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Abstract. Data collected about a phenomenon often measures its
magnitude and direction. The most common approach to clustering
this data assumes that directional data can be modeled as Gaussian.
However, directional data has special properties that conventional
statistics cannot handle. To deal with them, other approaches like
the von Mises distribution must be applied. In this paper we present
a new model based on mixtures of Bayesian networks to simultane-
ously cluster both linear and directional data.

1 Introduction

In a wide range of scientific fields, angle measurement is required to
represent information about a phenomenon. Usually, this data comes
together with its magnitude. Examples are in meteorology with wind
direction and speed measurements [10], rhythmometry, medicine or
demography [3, 4].

Typically, when this data is collected, an exploratory analysis is
performed to reveal patterns. Cluster analysis partitions data into
groups of homogeneous observations. A probabilistic clustering ap-
proach is model-based clustering [14, 31, 32]. Model-based clus-
tering assumes that data was generated by a statistical model. Fi-
nite mixtures of Gaussians are the most commonly used distribution
in model-based clustering because they can approximate any non-
directional multivariate density given enough components [45].

However, mixtures of Gaussians which are based on classical
statistics, are not suitable for clustering directional data because they
cannot handle its periodicity. For example, given angles 1° and 359°,
the linear mean would be 180°. This points in the opposite direc-
tion to the angular mean angle which is 0°. To address this problem,
a popular choice for the component distribution when data is posi-
tioned on the surface of a sphere or hypersphere is the von Mises-
Fisher (vMF) distribution [2, 17]. The vMF distribution is the circu-
lar analogue of the multivariate normal distribution whose covariance
matrix is a multiple of the identity matrix [26]. This model outper-
forms others based on linear distributions for problems such as text
categorization and gene expression analysis [2, 47]. Another com-
mon choice when data is multimodal and is distributed on a torus or
hypertorus are the mixtures of von Mises (vM) distributions. Mix-
tures of bivariate [29] and multivariate [25] vM distributions have
been applied successfully in bioinformatics to characterize the struc-
ture of proteins.

Because mixtures of Gaussian, vM or vMF distributions partially
solve the problem of simultaneously clustering directional and linear
data, several distributions have been proposed to cluster cylindrical
data, that is, a linear and a directional variable together [9, 16, 28, 38].
They all represent the joint probability density function of a univari-
ate Gaussian and a univariate vM distribution. However, data is usu-
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ally multidimensional and consists of a large number of linear and
directional variables.

In our work we introduce a hybrid model inspired by a recent di-
rectional extension of the naive Bayes classifier [23], mixing multi-
variate Gaussian and multivariate vMF distributions. We adapt this
model to learn a mixture where each component is the product of
a multivariate Gaussian and several independent vM distributions.
This is a learning from incomplete data problem, where variables
are observed and the cluster membership is a hidden variable [22].
We exploit conditional independence assumptions encoded by the
Bayesian network to factorize the joint probability distributions. This
decomposition enables efficient model learning.

The rest of this paper is organized as follows. Section 2 introduces
background material. Section 3 describes a clustering algorithm for
naive Bayes, that is, a Bayesian network with structural constraints,
where data are directional only. Under the naive Bayes assumption,
Section 4 extends the previous model to the hybrid case mixing Gaus-
sian and vM distributions. Additionally, the hybrid case is further
improved by learning the Bayesian network structure from Gaussian
variables to relax the topology of the Gaussian part. The approaches
are evaluated and results are discussed in Section 5. Section 6 out-
lines the conclusions and future research.

2 Background

2.1 Von Mises distribution

The univariate vM distribution for an angle θ ∈ [0, 2π] defines a
probability density function over points on a circle with a radius of
one according to

fvM (θ;μ, κ) =
eκ cos(θ−μ)

2πI0(κ)
, (1)

where μ ∈ [0, 2π] is the mean direction, κ ≥ 0 is the concentration
parameter and I0(κ) is the modified Bessel function of the first kind
and order zero

I0(κ) =
1

π

∫ π

0

eκ cos θdθ. (2)

Parameters μ and 1/κ are analogous to the normal distribution μ
and σ2, so the vM distribution is also known as the circular normal
distribution.

2.2 Model-based clustering

Consider the finite set X = {X1, X2..., XL} of variables and let
x = {x1,x2, ...,xN} be a dataset where each xi assigns a value to
all variables in X. The goal of model-based clustering is to recover
the statistical model that generated x. Finite mixture models provide
a formal setting for model-based clustering. In finite mixture models,
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each cluster is represented by a probability distribution. The linear
superposition of the above distributions generates the finite mixture
density function

f(x;π) =
K∑

k=1

πkfk(x;θk), (3)

where the mixing proportions πk are nonnegative and sum to 1, θk

are the parameters for cluster k, and K is the number of mixture
components. In our case, fk denotes a joint probability distribution
over x encoded as a Bayesian network.

A Bayesian network [22, 35] is a directed acyclic graph that rep-
resents the probabilistic relationships among variables in X. It con-
sists of a pair B = (S,θ). The first component, S, is the graph
structure whose vertices correspond to the variables X1, X2..., XL.
The second component, θ, represents the parameters. We use
Pal = {U1l, U2l, ..., UTl} to denote the parents of node Xl in S,
where Utl is its t-th parent. Structure S encodes the local Markov
property, i.e., each variable Xl is independent of its non-descendants
given its parentsPal. Hence, the joint probability distribution can be
factorized as

f(x) =
L∏

l=1

f(Xl|Pal;θ). (4)

Naive Bayes (NB) [13] is the simplest Bayesian network structure
and one of the most extended models for classification. All variables
are assumed to be conditionally independent given the class variable.
Accordingly, the class variable, or cluster variable Z in our case, is
the only parent of all variables in the graph and no more arcs are
allowed. Although there are few real-world cases where this strong
assumption about the conditional dependencies holds, is simple, its
accuracy is competitive and it has a small generalization error. One
of its advantages is that the probability distribution of Z is efficiently
computed when the data is complete because the maximum likeli-
hood estimator (MLE) or maximum a posteriori (MAP) methods can
be applied to estimate parameters. In a clustering problem, however,
cluster Z is a latent or hidden variable. Thus, this is a parameter
learning problem with missing data where the values of the class
variable are unknown. When working with missing data, we need
to estimate the optimum parameters of the model at the same time as
we try to hypothesize the cluster of each instance. Because of its sim-
plicity and efficiency the expectation-maximization (EM) algorithm
[12] is the most popular method for dealing with this problem.

EM addresses the missing data problem selecting a starting point,
which is either an initial set of parameters or an initial assignment
to the cluster variable. Once we have a parameter set, we can apply
inference to complete the data or, conversely, once we have the com-
plete data, we can estimate the set of parameters from MLE. Thus,
there are two separate steps: use parameters to complete the data (ex-
pectation step)

Qi(z
i) = p(zi|xi;θ) =

f(xi|zi;θ)p(zi;θ)∑
z f(x

i|z;θ)p(z;θ) , (5)

and then estimate a new set of parameters from the complete data
(maximization step)

θ̂ = argmax
θ

N∑
i=1

∑
zi

Qi(z
i) log

f(xi, zi;θ)

Qi(zi)
. (6)

Both steps are repeated iteratively, and the likelihood improves until
convergence to a local maximum.

In clustering with Bayesian networks, the EM algorithm only op-
timizes one of the components of the pair B = (S,θ), namely the
parameters θ. The structure S must be preset and fixed. However,
finding the underlying structure of the data has advantages such as
discovering dependence relations between variables and efficient fac-
torization. There are several successful methods for structure and pa-
rameters learning when data is complete [18, 22]. If data is com-
plete, a heuristic search [11, 22, 46] for an optimal structure may
compare the scores [1, 39] of the current model and the model built
after adding or removing arcs between variables. When data is in-
complete, this search is no longer viable because the network score
does not decompose, and inference is needed at every step of the
learning process to evaluate the model. Structural EM [15, 36] is a
method based on EM to learn structure and parameters when data is
incomplete.

Structural EM introduces structural learning as an additional step
in the EM algorithm. It starts with a given initial structure S and a set
of parameters θ. Then, it iterates between a pair of steps. First, the
parameters are maximized according to the standard EM algorithm
because it is cheaper than searching for a better model. When it con-
verges, the algorithm searches for the best structure completing data
with the output of the expectation step. Both steps are repeated un-
til convergence. Any general-purpose heuristic search algorithm for
structural learning can be applied. A common choice for the score to
be maximized is the Bayesian information criterion (BIC) [39] be-
cause, if the search procedure always finds a better structure at each
iteration, BIC guarantees that the score increases monotonically. BIC
is a measure that adds a penalty to the log-likelihood L̂ based on the
number of model parameters v. This score is used to choose the clus-
tering model (parameterization, structure and number of clusters) to
ensure that the selected models are not too complex. BIC is computed
as

BIC = 2L̂− v log(N), (7)

where N is the size of the dataset.

3 Clustering directional data

Directional data clustering has been addressed previously in the liter-
ature based on the EM framework and vM distribution. Several stud-
ies have modeled directional data with mixtures of univariate vM dis-
tribution [7, 30, 33]. The use of the EM algorithm to cluster mixtures
of bivariate vM distributions is investigated in [29] . The maximiza-
tion step was tackled by means of numerical optimization because
the MLE does not have a closed-form solution. A multivariate vM
mixture model is studied in [27] proposing an approximation of the
intractable normalizing constant when data is highly concentrated.
This approach computes MLE according to the method of moments
and the EM. However, the likelihood function may not always be
monotonically increasing because it is using an approximation, al-
though it does usually stabilize to some local maximum.

In this section, we first introduce a mixture of Bayesian net-
works for clustering data when variables are only directional, i.e.,
Y = Y1, Y2 · · · , YM . In fact, the goal is to learn the parameters θ of
Bayesian networks given that they have a NB structure S. Figure 1
shows the graphical structure of the proposed model for each mix-
ture component where, assuming that directional data is distributed
according to the vM distribution, nodes represent vM variables and
arcs encode the dependencies.

We choose the NB structure because its factorization can solve
the above clustering problems for multivariate vM distributions. To
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Figure 1. Graphical structure S for the naive Bayes model. The latent
variable Z is the parent of all the variables, ruling out all other arcs.
Thus, givenZ, all the variables are conditionally independent of each
other.

exploit the benefits of NB factorization, however, data must be com-
plete. This is not the case in clustering because Z is hidden. There-
fore, we need to apply the EM algorithm. First, we compute the ex-
pected values of Z according to the expectation step (Equation (5)).
This completes the data so the joint distribution can be factorized to

f(Y, Z;θ) = p(Z;θ)
M∏

m=1

f(Ym|Z;θ), (8)

which is a product of conditional probabilities such that each variable
of the model contributes a factor of that product. This representation
shows that NB naturally extends to M -dimensional data, which is
one of the benefits of factorization.

Once the expectation step has been calculated, parameter estima-
tion is carried out in the maximization step. Substituting the joint
probability distribution of Equation (8) in Equation (6) results in

θ̂ = argmax
θ

N∑
i=1

∑
zi

Qi(z
i)

[
M∑

m=1

log f(yim|zi;θ) + log p(zi;θ)

]
.

(9)
Thus, the sum of the log-likelihood of each variable must be max-
imized for each cluster to compute the MLE of θ in the mixture.
Representing MLE as a summation simplifies parameter estimation
so that each variable is optimized locally, i.e., independently of the
others. The biggest advantage of this property is that MLE equations
are closed-form and are computed efficiently for each variable Ym of
cluster k as [8]

π̂k =

∑N
i=1 Qi(k)

N

μ̂m
k = arctan

(∑N
i=1 Qi(k) sin(y

i
m)∑N

i=1 Qi(k) cos(yi
m)

)

κ̂m
k = A−1

(∑N
i=1 Qi(k) cos(y

i
m − μ̂m

k )∑N
i=1 Qi(k)

)
,

(10)

where A(κ̂m
k ) =

I1(κ̂
m
k )

I0(κ̂
m
k

)
. An accurate approximation for A−1 is

presented in [6].
This approach based on exploiting independence constraints

avoids the numerical optimization needed for the mixtures of bivari-
ate vM distributions. It also ensures that likelihood increases mono-
tonically in each EM step until convergence to a local maximum even
though data is not concentrated. However, NB does not capture infor-
mation about the dependence between variables inside each cluster.

4 Hybrid Gaussian and von Mises clustering

Some practical scenarios involve several linear and directional vari-
ables. For example, geomagnetic and ionospheric signals are appar-
ently associated with earthquake prediction [24, 42, 43, 44]. Thus, a
dataset for this field of study is composed of measure such as mag-
nitude and coordinates of an earthquake, speed of solar wind, iono-
spheric total electron content, magnetic activity, etc. A hybrid model
for jointly clustering multivariate linear and multivariate directional
variables can be achieved by means of mixtures of Bayesian net-
works. In this section we present a hybrid Gaussian and von Mises
clustering from a preset NB structure. Then, we improve this model
by learning the graph structure among Gaussian variables during the
clustering process.

4.1 Conditionally independent variables

In Section 3, NB dependence constraints among variables were ex-
ploited to factorize the joint probability as a product where each fac-
tor corresponded to one variable. When they were combined using
the EM algorithm to estimate the cluster parameters, the parameters
of each variable were maximized independently of the others, result-
ing in closed-form equations. The advantages provided by the factor-
ization of the NB structure on directional data are now extrapolated
to achieve a model for multidimensional hybrid data.

Given a set of linear X = X1, X2, ..., XL and directional
Y = Y1, Y2, ..., YM variables, a NB structure S (see Figure 2) and
the expected values ofZ computed according to the expectation step,
the joint probability distribution factorizes as

f(X,Y, Z;θ) = p(Z;θ)
L∏

l=1

f(Xl|Z;θ)
M∏

m=1

f(Ym|Z;θ). (11)

This introduces a new product of conditional probabilities of Gaus-
sians with respect to Equation (8). Consequently, the model gener-
alizes to higher dimensions and handles any number of linear and
directional variables.

Figure 2. Graphical structure S for the NB hybrid model. Hybrid
Gaussian and vM NB consists of a graphical structure where green
nodes are Gaussian variables, orange nodes are vM variables and Z
is the parent of all the variables.

The maximization step is computed by substituting the joint prob-
ability with the above factorization (11):

θ̂ = argmax
θ

N∑
i=1

∑
zi

Qi(z
i)

[
L∑

l=1

log f(xi
l|zi;θ) +

M∑
m=1

log f(yim|zi;θ) + log p(zi;θ)

]

(12)
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Because of the NB structure assumption, parameter estimation
involves the maximization of sums of log-likelihoods. Therefore,
the parameters of Gaussian and vM variables are estimated locally.
Hence, the maximization step for vM variables can be computed ac-
cording to Equation (10) and for Gaussian variables according to the
well-known equations

μ̂l
k =

∑N
i=1 Qi(k)x

i
l∑N

i=1 Qi(k)

σ̂l
k =

√∑N
i=1 Qi(k)(xi

l − μ̂l
k)

2∑N
i=1 Qi(k)

.

(13)

4.2 General hybrid model

Strong constraints were imposed on the structure of the Bayesian
network for the above models. However, when the structure is pre-
set and fixed, some beneficial properties of the Bayesian networks
are lost. Discovering the graph topology provides information about
the relations of dependence between variables and may improve the
model’s accuracy. The Structural EM algorithm [15, 36] defines a
flexible approach to clustering, automatically learning the structure
of the network during the clustering process.

The proposed multivariate model aims to fit hybrid data, so some
relations between variables must be constrained in the learning struc-
ture step of the Structural EM algorithm to exploit factorization ef-
ficiently as we did in previous sections. First, we assume indepen-
dence between Gaussian and vM variables given the parent node Z.
Second, vM variables should be conditionally independent of each
other to achieve closed-form equations for the maximization step.
As a result, a new scenario is set where Gaussian dependencies are
freely learned by Structural EM (without constraints), the structure
of vM variables is fixed and dependencies between Gaussian and vM
variables are ruled out (Figure 3).

Figure 3. An example of the graphical structure S for the general
hybrid model. The structure of Gaussian variables is learned during
the clustering process. vM variables are independent given Z which
is the parent of all the variables. There is no dependence between
Gaussian and vM variables.

The first step of Structural EM algorithm, EM computation, is ad-
dressed as in previous sections by computing the expected values of
Z according to the expectation step, we find that a new distribution

is factorized as

f(X,Y, Z;θ) = p(Z;θ)
L∏

l=1

f(Xl|Pal, Z;θ)
M∏

m=1

f(Ym|Z;θ),

(14)
which is quite similar to the factorization shown in Equation (11).
The difference lies in the decomposition of the conditional proba-
bility distribution of Gaussian variables because other Gaussian vari-
ables may be their parents (Pal). In (14), f(Xl|Pal, Z;θ) is a linear
Gaussian, i.e., a linear combination of its Gaussian parents

f(Xl|Pal, Z = k;θ) = N (β0k + βkPal, (σ
l
k)

2), (15)

where βk is the vector of coefficients of the linear Gaussian for
cluster k. When the only parent of a Gaussian variable is Z, then
β0k = μk.

Parameter estimation is tackled by the maximization step substi-
tuting the joint probability distribution by its factorization (14):

θ̂ = argmax
θ

N∑
i=1

∑
zi

Qi(z
i)

[
L∑

l=1

log f(xi
l|Pai

l, z
i;θ) +

M∑
m=1

log f(yim|zi;θ) + log p(zi;θ)

]
.

(16)

As in previous cases, due to the independence assumption rep-
resented by the structure, MLE entails maximizing a sum of log-
likelihoods to locally estimate vM and Gaussian variables without
Gaussian parents according to Equations (10) and (13). Neverthe-
less, some Gaussian variables have Gaussian parents on which the
computation of their MLE depends. For these variables, we set

ED[X] =
N∑
i=1

Qi(k)x
i,

and we get the MLE of β̂ coefficients from the following system of
equations:

ED[Xl] = β̂0kED[1] + β̂1kED[U1l] + · · ·+ β̂TkED[UTl]

ED[Xl · U1l] = β̂0kED[U1l] + β̂1kED[U1l · U1l] + · · ·
+ β̂TkED[U1l · UTl]

...
...

...

ED[Xl · UTl] = β̂0kED[UTl] + β̂1kED[U1l · UTl] + · · ·
+ β̂TkED[UTl · UTl].

(17)

Once the coefficients are known, the variance of Xl is computed
as

(σ̂l
k)

2 =

∑N
i=1 Qi(k)(x

i
l − β̂0k − β̂kPai

l)
2∑N

i=1 Qi(k)
. (18)

The expectation and maximization steps iterate until convergence.
The EM algorithm outputs complete data and a set of parameters

θ. Structural EM applies this outcome to learn the structure of the
Bayesian network. When complete data is available, heuristic search
algorithms optimize the score locally due to the decomposability
property. Thus, part of the network topology can be optimized, while
the rest remains unchanged. We exploit this point to search the struc-
ture for the Gaussian variables. We choose the BIC score to search
for the best structure because it guarantees that the algorithm always
converges in a local maximum.
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5 Experiments and results

In this section, we report two experiments with different goals. On
the one hand, we numerically evaluate all the proposed models by
clustering artificial datasets and measuring the accuracy of the esti-
mated parameters. On the other hand, we introduce an application of
the general hybrid model for neuroscience to cluster neuronal den-
dritic spines.

5.1 Artificial datasets

To achieve a deeper insight into the suitability of the above mod-
els for clustering tasks, we evaluate them numerically. We study
the performance of the vM and general hybrid models comparing
their goodness of fit and their accuracy against the most common
choice for multivariate directional data modeling, the Gaussian mix-
ture model. This study should highlight the differences of applying a
linear distribution in place of a directional distribution for directional
data modeling. For all the experiments, data was simulated to find
out beforehand the component of the mixture that generated each in-
stance and the model parameters for comparison with the outcome of
the experiment. For each experiment we rebooted the algorithm 10
times, changing the initial parameterization each time. We saved the
model that maximized the BIC score.

5.1.1 Von Mises model

In the first place, we evaluated the goodness of fit of the model based
on mixtures of NB for vM variables which we compare with the
Gaussian mixture model. To do this, we simulated data from three
clusters and two variables Θ ∼ vM(μΘ, κΘ),Φ ∼ vM(μΦ, κΦ).
We set the concentration parameter κ to low values so clusters over-
lap. We analyzed the goodness of fit of both models depending on
the sample size (N = 30, 300).

Table 1. Comparison of parameter estimation between vM and Gaussian
models changing the sample size. Each cluster is denoted by Cl., followed
by its number. For the Gaussian mixture model κ was computed as 1/σ2.

We use boldface to denote the value of the distribution that best
approximates each parameter for each cluster.

Variable Parameters Original
Cl. 1 Cl. 2 Cl. 3

Θ
μΘ 0 π/2 π
κΘ 1 1 1

Φ
μΦ 0 π/2 π
κΦ 2 2 3

N = 30
Variable Parameters vM Clustering Gaussian Clustering

Cl. 1 Cl. 2 Cl. 3 Cl. 1 Cl. 2 Cl. 3

Θ
μ̂Θ -0.53 1.68 2.77 0.79 2.1 5.57
κ̂Θ 3.89 2.94 1.44 2.44 1.26 5.66

Φ
μ̂Φ 0.54 0.77 3.19 0.79 1.71 6.06
κ̂Φ 2.89 2.22 3.18 2.87 0.3 100

N = 300
Variable Parameters vM Clustering Gaussian Clustering

Cl. 1 Cl. 2 Cl. 3 Cl. 1 Cl. 2 Cl. 3

Θ
μ̂Θ -0.36 1.59 2.87 5.03 1.62 3.25
κ̂Θ 1.4 1.34 0.58 1.13 1.06 0.29

Φ
μ̂Φ 0.08 1.27 3.25 4.87 1.48 1.84
κ̂Φ 1.85 1.47 3.33 0.66 0.5 0.92

Results from Table 1 show that the mixtures of NB for vM vari-
ables yield better results for estimating the mean of the distributions,

especially when the mean is 0, than the Gaussian mixture model,
which fails due to the special properties of the directional data. When
the sample size increases, the proposed model further improves the
estimation of κ values.

Then, we evaluated the performance of the clustering algorithm
by changing the number of clusters (K = 3, 5, 10) and variables
(M = 10, 25, 50). Modifying the number of variables provides in-
formation about the accuracy of the model when data is concentrated
or sparse. Varying the number of clusters in a bounded and fixed
space we measure the performance of the method as more clusters
overlap. For the experiment, complete data was available, i.e., vari-
ables and cluster labels were known. We started by hiding the cluster
label of all instances and clustering the data. We crisply assigned
each instance to the cluster with maximum membership probability.
As a result, each instance belonged to one group. Then, we compared
the real label with label provided by the clustering algorithm to get its
hit rate. The accuracy of the proposed model was compared against
the Gaussian mixture model, see Table 2.

Table 2. Hit rate of vM vs Gaussian mixture models. We simulated 100
instances from each cluster. The best results are denoted in boldface.

vM clustering Gaussian clustering
N. Cl./N. Var. 10 25 50 10 25 50

3 99% 100% 100% 94.6% 99.6% 68.33%
5 97% 100% 100% 47.2% 59.2% 100%

10 56.2% 99.1% 100% 38.7% 40.4% 38.3%

Analyzing Table 2 we find that mixtures of vM distributions im-
prove their accuracy as the number of variables increases. This is be-
cause clusters are further apart and consequently easily separated in
higher dimensions. The opposite applies when the number of clusters
grows. In this case the clusters overlap. Therefore, the boundaries be-
tween them are not clearly defined, and clustering algorithms are less
accurate. However, the Gaussian mixture model behaves differently.
Even though data sparsity increases when the number of variables is
50, the accuracy of Gaussian variables decays for 3 and 10 clusters
with respect to the case when there are 25 variables. For all cases vM
clustering achieves better results than Gaussian mixture models.

5.1.2 General hybrid model

To evaluate the general hybrid model, we adapted the above experi-
ments to hybrid data. We started by validating the goodness of fit and
the structure learned by the model. To do this, we manually defined a
Bayesian network with five Gaussian nodes and two vM nodes (Fig-
ure 4). As before the number of clusters is 3. We simulated 100 in-
stance of this Bayesian network for each cluster. Then, we applied the
general hybrid model to learn the model parameters and the structure
from Gaussian variables.

We measured the distance between the original and the learned
structure according to the Hamming distance, i.e., the number of
changes in a BN structure needed to turn it into another. The op-
erations are add an arc, drop an arc or revert arc. Figure 4 shows that
we only need to add one arc (X5 → X3) to achieve the original
structure, so the Hamming distance was one and the structure was an
accurate approximation.

Table 3 shows the results of parameter estimation. First, we ob-
serve that X3 has one parameter less because the learned structure
missed an arc with respect to the original structure. The elimination
of the coefficient β5 is offset by the remaining coefficients β̂0 and β̂1.
Despite this fact, the value of σ̂ accurately approximates the original
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Figure 4. Original structure of the BN and structure learned by the
general hybrid model. The Structural EM approximates the original
structure quite well but drops the arc from X5 to X3.

value for that variable. Also note that good approximations were ob-
tained for most of the estimated parameters, except in some cases
like the mean of X1 for cluster 2 and the mean of X2 for cluster 3.
Of particular note are the good results for the directional variables,
especially for the means.

Table 3. Parameter estimation of general hybrid model with respect to the
original model

Original
Variable Parameters Cl. 1 Cl. 2 Cl. 3

X1
β0 0 1 0
σ 1 2.27 2.27

X2
β0 0 0 1
σ 1.4 2 2

X3
β0, β1, β5 0.04,1.05,0.11 -0.65,0.19,1.47 0,0.29,0.96

σ 1.4 0.75 1.24

X4
β0, β2 -0.01,0.77 -0.01,0.11 0.87,0.1

σ 1.67 1.38 1.37

X5
β0 -0.01 0.99 0.04
σ 2.3 0.99 1.03

Y1
μ 0 π/2 π
κ 1 1 1

Y2
μ 0 π/2 π
κ 2 2 3

General hybrid model
Variable Parameters Cl. 1 Cl. 2 Cl. 3

X1
β̂0 0.08 -0.1 -0.26
σ̂ 1.05 2.41 2.35

X2
β̂0 -0.12 0.56 0.14
σ̂ 1.34 2.09 2.01

X3
β̂0, β̂1 0.29,0.90 -0.06,-0.64 0.01,1.52

σ̂ 1.56 0.79 1.30

X4
β̂0, β̂2 0.18,0.77 0.05,0.02 0.85,0.00

σ̂ 1.77 1.36 1.29

X5
β̂0 -0.14 -0.08 -0.06
σ̂ 2.31 1.07 1.05

Y1
μ̂ 0.11 1.43 2.91
κ̂ 0.92 0.77 1.53

Y2
μ̂ -0.19 1.56 3.13
κ̂ 1.21 2.05 2.71

Next, we look at the performance of the general hybrid model by
changing the proportional number of Gaussian and vM variables, as
well as the number of clusters. We simulated three different datasets
to evaluate the model and compare it with multivariate Gaussian mix-
ture models. The first dataset had an equal number of linear and di-
rectional variables and consisted of five Gaussian and five vM vari-
ables. The second dataset had more linear variables: 15 Gaussian and

5 vM variables. The third dataset had 5 Gaussians and 15 vM vari-
ables. Again we hid the cluster label of the instances for data cluster-
ing.

Table 4. Hit rate of general hybrid and Gaussian mixture models. We
simulate 100 instances for each cluster. We change the number of variables
for the data. First we analyze 5 Gaussian and 5 vM, then 15 Gaussian and 5

vM and finally 5 Gaussian and 15 vM.

General hybrid clustering Gaussian clustering
N. Cl./N. Var. 5-5 15-5 5-15 5-5 15-5 5-15

3 99.6% 100% 100% 99% 99.6% 100%

5 95.4% 100% 100% 89.2% 99.8% 99.6%
10 94.6% 99.8% 100% 81.9% 99.2% 95.5%

According to Table 4 general hybrid model overcomes Gaussian
mixture model in all the proposed scenarios. General hybrid model
yields better results when there is an equal number of linear and
directional variables and a low dimensional space. However, when
there are more linear variables than directional variables, the Gaus-
sian mixture models turns competitive and almost tie our model. In
the last trial, when the number of directional variables surpass the
number of linear variables, the proposed model slightly outperforms
the Gaussian mixture model. General hybrid model obtained better
BIC score in all the cases.

5.2 Clustering of dendritic spines

Dendritic spines are small membranous protusions. They are recep-
tors of excitatory synapses placed on the surface of some neuronal
dendrites [34]. They have captured the attention of neuroscientists
because their morphology has been associated with brain funcional-
ity. For example, it has been claimed that thin spines contribute to
learning, while the biggest and steady spines are linked to the mem-
ory process. Disturbances of their morphology or density have been
related to mental disorders such as schizophrenia, dementia or men-
tal retardation [21]. Therefore, the clustering of dendritic spines is
attracting interest in neuroscience. A traditionally accepted catego-
rization is described in [37], proposing four groups (Figure 5). There
is also debate about whether morphologies constitute a continuum
instead of discrete classes [19].

We present an application of the general hybrid model to clus-
ter dendritic spines according to their morphology. For the experi-
ment we used a set of 500 triangular meshes representing the surface
of three-dimensional dendritic spines reconstructed from pyramidal
neurons extracted from the cingular cortex of a human male (aged
40). Spines were provided by the Cajal Cortical Circuits Lab (UPM-
CSIC). For details about spine acquisition, see [5].

Figure 5. Traditional classification of spines proposed in [37],
adapted from [40].
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Meshes had to be previously transformed into data characteriz-
ing the morphology of the spines. This task was addressed using the
multiresolutional Reeb graph (MRG) [20, 41] technique which con-
structs a graph from a 3D geometrical model to describe its topol-
ogy. MRG partitions a triangular mesh into regions according to a
function α(·). In our case, this function was the geodesic distance
because it is invariant to translation and rotation. Geodesic distance
was computed from the mean point of the total surface that is in con-
tact with the dendrite to each vertex of the mesh. The domain of α(·)
was divided into seven regions. For each region, we measured mor-
phological characteristics, i.e, length, growth direction, eccentricity,
flatness and size of the region (see Figure 6). There are a total of 35
linear variables and 30 directional variables.

Figure 6. Examples of spines after computing and dividing the MRG
it into regions. For each region, we measure morphological charac-
teristics.

Since this experiment serves merely to illustrate an application of
the proposed model and does not represent any valid neuroscientific
result, we then jittered data with Gaussian and von Mises noise of
zero mean.We ran the general hybrid model several times, modifying
the number of clusters from two to ten. As a result, we managed to
maximize the BIC score and AIC score for three clusters and seven
clusters respectively. We analyzed exclusively the results provided
by BIC score because its number of clusters is closest to the number
of categories in the traditional classification.

To characterize clusters and compare them with the classifica-
tion in [37], we performed a Welch t-test for linear variables and
a Watson-Williams test for directional variables. We observed that
almost all linear variables are significantly different between cluster
2 and the other two clusters. However, cluster 1 and cluster 3 only
differ in so far as cluster 3 has a small neck at the base of the spine.
We checked which cluster takes the maximum and minimum value
for each measured feature to characterize the spine.

Thus, cluster 1 presents the shortest and flattest regions. Besides,
all the regions are of the same size. This description fits the stubby
class. Cluster 2 shows the longest and most elongated regions. Addi-
tionally, the size of the regions increases from the base to the top and
the growth of the regions is less straight. Hence, this cluster groups
filopodium and thin classes. Cluster 3 has short regions and a small
base. This cluster grows backwards (in a 3π

2
direction) while the

other two clusters grow to the left (in a π direction). It apparently
matches the mushroom class.

The Structural EM also provides some interesting information
about the dependencies represented by the graph topology. For exam-
ple, we find that the length of the next region depends on the length

Figure 7. Examples of spines for each of the clusters. The spine rep-
resenting cluster 1 is shaded green, the spine representing cluster 2 is
shaded blue and the spine representing cluster 3 is shaded red.

of the previous regions. Also the size of the regions is related to the
size of previous regions. We also observe connections between the
eccentricity of the region and its length. These dependencies may be
relevant for the electrophisiological behavior of the spine.

6 Conclusion

This paper investigated models for clustering hybrid (linear and di-
rectional) data. Although the most common approach for modeling
this data is by means of Gaussian mixture models, directional data
has some special properties that rule out the use of classical statistics.
Assuming that directional data are Gaussian sometimes leads to poor
approximations. In this paper, we reviewed previous models for clus-
tering multivariate von Mises and multivariate hybrid data: current
methods for clustering multivariate directional data are constrained
to concentrated data and involve numerical optimization, whereas
we did not find any specific clustering models for multivariate hy-
brid data.

This is why we proposed clustering models for multivariate di-
rectional and hybrid data based on Bayesian networks. To be pre-
cise, we exploited the benefits of factorization provided by the naive
Bayes structure to get closed-form equations for the expectation-
maximization algorithm. Additionally, we also improved the hybrid
model by learning the graph structure from the linear variables ac-
cording to the Structural EM framework.

We evaluated the proposed models against multivariate Gaussian
distributions. The results provided by our models are better than the
outcome of the Gaussian mixture model in almost all scenarios where
directional data is involved. Besides, we applied a hybrid Structural
EM algorithm to cluster dendritic spines with the aim of illustrating
real applications of the model.

Future research includes the extension of the hybrid model to
cover other distributions like von Mises-Fisher, Kent or discrete
nodes, as well as relations of dependence between Gaussian and di-
rectional variables.
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