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Abstract

A methodology to efficiently simulate wind tunnel tests of several airfoils with OpenFOAM has been

developed in this work. This methodology bridges OpenFOAM capabilities with Matlab postprocessing to

analyse efficiently the performance of wind turbine airfoils at any angle of attack. This technique has been

developed to reduce the cost, in terms of time and resources, of wind tunnel campaigns on wind turbine

blade airfoils. Different turbulence models were used to study the behaviour of the airfoils near stall.

Wind turbine airfoils need to be characterized for all possible angles of attack, in order to reproduce the

real aerodynamic patterns during operation. Unfortunately, this situation is translated into a huge demand

of wind tunnel testing resources, airfoil manufacturing and data post-processing. The high costs in terms of

experimental measurements have encouraged many researches to elaborate airfoil catalogues by performing

CFD simulations.

Results are compared with a testing campaign on wind turbine airfoils aerodynamics run at AB6 wind

tunnel of IDR/UPM located at the campus Universidad Politécnica de Madrid (Madrid, Spain), this tunnel

being particularly suited for bi-dimensional applications. It is an open wind tunnel with a test section of 2.5

x 0.5 m, the turbulence intensity is under 3% at a Reynolds number of Re ∼= 5× 105. The central part of

the airfoil mock-ups were built with a 3D printer Additive Fused Deposition Modelling technology (FDM).

Simulation results show a fair agreement with experiments, and helped to improve the performance of the

wind tunnel.

Introduction

Wind turbine airfoils need to be characterized for all possible angles of attack, in order to reproduce

aerodynamic behaviour from any real operating condition. Unfortunately, this requires a huge demand of

wind tunnel testing resources, airfoil manufacturing and data post-processing. The high costs in terms of

experimental measurements has inspired this work to elaborate an airfoil catalogue by performing CFD

simulations with the open source CFD software OpenFOAM, following the example of existing researches

[1, 2]. Although most of them only analysed the performance at angles of attack in the range of −20◦ to 20◦,

some interesting works studying the airfoil performances at very high angles of attack can be found in the

literature; see for example the report [3].

In [1] the design and experimental verification of RisØ-B1 airfoil family using a structured mesh is

presented. A direct design method based on an optimization algorithm coupled with XFOIL is presented.

Transition was modelled by the en method. Ellipsys code was used to verify the magnitude of Cl,max and the

shape of Cl in the post stall region. Leading edge roughness, stall strips, vortex generators and Gurney flaps are

studied at Reynolds number Re ∈ [
1.6×106,9×106

]
. The combination of Gurney flaps and vortex generators

was shown as an attractive option for the root of a wind turbine blade.

Numerical simulations can help understand the airfoil aerodynamics, reduce the number of models to be

manufactured and tested, and also improve the quality and reliability of the wind tunnel testing, for example by

improving the pressure taps distribution on the models surface to measure the wind flow effects.
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An efficient meshing technique to simulate two-dimensional flow field around a generic body was created

and validated through the prediction of the performance of the NACA 0012 airfoil. This methodology, indeed,

allows to generate the mesh for only one incidence, and simply modify it to obtain the mesh for other angles of

attack without the need of creating a new mesh from the beginning, resulting in a considerable reduction of the

overall computational time.

In this work, the post-stall behaviour of airfoils is not studied due to the extremely high computational cost

of unsteady numerical simulations.

Experimental Set Up

The AB6 is an open wind tunnel with a test section of 2.5 x 0.5 m and a length 4 m, with a contraction

upstream of 4.5:1 . The turbulence intensity is under 3% for a flow speed of 25 m/s at the center of the test

section, the Reynolds number is around Re ∼= 5× 105. The airfoils chord is 0.3 m and the span 0.49 m, the

maximum blockage of the test section is between 3% at small angles of attack, up to 12% at 90◦. Airfoil was

mounted at 1.225 m from the tunnel floor and at 1.9 m from the nozzle outlet. A sketch of the wind tunnel is

shown in Figure 1.

Pressure measurements were carried out at the central section of the airfoil surface using pressure taps. The

airfoil pressure distribution was integrated to obtain normal force, lift and drag and moment coefficients. The

airfoil section was equipped with 53 to 63 pressure taps depending on the airfoil, having a diameter of 1.5 mm.

The pressure differential model ZOC 33/64PxX2 from Scanivalve Corp and a positioner Newport model

RV- 120-PPHL with a precision of 1/1000 degree were used. LabView interface was used to control positioner,

data acquisition system, pressure probes and ambient conditions. Pressure was measured for 35 seconds with a

sampling frequency of 150 Hz. Figure 2 shows the test chamber.

Figure 1: Wind tunnel sketch: 1) grid; 2) contraction; 3) test section; 4) nozzle; 5) elbow; 6) fan.



(a) Intake detail. (b) Airfoil placed in the test chamber.

Figure 2: Details of UPM AB6 wind tunnel.

Numerical set-up

The software chosen for this study is the open source CFD software OpenFOAM. The solver used is

simpleFoam, a steady-state solver for incompressible, viscous and turbulent flow based on the SIMPLE

algorithm.

Different turbulence models and different near-wall treatments have been used. With wall functions, high-

Reynolds turbulence models (Re ∼= 6× 106), namely k-ω SST, k-ε , realisable k-ε and Spalart-Allmaras were

simulated. When resolving boundary layer, low-Reynolds turbulence models (Re ∼= 2×105 and Re ∼= 5×105),

namely Launder-Sharma k-ε, k-ω SST and Spalart-Allmaras. A different mesh is used for Low−Re problems,

trying to keep y+ < 1. Also, a simple grid independence analysis was performed using the k-ω SST model and

taking advantage of the refineWallLayer utility, using the drag coefficient Cd at zero incidence as parameter.

The characteristics of the different meshes and the results are presented in Table 1.

The Mesh 1 described in Table 1 was chosen for the simulations, to reduce computational costs in terms of

time and resources, since the error with respect to the finest mesh used can be considered sufficiently low. The

final mesh is displayed in Figure 3.

The numerical schemes have been chosen, according to mesh quality, following instructions and sugges-

tions provided in [4]. All the schemes are collected in the Table 2, referred to using OpenFOAM’s syntax.

The boundary condition used at the inlet and outlet is freestream (for pressure freestreamPressure) and

calculated uniform 0 for νT . For ε fixedValue at the inlet and zeroGradient at the outlet. On the airfoil surface

no slip for velocity and zeroGradient for pressure, wall functions are used with high-Reynolds and for low-

Reynolds a small fixedValue (1×10−12) was used. For more details about the boundary conditions see [5].

Meshing technique

Often, when simulating flows around a body at different angles of attack, a new mesh is generated for each

angle of attack. It is easy to understand how this makes the pre-processing phase very time-consuming. A

solution could be using an O-mesh or a C-mesh and changing the inlet boundary condition for the velocity, but

this cannot be done when simulating a real wind tunnel.

In this work, OpenFOAM native mesh generators, blockMesh and snappyHexMesh, and its utilities were

used to generate, rotate and merge the several meshes used to simulate the flow around the studied airfoils at

different angles of attack. Basically, the body is surrounded by a cylindrical region that can be split from the

rest of the mesh, rotated to change the angle of attack, and then stitched again to the external region. The

procedure relies on the following OpenFOAM utilities:

• blockMesh to generate a background, structured mesh.

• surfaceFeatureExtract to create a file containing information about the geometry.

• snappyHexMesh to generate the mesh around the body.

• topoSet to generate two files containing a list of the cells of the internal and external region.



• splitMeshRegions to split the two regions of the mesh.

• transformPoints to rotate the inner mesh .

• mergeMeshes to merge again the two meshes.

• stitchMesh to stitch the mesh, deleting the existing internal patches.

• extrudeMesh to make the mesh suitable for 2D applications.

The strategy of splitting and rotating the internal mesh (see Figure 3) allows to conduct the simulations

reducing strongly the required computational time to generate the new meshes. This strategy could also be

use to interpolate between the wind tunnel test results if problems arise in the measurement process. This

methodology makes the process of simulating the flow around a body independent of the shape of the body

after a few iterations to find the right parameters for snappyHexMesh. For more details about the meshing

technique see [5].



Table 1: Mesh independence analysis for grid convergence: parameters from the snappyHexMeshDict dictionaries of the
different meshes studied; drag coefficient and percentage difference on the prediction of the drag coefficient with respect to
Mesh 1 results as functions of average yplus

refinementSurfaces layers expansionRatio finalLayerThickness

Mesh 1 level(3 4) nLayers 10 1.15 0.3
Mesh 2 level(3 4) nLayers 15 1.15 0.3
Mesh 3 level(4 5) nLayers 20 1.15 0.3
Mesh 4 Mesh 3 + refineWallLayer (’airfoil’) 0.435

y+avg Cd (DC)
Cd −Cd1

Cd
×100

Mesh 1 1.02 132.60 0.0
Mesh 2 0.577 136.67 3.0
Mesh 3 0.152 139.45 4.9
Mesh 4 0.0649 139.51 4.9

Table 2: Numerical schemes, OpenFOAM CFD simulation

ddtSchemes gradSchemes

default default

steadyState cellMDLimited Gauss linear 0.5

divSchemes

default div((nuEff*dev2(T(grad(U)))))

Gauss linearUpwind Gauss linear

laplacianSchemes interpolationSchemes
default default

Gauss linear limited 1.0 linear

snGradSchemes wallDist

default method

limited 1.0 meshWave



Results

Validation

An example of the mesh generated with the above-mentioned procedure around the NACA 0012 airfoil is

shown in Figure 3.

Different turbulence models were used in order to reproduce flow detachment and stall conditions. Besides,

the effects of the Reynolds number, varying it from Re = 2 × 105 − 6 × 106, were analyzed with RANS

simulations using realizable k-ε, k-ω SST and Spalart–Allmaras turbulence models. The simulations have

been performed in the linear region of the lift coefficient cl up to stall.

High-Reynolds models

Pressure distributions and polar diagrams obtained from the different airfoils studied are successfully compared

to the corresponding ones from the available literature [6, 7, 8, 9], obtained with wind tunnel testing and

numerical simulations. The example provided in Figure 4 refers to the validation case of the performances of

NACA 0012 airfoil, using the above-mentioned turbulence models, at Re = 6× 106. The Reynolds number

chosen is the same of the references [9, 8], whose results are used as terms for comparison together with

results obtained with XFOIL [10]. It is clear that the lift and drag coefficients are very close to the ones from

literature for low angles of attack, and less accurate when approaching the stall due to an early prediction of

flow detachment.

Low-Reynolds models

The lift and drag coefficients have been calculated and compared with results from a Master thesis project [11]

developed at the Technical University of Denmark, obtained in OpenFOAM using a structured mesh and the

k-ω SST turbulence model at Re = 2× 105, and results obtained with XFOIL at the same Reynolds number.

They are shown in figure 5.

A difference of slope in the linear part of the curve between the predictions obtained with the structured

and the hybrid mesh can be observed. Also the simulation with the hybrid mesh predicts the stall at a clearly

lower incidence. The en method was used in XFOIL with n = 9. The simulations from [11] overestimated stall

predicting a much higher maximum lift coefficient.

Results: airfoil catalogue

The geometries studied in the catalogue are shown in Figure 6. For each studied airfoil the lift and drag

coefficient as well as pressure coefficient at 6◦ and 12◦ of angle of attack are presented in this section.

NACA 632A015

This airfoil is a modified version, identified with the capital letter “A”, of the corresponding NACA 6-series

airfoil. These airfoils were designed to maximise the chordwise extent of laminar flow in order to reduce the

drag coefficient, at least in a limited range of operating conditions close to the design lift coefficient [12]. Thus

their polar are characterised by a region of lower drag, with centre at the design lift coefficient, known as

low-drag bucket.

The NACA 632A015 is a symmetric airfoil, whose thickness is the 15% of the chord, the design coefficient

is equal to zero and the extent of the low-drag bucket is 0.2 above and below the design lift coefficient.

Generally speaking, experimental data are not in good agreement neither with XFOIL nor with computa-

tional simulations. The zero-lift angle is not zero, even though the airfoil is symmetric; the slope of the lift

curve is underestimated, while the angle of maximum lift, the maximum lift coefficient and the minimum drag

coefficient are close to the other predictions.

Concerning the lift coefficient, the first two turbulence models give very close results, which also are in

great agreement with data from XFOIL; slight differences can be appreciated in the stall region, whereas the

maximum lift coefficient an the incidence of maximum lift are still very close.



(a) Mesh structure. (b) Detail of the mesh around the airfoil.

Figure 3: Mesh around NACA 0012, snappyHexMesh mesh generator.
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Figure 4: NACA 0012 performance, comparison among different turbulence models, Re = 6×106.



0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

α (deg)

C
l

xFoil

k-ω SST

Launder-Sharma k-ε
Spalart-Allmaras

k-ω SST [11]

Exp Re=3.6e6 [11]

(a) Lift curve

0 200 400 600 800 1,000 1,200 1,400

·10−4

0

0.2

0.4

0.6

0.8

1

1.2

Cd

(b) Drag polar

Figure 5: Performance of the NACA 0012, Re = 2× 105, OpenFOAM CFD simulation, comparison among predictions with
different low-Re turbulence models

The prediction of the curve’s slope in the linear region obtained with the Launder-Sharma k-ε turbulence

model is in fair agreement with XFOIL and the ones obtained with the other turbulence models; the maximum

lift coefficient is underpredicted, even though the angle of maximum lift is very close to the other results.

All the turbulence models predict higher drag coefficients than XFOIL.

DU 91-W2-250

The DU 91-W2-250 is the first of the three wind turbine dedicated airfoils designed at the Technological

University of Delft included in the catalogue. More information and data can be found in [13, 14]. As the

designation suggests it, has a thickness equal to the 25% of the chord, being suitable as airfoil for mid sections

of wind turbines’ blades [13].

Lift and drag coefficients obtained with the k-ω SST and Spalart-Allmaras turbulence models in Open-

FOAM are compared with XFOIL calculations and experimental data as shown in Figure 8 and 9.

Regarding the lift coefficient, results from computational calculations are in good agreement, except in the

stall region at negative incidences. The predictions of the lift curve slope are in between experimental data

and XFOIL calculations. Experimental data show a considerable improvement after the implementation of

wind tunnel corrections (CB). Among the correction performed in the wind tunnel an adhesive foam was place

between the airfoil and the tunnel walls reducing leakage and Pitot tube was relocated.

Concerning the drag coefficient, both computational predictions of the minimum drag coefficient overesti-

mate XFOIL and experimental data, but the variation of the drag coefficients as function of the lift coefficient

are quite similar to XFOIL. Experimental minimum drag coefficient is very close to XFOIL calculation, and

again the correction have improved the results. At high angles of attack the differences in drag coefficient are

higher.

Despite the differences between test and simulations in pressure coefficient distribution around the airfoil

are reduced after tunnel corrections, the increase with the angle of attack of this differences in the pressure side

in the rear part of the airfoil leads to think that a small leakage could still remain.
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Figure 6: Wind turbine airfoil geometries.

DU 96-W-180

This is the second airfoil from the DU series analysed. The thickness of the DU 96-W-180 is the 18% of the

chord, and is thus suitable for the tip sections of wind turbines’ blades [13]. The lift coefficient, predictions

obtained with both turbulence models are very close to XFOIL results except for the stall region. Indeed,

the slopes of the lift curves and the zero-lift incidences are in good agreement, whereas the maximum lift

coefficients obtained from CFD calculations are lower than XFOIL prediction. Nevertheless, the maximum lift

incidence and the post-stall behaviour are predicted very accurately with the k-ω SST turbulence model.

The predictions of the drag coefficient, as for all the other cases studied, are higher than XFOIL results,

whereas the behaviour of the drag coefficient, which change very little until massive separation occurs, is

qualitatively similar.

In airfoil DU 96-W-180 a bump is shown in the pressure coefficient on the suction side ( see Figure 12) at

x = 0.35c, it extends to x = 0.45c
The recirculation bubble and other instabilities that arise in the low Reynolds number flow can not be

captured without transition turbulence models.

DU 00-W-212

This is the third and last airfoil from the DU series. The thickness of the DU 00-W-212 is around the 21% of

the chord, and is thus suitable for the mid sections of wind turbines’ blades [13].

Regarding the lift coefficient, results obtained in OpenFOAM and experimental ones are in great agreement

at positive incidence, but are very different at negative incidence. XFOIL calculations show higher slope and

maximum lift coefficient. The post-stall behaviour is qualitatively similar for XFOIL calculations, OpenFOAM
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Figure 7: Performance FFA NACA

predictions with k-ω SST model and experimental data, with a slight decrease of the lift coefficient as the angle

of attack increases. The maximum lift coefficient is similar for each curve except the one obtained with the k-ω
SST turbulence model.

The drag coefficient curves obtained with OpenFOAM and XFOIL are qualitatively similar, but Open-

FOAM predicts higher drag. The minimum drag coefficient from experimental data is in good agreement with

XFOIL results, but increases far more rapidly as the incidence increases.



FFA W3-241

This is one of two airfoils designed at the Aeronautical Research Institute of Sweden (FFA) included in this

catalogue. More information and data about this family can be found in [6].

The FFA W3-241 thickness, as highlighted in the designation, is the 24% of the chord.

The results obtained are considerably different, especially the lift coefficients.

The lift coefficients predicted with the two turbulence models are very similar and intermediate between

XFOIL and experimental results at positive angles of attack, whereas they start differing and are lower than

both XFOIL and experimental data at the lowest angles of attack.

Also in this case the drag coefficients obtained in OpenFOAM are qualitatively similar to and higher than

XFOIL ones. Again, the minimum drag coefficient from experimental tests is very close to XFOIL calculation.

FFA W3-301

This is the second and last airfoil of the FFA series to be studied. The FFA W3-301’s thickness is around the

30% of the chord as shown in Figure 6.

Lift and drag coefficients obtained with the Spalart-Allmaras turbulence models in OpenFOAM are

compared together with FFA W3-241 and NACA 632A015 in Figure 7.
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Figure 8: Performance of the DU 91 W2-250, Re = 5× 105, comparison between numerical results from OpenFOAM CFD
simulation with different turbulence models, results from experimental tests performed at UPM and results from XFOIL
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Figure 9: Distribution of pressure coefficient along the chord of the DU 91 W2-250, Re= 5×105, comparison between numerical
results from OpenFOAM CFD simulations with different turbulence models and results from experimental tests performed at
UPM
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Figure 10: Performance DU
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Figure 11: Distribution of pressure coefficient along the chord for FFA and NACA
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Figure 12: Distribution of pressure coefficient along the chord for DU family at α = 6◦ and α = 12◦



Conclusions

An efficient meshing technique to simulate wind tunnel tests over a generic body for any angle of attack

with OpenFOAM has been introduced and successfully validated through a simple test case.

Different airfoil families used on wind turbines have been simulated with the proposed methodology.

OpenFOAM simulations help to understand the aerodynamics of wind turbine airfoils, to reduce the number

of models to be manufactured and tested, and also to improve the quality and reliability of the wind tunnel

facility (i.e., improving the pressure taps distribution on the models surface to measure the wind flow effects,

leakage detection, etc).

Simulation results with high and low Reynolds turbulence models have been compared with experimental

results, XFOIL and other simulations found in the bibliography.

The low Reynolds turbulence model simulations did not capture the recirculation bubble in the suction

side. This highlights the importance of using transitional models in order to reproduce accurately the flow field

around the airfoil.
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