAKVNTLLDV. The synthetic peptide was not available to perform spectral validation. 

Table 16: Identified Mtb-derived HLA class I ligands. Suggested peptide identifications with matching HLA 

binding motifs and superior fragment spectrum annotation for Mtb-derived peptide sequences. 

Sequence HLA # PSMs Protein 

LLDAHIPQL A*02 18 Esat-6 like protein esxG 
RVRGAVTGM A*02 6 Diacylglycerol acyltransferase/mycolyltransferase Ag85A 
HVKPTGSAV A*02 3 Diacylglycerol acyltransferase/mycolyltransferase Ag85A 

AAKVNTLLDV A*02 2 Esat-6 like protein esxG 
IYHPQQFVY C*07 9 Diacylglycerol acyltransferase/mycolyltransferase Ag85A 
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In an attempt to identify HLA class II ligands of viral and mycobacterial origin, autophagy 

and mutual cross-presentation of cytoplasmic proteins to MHC class II was induced. For 

this purpose, cells were “starved” in FCS-free medium after infection with MVA-TBF and 

prior to HLA ligand preparation. HLA class II ligands derived from viral proteins could be 

identified, however no ligands of mycobacterial origin were detected (see table 17). 

Table 17: Identified MVA-derived HLA class II ligands. Peptide identifications show length variants typical 

for HLA class II binders. Core sequences are indicated in red. 

Sequence Protein 

DKNDVYSMATARSLD 
DKNDVYSMATARSLDA 
DKNDVYSMATARSLDAL 
        DVYSMATARSLDA 
        DVYSMATARSLDAL 

Envelope protein F13 

QLKNLLAQIGGDAA 
   LKNLLAQIGGDAA 
       NLLAQIGGDAA 

25kDa core protein A12L 

LCYFILIFNIIVP 
LCYFILIFNIIVPA Virion membrane protein A21 

AKRMLFTSTNDKI 
   KRMLFTSTNDKI Protein L1 

3.5.2 HLA class I-presented peptides from macrophages infected with live Mtb 

Monocyte-derived macrophages were generated from leukapheresis products from 

healthy donors. After maturation, the cells were transported to the University Hospital 

Ulm for infection with the live mycobacterial laboratory strain H37Rv in an appropriate S3 

laboratory (see 2.4.6). After production of the cell lysate and sterility testing, cell lysates 

were transferred back to Tübingen to perform HLA preparation and MS analysis. As 

described in 3.5.1, raw data had to be processed against distinct databases for human 

and Mtb proteins. Assignment of fragment spectra to suggested peptide sequences was 

similarly conducted by manual interpretation and consideration of HLA binding motifs. 

Candidate Mtb-derived HLA ligands should furthermore be validated by comparison of 

fragment spectra of naturally presented and synthetic peptides. If cell counts were high, a 

control HLA preparation with uninfected macrophages was performed. Results of the 

infection experiments for HLA class I and II are listed in tables 18 and 19. 
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Table 18: Identified peptides from HLA class I preparations of Mtb-infected macrophages. Uninfected 

controls were performed for samples with high cell counts. N.d.: not done. 

Sample 
Human 

Peptide IDs 

Human 

PSMs 

MTB 

Peptide IDs 

MTB 

PSMs 

Uninfected 

Control 

Peptides 

Uninfected 

Control 

PSMs 

Leuka04 609 2547 13 27 n.d. n.d. 
Leuka05 0 0 0 0 n.d. n.d. 
Leuka06 22 41 0 0 180 544 
Leuka07 18 45 1 1 106 421 
Leuka08 217 785 57 57 n.d. n.d. 

 

Table 19: Identified peptides from HLA class II preparations of Mtb-infected macrophages. Uninfected 

controls were performed for samples with high cell counts. N.d.: not done. 

Sample 
Human 

Peptide IDs 

Human 

PSMs 

MTB 

Peptide IDs 

MTB 

PSMs 

Uninfected 

Control 

Peptides 

Uninfected 

Control 

PSMs 

Leuka04 348 1027 4 24 n.d. n.d. 
Leuka05 43 266 0 0 n.d. n.d. 
Leuka06 10 34 0 0 35 251 
Leuka07 27 172 0 0 41 328 
Leuka08 9 35 0 0 n.d. n.d. 

 
A selection of candidate Mtb-derived peptides identified from these experiments was 

subjected to spectral validation by comparison to spectra of synthetic peptides. The 

selected peptides are listed in table 20. 
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Table 20: Putative Mtb-derived HLA ligands selected for spectral validation. Peptides with HLA binding 

motif and highest rank for a fragment spectrum match to the Mtb protein database were selected for 

spectral validation. Possible HLA restrictions and  PSMs are indicated. 

Sequence HLA 
# 

PSMs 
Gene Protein 

Spectral 

validation 

LIAVPTGIK A*03 4 ctaD 
Probable cytochrome c oxidase 

subunit 1 
ambiguous 

KTTTAEALGK A*03 2 eccA2 
ESX-2 secretion system protein 

EccA2 
ambiguous 

TMEIVGRLR A*03 1 ispH1 
4-hydroxy-3-methylbut-2-enyl 

diphosphate reductase 1 
no 

LVDAAVHSY A*26 3 hemC Porphobilinogen deaminase no 

DVLGLLRDAY A*26 1 kgd 
Multifunctional 2-oxoglutarate 

metabolism enzyme 
no 

MVASGVVSVY A*26 1 plsB1 Putative acyltransferase plsB1 no 

LPPGVVNVV B*51 7 n.a. 
Probable aldehyde 

dehydrogenase 
no 

DARNELAPV B*51 2 pknK 
Serine/threonine-protein kinase 

PknK 
no 

EALVRTDI B*51 1 n.a. 
Uncharacterized RNA 

pseudouridine synthase 
Rv1711/MT1751.1 

no 

LAQLPITI B*51 1 qcrA 
Ubiquinol-cytochrome c 

reductase iron-sulfur subunit 
no 

DAIRSAAL B*51 1 rpsB 30S ribosomal protein S2 ambiguous 

FSISEGLEEY B*57 1 ctpG 
Probable cation-transporting 

ATPase G 
no 

ALTDRVAGTLREW Cl. II 1 recB RecBCD enzyme subunit RecB no 

KSASTMLMVDNATGVKAL Cl. II 2 Rv0945 
Uncharacterized oxidoreductase 

Rv0945 
no 

 
Spectral validation of the candidate peptides did not result in clearly confirmed Mtb-

derived HLA ligands (see Annex B). Further peptide candidates were selected from more 

recent experiments but peptide synthesis and spectral validation was not yet performed 

by the time this work was finished. New candidates for Mtb-derived HLA ligands are listed 

in table 21. 

  



3  Results 103 

 

Table 21: Candidate peptide list for Mtb-derived HLA ligands. Putative HLA ligands awaiting verification by 

spectral comparison. Possible HLA restriction, PSMs and IonScores are indicated. 

Sequence HLA 
# 

PSMs 

Ion 

Score 
Gene 

Protein 

AATVRDAL B*51 1 25 hemC Porphobilinogen deaminase 
TAAGSAVSAL B*51 1 21 smc Chromosome partition protein Smc 
PGSVLSAAGV B*51 2 22 PPE3 Uncharacterized PPE family protein PPE3 

LAKKAESL B*51 2 26 atpD ATP synthase subunit beta 
ALGAKLSSL A*02 1 32 eccC4 ESX-4 secretion system protein EccC4 
YGPGLGTSL B*51 1 20 rmlA Glucose-1-phosphate thymidylyltransferase 
RMSAVTAI A*02 1 22 Rv1486c Uncharacterized protein Rv1486c 

MVTAAYVL A*02 1 20 mraY 
Phospho-N-acetylmuramoyl-pentapeptide-

transferase 
VGPVARGDV B*51 2 22 Rv2468c Uncharacterized protein Rv2468c 

RPQDGAII B*07 1 23 dnaE1 DNA polymerase III subunit alpha 
LVAGGPFVL A*02 1 26 egtB Hercynine oxygenase 
TGQIDRAL B*51 1 20 mazE6 Antitoxin MazE6 

LPPGVVNVV B*51 5 22 Rv0458 Probable aldehyde dehydrogenase 
RVPDVDSL A*02 1 23 Rv1375 Uncharacterized protein Rv1375 

MLRDLAAL A*02 1 29 Rv3427c 
Putative ATP-binding protein Rv3427c in 

insertion sequence 

IPIALTEM 
B*07/
B*51 

2 23 PPE68 PPE family immunomodulator PPE68 

LLALLQQL A*02 10 27 PPE4 PPE family protein PPE4 
GLPAATVQR A*03 1 24 ligB DNA ligase B 

VAGAVLREV B*51 1 20 devS 
Redox sensor histidine kinase response 

regulator DevS 

SLVAGGSLVL A*02 1 23 dxr 
1-deoxy-D-xylulose 5-phosphate 

reductoisomerase 
VAGRNVGAAI B*51 1 21 pdtaS Probable sensor histidine kinase pdtaS 
LASDRGAGAL B*51 1 25 PPE46 Uncharacterized PPE family protein PPE46 
AFAKTPPTV B*51 1 24 ffh Signal recognition particle protein 
LLNNPHRL A*02 7 25 relE Toxin RelE 
RLAAIPILL A*02 1 21 mmpL9 Probable transport protein MmpL9 

VGRVPLLLL B*51 2 23 glgP Glycogen phosphorylase 
IAQQRAIIV B*51 4 32 secA2 Protein translocase subunit SecA 2 

LVEQAQAQK A*03 1 21 ctpA Copper-exporting P-type ATPase 
KVQGSAFNSV A*02 1 21 eccC3 ESX-3 secretion system protein EccC3 
LAQGAEIHVM B*51 1 23 adhA Probable alcohol dehydrogenase AdhA 
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4 Discussion 

The data produced during this work will be part of a superior effort to define the human 

immunopeptidome in its entirety. Only recently, mapping of the human proteome was 

achieved in a joint effort [289, 290]. Experimental evidence for quantitative protein 

expression in human organs based on direct identification of the proteins by shotgun 

mass spectrometry approaches rather than by RNA expression profiling will support 

immunotherapeutic advances. Mapping the human immunopeptidome in health and 

disease will be the next big step towards efficient immunotherapeutic approaches [291-

295]. Mapping the human proteome became feasible due to technical improvements of 

mass spectrometers and enhanced peptide separation capabilities by uHPLC, as well as 

improved data analysis algorithms. The entire human transcriptome is estimated to 

contain 20,000 to 25,000 genes and the amount of unique proteins will not greatly 

exceed this number [296, 297], constituting a limited source protein range. Furthermore, 

tryptic digestion of proteins produces equal (and predictable) peptide species 

independent of the individual tissue donor. Such invariable conditions facilitated mapping 

of the human proteome. Mapping of the complete human immunopeptidome however, 

will be an unequally more difficult enterprise. While the protein sources remain the same 

as for proteome mapping, the variety of peptide species will multiply considerably due to 

HLA polymorphisms and distinct HLA binding motifs. A concomitant effect is variety in 

detection opportunities by mass spectrometry of such peptides. While tryptic peptides 

show good ionization properties, HLA ligands vary greatly in this aspect, depending on the 

actual peptide sequence. Additional hurdles are isolation of HLA ligands from tissues as a 

prerequisite for identification compared to simple cell or tissue lysis and subsequent 

proteolytic digestion. In addition, HLA ligand presentation is not solely dependent on 

protein expression but also on protein turnover and antigen processing. Thus, the range 

of actual amounts of molecules of unique peptide species in complex samples is probably 

higher than the dynamic range that modern mass spectrometers can employ, so that low-

abundant peptide species are not detectable. To build a comprehensive map of the 

immunopeptidome, those issues have to be tackled. Technological progress will facilitate 

measurement of complex samples with high dynamic ranges, so that the other tasks are 

at hand. One is improvement of HLA ligand isolation and analysis settings, another is HLA 
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preparation and measurement of healthy and malignant (or infected) human tissues. In 

the meantime, interim analyses may provide interesting new targets for 

immunotherapeutic approaches albeit these targets may be falsified at any time until the 

complete immunopeptidome was mapped. For the RCC cohort at least, saturation of the 

estimated total identifiable HLA class I ligand source proteome was almost reached, as 

described in 3.2.4. It may therefore serve as a relatively robust antigen definition 

database. 

4.1 Improvement of HLA preparation for HLA ligandomics 

HLA preparation is still a bottleneck for exhaustive HLA ligandome analysis. The estimated 

amount of HLA molecules on renal cells is 40,000 [298]. The median number of HLA class I 

ligands that was identified on RCC tumors was 1,641 unique peptides. This would imply (if 

all cells from a sample were uniformly concerning their HLA ligandome) that the median 

peptide copy number presented on single cells would calculate to 24 molecules. This 

estimation lies close to an optimal median value, as peptide-specific T cells were 

described to be reactive to as few as 2-10 MHC:peptide molecules on a single cell [299]. 

However, the dynamic range for peptide amounts is not taken into account in this 

equation. Furthermore, the cell composition of tumor tissues is not uniform and 

consequently the HLA ligandome of single cells is not either. Thus, the detection 

threshold at the moment is probably higher (also reflected by generally lower peptide 

yields in more uniform benign tissues, where the median of identifications was 846 

calculating to a median peptide copy number of 47 per cell). The estimations of peptide 

copy numbers between 24 and 47 per cell based on the experimental datasets obtained 

during this work are in line with earlier calculations regarding this issue [300]. Another 

observation is that peptide yields are highly dependent on the sample mass used for HLA 

preparation. For cryotome preparation, samples of 1 g were used and cryotome 

preparation significantly outperformed standard preparation. The strongest increase was 

seen in PSM values of cryotome preparations. This might indicate that either the analysis 

reached an exhaustive level or that MS settings should be tweaked to identify less 

abundant peptides. In samples with high complexity and dynamic range, co-eluting highly 

abundant peptides produce multiple fragment spectra whereby co-eluting less abundant 
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peptides are not selected for fragmentation and will not be identified. Therefore, 

increasing the dynamic exclusion time for measurements of such exhaustive samples may 

result in enhanced peptide identifications. 

A second aspect is data evaluation of exhaustive HLA ligandomics. Technical 

improvements and the resulting large datasets were accompanied by the necessity for 

definition and application of filter criteria. While the application of filters for FDR and ion 

score produces a dataset with high confidence, a large amount of peptide identifications 

is discarded as false negative. This issue could be tackled by generation of a spectral 

database from existing peptide identifications for raw MS data processing. This would 

also remove a data processing bias concerning ion scores and FDR values, as the used 

software tools were originally programmed for the identification of tryptic peptides. 

Furthermore, a valid HLA annotation tool for identified peptides could serve as an 

additional data filtering tool. 

4.2 Exhaustive HLA ligandome analysis for RCC 

The average amount of identified HLA class I ligands was approximately doubled in tumor 

samples when compared to benign samples (see table 6). This may be only partly 

explained by samples sizes, which were usually larger for tumor than for benign tissues. 

Comparisons of bulk RCC tumors and autologous benign renal tissue revealed an elevated 

HLA class I expression in bulk tumors [301, 302]. These analyses however were based on 

bulk tumor tissues and did not account for tissue heterogeneity: intra-tumoral presence 

of distinct tumor cells like tumor stem cells and branches of different malignant cell 

clones may enhance the HLA ligand repertoire [303]. Additionally, other cell types within 

the tumor mass like endothelial and stromal cells and most importantly, infiltrating 

immune cells probably contribute to the entirety of the HLA ligandome of bulk tumor 

samples [304, 305]. Hence, the amount of obtained HLA ligands from a given tumor 

sample may reflect the degree of immune cell infiltration within this tumor and HLA 

ligands derived from immune cells need to be identified as such to eliminate them from 

tumor antigen definition. Analysis of PBMC HLA ligandomes at least partly accounts for 

this issue, reflecting the antigens that were defined as LiTAAs in the RCC-exclusive 

analysis (see 3.2.3) but were later rejected when PBMC and other healthy tissue HLA 
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ligandomes where added to comparative analysis (see 3.2.5). Exhaustive HLA ligandomics 

enabled the implementation of a new approach to identify tumor-associated antigens by 

comparative profiling. The advantage of this approach is that target selection solely relies 

on experimentally identified antigens and comparison of HLA ligandomes of healthy and 

malignant tissues. These antigens may prove to be superior targets compared to 

classically defined tumor antigens in immunotherapeutic approaches. One drawback of 

those classical tumor antigens is that most of them were identified by RNA expression 

profiling. However, HLA peptide presentation and RNA expression were shown to 

correlate only poorly [306]. This is consistent with our own data: we performed RNA 

expression analysis for three RCC tumor and benign sample pairs and calculated 

differential expression values (FPKM tumor/benign). HLA ligandome analysis was 

performed for the same samples and unique HLA ligand representation was estimated by 

intensities of precursor ions (label-free quantification, LFQ). Correlation analysis was 

performed for the set of HLA ligand source proteins that was detectable in both RNAseq 

and MS experiments (see figure 29). 
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Figure 29: Correlation analysis of RNA expression and HLA ligand representation. Scatterplot of relative 

mRNA expression compared to relative representation of source proteins in the HLA ligandomes of 3 paired 

RCC patient samples (tumor/benign). Only proteins with values for FPKM and LFQ intensity in paired tumor 

and benign samples were included for analysis. Correlation was calculated with Spearman r test. 

In addition, we compared the overlap of the top 100 overexpressed gene products 

(RNAseq) with the top 100 overrepresented HLA ligand source proteins identified in the 

three individual RCC tumor samples. Again, the overlap was poor in all cases (see figure 

30). Hence, RNA expression is no indicator for HLA presentation, which disqualifies this 

analysis for selection of suitable target antigens for T cell-based immunotherapeutic 

approaches. 



4 Discussion 109 

 

 

Figure 30: Overlap analysis of the Top 100 RNAseq and LFQ MS identifications. The Top 100 overexpressed 

gene products as identified by RNAseq (green) were compared to the Top 100 overrepresented HLA ligand 

source proteins as identified by LFQ MS (red) in three individual RCC tumor samples. 

Comparative profiling identifies a new class of tumor antigens based on tumor-exclusive 

HLA representation of source proteins (LiTAAs). Those antigens should provide superior 

targets for T cell-based immunotherapies such as peptide vaccination. The identified top 

RCC antigens for HLA class I are partly already linked to RCC or cancer in general in the 

literature, while others were never associated with RCC before. ANGPTL4 is discussed as a 

biomarker for RCC as serum levels are elevated in RCC patients [307]. It is also one of the 

HIF-responsive genes, like many other proteins in the LiTAA lists for RCC [308]. CA12 was 

shown to be overexpressed in RCC [309]. Inhibition of ENTPD1 is discussed as a general 

cancer treatment as it produces extracellular adenosine that inhibits immune effector 

cells [310]. CA9 is the classical RCC tumor antigen and was already used in clinical studies 

[311]. LOX is discussed as a target for small molecule inhibitors in RCC and is associated 

with tumor progression [312]. COMTD1, KDELR3, MRPL55, PNO1, CRIPT and MTRR on the 

other hand were not linked to RCC or cancer in general so far. For the identified 

HLA class II antigens, the situation is quite similar. ENO1 is a tumor suppressor and shows 

increased expression in RCC [313]. EZR is implicated in various human cancers [314], as 

well as HTRA1 [315]. LGALS3BP was shown to be overexpressed in RCC [316] and is 

discussed as a serum biomarker for various cancers. IGHG1 and GAA were not linked to 

cancer or RCC in the literature so far. The fact that several of the identified LiTAAs are 

already associated with RCC or cancer in general in the literature may serve as an 

indicator that antigen discovery by comparative profiling is a suitable approach. The 

strategy needs further improvements, as some antigens may be discarded due to false 

positive identifications emerging only once in a benign or healthy sample (as described in 

3.4.1). LiTAAs may also be suitable to delineate specificities of tumor-infiltrating T cells. 

Until now, only few of these specificities are known and insights into the targetome of 

TILs may pave the way for new immunotherapeutic treatment approaches such as 
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adoptive cell transfer with antigen-specific T cells. Additionally, a second class of antigens 

could be defined, based on actual tumor-exclusive HLA ligands rather than on HLA ligand 

source protein presentation frequency. Some of the identified antigens are discarded in 

LiTAA analysis however on the level of HLA ligands certain peptides may remain tumor-

exclusive. This is the case for the peptide KIKSPAKMAEK (derived from the protein 

regulator of G-protein signaling 5, RGS5). While the source protein is represented with 

many other HLA ligands in the dataset of healthy tissues, this peptide was never found in 

any of the healthy tissues whereas it is the highest-ranking peptide in RCC tumor samples 

with identifications in 10 out of 33 tumor samples. Taking into consideration that this 

peptide is a binder for HLA-A*03 and HLA-A*11, it was found in 100 % of patient samples 

with a respective HLA typing. Such peptides might emerge exclusively in tumors due to 

differential antigen expression and might constitute a second class of valuable targets for 

T cell-based immunotherapies. 

4.3 Design of peptide vaccines based on LiTAAs 

A first approach to peptide vaccine design based on LiTAAs would be to select HLA-

matched peptides from the highest-ranking LiTAAs for each individual patient based on 

the individual HLA typing. Such an approach would demand for a “warehouse” of suitable 

peptides that have been checked for immunogenicity. The ability to induce a specific 

T cell response is an important prerequisite for the selection of vaccine candidates. 

However, heterogeneity in RCC tumors seems to be extremely high. This could be 

observed in LiTAA analyses, where the highest-ranking antigen only had a presentation 

frequency of 27.3 %. Additionally, when comparing the top 100 antigens from three 

individual RCC tumor samples as identified by RNA expression analysis and LFQ MS, the 

overlaps are extremely low (see figure 31). Thus, HLA ligandome analysis of individual 

tumor samples should be performed prior to peptide vaccine design. The analysis does 

not take long and the educational benefit would greatly enhance vaccine design for 

individual patients. Individual expression of LiTAA-derived HLA ligands could be taken into 

account, adding an additional degree of personalization to the vaccine design (see figure 

32). Furthermore, vaccination with peptides that are not expressed in the individual 

tumor would be avoided. 
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Figure 31: Patient individuality in RCC. Overlap analysis of the top 100 overexpressed gene products as 

identified by RNAseq (left, green) in three individual RCC samples. Overlap analysis of the top 100 LiTAAs as 

identified by LFQ MS (right, red) in three individual RCC samples. 

 

Figure 32: Design of peptide vaccines should account for tumor individuality. Each patient’s tumor will 

exhibit different top-ranking LiTAAs. After MS analysis, peptides derived from the individual top-ranking 

LiTAAs are selected from the warehouse to design a tailored peptide vaccine. 

4.4 HLA class II ligands for peptide vaccination 

HLA ligandomics for class II generated no results in many of the samples. This raises the 

question why, especially when analysis of class I preparations yielded good results. The 

preparation is conducted simultaneously, so that general failure of preparation can be 

excluded for most of the samples. One explanation might be that HLA class II molecules 

are differentially expressed on tumor cells and expression is much more variable than for 
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HLA class I [317]. Another, more likely explanation might be that HLA class II molecules 

are not expressed on tumor cells but rather on tumor-infiltrating leukocytes like DCs and 

macrophages [305]. If this was the case, the amounts of identified HLA class II ligands 

should correlate with leukocyte infiltrates in the respective tumor samples and would 

reflect an inflamed phenotype in benign tissues in which HLA class II ligands could be 

identified. In general, addition of HLA class II-restricted peptides to peptide vaccines 

against RCC would be feasible however the database for LiTAAs should be extended in the 

RCC cohort to reach saturation of the identifiable source proteome. Analysis of the 

HLA class II ligandomes of healthy tissues would be a second prerequisite to obtain 

reliable results from comparative profiling, especially data from PBMC are of high 

importance if one assumes that most HLA class II ligands from bulk tumor samples are 

derived from immune cell infiltrates. One drawback of HLA class II ligands is a more 

elaborate immunogenicity testing. Production of HLA class II monomers with refolded 

peptides is not possible and classical priming experiments with dendritic cells are cost-

intensive and time-consuming. These facts aggravate high-throughput priming screenings 

for immunogenicity testing of HLA class II ligands. However, antigen-specific CD4+ T cells 

can have beneficial effects on tumor therapy as they provide help for other immune cells 

and were in some cases also shown to have cytotoxic capabilities [318-320]. Additionally, 

cytokine secretion responses of such cells were shown to induce senescence in tumor 

cells whereby tumor outgrowth and metastasis may be prevented [321]. 

4.5 Immunogenicity analysis 

As shown in chapter 3.4, all selected HLA-A*02- and –B*07-restricted peptides proved to 

be immunogenic, while the immunogenicity of the HLA-A*03- and -B*44:03-restricted 

could not be documented yet. Priming should at least be performed in five donors before 

peptides are discarded as non-immunogenic. Especially for the peptide KIKSPAKMAEK it 

would be worth continuing immunogenicity testing. At the time of experiment 

performance, inclusion bodies for HLA-A*03 were not optimized yet, which might explain 

negative priming results. For both HLA-A*03-restricted peptides, the background in 

negative controls of tetramer stainings was quite high. In case of the HLA-B*44:03-

restricted peptide, testing could be performed only once due to low frequencies of HLA-
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B*44 positive blood donors. Another problem might be that HLA subtyping is not 

available for blood donors. In case of HLA-B*44, the subtyping influences peptide binding 

motifs, therefore priming of cells from subtype-mismatched donors may be impaired. 

Immunogenicity analyses have to be performed for the newly defined RCC LiTAA-derived 

peptides to set up a peptide warehouse for off-the-shelf design of peptide vaccines. The 

ability of a HLA ligand to induce peptide-specific T cell responses in vitro and in vivo is 

essential for selection of peptide vaccine candidates. However, as it was seen in the 

experiments at hand, high-throughput priming with aAPCs identified peptides as 

immunogenic that were derived from proteins that were later discarded from the LiTAA 

list due to representation in several normal tissues. This indicates that negative selection 

of peptide-specific naїve T cells in the thymus is not absolute and priming against 

ubiquitous antigens is, at least in vitro, possible. For more representative analyses of 

immunogenicity in vivo, RCC patients should be screened for spontaneous T cell 

responses against LiTAA-derived, HLA-matched peptides. Such existing memory T cell 

responses in patients can be easily detected by ELISPOT analyses and were already shown 

to correlate with better outcome of patients in chronic lymphatic leukemia (CLL) [292]. 

4.6 Mtb-derived HLA ligands 

Identification of Mtb-derived HLA ligands was successful in the cell line JY infected with 

MVA-TBF. This model proved useful for HLA ligandome analysis and may provide HLA 

ligands of the encoded mycobacterial antigens for additional HLA allotypes if the vector 

would be used for infection of additional cell lines or primary cells. As this vector is 

already in clinical trials, the identified peptides may serve as important tools for T cell 

immunomonitoring to assess the efficacy and immunogenicity of such a subunit / booster 

vaccine. However, it remains questionable if these HLA ligands would constitute good 

candidates for a peptide vaccine against TB. To assess this question, further experiments 

concerning the efficacy and reactivity of peptide-specific T cells need to be performed. In 

fact, some of the peptides were already shown to be immunogenic and specific memory 

T cell responses are present in BCG-vaccinated individuals [288]. The peptides might 

furthermore prove useful to detect latent infections in asymptomatic individuals to 

provide more reliable screening assays than the currently used ones. 
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Identification of Mtb-derived HLA ligands from primary cells (macrophages) proved to be 

a difficult task. Experimental outcomes were extremely variable, which was probably due 

to the complicated experimental setup. Transfer of cells between laboratories probably 

had an impact on outcomes. Additionally, cell lysates had to be tested for sterility after 

cell infection and lysis. Therefore, cell lysates had to be frozen until sterility testing was 

completed and HLA immunoaffinity purification could ensue. Interference of such an 

intermittent freezing step with HLA precipitation should be ruled out as a cause of 

experimental variance. A second issue was data processing, as MS raw data had to be 

processed against two protein databases of different size (Mtb and human). FDR values 

and ion scores are dependent on search database size, therefore spectral annotation 

features are not reliable in this case, demanding for manual fragment spectrum 

evaluation. One possibility would be the use of mycobacteria that were cultured in 

medium with stable isotope-labelled amino acids. This technique would allow to 

distinguish peptide origin in MS experiments producing more reliable results on the one 

hand and to reduce the necessity to validate any candidate peptide by comparison to 

synthetic peptide fragment spectra (as performed in this work) on the other hand [322]. 

Usage of live mycobacteria might further aggravate identification of Mtb-derived HLA 

ligands, as mycobacteria have evolved a multitude of immune evasion mechanisms on 

cellular level. After phagocytosis, they are residual in phagosomes and avoid digestion 

and destruction by ROS. They prevent phagosome maturation and fusion with lysosomes. 

Thus, presentation of mycobacterial HLA class II ligands is probably impeded as MIIC 

compartments containing mycobacteria will probably not form in infected cells. Entry of 

mycobacteria into the cytosol and therefore to MHC class I processing pathways is usually 

excluded in early infection states and only takes place in dissemination events, 

accompanied by apoptosis of the host cells. Thus, for effective identification of Mtb-

derived HLA ligands, the protocol should be adapted to circumvent these shortcomings. 

MHC preparation should be performed to the step of peptide purification in a S3 

laboratory. Ready-to-use MS samples could await measurement in frozen condition until 

sterility testing was performed. Furthermore, infection with attenuated Mtb or loading of 

macrophages with Mtb lysates may enhance processing of mycobacterial antigens for HLA 

presentation by avoidance of immune escape mechanisms of live mycobacteria. 
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Annex 

A Fragment spectra of selected peptides for immunogenicity testing 

Eleven peptides were synthesized and fragment spectra of synthetic peptides were 

compared to fragment spectra of naturally presented peptides to validate peptide 

identifications. Fragment spectra of naturally presented peptides are derived from 

complex HLA ligand extraction samples from primary tissues. Thus, those fragment 

spectra may contain unexplained mass peaks due to co-elution of different peptide 

species. Verification of peptide identities was performed by matching of mass peaks from 

synthetic peptide spectra to those of naturally presented peptides. Some of the peptides 

were synthesized with a heavy isotope-labelled amino acid (indicated by *). 
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     Extracted from: J:\_RCCs\1.3 Processed\RCC376\121106_AR_RCC376_Tumor_W_20%_Rep#1_msms5.RAW   #12201   RT: 97.20

     ITMS, CID@35.00, z=+2, Mono m/z=507.76813 Da, MH+=1014.52898 Da, Match Tol.=0.8 Da
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     Extracted from: C:\Users\dk\Desktop\SynPep Mix RCC_140214\140214_AR_SynPep_LiTAPs_RCC_1pmol_25cm90min3s_msmsX15.RAW   #1412   RT: 40.04
     ITMS, CID@35.00, z=+2, Mono m/z=400.73578 Da, MH+=800.46428 Da, Match Tol.=0.8 Da
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     Extracted from: J:\_RCCs\Class I\RCC302 (EX,SC, New, Cryotome vs Normal Prep)\Normal Prep\130405_AR_RCC302_Tumor_CtrlPrep_W_20%_Rep#1_msms6.RAW   #3641   RT: 55.24
     ITMS, CID@35.00, z=+2, Mono m/z=400.23721 Da, MH+=799.46715 Da, Match Tol.=0.8 DaNatural (RCC302)
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     Extracted from: C:\Users\dk\Desktop\SynPep Mix RCC_140214\140214_AR_SynPep_LiTAPs_RCC_1pmol_25cm90min3s_msmsX15.RAW   #774   RT: 30.42
     ITMS, CID@35.00, z=+2, Mono m/z=546.82953 Da, MH+=1092.65178 Da, Match Tol.=0.8 Da
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     Extracted from: J:\_RCCs\1.3 Processed\RCC376\121109_AR_RCC376_Tumor_W_20%_#3_15sDynExcl_msms10.RAW   #2042   RT: 32.56
     ITMS, CID@35.00, z=+2, Mono m/z=546.82983 Da, MH+=1092.65239 Da, Match Tol.=0.8 DaNatural (RCC376)
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     Extracted from: C:\Users\dk\Desktop\SynPep Mix RCC_140214\140214_AR_SynPep_LiTAPs_RCC_1pmol_25cm90min3s_msmsX15.RAW   #1691   RT: 43.12
     ITMS, CID@35.00, z=+2, Mono m/z=500.31329 Da, MH+=999.61931 Da, Match Tol.=0.8 Da
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     Extracted from: J:\_RCCs\1.3 Processed\RCC301 (EX,SC,New)\121227_AR_RCC301_Tumor_W_20%_Rep#4_msms27.RAW   #3983   RT: 50.93
     ITMS, CID@35.00, z=+2, Mono m/z=500.31342 Da, MH+=999.61955 Da, Match Tol.=0.8 Da
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     Extracted from: C:\Users\dk\Desktop\SynPep Mix RCC_140214\140214_AR_SynPep_LiTAPs_RCC_1pmol_25cm90min3s_msmsX15.RAW   #4448   RT: 72.35
     ITMS, CID@35.00, z=+2, Mono m/z=520.31616 Da, MH+=1039.62505 Da, Match Tol.=0.8 Da
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     Extracted from: J:\_RCCs\Class I\RCC302 (EX,SC, New, Cryotome vs Normal Prep)\Cryotome\130326_AR_RCC302_Tumor_W_20%_Rep#3_msms8.RAW   #11961   RT: 101.10
     ITMS, CID@35.00, z=+2, Mono m/z=520.31604 Da, MH+=1039.62480 Da, Match Tol.=0.8 Da
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     Extracted from: C:\Users\dk\Desktop\SynPep Mix RCC_140214\140214_AR_SynPep_LiTAPs_RCC_1pmol_25cm90min3s_msmsX15.RAW   #431   RT: 24.02
     ITMS, CID@35.00, z=+2, Mono m/z=615.86530 Da, MH+=1230.72331 Da, Match Tol.=0.8 Da
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     Extracted from: J:\_RCCs\Class I\RCC302 (EX,SC, New, Cryotome vs Normal Prep)\Cryotome\130326_AR_RCC302_Tumor_W_20%_Rep#4_msms9.RAW   #1191   RT: 32.53
     ITMS, CID@35.00, z=+2, Mono m/z=615.86542 Da, MH+=1230.72356 Da, Match Tol.=0.8 Da
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     Extracted from: C:\Users\dk\Desktop\SynPep Mix RCC_140214\140214_AR_SynPep_LiTAPs_RCC_1pmol_25cm90min3s_msmsX15.RAW   #3761   RT: 64.98

     ITMS, CID@35.00, z=+2, Mono m/z=564.80743 Da, MH+=1128.60759 Da, Match Tol.=0.8 Da
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     Extracted from: J:\_RCCs\Class I\RCC302 (EX,SC, New, Cryotome vs Normal Prep)\Cryotome\130326_AR_RCC302_Tumor_W_20%_Rep#2_msms7.RAW   #9936   RT: 88.75

     ITMS, CID@35.00, z=+2, Mono m/z=564.80743 Da, MH+=1128.60759 Da, Match Tol.=0.8 DaNatural (RCC302)

Synthetic
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B  Fragment spectra of putative Mtb–derived HLA class I ligands 

Fourteen peptides were synthesized and fragment spectra of synthetic peptides were 

compared to fragment spectra of naturally presented peptides to validate peptide 

identifications. Fragment spectra of naturally presented peptides are derived from 

complex HLA ligand extraction samples from primary tissues. Thus, those fragment 

spectra may contain unexplained mass peaks due to co-elution of different peptide 

species. Verification of peptide identities was performed by matching of mass peaks from 

synthetic peptide spectra to those of naturally presented peptides. Some of the peptides 

were synthesized with a heavy isotope-labelled amino acid (indicated by *). 
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     Extracted from: I:\MTB\L04\121219_AR_L04_Mak_MTBinfected_W_40%_Rep#2_msms6.RAW   #6992   RT: 78.25

     ITMS, CID, z=+2, Mono m/z=456.29971 Da, MH+=911.59215 Da, Match Tol.=0.8 Da
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     Extracted from: \\NAS-2\macdump\Armin\130610_AR_MTBMix_Leuka04_10pmoleach_msms11.RAW   #7130   RT: 85.06

     ITMS, CID, z=+2, Mono m/z=456.79807 Da, MH+=912.58885 Da, Match Tol.=0.8 Da
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     Extracted from: I:\MTB\L04\121207_AR_L04_Mak_MTBinfected_W_20%_Rep#1_msms18.RAW   #327   RT: 19.68

     ITMS, CID, z=+2, Mono m/z=510.29013 Da, MH+=1019.57298 Da, Match Tol.=0.8 Da
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     Extracted from: \\NAS-2\macdump\Armin\130610_AR_MTBMix_Leuka04_10pmoleach_msms11.RAW   #628   RT: 29.78

     ITMS, CID, z=+2, Mono m/z=510.78845 Da, MH+=1020.56963 Da, Match Tol.=0.8 Da
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     Extracted from: I:\MTB\L04\121207_AR_L04_Mak_MTBinfected_W_20%_Rep#1_msms18.RAW   #7865   RT: 84.42

     ITMS, CID, z=+2, Mono m/z=537.80640 Da, MH+=1074.60552 Da, Match Tol.=0.8 Da
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     Extracted from: \\NAS-2\macdump\Armin\130610_AR_MTBMix_Leuka04_10pmoleach_msms11.RAW   #4858   RT: 66.52

     ITMS, CID, z=+2, Mono m/z=538.30621 Da, MH+=1075.60515 Da, Match Tol.=0.8 Da
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     Extracted from: I:\MTB\L04\121219_AR_L04_Mak_MTBinfected_W_40%_Rep#2_msms6.RAW   #4421   RT: 56.65

     ITMS, CID, z=+2, Mono m/z=487.75073 Da, MH+=974.49419 Da, Match Tol.=0.8 Da
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     Extracted from: \\NAS-2\macdump\Armin\130610_AR_MTBMix_Leuka04_10pmoleach_msms11.RAW   #4292   RT: 62.02

     ITMS, CID, z=+2, Mono m/z=488.24881 Da, MH+=975.49034 Da, Match Tol.=0.8 Da
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     ITMS, CID, z=+2, Mono m/z=567.81152 Da, MH+=1134.61577 Da, Match Tol.=0.8 Da
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     ITMS, CID, z=+2, Mono m/z=568.30988 Da, MH+=1135.61247 Da, Match Tol.=0.8 Da
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     Extracted from: \\NAS-2\macdump\Armin\130610_AR_MTBMix_Leuka04_10pmoleach_msms11.RAW   #11523   RT: 131.41

     ITMS, CID, z=+2, Mono m/z=435.27734 Da, MH+=869.54741 Da, Match Tol.=0.8 Da
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     Extracted from: \\NAS-2\macdump\Armin\130610_AR_MTBMix_Leuka04_10pmoleach_msms11.RAW   #4543   RT: 63.95

     ITMS, CID, z=+2, Mono m/z=408.73248 Da, MH+=816.45769 Da, Match Tol.=0.8 Da
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     ITMS, CID, z=+2, Mono m/z=408.73224 Da, MH+=816.45720 Da, Match Tol.=0.8 Da
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     ITMS, CID, z=+2, Mono m/z=587.26929 Da, MH+=1173.53130 Da, Match Tol.=0.8 Da
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     Extracted from: \\NAS-2\macdump\Armin\130610_AR_MTBMix_Leuka04_10pmoleach_msms11.RAW   #10619   RT: 118.87

     ITMS, CID, z=+2, Mono m/z=587.26923 Da, MH+=1173.53118 Da, Match Tol.=0.8 Da
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     ITMS, CID, z=+3, Mono m/z=496.93570 Da, MH+=1488.79255 Da, Match Tol.=0.8 Da
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     Extracted from: I:\121219_AR_L04_Mak_MTBinfected_Tue39_40%_Rep#2_msms7.RAW   #10322   RT: 112.96

     ITMS, CID, z=+2, Mono m/z=744.39868 Da, MH+=1487.79009 Da, Match Tol.=0.8 Da
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     ITMS, CID, z=+2, Mono m/z=926.98206 Da, MH+=1852.95683 Da, Match Tol.=0.8 Da
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     ITMS, CID, z=+3, Mono m/z=618.65399 Da, MH+=1853.94742 Da, Match Tol.=0.8 Da
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