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francisco.pelaez@ufabc.edu.br

Abstract. Koniocortex-Like Network is a novel category of Bio-Inspired
Neural Networks whose architecture and properties are inspired in the
biological koniocortex, the first layer of the cortex that receives infor-
mation from the thalamus. In the Koniocortex-Like Network competi-
tion and pattern classification emerges naturally due to the interplay of
inhibitory interneurons, metaplasticity and intrinsic plasticity. Recently
proposed, it has shown a big potential for complex tasks with unsuper-
vised learning. Now for the first time, its competitive results are proved
in a relevant standard real application that is the objective of state-of-
the-art research: the diagnosis of breast cancer data from the Wisconsin
Breast Cancer Database.
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1 Introduction

The koniocortex is a common denomination for all regions of the cerebral cor-
tex containing a granular layer (layer IV). The granular (grainy) texture of this
layer is due the abundance of spiny stellate neurons that directly receive neural
projections from the thalamus. The thalamus, at the center of the brain, is the
main relay station from the senses to the cortex. The Koniocortex-like networks
(KLN) are neural models that possess at least two layers: the first layer contain-
ing neurons that are similar to the thalamo-cortical neurons of the thalamus, and
the second layer whose neurons resemble the spiny and the inhibitory interneu-
rons of the fourth layer of the koniocortex. As demonstrated with living brain
tissues in which only the fourth layer of the cortex was active (remaining lay-
ers were reset through freezing [8]), these two layers constitute a network in
which competition and auto-organization are found. For example, the biological
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koniocortex network exhibits competition [13] because only a very small num-
ber of spiny stellate neurons are active in the presence of sensory stimuli. This
behavior resembles the Winner-Take-All (WTA) process of competitive artificial
networks. In WTA, the most active neuron remains active while the other neu-
rons are set to zero. The difference between conventional competitive networks
and the biologically inspired KLN is that, while conventional competitive neu-
rons find the most active neuro through calculation, in the case of the KLNs,
the winning neuron emerges naturally from the interaction between the neurons.
At the same time, non-winning neurons become silent due to the dynamics of
the neurons in the network, not because they are algorithmically reset. Previous
seminal works also studied the neural dynamics leading to emergent competition
in terms of the different properties potentially involved in the process, like the
strength and range of lateral inhibition [9–11], the value of the firing threshold
[10,18] and the steepness of the activation function [18].

Regarding the KLN, the main properties involved in competitive learning
are synaptic metaplasticity and intrinsic plasticity. Intrinsic plasticity adjusts
the global excitability of the neuron so that highly excited neurons will be less
excitable in the future, and vice versa. In this paper, we continue the research
started in previous works [3,4,14–17]. Here we use KLN networks to classify the
patterns in the Wisconsin Breast Cancer Database (WBCD) [19]. For assessing
the classification accuracy of this algorithm, we used the most common perfor-
mance measures: specifity, sensitivity and accuracy. The results obtained were
validated using the 10-fold cross-validation method. The paper is organized as
follows. Section 2 presents a detailed description of the database and the algo-
rithms. In Sect. 3 the experimental results obtained are shown. A brief discussion
of these results is showed in Sect. 4 and, finally, Sect. 5 summarizes the main con-
clusions.

2 Materials and Methods

2.1 WBCD Dataset

Breast cancer is a malignant tumor that develops from breast cells. Although
research has identified some of the risk factors that increase a woman’s chance
of developing breast cancer, the inherent cause of most breast cancers remains
unknown.

The correct pattern classification of breast cancer is an important worldwide
medical problem. Cancer is one of the major causes of mortality around the
world and research into cancer diagnosis and treatment has become an important
issue for the scientific community. If the cancerous cells are detected before they
spread to other organs, the survival rate is greater than 97%. For this reason, the
use of classifier systems in medical diagnosis is increasing. Artificial intelligence
classification techniques can enhance current research.

This study analyzed the Wisconsin Breast Cancer Database (WBCD). This
data base has been used several times in the literature and many high impact
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studies has used these inputs for classification including systems based in Arti-
ficial Neural Networks (ANNs), Support Vector Machines (SVMs) and Neuro-
Fuzzy techniques, among others. This situation makes this database very useful
in order to compare the performances of the results obtained with the state of
the art.

2.2 Data Preparation

The WBCD contains 699 patterns, each of this pattern is composed by 9 numer-
ical attributes that corresponds to different physical characteristics that can be
considered as markers of the possible presence of cancer in the sample. Numer-
ically the attributes have been evaluated manually by an expert with values
between 1 and 10, being value 1 the closest to an indicator of a benign nature
of the sample and value 10 the closest to an indicator of a malicious nature of
the sample. The database contains a field that indicates the final diagnosis of
the nature of the sample.

In the original data base there are 16 samples whose attributes are not com-
pletely filled. In order to work with a homogeneous set of patterns with all the
numerical attributes filled, incomplete elements have been eliminated from the
experiment. Finally we will use 683 patterns that are divided in 444 benign
samples (65%) and 239 malicious samples (35%).

It has empirically been proved that the classifiers based on neural networks
produce better results if the training sets are equilibrated presenting the same
number of patterns belonging to each one of the possible classes. In order to
achieve this situation in the creation of the sets used to train and to evaluate
the system some malicious patterns will be repeated instead of eliminating some
benign patterns to get these equilibrated sets. It has been considered better to
duplicate a small number of malicious elements as inputs for the networks instead
of losing the potential information present in some of the benign elements.

Depending on the concrete inputs used for training and for performance
evaluation it is possible to have a numerical influence on the results. To obtain
results statistically independent of the distribution of the patterns a 10 fold
cross validation evaluation method has been considered. Using this method the
possible dependence of the results with the distribution of the samples in the
training or performance evaluation sets is eliminated: all the samples are used to
train the networks and all the samples are used to evaluate the performance of
the results in different executions of the experiment for the same initial neural
networks, mean values are calculated to establish the final performance results.

For this experiment we have created ten data sets from the WBCD with the
following distribution of patterns:

– G1: 90 total patterns: 45 benign and 45 malign
– G2: 90 total patterns: 45 benign and 45 malign
– G3: 90 total patterns: 45 benign and 45 malign
– G4: 88 total patterns: 44 benign and 44 malign
– G5: 88 total patterns: 44 benign and 44 malign
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– G6: 88 total patterns: 44 benign and 44 malign
– G7: 88 total patterns: 44 benign and 44 malign
– G8: 88 total patterns: 44 benign and 44 malign
– G9: 88 total patterns: 44 benign and 44 malign
– G10: 90 total patterns: 45 benign and 45 malign

Using these 10 initial sets we will create 10 different data groups. In each
one of the training sets that will be used as inputs to the networks for training
the system and evaluating the evolution of the error will consist in 9 of the
previous 10 groups. The final evaluation that calculates the performance of the
performance of the network will use the other initial set. The 10 folders will be
created with the variation of the initial set that is used for evaluation and not
for training.

The networks are trained from the same initial aleatory weights presenting
the data corresponding to each of the 10 final sets created from the initial ones.
Finally the mean values of the results will be calculated to eliminate the possible
statistical influence in the results due to the concrete fixed selection of some
patterns to train the system and the fixed selection of other patterns to evaluate
the results.

2.3 Koniocortex-Like Network Model

The KLN network is based in a mathematical model formed by rate code neurons
whose outputs Oj are limited between the values 0 and 1. These values represent
the probability of occurrence of an action potential. Considering in one side the
normalized input pattern

−→
i =

−→
I /|| −→

I || (lower case notation meaning vector
normalization) yields the net-input of neuron j. Normalization is performed with
the l1-norm in which:

|| −→
I || =

n∑

i=1

|Ii| (1)

And in the other side the neuron’s j weights as the components of a vec-

tor prototype
−→
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−→
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−→
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−→
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During the training the weights are modified using the incremental version
of the presynaptic rule:

� ω = ξI(O − ω) (2)

where O and I are the postsynaptic and presynaptic action potential probabili-
ties, respectively, and ξ, a learning factor.

The presynaptic rule is based in the empirical plasticity curve [5] that shows
a relation between postsynaptic voltage and the modification of the synaptic
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weight. This rule is also influenced by metaplasticity [1,2], a homeostatic prop-
erty which elongates the plasticity curves rightwards for higher initial synaptic
weights.

For relating the net-input of neuron Oj to its firing probability, Oj a conven-
tional sigmoidal activation function was used.

Oj =
1

1 + e−k(netj+0.5−2sj)
(3)

where k is a curve-compressing factor and sj the horizontal shift of the acti-
vation function ranging from zero to one, 0 < sj < 1. In our experiment the
adjustment of the shifting is completely shifted leftwards with sj = 0 and when
it is completely shifted rightwards with sj = 1.

Real neuron exhibits intrinsic plasticity [6,7] as shown in Fig. 1, the home-
ostatic property that makes very active neurons to be moderated and inactive
neurons to increment its firing rate. According to this property [7], the activa-
tion function gradually shifts leftwards or rightwards regulating the activation
of scarcely or highly activated neurons, respectively.

Fig. 1. Intrinsic plasticity allows the neurons’ activation function to shift horizontally
so that the activation function “follows” the average net-input of the neuron. (a) Initial
position of the sigmoidal activation function. (b) In the case of a low regime of net-
input values (as in A, B and C), intrinsic plasticity shifts the sigmoid leftwards. (c) In
the case of a high regime of net-input values (as in D, E and F), intrinsic plasticity
shifts the sigmoid rightwards increasing the sensitivity of the neuron.

In the experiment, parameter sj is mathematically incorporated to the sim-
ulations in the neuron’s activation function f() relating the net-input of the
neuron to its spiking probability Oj :

Oj = f(||
−→
T j

→
I

||, sj) (4)
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The following equation calculates the shift of the activation function, s at
time t in terms of the shift and output probability of the neuron at time t − 1.

sjt =
υ.Ot−1 + sjt−1

υ + 1
(5)

where υ is the shifting velocity parameter. It is a small arbitrary factor for
adjusting the shifting rate of the activation function. Notice that when both the
shift and the output at time t − 1 are equal, the shift at time t continues having
the same value of the shift at time t − 1.

Figure 2 is the complete version of the KLN model used in the experiment.
In the KLN, “B” labeled neurons are inhibitory neurons endowed with intrin-
sic plasticity. “S” labeled neurons are the main neurons engaged in competition
and also present intrinsic plasticity. Since each S contacts a single B, intrin-
sic plasticity is concomitantly regulated in both types of neurons. So if S is
highly activated it is the same for associated B. This implies that S reduces its
excitability and B, the inhibitory field surrounding S, affecting the final acti-
vated neuron in future classification performances. TC neurons can use intrinsic
plasticity to remove the mean of a series of input values. When removing the
average, patterns become more uncorrelated and easier to classify.

Figure 2 shows that each S neuron has a recurrent connection on itself that
was initially intended for allowing a sustained activation over time in simple rate-
code neurons. Recurrent connections are extremely rare in real neurons. Despite
of this, this kind of recurrent connection was indeed present in the koniocortex.

Fig. 2. Architecture of KLN applied to the classification of WBCD.
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Finally SB neuron is incorporated to the model to be used in pattern normal-
ization. Similarly to real shunting/dividing inter-neurons, SB neurons perform
the arithmetical summation of its inputs (TC outputs), dividing the activation
of its target neurons (the Sneurons) by this quantity.

3 Results

3.1 Network Characteristics

In this section we present the results obtained in this research. All the models
used in this study were trained and tested with the same data and validated
using 10-fold cross-validation.

This KLN has 9 neurons in its input layer corresponding to the number of
elements that form each input pattern, 9 neurons in its TC layer (similar number
as input layer to be coherent with the KLN structure), 2 neurons in the S layer
as two classes are considered in the experiment, and 2 neurons in the upper B
layer. Once the input is fed to the network, its activation is “propagated” until all
layers are activated. At the end of the process one of the neurons presents a higher
output than the other one, so it is possible to classify the patterns taking into
account which output is activated and which one is inhibited. The WTA process
occurs naturally as an emergent consequence of the individual computation of
each neuron without the need of externally monitoring the network.

It is very important to remark that this first prototype of the network applied
to the WBCD classification has demonstrated to be extremely sensitive to the
concrete values of the training mathematical parameters. Even minimal devia-
tions from the values used in this experiment can cause a non convergence of
the learning algorithm, so we cannot consider this prototype as a robust imple-
mentation of the mathematical theory. In this case the values obtained for the
parameters have been obtained using a Montecarlo approach with many simu-
lations until adequate results have been obtained demonstrating that for very
concrete values the network is able to learn without external supervision. The
final values used in this simulation are υ set to 0.025 and ξ to 0.001, the ini-
tial sigmoid shift was 0.5, initial weights from TC to S neurons were negligible
and random, and non-modifiable weights were set to WSS

= 0.85, WSB
= 0.98,

WITC
= 1.0 and WBS

= 0.5.

3.2 Evaluation Method

In each one of the experiments 50 networks have been trained. Using the 10 fold
cross validation method the results are not dependent of the concrete patterns
used for training and for performance evaluation. Using 50 different initial net-
works and calculating mean values we assure that the results are independent
of the initial random values in the creation of the networks. From the results
obtained for the same network with each one of the folders the mean confusion
matrix is obtained for each network. Once we have these 50 mean values an
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additional calculation is made and the final mean value is obtained as the final
result of the experiment.

The following hypothesis are defined and used to define the confusion matrix:

– H (1/1): The pattern is malicious and has been classified as malicious.
– H (1/0): The pattern is benign and has been classified as malicious.
– H (0/1): The pattern is malicious and has been classified as benign.
– H (0/0): The pattern is benign and has been classified as benign (Table 1).

Table 1. Confussion matrix model

True positive H (1/1) False positive H (1/0)

False negative H (0/1) True negative H (0/0)

The most important figure in these experiments in the sensitivity (considered
as true positive percentage), these is due to the intrinsic nature of the experiment
(it is much more important to detect all the malicious patterns than classifying
as malicious a benign input).

3.3 Classification Results

We have performed different experiments with different number of epochs in
each experiment (considering one epoch like presenting the full set of input
patterns once to the network). The output of the network is integrated by two
neurons, depending on which one presents the higher level at the output we have
considered that one of the classes (benign or malign sample) is selected by the
network. Table 2 presents the results obtained:

Table 2. Sensitivity and accuracy evolution depending on the number of epochs

Epochs Sensitivity% Accuracy%

1 61.92% 58.33%

5 73.76% 61.36%

10 76.04% 64.77%

50 85.79% 77.97%

100 89.97% 83.69%

250 96.70% 92.51%

500 98.72% 95.57%

1000 99.94% 96.91%

The best results obtained correspond to 1000 epochs where almost all the
malign patterns are correctly recognized. Confusion matrix for this experiment
is shown in Table 3.
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Table 3. Confusion matrix 1000 epochs

99.94% 6.12%

0.06% 93.88%

4 Discussion

– The first point to be considered is the concrete application of the network as
a cancer pattern classifier. In this concrete application the most important
figure is sensitivity because we want to detect all the malign patterns above
all. The objective of the network as a classifier is to reduce to the minimal
the false negative results although this can cause a worsening in the figure
corresponding to false positive classifications.

– The best sensitivity is obtained with the higher number of epochs in the
training. Almost all the patters corresponding the malign inputs are correctly
classified. On the contrary several benign patterns are misclassified, in this
particular application is not considered a problem as the sensitivity and not
accuracy is the driver figure.

– The evolution of the sensitivity shows that even one epoch is sufficient to
start learning, the results improve highly when repeating the inputs.

– Comparing the KLN unsupervised results, they improve the results of
advanced supervised methods as those presented in [12], so KLN performs
a Deeper Learning of the information in the Data Set, without the need of a
Deep Network.

5 Conclusions

In this paper we have applied the theoretical basis of the Koniocortex-Like Net-
work to a real complex Data Set as is the classification of real breast cancer input
patterns. The simulations show that the unsupervised learning that emerges from
individual neurons properties surpasses results even of several advanced state-
of-the-art supervised learning algorithms. Nevertheless KLN is still a very novel
model and the results presented are just from a non optimized prototype, this
bio-inspired model seems to be able to compete in deeper learning and better
performance than many state-of-the-art Artificial Neural Network models.
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