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Abstract 

Accounting for spatial correlation of LiDAR model errors can improve the precision of model-

based estimators. To estimate spatial correlation, sample designs that provide close observations are 

needed, but their implementation might be prohibitively expensive. To quantify the gains obtained 

by accounting for the spatial correlation of model errors, we examined: 1) the spatial correlation 

patterns of residuals from LiDAR linear models developed to predict volume, total and stem biomass 

per hectare, quadratic mean diameter (QMD), basal area, mean and dominant height, and stand 

density; 2) the impact of field plot size on the spatial correlation patterns in a stand-wise managed 

Mediterranean forest in central Spain. 

For all variables, the correlation range of model residuals consistently increased with plot 

radius and was always below 60 m except for stand density, where it reached 85 m. Except for QMD, 

correlation ranges of model residuals were between 1.06 and 8.16 times shorter than those observed 

for the raw variables. Based on the relatively short correlation ranges observed when the LiDAR 

metrics were used as predictors, the assumption of independent errors in many forest management 

inventories seems to be reasonable appropriate and appropriate in practice. 

Keywords: Spatial correlation, LiDAR, forest inventory, linear models, spatial models. 

2 



1 Introduction 

The use of remotely sensed auxiliary information from airborne laser scanners (ALS), in 

combination with the area based approach (ABA), has been an active area of research during the last 

two decades (Naesset 1997, Magnussen et al. 1999, Naesset and Bjerknes 2001, Andersen et al. 2005, 

Gonzalez-Ferreiro et al. 2012), and has been implemented in operational forest inventories for more 

than a decade (Naesset 2002). Under the ABA, the study area is covered by a grid (i.e. a compact 

tessellation with non-overlapping units) containing auxiliary information for each grid cell. These grid 

cells are the population elements or units, so that the grid implicitly defines a pseudo sampling frame. 

The variables of interest and the auxiliary variables are measured in a sample of field plots and the 

relationship between those sets of variables is modeled. Finally, the models are used to predict the 

variables of interest on each grid cell. The ABA in combination with model-based estimation methods 

has had a prominent role in LiDAR assisted forest inventories and will be the focus of our study. 

The spatial correlation of model errors has been frequently ignored in operational forest 

inventories assisted with remotely sensed auxiliary information, thus assuming that model errors are 

independent. However, assuming independence may result in loss of predictive power and incorrect 

variance estimators. For a spatial linear model, best linear unbiased prediction (BLUP, or kriging in 

the geostatistical literature) incorporates the spatial correlation to minimize the mean squared error 

of the prediction for unsampled locations and block averages (Cressie 1993 p. 119-167). The 

improvement of the prediction depends on the strength of the spatial correlation, and is greatest for 

the grid cells closest to the observed plots and negligible for grid cells located beyond the spatial 

correlation range. Assuming independence when the errors are actually correlated may result in 

unrealistic and typically low estimators of uncertainty (Breidenbach et al. 2016). For these reasons, 

there has been an increasing interest on studying the impact of the spatial correlation and how it can 

be incorporated in forests inventories assisted with spatially explicit auxiliary information 

(McRoberts, 2006; McRoberts et al., 2007; Breidenbach et al., 2008; Magnussen et al., 2009; Ver Hoef 
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and Temesgen, 2013; Temesgen and Ver Hoef, 2014; Finley et al., 2014; Magnussen et al., 2016a, 

Magnussen et al., 2016b). 

To detect and model the spatial correlation of model errors, the sampling design needs to 

ensure the existence of pairs of observations at distances where this correlation is still present. Some 

studies found that the observed range of the spatial correlation of model residuals was larger than 

the minimum distance between plots, reaching distances of several kilometers (Magnussen et al. 

2009, Ver Hoef and Temesgen 2013, Finley et al. 2014). However, in forest inventory applications, 

especially when using LiDAR or photogrammetric point clouds, it seems to be more common to 

observe residual spatial correlation that vanishes at distances from 10 m to 200 m (Breidenbach. et 

al. 2008, Finley et al. 2014, Breidenbach et al. 2016). These distances are typically shorter than the 

minimum separation between field observations e.g. (Woods et al. 2011, Rahlf et al. 2014, Mauro et 

al. 2016). Plots at close distance are also needed because the shape of the semivariogram at short 

distances is of the greatest importance for spatial prediction (Cressie 1993 p 134). The need of 

observations of the spatial correlation at short distance and the potentially short range of such 

correlation raise important questions about the design of survey protocols. Zimmerman (2006) found 

that sampling designs that use plots uniformly distributed throughout the study area are optimal for 

spatial prediction in unsampled locations when the spatial correlation parameters are known, while 

clustered plots are best suited for estimating the spatial correlation parameters. In practice both, 

spatial correlation parameters are not known and prediction at unsampled locations are needed. For 

this case, Zimmerman (2006) found that the best designs are those in which clusters of nearby sample 

plots are uniformly distributed throughout the study area. 

Insights about the potential importance of the spatial correlation of model errors could be 

obtained from previous studies where kriging was applied to raw forest variables, without models 

incorporating auxiliary information (e.g., Gunnarsson et al. 1998). Based on the spatial nature of 

LiDAR metrics, the range of the spatial correlation should be shorter for the model residuals than for 

the raw variables of interest, so information from previous studies might be considered as an upper 
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bound for the correlation range of model residuals. However, the most desirable approach to study 

spatial correlation is to rely on field plots close enough to directly estimate it, which may require 

special sampling designs. 

An additional consideration when studying spatial correlation derives from the fact that field 

plots and grid cells are not point, but area units. The spatial correlation has always been estimated 

assuming that the distance between units is the distance between their centroids (Breidenbach. et 

al., 2008; Magnussen et al., 2009; Finley et al., 2014; Magnussen et al., 2016 a, Magnussen et al., 2016 

b). An inherent consequence of having a support area is that, as the distance between units 

decreases, the support areas of field plots and population grid cells can partially overlap (Figure 1). 

While this would not be an issue if the population is partitioned into a grid of non-overlapping units 

(grid cells) and a sample taken from those units, the reality of LiDAR supported ABA inventory is that 

the population grid and the field plot sample are misaligned for multiple reasons (i.e. positioning 

errors or when separation between plots is not a multiple of the grid cell size) and, therefore, field 

plots and grid cells partially overlap (Figure 1). Plot overlap induces correlation, since overlapping 

area is measured by both plots. However, estimation of the empirical autocorrelation function is the 

same whether there is overlap or not, simply because this is the correlation between a variable 

measured in two plots at a given distance between their centers, regardless of its cause. Once this 

empirical function is estimated, models may account for differences between overlapping and non-

overlapping portions of the autocorrelation function, if warranted by the data. Because of 

misalignment, partial overlap between the grid that partitions the population and the field plots is a 

reality, so knowing the correlation at distances where the overlap is still present would help to 

improve the prediction for grid cells that share area with the field plots. 

Field plot size has important consequences for both fieldwork cost and the ABA workflow and 

may also influence the spatial correlation. Larger plots usually contain more trees and thus require 

more measurements, which may increase the costs. However, larger plots may be less sensitive to 

positioning errors (Gobakken and Naesset 2009), they have less edge relative to plot area and may 
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result in greater precision, as the variance of the estimators is smaller in larger plots (Ruiz et al. 2014). 

Plot size may also affect the estimates of spatial correlation and inform the need to account for the 

spatial correlation of model residuals. However, to the best of our knowledge, no study has analyzed 

such interaction in a LiDAR assisted inventory context. 

Estimation of the spatial correlation is the first and most difficult step for both spatial 

prediction and estimating its root mean squared error (RMSE) and is the focus of this study. Once the 

spatial correlation function is estimated it can be incorporated into the standard equations for spatial 

prediction (i.e., kriging) and variance and RMSE estimation (Cressie 1993, p. 119-167 and Searle et al. 

1992, p. 272). Due to the difficulty of obtaining appropriate data, studies that examine the spatial 

correlation of residuals for models that use LiDAR or photogrammetric point clouds as auxiliary 

information are limited (Breidenbach. et al. 2008, Finley et al. 2014, Rahlf et al. 2014, Breidenbach et 

al. 2016). The number of variables analyzed in the literature is also very small, limited to volume and 

stand table data, and no previous study has considered variables such as dominant height, biomass, 

stand density or basal area. Thus, the objectives of this study are to: 

1. Examine the spatial correlation of residuals of predictive models that use LiDAR as 

auxiliary information and to compare the range of the residuals to the spatial correlation 

ranges for the raw variables of interest. We focus on analyzing the spatial correlation at 

short distances, which are the most relevant for spatial prediction. 

2. Examine the interaction between plot size and spatial correlation. 

We examined a set of variables that can be considered as a representative sample of the type 

of variables used in forest management inventories. The variables examined are volume (V, m3/ha), 

total biomass (Btot, kg/ha), stem biomass (Bstem, kg/ha), quadratic mean diameter (QMD, cm), basal 

area (G, m2/ha), mean tree height (Hm, m), dominant height (H0, m) and stand density (N, stems/ha). 

With the exception of volume, the spatial correlation of model errors for these variables has not been 

examined before. Plot radii ranged from 7.5 m to 12.5 m. 
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2 Material and methods 

2.1 Study area and areas of interest (AOI) hierarchy 

The study area is a 4000 ha forest located in "La Serrania de Cuenca", central Spain, described 

in Ruiz et al. (2014). Approximately 5% of the area is not forested (less than 10% canopy cover (FAO 

2012)). European black pine (Pinus nigra Am.) and scots pine (Pinus sylvestris L) are the main species 

and appear mixed in different proportions. Other conifers such as Spanish juniper (Juniperus thurifera 

L) and maritime pine (Pinus pinaster Ait.), and hardwoods such as holm oak (Quercus ilex L) and 

Portuguese oak (Quercus faginea. Lam) appear scattered over the study area. Slopes are steep and 

the configuration of the hydrological network, wi th a main river crossing the study area from north 

to south and several seasonal tributaries running east or west to join the main stream, result in a 

patch of areas wi th clearly differentiated slopes and orientations. 

The study area is a stand-wise managed forest area, managed using shelter wood methods 

with a 120 years rotation period and a 20 years regeneration period. The study area contains a total 

of 55 delineated stands, ranging in area from 28.3 ha to 75.9 ha, which were grouped based on their 

similarity into 13 management units (MU) subject to similar treatments. The area of the MUs ranges 

from 30.6 ha to 392.3 ha. 

2.2 LiDAR data 

LiDAR data were collected in November 2008 using an Optech ALTM-1225 operating at 25 kHz 

and a maximum scanning angle of ± 18°. The average LiDAR point density was 11.4 points/m2. Point 

density was not homogeneous due to irregular overlap of the scanning stripes, so the LiDAR point 

cloud was thinned to an homogeneous density of 4 points/m2 using the software LAStools (Isenburg 

2013). Ground points were fi l tered from the LiDAR point cloud and used to obtain a digital terrain 

model of 0.5 x 0.5 m grid cell size which was used to normalize the LiDAR point cloud. A visual 

inspection of the DTM and of the normalized point cloud ensured that these products were free of 
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spikes and outliers. All these processes were performed using FUSION (McGaughey 2014). 

2.3 Field data collection 

A total of 85, 25 m radius field plots were measured in December 2008. The radius of the plots 

used in LiDAR based forest inventories typically ranges from 9 m to 12.5 m (Ruiz et al. 2014), so the 

area of the plots in this study was 4 to 7.72 times larger than that of commonly used field plots. Plots 

were located on the nodes of a 500 m regular grid. Field crews navigated to the preselected plot 

centers using a navigation grade Global Positioning System (GPS) using C\A code. The coordinates of 

each tree with diameter at breast height (DBH) larger than 7 cm were obtained using compass and 

measuring tape. Based on previous experience, the expected accuracy of the positioning of trees 

relative to the plot center was approximately 0.5 m. For each tree, DBH was measured using a caliper, 

and height (H) using a Hagolf Vertex III hypsometer. Tree volume was computed using species specific 

regional equations developed by the Spanish National Forest Inventory (NFI) using DBH and H as 

predictors. Total tree and stem biomass were computed using species-specific models developed by 

Montero et al. (2005) using DBH as the only predictor. 

Positioning errors of navigation grade GPS devices can frequently exceed 5 m and should be 

corrected to ensure a precise co-registration with the LiDAR data. For each plot, trees were first 

positioned using their coordinates relative to the plot center and overlaid on the orthophoto and on 

the LiDAR point cloud resulting f rom the filtering of the ground points. Then, an experienced photo 

interpreter manually adjusted the location of the plot, relying on the identification of at least seven 

different trees in both the digital canopy height model (DCMH), the orthophoto of the study area and 

the ground point cloud. Tree stem locations were identified as maxima in the DCHM and gaps in the 

ground point cloud derived from LiDAR. All trees in a plot were manually translated and rotated as a 

block until most isolated and easy to identify trees overlapped with the stem locations identified from 

the LiDAR image. Some trees were moved independently in each plot when their position was 

identified on the ground point cloud and on the orthophoto. These trees were less than a 0.5% of the 
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total . The average displacement of the plot center was 1.13 m, the standard deviation of the 

displacement was 1.72 m and the maximum displacement was 9.14 m. 

2.4 Model fitting and spatial correlation assessment 

For each variable of interest, we fit linear spatial models where the mean of the distribution 

was a function of LiDAR metrics (i.e. percentiles, moments, means, minima and maxima of LiDAR 

elevations as well as cover parameters, such as percentages of returns above different height 

thresholds (McGaughey, 2014)). We assessed the residuals to determine whether the variance was 

constant or, if not, we modelled it as function of one of the LiDAR predictors. The general model 

f i t t ing strategy consisted on starting with simple models and adding complexity if needed. First, we 

selected the LiDAR metrics to include in the model, then considered a weighting schema to account 

for heteroscedasticity, added a random effect for the management unit and, finally, modeled the 

residual spatial autocorrelation as a function of the distance between subplot centers. 

2.4.1 Computation of subplot level values and auxiliary information 

For each 25 m radius plot, groups of subplots of radius between 7.5 and 12.5 m, in 0.5 m 

increments contained within the larger plot were created. Each group of subplots was obtained by 

first defining a subplot concentric to the 25 m radius plot. New subplots were defined by moving 

outwards the central subplot in steps of 0.5 m following E-W, SE-NW, S-N and SW-NE directions, until 

the edge of the subplots were tangent to the border of the 25 m radius plot. The number of subplots 

in each 25 m plot, the total number of subplots and the maximum distances between subplot centers 

are shown in Table 1. Note that the number of steps and the maximum distance between subplot 

centers (max_distance(radius)) is different for each radius (Table 1) and equals 50 m minus two times 

the subplot radius. For each subplot, the variables of interest were calculated and expanded to a per 

hectare basis when appropriate. Similarly, the full set of 30 LiDAR metrics were computed for each 

subplot using FUSION (McGaughey 2014). 
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2.4.2 Non-spatial models 

First, we f i t ted linear fixed effects models of the variables of interest as a function of the LiDAR 

metrics. Because of the very large number of potential predictor variables, we selected parsimonious 

models by first choosing the fixed effects using the R package leaps (Lumley 2009) based on the 12.5 

m radius subplot only. The maximum number of predictors was set to 3 independent variables per 

model. We obtained the best 5 models in terms of adjusted coefficient of determination when 

considering 1, 2 and 3 auxiliary variables for a total of 15 models for each variable of interest. These 

models were denoted as m0vrbu where vrbl is a sub-index to denote the variable of interest, and 

subscript 1=1, 2,..., 15 indicates the candidate model. 

Typically, the variance of the model residuals was not constant, so we f i t a new set of 15 

models, mlvrbu accounting for heteroscedasticity using the R package nlme (Pinheiro et al. 2015). 

For each of the 15 models selected previously, the standard deviation of the errors was assumed to 

be proportional to a power of the predictor most correlated with the variable of interest, mop*1. The 

errors e^ for t h e / ' ' grid cell in the ith management unit can then be wri t ten as e^ = ae0mcp^e^ 

where etj is the standardized error, distributed as ejy~JV(0,l), so that V{e^ = a^mcp^ •, and 

r\ is a model parameter. Models m0vrbijand mlvrbu can both be wri t ten as 

[1] Jij = PXij + eij 

where y^- and X[j are the variable of interest and the vector of auxiliary variables for they1'' 

grid cell in the ith management unit, respectively, and /? is a vector of parameters. The model error 

is etj, with variance V(etj) = Ooe f ° r mo,vrbi,i a n d V{.eij) = <JoerncPuj f ° r mi,vrbi,i- Note that the 

model m0vrbii is nested within mlvrbii when r\ = 0. Thus, we compared those two models using a 

likelihood-ratio test and selected the simplest model, m0vrbii, when including the heteroscedasticity 

did not improved the model f i t significantly, and mlvrbu otherwise (Pinheiro and Bates 2000 p 84). 

We added a management unit random effect to the best models selected in the previous step, 

resulting in the model: 
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[2] Vtj = P^ + vt + etj 

Here v^ is the random effect of the ith management unit, which are assumed to be 

independent and identically distributed variables with mean 0 and variance V(vt) = o\. These 

models were denoted as m2iVrbi,i a n d both m0vrbu and mlvrbuare nested within m2iVrbi,i> when 

ov = 0. Therefore, the significance of this random effect was tested using a likelihood-ratio test 

(Pinheiro and Bates 2000 p 84). Selected models were denoted by vrCvrhii. Both Pearson's 

standardized residuals and the management unit random effects were graphically assessed and the 

best behaved candidate model, in terms of normality and heteroscedasticity, was selected and 

denoted by m** b ( . 

Finally, for the other subplot radii we kept constant the fixed effects selected for the 12.5 m 

radius plot model, m ^ ( , but tested for the need to account for heteroscedasticity and MU random 

effects as described above. The resulting models were denoted as vci*yrhirad, where the sub-index 

rad indexes the subplot radius. 

2.4.3 Spatial correlation assessment 

To analyze the spatial correlation, we computed the Pearson correlation of the standardized 

Pearson residuals (?j ••) f rom the final model, Jn**b ( rad for all pairs of subplots separated at distance 

d between 0.5 m and max_distance[radius), in 0.5 m intervals, but using only pairs of observations 

on the same moving line (dashed-lines Figure 1). We computed the correlation of the residuals for 

each subplot radius, distance, and variable of interest, which yields a directional empirical correlation 

function. Then, all the pairs were pooled together to compute an isotropic empirical correlation 

function (i.e., the correlogram, Cressie 1993 p.67). Empirical correlations at distance d are denoted 

hereafter as (^vrm,rad(.d'), where the subscripts are described in the previous section. We examined 

the correlation as a function of distance between subplot centers to select a suitable spatial 

correlation model for each variable of interest. 

The covariance of the model errors for locations b and c within the same MU was expressed as 
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Cov(eb, ec) = abacG{dbc,p, # ) , where ab and oc are the standard deviation of the model errors for 

the subplots centered at locations b and c, respectively; G(dbc,p,9) (Eq. [3]) is the correlation 

function; db,c is the Euclidean distance between those locations; and p, 9 are parameters. We 

modeled the correlation function as: 

[3] G(dbc,p,9) = 91(dbc < 2rad) 

Note that Cov(eb, ec) is a function of the location, because ab and ac may depend on mcp, 

which can change from point to point. On the other hand, G(dbc,p, 9) is the covariance, as well as 

the correlation function f o r t he standardized errors etj. The distribution of the standardized errors is 

stationary (Cressie 1993 p. 57), wi th mean 0 and variance 1, and the correlation only depends on the 

distance between plot centers. Then, modeling G(dbc,p,9~) is functionally equivalent to modeling 

the semivariogram fo r the standardized residuals (Cressie 1993 p. 67). 

The shape of the model for G(dbc,p, 9) was chosen after observing the empirical correlation 

function. It is a mixture of two components: the first component accounts for the correlation when 

there is overlap between subplots (this is, when the distance between subplot centers is less than 

twice their radius) and the second component is a pure exponential model without nugget effect. 

I(dbc < 2rad) is an indicator function of whether there is overlap or not and 9 is the weight for the 

first component. The effective or practical range, denoted as <p hereafter, is defined as the distance 

for which the correlation descends to 0.05 (Bivand et al. 2008 p. 202), and it is a function of p, 9 and 

the plot radius. 

Due to the spatial nature of LiDAR metrics and their high explanatory power, one can expect a 

reduction of the spatial correlation of model errors when compared to the spatial correlation of the 

raw variables. To assess this reduction, we examined the spatial correlation of the raw variables and 

compared it to the spatial correlation of the residuals. As with the residuals, we modeled the spatial 

correlation patterns for the response variables using the correlation function in [3]. For each variable 

acos \2rad) 
a b,c 

n nrad2 \rad2 
lb,c 

+ (1 9)e l P ' 

12 
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of interest and subplot radius empirical correlations, the covariance function, the correlation 

function, its parameters and the effective range {w(jP),Cov(dbc,p,0^,G(dbc,p,0^,p,0,(p) were 

indexed using sub-indexes vrbl and rad to denote the variable of interest and the subplot radius. A 

super-script res or raw was added to indicate model residuals or raw variables respectively. We 

computed the ratios of the effective empirical correlation ranges of the residuals and raw variables 

<praw 

Yvrbirad = 7eb
s
l'rad t o summarize the reduction of the range of the spatial correlation when the 

Vvrbl.rad 

auxiliary information is used to predict the response variable. 

2.4.4 Influence of plot size in the spatial correlation of the residuals 

To analyze how plot size interacts wi th the spatial correlation of the residuals and raw 

variables, we first computed the correlation coefficients between the range of the spatial correlation 

and the plot radius. Then, we conducted a more detailed analysis by directly examining the observed 

empirical correlations instead of the parameters of the spatial correlation model. In this analysis, we 

also excluded the distances for which there was subplot overlap. For each variable and subplot 

distance between 20 and 30 m we tested the effect of increasing the plot radius on the empirical 

correlation of model residuals using Kendal's r test (Dalgaard 2008 p. 124). 

3 Results and discussion 

The exploratory analysis revealed that empirical correlation of model residuals decreased with 

distance between subplot centers without marked differences among directions, so that the isotropic 

models without nugget effect (i.e., Eq. 1) were appropriate (Figure 3), and can be used to derive 

kriging estimates as well as mean square error estimators (Searle et al. 1992, ch. 7, Cressie 1993, p. 

119-167). For basal area and subplot radii 7.5, 8.5, 9 and 9.5 m, and for tree density and subplot radii 

of 9.5, 10 and 10.5 m, the right tail of the empirical correlation function for the residuals was 

particularly flat. This led to models wi th a very large p parameter for the exponential component and, 

therefore, unrealistically large values of the estimated effective ranges. This effect was especially 
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marked for basal area, where the computed ranges for those subplot radii were orders of magnitude 

longer than those observed for the remaining subplots radii for the same variables or for other 

variables. Those seven cases were removed from the analysis of the spatial correlation vs plot radius. 

For all the raw variables, the effective spatial correlation range estimated from model [3] was 

always less than 200 m (Figure 4). For the residuals, the effective range was always below 60 m, wi th 

the exception of tree density and the seven cases discussed in the previous paragraph. QMD had the 

shortest range among the raw variables and, in addition, the LiDAR variables did not explain much of 

its variability. Asa result, when the LiDAR variables were included, the spatial correlation range of the 

residuals increased slightly and KoMolrad w a s c ' o s e to> but less than one. Tree density, which typically 

shows the weakest relationship wi th LiDAR auxiliary information (Naesset 2002, Goerndt et al. 2010), 

had the longest correlation range for model residuals and the ratio Y^^3 ranged from 1.06 to 3.45. 

After QMD, the variables with the shortest correlation ranges were volume, dominant height and 

mean tree height, while the remaining variables (Btot, Bstem, G) showed correlation ranges for the 

residuals that were larger than those observed for QMD, Hm, H0 and V, but smaller than those 

observed for N. The high predictive power of LiDAR data for dominant height (Naesset 1997, 

Magnussen et al. 1999, Naesset and 0kland 2002, Naesset and Bjerknes 2001, Goerndt et al. 2010 

explains why the spatial correlation range of the residuals was 3.14 to 5.14 times shorter than that 

observed for the raw variable (7^a'racfS) a n c ' became even shorter than the spatial correlation range 

of the residuals of mean height (Figure 4). For volume, the values of 7 ^ " ^ r e s were similar to or greater 

than those for dominant height and considerable larger than those for total and stem biomass (Figure 

4 and Table A 1). This could be explained by the strong relationship between LiDAR metrics wi th tree 

height, a variable that was included in the tree volume equations but not in the biomass equations. 

For the biomass variables and basal area, the reduction of the spatial correlation range when the 

LiDAR auxiliary information was included was larger than that observed for QMD, but smaller than 

that observed for H0 and V. Both, Btot, Bstem and G, are related in different ways to N and tree height, 

which may explain this average behavior. 

14 



The range of the spatial correlation consistently increased with plot radius for both the model 

residuals and the raw responses. For all variables, except basal area and tree density for which four 

and three radius were excluded, the increase was statistically significant for the residuals (p<0.05, 

Figure 4). To exclude the possible effect of plot overlap on the correlation, we examined the 

relationship between plot radius and the empirical spatial correlation only for the distances where 

there was no overlap. This included 19 different distances for each variable (152 pairs of variable-

distance). For 136 cases (approximately 90% of the cases) the Kendall's r coefficient was positive, 

indicating that the larger the radius, the larger the empirical correlation of model residuals (Figure 5). 

This result suggests that assuming uncorrelated errors might have a larger impact when using larger 

plots, which raises questions for further research about the use of different plot sizes. 

Our sampling design did not allow us to examine the spatial dependence at distances larger 

than 25 to 35 meters depending on the subplot radius. However, for all variables and subplot radii, 

the empirical correlation at the maximum possible distance between subplot centers was always 

below 0.26 and, in most cases, did not exceed 0.1 (Table 2). For 39% (34 out of 88) of the cases, the 

empirical correlation at the maximum distance was below 0.05. Therefore, the distances considered 

in the sample always covered more than 74% of maximum possible value of the empirical spatial 

correlation of model residuals. In most cases the coverage was greater than 90%, and in more than a 

third of the cases it rached the effective range (Table 2). While extrapolations based on a spatial 

correlation model would be needed for predictions at distances larger than the maximum distances 

examined here, the greatest influence of the spatial correlation for both prediction and estimation of 

uncertainty is at the shortest distances (Cressie 1993 p 134.). In addition, as confirmed empirically for 

most variables, at the largest distances examined the spatial correlation almost disappeared (Table 

2) and extrapolation errors would be bounded by a very small value. 

The results obtained in this study emphasize the need of sampling designs that include very 

close observations if the modeler aims to analyze or use the spatial correlation of model errors. For 

those close distances, partial overlap between plots could be a concern, but overlap between training 

15 



plots and the population grid cells occurs in real applications and, therefore, it should not be 

disregarded. Incorporating the influence of overlap into the spatial correlation function, as we did 

here, should not be particularly difficult. The design used in this study also provides distances without 

overlap, allowing estimation of the correlation at those distances. Even if the overlap was considered 

a problem, if the spatial correlation models f i t well in the section wi thout overlap the effect of plot 

overlap causes no harm in subsequent estimates. 

The need to incorporate the spatial correlation of model errors in model based inference for 

forest inventory has received significant attention recently, as it may result on improved grid cell and 

stand level predictions and uncertainty estimators (Magnussen et al. 2016a) and help scale-up LiDAR 

predictions from different inventories made with different plot or grid cell sizes to a common size 

(Magnussen et al. 2016b). However, most studies recognize that directly estimating the spatial 

correlation of model errors requires costly field observations, so they proposed indirect methods to 

estimate this correlation. Typically, those methods overcome the lack of direct measurements by 

relying on strong assumptions, such as proportionality of the spatial correlation range of predictions 

and model errors, which cannot be empirically confirmed in the context of those studies. The spatial 

correlation models obtained here are empirical results that can be used directly to improve 

predictions or to estimate the uncertainty of the predictions. The ratios Y^rrn'rad cou^ be used to 

anticipate the spatial correlation of model errors if previous information about the raw forest 

attributes of interest, such as that provided by Gunnarsson et al. (1998), were available in a similar 

study area. 

The demanding fieldwork needed to estimate the spatial correlation is the main reason why 

few studies analyze the correlation of residuals, especially from models based on LiDAR auxiliary 

information or photogrammetric point clouds (Breidenbach. et al. 2008, Finley et al. 2014, Rahlf et al. 

2014, Breidenbach et al. 2016). Breidenbach et al. (2008) modeled volume as a function of LiDAR 

variables and reported spatial correlations that decrease below 0.05 for distances of 202 m of larger. 

The study examined pairs of observations at distances of 100, 200, 223 m and larger, so that only two 
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of those distances were within the spatial correlation range, which makes those results lack some 

robustness. Breidenbach et al. (2016) also examined volume and found correlation ranges for the 

residuals smaller than 100m. However, while the design of this study was more consistent and 

included multiple pairs of observations at close distances, it did not consider LiDAR auxiliary 

information. Rahlf et al. (2014) also examined volume using a sampling design with plots of 9 m radius 

and pairs of observations at distances as small as 20 m. These authors did not observe any spatial 

correlation for the residuals. Those results are in accordance with the results obtained in this study 

for volume where the spatial correlation ranges varied between 13.65 m and 21.34 m (Appendix A, 

Table A 1). Finally, Finley et al. (2014) analyzed stand tables (i.e. number of stems in predefined 

diameter classes) and also found spatial correlation ranges smaller than 100 m for certain diameter 

classes. In our study, we examined a large set of inventory variables and also found that the spatial 

range was relatively short, particularly for the residuals of the variables that are better explained by 

LiDAR metrics. 

The estimated spatial correlation range of the residuals was so short in most cases that the 

assumption of independent residuals (e.g Woods et al. (2011), Mauro et al. (2016)) seems to be 

reasonably accurate. For prediction, the effect of omitt ing the spatial correlation in a situation like 

the one observed in this study can be illustrated with the following hypothetical example. If we 

consider a systematic design with plots on the nodes of a rectangular grid, a density of 0.1 plot/ha, a 

management unit of 50 ha and a grid cell size of 15 m, each management unit would contain 

approximately 2222 grid cells and 5 plots. If the spatial correlation of the residuals vanishes at 40 m, 

the errors associated to each field plot could be assumed to be independent for model f i t t ing 

purposes. Incorporating the spatial structure to improve the predictive performance of the models 

would have very little impact compared to a model that assumes independence: it would only affect 

the prediction for about 35 grid cells per measured plot (i.e., grid cells that surround a plot and are 

closer than 40 m). In total , only predictions for around 175 grid cells out of 2222 (approximately the 

8% of the total number of grid cells in the MU) would be different from those omitted the spatial 
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correlation. 

The effect of omitt ing the spatial correlation on the computation of variances and mean 

squared errors of predictions typically results in overoptimistic uncertainty measures. Breidenbach 

et al. (2016) examined this effect using 9 m radius plots in a case where the range of the spatial 

correlation of model errors was 69 m. The omission of the spatial correlation resulted in variance 

estimates that were 15% smaller than those obtained when accounting for the spatial correlation. 

However, based on the short spatial correlation range of models errors estimated in this study, the 

effect of omitt ing the spatial correlation on uncertainty measures should presumably be small, at 

least for areas of interest of relatively large size. When using smaller plots, the effect of the spatial 

correlation might be very small, on the other hand, because of the greater range when using larger 

plots, modelling the spatial correlation may result in increased precision in the predictions. This 

problem deserves more analysis, and further studies should consider different plot sizes and forest 

attributes. The results obtained here provide a reference about the spatial correlation expected for a 

wide set of variables. 

While our results are specific for the study area, for volume they are in accordance to previous 

experiences (Rahlf et al. 2014), and in general they suggest some guidelines for future inventories in 

similar areas. First, commonly used systematic sampling designs seem inappropriate for modeling 

spatial correlation of LiDAR model errors in forest management inventories. Even with plots overlaid 

on the nodes of an extremely dense grid, where distance between nodes is 100 m (1 plot/ha), 

estimating the spatial correlation would be difficult or even impossible for all variables. Sample 

designs with randomly located plots could provide pairs of observations within the correlation ranges, 

but high sampling efforts should be done due to the short correlation ranges observed for residuals 

of most variables. Based on our experience, the best alternatives for operational forest inventories 

that seek to analyze the spatial correlation of model errors are: 1) to include or complement the field 

information with at least some large plots with georeferenced tree positions, like the ones used in 

this study, or 2) use a plot shape consisting of clusters of subplots such as that used in some national 
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inventories, e.g. the U.S. Forest Inventory and Analysis (Bechtold and Patterson 2005). If the first 

alternative is used, it requires obtaining tree coordinates relative to the plot center as well as the 

absolute coordinates of the plot center. Mapping every tree can be very t ime consuming, but 

promising techniques based on terrestrial laser scanners (Liang et al. 2016) or even photogrammetric 

point clouds obtained using inexpensive cameras (e.g. Gatziolis et al. 2015), may provide centimetric 

accuracy for relative coordinates, while current GPS technology allows very precise positioning of the 

field plot center. For the second alternative, it may be necessary to incorporate subplots at a greater 

range of distances, as the actual FIA design, for example, only allows to examine two distances 

between subplots (36.58 m and 63.35 m). In any case, both designs would allow obtaining clusters of 

observations, which is the option Zimmerman (2006) recommended to optimize sample designs that 

account for spatial correlation of errors when both fixed effects and spatial correlation parameters 

are unknown. 

4 Conclusions 

When auxiliary information with high explanatory power is available, the assumption of 

uncorrelated errors implicitly accepted in a large number of LiDAR assisted forest inventory 

applications seems to be reasonably accurate. This study showed that the spatial range of the 

residuals was so short that misspecification by ignoring the spatial correlation may not have a 

significant effect on model predictions. However, the effect of such misspecification on uncertainty 

measures needs to be further examined. 

In general, when LiDAR information is included the spatial correlation range of the residuals is 

smaller than that of the raw variables. The reduction is greatest for variables highly correlated with 

LiDAR. The spatial correlation ranges of both, model residuals and raw variables, increases with plot 

radius. 

Sampling designs with clusters of plots separated by small distances are needed to study spatial 

correlation, as this tends to vanish at distances shorter than the minimum separation between plots 
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than the one employed in most LiDAR assisted inventories. 
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Figure captions 

Figure 1. Field plot and grid of pixels. Note the partial overlap between the field plot and the 

four pixels around its center. 



Figure 2. Example of 25 m radius plot and subplots of radius 7.5 m, 10 m and 12.5 m (for clarity, 

other subplots radii are omitted ) moving in an East to West direction. South East to North West, 

South to North and South West to North East directions. Field plots were moved in 0.5 m steps and 

are marked with dashed lines. Trees are plotted according to their crown radius 
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Figure 3. Spatial correlation models for the residuals from va*yrhirad and for the raw variables. 
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Figure 4. Distances (<p) for which correlation between pairs of observations decreases to 0.05 

d . raw.res 

parameters YVrbi,rad-



Figure 5. Results for the Kendall's T significance test for each variable and subplot radius. Only 

non-overlapping plots are considered. Subfigures a,b,c and d are examples included as a graphical 

legend for the figure in the upper panel. 
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Correlation of residuals from the selected models for different variables and subplots of different radius 
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Appendix A 

Table A 1 Estimated variance and spatial correlation parameters for each variable of 

interest and subplots radius. The most correlated predictor (mcp) for each variable of interest 

is denoted with an asterisk. The parameter av is the standard deviation of the management 

unit random effects, a0e and t] are the parameters that model the variance of model errors 

and pres and 9res and praw and 9raw are the parameters of the spatial correlation model for 

the residuals and the raw variables respectively. (Pvlli.rad ond Vvrli rad rePresent the effective 

spatial correlation range of residuals and raw variables and Yvrbirad denotes the ratio 
raw 

rvrbl.rad 
,nres 
'Pvrbl.rad 

ElvP99, ElvP95 ElvP75, ElvP40 and ElvPOl are the 99th, 95th, 75th, 40th and 1st percentile of the 

LiDAR returns height. Elvmean and ElvAAD are the mean LiDAR height and the average 

absolute deviation from the mean LiDAR height. CRR is the canopy relief ratio and, RtAbvmean 

, PercRtAbvmea and PercRltAbvmea represent the total number of returns above the mean, 

the percentage of returns above the mean, and the percentage of first returns above the mean 

height respectively. 

Variable o 

interes t 

(Model 

predictors) 

V(m3 /ha) 

(Elvmean* 

, ElvPOl 

, ElvP40) 

Btot (kg/ha) 

(Elvmean* 

,CRR) 

f 

rad 

7.5 

8.0 

8.5 

9.0 

9.5 

10.0 

10.5 

11.0 

11.5 

12.0 

12.5 

7.5 

8.0 

8.5 

9.0 

9.5 

10.0 

O~0e 

14.68 

33 .51 

12.68 

12.05 

11.59 

11.12 

10.71 

10.22 

9.77 

9.26 

8.98 

12217.26 

24586.30 

11224.13 

10830.21 

10439.33 

10064.25 

Y] 

0.78 

--

0.82 

0.83 

0.81 

0.81 

0.81 

0.81 

0.81 

0.83 

0.80 

0.78 

--

0.76 

0.74 

0.73 

0.73 

0~v 

9.01E-02 

1.19E-01 

3.40E-01 

3.72E-01 

3.57E-01 

3.73E-01 

4.42E-01 

6.08E-01 

7.67E-01 

8.67E-01 

9.18E-01 

4.56E-02 

1.94E-01 

9.41E-02 

1.08E-01 

1.39E-01 

1.87E-01 

pres 

5.44 

1.84 

6.45 

6.58 

7.12 

1.47 

7.22 

1.69 

1.50 

1.67 

1.68 

6.44 

6.51 

8.19 

8.62 

9.51 

10.01 

Residuals 

ares 

0.00 

0.75 

0.00 

0.00 

0.00 

0.71 

0.17 

0.73 

0.73 

0.72 

0.70 

0.00 

0.24 

0.00 

0.00 

0.00 

0.00 

<pres 

16.32 

13.65 

19.34 

19.74 

21.35 

16.93 

20.44 

18.69 

19.55 

20.34 

21.13 

19.32 

17.75 

24.58 

25.86 

28.54 

30.02 

nraw 

16.93 

17.60 

18.60 

20.29 

22.62 

24.86 

29.90 

36.00 

43.40 

54.81 

70.25 

17.47 

17.98 

18.89 

20.51 

22.99 

25.11 

Raw Variables 

or aw 

0.18 

0.16 

0.18 

0.18 

0.20 

0.21 

0.26 

0.30 

0.34 

0.39 

0.42 

0.40 

0.38 

0.39 

0.39 

0.39 

0.40 

(praw 

47.34 

49.55 

52.05 

56.63 

62.81 

68.51 

80.64 

94.77 

111.85 

137.40 

172.44 

43.49 

45.29 

47.24 

51.39 

57.33 

62.37 

raw,res 
Yvrbl,rad 

2.80 

2.82 

2.80 

2.79 

2.78 

2.76 

2.70 

2.63 

2.58 

2.51 

2.45 

2.49 

2.52 

2.50 

2.51 

2.49 

2.48 
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Variable of 
interest 
(Model 
predictors) 

Bstem (kg/ha) 
(Elvmean* 

, CRR) 

QMD (cm) 
(ElvP95* 

, RtAbvmean 
, ElvP99) 

G (m2/ha) 
(Elvmean*, 

CRR) 

Hm (m) 

(ElvAAD* 

, ElvP75) 

rad 

10.5 

11.0 

11.5 

12.0 

12.5 

7.5 

8.0 

8.5 

9.0 

9.5 

10.0 

10.5 

11.0 

11.5 

12.0 

12.5 

7.5 

8.0 

8.5 

9.0 

9.5 

10.0 

10.5 

11.0 

11.5 

12.0 

12.5 

7.5 

8.0 

8.5 

9.0 

9.5 

10.0 

10.5 

11.0 

11.5 

12.0 

12.5 

7.5 

8.0 

8.5 

9.0 

tfOe 

9746.68 

9433.28 

9154.14 

9322.38 

9168.77 

8124.30 

16910.59 

7419.93 

7144.41 

6868.77 

6590.74 

6370.98 

6142.53 

5912.13 

5827.23 

5756.19 

7.60 

8.03 

8.39 

8.53 

8.38 

8.48 

8.66 

8.79 

8.86 

8.70 

8.62 

2.82 

5.16 

2.55 

2.45 

2.36 

2.29 

2.24 

2.18 

2.59 

2.23 

2.13 

2.71 

2.64 

2.58 

2.53 

rj 

0.72 

0.71 

0.70 

0.60 

0.56 

0.79 

--

0.77 

0.76 

0.75 

0.75 

0.74 

0.74 

0.74 

0.70 

0.66 

0.04 

-0.01 

-0.05 

-0.08 

-0.08 

-0.11 

-0.13 

-0.16 

-0.18 

-0.18 

-0.20 

0.74 

-

0.73 

0.72 

0.71 

0.70 

0.69 

0.67 

0.34 

0.45 

0.44 

-0.04 

-0.07 

-0.10 

-0.13 

av 

2.52E-01 

3.53E-01 

4.57E-01 

5.95E-01 

7.31E-01 

5.64E-02 

1.99E-01 

1.50E-01 

1.62E-01 

1.80E-01 

2.18E-01 

2.72E-01 

3.80E-01 

4.95E-01 

6.16E-01 

7.33E-01 

5.93E-02 

6.47E-02 

6.68E-02 

6.55E-02 

6.68E-02 

6.60E-02 

6.34E-02 

6.24E-02 

6.31E-02 

6.62E-02 

6.69E-02 

5.65E-06 

1.46E-05 

1.09E-05 

1.31E-05 

1.64E-05 

2.07E-05 

2.55E-05 

3.17E-05 

3.77E-05 

4.93E-05 

5.86E-05 

1.54E-01 

1.54E-01 

1.53E-01 

1.59E-01 

nres 

10.72 

11.42 

12.03 

11.01 

10.56 

6.29 

6.58 

7.68 

8.00 

8.83 

9.21 

9.77 

10.40 

11.07 

11.06 

11.21 

6.80 

7.14 

7.54 

8.10 

8.77 

9.79 

10.59 

11.31 

11.59 

12.26 

13.38 

1E05 

6.73 

1E05 

1E05 

1E05 

13.90 

14.70 

15.30 

11.64 

12.11 

12.24 

2.87 

3.22 

3.37 

4.27 

Residuals 
ares 

0.00 

0.00 

0.00 

0.00 

0.19 

0.00 

0.23 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.10 

0.10 

0.16 

0.26 

0.87 

0.34 

0.82 

0.81 

0.80 

0.00 

0.00 

0.00 

0.23 

0.26 

0.28 

0.41 

0.41 

0.41 

0.30 

<nres 

32.16 

34.27 

36.09 

33.03 

29.46 

18.87 

18.04 

23.05 

23.99 

26.50 

27.63 

29.30 

31.19 

33.20 

33.17 

33.62 

20.39 

21.41 

22.62 

24.29 

26.32 

29.37 

31.77 

32.69 

33.54 

34.58 

36.06 

1E05 

17.35 

1E05 

1E05 

1E05 

41.69 

44.11 

45.89 

31.89 

32.56 

32.59 

12.07 

12.97 

13.73 

14.68 

nraw 

30.72 

37.62 

45.02 

56.31 

72.00 

17.32 

17.67 

18.54 

20.23 

22.48 

24.73 

30.20 

37.15 

45.23 

56.83 

72.04 

7.53 

7.37 

7.61 

8.08 

8.86 

9.64 

10.36 

10.99 

11.02 

11.66 

12.91 

18.46 

18.39 

19.36 

20.90 

22.98 

24.95 

29.75 

35.63 

42.95 

54.59 

70.87 

29.05 

19.90 

13.90 

13.96 

Raw Variables 
or aw 

0.43 

0.47 

0.49 

0.52 

0.55 

0.36 

0.34 

0.35 

0.35 

0.35 

0.37 

0.41 

0.45 

0.47 

0.51 

0.53 

0.45 

0.55 

0.54 

0.47 

0.42 

0.47 

0.46 

0.48 

0.46 

0.50 

0.60 

0.31 

0.15 

0.26 

0.25 

0.26 

0.26 

0.30 

0.34 

0.38 

0.42 

0.46 

0.60 

0.47 

0.18 

0.12 

,„raw 

74.65 

88.88 

104.49 

126.78 

158.00 

44.08 

45.58 

47.52 

51.87 

57.52 

62.77 

74.75 

89.29 

106.54 

130.08 

160.93 

18.01 

16.24 

16.87 

19.15 

21.69 

22.82 

24.63 

25.64 

26.18 

26.96 

26.92 

48.45 

52.09 

52.23 

56.49 

62.05 

67.20 

78.58 

91.73 

108.30 

133.41 

168.67 

60.63 

46.91 

38.86 

40.06 

raw,res 
Yvrbl,rad 

2.43 

2.36 

2.32 

2.25 

2.19 

2.55 

2.58 

2.56 

2.56 

2.56 

2.54 

2.48 

2.40 

2.36 

2.29 

2.23 

2.39 

2.20 

2.22 

2.37 

2.45 

2.37 

2.38 

2.33 

2.38 

2.31 

2.09 

2.62 

2.83 

2.70 

2.70 

2.70 

2.69 

2.64 

2.57 

2.52 

2.44 

2.38 

2.09 

2.36 

2.80 

2.87 
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Variable of 

in teres t 

(Model 

predictors) 

Ho(m) 

(ElvAAD*) 

N (s tems/ha) 

(PercRlAbvme 
* 

an , 

PercRtAbvmea 

n 
, ElvAAD) 

rad 

9.5 

10.0 

10.5 

11.0 

11.5 

12.0 

12.5 

7.5 

8.0 

8.5 

9.0 

9.5 

10.0 

10.5 

11.0 

11.5 

12.0 

12.5 

7.5 

8.0 

8.5 

9.0 

9.5 

10.0 

10.5 

11.0 

11.5 

12.0 

12.5 

Ooe 

2.48 

2.43 

2.37 

2.31 

2.24 

2.16 

2.08 

2.83 

2.77 

2.72 

2.56 

2.53 

2.48 

2.44 

2.33 

2.28 

2.17 

2.11 

7.13 

6.11 

5.34 

4 .88 

4.70 

4.42 

4.16 

3.90 

3.63 

3.40 

3.17 

Y] 

-0.16 

-0.17 

-0.19 

-0.19 

-0.20 

-0.20 

-0.19 

-0.04 

-0.08 

-0.11 

-0.14 

-0.16 

-0.18 

-0.18 

-0.20 

-0.20 

-0.21 

-0.21 

0.94 

0.97 

1.00 

1.02 

1.02 

1.03 

1.04 

1.05 

1.06 

1.08 

1.09 

av 

1.63E-01 

1.63E-01 

1.66E-01 

1.76E-01 

1.89E-01 

2.07E-01 

2.25E-01 

1.87E-01 

2.02E-01 

2.19E-01 

2.09E-01 

2.36E-01 

2.54E-01 

2.80E-01 

2.81E-01 

3.35E-01 

3.41E-01 

3.98E-01 

1.61E+01 

2.22E+01 

3.18E+01 

3.98E+01 

4.43E+01 

5.25E+01 

6.12E+01 

7.10E+01 

8.17E+01 

9.03E+01 

1.01E+02 

pres 

6.29 

7.20 

8.21 

9.23 

10.04 

10.76 

11.36 

4.56 

4.80 

2.38 

2.77 

2.24 

2.34 

2.59 

7.26 

7.80 

8.44 

8.98 

29.60 

30.73 

25.70 

38.90 

53.15 

63.42 

145.03 

20.50 

20.80 

20.25 

21.25 

Residuals 

ares 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.48 

0.44 

0.54 

0.56 

0.58 

0.00 

0.00 

0.00 

0.00 

0.58 

0.57 

0.49 

0.58 

0.63 

0.67 

0.73 

0.30 

0.30 

0.24 

0.29 

<pres 

18.86 

21.59 

24.64 

27.70 

30.12 

32.29 

34.07 

13.69 

14.39 

13.68 

14.35 

15.52 

16.42 

17.34 

21.77 

23.39 

25.32 

26.94 

62.98 

66.09 

59.60 

82.57 

105.99 

120.40 

244.45 

54.16 

54.97 

55.00 

56.38 

nraw 

14.80 

15.57 

16.43 

17.94 

19.48 

23.26 

32.80 

20.46 

16.54 

15.14 

17.73 

19.25 

20.66 

22.22 

25.92 

33.52 

46.48 

61.90 

24.38 

25.82 

27.31 

29.15 

30.84 

32.76 

34.78 

36.82 

39.07 

41.62 

69.89 

Raw Variables 

or aw 

0.10 

0.12 

0.13 

0.17 

0.20 

0.33 

0.50 

0.30 

0.13 

0.00 

0.12 

0.15 

0.00 

0.24 

0.30 

0.41 

0.48 

0.53 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.19 

(praw 

42.84 

44.66 

47.00 

50.48 

53.99 

60.43 

75.39 

53.90 

47.20 

45.42 

50.79 

54.59 

61.99 

60.38 

68.32 

82.91 

108.83 

138.67 

73.13 

77.45 

81.93 

87.46 

92.52 

98.28 

104.33 

110.45 

117.21 

124.86 

194.84 

raw,res 
Yvrbl,rad 

2.89 

2.87 

2.86 

2.81 

2.77 

2.60 

2.30 

2.63 

2.85 

3.00 

2.86 

2.84 

3.00 

2.72 

2.64 

2.47 

2.34 

2.24 

3.00 

3.00 

3.00 

3.00 

3.00 

3.00 

3.00 

3.00 

3.00 

3.00 

2.79 
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