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ABSTRACT.—
Many cryptographic algorithms depend on computational complexity assumptions. No-

torious cases are the RSA algorithm for public key criptography or the Diffie-Hellman key
exchange protocol, to publicly agree on a common secret key. Both algorithms are known
to be broken by quantum computing as well as those that can be reduced to a discrete
logarithm problem. These are key algorithms in our digital society and are at the basis
of everyday tasks, specially those that rely on digital signatures. The RSA algorithm, in
particular, is probably the most used algorithm and is its assumed security the one that
guards most of the e-commerce nowadays. In this case, it is the time complexity of finding
the prime factors of a large number, that grows worse than polinomially with the size of the
number, the main guardian of our cyberinfrastructure. The fact that a quantum computer
can solve this problem in polynomial time using Shor’s algorithm is seen as a potentially
major disruption and has prompted security agencies to advice the progressive deprecation
of these algorithms[2].

However, the practical realization of quantum computers able to implement the Shor’s
algorithm to factor numbers of the size used in the day to day use of RSA, is still years
in the future. The typical implementations of Shor’s algorithms use the gate model of
quantum computing, but another possibility would be to build the solutions in Hilbert space
of a quantum simulator performing factorization, instead of going through the route of a
gate-based, fully programmable, quantum computer. The key idea, following the pioneering
suggestions of Feynman[4], is to translate factoring arithmetics into the physics of a device
whose superposition of states mimics the problem i.e.: a factoring (analog) computer. The
states of the simulator would be the solutions of some hermitian operator depending only
on the number that we want to factorize. This is an ”analogue” computer in the sense that
it is not like the Shor’s algorithm, programmed in a quantum computer following the gate
model; it is the measurement of a carefully set quantum system what provides the answer.

To carry out this program, an arithmetic formulation of the factorization problem that
is amenable to be quantized is devised. An arithmetic function, eventually related to a
Hamiltonian, and the quantum-mechanical problem such that its solution corresponds to the

1Parts of this contribution are under revision in Phys. Rev. Lett.
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solution of the factorization problem is set up. To have a discrete spectrum, the Hamiltonian
must also be bounded. Also, to go beyond the formulation of the problem in quantum terms
and actually solve it, an adequate arithmetic function and boundary conditions must be
found. In this contribution, we present a correct arithmetic function, defined the factorization
set to bind the Hamiltonian and obtained the solution of the quantum-mechanical problem.
We show that the quantum theory of factoring a number N into its co-prime factors requires
to build a Feynman simulator whose spectrum of eigenvalues corresponds to a quantum
inverted harmonic oscillator. To the best of our knowledge, this has not been achieved
before, although ours was not the first attempt.

To validate the results obtained, we have proved its predictive capabilities: obtained a
factorization algorithm that is completely new, with no similitude to any other factorization
algorithm that we know of, and thoroughly checked the statistics of the solution against
the prime number theorem. We show how the algorithm, that is obviously different from
any kind of classical sieve, is able to factor numbers better than a random search –that
can be considered as the null hypothesis– thus showing that there is additional “quantum
information” introduced by the algorithm. Note, however, that the algorithm is essentially a
numerical simulation of a quantum-mechanical device. Its aim is, apart from demonstrating
the possibility of conceiving a classical factoring algorithm from very different principles
than the traditional ones, to show that the quantum simulator will perform as expected.
Finally, although not less important, we also show that the statistics from the simulator is
correct: the spectrum reproduces the prime counting function and is almost identical to the
Riemann’s function, the best approximation known. This is obtained as a direct consequence
of the quantum mechanical theory and has no counterpart in number theory. Carrying this to
the extreme, this could be even considered the physics underlying the Riemann’s hypothesis
in the sense that the Hamiltonian is naturally bounded, without any further assumptions.

1. What follows is an outline of the contents that would be included in the
poster.

Statement of the problem and definitions.— Suppose that we have to find the divisors
for the following numbers, say N1 = 1019 + 192309 = 1590452701 · 6287518009 and N2 = 1019 +
112533 = 2646394187 · 3778726559, we expect to require the same number of trial divisions, since
π(
√
N1) = π(

√
N2) is the maximum number of prime factor candidates in both cases2. There are

many of these numbers being product of two primes with the same property; we’ll say that N1 and
N2 belong to the same factorization ensemble F = {Nk : π(

√
Nk) = j).

According to the prime number theorem, these numbers can be parameterized as Nk = xkyk ∼
(
√
N + σk ln

√
N)2 and σk = O(1). Thus, in our example, we can safely take N = 1019. This is a

bounded set. If N is the number to factorize, the asymptotic value of possible pairs of coprimes
candidates in F is a huge number: |F| ∼

√
N ln ln

√
N .

A different way to look at the problem of factoring N = xy is, therefore, to obtain single-valued
arithmetic functions defined in F depending only on x and y. For instance, the arithmetic functions

(1) E = π(x)π(y)/j2, p = (π(y)− π(x))/2j, q = (π(y) + π(x))/2j

2π(x) is the prime number counting function, that counts the number of primes less or equal than x.
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are unique in F acording to Euclid’s factorization theorem. This is relevant since, given that E is
a new - unknown- constant, we can re-formulate the problem of factoring N into that of finding E
in F for a given N in that ensemble.

Quantum simulator.— The three arithmetic functions in 1 are related, i.e., E is the only
unknown constant of the problem

(2) p2 + V (q) = −E/2,

for V (q) = E/2 − q2. This represents a classical inverted harmonic oscillator. Remarkably, the
coordinate q and the momentum p are bounded in F and so is E, meaning that the operator

(3) H = P 2 + V (Q),

is Hermitian in the corresponding quantum theory; the eigenfunctions satisfy the Schödinger equa-
tion

(4) [−∇2 + V (Q)] · ψ(Q) = −E
2
ψ(Q).

We can consider this as the conditions of a Feynman analog computer of factoring that obtains
as eigenvalues the arithmetic function E, provided that the appropriate limits in F are imposed for
the coordinate Q = Qo(N). The equation corresponds to a trapped particle in a box that tunnels
to the right (symetrically to the left) of a potential barrier V (Q):

Ψ(Q) = ψ(Q)ψ(−Q).

Remarkably the trapped particle should have a symetric wave function and, therefore, it should be
a boson or an entangled pair of two fermions. The solution for the stationary state is represented
in Fig.1.

A quantum enhanced algorithm.— Selecting for the size of the box Qo(N) = O(N1/6), the
number of possible outputs, T (N), of the simulator scales logarithmicaly in N , i.e.: it is polynomial
in the number of bits of N.

T (N) ∼ (ln
√
N)3.

This is consistent with Shor’s [1] estimates for the quantum solution complexity of the problem.

From the spectrum of the simulator, the primes can be obtained. The steps of the algorithm are:

• Obtain Ek solving Eq. 4 in the factorization ensemble F(j)
• Since k ≤ |F(j)| and the statistics of the primes in F(j) is known, there exist x(k).
• Find E(k(x)).

• Obtain π(x) = j2

π(N/x)E(k(x))

This π(x) is plotted in Fig. 2.
Moreover, the spectrum allows for a new algorithm of factorization. The xk = f(Ek) are the

quantum predictions for the factor. However, as it was pointed out by Feynman [4], one can not
simulate quantum physics with a classical computer. This means that singling out, classically, a
preferred value of the state k to start our search is not possible. All that can be done is to compute
the whole Ek set and paralellize our search - since every state is independent from each other. To
test the algorithm we can compare a classical algorithm doing a search using (ln

√
N)3 random

starting points –what we call here, null hypothesis– versus the same search starting in the quantum
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predictions. To show this we have changed the variables to the relative distance of the correct
factor, x, to the best predicted point (i.e. the point that has the factor x in its close vicinity):

ξ = |x− xk|/x

The expected distribution of the random solutions is a Gaussian of width σ ∼ j/(T (N)
√
N)

whereas a much narrower one is expected if the quantum algorithm is better at predicting the
factors. This would be a result of the new quantum information brought about by the quantum
solution. This is depicted in Fig. 3.

RESULTS.— Fig. 1, Fig. 2 and Fig. 3 summarize the results.

Fig. 1. Trapped boson (or entangled pair of two fermions) through the potential barrier probability dis-

tribution for the quantum stationary state (in blue). It represents the solution of a quantum simulator of

factoring. The limits of the coordinate depend only on N while the height of the barrier (in orange) and the

peaks of maximum probability signal a factor of N .

Fig. 2. Approximation to π(x) obtained by the simulator for x in the factorization ensemble with j = 50000.

∆ is the difference from the actual prime counting values. In blue is shown the difference with the simulator

results. In orange is depicted the difference obtained using the Riemann function R(x), the best number

theoretical approximation known. In green is the difference with the Gauss integral logarithm. Remarkably,

quantum theory results are almost coincident with Riemann’s. Note its extreme precision, meaning that the

solutions of the simulator reproduce the statistics of the primes.
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Fig. 3. Histogram of the statistical variable ξ = (x(k) − x)/x for 33000 factorizations. We applied the

quantum spectrum of the simulator to find factor candidates for N = 1022 + a, a < 1011 being product of

two primes. It represents the frequency of achievable relative distance for the closest eigenvalue to the actual

factor. For comparative reasons –calculated for the same number of random distributed points–, simple

Montecarlo searches that assume a uniform distribution of the primes (null hypothesis) are also depicted

(red Gaussian). The difference in the width of the two peaks is a signature of the new quantum information

that the simulator brings to the problem. A random search produces a width of the order of j/(T (N)
√
N),

whereas the quantum search gives a much smaller one.

CONCLUSIONS. We propose a quantum simulator of factoring. This can be tested both
theoretically (obtaining the distribution of the primes from quantum theoretical considerations) and
in a future experimental set up as suggested here. Moreover we directly derived a quantum enhanced
algorithm of integer factorization that uses additional information that comes from quantum theory.
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