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1 Abstract 

To achieve accurate encoding of sounds, inner hair cell (IHC) ribbon-type synapses are 

highly specialized to release synaptic vesicles (SVs) with high rates and temporal precision. 

A sophisticated, by far not yet fully disentangled unconventional molecular machinery at the 

synapse active zone (AZ) realizes this impressive performance. It regulates the number of 

synaptic CaV1.3 Ca2+-channels, their tight coupling to SVs, and fast re-supply of SVs for 

sustained rates of exocytosis. Sound-evoked glutamate release from an IHC synapse is 

sensed by the postsynaptic spiral ganglion neurons (SGNs). Each SGN is innervated by 

only one ribbon-type synapse. Even though one might expect similar response 

characteristics from SGNs innervating the same IHC, this is surprisingly not the case. 

Postsynaptic spike responses of SGNs differ remarkably, which is likely used as a 

presynaptic mechanism to encode sounds of varying intensity. Recently, a positive 

correlation between different SGN response types and presynaptic synapse properties has 

been found. However, a functional link between heterogeneous presynaptic properties and 

postsynaptic SGN spike response diversity remains to be demonstrated. To draw a clearer 

picture of the synaptic transmission mechanism in IHCs, it is key to characterize the 

molecular components. Furthermore, it is critical to understand the coding strategies of 

sensory IHCs that specialize and fine-tune the synapses to mediate sound coding. In this 

work, I addressed these questions in two different approaches. (1) First, the molecular 

physiology of synaptic transmission at the IHC ribbon synapse was investigated by 

examining the role of RIM-binding protein 2 (RIM-BP2), a multidomain cytomatrix protein 

acting as molecular hub between Ca2+-channels and vesicular release sites. A 

multidisciplinary approach including confocal and STED immunofluorescence microscopy, 

electron microscopy, patch-clamp, and confocal Ca2+-imaging, as well as auditory systems 

physiology was utilized to explore the morphological and physiological effects of genetic 

RIM-BP2 disruption in constitutive RIM-BP2 knockout mice. I found evidence that RIM-BP2  

positively regulates the number of synaptic CaV1.3 Ca2+-channels and thereby facilitates SV 

release and enhances fast SV recruitment after RRP depletion. Furthermore, recordings of 

auditory brainstem responses (ABRs) and of single auditory nerve fibers (ANFs) showed a 

mild deficit of sound encoding. (2) Second, an experimental setup for voltage imaging in 

SGNs was established, to simultaneously monitor multiple SGN responses innervating the 

same IHC and thereby create a system to understand the synaptic coding strategies of 

IHCs. The genetically encoded voltage indicators (GEVIs) QuasAr2 and 3 were specifically 

targeted to SGNs, however only QuasAr3 elicited fluorescence responses in SGN boutons 

adjacent to an IHC. Thus, henceforth QuasAr3 might be a suitable tool to probe the 

presynaptic mechanism of postsynaptic response diversity.   
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2 General Introduction 

A sense is the physiological capacity of an organism to perceive information from the 

outside world. Humans possess a multitude of senses, whereby our primary senses include 

vision, audition, balance, gustation, olfaction, and somatosensation. Furthermore, humans 

have the ability to process other conditions like e.g. temperature, or pain. There are several 

examples of animals evolving unique sensory mechanisms that have apparently helped 

them adapt to their environment, e.g. echolocation, or the perception of electric or magnetic 

fields. Organisms use specialized organs dedicated to each sense in order to process useful 

sensory information from their environment. Many species use sound detection as one of 

their major senses for orientation and navigation, detection of danger, and location of prey 

or predators. Furthermore, the generation and detection of sound is a major of 

communication. Because of the physical properties of a sound wave, communication 

through sounds is possible over long distances even under visual occlusion. In physical 

terms, sound is described as a periodically oscillating mechanical wave of pressure 

propagating through a transmission medium like air or water. Sound waves are 

characterized by their specific waveform, amplitude, frequency, and phase. As for any other 

sense, specific features of the stimulus, in this case the perceptible frequency and intensity 

range of sound stimuli, are confined and differ between organisms. The hearing range for 

humans for instance is limited to a frequency range of 20 to 20,000 Hz and is most sensitive 

between 2,000 to 5,000 Hz. The hearing range of mice covers a frequency range from 1,000 

to 100,000 Hz (Ashmore, 2008). Thus, they communicate using high frequency sounds, 

which are inaudible to humans, and do not hear lower frequencies that humans can 

perceive. Even though the frequency range of mice and humans differs to a large extent, 

mouse models enjoy great utility in the field of auditory neuroscience due to their suitability 

for genetic manipulation. Mouse models of hearing can help to understand the molecular 

mechanisms of sound encoding in the mammalian ear and serve as models for human 

hereditary hearing loss by unraveling the mechanisms that are disrupted, once a critical 

gene-mutation occurs.  
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2.1 The mammalian ear  

The mammalian ear consists of the outer, the middle, and the inner ear (Figure 1, bottom 

right).  

 

 
 

Figure 1: The human ear  

The human ear (left) consists of the outer, middle, and inner ear. An overview of the main 
divisions of the ear is illustrated at the bottom right. The upper right panel highlights the 
large surface area of the tympanic membrane relative to the oval window and the three 
ossicles of the middle ear that form a mechanical leverage. Figure adapted from Purves et 
al., 2004. 
 

The outer and middle ear 

The outer ear (Figure 1) is the visible external component of the ear and consists of the 

auricle (pinna) and the ear canal (external acoustic meatus). The pinna functions as a 

sound-collector, filters and guides the gathered sound into the ear canal onto the eardrum 

(tympanic membrane) at the end of the canal. The incoming sound wave causes vibration 

of the elastic tympanic membrane, which conveys the sound to the attached ossicle chain 

(three ossicles: malleus, incus, and stapes) in the middle ear that couples to the fluid of the 

inner ear at the footplate of the stapes. The middle ear (Figure 1, top right) converts the 

low-impedance airborne vibrations of the eardrum into higher-impedance vibrations of the 
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inner ear fluids and membranes: impedance matching. The ossicles transfer vibrations from 

the large, low impedance tympanic membrane to the much smaller, high impedance oval 

window, thereby boosting the force and reducing the displacement of the vibration suitable 

for driving cochlear fluids. Without this mechanical process, almost all of the acoustic energy 

would be reflected off the liquid high-impedance fluids of the inner ear.  

 

The inner ear and organ of Corti 

The cochlea is the acoustic part of the inner ear (Figure 2A, B) and hosts the sensory organ 

of Corti (Figure 2C).  

 
Figure 2: The human cochlea and the organ of Corti 

[A] Face-on view on the cochlea showing the round and oval window at the basal end of 
the cochlea tube. [B] Cochlear cross-section showing the scala media between the scala 
vestibuli and scala tympani. [C] The organ of Corti is the hearing receptor organ, consisting 
of three rows of outer hair cells (OHCs) acting as cellular amplifiers, one row of IHCs, which 
serve as the genuine sensory cells, and several types of supporting cells. IHCs receive 
afferent innervation from type I SGNs, whereas OHCs receive afferent innervation from type 
II SGNs. Efferent input onto OHCs and type I SGNs is provided by the lateral olivocochlear 
neurons. Figure adapted from Purves et al., 2004 and modified. 
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The cochlea is a tube-like, bony structure in the form of a coiled snail (Figure 2A) with 2.5 

turns in human and 1.75 turns in mice. The cochlear partition, a flexible structure consisting 

of the Reissner’s and the basilar membrane bisects the cochlea along its midline. It divides 

the cochlea into three fluid-filled compartments (Figure 2B): The scala media, the scala 

vestibuli above it (bordered by the Reissner’s membrane), and the scala tympani below it 

(bordered by the basilar membrane).  

Inside the cochlea, the mechanical vibration elicited by the sound wave is transformed into 

a neuronal code that is forwarded to higher auditory centers in the brain. The cochlea 

functions as frequency analyzer and thereby defines the tuning characteristics of auditory 

neurons.  

 

Tonotopic organization of the cochlea 

Once a sound wave arrives, the footplate of the stapes vibrates in the oval window 

connected to the scala vestibuli at the basal end of the cochlear tube (Figure 2A). A 

displacement of the cochlear fluids in the scala vestibuli causes vibration of the flexible 

basilar membrane eliciting a traveling wave that propagates along the cochlear duct. Due 

to the gradually changing resonant properties of the basilar membrane – from stiff and 

narrow at the base to wide and floppy at the apex – the cochlea decomposes the sound 

according to frequency along the duct, called tonotopy.  

 

 

Figure 3: Tonotopic organization of the cochlea 

Higher frequencies are encoded at the base and lower frequencies at the apex of the 
cochlea. The travelling wave moving from the base towards the apex slowly increases in 
amplitude and decreases in velocity. Depending on the frequency of the stimulus, the 
travelling wave reaches its maximal amplitude at a specific location on the basilar 
membrane. Figure adapted from Purves et al., 2004. 
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This means that higher frequencies best vibrate the basilar membrane at the base and lower 

frequencies at the apex of the cochlea (Figure 3). The travelling wave always moves from 

the base towards the apex, slowly increasing in amplitude and decreasing in velocity. 

Depending on the frequency of the stimulus, the travelling wave reaches its maximal 

amplitude at a specific location on the basilar membrane, thereby providing frequency-

selective physical separation of sound energy along the basilar membrane. This passive 

micromechanical decomposition of the vibrations is further sharpened by active 

amplification mediated by the electromotile OHCs. Each tonotopic place of the organ of 

Corti then transduces the mechanical signal into a neural code representing the specific 

sound frequency (see below). 

 

Cochlea fluids and the organ of Corti  

The scala vestibuli and scala tympani are filled with a fluid called perilymph, containing high 

concentrations of sodium ions (Na+) and chloride ions (Cl-); they are connected via the 

helicotrema at the apex of the cochlea (Figure 3). The scala media within the cochlear 

partition is filled with a potassium ion (K+) rich fluid called endolymph and harbors the organ 

of Corti (Figure 2C).  

 

The organ of Corti is an epithelial tissue and the hearing receptor organ of the inner ear. It 

is situated on top of the basilar membrane and is covered by the tectorial membrane. It 

consists of three rows of OHCs, which act as cellular amplifiers and one row of IHCs, the 

actual sensory receptors of the ear transforming vibrational energy into an electrical signal. 

Several types of supporting cells such as phalangeal cells, inner and outer pillar cells, 

Deiter’s cells and Hensen’s cells provide structural support and homeostasis for the organ 

of Corti. IHCs are innervated by afferent type I SGNs, whereas OHCs are innervated by 

unymelinated type II SGNs. Efferent auditory fibers arise in the brainstem and provide 

inhibitory input to type I SGNs beneath IHCs (lateral olivocochlear efferents) and to the 

OHCs (medial olivocochlear efferents), respectively.  

  

Bulb-shaped IHCs and cylindrically-shaped OHCs were named for their bundle of hair-like 

stereocilia (microvilli) protruding from the cell’s apex into the scala media. Stereocilia are 

covered by the hair cell’s plasma membrane and arranged hexagonally in rows. Even 

though a kinocilium is missing in adult mammalian hair cells, stereocilia are arranged in a 

bilaterally symmetric staircase fashion. Stereocilia are connected to their next taller 

neighbor by tip-links – extracellular filaments containing the cell adhesion molecules 

protocadherin 15 and cadherin 23 (Müller, 2008; Pickles et al., 1984; Siemens et al., 2004; 

Söllner et al., 2004). Tip-links are directly linked to mechano-electrical transducer (MET) 
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channels (Assad et al., 1991; Howard and Hudspeth, 1988) – specialized cation selective 

mechanoreceptors with ultrafast activation kinetics and large single-channel conductance 

(Beurg et al., 2006; Corey and Hudspeth, 1983; Fettiplace, 2016; Fettiplace and Kim, 2014; 

Ricci et al., 2005). The tallest stereocilia of OHCs are thought to directly connect to the 

overlaying tectorial membrane. Movements of the basilar and tectorial membranes relative 

to each other creates a shearing motion, causing horizontal displacement of the stereociliar 

bundle. An actin cytoskeleton provides structural stability to the stereocilia, allowing 

bidirectional deflection, which causes either depolarization or hyperpolarization of hair cells. 

Parallel movement of stereocilia towards the tallest stereocilium in the center creates 

tension in the tip links and thus induces depolarizing K+ influx from endolymph in the scala 

media into the hair cells through opening of the MET channels. The ionic flow into the hair 

cells results in a graded receptor potential following the stereocilia’s movement. This way 

the temporal information from the sinusoidal sound stimulus can be preserved.  

 

The driving force for depolarizing K+ influx into the hair cells is based on an electrical 

gradient across the hair cell membrane and the endolymph in the scala media. The resting 

potential of hair cells in the organ of Corti is about -45 mV. The high [K+] and low [Na+] 

concentration in the scala media (Nernst potential for K+ over the apical hair cell membrane: 

0 mV) and the positive potential of approximately +80 mV in the endolymph with respect to 

the perilymph-filled compartments (endocochlear potential) result in a strong electrical 

gradient for K+ (about 125 mV). This fuels the mechanoelectrical transduction process, with 

little energetic burden for hair cells that can, at the end of depolarization, simply extrude the 

K+ into the K+-poor perilymph along the typical electrochemical gradient through voltage-

gated K+-channels at the basolateral membrane. The high [K+]-concentration in the scala 

media is maintained through active ion transport by cells of the multilayered epithelium of 

the stria vascularis, lining the cochlear duct in the scala media.  

 

In OHCs, this K+-driven depolarization causes voltage-dependent conformational changes 

of the integral membrane protein prestin (Zheng et al., 2000), which shrinks during 

depolarization, resulting in changes of the OHC’s length at the same frequency as the 

incoming sound wave. Thereby, OHCs enhance vibrations of the tectorial membrane at 

particular locations along the cochlea by their electro-motility. These active movements of 

OHCs further sharpen the frequency resolving power of the cochlea by providing sound-

evoked mechanical feedback amplification (Ashmore, 2008; Ashmore et al., 2010; 

Hudspeth, 2008; Reichenbach and Hudspeth, 2010). In IHCs, the K+-driven depolarization 

induces opening of voltage-gated calcium (Ca2+) channels at synaptic AZs at the basolateral 

membrane. Synaptic Ca2+-influx triggers the exocytosis of the neurotransmitter glutamate 



General Introduction 

 

 8 

into the synaptic cleft. Glutamate is sensed by α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA) receptors at the postsynaptic terminal of the afferent SGNs, 

which eventually fire and propagate their action potentials (APs) towards the auditory 

brainstem.   

 

2.2 Inner hair cell ribbon synapses 

Ribbon synapses were named after an electron dense organelle – the ribbon – tethering a 

halo of SVs. It is present at AZs of auditory and vestibular hair cells, photoreceptors and 

bipolar cells in the retina, and in pinealocytes of the pineal gland (reviewed in: Fuchs, 

Glowatzki, and Moser 2003; Lenzi and Von Gersdorff 2001; Sterling and Matthews 2005). 

By contrast to conventional synapses, where the fundamental features of neurotransmitter 

release are highly conserved and governed by presynaptic APs, ribbon synapses are 

specialized for graded and sustained neurotransmitter release: ribbon synapses release 

neurotransmitter in response to graded membrane potentials. These somatic potentials can 

be as small as a few mV or less and are modulated with respect to the stimulus intensity 

(Von Gersdorff, 2001). This feature allows IHCs to encode sounds of very different 

intensities with high sensitivity covering a large dynamic range. Further, patch-clamp 

recordings of presynaptic IHC membrane capacitance (Khimich et al., 2005; Moser and 

Beutner, 2000; Parsons et al., 1994; Rutherford and Roberts, 2006) and of postsynaptic 

excitatory currents from afferent nerve terminals (Glowatzki and Fuchs, 2002; Keen and 

Hudspeth, 2006; Li et al., 2009) revealed that IHC ribbon synapses employ precise signaling 

at sustained and high rates of transmitter release (hundreds of vesicles/s) to indefatigably 

track the ever-present stimulating sounds (reviewed in: Moser and Vogl 2016; Reijntjes and 

Pyott 2016; Safieddine, El-Amraoui, and Petit 2012; Wichmann and Moser 2015).  

 

The synaptic ribbon and vesicle pools 

The ribbon is a hallmark feature of ribbon synapses. To date the ribbon function has been 

investigated by a variety of morphological and physiological studies. However, despite 

major investigations its functional role remains debated. The synaptic ribbon is a regularly 

arranged dense projection mainly consisting of the structural component RIBEYE (Khimich 

et al., 2005; Maxeiner et al., 2016; Schmitz et al., 2000). Genetic RIBEYE disruption in mice 

abolished all presynaptic ribbons in retinal ribbon synapses, impaired fast and sustained 

neurotransmitter release, and changed Ca2+ nanodomain-like coupling of exocytosis in rod 

bipolar cells (Maxeiner et al., 2016). Regularly arranged dense projections such as the 



General Introduction 

 

 9 

ribbon can be also observed at the frog or Drosophila melanogaster neuromuscular junction 

(NMJ) (Harlow et al., 2001; Szule et al., 2012; Wichmann and Sigrist, 2010). In Drosophila 

melanogaster, however, the main structural component of the dense projection called the 

T-bar is not RIBEYE, but bruchpilot (Kittel, 2006; Wagh et al., 2006) – the invertebrate 

homolog of CAST/ERC2 (ELKS2) (Ohtsuka et al., 2002; Wagh et al., 2006).  

 

Based on electron microscopy and electron tomography studies of IHC ribbon synapses, 

several distinct morphological populations of SVs have been described (Khimich et al., 

2005; Lenzi et al., 1999, 2002; Schnee et al., 2005). Besides free cytosolic SVs, pools of 

membrane-proximal (MP) as well as ribbon-associated (RA) SVs can be distinguished 

(Jung et al., 2015a). Often, SVs are structurally attached to the ribbon and/or the plasma 

membrane through filamentous tethers (Jung et al., 2015a; Lenzi et al., 1999; Nouvian et 

al., 2006; Wichmann and Moser, 2015). In this work, the following nomenclature for SV 

pools is used (illustrated in Figure 19A): The RA-SV pool comprises a SV monolayer around 

the synaptic ribbon within a distance of 80 nm from the ribbon (Jung et al., 2015a). The pool 

of MP-SVs is comprised of SVs at the ribbon base, which are in close proximity (≤ 50 nm) 

to the plasma membrane and within a distance of 100 nm to the presynaptic density (PD) 

(Jung et al., 2015a). Another MP SV population can be found more distal from the ribbon, 

termed “outlying”-SV pool (Lenzi et al., 2002). In this work, “outlying”-SVs are defined as 

SVs that are located within 50 nm to the presynaptic plasma membrane, more than 100 nm 

away from the PD, but directly opposed to the postsynaptic density.  

 

Physiologically, exocytic SV fusion with the IHC’s plasma membrane can be monitored as 

changes in membrane capacitance (ΔCm) using the patch-clamp technique (reviewed in 

Neher 1998). SV fusion with the plasma membrane leads to an increase in membrane 

surface and thus in membrane capacitance. In IHCs, different kinetic components of 

exocytosis can be observed according to the changes in membrane capacitance with 

respect to step depolarizations of varying length. There is a fast and saturating kinetic 

component that can be estimated by the exocytic ΔCm response of IHCs during 

depolarizations of up to 20 ms. This component likely reflects a small, finite pool of SVs that 

is depleted rapidly. Thus, it was referred to as the readily releasable pool (RRP) (Moser and 

Beutner, 2000; Rutherford and Roberts, 2006; Spassova et al., 2004). Further, there is a 

slower, linear kinetic component of exocytosis (≥ 50 ms depolarization). It was attributed to 

the sustained phase of SV release, limited by SV resupply after RRP depletion (Frank et 

al., 2010; Goutman and Glowatzki, 2007; Meyer et al., 2009; Schnee et al., 2005). 
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Relating morphological to physiological findings may help to understand SV pool dynamics 

and the functional role of the synaptic ribbon in more detail. This is however complicated by 

technical issues. Due to variations in morphological SV counts as well as in approximations 

of single SV capacitance it has not been yet possible to arrive at a common anatomical and 

physiological definition for the pool of SVs undergoing release during the linear sustained 

phase of exocytosis. This phase of release might include serial resupply of SVs or release 

of SVs from the MP “outlying” SV pool more distal from the ribbon (Lenzi et al., 1999, 2002; 

Nouvian et al., 2006). Nonetheless, correlations between the physiologically described RRP 

and morphological studies revealed mechanistic insights into SV release at IHC ribbon 

synapses. Recent work suggests that the physiologically measured RRP employs the fusion 

of docked SVs from the morphologically defined MP-SV pool (Khimich et al., 2005; Moser 

and Beutner, 2000; Nouvian et al., 2006; Rutherford and Roberts, 2006; Schnee et al., 

2005). A second hypothesis states that the fast kinetic component of exocytosis additionally 

involves the exocytosis of RA-SVs. This requires either fast recruitment of RA-SVs to the 

plasma membrane or compound (pre-fused SVs) and cumulative (serial homotypic) SV 

fusion with the membrane, leading to multivesicular release (Edmonds et al., 2004; 

Spassova et al., 2004). Different experimental approaches suggest several functional roles 

for the ribbon on SV dynamics. The synaptic ribbon may act as (1) a scaffold organizing the 

AZ and promoting the large and spatially confined array of Ca2+-channels and membrane 

proximal vesicles (Frank et al., 2010; Khimich et al., 2005), which in the retina seems to be 

critical also for the tight coupling (Maxeiner et al., 2016) (2) a „conveyor belt“ – allowing fast 

SV transport to the plasma membrane by passive diffusion of SVs through transient 

interactions of ribbon bound tethers with the SVs (Graydon et al., 2014) or active shuttling 

of ribbon attached SVs to the plasma membrane (Bunt, 1971; Von Gersdorff, 2001; 

Vaithianathan et al., 2016) (3) a „safety belt“ – decreasing the speed of SV diffusion, 

enabling compound fusion of SVs (Matthews and Sterling, 2008; Parsons and Sterling, 

2003). The notion of multivesicular release was founded on the observation of large 

variations in the amplitude of monophasic EPSCs (excitatory postsynaptic current) as well 

as the presence of multiphasic EPSCs in postsynaptic patch-clamp recordings from afferent 

SGN terminals (Glowatzki and Fuchs, 2002). While the amplitude variation of fast 

monophasic EPSCs was proposed to reflect highly synchronized multivesicular release, the 

multiphasic EPSCs where thought to reflect the release of multiple quanta in an 

unsynchronized way (Glowatzki and Fuchs, 2002). Alternatively, a model of univesicular 

release with dynamic fusion pore regulation was proposed, in which multiphasic EPSCs 

were interpreted as step-by-step neurotransmitter release through a flickering fusion pore 

(Chapochnikov et al., 2014).  
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Molecular key players  

A network of presynaptic proteins constitutes the cytomatrix of the AZ (CAZ), orchestrating 

the highly specialized sound-stimulus coding at the IHC-SGN synapse through tight 

stimulus-secretion coupling mediated by voltage-gated Ca2+-channels.  

 

Voltage-gated Ca2+-channels  

Voltage-gated Ca2+-channels are key players in IHC neurotransmitter release. Exocytosis 

is triggered by influx of Ca2+ through mainly (~90%) L-type voltage-gated CaV1.3 Ca2+-

channels that are clustered at the PD underneath the ribbon (Baig et al., 2011; Bech-

Hansen et al., 1998; Brandt et al., 2003; Dou et al., 2004; Mansergh et al., 2005; Platzer et 

al., 2000; Strom et al., 1998). CaV1.3 Ca2+-channels activate at relatively hyperpolarized 

potentials, which makes them suitable to react to subtle graded potential changes, and 

inactivate slowly, providing tonic Ca2+-influx and neurotransmitter release (Baumann et al., 

2004; Koschak et al., 2001, 2003; Xu and Lipscombe, 2001; reviewed in Joiner and Lee, 

2015). Each AZ of mature mouse IHCs from the apical cochlear turn is assumed to cluster 

on average approximately ~80-100 Ca2+-channels (Brandt et al., 2005; Wong et al., 2014). 

It was suggested that CaV1.3 Ca2+-channels are tightly coupled to SVs of the RRP with an 

effective weighted coupling distance of only 15-17 nm (Pangršič et al., 2015). In this so-

called nanodomain-like control of exocytosis the release of SVs is linearly dependent on the 

number of open Ca2+-channels (Figure 4, left). Experimentally, RRP exocytosis in mature 

apical mouse and gerbil IHCs from the low-frequency apical cochlear region showed a low 

sensitivity to intracellular application of the slow-binding Ca2+-buffer EGTA further 

supporting the hypothesis of a tight coupling between Ca2+-channels and the SVs (Brandt 

et al., 2005; Johnson et al., 2017). Physiologically, nanodomain-like control of SV 

exocytosis might be especially suitable and important for graded sensory signals of IHCs to 

(1) encode sound stimuli over a large dynamic range starting from very weak sounds, 

because a tight coupling provides high Ca2+-sensitivity, (2) provide high temporal precision 

of exocytosis and phase-locking, because tight coupling increases the speed and efficacy 

of exocytosis and reduces synaptic delays (Moser et al., 2006a) and (3) work energy-

efficient, because less and locally confined intracellular Ca2+ needs to be cleared (Bartoletti 

et al., 2011; Brandt et al., 2005; Jarsky et al., 2010; Thoreson et al., 2004).  
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Figure 4: Coupling between voltage-gated Ca2+-channels and SVs 

[Left] Tight nanodomain-like coupling of SVs and voltage-gated Ca2+-channels (yellow) 
leads to locally confined changes in intracellular [Ca2+]i (dashed lines) and thereby precise 
control of exocytosis. In such a scenario, the release of SVs is linearly dependent on the 
number of open Ca2+-channels. [Right] Looser Ca2+ microdomain-like coupling employs 
opening of several Ca2+-channels (red) with overlapping domains (dashed lines) for the 
fusion of a single SV and a large Ca2+-channel to SV distance of more than 100 nm. Hence, 
the release of SVs is non-linearly dependent on the number of open Ca2+-channels. Image 
not to scale. 
 

Some synapses of the central nervous system however use a micodomain-like control of 

exocytosis (Figure 4, right): This employs opening of several Ca2+-channels with 

overlapping domains for the fusion of a single SV and a large Ca2+-channel to SV distance 

of more than 100 nm (Borst and Sakmann, 1996; Eggermann et al., 2011). In such a 

scenario, the release of SVs is non-linearly dependent on the number of open Ca2+-

channels. Physiologically, microdomain-like control of SV exocytosis has a positive impact 

on (1) the signal-to-noise ratio, since the high Ca2+ cooperativity (4-5) of SVs reduces SV 

fusion below a certain threshold and the noise resulting from single channel gating is 

efficiently averaged out as well as (2) the synchronization of SV fusion, since the Ca2+-

domain overlap triggers simultaneous fusion of several SVs upon reaching a certain 

threshold (Matveev et al., 2011; Schneggenburger and Neher, 2005). Looser microdomain-

like Ca2+ – SV coupling was observed in gerbil IHCs towards the high-frequency tuned 

cochlear base (Johnson et al., 2017). Compared to the generally low frequency tuned 

cochlea of the gerbil (0.3-30 kHz), the high-frequency tuned cochlea of mice (4-100 kHz) 

might however have different properties.  

 

 

CAZ proteins 

Morphological studies of central nervous system synapses have shown that the CAZ forms 

a presynaptic grid of electron dense material at the synaptic AZ, extending approximately 

50 nm into the cytoplasm (Fenster et al., 2000; Limbach et al., 2011; Phillips et al., 2001; 

Südhof, 2012; Zhai and Bellen, 2004). A filamentous network protruding further into the 
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cytoplasm is associated with SVs and regulates SV dynamics and docking (Cole et al., 

2016; Zhai and Bellen, 2004). In neuronal synapses, bassoon, piccolo, liprins-α, 

UNC13/Munc13s, CASTs/ERCs (ELKS), RIMs (Rab3-interacting molecules) and RIM-BPs 

(RIM-binding proteins) form the core of the presynaptic cytomatrix and are essential for the 

organization of docking/priming, release and retrieval of SVs, and localization of voltage-

gated Ca2+-channels to release sites for efficient stimulus-secretion coupling. CAZ proteins 

interact with each other and are associated with SV fusion proteins, cytoskeletal and 

scaffolding proteins, cell adhesion molecules, and voltage-gated Ca2+-channels for 

maintaining the structural and functional organization of the AZ (Gundelfinger and Fejtova, 

2012; Schoch and Gundelfinger, 2006). Recent work revealed that IHC ribbon synapses 

work independently of the CAPS and Munc-13 1/2 families of priming proteins (Vogl et al., 

2015) and neuronal SNAREs (Nouvian et al., 2011). So far, only few CAZ proteins have 

been found to be present in IHC ribbon synapses and are functionally characterized.  

 

 

 

The large scaffold protein bassoon (Figure 5, blue) is responsible for the structural and 

functional integrity of the IHC AZ. Genetic disruption of bassoon in mice revealed that 

bassoon anchors the synaptic ribbon to the plasma membrane (Dick et al., 2003; Khimich 

et al., 2005; Tom Dieck et al., 2005), is further involved in SV-replenishment, and enhances 

synchronous auditory signaling by promoting Ca2+-channel clustering, thereby creating SV 

release sites at IHC AZs (Frank et al., 2010; Khimich et al., 2005). Bassoon however does 

Figure 5: Molecular key 

players of IHC ribbon 

synapses  

Schematic representation of 
the synaptic ribbon (dark blue), 
selected CAZ proteins, and 
CaV1.3 Ca2+-channels (yellow) 
that cluster at the IHC ribbon 
base. The scaffolding proteins 
Bassoon (blue) and RIM (red) 
are both involved in clustering 
of synaptic Ca2+-channels 
through direct or indirect 
interactions with the channel. 
RIM-BPs interact with both RIM 
and Bassoon and are 
candidate molecular linkers 
between Ca2+-channels and 
vesicular release sites. RIM 
further interacts with SVs 
through Rab3 interaction. 
Image not to scale.  
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not directly interact with voltage-gated Ca2+-channels, but controls presynaptic P- and Q-

type Ca2+-channels via RIM-BP interaction (Davydova et al., 2014). Besides bassoon, the 

multidomain scaffolding protein family of RIM proteins (Figure 5, red) yields another group 

of molecular key players at IHC AZs (Jung et al., 2015a; Picher et al., 2017). RIM1 is absent 

in IHCs, but two isoforms of RIM2 (RIM2α and RIM2β) were found to be involved in the 

tethering of SVs to the presynaptic AZ as well as in the regulation of presynaptic Ca2+-

channel abundance and clustering, thereby creating SV release sites for RRP exocytosis 

(Jung et al., 2015a). RIMs tether voltage-gated Ca2+-channels to the AZ either directly or 

indirectly (Coppola et al., 2001; Gebhart et al., 2010; Grabner et al., 2015; Han et al., 2011; 

Jung et al., 2015a; Kaeser et al., 2011; Kintscher et al., 2013; Kiyonaka et al., 2007; Picher 

et al., 2017). The deletion of RIM2α and bassoon, however, did neither lead to a complete 

loss of synaptic Ca2+-channels, nor perturb the coupling between Ca2+-channels and SVs 

(Frank et al., 2010; Jung et al., 2015a). This suggests that additional molecular linkers may 

help clustering CaV1.3 Ca2+-channels at the IHC AZ and localize them in close proximity to 

SVs to provide molecular coupling between SVs and the priming-fusion apparatus at the 

release site.  

In conventional synapses and Drosophila melanogaster NMJs, RIM-BPs were found to play 

such a role, acting as molecular junction between voltage-gated Ca2+-channels and SVs 

(Acuna et al. 2015; Grauel et al. 2016; Hibino et al. 2002; Kaeser et al. 2011; M. Müller, 

Genç, and Davis 2015). Studies from the calyx of Held reported an increased sensitivity of 

SV release to the slow Ca2+-buffer EGTA, proposing an increased coupling distance 

between Ca2+-channels and SVs in absence of RIM-BP1 and -2 (Acuna et al. 2015).  

In hippocampal synapses, RIM-BP2 was found to fine-tune the clustering of P/Q-type Ca2+-

channels at the AZs, which affected the Ca2+-nanodomains and reduced the initial release 

probability of SVs (Grauel et al., 2016). In Drosophila melanogaster NMJs, the RIM-BP 

ortholog DRBP was found to be essential for both the structural and functional integrity of 

the AZ, reporting impaired Ca2+-channel clustering and Ca2+-influx as well as looser Ca2+-

influx–exocytosis coupling upon DRBP disruption (Liu et al., 2011; Müller et al., 2015). The 

expression and function of RIM-BPs have not been studied in IHCs so far. Nevertheless, 

given their role in other synapses, they are promising candidates to regulate the abundance 

of presynaptic Ca2+-channels and to contribute to the Ca2+ nanodomain-like control of SV 

exocytosis at the IHC AZ. 

 



General Introduction 

 

 15 

2.3 Spiral ganglion neurons 

Cochlear innervation pattern and spike generation 

SGNs innervate the sensory hair cells and thereby connect the peripheral sensory receptor 

system with the brain. SGNs are bipolar neurons and their somata are located in the spiral 

ganglion in the Rosenthal’s canal surrounded by the modiolus, the bony central axis of the 

cochlea. Their central processes (ANFs) form the cohlear part of the VIIIth cranial nerve, 

which projects to the neurons of the cochlear nucleus in the auditory brainstem. Depending 

on their pattern of peripheral innervation, SGNs are grouped into two classes: Type I SGNs 

contain the vast majority (90-95%) of SGNs and project onto the IHCs (Figure 6B). Each 

type I SGN receives input from a single IHC ribbon-type AZ (one-to-one). Type I SGNs are 

myelinated and give rise to inner radial fibers of the cochlea that project to the brainstem. 

Each SGN fires preferentially to a specific frequency, determined by the position of the 

contacted IHC along the tonotopic map of the cochlea. Type II SGNs represent the 

remaining 5-10% of SGNs that are unymelinated, highly branched, and contact multiple 

OHCs en passant or terminally (Figure 6B).  

In the organ of Corti, all axons are unmyelinated. They exit the organ of Corti through the 

foramina nervosa (asterisk in Figure 6A and B) through the basilar membrane, before the 

myelinated axonal segments begin (Figure 6A and B). Upon glutamate release from IHC 

ribbon synapses, boutons of type I SGNs generate EPSCs through AMPA receptors that 

are clustered at postsynaptic boutons of type I SGNs (Figure 6A) juxtaposed to each IHC 

ribbon-type AZ leading to excitatory post-synaptic potentials (EPSPs) (Glowatzki and 

Fuchs, 2002; Grant et al., 2010; Meyer et al., 2009). APs are generated in the spike 

generator, which is presumably located in the first heminode central to the foramina nervosa 

(Hossain et al., 2005). High densities of NaV1.6 channels are situated at the unmyelinated 

type I SGN segment and at the nodes of Ranvier between the myelinated axon segments 

(Figure 6B, red) to mediate rapid AP generation and propagation (Hossain et al., 2005; 

Lacas-Gervais et al., 2004; Rutherford et al., 2012). In vitro patch-clamp experiments 

demonstrated that almost every EPSP, and thus every vesicle released from an IHC, elicits 

an AP (Rutherford et al., 2012). SGN spiking patterns encode important stimulus 

parameters such as intensity and timing of the sound (Meyer and Moser, 2010). Together, 

the large amplitudes of EPSCs (on average -148 pA) and the high densities of NaV1.6 

channels in the spike generator enable SGNs to accurately encode temporal sound 

information (Glowatzki and Fuchs, 2002; Rutherford et al., 2012).  
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Figure 6: Scheme of cochlear innervation  

Schematic cross section [A] and top-view [B] of the organ of Corti: Afferent fibers from type 
I SGN innervate individual IHCs (B: gray) in a one-to-one fashion. Multiple OHCs (B: black) 
are innervated by afferent type II SGNs en passant or terminally. Efferent ANFs (B: dark 
blue) provide inhibitory input to type I SGNs beneath the IHCs. All fibers exit the organ of 
Corti through the foramina nervosa (asterisk) through the basilar membrane, where the 
myelinated axonal segments start. APs of type I SGNs are triggered in the spike generator, 
which is presumably located in the first heminode central to the foramina nervosa and 
contains a high density of NaV1.6 channels (B: red). Images adapted from Hossain et al. 
2005, and Rutherford, Chapochnikov, and Moser 2012 and modified. 
 

Heterogeneous response characteristics 

SGN responses to sound stimuli in vivo are studied using extracellular recordings from 

ANFs, which revealed great variability in spike response characteristics to the same sound 

stimulus. The most prominent property of SGNs is their frequency selectivity. Each SGN 

preferentially elicits high discharge rates at a specific acoustic frequency where it shows 

maximal sensitivity – the characteristic frequency. This is largely determined by the 

innervation location on the cochlear tonotopic axis and enhanced by OHC amplification 

(Kiang et al., 1965; Liberman, 1978; Taberner and Liberman, 2005). However, even SGNs 

with very similar characteristic frequency differ: e.g. in their spontaneous spike rate (ranges 

from 0-120 Hz), spike threshold, and dynamic spike range (Liberman, 1978; Ohlemiller and 

Echteler, 1990; Sachs and Abbas, 1974; Taberner and Liberman, 2005; Yates et al., 1990). 

The spontaneous spike rate is defined as the spike rate in the absence of sound stimuli, 

due to spontaneous SV release by the ribbon synapse. The spike threshold of an SGN is 
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defined as the stimulus strength (dB SPL) that is required to evoke a change in spike rate 

of the SGN at their characteristic frequency. Both, the spontaneous spike rate and spike 

threshold vary greatly among SGNs and are inversely related to each other (Liberman, 

1978; Taberner and Liberman, 2005; Yates et al., 1990). The range of sound intensities 

over which changes in the evoked spike rates can be measured, is called the dynamic range 

of a SGN. It positively correlates with the spike threshold and negatively correlates with the 

spontaneous spike rate (Yates et al., 1990). Thus, SGNs with a high spontaneous spike 

rate (high-SR SGNs) usually have a low spike threshold and narrow dynamic range (Figure 

7, red box).  

 

Figure 7: Heterogeneous response characteristics of type I SGNs innervating ribbon 

synapses of IHCs 

Right: SGNs are diverse regarding their spontaneous spike rate, spike threshold and 
dynamic spike range (black lines). Left: A differential innervation pattern for low/medium-
SR (blue fiber) and high-SR (red fiber) SGNs regarding the IHC symmetry axis has been 
described in cat (Kawase and Liberman, 1992; Liberman, 1980, 1982; Liberman and Oliver, 
1984). Characteristically, high-SR SGNs have a low spike threshold, narrow dynamic range, 
and innervate the IHC on the pillar side (facing OHCs) (red fiber, red box), whereas low-
SR SGNs have a high spike threshold, broad dynamic range and innervate the IHC on the 
modiolar side (facing the spiral ganglion) (blue fiber, blue box). Image adapted from 
Bharadwaj et al. 2014 and Taberner and Liberman 2005 and modified. 

 

Hence, high-SR SGNs change their firing in response to soft sounds and saturate quickly 

when the sound intensity rises. Then, low spontaneous spike rate SGNs (low-SR SGNs), 

having a high spike threshold and broader dynamic spike range, are recruited (Figure 7, 

blue box). Since the dynamic range of individual SGNs is small (<43 dB) compared to the 
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range of audible sound intensities (~120 dB) (Taberner and Liberman, 2005), it is believed 

that SGNs complement each other through their functional diversity in their response 

characteristics. Thereby, they enable the organism to encode sounds over the full dynamic 

range of audible sound intensities with high sensitivity.  

Several pre- and postsynaptic mechanisms may contribute to the observed functional 

diversity of SGNs. Differences in the afferent synapse molecular anatomy (Merchan-Perez 

and Liberman, 1996), as well as efferent modulation of SGNs (Ruel et al., 2001) have been 

proposed so far. (1) Functionally, heterogeneous SGN response characteristics could be 

caused by a high variability in EPSC shape and amplitude, which might be due to variations 

in the number and density of postsynaptic AMPA receptors (Chen et al., 2007; Grant et al., 

2010; Liberman et al., 2011; Rutherford et al., 2012). Rapid adaptation and modulation of 

SGN responses could further be shaped by efferent fibers that primarily innervate low-SR 

SGNs (Groff and Liberman, 2003; Le Prell et al., 2005; Ruel et al., 2001). (2) Anatomically, 

it was found that afferent fibers vary in their diameter. In cat, low/medium-SR SGNs have a 

smaller diameter compared to high-SR SGNs (Liberman 1982). The large diameter of high-

SR SGNs may facilitate AP initiation and propagation and thus explain the lower spike 

thresholds of these fibers and vice versa (Geisler et al., 1985). Further, a positive correlation 

between the innervation pattern of SGNs to the IHC and their response characteristics has 

been described in cat. Low-SR SGNs preferentially appear to innervate the modiolar side 

(facing the spiral ganglion) of the IHC, whereas high-SR SGNs preferentially innervate the 

opposite pillar side of the IHC (facing the OHCs) (Figure 7, left) (Kawase and Liberman, 

1992; Liberman, 1980, 1982; Liberman and Oliver, 1984). However, it has to be mentioned 

that in mice, presynaptic ribbons are distributed rather uniformly at the IHC base (Meyer et 

al., 2009). Further, compared to cats, the SR distribution of mouse ANFs is not clearly 

bimodal but rather uniform (Taberner and Liberman, 2005). (3) Interestingly, the innervation 

pattern of SGNs to the IHC and their response characteristics further correlated with IHC 

presynaptic AZ properties. Based on ultrastructural analysis, low/medium-SR SGNs 

innervate synapses with larger or multiple ribbons that contain a large number of SVs 

(Figure 7, left) (Merchan-Perez and Liberman, 1996). Live-cell confocal Ca2+-signals and 

simultaneously analyzed fluorescently labeled ribbons showed rather heterogeneous 

amplitudes within individual IHCs, representing a strong variance in both presynaptic ribbon 

size and synaptic Ca2+-influx amplitude (Frank et al., 2009; Ohn et al., 2016). Still, 

correlations could be found: larger ribbons had more synaptic Ca2+-channels, increased 

synaptic Ca2+-influx, and were located towards the modiolar IHC symmetry axis. AZs on the 

modiolar side of the IHCs are further characterized by on average a more depolarized 

voltage of half-maximal activation of Ca2+-influx (Vhalf) (Frank et al., 2009; Meyer et al., 2009; 

Ohn et al., 2016). 



General Introduction 

 

 19 

Thus, the state-of-the-art working hypothesis is that synapses on the modiolar side elicit 

less spontaneous SV release due to their more depolarized Ca2+-channel Vhalf and require 

higher sound amplitudes to reach the threshold of release, which is in line with the response 

properties of low-SR SGNs. The larger number of SVs could enable them to increase the 

release of neurotransmitter over a wide range of sound intensities contributing to the large 

dynamic range of low-SR SGNs. On the other hand, synapses on the pillar side 

spontaneously release SVs with a higher rate due to their more hyperpolarized Ca2+-

channel Vhalf. Thereby, they are more sensitive to low sound pressure levels, which is again 

in line with the response characteristics of high-SR SGNs. Likely, this diversity in SGN 

response characteristics may be a potential mechanism to encode the sound intensity of a 

given sound stimulus over a broad range of sound pressure levels. However, a 

characterization of heterogeneous SGN firing properties – evoked by input from only a 

single IHC – remains to be demonstrated by comparing the postsynaptic responses of 

multiple SGNs contacting the same IHC.  

 

2.4 Aim of this work  

This work aims to elucidate the molecular physiology of synaptic transmission at the first 

auditory synapse, the IHC ribbon synapse.  

The first aim was to characterize the role of RIM-BP2, a new candidate molecular linker 

between Ca2+-channels and SVs, to investigate how the highly specialized sound-stimulus 

coding of the IHCs is orchestrated in more detail. Therefore, multiple techniques such as 

confocal and STED immunofluorescence microscopy, electron microscopy, patch-clamp, 

and confocal Ca2+-imaging, as well as auditory systems physiology, were combined to 

explore the morphological and physiological effects of genetic RIM-BP2 disruption in 

constitutive RIM-BP2 knockout mice.  

The second aim was to establish a readout-system for simultaneously monitoring multiple 

SGN responses upon presynaptic IHC stimulation. Recording postsynaptic spiking 

properties of several SGNs simultaneously addresses postsynaptic response diversity on a 

single synapse level with respect to the same depolarizing IHC stimulus. This may provide 

a functional link between heterogeneous presynaptic AZ properties and postsynaptic SGN 

spike response diversity, which might be a potential mechanism of sound intensity coding. 

Therefore, an experimental setup for live-cell voltage imaging and SGN specific expression 

of the GEVIs QuasAr2 and 3 in SGNs was established.  
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3 Materials and Methods 

3.1 Mouse lines  

RIM-BP2 knockout mouse line 

Grauel and colleagues generated the RIM-BP2 knockout mouse line (Grauel et al., 2016) 

using homozygous recombination, replacing exon 17 of the RIM-BP2 gene with a neomycin-

cassette. The mouse line was kept in a heterozygous breeding. Littermate RIM-BP2 

knockout (RIM-BP2-/-) and RIM-BP2 wild-type (RIM-BP2+/+) mice as well as wild-type 

C57Bl/6 mice were used for experiments. Disruption of RIM-BP2 was confirmed by 

genotyping (Grauel et al., 2016). Mice of either sex were examined between postnatal day 

14 (p14) and p16 for hair cell physiology and Ca2+-imaging; between day p20 and p23 for 

immunohistochemistry, immunofluorescence microscopy and electron tomography; and 

between p60 to p65 for auditory evoked ABRs, distortion product otoacoustic emissions 

(DPOAEs) and single unit recordings from ANFs. All experiments complied with national 

animal care guidelines and were approved by the University of Göttingen board for animal 

welfare and the animal welfare office of the state of Lower Saxony.  

Floxpatch and Bhlhb5-Cre mouse line  

Lou and colleagues generated the Cre-dependent transgenic Optopatch2 mouse line. This 

line, also called Floxpatch, allows optical stimulation and voltage readout of Cre-expressing 

cells at the same time. It was created by targeted knock-in of the Optopatch2 construct at 

the Rosa26 locus (Lou et al., 2016) (Figure 8A). The Optopatch2 construct is expressed 

under the ubiquitous CAG promoter and comprises QuasAr2-dark-mOrange2 (the GEVI 

QuasAr2 tagged with dark-mOrange2) and CheRiff-eGFP, the blue-shifted 

channelrhodopsin variant CheRiff tagged with eGFP, connected by a P2A sequence, a self-

cleaving ribosomes skip sequence from porcine teschovirus-1 in order to stoichiometrically 

co-express QuasAr2-dark-mOrange2 and CheRiff-eGFP (Figure 8C). A premature stop 

codon flanked by loxP sites was inserted upstream of the Optopatch2 construct. A Bhlhb5-

Cre driver line (Ross et al., 2010) was crossed with the Floxpatch mouse line to excise the 

premature stop codon by Cre-mediated recombination and allow tissue specific expression 

of Optopatch2 (Figure 8B, C).  

The laboratory of Prof. Adam Cohen provided Floxpatch mice. The laboratory of Prof. Lisa 

Goodrich provided Bhlhb5-Cre mice. Mice were kept in a homozygous (Floxpatchfl/fl) x 

heterozygous (Bhlhb5-Cre+/-) breeding at the Harvard University; experiments employing 
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Floxpatch-Bhlhb5-Cre mice were performed in the laboratory of Prof. Adam Cohen, 

Department of Chemistry and Chemical Biology, Harvard. Cre-positive and Cre-negative 

control mice of either sex were examined between p14 and p16.  

 
Figure 8: Floxpatch and Bhlhb5-Cre mouse line 

[A] The Cre-dependent transgenic Floxpatch mouse line was created via knock-in of the 
Optopatch2 construct at the Rosa26 locus (Lou et al., 2016). [B] A Bhlhb5-Cre driver line 
mediates tissue specific excision of the premature stop codon upstream of Optopatch2 by 
Cre-mediated recombination (Ross et al., 2010). [C] Transcription of Optopatch2 leads to 
stoichiometric co-expression of QuasAr2-dark-mOrange2 and CheRiff-eGFP via the self-
cleaving ribosomes skip sequence from porcine teschovirus-1, P2A. Figure partly adapted 
from Hochbaum et al. 2014.  
 

3.2 Viral optopatch construct and postnatal injection of AAV 

Construct design 

The Optopatch3 construct (Figure 9) comprises the voltage indicator QuasAr3(Q95H) and 

the channelrhodopsin variant CheRiff and was designed and cloned by the laboratory of 

Prof. Adam Cohen (Harvard University, unpublished). In order to stoichiometrically co-

express QuasAr3(Q95H) and CheRiff, a self-cleaving ribosome skip sequence from porcine 

teschovirus-1 (P2A) was placed between the two genes (Hochbaum et al., 2014) in the 

same way as done in the Floxpatch mouse line (Lou et al., 2016). QuasAr3 was tagged with 

the fluorescent reporter Citrine. WPRE is the woodchuck hepatitis virus posttranscriptional 
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regulatory element, TSX3 and TS are trafficking signal motifs, and ER2 is an endoplasmic 

reticulum (ER) export sequence (Hochbaum et al., 2014). The Optopatch3 construct was 

expressed under the human Synapsin promoter (H-Syn) and the expression cassette was 

flanked by inverted terminal repeats (ITR) of adeno-associated virus (AAV) 2. AAV with 

capsid proteins of serotype 6, hence AAV2/6, was produced by the University of North 

Carolina Vector Core facility (Titer: 2.1x1012 vector genomes/mL). AAV2/6 and the H-Syn 

were used to drive transgenic expression of QuasAr3-Citrine and CheRiff in SGNs.  

 

Figure 9: QuasAr3-CheRiff viral Optopatch3 construct design  

The Optopatch3 construct contains QuasAr3-Citrine and CheRiff, linked by a self-cleaving 
ribosome skip sequence from porcine teschovirus-1 (P2A) for stoichiometric expression of 
QuasAr3 and CheRiff, as well as H-Syn to drive neuronal expression, woodchuck hepatitis 
virus posttranscriptional regulatory element (WPRE) to enhance transcription, trafficking 
signal motifs (TSX3 and TS), and an endoplasmic reticulum (ER) export sequence (ER2) 
to improve protein trafficking, and inverted terminal repeats (ITR) of AAV2/6. Figure partly 
adapted from Hochbaum et al. 2014. 
 

Postnatal injection of AAV 

Christiane Senger-Freitag injected AAV2/6 postnatally into the left ear’s scala tympani of 

wild-type C57Bl/6 mice via the round window. Experiments were performed at day p5 to p6 

essentially as described in Akil et al. 2012. Briefly, mice were anesthetized by application 

of isoflurane (5% for 2-3 min, maintained at 2-3%) and depth of anesthesia was continuously 

checked by response to toe pinch. Preoperatively, animals were given subcutaneous 

injections of carprofen (5 mg/kg) und buprenorphin (0.1 mg/kg) to manage inflammation 

and pain. The left ear was approached via a ventral, paramedian incision in the neck and a 

hole was scraped into the bulla. 1-3 µL of AAV2/6 were injected into the cochlear perilymph 

with a hydraulic pump. The bulla was quickly sealed with fascia and adipose tissue and the 

wound was sutured. Mice were placed into a separate cage, where temperature was 

maintained at 37°C with a heat plate. Animals were closely monitored and put back to their 

home-cages after awakening from their anesthesia.  
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3.3 Whole-mount preparations of the organ of Corti 

Mice were anesthetized with CO2 and decapitated. After removing the skin, the skull was 

hemisected along the sagittal midline and placed in Petri dishes filled with HEPES-buffered 

Hanks’ balanced salt solution (142 mM NaCl, 5.4 mM KCl, 1.0 mM MgCl2, 0.5 mM MgSO4, 

0.1 mM CaCl2, 3.4 mM L-Glutamine, 11 mM D-Glucose, 10 mM HEPES, pH adjusted to 7.3 

(NaOH), osmolarity ~300 mOsm, all chemicals were obtained from Sigma-Aldrich). Under 

a dissection microscope the brain was removed and the cochlea was separated from the 

temporal bones by carefully twisting it out of the skull with a pair of medium fine forceps. 

Using fine forceps, the bony shell of the apical turn of the cochlea was opened to expose 

the apical coil of the organ of Corti. The stria vascularis was gently removed by unwinding 

it with very fine forceps and the first turn of the organ of Corti was separated from the 

modiolus.  

 

3.4 Patch-clamp recordings and confocal Ca2+-imaging 

For transfer of the organ of Corti whole-mount preparation to a recording chamber, a fire-

polished Pateur´s pipette was used. For fastening the dissected organ of Corti to the 

chamber bottom, a grid of nylon threads was placed onto the organ of Corti, which was 

placed with the hair cells’ stereocilia facing upwards. To allow access to a clean IHC 

membrane, all cells facing the pillar/abneural side of the organ of Corti were cleaned away. 

First, the tectorial membrane was removed with a wide-mouthed cleaning pipette (tip 

diameter of ~20-30 µm). Then, perfusion with modified Ringer’s solution (containing (in 

mM): 104 or 110 NaCl, 35 TEA-Cl, 2.8 KCl, 2 or 5 CaCl2, 1 MgCl2, 10 NaOH-HEPES, 

11.3 D-glucose, pH 7.3, osmolarity ~300 mOsm, all chemicals were obtained from Sigma-

Aldrich) was started with an exchange rate of approximately 0.5 to 1 mL/min. OHCs and 

outer and inner pillar cells were removed by sucking in the nuclei with a smaller cleaning 

pipette (tip diameter of ~2-5 µm), waiting until cell death and finally sucking in the residual 

cell debris with very low pressure and minimal mechanical force. In the same way, but with 

even smaller pipettes (tip diameter of ~2 µm) phalangeal cells were cleaned off last. 

Cleaning pipettes were pulled from soda-lime glass capillaries (1.5 x 80 mm, 0.15 mm wall 

thickness, Hilgenberg, Germany) with a vertical puller (Patch-Pipette Puller PA-10, E.S.F. 

Electronic, Göttingen, Germany). Patch pipettes were pulled from borosilicate glass 

capillaries (GB150F-8P or GB150-8P: capillaries with or without filament for ruptured or 

perforated patch-clamp recordings, respectively; 0.86 x 1.50 x 80 mm; Science Products, 

Hofheim, Germany) with a horizontal Sutter P-97 Flaming/Brown Micropipette puller (Sutter 
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Instruments Company, Novato, USA) (Table 1). The pipette-tip was fire-polished with a 

custom-made microforge to enhance sealing with the IHC plasma membrane.  

 

Table 1: Puller program for patch pipettes 

Line Heat Filament Velocity Delay Pull 

1 640 4 30 200 20 

2 630 4 25 200  

3 620 4 20 200  

4 620 4 20 200 15 

5 625 4 25 200 30 

 

Diverse patch-clamp setups equipped with BX50WI microscopes (Olympus, Hamburg, 

Germany), 60x magnification objectives (0.9 NA, water immersion objective, Olympus), 

shielded by Faraday cages and assembled on hydraulic air tables (TMC, Peabody, USA) 

were used for the cellular electrophysiology. Fluid level in the chamber as well as pipette 

pressure were controlled by MPCU-3 pumps (Lorenz Messgeätebau, Kathlenburg-Lindau, 

Germany). Piezoelectric micromanipulators (MP-285, Sutter Instruments Company, 

Novato, USA) were used for moving cleaning and patch-pipettes nearby the whole-mount 

preparation. For patch-clamp measurements EPC-10 USB amplifiers (HEKA Elektronik, 

Lambrecht, Germany) controlled by Patchmaster software (HEKA Elektronik, Lambrecht, 

Germany) were used.  

Patch-clamp recordings of IHCs from freshly dissected organs of Corti were carried out as 

described by Moser and Beutner 2000. For perforated-patch recordings of whole-cell Ca2+-

current and exocytosis, recording pipettes were dipped into amphotericin B (pore-forming 

antibiotic) free intracellular solution for 50 s to avoid premature amphotericin B exposure of 

the tissue and filled with intracellular solution containing (in mM): 130 Cs-gluconate, 10 

TEA-Cl, 10 4-AP, 10 HEPES, 1 MgCl2, amphotericin B (300 µg/ml, Calbiochem), pH 7.2 

(osmolarity ~290 mOsm, all chemicals were obtained from Sigma-Aldrich). Ruptured-patch 

whole-cell recordings were performed for confocal Ca2+-imaging with the solution described 

above excluding amphotericin B, but including (in mM) 4 Mg-ATP, 0.3 Na-GTP, 1 EGTA, 

0.4 Fluo-4FF (Invitrogen) and 0.01 carboxytetramethylrhodamine (TAMRA)-conjugated 

dimeric RIBEYE-binding peptide (Francis et al., 2011). Recording pipettes with resistances 

of 4.5 to 7.0 MΩ (when filled with Cs-based intracellular solution) were advanced towards 

the IHC under positive pressure of ~2.5 cm H2O. After approaching the IHC, the positive 

pressure was released to form a gigaseal (with electrical resistance in GΩ) between the 

patch pipette and the IHC’s membrane. The IHC was immediately voltage-clamped at a 
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holding potential of -84 mV. For pipette capacitance compensation the EPC-10’s built-in 

auto Cfast compensation function was used to eliminate fast transient currents. Whole-cell 

patch-clamp configuration was achieved by two different approaches. In case of confocal 

Ca2+-imaging, the IHC membrane was ruptured by a short, negative pressure pulse through 

the suction tube. In case of whole-cell Ca2+-current and exocytosis recordings, the IHC 

membrane was perforated by amphotericin B inside the intracellular solution. Slow current 

transients, resulting from the whole-cell membrane capacitance were compensated using 

the EPC-10’s built-in auto Cslow compensation function. All currents were leak-corrected 

using a p/n (0.25/8) protocol, with a p/n holding potential of -90 mV, low pass filtered at 2.9 

kHz and sampled at 100 kHz. IHCs with leak current greater than −30 pA or Rs greater than 

30 MΩ were excluded from the analysis. In the offline analysis using Igor Pro software 

(Wavemetrics, Lake Oswego, USA), all voltages were corrected for liquid-junction potentials 

(LJP -14 mV) and for the voltage drop across the access resistance to the cell (series 

resistance, RS). 

Analysis of membrane capacitance 

For membrane capacitance (Cm) measurements, IHCs were stimulated by depolarizations 

of different durations to -14 mV at intervals of 30 to 60 s. Exocytic Cm changes (ΔCm) were 

measured using the Lindau-Neher technique (Lindau and Neher, 1988), as previously 

described (Moser and Beutner, 2000) (sinewave frequency 1 kHz, sinewave 70 mV peak-

to-peak, Vreversal -45 mV). ΔCm was quantified as the averaged (over 400 ms) difference 

between Cm before and after (skipping the first 100 ms) IHC depolarization. Mean ΔCm 

estimates present grand averages calculated from the mean estimates of individual IHCs 

(2-3 sweeps per stimulus per IHC) to avoid dominance of IHCs contributing more sweeps.  

Analysis of Ca2+ current-voltage relationships 

Current-voltage relationships (IVs) of IHC Ca2+-currents were calculated from the last 8 ms 

of currents evoked by 10 ms step depolarizations to various potentials from -100 mV to +30 

mV in 5 mV increments. Calculating the conductance of the cells and plotting it against the 

potential to which the cell was clamped created fractional activation curves:  

  

  𝑮(𝑽) =
𝑰𝑪𝒂

(𝑽−𝑽𝒓𝒆𝒗)
 (Equation 1) 

 

Here G is the conductance, ICa the Ca2+-current, V the potential to which the cell was 

clamped and Vrev the reversal potential of the current obtained by fitting a line to the IV from 

6 to 26 mV and extrapolating it to the potential of zero current.  
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The traces were normalized to the maximum conductance (Gn) calculated in the range of -

20 to +10 mV and fitted with a Boltzmann equation:  

 

  𝑮𝒏(𝑽) =  
𝑮𝒏,𝒎𝒂𝒙

𝟏+ 𝒆
𝑽𝒉𝒂𝒍𝒇−𝑽

𝒌

 (Equation 2) 

 

Here Gn,max is the maximal conductance, V the potential to which the cell was clamped, Vhalf 

the voltage of half-maximal activation, and k the slope of activation.  

 

Analysis of Ca2+ inactivation kinetics 

The Ca2+-current (ICa) inactivation time constant  was measured by fitting an exponential 

function to the last 195 ms of ICa traces during 200 ms depolarizations to -14 mV.  

 

  𝒚 =  𝑨 × 𝒆(−𝒊𝒏𝒗𝑻𝒂𝒖 𝒙) (Equation 3) 

 

Here A is the ICa amplitude, invTau is the inverse of the time constant . 

 

Estimating the apparent Ca2+ cooperativity of exocytosis  

The coupling between Ca2+-channels and SVs was addressed essentially as described in 

Wong et al. 2014, by calculating the apparent Ca2+ cooperativity m of exocytosis. During 

perforated patch recordings, exocytic membrane capacitance changes (∆Cm) and 

corresponding whole-cell Ca2+-currents (ICa) were measured during 20 ms depolarizations 

(to -14 mV) to primarily recruit the RRP of vesicles (Beutner and Moser, 2001; Moser and 

Beutner, 2000). The number of open Ca2+-channels of the IHC was gradually reduced by 

slow perfusion (0.5 mL/min) with the L-type Ca2+-channel antagonist isradipine (10 µM) in 

the extracellular solution (5 mM CaCl2). The integrated ICa charge was plotted against its 

respective ∆Cm on double-logarithmic axes and data points of each IHC were fit with a 

power function: 

 

  ∆𝑪𝒎 =  𝑨 × (𝑸𝑪𝒂)𝒎
  (Equation 4) 

 

Here ∆Cm is the exocytic membrane capacitance change, QCa the whole-cell Ca2+-current 

integral and the power m describing the apparent Ca2+ cooperativity of SV release. 
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Confocal Ca2+-imaging 

Confocal Ca2+-imaging was carried out essentially as described by Frank et al. 2009. 

Experiments were performed on an upright BX50WI microscope (Olympus, Hamburg, 

Germany) equipped with a confocal laser scanning unit (Olympus Fluoview 300 confocal 

scanner, Olympus, Hamburg, Germany), a 50 mW, 488 nm solid state excitation laser (0.5 

% laser power, Cyan, Newport Spectra-Physics, Santa Clara, USA), a 1.5 mW, 543 nm He–

Ne excitation laser (5 % laser power, LGK 7786 P150, Lasos, Jena, Germany), LUMPlan 

60x magnification NA 0.9 objective (Olympus) and two photomultiplier tubes (Gain 700 V, 

Hamamatsu, Herrsching am Ammersee, Germany) as detectors. The microscope was 

controlled by Olympus Fluoview acquisition software and triggered via Patchmaster 

software (HEKA Elektronik, Lambrecht, Germany) for synchronization with whole-cell 

patch-clamp recordings.  

Individual IHC AZs were identified by fluorescence of synaptic ribbons labeled with TAMRA-

conjugated dimeric RIBEYE-binding peptide (Francis et al., 2011) (0.01 mM in the 

intracellular solution). Confocal line-scans (0.7 kHz) through the center of the synaptic 

ribbon were performed during short IHC step depolarizations (20 ms to -7 mV) and Ca2+ 

indicator fluorescence increase (Fluo-4FF, 0.4 mM) was measured as readout of synaptic 

Ca2+-influx. For quantification of synaptic Ca2+-signal amplitudes, the fluorescence change 

(ΔF) was calculated as the average evoked fluorescence intensity change for 3 peak-

centered pixels over the last 10 ms of depolarization (from 3 averaged line-scans). For 

normalization (ΔF/F0), synaptic Ca2+-signals (ΔF) from line-scans were divided by their 

baseline fluorescence (F0). The spatial spread of Ca2+-signals was estimated by fitting a 

Gaussian function to the individual Ca2+-signal line profiles to obtain full width at half 

maximum (FWHM) estimates: 

  
𝒇(𝒙) = 𝒚𝟎 + 𝑨 × 𝒆

−
(𝒙−𝒙𝟎)𝟐

𝒘𝒊𝒅𝒕𝒉𝟐   (Equation 5) 

 

  𝑭𝑾𝑯𝑴 = 𝒘𝒊𝒅𝒕𝒉 × 𝟐 × √𝒍𝒏𝟐 (Equation 6)  
 

Here, y0 is the baseline fluorescence, A is the amplitude, x0 is the center of the Gaussian 

distribution and width is its width.  
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3.5 Wide field voltage imaging  

Microscope and hardware 

Voltage imaging was carried out with a custom-built wide field imaging microscope (Figure 

10): Wide field illumination was achieved by expansion of a diode laser beam (labeled “S” 

in the figure, OBIS 637 nm LX 140 mW diode laser; Coherent Inc., Santa Clara, USA) using 

a plan-concave lens (“L1”) and a plan-convex lens (“L2”). To gain a more uniform Gaussian 

laser beam profile, an iris (“Iris”) was used (L1, L2, Iris: Thorlabs, Munich, Germany). To 

couple the laser beam into the microscope an excitation filter (“F1”, 635/20 nm bandpass; 

Chroma Technology Corp., Vermont, USA) and dichroic mirror (“DM”, Notch-dichroic 

beamsplitter 633/70 nm; AHF Analysentechnik, Tübingen, Germany) was mounted into a 

dual port 1X C-mount (U-DP/U-DP1CC; Olympus, Hamburg, Germany). An achromatic lens 

(“L3”; Thorlabs, Munich, Germany) focused the collimated laser beam onto the back-focal 

plane of the objective (“Objective”, LUMPlan 60x magnification NA 0.9 water immersion; 

Olympus, Hamburg, Germany) to create a parallel laser beam simultaneously illuminating 

a relatively large area of the tissue. Lenses were fixed in a cage system (60 mm) mounted 

on a breadboard (Thorlabs, Munich, Germany). Fluorescence emission was collected 

through the same objective. Before imaging it onto the camera chip (“sCMOS Camera”, 

Orca-Flash4.0V2 sCMOS Camera; Hamamatsu Photonics Deutschland GmbH, Herrsching 

am Ammersee, Germany), it passed back through the dichroic mirror (“DM”), an emission 

filter (“F2”, 655 nm longpass; Chroma Technology Corp., Vermont, USA), tube lens (“T”) 

and post-magnification lenses (“N”) (Olympus, Hamburg, Germany).  

 

An EPC-10 USB amplifier (HEKA Elektronik, Lambrecht, Germany) controlled by 

Patchmaster software (HEKA Elektronik, Lambrecht, Germany) was used as master to 

control the laser and camera. The laser was regulated via digital modulation (digital-current 

mode) with the Coherent Connection software (Coherent Inc., Santa Clara, USA). The 

camera was controlled with a digital start trigger (start trigger mode) with the Hokawo2.6 

software (Hamamatsu Photonics Deutschland GmbH, Herrsching am Ammersee, 

Germany). The “start trigger mode” is an external control mode, where, following the start 

trigger signal, the camera is operated in internal trigger mode enabling continuous imaging 

at the highest frame rate. The image acquisition rate during voltage imaging was 1000 

frames/s using 2x2 pixel binning of a 2048 x 184 pixel area (pixel size: 6.5 µm x 6.5 µm), 

which was set symmetrically to the center-line of the camera chip. 
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Figure 10: Diagram of custom-built wide field microscope 

Illumination source: (S) OBIS 637 nm LX 140 mW diode laser (Coherent Inc., Santa Clara, 
USA); Lenses: (L1) plan-concave lens (f=-6 mm), (L2) plan-convex lens (f=150 mm), (L3) 
achromatic lens (f=200 mm), (L1-3: Thorlabs, Munich, Germany); (T) tube lens (f=180 mm), 
(N) post-magnification lenses, (T and L: Olympus, Hamburg, Germany), Dichroic mirror: 
(DM) Notch-dichroic beamsplitter 633/70 nm (AHF Analysentechnik, Tübingen, Germany), 
Filters: (F1) 635/20 nm bandpass, (F2) 655 nm longpass, (F1 and F2: Chroma Technology 
Corp., Vermont, USA), Objective: LUMPlan 60x magnification NA 0.9 water immersion 
objective (Olympus, Hamburg, Germany), Detector: Orca-Flash4.0V2 sCMOS Camera 
(Hamamatsu Photonics Deutschland GmbH, Herrsching am Ammersee, Germany). 
 

Optogenetic and patch-clamp stimulation  

Voltage imaging with the reporter QuasAr2 was performed on a custom-built wide-field 

microscope described in Kralj et al. 2011 and Hochbaum et al. 2014 in the laboratory of 

Prof. Adam Cohen, Harvard University. SGNs were stimulated optically, using 500 ms 

pulses of 488 nm wavelength to induce photocurrent through activation of CheRiff 

(Hochbaum et al., 2014; Lou et al., 2016). Voltage imaging with the reporter QuasAr3 was 

performed on the custom-built wide field microscope described above (Figure 10). After 

postnatal AAV2/6 injection, (see chapter 3.2) organs of Corti were dissected at age p14-16 

and placed in the recording chamber in modified Ringer’s solution. Two different stimulation 

paradigms were used: (1) IHCs were patch-clamped (see chapter 3.4) and depolarized to  

-14 mV for various durations to induce presynaptic neurotransmitter release onto the 

postsynaptic SGNs, resulting in afferent activity. IHCs were patched in the perforated patch-
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clamp configuration and whole cell Ca2+-current and exocytic capacitance changes were 

measured. Simultaneously, QuasAr3 fluorescence was recorded before, during, and after 

IHC depolarization from several boutons targeting the stimulated IHC. (2) Alternatively, 

optogenetic stimulation of SGNs was performed by 473 nm laser illumination through an 

optic fiber (Laser: MBL-473-(FC), 50 mW, Changchun New Industries Optoelectronics 

Tech. Co., Ltd., China; Fiber: M42L05 - Ø50 µm, 0.22 NA, Thorlabs; Munich, Germany). 

The fiber was fixed on a piezoelectric micromanipulator (MP-285, Sutter Instruments 

Company, Novato, USA) and placed at approximately 250 µm distance from the SGN 

boutons. 50 ms laser pulses of increasing intensity (1 to 15 mW) were used to induce 

photocurrent through activation of CheRiff.  

Analysis 

QuasAr3 fluorescence was analyzed by choosing regions of interest (ROIs) at the location 

of SGN boutons adjacent to the IHC. ΔFROI/F0 was calculated by first subtracting and and 

then dividing the mean fluorescence of the ROIs over all time points (F0) from the mean ROI 

fluorescence of each time point (FROI). Analysis was performed using NIH ImageJ 

(Schneider et al., 2012) and Igor Pro software (Wavemetrics, Lake Oswego, USA). QuasAr2 

fluorescence intensity was analyzed as described in Hochbaum et al., 2014. Briefly, ROIs 

were manually chosen and the fluorescence was calculated with equal pixel weighting and 

no background subtraction or correction for photobleaching within individual ROIs in Matlab 

software (Mathworks). 

3.6 Immunohistochemistry, confocal and STED microscopy  

Cryo-sectioning of the cochlea 

The cochlea was prepared as described in 3.3. The bone above the apical turn of the 

cochlea was opened and the cochlea was fixed for 1 hour in 4% formaldehyde (FA) in 

phosphate buffered saline (PBS). Subsequently, the cochlea was washed in PBS for 1 day, 

decalcified in Ethylenediaminetetraacetic acid (EDTA) (120 mM, pH 7.0) for 3 days and 

incubated in sucrose (25% in PBS) for 3 days. The cochlea was transferred into Cryomatrix 

(Thermo Fisher Scientific, Massachusetts, USA) filled aluminum chambers and the 

modiolus was oriented horizontally before rapid freezing in liquid nitrogen. Samples were 

stored at -80°C until 16 µm thick cryo-sections were cut with a cryostat (2800 Frigocut E, 

Reichert-Jung Mannheim, Germany) at -25°C and mounted onto Superfrost Plus 

microscope glass slides (Menzel, Braunschweig, Germany). Samples were dried at room 

temperature and stored at -20°C.  
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Immunohistochemistry  

Immunohistochemistry was essentially performed as described in Khimich et al. 2005. 

Freshly dissected apical turns of the organs of Corti were either fixed with 4% FA in PBS 

on ice for 10 minutes or with methanol at -20 °C for 20 minutes. Thereafter, the whole-mount 

preparations or cryo-samples were washed 3x10 min in PBS and incubated for 1 hour in 

goat serum dilution buffer (GSDB: 16% normal goat serum, 450 mM NaCl, 0.3% Triton X-

100, 20 mM phosphate buffer, pH 7.4) in a wet chamber at room temperature. Primary 

antibodies (Table 2) were diluted in GSDB and applied overnight at 4°C in a wet chamber.  

 

Table 2: Antibodies and dilutions used in immunohistochemistry 

Antibody Dilution Source Provider 

anti-Bassoon 1:500 Guinea pig 
Synaptic Systems, Göttingen, 

Germany 

anti-Calretinin (CR7697) 1:2000 Rabbit Swant, Marly, Switzerland 

anti-CaV1.3 1:50 Rabbit 
Alomone Labs, Jerusalem, 

Israel 

anti-CtBP2 1:200 Mouse 
BD Biosciences, San Jose, 

USA 

anti-GFP 1:500 Mouse 
Abcam, Cambridge, United 

Kingdom 

anti-GluR 2/3 1:200 Rabbit Chemicon, Billerica, USA 

anti-RIM-BP2 1:200 Rabbit 
Synaptic Systems, Göttingen, 

Germany 

Synapsin1/2 1:500 Guinea pig 
Synaptic Systems, Göttingen, 

Germany 

AlexaFluor488 anti-chicken 1:200 Goat 
Invitrogen, Karlsruhe, 

Germany 

AlexaFluor568 anti-mouse 1:200 Goat 
Invitrogen, Karlsruhe, 

Germany 

AlexaFluor647 anti-rabbit 1:200 Goat 
Invitrogen, Karlsruhe, 

Germany 

Star580 anti-mouse 1:50 Goat 
Abberior Instruments GmbH, 

Göttingen, Germany 

Star635P anti-guinea pig 1:50 Goat 
Abberior Instruments GmbH, 

Göttingen, Germany 

Star635P anti-rabbit 1:50 Goat 
Abberior Instruments GmbH, 

Göttingen, Germany 
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After washing 3x10 min (wash buffer: 450 mM NaCl, 20 mM phosphate buffer, 0.3% Triton 

X-100) the tissue was incubated with secondary antibodies (Table 2) in GSDB in a wet light-

protected chamber for 1 hour at room temperature. Then, the samples were washed 3x10 

min in wash buffer and 1x10 min in 5 mM phosphate buffer, placed onto the glass 

microscopy slides with a drop of fluorescence mounting medium (Mowiol) and covered with 

thin glass coverslips. 

 

Fluorescence microscopy and data analysis 

Confocal images were acquired using a laser scanning confocal microscope (Leica TCS 

SP5, Leica Microsystems GmbH, Mannheim, Germany) equipped with 488, 561, and 633 

nm lasers for excitation and a 63x oil immersion objective (1.4 NA, Leica) and 40x oil 

immersion objective (1.4 NA, Leica) (Facility for Innovative Light Microscopy (FILM), Max-

Planck-Institute for Biophysical Chemistry, Göttingen). STED images were acquired using 

a 2-color STED microscope (Abberior Instruments, Göttingen, Germany) equipped with 561 

nm and 640 nm excitation lasers, a 775 nm laser for stimulated emission depletion (1.2 W) 

and a 100x oil immersion objective (1.4 NA, Olympus). Samples were treated in parallel 

and images were acquired in parallel, using same laser power, gain, and microscope 

settings.  

Images were analyzed using NIH ImageJ (Schneider et al., 2012), Igor Pro software 

(Wavemetrics, Lake Oswego, USA), OriginPro software, and Imaris software (using custom 

MATLAB code by Gerhard Hoch) and assembled for display in Adobe Illustrator software 

(Adobe Systems Inc., San Jose, USA). STED images of Ca2+-channel and bassoon clusters 

were fitted with a 2-dimensional (2D) Gauss function using a genetic fit algorithm (Rio and 

Pareschi, 2001) to the subarea of the XY image containing the Ca2+-channel or bassoon 

clusters to obtain FWHM estimates for the long and short axes of the clusters. To quantify 

the size and fluorescence intensity of the fitted clusters, the area and integral (volume) 

below the 2D Gaussian fit were calculated:  

 

  𝑨 = 𝝅 ×
𝑭𝑾𝑯𝑴𝒔𝒉𝒐𝒓𝒕

𝟐
×

𝑭𝑾𝑯𝑴𝒍𝒐𝒏𝒈

𝟐
   (Equation 7) 

 

  𝑽 = 𝟐𝝅 × 𝑨𝒎𝒑 ×
𝑭𝑾𝑯𝑴𝒔𝒉𝒐𝒓𝒕

𝟐×√𝟐×𝒍𝒏𝟐
×

𝑭𝑾𝑯𝑴𝒍𝒐𝒏𝒈

𝟐×√𝟐×𝒍𝒏𝟐
 (Equation 8) 

 

Here A is the area of the ellipse formed by the long and short axes of the 2D Gaussian fit, 

V is the volume under the 2D Gaussian fit function, Amp is its amplitude, FWHMshort and 

FWHMlong are the FWHM of the short and long axis, respectively. 
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3.7 Electron tomography 

Prof. Carolin Wichmann performed electron tomography and generated tomograms. 

Embedding was carried out as described previously in Wong et al. 2014. Organ of Corti 

whole-mounts were fixed for 1 h on ice with 4% paraformaldehyde (PFA) and 0.5% 

glutaraldehyde in 1x PBS, pH 7.2, followed by a fixation step with 2% glutaraldehyde in 0.1 

M sodium cacodylate buffer, pH 7.2, overnight on ice. The samples were washed 3 times 

in sodium cacodylate buffer, postfixed for 1 h with 1% osmium tetroxide ((v/v) in 0.1 M 

sodium cacodylate buffer), washed 3 times for 20 min in sodium cacodylate buffer followed 

by 3 brief washing steps in distilled water. All steps were performed on ice. The samples 

were stained en bloc with 1% (v/v) uranyl acetate in distilled water for 1 h on ice and washed 

3 times briefly with distilled water. Further, samples were dehydrated at room temperature 

in increasing ethanol concentrations, infiltrated in Epon resin (100% EtOH/Epon 1:1 (v/v), 

30 and 90 min; 100% Epon, overnight), and embedded for 48 h at 70°C in Epon resin. 

Following conventional embedding and trimming of the blocks, 250 nm sections were sliced 

using an Ultracut E microtome (Leica) with a diamond knife (Diatome). Sections were 

applied to Formvar-coated copper mesh grids and poststained with uranyl acetate-

replacement solution for 40 min, and 30 sec with lead citrate. 10-nm gold particles (British 

Bio Cell) were applied to both sides of the grid. Single-tilt series from -60° to +60° with 1° 

increment were acquired at 200 kV and a 12,000-fold magnification using a JEOL electron 

transmission microscope (JEM 2100), Gatan Orius 1200A camera and Serial-EM software.  

Tomograms were generated using the IMOD package etomo. Rendering of 3-dimensional 

(3D) models and quantitative image analysis were performed blinded using 3dmod. The 

size of synaptic ribbons and presynaptic densities (PD) was determined from the surface 

area of the reconstructed 3D objects. For RA-SVs the first row of vesicles around the 

synaptic ribbon within a distance of 80 nm was counted (Jung et al., 2015a). For MP-SVs 

the vesicles within a distance of 100 nm from the PD and 50 nm from the presynaptic plasma 

membrane were counted (Jung et al., 2015a). “Outlying”-SVs were counted as SVs that 

were located within 50 nm from the presynaptic plasma membrane and within the 

postsynaptic density area, but more than 100 nm from the PD. The distribution of MP-SVs 

and “outlying”-SVs regarding their distance to the PD and plasma membrane was analyzed 

by measuring the shortest (membrane-to-membrane) distance between SVs and the 

plasma membrane and PD. The cumulative distribution of SVs regarding their distance to 

the membrane and PD was calculated for each SV group. To compare the vesicle 

distribution statistically, the Kolmogorov-Smirnov test was applied.  

 



Materials and Methods 

 

 34 

3.8 Recordings of ABRs and DPOAEs 

Nadine Dietrich recorded ABRs and DPOAEs. For recordings of ABRs and DPOAEs mice 

were anesthetized with a combination of ketamine (125 mg/kg) and xylazine (2.5 mg/kg) 

i.p.. Their body temperature was maintained constant at 37°C using a heat blanket (Hugo 

Sachs Elektronik–Harvard Apparatus). For stimulus generation, presentation, and data 

acquisition, a TDT II System run by BioSig software (Tucker Davis Technologies) was used. 

Tone bursts (4/6/8/12/16/24/32 kHz, 10 ms plateau, 1 ms cos2 rise/fall) or clicks of 0.03 ms 

were presented at 40 Hz (tone bursts) or 20 Hz (clicks) in the free field ipsilaterally using a 

JBL 2402 speaker. The difference potential between vertex and mastoid subdermal needles 

was amplified 50,000 times, filtered (400 - 4,000 Hz) and sampled at a rate of 50 kHz for 20 

ms, 1,300 times, to obtain two mean ABR traces for each sound intensity. The hearing 

threshold was determined with 10 dB precision as the lowest stimulus intensity that evoked 

a reproducible response waveform in both traces by visual inspection by two independent 

observers. For DPOAE, continuous primary tones (frequency f2=1.2*f1, intensity l2=l1-10 dB 

SPL) were delivered through the MF1 speaker system (Tucker Davis Technologies) and a 

custom-made probe containing an MKE-2 microphone (Sennheiser). The microphone 

signal was amplified (DMX 6Fire, Terratec) and the DPOAE amplitude at 2*f2-f1 was 

analyzed by fast Fourier transformation using custom-written Matlab software (Mathworks). 

Sound pressure levels (SPL) are provided in decibel (dB) SPL root mean square (RMS) 

(tonal stimuli) or dB SPL peak equivalent (clicks).  

 

3.9 Recording of auditory nerve fiber single units 

Tanvi Butola performed extracellular field potential recordings from single units of ANFs and 

analyzed data. Experiments were carried out essentially as described in Jing et al. 2013. 

Briefly, the mice were anesthetized (urethane 1.32 mg/kg, xylazine 5 mg/kg, and 

buprenorphine 0.1 mg/kg i.p.), tracheotomized and placed in a custom-made head-holder. 

Their body temperature was controlled by a rectal temperature probe and maintained by 

heating the soundproof chamber to 26°C and a custom-designed heat plate. Following the 

partial removal of the left occipital bone and cerebellum, a high-impedance glass electrode 

filled with 3 M NaCl and 2% methylene blue was advanced towards the entry point of the 

auditory nerve into the cochlear nucleus, aiming for the SGNs. During the approach, a 50 

ms noise burst search stimulus of 80 dB was presented at 5 Hz through an open field Avisoft 

ScanSpeak Ultrasonic Speaker (Avisoft Bioacoustics) to elicit spiking of auditory neurons. 

Upon detection of a sound-responsive unit, spontaneous firing rate was determined in 
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silence for an initial duration of 10 s, and if it was <10 or 2 Hz, the recording duration was 

increased by 10 or 20 s, respectively. Tuning curves were obtained by varying stimulus 

intensities and frequencies of 15 ms tone bursts, to estimate the best threshold of hearing 

and the characteristic frequency with a 2 dB and 1/32 octave precision, respectively. Peri-

stimulus time histograms (PSTHs) to 50 ms tone burst stimulation or paired stimuli (forward 

masking) were obtained at the characteristic/best frequency at sound intensities at which 

spike rates were mostly saturated: 30 dB above threshold. 

SGNs were differentiated from cochlear nucleus neurons by (i) the electrode position 

(>1,200 µm below the surface of the cochlear nucleus), (ii) their primary-like PSTHs to 

suprathreshold 50 ms tone bursts presented at the characteristic/best frequency and (iii) 

their irregular firing pattern, as confirmed by a coefficient of variance (CV) of inter-spike 

interval of steady state firing response, >0.5. Recordings were performed using TDT system 

III hardware and an ELC-03XS amplifier (NPI electronics), offline analysis using waveform-

based spike detection using custom-written MATLAB software. Statistical tests employed 

for data analysis accompany respective figure legends. 

 

3.10 Data analysis and statistical tests 

Data analysis and statistical tests on electrophysiology, Ca2+-imaging, STED microscopy, 

and electron tomography data were done in Igor Pro software (Wavemetrics, Lake Oswego, 

USA). Normality of data was assessed with the Jarque-Bera test. The F-test was used to 

assess equality of variance in normally distributed data sets. The unpaired, two-tailed 

Wilcoxon rank test (Mann-Whitney test) was used to compare non-normal or data with 

unequal variances. Else, the unpaired, two-tailed Student’s t-test was used. To assess the 

equality of sample variances of the ∆F/F0 estimates for synaptic Ca2+-signals, a modified 

Levene’s test, using median instead of mean for improved robustness under non-normality 

was used. Data analysis for systems physiology experiments was done in MATLAB 

software. For statistical analysis of ABR and DPOAE data, a one-way ANOVA test and, for 

multiple comparisons, post-hoc Tukey’s test were used in Graphpad Prism. Statistical 

significance is indicated by * for p<0.05, ** for p<0.01, and *** for p<0.001. Data are 

presented as mean ± standard error of the mean (SEM), unless otherwise specified. Graphs 

were done with Igor Pro software (Wavemetrics, Lake Oswego, USA) and figures were 

assembled in Adobe Illustrator software (Adobe Systems Software Ireland Ltd.).  
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4.1 Introduction 

In order to indefatigably encode stimulating sounds with sub-millisecond precision, ribbon 

synapses of IHCs are specialized for high rates of synchronous exocytosis. As discussed 

in the General Introduction, a sophisticated, unconventional molecular machinery of 

cytomatrix proteins realizes this impressive performance. They regulate the number of 

synaptic voltage-gated CaV1.3 Ca2+-channels, tightly couple SVs to Ca2+-channels and 

provide fast replenishment of fusion-competent SVs for sustained exocytosis. Besides the 

CAZ proteins RIM (Coppola et al., 2001; Gebhart et al., 2010; Jung et al., 2015a; Kaeser et 

al., 2011; Kiyonaka et al., 2007), and bassoon (Davydova et al., 2014; Frank et al., 2010; 

Khimich et al., 2005), both playing a critical role in regulating the abundance of Ca2+-

channels at IHC AZs, lately the focus has turned to RIM-BPs (Figure 5, green). RIM-BPs 

play a central role for AZ function by acting as molecular hub between voltage-gated Ca2+-

channels and vesicular release sites (Hibino et al. 2002; Acuna et al. 2015; M. Müller, Genç, 

and Davis 2015; Grauel et al. 2016). 

Vertebrates express three RIM-BP isoforms – RIM-BP1 and 2 are primarily found in the 

brain, whereas RIM-BP3 is expressed outside the brain (Mittelstaedt and Schoch, 2007). 

All RIM-BPs contain an N-terminal and two C-terminal Src homology domains (SH3) and 

one Fibronectin type II domain (Figure 11). The N-terminal SH3 domain interacts with the 

proline-rich PXXP motif of bassoon (Davydova et al., 2014). The two C-terminal SH3 

domains interact with RIMs and the α1 subunits of voltage-gated P/Q-, N-, and L-type Ca2+-

channels (Hibino et al., 2002; Kaeser et al., 2011; Wang et al., 2000).  

 

 

 

Figure 11: Multidomain structure and interaction sites of RIM-binding proteins  

All three RIM-BP isoforms contain an N-terminal and two C-terminal Src homology domains 
(SH3) (green) and one Fibronectin type II domain (gray). The N-terminal SH3 domain (I) 
interacts with proline-rich PXXP motif of bassoon; the two C-terminal SH3 domains (II and 
III) interact with proline-rich PXXP motif of RIMs and the α1 subunit of voltage-gated P-/Q-, 
N-, and L-type Ca2+-channels, respectively.  
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These various protein interactions potentially enable RIM-BPs to regulate synaptic Ca2+-

channels and bring SVs into close vicinity to Ca2+-channels and their release sites and 

suggest RIM-BPs as a central node at the AZ function. Studies in mammalian hippocampal 

synapses and the calyx of Held however reported only moderate effects of RIM-BP 

disruption on synapse structure and functionality (Acuna et al. 2015; Grauel et al. 2016). In 

hippocampal synapses, RIM-BP2 was found to fine-tune the clustering of P/Q-type Ca2+-

channels at the AZ (Grauel et al., 2016): More distant positioning of the P/Q-type Ca2+-

channels to vesicular release sites upon disruption of RIM-BP2 affected the Ca2+-

nanodomains. Consequently, the SV release sensitivity to the slow Ca2+-buffer EGTA 

increased, and the initial release probability of SVs decreased (Grauel et al., 2016). 

Additional disruption of RIM-BP1 did not lead to further significant effects on synapse 

structure or function (Grauel et al., 2016). Studies from the calyx of Held reported that 

double knockout of RIM-BP1 and RIM-BP2 impaired the fidelity, reliability, and magnitude 

of neurotransmitter release, but not physiological Ca2+-channel properties (Acuna et al. 

2015). Based on an increased sensitivity of SV release to presence of the slow Ca2+-buffer 

EGTA, an increased coupling distance between Ca2+-channels and SVs was proposed. 

Therefore, RIM-BPs might have a selective role in coupling Ca2+-influx to SV-exocytosis 

during AP-driven transmitter release (Acuna et al. 2015). Compared to the relatively mild 

phenotype in mammalian synapses, the RIM-BP disruption phenotype in Drosophila 

melanogaster was more substantial. In Drosophila melanogaster, the RIM-BP ortholog 

DRBP was found to be essential for both the structural and functional integrity of the AZ of 

NMJs. In the absence of DRBP the presynaptic cytomatrix was disorganized, with no 

regularly shaped T-bars visible, impaired Ca2+-channel clustering and Ca2+-influx, and 

looser Ca2+-influx–exocytosis coupling, together resulting in a decreased SV release 

probability. Further, RRP recovery during paired-pulse stimulation was drastically reduced 

(Liu et al., 2011; Müller et al., 2015).  

At IHC AZs, RIM-BPs might turn out to be functionally especially relevant because of (1) 

the apparent lack of some CAZ proteins at IHC ribbon synapses (Vogl et al., 2015) that are 

essential at conventional synapses, (2) the direct interaction of RIM-BPs with bassoon, 

RIM2, and the pore-forming α1D subunit of L-type voltage-gated CaV1.3 Ca2+-channels 

(Hibino et al. 2002; Liu et al. 2011; M. Müller, Genç, and Davis 2015; Acuna et al. 2015; 

Davydova et al. 2014) and (3) a similar synapse architecture of IHC ribbon synapses to 

Drosophila melanogaster NMJs with its prominent T-bar dense projection (Wichmann and 

Sigrist, 2010). Whether RIM-BPs are expressed at IHC ribbon synapses and which 

functional role they might take as part of the unconventional synaptic machinery (Rutherford 

and Pangršič, 2012) remained to be investigated. Given their role at other synapses, RIM-

BPs are promising candidates to regulate the abundance of presynaptic Ca2+-channels and 
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to contribute to the Ca2+ nanodomain-like control of SV exocytosis at the IHC AZ. In this 

part of my PhD work, multidisciplinary state-of-the-art techniques and a constitutive RIM-

BP2 knockout mouse model were employed to characterize the function of RIM-BP2 in 

synaptic transmission in IHCs of the mouse cochlea.  

 

4.2 Results 

RIM-BP2 forms (double-) stripe shaped clusters at IHC AZs 

First, the expression and localization of RIM-BP2 at IHC AZs was investigated using 

immunohistochemistry and 2-color confocal microscopy of mature mouse IHCs (Figure 12). 

RIM-BP2 immunofluorescence (green) co-localized with presynaptic ribbons of IHC AZs, 

marked by CtBP2/RIBEYE (magenta). Specificity of the immunolabeling was confirmed by 

the absence of RIM-BP2 immunofluorescence in simultaneously processed littermate RIM-

BP2-/- IHCs (Figure 12A). In addition, some RIM-BP2 immunofluorescence spots were 

observed that did not co-localize with IHC ribbons. Most likely, they reflect expression of 

RIM-BP2 at conventional presynaptic terminals of efferent ANFs of lateral olivocochlear 

neurons projecting onto the postsynaptic boutons of the afferent SGNs adjacent to the base 

of the IHCs (connectivity illustrated in Figure 12B). Triple antibody staining for RIM-BP2, 

CtBP2/RIBEYE, and synapsin1/2, a marker for presynaptic terminals of efferent lateral 

olivocochlear neurons (Safieddine and Wenthold, 1999) (Figure 12B) confirmed this 

hypothesis. As RIM-BP2 immunofluorescence co-localized with either CtBP2/RIBEYE or 

synapsin1/2, but was not visible outside the marked presynaptic regions, RIM-BP2 likely 

specifically localizes to AZs of both IHCs and terminals of efferent lateral olivocochlear 

neurons. 

In addition, the nanoscale organization of RIM-BP2 at IHC AZs was determined using 2D 

2-color STED microscopy. A mostly stripe-like and double-stripe-like cluster shape of RIM-

BP2 immunofluorescence (green) was observed at the base of synaptic ribbons 

(CtBP2/RIBEYE, magenta), which could not be resolved by confocal microscopy (Figure 

12C). The clusters appear in a similar stripe-like pattern as other IHC cytomatrix proteins 

like bassoon and RIM2, which co-align with the presynaptic CaV1.3 Ca2+-channel clusters 

(Frank et al., 2010; Jung et al., 2015a). So far, a double-stripe like cluster shape was only 

described for CaV1.3 Ca2+-channels (Frank et al., 2010; Wong et al., 2014), suggesting a 

functional link between CaV1.3 Ca2+-channels and RIM-BP2 as central part of the 

presynaptic CAZ. Co-immunostaining of RIM-BP2 together with CaV1.3 Ca2+-channels was 

not possible, since the antibodies were available only from the same species (see Methods 

and Materials). 
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Figure 12: RIM-BP2 forms stripe like clusters at the base of the IHC synaptic ribbon  

[A] Expression analysis of RIM-BP2 in IHCs: Maximum projections of confocal stacks after 
immunohistochemistry of whole mount explants of apical organs of Corti of p21 mice. RIM-
BP2 immunofluorescence (green) co-localizes with presynaptic ribbons (CtBP2/RIBEYE, 
magenta) in RIM-BP2+/+ IHCs and is absent in parallel processed littermate RIM-BP2-/- 
IHCs, indicating specificity of the immunolabeling. Additional RIM-BP2 fluorescence in RIM-
BP2+/+ IHCs most likely localizes to presynaptic efferent terminals (illustrated in B). Scale 
bar: 10 µm. [B] Top: Confocal stacks (maximum projections) after triple-immunostaining of 
whole-mount explants of apical organs of Corti of p21 mice. RIM-BP2 immunofluorescence 
(green) co-localizes with either presynaptic ribbons (CtBP2/RIBEYE, magenta) or 
synapsin1/2 (gray), a marker of presynaptic terminals of efferent lateral olivocochlear 
neurons. Scale bar 5 µm. Bottom: Illustration of a mature murine IHC: Afferent type I SGNs 
innervate ribbon synapses at the IHC base. Efferent synapses of the lateral olivocochlear 
neurons form projections onto type I SGN synapses nearby the IHC. Location of presynaptic 
ribbons (CtBP2/RIBEYE) is highlighted in magenta. RIM-BP2 (green) forms clusters at the 
PD at the base of the synaptic ribbon and at the AZs of efferent presynaptic terminals. [C] 
Nanoscale organization of RIM-BP2: 2-color STED microscopy of individual AZs from whole 
mount explants of apical organs of Corti of p21 mice after immunohistochemistry resolved 
a mostly stripe or double-stripe-like expression pattern of RIM-BP2 (green) at the ribbon 
(CtBP2/RIBEYE, magenta). Simultaneously acquired confocal images could not resolve 
single or double stripes of RIM-BP2. Single XY-sections, Scale bar: 500 nm. Panels [A-C] 
adapted from Krinner et al., 2017.  
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RIM-BP2 promotes presynaptic Ca2+-influx in IHCs 

RIM-BPs interact with the pore-forming and voltage-sensitive α1D subunit of CaV1.3 Ca2+-

channels (Coppola et al., 2001; Hibino et al., 2002) and clusters in a similar stripe-shaped 

fashion as CaV1.3 Ca2+-channels (Figure 12C). Therefore, the effect of RIM-BP2 disruption 

on presynaptic Ca2+-influx and Ca2+-channel gating was studied, using the perforated patch-

clamp technique to record voltage-gated Ca2+-influx in RIM-BP2-/- IHCs. 

The Ca2+ IV revealed a significant (20%) reduction of the maximal whole-cell ICa amplitude 

in RIM-BP2-/- IHCs (Figure 13A). Further, the Ca2+-channel gating, including the Vhalf and 

the slope factor of fractional activation (k), (Figure 13B) as well as the kinetics of ICa 

inactivation (inactivation, Figure 13C) were analyzed, each of which was unaltered in RIM-BP2-

/- IHCs (Table 3). The channel open probability and single channel current were not tested 

in RIM-BP2-/- IHCs and thus cannot be excluded as a cause of the reduced ICa amplitude. 

Since no changes in the Ca2+-channel gating and kinetics were observed as consequence 

of RIM-BP2 disruption, these results favor the hypothesis of reduced overall Ca2+-channel 

numbers due to loss of RIM-BP2.  

 

 

Table 3: Summary of Ca2+-current (ICa) data from perforated patch-clamp recordings  

 Amplitude (pA) Vhalf (mV) Slope factor k inactivation (ms) 

RIM-BP2+/+ -157 ± 6 (n=17) -29.9 ± 0.9 (n=17) 6.9 ± 0.1 (n=17) 90 ± 11 (n=15) 

RIM-BP2-/- -126 ± 9 (n=16) -30. ± 1.5 (n=16) 6.7 ± 0.2 (n=16) 98 ± 13 (n=11) 

p-value 

0.02 

Wilcoxon rank 

test 

0.9 

Student’s t-test 

0.2 

Wilcoxon rank 

test 

0.3 

Wilcoxon rank 

test 

Summary of IHC average Ca2+-current (ICa) data from perforated patch-clamp recordings 
from RIM-BP2+/+ and RIM-BP2-/- IHCs (Figure 13). Whole cell ICa was analyzed regarding 
amplitude, Vhalf, Ca2+-channel gating (slope factor k representing voltage sensitivity of Ca2+-

influx), and kinetics of ICa inactivation (inactivation). Data represent IHC grand averages, mean 
± SEM; n=number of IHCs; p-values and statistical test are depicted for each dataset, 
significance level: n.s. p≥0.05, *p<0.05, **p<0.01, ***p<0.001. Table adapted from Krinner 
et al., 2017.   
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Since whole-cell patch-clamp recordings represent the summed Ca2+-current across the 

whole IHC’s plasma membrane, including extra-synaptic Ca2+-influx, the Ca2+-influx at 

individual AZs was investigated as a next step, using laser scanning confocal Ca2+-imaging 

(Francis et al., 2011; Frank et al., 2009; Ohn et al., 2016).  

 

Figure 13: RIM-BP2 promotes 

voltage-dependent Ca2+-influx in 

IHCs 

  
[A] Ca2+ IV of RIM-BP2 deficient (RIM-
BP2-/-, n=16, green) and control (RIM-
BP2+/+, n=17, black) IHCs. Ca2+-
current (Ica) amplitude was significantly 
reduced in RIM-BP2 deficient IHCs. 
 
[B] Fractional activation curves of the 
whole-cell Ca2+-current: A Boltzmann 
function was fitted to the normalized 
conductance curve calculated from the 
Ca2+ IV [A]. Average fit data (dashed 
traces) are displayed for both 
genotypes (RIM-BP2-/-, n=16, green, 
and RIM-BP2+/+, n=17, black). Dashed 
lines (gray) indicate Vhalf of the whole-
cell Ca2+-current.  
 
[C] Ca2+-current (ICa) during 200-ms 
step depolarization to -14 mV of RIM-
BP2 deficient (RIM-BP2-/-, n=11, 
green) and control (RIM-BP2+/+, n=15, 
black) IHCs. Direct comparison of the 
Ca2+-currents through scaling of the 
Ca2+-currents showed no difference in 
the Ca2+-current kinetics.  
 
[A-C] Data information: Data 
represent IHC grand averages, mean 
± SEM. Mean ± SEM and statistical 
tests and p-values are displayed in 
Table 3. Significance level: n.s. 
p≥0.05, *p<0.05, **p<0.01, ***p<0.001; 
n=number of IHCs; age of mice: p14-
p16. Panels [A-C] adapted from 
Krinner et al., 2017. 
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The ruptured patch-clamp technique was performed to load IHCs with the low affinity Ca2+-

indicator Fluo-4FF (KD 10 µM) to monitor Ca2+-signals, and in addition with a fluorescently 

conjugated dimeric RIBEYE-binding peptide (Francis et al., 2011) to visualize the location 

of synaptic ribbons. During IHC depolarization (20 ms to -7 mV) line scans were performed 

across the center of fluorescently labeled AZs to measure synaptic Ca2+-indicator 

fluorescence (Figure 14A).  

Figure 14: RIM-BP2 promotes the 

abundance of synaptic Ca2+-

channels in IHCs 

[A] Top: schematic representation of an 
IHC loaded with fluorescently labeled 
RIBEYE-binding peptide (10 µM) to 
visualize ribbons at the AZ, and a low 
affinity Ca2+ indicator Fluo-4FF (400 
µM) to monitor Ca2+ influx. Bottom: 
Confocal line scan across an IHC AZ 
showing ribbon fluorescence (Fribbon) 
and Fluo-4FF fluorescence change 
(ΔFFluo-4FF) during 20 ms depolarization 
(white bar). Temporal profile of Fluo-
4FF fluorescence from the ribbon center 
illustrates the calculated ΔF, which was 
normalized to its baseline fluorescence 
F0 hence ΔF/F0. Scale bar: 2 μm.  
[B] Top: Average ΔF/F0 for RIM-BP2+/+ 
(n=41, N=14, black line) and RIM-BP2-/- 
(n=42, N=13, green line) AZs during 
IHC depolarizations (black bar). ΔF/F0 
(grand averages, mean ± SD as shaded 
area) and its corresponding ICa (grand 
average) were significantly reduced in 
RIM-BP2-/- IHCs (Wilcoxon rank test, 
both p=0.01). The CV (mean) was 
comparable within genotypes (modified 
Levene’s test). Bottom: Representative 
Ca2+-signals (same intensity-scale) of 
RIM-BP2+/+ and RIM-BP2-/- AZs 
showing comparable spatial spread of 
synaptic Ca2+-influx estimated by a 
Gaussian fit (Student’s t-test, p=0.5; 
mean ± SEM). Scale bar: 2 µm. Data 
information: Significance levels: n.s. p ≥ 
0.05, *p<0.05, **p<0.01, ***p<0.001; 
n=number of AZs, N=number of IHCs; 
age of mice: p14-16. Panels [A-B] 
adapted from Krinner et al., 2017.. 
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A significant decrease in the average synaptic Fluo-4FF fluorescence change (F/F0) was 

observed at RIM-BP2-/- AZs (p=0.01, Figure 14B). Under the chosen experimental 

conditions ([Ca2+]e: 2 mM, Ca2+-buffering: 1 mM EGTA) Fluo-4FF fluorescence changes 

(∆F/F0) are expected to be a good proxy for the synaptic Ca2+-influx (Frank et al., 2009). 

The greater reduction in synaptic Ca2+-influx (41%) compared to that of the whole-cell Ca2+-

current (20% reduction, Figure 13A, p=0.01), indicates that RIM-BP2 preferentially 

regulates the number of synaptic Ca2+-channels and that RIM-BP2 deficient AZs may tether 

synaptic Ca2+-channels less efficiently.  

Within IHCs AZs, F/F0 estimates vary greatly (Figure 14B), which are representative of the 

commonly observed heterogeneity of ribbon synapses regarding their AZ size and Ca2+-

channel number and gating (Frank et al., 2009; Meyer et al., 2009; Ohn et al., 2016; Wong 

et al., 2014). Synapse heterogeneity was assessed by calculating the CV of the line 

scanF/F0 signals between 15 and 20 ms after depolarization onset and was comparable 

between the genotypes (RIM-BP2+/+ AZs CV=0.88, RIM-BP2-/- CV=0.86, Figure 14B). This 

indicates that even though the overall synaptic Ca2+-influx amplitude was reduced, synapse 

heterogeneity was unchanged. The spatial extent of synaptic Ca2+-signals was estimated 

by fitting a 1D Gaussian function to the maximal FFluo-4FF amplitudes of the line scan15 ms 

after depolarization onset. Compared to RIM-BP2+/+ AZs, the FWHM of RIM-BP2-/- AZs 

tended to be reduced without reaching statistical significance (RIM-BP2+/+ FWHM=1.43 ± 

0.03 µm, RIM-BP2-/- FWHM=1.34 ± 0.03 µm, p=0.5, Figure 14B).  

 

However, as confocal Ca2+-imaging under low intracellular Ca2+-buffering conditions (1 mM 

EGTA) does not provide insight into the nanoscale organization of Ca2+-channels at the AZ, 

super-resolution STED microscopy of CaV1.3 immunofluorescence was used next. 

Immunohistochemistry for CaV1.3 Ca2+-channels (Figure 15A: green) and the presynaptic 

ribbon (CtBP2/RIBEYE, Figure 15A: magenta) followed by 2-color STED microscopy was 

performed. Different apparent shapes of CaV1.3 immunofluorescence (likely reflecting 

synaptic CaV1.3 Ca2+-channel clusters) at ribbon-occupied AZs were first subjectively 

classified (Figure 15A) and then analyzed in a semi-quantitative way (Figure 15C, D).  
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Figure 15: RIM-BP2 promotes Ca2+-channel abundance at IHC ribbon synapse AZs 

[A,B] XY-sections of individual AZs acquired with high-resolution 2D 2-color STED 
microscopy. Whole mount explants of apical RIM-BP2+/+ and RIM-BP2-/- organs of Corti 
(age: p21-p23) were immunolabeled for CtBP2/RIBEYE (magenta) and CaV1.3 (green, [A]) 
or bassoon (green, [B]). Scale bars: 500 nm. [A] CaV1.3 clusters were subjectively classified 
in “(double-) stripe-like”, “round” and “complex” shapes. [C] 2D Gaussian fit functions were 
fitted (illustrated at bottom) to each individual STED image of stripe-shaped CaV1.3 
(example at top) and bassoon clusters to approximate the cluster dimensions. Fit 
amplitudes and FWHM of the long and short axis (illustrated) of the 2D Gaussian fit function 
were used for quantitative analysis in D, E. Scale bar: 500 nm. [D, E] Results of quantitative 
analysis of CaV1.3 [D] and bassoon [E] cluster STED images as described in [C]. Data of 
FWHM long and short axis, the ratio of long over short axis, and cluster area and integral 
are displayed as individual data points (RIM-BP2+/+ in gray, RIM-BP2-/- in green) and grand 
averages mean ± SEM (black). [D] RIM-BP2+/+ n=37, N=2; RIM-BP2-/- n=49, N=2. [E] RIM-
BP2+/+ n=127, N=2; RIM-BP2-/- n=124, N=2; [D, E] Mean ± SEM and statistical p-values are 
displayed in Table 2. Significance levels: n.s. p≥0.05, *p<0.05, **p<0.01, ***p<0.001; 
n=number of AZs, N=number of mice; age of mice: p21-p23. Panels [A-E] adapted from 
Krinner et al., 2017. 
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The majority of clusters formed a “stripe- or double stripe-like” arrangement (66%), 12% of 

Ca2+-channel clusters formed “round” and 22% “complex” cluster shapes. In RIM-BP2-/- AZs 

classes of shapes and their representation were similar with a trend towards less stripe-

shaped (62%) but more round (16%) appearance. This classification applies to apparent 

shapes of synapses seemingly laying en face in the imaging plane; however the clusters 

were not assessed with 3D STED resolution. 

 

Dimensions of “stripe-shaped” Ca2+-channel clusters were quantified using a genetic 2-

dimensional (2D) Gaussian function fit algorithm (Rio and Pareschi, 2001) to STED images 

of stripe-shaped Ca2+-channel clusters (illustrated in Figure 15C). A significant reduction 

was observed for the long axes’ FWHM (p=0.009), the area (22% reduction, p=0.01) and 

integral (51% reduction, p<0.0001) of 2D Gaussian fits to immunofluorescence from CaV1.3 

Ca2+-channel clusters in RIM-BP2-/- AZs, whereas the short axes’ FWHM was unaltered 

(p=0.1) (Figure 15D, Table 4). Consequently, there was a trend towards a smaller FWHM 

ratio of long and short axes, which, however, did not reach statistical significance (p=0.1, 

Figure 15D, Table 4). The area and integral calculated from the 2D Gaussian fit function 

were interpreted as measure of Ca2+-channel cluster size and number of Ca2+-channels in 

the cluster, respectively. However, one should note that the correlation between measured 

fluorescence and the number of Ca2+-channels might not be linear, thus does not provide a 

direct measure for Ca2+-channel numbers, but might serve as a proxy for relative Ca2+-

channel levels. In summary, the morphological STED data suggest a rounder and smaller 

cluster shape with a 51% reduced integrated CaV1.3 immunofluorescence for stripe-shaped 

Ca2+-channel clusters of RIM-BP2 deficient AZs (Figure 15D, Table 4). This is consistent 

with the reduction by 41% of theF/F0 found by Ca2+-imaging (Figure 14B) and suggests a 

reduction in the number of especially synaptic Ca2+-channels upon genetic RIM-BP2 

disruption.  

The same analysis (illustrated in Figure 15C) was performed for the RIM-BP2 interaction 

partner bassoon to investigate whether the reduction in clustered Ca2+-channels was 

mediated directly by RIM-BP2 or potentially indirectly through bassoon interaction. In both 

RIM-BP2+/+ and RIM-BP2-/- IHCs, bassoon formed stripe like clusters (Figure 15B). 

Quantification of clusters (Figure 15C, Table 4) revealed no difference in the FWHM of the 

long and short axis, long/short axis ratio and cluster area between the two genotypes. 

However, a significant increase in Bassoon cluster intensity (21%) was found in RIM-

BP2-/- AZs (Figure 15D, Table 4), which could potentially indicate a compensatory 

upregulation of synaptic bassoon levels. Overall, these data indicate that RIM-BP2 

regulates CaV1.3 Ca2+-channel clustering at IHC ribbon synapses probably downstream of 

bassoon. 
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Table 4: Summary of CaV1.3 and bassoon STED image quantification data  

 
FWHM long 

axis (nm) 

FWHM short 

axis (nm) 

Ratio 

long/short 

axis  

Area  

(µm2) 

Integral 

(µm2 x 

a.u.) 

CaV1.3  

RIM-BP2+/+ 

(n=37, N=2) 

403 ± 20  221 ± 8 1.85 ± 0.09 0.072 ± 0.005 18.3 ± 1.7 

CaV1.3  

RIM-BP2-/- 

(n=49, N=2) 

338 ± 13  205 ± 6 1.67 ± 0.06 0.056 ± 0.003 8.98 ± 0.9 

CaV1.3  

p-value 

0.009 

Wilcoxon 

rank test 

0.1 

Studen’t t-

test 

0.1 

Wilcoxon 

rank test 

0.01 

Studen’t t-test 

7.2e-8 

Wilcoxon 

rank test 

Bassoon RIM-

BP2+/+ 

(n=127, N=2) 

419 ± 10 251 ± 5 1.69 ± 0.03 0.035 ± 0.003 11.0 ± 0.5 

Bassoon RIM-

BP2-/- 

(n=124, N=2) 

420 ± 10 249 ± 5 1.73 ± 0.04 0.032 ± 0.003 14.0 ± 0.8 

Bassoon  

p-value 

0.9 

Student’s t-

test 

0.8 

Student’s t-

test 

0.8 

Wilcoxon 

rank test 

0.8 

Student’s t-

test 

0.01 

Wilcoxon 

rank test 

Summary of grant average data (mean ± SEM) from 2-color 2D STED images of 
immunofluorescently labeled stripe-shaped CaV1.3 Ca2+-channel clusters or bassoon 
clusters (Figure 15). Fit amplitudes and FWHM of the long and short axis of a 2D Gaussian 
fit function were used for quantitative analysis. Further, the ratio of long over short axis, 
cluster area and integral were calculated. p-values and statistical test are depicted for each 
dataset; significance levels: n.s. p≥0.05, *p<0.05, **p<0.01, ***p<0.001; n=numbers of AZs, 
N=number of mice; age of mice: p21-p23. Table adapted from Krinner et al., 2017. 
 
 

RIM-BP2 promotes IHC exocytosis  

The expression pattern of RIM-BP2 in IHC AZs (Figure 12C) and recent literature do not 

only suggest a link between RIM-BP2 and Ca2+-channels, but also to SVs potentially via 

interaction with bassoon or Rab3/RIM (Acuna et al. 2015; Acuna, Liu, and Südhof 2016; 

Davydova et al. 2014; Grauel et al. 2016; Hibino et al. 2002; Liu et al. 2011; M. Müller, 

Genç, and Davis 2015; Y. Wang et al. 2002). Hence, it was tested if RIM-BP2 regulates 

synaptic transmission, and whether such regulation could be mediated either via its 

promotion of Ca2+-channel abundance, via a role in coupling of Ca2+-channels to vesicular 

release sites, or by directly affecting SV release.  

For that, the perforated patch-clamp technique was employed, as it provides endogenous 

buffering conditions to measuring exocytic membrane capacitance changes (ΔCm) of the 

IHC in response to voltage-gated Ca2+-influx during step-depolarizations of various 
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durations (Figure 16A). IHC exocytosis can be described by two kinetic components, 

representing different SV release phases (Moser and Beutner, 2000). The RRP of SVs was 

described by a fast and saturating component that can be approximated by the exocytic 

ΔCm response of IHCs in response to 20 ms long depolarizations. RIM-BP2 disruption 

tended to reduce RRP exocytosis (by 21% for ΔCm elicited by 20 ms depolarization, but not 

reaching statistical significance: p=0.1) (Figure 16A). The reduction in exocytosis in the 

absence of RIM-BP2 became significant for the slower linear component of exocytosis (50 

ms depolarization, 38%, p=0.0007), which was attributed to the sustained phase of SV 

release, involving SV resupply after RRP depletion (Goutman and Glowatzki, 2007; Meyer 

et al., 2009; Pangršič et al., 2010; Schnee et al., 2005). To confirm this result, a line was fit 

to the sustained phase of exocytosis (from 50 to 200 ms) to estimate the kinetics of vesicle 

turnover during ongoing stimulation (Figure 16A, dashed line in top left panel). In RIM-BP2-

/- IHCs, SV turnover rates were significantly slower (193 fF/s) compared to RIM-BP2+/+ IHCs 

(279 fF/s) (p=0.001, Figure 16A right panel).  

In addition to the reduction in exocytosis during the sustained phase of SV release, a 

significant reduction in the whole-cell voltage-gated Ca2+-influx (integrated Ca2+-charge, 

QCa) was observed during all IHC depolarization durations (Figure 16A, bottom). This result 

is in line with the reduced ICa amplitude measured in Ca2+ IV recordings (Figure 13A), as 

well as with the suggested reduction in the number of synaptic Ca2+-channels (Figure 14 

and 15) in RIM-BP2 deficient IHCs. 

Since not only exocytosis, but also the Ca2+ influx was significantly reduced, it was next 

tested whether the reduction in whole-cell Ca2+-current alone could explain the discrepancy 

in exocytosis between the RIM-BP2+/+ and RIM-BP2-/- IHCs. For that the relation between 

the exocytic ΔCm and its corresponding Ca2+-charge (QCa) was investigated as the ratio 

between ΔCm and QCa for 20 ms step-depolarizations to assess the efficiency of Ca2+-influx 

to drive RRP exocytosis and for 50 to 200 ms step-depolarizations to assess the sustained 

phase of exocytosis (Figure 16B). The ΔCm/QCa ratio was comparable between both 

genotypes for 20 ms depolarizations (p=0.9). Nevertheless, there was indeed a significant 

difference between the two genotypes regarding the sustained phase of exocytosis (50 ms: 

p=0.003, 100 ms: p=0.04, 200 ms: p=0.01). These results indicate that the reduction in RRP 

exocytosis could be the consequence of reduced Ca2+-influx, whereas the discrepancy of 

the sustained exocytic responses exceeds what can be explained by the reduction in Ca2+-

influx pointing towards an additional role of RIM-BP2 in sustained SV exocytosis.  

For further analysis, the extracellular [Ca2+]e was elevated from 2 to 5 mM, thereby 

increasing single channel Ca2+-current (Figure 16B). As consequence the ratio between 

ΔCm and QCa in RIM-BP2-/- IHCs was elevated so that it was indistinguishable from RIM-

BP2+/+ levels at 2 mM [Ca2+] e (50 ms: p=0.3, 100 ms: p=0.9, 200 ms: p=0.4). This suggests 
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that boosting single Ca2+-channel current can overcome the alteration imposed by RIM-BP2 

disruption, potentially because Ca2+-domains around channels spread further out, reaching 

more remotely positioned fusion-competent vesicles. 

 

 

 

Figure 16: RIM-BP2 promotes sustained exocytosis in IHCs 

[A] Left: Bookman plot showing exocytic membrane capacitance changes (∆Cm, top) and 
corresponding whole-cell Ca2+-current integrals (QCa, bottom) of RIM-BP2 deficient (RIM-
BP2-/-, n=10, green) and control (RIM-BP2+/+, n=12, black) IHCs for various depolarization 
durations to -14 mV. QCa was significantly reduced during all depolarization durations 
(p=0.01 to 0.002). Exocytic ∆Cm was significantly reduced in RIM-BP2-/- IHCs for 50 
(p=0.0007), 100 (p=0.002), and 200 ms (p=0.0007) depolarizations representing the 
sustained phase of SV release, whose rate is governed by vesicle resupply to the RRP. A 
line was fit to the sustained phase of exocytosis to each individual IHC (from 50 to 200 ms, 
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dashed line) to estimate the kinetics of vesicle turnover. Right: IHC grand average (mean 
± SEM) of line fit slopes as estimate for SV turnover rates. A significant reduction was 
observed in RIM-BP2-/- IHCs (n=10, green) compared to control RIM-BP2+/+ IHCs (n=12, 
black) (Wilcoxon rank test, p=0.001). [B] The relation between the exocytic ΔCm and its 
corresponding integrated Ca2+-current (QCa) was calculated as the ratio between ΔCm and 
QCa from the data shown in the bookman plot [A]. A significant difference between the two 
genotypes (RIM-BP2+/+, n=12, black bars; RIM-BP2-/-, n=10, green bars) was observed for 
the sustained phase of exocytosis (50-200 ms, p=0.01 to 0.003), but not for RRP exocytosis 
(20 ms, p=0.9). After the extracellular [Ca2+]e was elevated from 2 to 5 mM in RIM-BP2-/- 
IHCs (n=7, white bars), the ratio between ΔCm and QCa was indistinguishable from RIM-
BP2+/+ levels (p=0.4 to 0.9). [A-B] Data information: Data represent IHC grand averages, 
mean ± SEM; Student’s t-test unless specified differently (see above), Significance levels: 
n.s. p≥0.05, *p<0.05, **p<0.01, ***p<0.001; n=number of IHCs; age of mice: p14-p16. 
Panels [A-B] adapted from Krinner et al., 2017. 
 
 

RIM-BP2 does not regulate Ca2+-influx – exocytosis coupling of RRP SVs in IHCs 

Since the reduction in exocytosis could not be fully explained by the reduction of presynaptic 

Ca2+-influx alone, a looser Ca2+-influx–exocytosis coupling was considered. Ca2+-influx – 

exocytosis coupling was investigated by estimating the apparent Ca2+ cooperativity m of 

exocytosis (Augustine et al., 1991) (Dr. Sangyong Jung contributed to this data set with n=3 

IHC recordings for each genotype). The number of open Ca2+-channels was gradually 

reduced during perforated patch-clamp experiments by slow perfusion of the 

dihydropyridine channel antagonist isradipine (10 µM) and 20 ms depolarizations separated 

by at least 60 sec were repeatedly applied for SV-replenishment to secure complete RRP 

recovery. The apparent Ca2+ cooperativity m was obtained by fitting the relationship of 

exocytic capacitance changes (∆Cm, y-axis) and the corresponding integrated Ca2+-charge 

(QCa, x-axis) for each individual IHC with a power function (∆𝐶𝑚 =  𝐴 × (𝑄𝐶𝑎)𝑚
) restricted to 

the range that did not show obvious saturation of ΔCm (Figure 17B). 

Previously m was found to be close to unity for IHCs after the onset of hearing, indicating 

Ca2+ nanodomain-like control of exocytosis to govern synaptic sound encoding (Figure 17A, 

yellow). For immature IHCs however, m was found >1 indicating a supralinear Ca2+ 

micodomain-like control of exocytosis (Figure 17A, orange) (Brandt et al., 2005; Jung et al., 

2015a; Wong et al., 2014). If RIM-BP2 was a molecular linker regulating the distance 

between the CaV1.3 Ca2+-channel complex and the vesicular release site, essential for 

establishing this Ca2+ nanodomain-like control, one would expect an increase in m upon 

RIM-BP2 disruption. However, the estimates of m were statistically indistinguishable 

between RIM-BP2+/+ and RIM-BP2-/- IHCs (1.55 ± 0.044 vs. 1.64 ± 0.17, mean ± SEM,  

p=0.5), indicating that RIM-BP2 is not required for the tight Ca2+ nanodomain-like coupling 

of readily releasable SVs to the Ca2+-channel, at least if SVs were replenished in due time.  
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Figure 17: RIM-BP2 disruption did not affect IHC Ca2+-influx – exocytosis coupling 

[A] Left, top: After the onset of hearing SV fusion seems under Ca2+ nanodomain-like 
control, where the release of each SV would be controlled by a single Ca2+-channel. Left, 
bottom: Before the onset of hearing SV fusion seems under Ca2+ microdomain-like control, 
where the release of each SV would be controlled by several Ca2+-channels. Right: Ca2+-
influx – exocytosis coupling can be assessed through the apparent Ca2+ cooperativity m of 
exocytosis. m is estimated by reducing the number of open Ca2+-channels during patch-
clamp experiments by slow perfusion of a channel blocker, e.g. the dihydropyridine channel 
antagonist isradipine (10 µM). The relationship of Ca2+-influx – exocytosis is plotted in a 
double logarithmic scale. For Ca2+ nanodomain-like control in mature IHCs, m was found to 
be close to unity (yellow line). For immature IHCs m was found to be >1, describing a 
supralinear micodomain-like (orange line) coupling. [B] Double-logarithmic plot of exocytic 
membrane capacitance changes (∆Cm) and corresponding whole-cell Ca2+-current integrals 
(QCa) during 20 ms depolarizations and perfusion of IHCs with isradipine to gradually 
decrease the number of open Ca2+-channels. Symbols represent individual data points from 
depolarizations of RIM-BP2 deficient (RIM-BP2-/-, n=7 IHCs, each 20 to 43 data points, 
green) and control IHCs (RIM-BP2+/+, n=6, each 20 to 42 data points, black). Solid lines 
represent best-fit power function to all data points of each genotype. The estimates of m for 
each individual cell were statistically indistinguishable between genotypes, indicating 
normal Ca2+-influx–exocytosis coupling (p=0.5, Student’s t-test). Dr. Sangyong Jung 
contributed IHC recordings to this data set (n=3 IHC recordings for each genotype). 
Significance levels: n.s. p≥0.05, *p<0.05, **p<0.01, ***p<0.001; n=number of IHCs; age of 
mice: p14-16. Panel [B] adapted from Krinner et al., 2017. 
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Hence, these results do not rule out that RIM-BP2 could serve in promoting the engagement 

of newly arriving SVs and Ca2+-channels after RRP depletion. Together with the increased 

Ca2+-dependence of exocytosis during sustained release rates, such a scenario could 

indeed cause the reduction of sustained exocytosis. Therefore, deficits in replenishing SVs 

from an upstream vesicle pool were investigated next. 

 

RIM-BP2 facilitates fast SV recovery after RRP depletion 

A paired-pulse paradigm measured vesicle refilling from an upstream vesicle pool into the 

RRP, using two consecutive 20 ms depolarization pulses to -14 mV with variable inter-

stimulus-intervals (Δt) (illustrated in Figure 18A). The first 20 ms pulse was supposed to 

deplete the RRP, the second 20 ms pulse was supposed to probe RRP recovery within 

variable intervals to the first pulse.  

 

 

Figure 18: RIM-BP2 facilitates fast recruitment of SVs after RRP depletion in IHCs 



Chapter 1 

 

 53 

[A] A paired-pulse protocol was used to assess SV-replenishment after RRP depletion. 

Average exocytic membrane capacitance change traces (Cm, middle) and corresponding 
Ca2+-currents (ICa, bottom) of RIM-BP2-/- (n=18, green) and control IHCs (RIM-BP2+/+, n=14, 
black) in response to a pair of 20 ms depolarizations separated by an inter-pulse interval 
(∆t) of 50 ms (top). SV-replenishment was measured as the paired-pulse ratio between the 
second and the first exocytic membrane capacitance change (∆Cm2/∆Cm1). [B] Paired-
pulse ratios (∆Cm2/∆Cm1) at varying inter-pulse intervals (∆t) were significantly reduced in 
RIM-BP2-/- IHCs (n=18, green) compared to control IHCs (RIM-BP2+/+, n=14, black) for RRP 
recovery times of 50 ms (p=0.02). Longer RRP recovery times (>50 ms) were sufficient for 
RRP-replenishment in RIM-BP2 deficient IHCs (p=0.1 to 0.8). The time course of RRP 
recovery was estimated by fitting the paired-pulse data with a single exponential fit function 

(dashed lines).  was significantly slower in RIM-BP2-/- IHCs (mean ± SEM: 107 ± 24 ms, 
n=5, green) compared to RIM-BP2+/+ IHCs (mean ± SEM: 44 ± 7 ms, n=5, black, p=0.03, 
Student’s t-test). Data represent IHC averages (empty circles) and grand averages (filled 
circles, dashed lines), mean ± SEM. Student’s t-test: n.s. p≥0.05, *p<0.05, **p<0.01, 
***p<0.001. [A, C] n=number of IHCs; age of mice: p14-p16. Panels [A-B] adapted from 
Krinner et al., 2017. 
 

RRP recovery was slowed in RIM-BP2-/- IHCs, as is evident from significantly smaller 

responses at an interval of 50 ms (p=0.02), likely representing a fast recycling SV pool. 

Longer RRP recovery times (>50 ms) were sufficient for RRP-replenishment in RIM-BP2 

deficient IHCs (Figure 18B). The time course of RRP recovery was estimated by fitting the 

paired-pulse data with a single exponential fit function to a subset of recordings where 

sufficient data was collected to allow reliable fitting (Figure 18B, dashed lines). The RRP 

refilling time constant (, mean ± SEM) was slower in RIM-BP2-/- IHCs (107 ± 24 ms) 

compared to RIM-BP2+/+ IHCs (44 ± 7 ms) (p=0.03). This indicates that RIM-BP2 facilitates 

fast recruitment of SVs after RRP depletion in IHC ribbon synapses. Speculatively, RIM-

BP2 could be involved in a fast dynamic process of guiding SVs into close proximity to a 

nearby Ca2+-channel. Longer RRP recovery times (>50 ms), however, were sufficient for 

normal RRP-replenishment in RIM-BP2 deficient IHCs (Figure 18B), likely because of the 

increasing probability of alternative protein-protein interactions taking place providing the 

proper positioning between the replenished SVs and their release site. 

 

RIM-BP2 regulates the distance of SVs to the presynaptic IHC membrane  

The effect of RIM-BP2 disruption on the ultrastructural level of IHC ribbon synapses was 

examined by transmission electron tomography (tomography and 3D tomogram 

reconstructions were performed by Prof. Dr. Carolin Wichmann). Reconstructed virtual 

tomogram sections and the respective 3D tomogram models of representative ribbon 

synapses of RIM-BP2-/- and RIM-BP2+/+ IHCs are displayed in Figure 19A. The overall 

synapse ultrastructure in RIM-BP2-/- IHCs was normal (Figure 19A): Synaptic ribbons (red) 

were anchored to the presynaptic membrane (blue) via a PD (pink) and the size of synaptic 

ribbons and the PDs were statistically indistinguishable from RIM-BP2+/+ IHCs (Figure 19B, 
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left). SVs were classified into three pools. Those SVs that appeared directly adjacent to the 

ribbon (within 80 nm) within the first SV row were considered as RA-SVs (Figure 19A, 

green). Those SVs that were directly facing the AZ membrane (within 100 nm from the PD 

and within 50 nm from the presynaptic plasma membrane) were classified as MP-SVs 

(Figure 19A, MP-SVs, yellow) (Jung et al., 2015a). SVs that fit both criteria were classified 

as MP-SVs. As consequence, RA-SVs comprise only those SVs that are more than 50 nm 

away from the plasma membrane (Figure 19A). SVs that were in close proximity to the 

plasma membrane (≤ 50 nm) and the area marked by the postsynaptic density, but not 

within 100 nm from the PD were classified as “outlying”-SVs. The number of MP-SVs, RA-

SVs and “outlying”-SVs were unaltered in RIM-BP2-/- IHCs (Figure 19B, right). 

 

Figure 19: RIM-BP2 does not influence ribbon synapse ultrastructure or the number 

of SVs at IHC AZs 
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[A] Exemplary virtual sections of RIM-BP2+/+ and RIM-B2-/- ribbon synapses (top) and side 
and top view of respective 3D models (bottom). The overall synapse ultrastructure in RIM-
BP2-/- IHCs was normal: Synaptic ribbons (red) were anchored to the presynaptic 
membrane (blue) via a PD (pink). SVs that were located within 100 nm distance from the 
PD and with a membrane-to-membrane distance of ≤50 nm away from the presynaptic 
plasma membrane were classified as “membrane proximal” (MP) SVs (yellow). SVs that 
appeared within 80 nm around the presynaptic ribbon within the first row of SVs around the 
ribbon were considered as “ribbon associated” (RA) SVs (green). Scale bar: 100 nm. Prof. 
Dr. Carolin Wichmann performed tomography and 3D tomogram reconstructions. [B] 
Quantitative analysis of electron tomograms: In RIM-BP2-/- AZs (n=9, N=2) no significant 
differences were found compared to RIM-BP2+/+ AZs (n=9, N=2) when comparing 
reconstructed ribbon area (Student’s t-test p=0.13) and PD area (Wilcoxon rank test p=0.13) 
(left), as well as the average number of MP-SVs (Student’s t-test p=0.14), RA-SVs 
(Student’s t-test p=0.76), or “outlying”-SVs (Student’s t-test p=0.14) (right). Data represent 
grand averages, mean ± SEM; Significance levels: n.s. p ≥ 0.05, *p<0.05, **p<0.01, 
***p<0.001; n=number of tomograms, N=number of mice; age of mice: p21. Panels [A-B] 
partly adapted from Krinner et al., 2017. 
  

Since RIM-BP2 might act as molecular linker between SVs and Ca2+-channels via 

interaction with bassoon and RIMs/Rab3, the average distance and distribution of MP and 

“outlying”-SVs regarding their distance to the plasma membrane and the PD was studied in 

more detail. For that, the shortest (membrane-to-membrane) distance between MP-SVs 

(Figure 20A) or “outlying”-SVs (Figure 20B) and the plasma membrane or the PD was 

measured (Figure 20). The cumulative distribution function shows the probability of SVs to 

be located at a specific distance with respect to the plasma membrane or PD (Figure 20C-

F). For visualization, the distance of SVs with respect to the plasma membrane or PD was 

plotted in histograms (Figure 20C-F). The average distance between MP-SVs and the PD 

and plasma membrane was unaltered (Figure 20A), whereas the distribution of MP-SV with 

respect to the plasma membrane was changed in the absence of RIM-BP2 (Figure 20C). 

Based on the cumulative distribution of MP-SVs regarding their distance to the membrane 

(solid lines), the MP-SV pool was divided into a large fraction (70%) of SVs within 0-25 nm 

membrane distance and a small fraction (30%) of SVs located within 25-50 nm membrane 

distance. The distributions differed for both fractions of MP-SVs between RIM-BP2+/+ and 

RIM-BP2-/- AZs (small fraction: p=0.02 and large fraction: p=0.004). There was a tendency 

of more MP-SVs in RIM-BP2-/- AZs to populate the smaller distance bins (Figure 20C), while 

less SVs were observed with intermediate distance (~20-40 nm). A second accumulation of 

MP-SVs further away from the membrane (~40-50 nm) appeared, which seemed absent at 

RIM-BP2+/+ AZs. The normal count of MP-SVs (Figure 19B) and the unaltered lateral 

distribution of MP-SVs with respect to the PD (Figure 20E) suggests that exocytosis is 

generally not limited by the availability of SVs. RIM-BP2 might instead regulate the distance 

of SVs to the plasma membrane, which might be physiologically reflected in fast SV 

recruitment to the plasma membrane for release.  
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Figure 20: RIM-BP2 regulates the distribution of MP-SVs and “outlying”-SVs 

Distribution of MP-SVs [A,C,E] and “outlying”-SVs [B,D,F] regarding their distance to the 
plasma membrane [C,D] and PD [E,F]. The shortest (membrane-to-membrane) distance 
between MP- and “outlying”-SVs and the plasma membrane and PD was measured. [A, B] 
Average (filled circles, mean ± SEM) and individual SV distance (open circles) to the plasma 
membrane (y-axis) and PD (x-axis) was plotted for MP-SVs [A] and “outlying”-SVs [B]. [A] 
On average, the distance of MP-SVs to the plasma membrane (Wilcoxon rank test p=0.29) 
and PD (Wilcoxon rank test p=0.44) was unaltered in RIM-BP2-/- AZs. [B] On average 
“outlying”-SVs were shifted closer to the plasma membrane (Student’s t-test p=0.005) and 
further away from the PD (Wilcoxon rank test p=0.005) in RIM-BP2-/- ribbon synapses. [C-
F] Histograms of SV distance from membrane [C,D] or PD [E,F] (bin size 5 nm in C-E and 
15 nm in F) show the number of SVs (right axis) with respect to their distance to the plasma 
membrane or PD. The cumulative distribution function (solid line) shows the probability of 
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SVs (left axis) to be located at a specific distance to the membrane or PD (x-axis). The 
Kolmogorov-Smirnov test was used to compare the probability distribution of SVs. [C] A 
large fraction (70%) of MP-SVs was located within ~ 25 nm and a small fraction (30%) of 
SVs was located within ~ 25 nm to 50 nm away from the plasma membrane. A significantly 
different cumulative distribution of SVs was observed between the two genotypes for both 
the large (p=0.004) and the small (p=0.02) fractions of MP-SVs. [E] The distribution of MP-
SVs with respect to the PD was unaltered in RIM-BP2-/- ribbon synapses. [D] In RIM-BP2-/- 
ribbon synapses, “outlying”-SVs had a significantly higher probability to be located closer to 
the membrane (p=0.049) compared to RIM-BP2+/+ ribbon synapses. [F] “Outlying”-SVs had 
a significantly higher probability to be located more distal from the PD in RIM-BP2-/- ribbon 
synapses (p=0.004). [A-F] Significance levels: n.s. p ≥ 0.05, *p<0.05, **p<0.01, ***p<0.001; 
RIM-BP2+/+ IHCs (n=9, N=2), RIM-BP2-/- IHCs (n=9, N=2), n=number of tomograms, 
N=number of mice; age of mice: p21. Panels [C and E] adapted from Krinner et al., 2017. 
 

In the absence of RIM-BP2, “outlying”-SVs were on average positioned further away from 

the PD and additionally closer to the plasma membrane (Figure 20B, both p=0.005). The 

shift in the cumulative distribution of “outlying”-SVs with respect to the plasma membrane 

indicates that in RIM-BP2-/- AZs, SV are overall shifted into closer proximity to the 

membrane (Figure 20D, p=0.049). Whereas the cumulative distribution of “outlying”-SVs 

with respect to the PD indicates that SV in RIM-BP2-/- AZs, are distributed over a wider 

presynaptic area (Figure 20F, p=0.004). Whether the “outlying”-SV pool represents SVs 

that are pre-synaptically recruited for exocytosis, was not studied yet in IHCs.  

 

RIM-BP2 disruption causes a mild impairment of synaptic sound encoding  

In order to probe the consequences of RIM-BP2 disruption on the auditory systems function, 

recordings of ABRs and DPOAEs were performed in RIM-BP2-/- mice (measurements by 

Nadine Dietrich). DPOAEs probe the function of OHCs, mediating cochlear amplification. In 

both genotypes, normal DPOAE amplitudes were recorded (for all F2 intensities: p>0.05) 

(Figure 21C), indicating intact mechanoelectrical transduction and cochlear amplification. 

ABRs, on the other hand, reflect the synchronized neural activation of the stages of the 

auditory pathway. ABR thresholds were mildly but significantly elevated in 8-10 week-old 

RIM-BP2-/- mice (Figure 21A; p4kHz=0.005, p8kHz=0.02, p16kHz=0.002). In addition, the ABR 

wave I – reporting the compound AP of SGNs, which get innervated by IHC ribbon synapses 

– was significantly reduced (Figure 21B; p=0.03). This suggests a mild synaptopathic 

hearing impairment for RIM-BP2-/- mice (Moser and Starr, 2016). Interestingly, the ABR 

wave III amplitude was also significantly reduced (Figure 21B; p<0.0001) in RIM-BP2-/- 

mice. The ABR wave III likely represents the synchronized activity of neurons from the 

superior olivocochlear complex (Melcher et al., 1996), suggesting an additional role of RIM-

BP2 downstream of the IHC ribbon synapse.  
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Moreover, the smaller ABR wave I amplitude in the absence of RIM-BP2 could have 

different reasons: Changes in the afferent innervation of IHC ribbon synapses or changes 

in the spiking behavior of the postsynaptic ANFs, both of which were investigated next.  

 

 

 

 

 

 

Figure 21: RIM-BP2 disruption 

causes a mild synaptopathic 

hearing impairment  

 

 [A] ABR thresholds were elevated 
in RIM-BP2 deficient mice 
compared to control mice, which 
reached significance at 4 
(p=0.005), 8 (p=0.02), and 16 kHz 
(p=0.002).  
 
[B] Compared to control mice ABR 
waveforms (80 dB peak equivalent, 
20 Hz stimulation rate) of RIM-BP2 
deficient mice elicited a significantly 
reduced ABR wave I amplitude 
(p=0.03) and wave III amplitude 
(p<0.0001), representing the 
compound AP of SGNs and the 
olivocochlear nucleus, respectively.  
 
[C] At the frequency of the 
strongest increase of hearing 
threshold (16 kHz, see A), 
otoacoustic emission amplitudes 
were unaltered in RIM-BP2 
deficient mice compared to control 
mice (p=0.1 to 0.9), indicating 
normal mechanoelectrical 
transduction (F1 13.3 kHz, F2 16 
kHz).  
 
[A-C] Data information: Data 
represent averages, mean ± SEM; 
One way ANOVA, p-values are 
from post hoc Tukey’s multiple 
comparison: n.s. p ≥ 0.05, *p<0.05, 
**p<0.01, ***p<0.001; RIM-BP+/+ 
n=12 (black), RIM-BP-/- n=10 
(green); n=number of mice; age of 
mice: 8-10 weeks. Panels [A-C] 
adapted from Krinner et al., 2017. 
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RIM-BP2 disruption does not affect IHC afferent connectivity  

First, IHC to afferent fiber connectivity was examined using confocal microscopy and 3D 

analysis of pre- and postsynaptically immunolabeled synapses. RIBEYE/CtBP2 served as 

a presynaptic ribbon marker and GluA2/3 served as a postsynaptic marker labeling AMPA 

receptors (Figure 22A) (Khimich et al., 2005). The number of ribbons (RIBEYE/CtBP2 

spots) and ribbon-occupied synapses (number of juxtaposed RIBEYE/CtBP2 and GluA2/3 

spots) were comparable in RIM-BP2-/- and RIM-BP2+/+ IHCs (p=0.9 and 0.6, respectively) 

(Figure 22B), indicating that the afferent IHC connectivity was unaltered. 

 

 

Figure 22: RIM-BP2 loss does not affect IHC afferent connectivity 

[A] Left: Maximum projections of confocal stacks from whole mount explants from apical 
organs of Corti, immunolabeled for CtBP2/RIBEYE (magenta) and GluA2/3 (green). Scale 
bar: 5 µm. Right: Higher magnification shows details of synapses. Scale bar: 2 µm [B] 3D 
analysis of fluorescently labeled IHC ribbon synapses shows that the number of ribbons 
(CtBP2/RIBEYE spots) and the number of ribbon-occupied synapses (number of 
juxtaposed RIBEYE/CtBP2 and GluA2/3 spots) per IHC were not altered in RIM-BP2 
deficient (RIM-BP2-/-, N=4) IHCs compared to control (RIM-BP2+/+, N=4) IHCs. Data 
represent grand averages, mean ± SEM; Wilcoxon rank test: n.s. p≥0.05, *p<0.05, **p<0.01, 
***p<0.001; n=number of IHCs, N=number of mice; age of mice: p21. Panels [A-B] adapted 
from Krinner et al., 2017. 
 

Second, extracellular recordings from postsynaptic ANFs of SGNs were performed to study 

sound encoding in vivo (experiments and data analysis were performed by Tanvi Butola). 

This method provides analysis of single AZ activity as each SGN is thought to receive input 

from just a single IHC AZ (Liberman 1978). Frequency tuning (Figure 23B) and sound 

thresholds (Figure 23B’) were unaltered in SGNs of RIM-BP2-/- mice, supporting the findings 

of intact cochlear amplification. However, a significantly higher fraction of ANFs with low 

spontaneous firing rates (“low-SR” SGNs) was found in RIM-BP2 deficient mice (Figure 

23A, p=0.04). Together, the unaltered sound thresholds and the decreased spontaneous 

firing rate in RIM-BP2-/- SGNs could therefore result from the reduction of presynaptic Ca2+-

channels (Figure 14 and 15) and a consequential overall reduction of spontaneous SV 
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release in IHCs. Likely, the increase in low-SR SGNs is not the consequence of recording 

from a higher fraction of low-SR / high threshold SGNs in RIM-BP2-/- mice, since spike 

thresholds were unaltered in RIM-BP2-/- mice (Figure 32B).   

 

 

 

 

 

 

 

Figure 23: Increased fraction of low-SR 

SGNs in RIM-BP2-/- mice  

  

[A] Distribution of spontaneous firing rates of 

single units in RIM-BP2+/+ (black; n=35; N=6) 

and RIM-BP2-/- (green; n=43; N=3) ANFs. 

The histogram represents the distribution of 

their frequency (left axis) and the solid lines 

represent the cumulative probability density 

(right axis) of spontaneous firing rates. The 

fraction of ANFs with low spontaneous firing 

rates was significantly higher in RIM-BP2-/- 

mice (Wilcoxon rank test, p=0.04). 

 

[B] Representative tuning curves of ANFs 

from RIM-BP2+/+ (black; n=41; N=6) and RIM-

BP2-/- (green; n=48; N=4) mice demonstrate 

clear and unimpaired frequency tuning in 

RIM-BP2-/- SGNs.  

 

[B’] ANF sound thresholds at their 

characteristic frequency were comparable 

between the two genotypes (Wilcoxon rank 

test, p=0.82): 40.75 ± 4.60 (median: 40.0) dB 

for RIM-BP2+/+ (n=41; N=6) and 39.66 ± 3.4 

(median: 40.00) dB for RIM-BP2-/- (n=48; 

N=4). Data reported as mean ± SEM. Each 

data point represents the response of a 

single ANF. 

 

[A-B’] Tanvi Butola performed experiments 
and data analysis. Data information: 
Significance levels: n.s. p ≥ 0.05, *p < 0.05, 
**p < 0.01, ***p < 0.001; Box and whisker plot 
represents median, lower/upper quartiles and 
10th-90th percentiles; n=number of ANFs, 
N=number of animals. Age of mice: 10 
weeks. Panels [A-B’] adapted from Krinner et 
al., 2017. 
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The onset firing rate (peak rate) of SGN responses (Figure 24A) evoked by 50 ms tone 

bursts, at their characteristic frequency and 30 dB SPL above spike threshold, reflects the 

maximal initial RRP SV release rates of the presynaptic IHCs. The adapted spike rate 

reflects RRP depletion and replenishment dynamics convolved with postsynaptic 

refractoriness (Figure 24A) (Buran et al., 2010; Frank et al., 2010; Wittig and Parsons, 

2008). The adapted rate was unaltered in RIM-BP2-/- SGNs, whereas the peak firing rate 

was significantly reduced (Figure 24A, p=0.02). Furthermore, the firing onset was 

significantly delayed in RIM-BP2-/- SGNs, which is reflected by an increased median first 

spike latency (FSL) (Figure 24A’, p=0.004). On the other hand, the FSL variance remained 

unchanged in RIM-BP2-/- SGNs (Figure 24A’). Likely, the mild impairment of sound onset 

coding reflected by the reduced peak firing rate and delayed firing onset explain the ABR 

wave I amplitude reduction and the increased hearing thresholds in RIM-BP2-/- mice.  

 

The normal adapted spike rate of RIM-BP2-/- SGNs (Figure 24A) does not support the notion 

from IHC electrophysiology, where a reduced rate for the sustained phase of exocytosis 

(Figure 16A) and slower SV recruitment after RRP depletion (Figure 18B) was found in RIM-

BP2-/- IHCs. To investigate this in more detail in vivo, the forward masking paradigm (Harris 

and Dallos, 1979) was used to measure SV-replenishment and provide an estimate of the 

kinetics of the RRP recovery after partial depletion (Figure 24B). In RIM-BP2-/- SGNs, probe 

responses following a 100 ms masker tone and short recovery intervals tended to be smaller 

for 4 ms inter-stimulus-intervals (p=0.07) and were significantly reduced for 16 ms inter-

stimulus-intervals (p=0.04). For longer inter-stimulus-intervals, the recovered response in 

RIM-BP2-/- SGNs was comparable to that of RIM-BP2+/+ SGNs and the recovery time 

constant was unaltered. In summary, these data point towards slower recovery from forward 

masking, which agrees well with the notion from IHC electrophysiology, suggesting that 

without RIM-BP2, fast SV-replenishment is slowed.  
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Figure 24: Reduced onset-firing rate, 

increased first spike latency and 

slower recovery in RIM-BP2-/- SGNs 

[A] Peak-aligned peri-stimulus time 

histogram (PSTH) of the ANF responses 

to 50 ms tone burst stimulation (at 

characteristic frequency, 30 dB above 

threshold; stimulus illustrated in gray) in 

RIM-BP2+/+ (black; n=35; N=6) and RIM-

BP2-/- (green; KO n=43; N=4). PSTH 

presented as mean (solid lines) ± SEM 

(shaded area). Peak onset firing rate (left 

panel) was reduced in RIM-BP2-/- ANFs 

(Student’s t-test, p=0.02).  

[A’] Median first spike latency (FSL) of 

PSTH (same ANF single units as in A) 

was increased in RIM-BP2-/- ANFs 

(Student’s t-test, p=0.004), while the 

variance of FSL remained unchanged 

(Wilcoxon rank test, p=0.23).  

[B] The time course of recovery of the 

ANF was assessed by a 100 ms masker 

tone followed by a 15 ms probe tone 

presented after a silent interval (recovery 

time) of variable duration (Δt) (at 

characteristic/best frequency, 30 dB 

threshold; stimulus paradigm illustrated in 

gray). Recovery was plotted as the ratio 

of ANF peak probe tone response to ANF 

peak masker tone response (solid boxes 

± SEM) and was reduced in RIM-BP2-/- 

ANFs for short recovery times (t 16 ms: 

Student’s t-test, p=0.04). Dotted lines 

represent single exponential fits to the 

time course of recovery. Time constants 

(τ) of recovery (mean ± SEM) were 

comparable between the two genotypes 

(Wilcoxon rank test, p=0.81). RIM-BP2+/+ 

(black; n=40; N=6) and RIM-BP2-/- 

(green; KO n=43; N=4). 

[A-B] Tanvi Butola performed 
experiments and data analysis. Data 
information: Significance levels: n.s. p ≥ 
0.05, *p < 0.05, **p < 0.01, ***p < 0.001; 
Box and whisker plots represent median, 
lower/upper quartiles and 10th-90th 
percentiles; n = number of ANFs, N = 
number of animals. Age of mice: 10 
weeks. Panels [A-B] adapted from 
Krinner et al., 2017. 
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4.3 Discussion 

Faithful encoding of acoustic information at the IHC-SGN synapse requires precise 

conversion of a sound-driven IHC receptor potential to presynaptic glutamate release. To 

achieve this challenging task, voltage-gated L-type (CaV1.3) Ca2+-channels are positioned 

within nanometer proximity to the synaptic vesicle fusion machinery (Pangršič et al., 2015). 

At AZs of mature apical mouse IHCs approximately 80-100 Ca2+-channels are thought to 

be clustered in the plasma membrane below the ribbon (Brandt et al., 2005; Wong et al., 

2014). Direct electrophysiological access to IHCs enables the examination of 

depolarization-induced presynaptic Ca2+-influx and simultaneous analysis of individual AZ 

Ca2+-influx via fast confocal Ca2+-imaging. Therefore, the IHC ribbon-type synapse is a 

suitable model system for detailed analysis of Ca2+-channel abundance and localization as 

well as Ca2+-influx – exocytosis coupling.  

So far, only few cytomatrix proteins have been identified that regulate the number, function 

and coupling of Ca2+-channels to the IHC vesicular release machinery. In my thesis, I 

examined the role of the candidate molecular linker RIM-BP2 in murine IHCs – by analyzing 

the effects of its genetic disruption on the structure and function of IHC ribbon synapses. 

Confocal and STED microscopy indicated that RIM-BP2 is present at the IHC AZs as part 

of the typically stripe-like presynaptic density at IHC AZs (Figure 12). There, it appears to 

promote (1) the abundance of synaptic Ca2+-channels and, in addition, (2) fast SV-

replenishment. In support of (1), STED microscopy of CaV1.3 immunofluorescence (Figure 

15), live-cell confocal Ca2+-imaging of individual AZs (Figure 14), and whole-cell patch 

clamp recordings (Figure 13) collectively demonstrated a reduced number of CaV1.3 Ca2+-

channels at the AZs of RIM-BP2 deficient IHCs. In support of (2), in vitro and in vivo 

electrophysiology showed significantly reduced RRP exocytosis during short but not long 

inter-stimulus-intervals and reduced sustained phase of exocytosis indicative of slowed 

RRP recovery (Figures 16, 18 and 24). Further, morphological changes in the spatial 

organization of MP-SVs with respect to the plasma membrane were found by electron 

tomography (Figure 20). RIM-BP2 deficiency however did not alter Ca2+-nanodomain-like 

control of exocytosis (Figure 17) in IHCs. Finally, RIM-BP2 deletion caused a mild 

impairment of hearing (Figure 21) and sound onset coding in SGNs (Figure 24) that likely 

reflects the presynaptic impairment of Ca2+ signaling and SV-replenishment. In summary, 

RIM-BP2 was identified as a central part of the cytomatrix of IHC AZs promoting the number 

of synaptic L-type Ca2+-channels and fast RRP-replenishment.   
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Impact of RIM-BP2 on synaptic Ca2+-channel abundance and their coupling to 

SVs  

As found in previous studies for RIM2α (Jung et al., 2015a) and bassoon (Frank et al., 

2010), RIM-BP2 promotes the synaptic abundance of voltage-gated L-type Ca2+-channels 

at the IHC AZs. Interestingly, such function for RIM-BP2 was also reported for the 

Drosophila NMJ (Liu et al., 2011; Müller et al., 2015), but not for any conventional 

mammalian synapse (Grauel et al. 2016; Acuna et al. 2015). 

RIM-BP2 regulates the abundance of L-type Ca2+-channels at ribbon synapses  

Evidence that RIM-BP2 promotes the synaptic abundance of voltage-gated L-type Ca2+-

channels at the IHC AZs is based on IHC electrophysiology, synaptic confocal Ca2+-imaging 

and super-resolution STED microscopy of CaV1.3 immunofluorescence. Ca2+-imaging of 

single AZs revealed a 40% reduction in presynaptic Ca2+-influx (Figure 14) in RIM-BP2 

deficient IHCs. The 51% decrease found in the semi-quantitative CaV1.3 

immunofluorescence image analysis further argued for a reduction in synaptic Ca2+-

channels. Moreover, the nanoscale structure of CaV1.3 Ca2+-channel clusters revealed a 

significant shortening of the long cluster axis’ FWHM (16% shorter) (Figure 15) upon RIM-

BP2 disruption. Furthermore, the whole-cell Ca2+-current was significantly reduced (by 20%) 

(Figure 13 and 16), but CaV1.3 Ca2+-channel gating and inactivation were unaltered (Figure 

13). The latter further supports the notion of a reduction in Ca2+-channel numbers in the 

absence of RIM-BP2. All in all, the reduction in synaptic Ca2+-channels (40%) exceeded the 

reduction in the whole-cell Ca2+-current (20%), indicating that in addition to a reduction in 

the number of Ca2+-channels at the AZ, potentially a higher fraction of extrasynaptic Ca2+-

channels (Brandt et al., 2005) might be present in RIM-BP2-/- IHCs.    

The possibly higher fraction of extrasynaptic Ca2+-channels in RIM-BP2-/- IHCs might point 

towards delayed synapse maturation (Wong et al., 2014; Zampini et al., 2010) upon RIM-

BP2 disruption. This would go along with reduced Ca2+-channel open probability (Zampini 

et al., 2010), which could also contribute to the 20% reduced Ca2+-current, and 40% reduced 

synaptic Ca2+-influx in RIM-BP2-/- IHCs. Immature IHC synapses were previously found to 

exhibit (1) weak Ca2+-channel inactivation and low Ca2+-channel open probability (Zampini 

et al., 2010, 2013), (2) non-linear apparent Ca2+-dependence of exocytosis, indicating a 

loose coupling between Ca2+-influx and exocytosis (Wong et al., 2014), (3) AZs containing 

several small ribbons (Sobkowicz et al., 1982; Wong et al., 2014) and (4) prominent 

appearance of extrasynaptic Ca2+-channels that formed small and round clusters (Wong et 

al., 2014; Zampini et al., 2010). Based on these observations, the following findings argue 

against a developmental deficit in RIM-BP-/- IHC AZs: (1) The Ca2+-current inactivation 
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kinetics were unaltered in RIM-BP2-/- IHCs (Figure 13). (2) The apparent Ca2+-dependence 

of exocytosis was quasi-linear in RIM-BP2-/- IHCs indicating tight nanodomain-like Ca2+-

exocytosis coupling (Figure 17). (3) Both, the ultrastructural and immunohistochemical 

analysis revealed unaltered number and size of synaptic ribbons in RIM-BP2-/- IHCs when 

compared to RIM-BP+/+ littermates (Figure 19 and 22). (4) The majority of Ca2+-channel 

clusters in RIM-BP2-/- AZs still appeared in a “stripe- or double stripe-like” arrangement 

(62% in RIM-BP2-/- AZs compared to 66% in RIM-BP+/+ AZs) and co-localized with synaptic 

CtBP2/RIBEYE marked synaptic ribbons (Figure 15). Hence, apart from the possibly higher 

fraction of extrasynaptic Ca2+-channels in RIM-BP2-/- IHCs, these data mainly argue against 

delayed synapse maturation in RIM-BP2 deficient IHC.  

 

Even though a reduction in the number of synaptic Ca2+-channels upon RIM-BP2 disruption 

was not reported for conventional mammalian synapses (Grauel et al. 2016; Acuna et al. 

2015), it should be noted that my findings are consistent with recent work from the murine 

rod bipolar cell ribbon synapse (Luo et al., 2017). In this study, the authors reported a role 

of RIM-BP2 in tethering L-type (CaV1.3) Ca2+-channels to ribbon synapse AZs (Luo et al., 

2017), thereby implicating a common function of RIM-BPs at mammalian ribbon synapses. 

Moreover, in the latter study, synaptic CaV1.3 immunofluorescence was significantly 

reduced in RIM-BP1/2 double-knockout rod bipolar cell ribbon synapses and presynaptic 

Ca2+-current peak amplitude was significantly reduced in RIM-BP1/2 double-knockout 

(50%) and RIM-BP1 and RIM-BP2 single-knockout rod bipolar cells (20-30%) (Luo et al., 

2017).  

 

Why are the effects of RIM-BP disruption on the Ca2+-channels so diverse among different 

synapse types? The specific AZ ultrastructure, the expression of specific proteins and/or 

protein isoforms, the level of their expression as well as genetic redundancy might fine-tune 

synapses for their needs and thereby drive the specialization of a given synapse type. While 

ribbon-type synapses express mainly L-type Ca2+-channels (Brandt et al., 2003; Morgans, 

2001; Platzer et al., 2000), in the hippocampal synapses N- and P/Q-type Ca2+-channels 

are mainly found (Luebke et al., 1993; Takahashi and Momiyama, 1993; Wheeler et al., 

1994; Wu et al., 1999). Further differences may appear upon synapse development. For 

example, whereas immature Calyx of Held synapses predominantly express N-type Ca2+-

channel types, mature synapses predominantly operate via P/Q-type Ca2+-channels 

(Fedchyshyn, 2005; Scholz and Miller, 1995).  
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Potential impact of RIM-BP2 – bassoon interaction  

A selective recruitment of P/Q-type Ca2+-channels by bassoon was previously found in 

hippocampal synapse AZs in a bassoon knockout study (Davydova et al., 2014). 

Interestingly, the authors further report that bassoon requires the interaction with RIM-BPs 

for the recruitment of P/Q-type Ca2+-channels to synapses (Davydova et al., 2014). While 

bassoon disruption caused significantly reduced synaptic RIM-BP2 and P/Q-type Ca2+-

channel levels, also interfering with the bassoon – RIM-BP2 interaction decreased the 

number of P/Q-type channels at the release sites (Davydova et al., 2014). Hence, the 

authors concluded that RIM-BPs might form a molecular hub in a bassoon – RIM-BP – Ca2+-

channel tripartite complex, as RIM-BPs can simultaneously bind to Ca2+-channels and the 

presynaptic cytomatrix via bassoon (Davydova et al., 2014). Thereby, RIM-BP – bassoon 

interaction is likely mediated between RIM-BP C-terminal SH3I domain and the PXXP motif 

of bassoon (Davydova et al., 2014), whereas RIM-BP – Ca2+-channel interaction appears 

to involve the N-terminal SH3III domain of RIM-BPs and the PXXP motif in the C-terminal 

region of the CaVα subunit of the Ca2+-channel (Hibino et al., 2002). 

Interestingly, the same study reported that there is no evidence for direct bassoon 

interaction with L-type Ca2+-channels (Davydova et al., 2014), consistent with (Frank et al., 

2010). Disruption of bassoon in IHCs – that mainly express L-type Ca2+-channels (Brandt 

et al., 2003; Platzer et al., 2000) – revealed a strong (~60%) reduction in synaptic Ca2+-

influx in bassoon mutant IHCs (Frank et al., 2010), indicating a role of bassoon in regulating 

the abundance of synaptic L-type Ca2+-channels. Since however RIM-BPs, but not bassoon 

could be shown to interact biochemically with L-type Ca2+-channels (Davydova et al., 2014; 

Hibino et al., 2002, Frank et al., 2010), the reduction of synaptic L-type Ca2+-channels upon 

bassoon disruption in IHCs (Frank et al., 2010) may be mediated by bassoon – RIM-BP2 

interaction. Nonetheless, the reduction in synaptic Ca2+-influx in bassoon mutant AZs (60%) 

exceeded the reduction in synaptic Ca2+-influx reported in the absence of RIM-BP2 (40%) 

(Figure 14), suggesting that the reduction of synaptic Ca2+-channels in the absence of 

bassoon might only be partially based on the potential bassoon – RIM-BP2 interaction. On 

the other hand, bassoon disruption was associated with ribbon detachment from the plasma 

membrane (Frank et al., 2010; Khimich et al., 2005), which could give rise to secondary 

effects contributing to the reduction in the number of synaptic Ca2+-channels. A good 

validation of this hypothesis would be to test if synaptic RIM-BP2 expression levels were 

reduced in bassoon mutant IHC AZs. In RIM-BP2 deficient IHC AZs, bassoon cluster 

shapes and sizes appeared normal when measured by STED microscopy and subsequent 

2D Gaussian fitting of synaptic bassoon immunofluorescence (Figure 15). Surprisingly, 

upon RIM-BP2 disruption, a statistically significant ~20% increase in bassoon fluorescence 

intensity integrals was observed (Figure 15). This suggests first, that bassoon might have 
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been up-regulated by a compensatory mechanism counteracting the loss of RIM-BP2 and 

second, that bassoon – RIM-BP2 interaction might be relevant not only for the abundance 

of P/Q-type Ca2+-channels in hippocampal synapse AZs (Davydova et al., 2014), but also 

for L-type Ca2+-channels at IHC ribbon-type synapse AZs. 

Potential compensatory recruitment of N-type Ca2+-channels upon loss of RIM-BP2  

Besides the finding, that bassoon requires the interaction with RIM-BP2 for the recruitment 

of P/Q-type Ca2+-channels to synapses (Davydova et al., 2014), the authors also found a 

higher fraction of N-type Ca2+-channels at bassoon deficient hippocampal neuron AZs, 

which compensated total Ca2+-channel numbers (Davydova et al., 2014). Hence, one would 

expect an equal reduction in the synaptic P/Q-type Ca2+-channel number and possibly 

compensational recruitment of N-type Ca2+-channels upon RIM-BP2 disruption. Whether 

this hypothesis is true, was only partly addressed in a RIM-BP2 knockout study in 

hippocampal neurons (Grauel et al., 2016). In this study, super-resolution microscopy 

revealed a change in the relative distribution of P/Q-type Ca2+-channels with respect to the 

AZ scaffold and a localization of P/Q-type Ca2+-channels more distal from the AZ when RIM-

BP2 is absent (Grauel et al., 2016). However, changes in synaptic P/Q-type and N-type 

Ca2+-channel levels were not measured in the immunofluorescence cluster analysis in RIM-

BP2 deficient hippocampal neurons (Grauel et al., 2016). Moreover, SynGCamp6f Ca2+-

imaging was performed to estimate synaptic Ca2+-channel influx (Grauel et al., 2016). 

However, there, no distinction of Ca2+-influx through different Ca2+-channel types was made, 

meaning that the summated Ca2+-influx through all Ca2+-channel types was measured. By 

applying the pharmacological N-type Ca2+-channel blocker ω-conotoxin GVIA, or P/Q-type 

Ca2+-channel blocker ω-agatoxin IVA during synaptic SynGCamp6f Ca2+-imaging, one 

could reach more precise estimates on the contribution of synaptic P/Q-type and N-type 

Ca2+-channels in RIM-BP2 deficient hippocampus neurons. Therefore, one could speculate 

that RIM-BP2 might have a potential function in regulating the abundance of P/Q-type Ca2+-

channels in hippocampal synapse AZs.  

Further indication that recruitment of N-type Ca2+-channels might have compensated for 

potential P/Q-type Ca2+-channel loss upon RIM-BP2 disruption in hippocampal neurons is 

the increased coupling distance between Ca2+-channels and SVs in RIM-BP2 deficient 

neurons (Grauel et al., 2016). In both hippocampal neurons and the calyx of Held, a 

correlation between nanodomain-like and microdomain-like coupling and the presence of 

P/Q-type, and N-type Ca2+-channels, respectively, was found (Fedchyshyn, 2005, Goswami 

et al., 2012). Hence, such looser Ca2+-influx – exocytosis coupling in RIM-BP2 deficient 

hippocampal neurons could be caused by the compensatory recruitment of N-type Ca2+-

channels to AZs upon synaptic P/Q-type Ca2+-channel loss.  
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A reduction in synaptic P/Q-type Ca2+-channel number and possibly compensational 

recruitment of N-type Ca2+ channels upon RIM-BP2 disruption is also conceivable for the 

calyx of Held synapse. However, consistent with work from hippocampal neurons (Grauel 

et al., 2016), the RIM-BP1/2 knockout study at the calyx of Held synapse reported no 

reduction of presynaptic Ca2+-currents upon RIM-BP1/2 disruption, when investigated by 

electrophysiology (Acuna et al. 2015). Further, the authors used the selective P/Q-type 

Ca2+-channel blocker ω-agatoxin IVA and found no change in the relative contribution of 

different Ca2+-channel subtypes to the total presynaptic Ca2+-current upon RIM-BP1/2 

disruption (Acuna et al. 2015). Nonetheless, whole-cell recordings of presynaptic Ca2+-influx 

sum synaptic and extrasynaptic Ca2+-influx and thereby do not provide insight into the 

different Ca2+-channel subtypes that mediate exocytosis at the AZs. This insight could be 

however gained by direct examination of synaptic transmission in the presence of either the 

pharmacological N-type Ca2+-channel blocker ω-conotoxin GVIA, or P/Q-type Ca2+-channel 

blocker ω-agatoxin IVA in RIM-BP2 deficient calyxes. In the above mentioned bassoon 

knockout study, this experiment lead to one of the key findings, namely the recovery of 

evoked synaptic transmission through compensatory recruitment of N-type Ca2+-channels 

to AZs upon bassoon disruption (Davydova et al., 2014). While application of the N-type 

Ca2+-channel blocker ω-conotoxin GVIA significantly reduced evoked excitatory 

postsynaptic currents (eEPSCs) in bassoon deficient neurons compared to wildtype 

neurons, the P/Q-type Ca2+-channel blocker ω-agatoxin IVA had no effect (Davydova et al., 

2014). This indicates a switch from mainly P/Q-type Ca2+-channel mediated synaptic 

transmission in wildtype neurons to N-type Ca2+-channel mediated synaptic transmission in 

bassoon deficient neurons (Davydova et al., 2014). Therefore, this experiment could also 

shed light on the relative contribution of different Ca2+-channel subtypes to synaptic 

transmission in RIM-BP1/2 deficient calyxes. Hence, as mentioned above, one could 

therefore speculate that RIM-BP1/2 might a potential function in regulating the abundance 

of P/Q-type Ca2+-channels also at AZs of calyx of Held synapses.  

If loss of synaptic P/Q-type Ca2+-channels and compensatory recruitment of N-type Ca2+-

channels to AZs upon RIM-BP2 disruption would be true, one could further argue that RIM-

BP1/2 themselves do not directly mediate the tight coupling of SVs and Ca2+-channels, 

which was reported for RIM-BP1/2 deficient calyx of Held synapses (Acuna et al. 2015). It 

would be rather the consequence of the larger contribution of N-type Ca2+-channels, which 

per se are characterized by a looser microdomain-like Ca2+-channel – SV coupling 

(Eggermann et al., 2011; Fedchyshyn, 2005; Goswami et al., 2012).  
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Tight Ca2+ nanodomain-like coupling at IHC ribbon synapses   

In this work, the Ca2+-channel – SV coupling in IHCs was addressed by testing the apparent 

Ca2+ cooperativity m of RRP exocytosis in RIM-BP2 deficient IHCs, however no indication 

for such looser coupling was found (Figure 17). Previously, modeling and biophysical 

experiments, in which either the number of open channels (NCa x popen) or single channel 

current (iCa) was manipulated, carefully addressed Ca2+-exocytosis coupling (Wong et al., 

2014). For a Ca2+ microdomain-like control of exocytosis, the apparent Ca2+ cooperativity 

m was expected to be similar to the intrinsic Ca2+ cooperativity (4-5) for both types of 

manipulation (Beutner et al., 2001). For a Ca2+ nanodomain-like control, on the other hand, 

a m close to unity was expected and indeed observed during changes of the number of 

open channels (Brandt et al., 2005; Wong et al., 2014). Indeed, mature IHCs showed non-

linear Ca2+ dependence when manipulating iCa (m around 3), but nearly linear Ca2+ 

cooperativity m of RRP exocytosis when manipulating NCa x popen by applying a successive 

dihydropyridine block of L-type Ca2+ channels (m around 1.5) (Wong et al., 2014). Here, for 

RIM-BP2 deficient IHCs m was also found to be 1.5, arguing against a disruption of Ca2+ 

nanodomain-like control of exocytosis in the absence of RIM-BP2. Other molecular linkers, 

potentially compensating for RIM-BP2-deficiency, might mediate the molecular coupling of 

Ca2+-channels and vesicular Ca2+-sensors in IHCs. These findings are suggestive of a 

highly and tightly regulated release machinery at IHC AZs that serves the demands of high 

SV turnover with precise timing. If combinatory deletion of several proteins like, for example, 

RIM and RIM-BP2 would elicit any measurable effect will have to be examined in future 

experiments. Interestingly, in retinal ribbon synapses, such looser coupling of Ca2+-

channels to SVs was observed upon RIM-BP1/2 deletion (Luo et al., 2017), indicating that 

even though synapses of high similarity (e.g. presence of synaptic ribbon and expression 

of L-type Ca2+-channels) employ different strategies to fine-tune synaptic transmission. This 

is further reflected in a differential expression of presynaptic proteins, e.g. lack of neuronal 

SNAREs (Nouvian et al., 2011) and presence of otoferlin (Pangršič et al., 2012) in IHCs. 

 

Potential interaction partners of RIM-BP2 at IHCs  

Besides interaction of RIM-BP2 with L-type Ca2+-channels (Hibino et al., 2002) and bassoon 

(Davydova et al., 2014), also other CAZ proteins might interact with RIM-BP2 at IHC AZs 

and thereby shape and fine-tune synaptic transmission of IHCs.  

Synergistic interplay of RIM-BP2 and RIMs  

RIM2α is an intensively studied synaptic cytomatrix protein and its genetic deletion caused 

a reduction in synaptic Ca2+-channel number and presynaptic Ca2+-influx (~36%) at IHC 
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AZs (Jung et al., 2015a). Interestingly, disruption of RIM2 did also not lead to an obvious 

switch to Ca2+ microdomain-like control of exocytosis at IHC synapses (Jung et al., 2015a). 

RIM2α is thought to bind IHC L-type channels through C-terminal interaction with the 

auxiliary CaVß channel subunits and through interaction with the C-terminus of the CaVα 

subunit (Gebhart et al., 2010; Kiyonaka et al., 2007). However, the latter direct RIM2 

interaction with the pore-forming α subunit of L-type Ca2+-channels is still under debate 

(Coppola et al., 2001; Kaeser et al., 2011; Picher et al., 2017). Interestingly, apart from the 

direct interaction of RIMs with Ca2+-channels, several studies pointed out the importance of 

an indirect protein interaction between RIMs and Ca2+-channels through RIM-BPs in a 

tripartite complex (Hibino et al., 2002; Kaeser et al., 2011). The importance of the tripartite 

complex formation was for example shown for tethering of N- and P/Q-type Ca2+-channels 

to the AZ (Kaeser et al., 2011). In this study, rescue experiments in RIM deficient neurons 

with a RIM peptide containing the PDZ domain and the PXXP motif – the RIM-BP binding 

sequence – restored normal Ca2+-dependence of exocytosis, whereas loss of the RIM-BP-

binding sequences blocked rescue of Ca2+ influx in RIM deficient neurons (Kaeser et al., 

2011). Along these lines, expression of RIM2 and the CaVα subunit of L-type channels alone 

did not lead to co-localization of both proteins in a heterologous expression system, 

whereas additional expression of RIM-BP2 induced co-localization of all three proteins and 

enhanced exocytosis in a human growth hormone secretion assay (Hibino et al., 2002). 

Interestingly, a synergistic effect of RIMs and their binding proteins RIM-BPs was described 

in the calyx of Held and hippocampus synapses (Acuna et al., 2016). A combined knockout 

of RIM1/2 and RIM-BP1/2 eliminated presynaptic Ca2+-influx, tethering and priming of SVs, 

reduced the RRP size and functional synaptic connectivity. The RIM/RIM-BP deletion 

phenotype was more severe than the sum of the separate RIM1/2 or RIM-BP1/2 deletion 

phenotypes. This study points out that together, RIMs and RIM-BPs function as central 

organizers of AZ function. Together, these two molecules mediate the assembly of the AZ 

by recruiting other AZ components, and participate in several steps of AZ function (Acuna 

et al., 2016). Whether RIMs and RIM-BPs employ a similar role at IHC AZs may be tested 

in a combinatorial knockout approach. Further, one could investigate the expression levels 

of RIMs in RIM-BP2 knockout AZs and vice versa.  

Potential impact on RIM-BP2 – CAST/ERC (ELKS) interaction  

Besides RIMs, also CAST/ERC (ELKS) proteins might turn out to be important interaction 

partners of RIM-BPs. This hypothesis is based on work from Drosophila melanogaster, 

where disruption of the RIM-BP ortholog DRBP led to a stronger phenotype as compared 

to mammalian synapses. Here, presynaptic Ca2+-influx and neurotransmitter release (Liu et 

al., 2011; Müller et al., 2015), as well as clustering of presynaptic Ca2+-channels were 
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impaired (Liu et al., 2011). In addition, the structural and functional integrity of the AZ of 

NMJ was severely affected and the loss of T-bars - presynaptic electron dense bodies, 

which tether vesicles at the NMJ (Kittel, 2006) - was observed (Liu et al., 2011). The 

cytomatrix protein that provides the main structural component of the T-bars, and is 

essential for the correct localization and density of Ca2+-channels is called Bruchpilot (Kittel, 

2006). Interestingly, DRBP levels were reduced in Bruchpilot mutants, whereas overall 

Bruchpilot levels remained normal in DRBP mutants (Liu et al., 2011). While functional 

deficits in Bruchpilot and DRBP mutants share some common features, SV release is more 

affected in DRBP mutants (Kittel, 2006; Liu et al., 2011). In contrast, structural deficits, 

appear more severe in Bruchpilot mutants (Fouquet et al., 2009; Kittel, 2006). Hence, 

speculatively, deficits in Bruchpilot mutants could be partly explained by the accompanying 

loss of DRBP, which probably serves a function downstream of Bruchpilot. The N-terminus 

of Bruchpilot is homolog to the vertebrate CAZ protein CAST/ERC2/ELKS2 (Wagh et al., 

2006). Moreover, deletion of CAST/ERC/ELKS and RIM in hippocampal neurons caused 

reduced protein levels of RIM-BP2, and synaptic P/Q-type Ca2+-channel 

immunofluorescence (Wang et al., 2016). Interestingly, both RIM1/2 and ELKS protein 

levels were found to be upregulated in RIM-BP1/2 deficient retinae (Luo et al., 2017), 

pointing towards a functional connection between RIM-BPs and CAST/ERC/ELKS either 

directly or indirectly through RIMs. Whether mammalian ELKS are expressed at IHC ribbon 

synapses and whether the interaction of CAST/ERC/ELKS and RIM-BP2 at ribbon-type 

synapses is structurally and functionally as relevant as in Drosophila NMJ is subject to future 

analysis. 

 

Impact of RIM-BP2 on sound encoding at the IHC ribbon synapse  

It is essential to identify molecular key players such as RIM-BP2 and their interaction 

partners to draw up a clearer picture of the complex network orchestrating synaptic 

transmission in IHCs. However, it is equally important to link the physiological and 

morphological findings in order to understand SV dynamics and their impact on sound 

encoding. 

Potential mechanism of RIM-BP2 function during vesicle replenishment  

Providing enough time for full RRP recovery (Pangršič et al., 2010), (i.e. 30-60 seconds 

inter-pulse-intervals), the RIM-BP2 deficient IHCs display preserved Ca2+ nanodomain-like 

control of exocytosis. However, in paired-pulse experiments in vitro (Figure 18) and forward 

masking experiments in vivo (Figure 24), RRP recovery was significantly reduced especially 

for short inter-stimulus-intervals (shorter than 50 ms). This observation could reflect the 
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requirement of RIM-BP2 for fast SV-replenishment following RRP depletion. In this process, 

RIM-BP2 might function as a dynamic molecular linker for newly recruited SVs, quickly 

guiding SVs into close proximity to a nearby Ca2+-channel. The rate-limiting step for SVs 

after RRP depletion could be the proper spatial positioning of newly arriving SVs in close 

proximity to a Ca2+-channel. The mechanism could be potentially described by a defect in 

“positional priming” (Neher and Sakaba, 2008). During positional priming, molecularly 

primed SVs move along the plasma membrane to engage with a nearby Ca2+-channel. This 

way, slow releasing SVs are converted into fast releasing SVs. Since the recruitment of 

slow releasing SVs is fast, positional priming may be rate-limiting (Neher and Sakaba, 

2008). The mechanism was initially described for calyx of Held synapses and it is unclear, 

whether the same mechanism exists in IHCs. Positional priming was strongly associated 

with UNC13/Munc13, which is mainly recruited to the plasma membrane by RIM1α 

(Andrews-Zwilling et al., 2006; Dulubova et al., 2005; Weimer et al., 2006). However, both 

UNC13/Munc13 and RIM1α are not expressed in IHCs (Jung et al., 2015a; Vogl et al., 

2015). Moreover, positional priming was found to be actin dependent (Lee et al., 2013), 

which was not investigated in this work. Nonetheless, it is tempting to speculate that fast 

RRP-replenishment involves a RIM-BP-depending positional priming of SVs in IHCs. 

Moreover, the reduced availability of Ca2+-channels in RIM-BP2 deficient AZs, might further 

slow RRP-replenishment as SVs find fewer slots to connect. Longer RRP-recovery times 

might increase the likelihood of other protein-protein interactions taking place in RIM-BP2 

mutants, which will eventually link the newly arriving SV to its release site.  

Interestingly, in line with the hypothesis of a role of RIM-BP in positional vesicle priming, a 

deceleration in the resupply of high release probability SVs was observed in RIM-BP 

deficient Drosophila NMJ (Müller et al., 2015). The authors suggest a distinct function of 

DRBP in the rate-limiting conversion of SVs from the ‘reserve pool’ to the RRP during 

presynaptic homeostatic plasticity (Müller et al., 2015). In agreement, a very recent study 

from mouse rod bipolar cell ribbon synapses reported that RIM-BPs are important for RRP 

refilling as it found a RRP-replenishment deficit in RIM-BP1/2 knockout synapses (Luo et 

al., 2017). In mammalian central nervous system synapses, no RRP recovery deficit was 

found during paired-pulse stimulations with 100 ms (Acuna et al. 2015) or 5 s inter-pulse 

intervals (Grauel et al. 2016; Acuna et al. 2015). This is nonetheless consistent with the 

observed full RRP recovery for longer inter-stimulus-intervals in IHCs (≥ 100 ms). 

Nonetheless, in the calyx of Held a shift from the fast component towards the slow 

component of release was found in RIM-BP2 deficient synapses during RRP depletion 

(Acuna et al. 2015), which could be due to a deficit in converting slow releasing SVs into 

fast releasing SVs, further arguing for a role RIM-BP2 in positional priming.  
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Along these lines, it should be mentioned that the large discrepancy between Ca2+-influx 

and exocytosis in the sustained phase of exocytosis, where new SVs get recruited after 

RRP depletion, could be rescued by elevating extracellular [Ca2+]e in RIM-BP2 deficient 

IHCs (Figure 16). Elevated extracellular [Ca2+]e accelerates Ca2+-dependent SV trafficking 

and replenishment, which was reported for hair cells (Cho et al., 2011; Goutman and 

Glowatzki, 2007; Moser and Beutner, 2000; Schnee et al., 2011; Spassova et al., 2004) and 

other synapses (e.g. calyx of Held synapses (Hosoi et al., 2007; Wang and Kaczmarek, 

1998)). Hence, lower presynaptic Ca2+-signaling due to the reduced number of synaptic 

Ca2+-channels in RIM-BP2 deficient IHC AZs might therefore explain their slower RRP SV-

replenishment. Alternatively or in addition, an increased Ca2+-influx through elevated 

extracellular [Ca2+]e likely reaches more distant release sites so that the exact spatial 

distribution and matching of Ca2+-channels and SVs is less critical (Moser and Beutner, 

2000). Elevating extracellular [Ca2+]e could thereby bypass the rate-limiting step of 

positional priming and exocytosis in RIM-BP2 deficient IHC synapses. Thereby, loss of RIM-

BP2 might decreases the temporal precision of the evoked glutamate release onto the 

postsynaptic SGN, leading to reduced and delayed postsynaptic firing at sound onset 

(Figure 24). This could be linked to the reduced wave I amplitude in the auditory brainstem 

recording (ABR) or the increased hearing thresholds of RIM-BP2 deficient mice (Figure 21). 

Since however RIM-BP2 is also knocked out in efferent olivocochlear neurons that provide 

inhibitory feedback onto the afferent terminals of type I SGNs (Ruel et al., 2001), effects 

caused through alterations in efferent modulation cannot be ruled out. 

RRP-replenishment from a ‘reserve’ SV pool 

The next question now is: Given the morphological and physiological findings of this RIM-

BP2 knockout study, is it possible to identify a specific pool of IHC SVs that is recruited 

upon RRP depletion? Conventional synapses employ synapsin I to crosslink SVs within the 

actin cytoskeleton in a ‘reserve’ SV pool to prevent them from premature fusion (reviewed 

in Rizzoli and Betz 2005). IHCs however lack synapsins (Safieddine and Wenthold, 1999; 

Vogl et al., 2015) and such a’ reserve’ SV pool was not specifically defined so far. But, there 

are indications that a sub-fraction of vesicles is clustered by actin and released during the 

early sustained phase of exocytosis (Guillet et al., 2016). These SVs might represent a 

‘reserve pool’ in IHCs that is recruited upon RRP depletion (Guillet et al., 2016). 

Interestingly, exocytosis during 20 ms stimulation, which is thought to deplete the RRP in 

IHCs (Moser and Beutner, 2000), was significantly increased when pharmacologically 

perturbing the actin network (Guillet et al., 2016). The authors therefore proposed that SVs, 

which would only be available for release during longer stimulations (≥ 50 ms) in control 

condition, fused with the plasma membrane ahead of time, indicating a role of actin in 
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preventing premature exocytosis (Guillet et al., 2016). Thereby, actin might secure SV-

replenishment at high rates and prevent SV exhaustion during the sustained phase of 

exocytosis by crosslinking SVs in a ‘reserve pool’ (Guillet et al., 2016).  

More evidence that ribbon synapses employ a ‘reserve pool’ of SVs comes from goldfish 

retinal bipolar cells, where single SV fusion and dynamics could be monitored with FM1-43 

dye imaging employing total internal reflection microscopy (Almers et al., 2000). The 

authors were able to distinguish between ‘resident SVs’ that are equivalent to 

morphologically docked SVs and fuse during the fast phase of exocytosis and newly 

recruited ‘newcomer SVs’ that fuse during the slow phase of exocytosis. Interestingly, nearly 

30% of the ‘newcomers’ became stationary, meaning that SVs were captured in ‘reserve’ 

at a distance of 20 nm from the plasma membrane until a stimulus triggers their recruitment 

to the membrane (Almers et al., 2000). One could speculate, that this physiologically 

described actin-dependent ‘reserve pool’ (Guillet et al., 2016) and the morphologically 

described ‘reserve pool’ of SVs (Almers et al., 2000) indeed describe the same pool of SVs, 

which might be recruited upon RRP depletion.  

How are the physiological and morphological findings in RIM-BP2 deficient IHCs related to 

these findings? Despite the absence of RIM-BP2, the number of MP-SVs, which are thought 

to form the RRP, was unaltered in IHCs (Figure 19). Interestingly, however, RIM-BP2 

disruption caused a shift of a large fraction of membrane proximal SVs closer to the plasma 

membrane and a smaller fraction further away from the plasma membrane. The average 

distance of SVs from the previously defined ‘reserve’ SVs was 20 nm (Almers et al., 2000), 

which fits well with the observed reduced number of SVs with intermediate membrane 

distance (~20-40 nm) in the absence of RIM-BP2 (Figure 20). In addition, the physiologically 

described defect in fast SV recruitment after RRP depletion in RIM-BP2 knockout IHCs 

(Figure 16 and 18) correlates well with the time-course of actin-dependent SV mobilization 

(Guillet et al., 2016). Hence, one could speculate that in wild type IHCs, those ‘reserve pool’ 

SVs get recruited upon RRP depletion and that this recruitment process might require RIM-

BP2. One could however also speculate that SVs get recruited to the release sites in a 

lateral fashion from more distant locations towards the ribbon center (Lenzi et al., 2002). 

The lateral distribution of MP-SVs with respect to the PD was unaltered in RIM-BP-/- AZs, 

which might explain the mild effect of RIM-BP2 disruption on the RRP release. However, 

“outlying”-SVs were shifted further away from the PD in RIM-BP2-/- AZs. Therefore, one 

could propose that those “outlying”-SVs get laterally recruited to the release sites adjacent 

to the synaptic ribbon during the sustained phase of release. Upon loss of RIM-BP2 this 

lateral SV recruitment to the release sites could be impaired, leading to an increased 

distance of SVs to the PD. Therefore, such lateral recruitment might be an additional 

mechanism to consider.  
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Potential molecular mechanism of RIM-BP2 at IHC AZs 

Generally, one should keep in mind, that Ca2+-imaging and immunohistochemical staining 

in RIM-BP2 deficient IHCs pointed towards a 40-50% decrease of synaptic Ca2+-channels 

(Figure 14 and 15). Whether both, the reduced number of Ca2+-channels and slowed RRP-

replenishment (Figure 18 and 24) from SVs of an ‘reserve pool’ contribute to the significantly 

reduced sustained rate of exocytosis (Figure 16) individually or whether the observed 

replenishment defect is a consequence of reduced Ca2+-channels needs further elucidation. 

One could imagine that upon loss of synaptic Ca2+-channels, availability of SV release slots 

is reduced at mutated AZs (illustrated in Figure 25). Nonetheless, release of RRP SVs was 

affected only mildly (Figure 16), as presumably a sufficient number of release sites was still 

present (Figure 25A). Moreover, in the absence of RIM-BP2, RRP SVs remained tightly 

coupled to the remaining Ca2+-channels in a nanodomain-like manner when analyzed in 

hyperpolarized IHCs, where sufficient recovery time was provided (Figure 17). In a more 

dynamic scenario during prolonged IHC stimulation, where SVs have to engage with a Ca2+-

channel quickly, the availability of Ca2+-channels and release sites might however be rate 

limiting (Figure 25B). The additional absence of a molecular linker like e.g. RIM-BP2 that 

guides SVs to the remaining Ca2+-channels might further enhance the deceleration of SV-

replenishment (Figure 25B). Given the possibility of RIM-BP2 interaction with the ribbon 

anchor bassoon (Davydova et al., 2014) another conceivable interpretation for the slow 

RRP-replenishment upon RIM-BP2 disruption could be a slightly increased distance 

between Ca2+-channels and the presynaptic density and thus, the ribbon-tethered SVs 

(Figure 25B). Both, STED microscopy and Ca2+-imaging did not reveal changes in the width 

and area of CaV1.3 clusters and spread of the Ca2+ signal (Figure 14 and 15), arguing 

against major changes in Ca2+-channel localization. However, a slight increase of the 

distance of Ca2+-channels from the PD cannot be ruled out and could slow down the 

engagement of newcoming ribbon-tethered SVs with a Ca2+-channel during RRP-

replenishment (Figure 25B). Thereby, SV turnover speed would not only be limited by a 

lower probability of SV – release site matching due to a reduced number of Ca2+-channels, 

but also through the slowed engagement of SVs with the remaining Ca2+-channels (Figure 

25B). This argues for a dual role of RIM-BP2 in IHC synaptic transmission, whereby RIM-

BP2 might potentially function as a molecular hub between L-type Ca2+-channels and/or 

Bassoon, RIM2/Rab3, and synaptic vesicles. 
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Figure 25: Schematic summary of RIM-BP2 function at IHC AZs 

[A] A lower number of CaV1.3 Ca2+-channels (yellow) was found to be present in the 
absence of RIM-BP2, whereas the number of MP-SVs (SV) and their distance to the PD 
(blue) remained unaltered. The reduction of CaV1.3 Ca2+-channels likely explains the mildly 
reduced RRP exocytosis. [B] During the sustained phase of SV release, RRP SVs are 
replenished and engage with a nearby Ca2+-channel (left side of the scheme). In the 
absence of RIM-BP2, RRP-replenishment was slowed (right side of the scheme). 
Mechanistically this could be explained (1) by a lower probability of SV – release site 
matching due to a reduced number of Ca2+-channels, (2) by a slightly increased distance of 
newcoming SVs to a Ca2+-channel (dashed arrows) possibly because of the lacking RIM-
BP2 (green) – bassoon (blue) interaction and/or (3) by a role of RIM-BP2 in “positional 
priming” by mediating fast engagement of a newcoming SV with a Ca2+-channel, possibly 
through RIM-BP2 – RIM (red) – Rab3 (orange) interaction. 
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5.1 Introduction 

While each presynaptic AZ of a given IHC is driven by the same receptor potential, the 

postsynaptic responses of SGNs differ i.e. in their spontaneous firing rate, threshold, and 

dynamic range (Liberman, 1978; Ohlemiller and Echteler, 1990; Sachs and Abbas, 1974; 

Taberner and Liberman, 2005; Yates et al., 1990). Likely this diversity is a mechanism to 

encode sounds of varying intensity. There is accumulating evidence that presynaptic 

heterogeneity in IHC AZs at least partially underlies the diversity of SGN responses as 

described in the General Introduction. However, beyond Ca2+-signaling (Frank et al., 2009; 

Meyer et al., 2009; Ohn et al., 2016) so far functional differences among the synapses have 

not yet been studied and a causal link of presynaptic heterogeneity to SGN response 

diversity remains to be demonstrated. Addressing presynaptic heterogeneity on the level of 

SV exocytosis at individual AZs by pH-sensitive pHluorin (Miesenböck et al., 1998; 

Sankaranarayanan et al., 2000) turned out to be challenging in IHCs, because the 

intraluminal pH of vGlut1-pHluorin positive organelles was less acidic (~6.5) compared to 

conventional presynaptic terminals (~5.5) (Miesenböck et al., 1998; Neef et al., 2014). pH 

sensitive fluorescence proteins are generally suitable for monitoring SV fusion, due to the 

pH gradient between the vesicular compartments and the extracellular space. While the 

fluorescence signal of pHluorin is quenched inside the acidic SV lumen (pH~5-6), upon 

externalization of pHluorin molecules during SV fusion, proton quenching is released due 

to the neutral extracellular space and its fluorescence signal increases. However, the 

relatively neutral vesicular pH in IHCs, lead to rather small changes of pHluorin fluorescence 

signals upon SV exocytosis (Neef et al., 2014). Postsynaptic patch-clamp recordings from 

SGN terminals elicited important details about hair cell transmitter release from a single AZ, 

about spike timing, amplitude, and spontaneous rates (Glowatzki and Fuchs, 2002; 

Rutherford et al., 2012). In paired in vitro patch-clamp recordings of IHCs and SGN boutons 

a high variability in EPSC shape and amplitude was observed (Glowatzki and Fuchs, 2002; 

Rutherford et al., 2012). But it is experimentally difficult to access several postsynaptic 

boutons of SGNs contacting a single IHC by multiple in vitro patch-clamp recordings to 

simultaneously characterize the response of several SGNs to the same stimulus (Wu et al., 

2016). To date no more than two boutons innervating the same IHC have been recorded 

(Wu et al., 2016), which highlights the difficulty and limitations of this technique when aiming 

to probe the heterogeneous responses characteristic of postsynaptic SGNs. Nevertheless, 

this experimental approach enabled the authors to demonstrate that, indeed, SGNs with 

different spike properties innervate the same IHCs in the rat cochlea (Wu et al., 2016). 
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In order to explore heterogeneous responses characteristic of several postsynaptic SGNs 

contacting the same IHC on a single synapses level, the application of a genetically 

encoded voltage indicator (GEVI) in SGNs was chosen. Optical detection of APs with 

voltage indicators is a non-invasive approach to study neuronal and network activity, but it 

remained challenging for a long time. Multiple challenges, e.g. intracellular injection of 

voltage-dyes, membrane localization of genetically encoded voltage indicators, brightness, 

kinetics, voltage-sensitivity, signal-to-noise-ratio, and undesirable hyperpolarizing 

photocurrents of voltage indicators had to be faced and optimized (reviewed in Kulkarni and 

Miller 2017; Y. Xu, Zou, and Cohen 2017). The discovery of the voltage sensor ArcLight 

Q239 (Jin et al., 2012) was a breakthrough in the field. It is highly sensitive (35% ∆F/F per 

100 mV) to membrane voltage changes, but could only resolve neuronal APs up to 60 Hz 

( between -70 and +30 mV: AcrLight Q239 on9 ms, off15 ms) (Piao et al., 2015). The 

genetically encoded archaerhodopsin-based voltage indicators QuasAr1, 2 (Hochbaum et 

al., 2014), and 3 (unpublished, Prof. Adam Cohen) were engineered from the microbial 

rhodopsin protein, Archaerhodopsin 3 (Arch) from Halorubrum sodomense (Kralj et al., 

2011). Besides improved brightness and voltage sensitivity (∆F/F per 100 mV: QuasAr2 

90%, QuasAr1 33%), they lack endogenous proton-pumping photocurrent and are 

characterized by fast response kinetics (between -70 and +30 mV: QuasAr1 on0.05 ms, 

off0.07 ms; QuasAr2 on1.2 ms, off1.0 ms) (Hochbaum et al., 2014; Kralj et al., 2011). 

Nonetheless, Arch-derived GEVIs are typically 30-80-fold dimmer than GFP and require 

high near-infrared illumination intensities (200-1000 W/cm2) (Hochbaum et al., 2014; Kralj 

et al., 2011). Recently developed versions of the blue-shifted GEVI Ace-mNeon (Ace1Q-

mNeon and Ace2N-(4AA)-mNeon) showed remarkable brightness and speed ( between -

70 and +30 mV: Ace-2N-mNeon on0.36 ms, off0.42 ms), which allowed single-cell and 

single-AP resolution in mouse and fly brains in vivo (Gong et al., 2015).  

However, QuasArs are more suitable for a combination with blue-light optogenetic 

stimulation or Ca2+-imaging due to their near-infrared fluorescence spectrum. Particularly, 

combination of QuasAr imaging with presynaptic Ca2+-imaging would allow a direct 

correlation of presynaptic IHC AZ properties and postsynaptic SGN response 

characteristics on a single synapse level. Moreover, optogenetic stimulation would allow 

exploring the neuronal SGN behavior independent of sensory IHC stimulation. Hence, 

optical stimulation would be a useful tool to investigate whether the presynaptic input, or the 

intrinsic properties of the SGNs themselves shape their heterogeneous response 

characteristics, given homogeneous expression of CheRiff as found in transgenic mice (Lou 

et al., 2016). “All-optical electrophysiology” was performed with the GEVI QuasAr2 as 

effector and the blue-shifted channelrhodopsin CheRiff as actuator both in acute brain slices 
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and in vivo (Hochbaum et al., 2014; Lou et al., 2016). It allowed qualitative classification of 

neurons based on their firing pattern and the detection of individual APs upon activation of 

CheRiff (Hochbaum et al., 2014; Lou et al., 2016). Besides the availability of a transgenic 

mouse line co-expressing QuasAr2 and CheRiff (Lou et al., 2016), virus mediated gene 

transfer can be used for transgene expression in SGNs. Virus mediated gene transfer using 

AAV2/6 successfully expressed the channelrhodopsin CatCh in SGNs and rendered SGNs 

light-sensitive (Hernandez et al., 2014). Hence, AAV2/6 mediated gene expression is highly 

suitable to express GEVIs in SGNs and was therefore employed in this work.  

 

5.2 Results 

In this chapter, the feasibility of the use of GEVIs QuasAr2 and QuasAr3 as optical readout 

systems for spike detection in SGNs was determined. For that, a confocal microscope, 

optimized for presynaptic Ca2+-imaging, was enhanced with a custom wide field imaging set 

up to carry out voltage imaging in the far-red fluorescence imaging spectrum. Further, 

QuasAr2 and QuasAr3 expression were examined in cochleae of Floxpatch-Bhlhb5-Cre 

mice and in postnatally AAV2/6-transduced mice, respectively. Finally, the capability of 

detecting membrane-voltage changes by fluorescence was tested in both expression 

systems by employing two different stimulation approaches. First, optical SGN stimulation 

by blue light induced depolarizing photocurrents through CheRiff and membrane voltage 

readout through QuasAr2 and QuasAr3 was tested. Second, presynaptic IHC patch-clamp 

stimulation was performed to stimulate SGNs indirectly through exocytic IHC glutamate 

release, while QuasAr3 fluorescence in postsynaptic SGN boutons was recorded 

simultaneously.  

Expression of QuasAr2 and all-optical electrophysiology in the cochlea of Floxpatch-

Bhlhb5-Cre mice 

An advantage of genetically encoded voltage indicators over synthetic dyes is their ability 

to be specifically targeted to a subset of cells in tissue. Compared to virus-mediated 

expression, transgenic mouse lines show more uniform expression levels, which might be 

especially important for optical reporters or stable photocurrents during quantitative 

optogenetic stimulation (Gong et al., 2007; Harris and Dallos, 1979; Madisen et al., 2015).  

The Cre-dependent transgenic Optopatch2 mouse line, named Floxpatch (Lou et al., 2016), 

was crossed with a Bhlhb5-Cre driver line for Cre-mediated excision of the premature Stop 

codon and thereby tissue-specific expression of the Optopatch2 construct in neurons and 

hence, SGNs of the cochlea (Ross et al., 2010). Floxpatch mice express the GEVI QuasAr2 
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as well as CheRiff, a blue-shifted channelrhodopsin tagged with eGFP (Hochbaum et al., 

2014; Lou et al., 2016). Endogenous eGFP fluorescence was visible in Floxpatch-Bhlhb5-

Cre+ mouse cochleae (Figure 26a, side view), especially in the Rosenthal’s canal, where 

SGN somata are located, and was absent in Floxpatch-Bhlhb5-Cre- mice (Figure 26b). 

Specific anti-GFP antibody staining in Floxpatch-Bhlhb5-Cre+ (Figure 26a’), but not 

Floxpatch-Bhlhb5-Cre- (Figure 26b’) mouse organs of Corti further validated the expression 

of eGFP in SGNs. Since the sequences coding for QuasAr2 and CheRiff-eGFP are linked 

by a P2A sequence for stoichiometric co-expression (Lou et al., 2016), one can conclude 

that QuasAr2 should be expressed in Floxpatch-Bhlhb5-Cre+ cochlea SGNs.  

 

 
Figure 26: Optopatch2 expression in the cochlea of Floxpatch-Bhlhb5-Cre mice  

A Cre-dependent transgenic Optopatch2 mouse line, named Floxpatch (Lou et al., 2016) 
was crossed with a Bhlhb5-Cre driver line for specific expression of QuasAr2 and CheRiff-
eGFP in SGNs (Ross et al., 2010). Endogenous eGFP fluorescence was visible in a side 
view of the dissected cochlea of Floxpatch-Bhlhb5-Cre+ mice (a) and was absent in 
Floxpatch-Bhlhb5-Cre- mice (b). Specific anti-GFP antibody staining in Floxpatch-Bhlhb5-
Cre+ (a’), but not Floxpatch-Bhlhb5-Cre- (b’) mouse organs of Corti further validated the 
expression of Optopatch2 in SGNs. This experiment was performed in the laboratory of 
Prof. Adam Cohen, Harvard University, and Prof. Lisa Goodrich, Harvard Medical School.  
 

The Optopatch2 construct expressed in Floxpatch-Bhlhb5-Cre mice contains the 

channelrhodopsin CheRiff and therefore allows optical stimulation of SGNs by blue light-

induced photocurrents. Hence, SGNs were stimulated optically with laser pulses of 

increasing intensity and QuasAr2 fluorescence was acquired simultaneously to monitor 

changes in membrane voltage and optically induced APs. QuasAr2 imaging experiments 

were carried out in the laboratory of Prof. Adam Cohen, Harvard University. Apical turns of 
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the organ of Corti from transgenic Floxpatch-Bhlhb5-Cre+ mice (Figure 8 and Figure 27) 

were freshly dissected and SGN boutons were stimulated by 500 ms pulses of increasing 

488 nm laser irradiance (0.6 to 3 W/cm2) at a custom made wide-field imaging microscope 

(Hochbaum et al., 2014; Kralj et al., 2011; Lou et al., 2016). QuasAr2 fluorescence was 

recorded with a camera frame rate of 1 kHz and regions of interest at several SGN boutons 

were manually chosen for analysis (Figure 27B). Apart from optical crosstalk induced by 

488 nm laser wide-field illumination (Hochbaum et al., 2014), no fluorescence changes in 

membrane voltage or APs were detected (Figure 27B).  

 

 

Figure 27: Optopatch2 experiment in SGN boutons of a Floxpatch-Bhlhb5-Cre+ 

mouse organ of Corti 

SGN boutons from a freshly dissected organ of Corti of a Floxpatch-Bhlhb5-Cre+ mouse 
([B] right) were optically stimulated with 500 ms pulses of increasing 488 nm laser irradiance 
(from 0.6 to 3 W/cm2, illustrated in [A]). QuasAr2 fluorescence was acquired with a frame 
rate of 1 kHz and different regions of interest (ROIs) ([B] right, scale bar: 10 µm) were 
chosen for analysis. For each ROI, the mean fluorescence was plotted over time ([B] left). 
The increase in QuasAr2 fluorescence during blue laser illumination most likely represents 
optical crosstalk (Hochbaum et al., 2014). No additional fast QuasAr2 fluorescence 
changes, i.e. voltage-spikes, were detected. This experiment was performed in the 
laboratory of Prof. Adam Cohen, Harvard University.  

 

One reason for the absence of fluorescently detected membrane voltage changes by the 

use of Optopatch2 could be a relatively low expression level of the optical actuator CheRiff 

and reporter QuasAr2 in the transgenic mouse line compared to virus-mediated 

overexpression. It appears likely that higher expression levels of QuasAr2 are more capable 

of robustly detecting neuronal activities. Further, higher expression levels of CheRiff might 



Chapter 2 

 

 83 

increase light-induced photocurrents through a higher number of channels in the 

membrane. 

Expression of QuasAr3 in the postnatally virus-transduced mouse cochlea 

Therefore, virus-mediated gene expression of the channelrhodopsin CheRiff and the 

voltage indicator QuasAr3(Q95H), combined in the Optopatch3 gene construct (Figure 9, 

unpublished, by the laboratory of Prof. Adam Cohen, Harvard University) was employed 

next. In addition to higher expected expression levels through virus-mediated transgene 

overexpression, the Optopatch3 construct is supposed to offer superior expression levels 

compared to Optopatch2, because trafficking signal motifs (TSX3 and TS) and an 

endoplasmic reticulum export sequence (ER2) were inserted for both transgenes to 

enhance their protein trafficking and expression at the membrane surface.  

 

To express the Optopatch3 construct in SGNs, the Optopatch3 DNA construct was packed 

into AAV2/6 (produced by North Carolina Core facility), as virus-mediated gene transfer 

using AAV2/6 was previously shown to successfully target SGNs in the cochlea (Hernandez 

et al., 2014). The Optopatch3 AAV2/6 virus was postnatally injected into mouse cochleae 

via the round window (Akil et al., 2012) (injection performed by Christiane Senger-Freitag). 

The virus was injected at postnatal day p5 and QuasAr3 expression was examined ~10 

days later, shortly after hearing onset at p14-p16.  

 

QuasAr3 was fused to citrine a variant of the GFP mutant YFP (yellow fluorescent protein), 

and hence detected by anti-GFP antibodies (Nagai et al., 2002). Therefore, QuasAr3 

expression could be determined via immunohistochemical labeling with an anti-GFP 

antibody. Since in each animal the virus was injected into only one cochlea, the other non-

injected cochlea served as control. Hence, injected and non-injected control cochleae were 

cut into 16 µm thick cryo-sections. Mid-modiolar cross sections were labeled with anti-

calretinin and anti-GFP antibodies and imaged with confocal microscopy (Figure 28). 

Thereby, an overall impression of the expression pattern of QuasAr3 after postnatal AAV2/6 

injection in the round window of the cochlea was achieved and the transduction efficiency 

of the AAV2/6 injection was estimated. The transduction efficiency of cochleae after 

postnatal virus injection was determined by the presence of GFP-positive SGN somata and 

amounted 56% (16 injected mice from 2 litters). Co-immunohistochemical labeling with 

calretinin was performed, since calretinin is an endogenous Ca2+-buffer of IHCs (Pangršič 

et al., 2015) and type I, but not type II SGNs (McLean et al., 2009). 
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Figure 28: Expression of QuasAr3 in the cochlea after postnatal AAV2/6 injection 

Confocal images of cryo-sections of an AAV2/6-transduced mouse cochlea. Cochleae were 
injected postnatally at p5 and fixed at p15. QuasAr3 expression was determined by 
immunolabeling with an anti-GFP antibody (green) detecting the QuasAr3-citrine fusion 
construct. An anti-calretinin antibody (magenta) visualized type I SGNs and IHCs (McLean 
et al., 2009; Pangršič et al., 2015). [A] Overview cross section through an apical cochlea 
turn. Image center shows SGN somata in the Rosenthal’s canal. Peripheral fibers radiate 
towards the IHCs on both sides of the image. [B] Cross section through an apical cochlear 
turn (left, scale bar: 50 µm) and individual close-up images (right) of SGN boutons adjacent 
to an IHC (a-a’’, scale bar: 10 µm) and SGN somata (b-b’’, scale bar: 50 µm) from an AAV-
injected animal as well as SGN somata of a non-injected control cochlea (c-c’’, scale bar: 
50 µm). a, b, and c show merged confocal images of calretinin immunofluorescence (‘) and 
GFP immunofluorescence (‘’).  
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Figure 28A shows an overview cross section through the apical cochlea turn of an 

exemplary AAV2/6 - injected cochlea. A large number of type I SGNs were GFP-positive, 

indicating high AAV2/6 transduction rates (Figure 28A). The calretinin/GFP merge image 

shows SGN somata in the center and their peripheral axons projecting towards the also 

calretinin-positive IHCs. Since live-cell voltage imaging experiments will be mainly 

performed in the apical cochlear region, Figure 28B shows a merged overview image of the 

apical cochlear turn (left) and individual close-up images (right) of SGN boutons adjacent 

to an IHC (a-a’’), SGN somata (b-b’’), and in addition SGN somata of a non-injected control 

cochlea (c-c’’). GFP signal was clearly present both in boutons at the IHC base (a’’) and 

SGN somata (b’’) and was absent in non-injected SGN somata (c’’). QuasAr3-citrine 

fluorescence was highly membrane-localized, which was best visible in SGN somata when 

comparing the distribution of GFP fluorescence signal (b, b’’) to the cytosolic calretinin 

fluorescence signal (b, b’).   

 

Next, the expression of QuasAr3 after postnatal injection was examined in SGN fibers and 

boutons adjacent to the IHCs in whole-mounts of freshly dissected organs of Corti. Antibody 

staining was performed against the IHC-specific protein vGlut3 (blue) (Seal et al., 2008) 

and the type I and II SGN-specific protein NF200 (magenta) (McLean et al., 2009) (Figure 

29). The anti-GFP antibody fluorescence (green) revealed QasAr3-citrine expression in 

SGN boutons adjacent to IHCs (Figure 29, asterisk).    

 

 

Figure 29: QausAr3-Citrine expression in SGN boutons 

Maximum projection of confocal sections from a whole-mount of a freshly dissected organ 
of Corti of an AAV2/6 transduced mouse cochlea. Virus was injected postnatally at p5 and 
the organ of Corti was fixed at p15. QuasAr3 expression was determined by immuno-
labeling with an anti-GFP antibody (green) detecting the QuasAr3-citrine fusion construct. 
IHCs were labeled with anti-vGlut3 antibody (blue) (Seal et al., 2008), type I and II SGN 
were labeled with an anti-NF200 antibody (red) (McLean et al., 2009). Asterisks highlight 
some SGN boutons, which show strong expression of QuasAr3-citrine and which are 
adjacent to IHCs. Scale bar: 10 µm.   
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In order to distinguish QuasAr3-expressing from non-QuasAr3-expressing organs of Corti 

after postnatal virus injection before live-cell imaging experiments in non-fixed tissue, 

baseline QuasAr3 fluorescence was measured in freshly dissected organs of Corti during 

excitation with a 637 nm laser at different intensities (1 - 140 mW) (Figure 30). QuasAr3 

fluorescence was clearly visible (Figure 30A) by 637 nm laser illumination in the custom-

made wide-field imaging microscope (Figure 10). SGN boutons of non-injected control 

organs of Corti showed auto-fluorescence signals that looked qualitatively similar to 

QuasAr3 fluorescence in boutons. The intensity of QuasAr3 baseline fluorescence however, 

differed remarkably (increased by a factor of 1000) from background fluorescence (Figure 

30A, B). Validation of QuasAr3 expression by determining QuasAr3 baseline fluorescence 

at different laser intensities was confirmed by anti-GFP antibody staining (as in Figure 29) 

and was consistent. Therefore, positive virus-transduction of SGNs was determined by 

measuring the QuasAr3 fluorescence intensity range before each voltage imaging 

experiment.  

 

Figure 30: Baseline fluorescence of QuasAr3 expressing boutons 

QuasAr3 fluorescence was clearly visible by 637 nm laser illumination in the custom-made 
wide-field imaging microscope. [A] Top view on several boutons (white spots) in a freshly 
dissected apical turn of a virus injected (top) and non-injected control (middle and bottom) 
organ of Corti (scale bar 5 µm) acquired at 50 mW 637 nm laser output. Top and middle 
image are displayed with the same intensity lookup table. Fluorescence intensities of 
boutons from the injected organ of Corti differ remarkably from the auto-fluorescence in 
non-injected control boutons. Control boutons are additionally displayed with an adjusted 
lookup table for comparison of fluorescence patterns (bottom). Positive virus transduction 
of the injected cochleae was confirmed by immunohistochemistry (as in Figure 29). [B] 
Fluorescence intensities were quantified by measuring the average fluorescence intensity 
of n=15-30 boutons from N=2 injected and control mice, each. Data represent mean ± SEM. 
Age of mice: p15.  
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Wide-field illumination setup 

Together with Dr. Kai Bodensiek, I established a custom-built wide-field imaging setup (see 

Materials and Methods, Figure 10), by modifying a preexisting patch-clamp setup equipped 

with a laser-scanning microscope. Dichroic mirrors and a separate excitation laser coupling 

port enabled wide-field imaging without interfering with the preexisting laser scanning 

microscope beam path. The HEKA patch-clamp amplifier was used as master to 

synchronize illumination, stimulation, camera acquisition, and the collection of confocal 

images. 

To gain high laser intensities and homogeneous wide-field illumination of the sample, the 

beam of a 637 nm diode laser was expanded with a lens system and size-modulated by an 

iris. When illuminating a densely packed sample of TetraSpeck Microspheres, a sample 

illumination spot (white dashed line) with approximately 75 µm diameter was measured 

(Figure 31A). Converting the measured laser output from a photometer onto the illuminated 

area, an average laser irradiance of up to 4000 W/cm2 was reached at maximal laser output 

of 140 mW. In a recent study, laser irradiance for QuasAr2 imaging ranged from 100 W/cm2 

in neuronal cultures, 1200 W/cm2 in organotypic slices (Hochbaum et al., 2014) up to 2500 

W/cm2 in dorsal root ganglia in vivo (Lou et al., 2016). Therefore, during QuasAr3 voltage 

imaging experiments in SGNs mostly 30 mW laser output intensity was used, as this was 

sufficient to reach a high average sample irradiance of 1200 W/cm2. Homogeneity of the 

laser beam profile was examined by illuminating a homogenous Alexa-633 solution (Figure 

31B). No speckles were visible, and the beam profile showed a uniform Gaussian 

distribution (red lines) (Figure 31B).      

For rapid detection of small fluorescence changes of QuasAr3, a sCMOS camera (Orca-

Flash4.0V2) was employed. With a calculated 60.7x magnification factor (60x water 

immersion objective) determined by a micrometer scale, one pixel on the camera chip with 

a size of 6.5 µm converted into 107 nm on the sample. To reach high image acquisition 

rates of 1 kHz, the camera readout area was restricted to 2048 x 184 pixels (white solid 

box) symmetric to the camera chip centerline (white solid line) (Figure 31C) using binning 

of 2 x 2 pixels. Both, the laser illumination spot and the readout area of the camera restrict 

the available imaging field. Nonetheless, the effective readout area is approximately 75 µm 

x 20 µm (Figure 31D), sufficient to image the fluorescence of several boutons (red circles) 

of one IHC (dashed white lines) or from several IHCs simultaneously (Figure 31D).  
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Figure 31: Wide-field illumination setup 

The custom-built wide-field imaging setup was established together with Dr. Kai Bodensiek. 
[A] Expanded and size-modulated 637 nm diode laser beam illuminating a circular region 
of approximately 75 µm diameter (dashed lines) within a sample of densely packed 
TetraSpeck Microspheres. Scale bar 50 µm. [B] The laser beam profile was investigated 
by illuminating a homogenous Alexa-633 solution. The beam profile showed a uniform 
Gaussian distribution (red lines). Scale bar 50 µm. [C] Bright-field image of a freshly 
dissected mouse organ of Corti. The image was acquired while focusing on the IHC hair 
bundles. Dashed lines indicate the locations of IHCs. Red dots indicate the locations of SGN 
terminals innervating the IHCs. To reach high image acquisition rates of 1 kHz, the camera 
readout area was restricted to 2048 x 184 pixel (white solid box) symmetric to the camera 
chip centerline (white solid line). Scale bar: 50 µm. [D] Enlarged view on the laser 
illuminated area from the freshly dissected mouse organ of Corti in [C], focused towards the 
IHC base. Dashed lines indicate IHCs and white box indicates the camera readout area 
during voltage imaging. A fluorescent wide-field image (red) of a virus transduced QuasAr3 
expressing mouse was merged with the bright-field image (grays) and roughly indicates the 
location of SGNs. Scale bar: 10 µm.   
 

Further, the 637 nm laser power stability was tested for different laser modulations and 

intensities to minimize possible optical fluctuation effects induced by the laser (Figure 32). 

Together with Dr. Kai Bodensiek, a custom-built photodiode circuit was used to record laser 

power with a sampling rate of 20 kHz. The measured photodiode output did not linearly 

correlate with the laser power, but provided a high temporal resolution to detect laser 

fluctuations. Laser power was measured in the analog and digitally triggered constant power 
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(APC) mode (Figure 32A and B), and digitally triggered constant current (CC) mode (Figure 

32C) for three different laser intensities (10 mW, 75 mW and 100 mW).  

 

 

 
 
 
 
 

Compared to the CC mode, the APC mode uses an internal photodiode feedback loop that 

controls the optical output level. This feedback loop is especially useful, if changes in diode 

temperature occur, however it can also introduce laser output noise (www.optima-

optics.com/pdf/NOTES.PDF, 05.10.2017). The measured photodiode output indicated that 

Figure 32: Laser stability 

using different modes of 

modulation  

 
[A-C] For the Obis 637 nm 
laser, different  modulations 
were tested regarding their 
stability of the laser output 
power. A custom made 
photodiode circuit using a 
sampling rate of 20 kHz was 
used to measure the laser 
power stability for different 
intensities (10 mW light gray, 
75 mW dark gray, 100 mW 
black). Measurements were 
performed together with Dr. 
Kai Bodensiek. Laser powers 
were normalized to their 
maximum. Three different 
modulations were tested: [A] 
analog in constant power 
(APC) mode, [B] digital in 
APC mode, [C] digital in 
constant current (CC) mode. 
The most stable laser power 
was obtained for [C] and 
hence used for voltage 
imaging experiments. 
[D] Fluorescence of an 
individual TetraSpeck bead 
illuminated by the Obis 637 
nm laser in the digital 
modulation CC mode [as in C] 
at 10 mW laser intensity was 
acquired with the sCMOS 
camera at 1 kHz frame rate. 
Fluorescence was normalized 
to the average fluorescence 
over time (F0); ∆F/F0 scale: 0.1 
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the recorded laser powers were only stable in the digitally triggered CC mode, especially 

for the lowest tested laser intensity of 10 mW (Figure 32C), which could be due to noise 

introduced by the photodiode feedback loop used by the APC mode. Hence, the digital CC 

mode was used during all voltage imaging experiments, later. To avoid heating of the laser 

diode, the 637 nm laser was placed on a 2 cm thick aluminum board for passive cooling. In 

addition to the photodiode measurements, fluorescence of fixed TetraSpeck beads was 

acquired with the sCMOS camera (1 kHz, for 1 s) during 10 mW 637 nm laser illumination 

in the digital CC mode (Figure 32D). Thereby, not only potential laser noise, but also camera 

noise can be measured. ∆F/F0 of the fluorescent bead signal was calculated the same way 

as for QuasAr3 fluorescence in SGN boutons, later. Namely, a region of interest (ROI) 

including a single bead was chosen and F0 was calculated as the average ROI fluorescence 

over time. By first subtracting and then dividing the fluorescence of each individual frame 

by F0, ∆F/F0 was obtained. Fluorescence fluctuations of the bead were in the range of < 0.5 

∆F/F0. 

Optical fiber stimulation 

In order to employ optical stimulation of Optopatch3-expressing SGN by blue light-induced 

photocurrents through the channelrhodopsin CheRiff and simultaneously monitor changes 

in membrane voltage through QuasAr3, a blue light stimulation source had to be installed 

at the setup. For that, a laser fiber was fixed onto a piezoelectric micromanipulator. The 

laser fiber brought in close proximity to the organ of Corti is illustrated in Figure 33A. During 

voltage imaging and optical stimulation, however, the fiber was placed in 250 µm distance 

to SGN boutons (Figure 33A, blue circles), which were placed at the 637 nm laser 

illumination area symmetric to the camera center line (see Figure 31C). An analog trigger 

controlled stimulus timing and blue laser intensity ranging from 0.5 mW to 16 mW in the 

imaging plane (Figure 33B). Laser irradiance at the fiber end in aqueous solution at the 

location of the sample tissue was calculated based on the irradiation angle of the fiber fixed 

on the piezoelectric micromanipulator (20°), the distance between the fiber and the sample 

(250 µm), the fiber diameter (50 µm) and the numerical aperture of the laser fiber (NA 0.22). 

The calculated example fiber irradiance profile was plotted for 5 mW laser output at the fiber 

exit and shows very high laser irradiance (Figure 33C), exceeding the intensities that were 

reported previously (0.05 to 3 W/cm2) for cell soma stimulation (Hochbaum et al., 2014; Lou 

et al., 2016). However, the theoretically calculated irradiance was likely overestimated, 

since the fiber was manually cut and the resulting irradiance angle, thus the loss of power 

with distance from the fiber, is therefore likely larger. Further, so far, optical CheRiff 

stimulation was only described for cell bodies (Hochbaum et al., 2014; Lou et al., 2016), 

which probably require weaker laser irradiance, since more CheRiff channels are present 
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and contribute to the depolarizing photocurrent. Hence, in order to assess the minimum 

laser power required for triggering of APs in SGN boutons, a protocol with increasing laser 

power steps (intensity from 0.5 mW to 16 mW, Figure 33B) was employed.  

 

 

 

 

 

Figure 33: Optical stimulation setup for 

SGNs with blue light 

Installation of a blue light source for optical 
stimulation of Optopatch3-expressing SGN 
boutons to induce depolarizing 
photocurrents through CheRiff.  
 
[A] Bright field image of a freshly dissected 
organ of Corti with the laser fiber brought in 
close proximity to the organ of Corti for 
illustration. Blue circles indicate locations of 
SGN boutons adjacent to IHCs (white 
dashed circles). During optical stimulation 
the laser fiber fixed to a piezoelectric 
micromanipulator was placed in 250 µm 
distance to the SGNs, which were placed 
at the 637 nm laser illumination area 
symmetric to the camera center line (see 
Figure 31C). Scale bar: 50 µm.  
 
[B] Blue laser intensity from a laser fiber 
was controlled by an analog trigger from a 
HEKA amplifier (x-axis). The laser fiber 
output intensity ranged from 0.5 mW to 16 
mW (y-axis) measured by a photometer in 
the imaging plane.  
 
 [C] Simulation of the fiber irradiance profile 
at the tissue. The location of the putative 
position of IHCs and SGN boutons is 
indicated by white dashed circles and blue 
circles, respectively. Laser irradiance in 
aqueous solution at the sample tissue 
position was calculated based on the 
irradiation angle of the fiber (20°), the 
distance between the fiber and the sample 
(250 µm), the fiber diameter (50 µm) and 
the numerical aperture of the laser fiber 
(NA 0.22). Irradiance lookup table 
corresponds to 5 mW laser output at the 
fiber end. Measurements and calculations 
were performed together with Dr. Kai 
Bodensiek. Scale bar: 50 µm. 
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The optical stimulation was first tested in non-virus-transduced SGNs to measure optical 

crosstalk and thereby investigate proper positioning of the laser fiber to illuminate SGN 

boutons (Figure 34). Therefore, apical turns of the organ of Corti from non-virus injected 

mice were freshly dissected and stimulated by 50 ms pulses of maximal 473 nm laser 

intensity (6.5 V analog output, Figure 33A). Images were acquired with a camera frame rate 

of 1 kHz and ROIs of several SGN boutons were manually chosen for analysis (Figure 34). 

Normalized fluorescence changes (∆F/F0) of several ROIs were plotted over time and show 

an increase in fluorescence that strongly correlates with the timing of blue light stimulation 

pulses (Figure 34, dashed box). Hence, the increase in fluorescence likely represents 

optical crosstalk from the blue laser, which was reported previously (Hochbaum et al., 

2014). This experiment indicates that the laser fiber illuminated the organ of Corti at the 

location of SGN boutons, which is critical for optical SGN stimulation.  

 

 

Figure 34: Optical crosstalk by blue light stimulation  

50 ms pulses of maximal 473 nm laser intensity (6.5 V analog output, see Figure 32B) 
illuminated non-virus-transduced SGNs of a freshly dissected organ of Corti. Images were 
acquired with 1 kHz and 30 mW 637 nm laser intensity. ROIs were manually placed on 
different SGN boutons for analysis. Normalized fluorescence changes (∆F/F0) of several 
ROIs were plotted over time and show an increase in fluorescence that strongly correlates 
with the timing of blue light stimulation pulses and likely represents optical crosstalk 
(Hochbaum et al., 2014).  
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All-optical electrophysiology in AAV2/6-Optopatch3 transduced mouse cochleae  

Next, optical blue light-stimulation of SGN boutons by CheRiff-mediated photocurrents was 

combined with optical readout of changes in membrane voltage through QuasAr3. After 

postnatal virus injection of the cochlea with AAV2/6-Optopatch3, the apical turn of the organ 

of Corti was dissected and 50 ms pulses of increasing 473 nm laser intensity were applied 

to stimulate SGNs (Figure 35). Images were acquired during constant 30 mW 637 nm laser 

illumination to visualize Quasar3 fluorescence with a camera frame rate of 1 kHz. ROIs 

were manually placed on several SGN boutons for analysis (Figure 35A) and normalized 

fluorescence changes (∆F/F0) of several ROIs from two different IHCs (Figure 35A dashed 

lines) were plotted over time (Figure 35B) on top of the schematized blue laser stimulation 

pattern.  

 

 

Figure 35: All-optical electrophysiology in SGNs expressing CheRiff and QuasAr3 

[A] Fluorescence image of AAV2/6-Optopatch3 transduced SGNs from a freshly dissected 
organ of Corti. The location of IHCs (dashed white lines) was determined based on a bright 
field image. SGN boutons (ROI 1-4) adjacent to the IHCs were chosen for image analysis 
in [B]. Scale bar: 5 µm. [B] 50 ms pulses of increasing 473 nm laser intensity were triggered 
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by the HEKA amplifier (analog output, left axis) and are schematized as blue bars. 
Fluorescence images were acquired with 1 kHz during 30 mW 637 nm laser illumination. 
Different SGN boutons were chosen manually for analysis as ROIs (color code in [A]). 
Normalized fluorescence changes (∆F/F0) of ROI 1 to 4 were plotted over time. ∆F/F0 traces 
are displayed with y-offset for better visibility; bar on top right shows ∆F/F0 scale of 0.1.   
 

Fluctuations in the ∆F/F0 traces were most prominent for ROI1 (Figure 35B blue), but the 

signals did not show obvious correlation with the stimulus pattern. Moreover, optical 

crosstalk from the blue laser fiber was not as prominent as in the control experiment (Figure 

34). Possibly the fiber was not placed in the correct orientation and distance to illuminate 

the SGN boutons as in the control experiments, such that the induced photocurrents 

through CheRiff might have been too small to trigger APs in SGNs. Nonetheless, even 

though the observed ∆F/F0 changes were small (≤ 0.1) and did not correlate with the 

stimulus timing, they might represent APs. As photocurrents could have lowered the SGN 

spike threshold and thereby increase the probability of spontaneous spike generation, 

spontaneous secretion of glutamate from IHCs might therefore more easily trigger APs in 

SGNs. The data interpretation should be treated with caution and does not lead to a final 

conclusion whether QuasAr3 can be employed as a tool for postsynaptic spike detection in 

SGNs.  

Combining IHC perforated patch-clamp stimulation with QuasAr3 imaging 

Finally, postsynaptic QuasAr3 voltage imaging was combined with presynaptic stimulation 

of IHCs. Presynaptic IHC patch-clamp stimulation was employed to indirectly stimulate 

SGNs through exocytic release of glutamate from IHCs and QuasAr3 fluorescence was 

simultaneously recorded in postsynaptic SGN boutons. Compared to optical stimulation, 

this approach enables better control and readout of the stimulus, as IHC exocytosis can be 

monitored by membrane capacitance changes. Further, this stimulus approach is 

independent of the CheRiff expression level, which determines the amplitude of blue light 

induced photocurrents and thereby the presence and timing of APs that can be visualized 

by QuasAr3.  

The perforated patch-clamp technique was used to stimulate IHCs from freshly dissected 

organs of Corti after postnatal virus injection (Figure 36A). Here, whole-cell Ca2+-current 

(ICa) and corresponding membrane capacitance (Cm) were recorded before, during and after 

50 ms step depolarization of the IHC to -14 mV (Figure 36B). Even though whole-cell patch 

clamp recordings integrate the activity of all IHC synapses, the strong depolarization applied 

here is expected to evoke release at all of the cells synapses. Therefore, the recorded 

capacitance changes can be used as readout of IHC exocytosis and thus, glutamate release 

onto postsynaptic SGNs. Simultaneous to the patch-clamp recording, membrane voltage 

changes of SGNs innervating the IHC were monitored by detecting QuasAr3 fluorescence 
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(Figure 36B, bottom). QuasAr3 fluorescence was recorded with 1 kHz camera frame rate 

under 30 mW 637 nm laser wide field illumination. Based on a merged bright field – and 

QuasAr3 fluorescence image, the locations of the boutons innervated by the patch-clamped 

IHC were determined (Figure 36A). ROIs including three SGN boutons adjacent to the 

patch-clamped IHC (Figure 36A,B) and one more distant SGN, which should not be 

stimulated by the depolarized IHC (Figure 36A,B) were chosen manually for image movie 

analysis.  

 

Figure 36: Combining whole-cell patch clamp stimulation of the IHC and postsynaptic 

QuasAr3 voltage imaging  

IHC perforated patch-clamp and simultaneous postsynaptic voltage imaging was performed 
in a freshly dissected apical turn of an organ of Corti (p14) after postnatal virus injection 
(p5). [A] Left: Composite of a bright field image (grays) and wide-field 637 nm illumination 
fluorescence image (magenta) of the patch-clamped IHC and adjacent QuasAr3 expressing 
SGN boutons (magenta). Asterisk marks the location of the patch pipette (perforated patch-
clamp). Right: Wide-field 637 nm illumination image. The location of the patch-clamped IHC 
is indicated by a dashed white circle. ROIs were manually chosen at the location of SGN 
boutons adjacent to the patch-clamped IHC (ROI 1-3) and adjacent to a non-patch-clamped 



Chapter 2 

 

 96 

IHC (ROI 4) for image analysis in [B] (white circles). Scale bar: 10 µm. [B] Whole-cell 
perforated patch-clamp recording of an IHC (gray traces) and simultaneously recorded 
QuasAr3 fluorescence from SGN boutons adjacent to the patch-clamped IHC (pink and 
black traces). Whole-cell Ca2+-current (ICa, gray) and corresponding membrane capacitance 
(Cm, gray) of an IHC before, during and after 50 ms step depolarization to -14 mV  (black 
line and gray bar). Pink traces show simultaneously recorded normalized QuasAr3 
fluorescence changes (∆F/F0) corresponding to ROI 1-3 adjacent to the IHC (illustrated in 
[A]). Black trace shows the QuasAr3 ∆F/F0 signal corresponding to ROI 4 distant to the 
patch-clamped IHC (illustrated in [A]). Traces are displayed with y-offset for better visibility. 
Images were acquired at 1 kHz camera frame rate and 30 mW 637 nm laser power. ∆F/F0 
scale: 0.1.  
 

QuasAr3 fluorescence for each ROI was normalized as explained above. Pink traces show 

simultaneously recorded normalized QuasAr3 ∆F/F0 signals corresponding to ROIs 1-3 

adjacent to the IHC, whereas the black trace shows the QuasAr3 ∆F/F0 signal 

corresponding to ROI 4, distant from the patch-clamped IHC (illustrated in Figure 36A). 

Even though a slight increase in ∆F/F0 QuasAr3 signal was visible at the onset of the 

stimulus in ROI 1-3, the amplitude was not larger than the fluctuations before and after IHC 

stimulation. Since the IHC was voltage clamped at -70 mV, no spontaneous SV release and 

thus postsynaptic spiking would be expected. Hence, also this experiment was not 

conclusive on whether or not QuasAr3 could be employed as a tool for postsynaptic spike 

detection in SGNs.    

 

5.3 Discussion 

Sound-evoked glutamate release from an IHC synapse is sensed by the postsynaptic SGNs 

that connect the peripheral sensory sound receptor system to the brain stem. While each 

IHC innervates 5-30 SGNs, each SGN is innervated by only one ribbon-type synapse. And 

even though all IHC AZs are driven by the same IHC receptor membrane potential, 

postsynaptic spike responses of SGNs differ remarkably. There is emerging evidence that 

postsynaptic response diversity is achieved by the heterogeneity of presynaptic AZs. Live-

cell confocal Ca2+-imaging revealed that larger ribbons clustered more synaptic Ca2+-

channels, showed increased synaptic Ca2+-influx, and were located towards the modiolar 

side of the IHC. Those AZs further displayed a more depolarized Vhalf of Ca2+-influx (Frank 

et al., 2009; Meyer et al., 2009; Ohn et al., 2016). However, evidence for heterogeneous 

SGN responses regarding spontaneous spike rate, spike threshold, and dynamic spike 

range for SGNs with similar characteristic frequency is mostly based on in vivo extracellular 

recordings from ANFs (Liberman, 1978; Ohlemiller and Echteler, 1990; Sachs and Abbas, 

1974; Taberner and Liberman, 2005; Yates et al., 1990). When examining cat SGNs, it was 

possible to morphologically correlate the preferential innervation side of the IHC with the 
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type of firing pattern (low/medium-SR and high-SR SGNs) of the SGN (Kawase and 

Liberman, 1992; Liberman, 1980, 1982; Liberman and Oliver, 1984). However, so far, there 

is no physiological evidence that proves a direct correlation pattern between the diverse 

above-mentioned IHC AZ properties and postsynaptic responses. To provide mechanistic 

insights into synaptic sound encoding, imaging techniques that monitor the activity of 

individual presynaptic AZs and SGN boutons are promising tools. Confocal Ca2+-imaging of 

individual presynaptic AZs is well established in IHCs (Frank et al., 2009; Meyer et al., 2009; 

Ohn et al., 2016) and can be combined with the use of a fluorescently labelled RIBEYE-

binding peptide to mark presynaptic AZs (Francis et al., 2011). However, to date there is no 

established postsynaptic readout system for monitoring multiple individual SGN responses. 

Compared to Ca2+-indicators, voltage indicators are superior regarding their high-speed 

event kinetics and therefore most suitable to monitor neuronal APs. Both QuasAr1 and 

QuasAr2 could resolve individual APs in hippocampal neurons in single trials and have red-

shifted fluorescence spectra (Hochbaum et al., 2014), which would allow imaging in 

combination with green fluorescent presynaptic Ca2+-indicators in the future. Therefore, I 

established an experimental setup for live-cell voltage imaging (Figure 10 and 32-32) of 

QuasAr variants in SGNs. While QuasAr2 imaging was performed in a Floxpatch-Bhlhb5-

Cre (Lou et al., 2016; Ross et al., 2010) mouse line (in the laboratory of Prof. Adam Cohen) 

using direct optical blue-light SGN stimulation to induce depolarizing photocurrents through 

the co-expressed channelrhodopsin CheRiff, QuasAr3 imaging was performed in 

postnatally virus-injected mice using either direct optical stimulation or indirect SGN 

stimulation through patch-clamp stimulation of presynaptic IHCs. Regardless of the 

expression system, the GEVIs QuasAr2 and 3 were both expressed in cochlear SGNs 

(Figure 26 and 28) and high levels of QuasAr3 were detected in SGN boutons adjacent to 

IHCs (Figure 29). 

 

However, during imaging experiments only QuasAr3 (Figure 35, 36), but not QuasAr2 

(Figure 27), elicited any fluorescence responses in SGN boutons adjacent to an IHC. 

QuasAr3 carries the same point mutation Q95H as QuasAr1, which was previously reported 

to have extremely fast fluorescent on- and off-kinetics of < 1 ms, but a lower sensitivity to 

membrane voltage-changes (Hochbaum et al., 2014). On the other hand, QuasAr2 is more 

sensitive to membrane voltage-changes, while its on- and off-kinetics are in the range of 1 

ms (Hochbaum et al., 2014). The QuasAr2 response kinetics to voltage changes is still 

superior to other indicators like ArcLight (Piao et al., 2015), but might be still too slow to 

resolve APs of SGNs, since the FWHM of APs in SGNs was previously reported to be on 

average 0.9 ms (Rutherford et al., 2012). Hence, one could speculate that in this work, no 

APs could be detected in SGNs by the use of QuasAr2, because the fluorescence change 
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in this short depolarized period might have been too small due to the “slow” on-kinetics 

(on1.2 ms) of QuasAr2 (Hochbaum et al., 2014). Alternatively, or additionally, a 

complication in the experiments could as well be a relatively lower expression level of 

QuasAr2 in the transgenic Floxpatch mouse compared to virus-mediated expression in 

QuasAr3 experiments. Nonetheless, the CAG promoter employed in the Floxpatch mouse 

is a ubiquitous promoter (Lou et al., 2016) and was previously reported to achieve high 

transcription levels in the Rosa26 locus (Chen et al., 2011).  

Nonetheless, the slight increase in ∆F/F0 signal amplitude for QuasAr3 during optical 

stimulation of SGNs or electrical stimulation of IHCs was not larger than the QuasAr3 signal 

fluctuations before and after the stimuli and comparable or only slightly bigger than the noise 

floor measured by the fluorescence beads (Figure 32). In addition, in the IHC patch-clamp 

experiment, not only the SGNs adjacent to the stimulated IHC (ROI 1-3), but also the more 

distant SGN (ROI 4) showed temporally correlated ∆F/F0 signal fluctuations (Figure 36), 

which argues against the detection of IHC triggered APs in this particular experiment. 

Moreover, during the patch-clamp experiment, the IHC was voltage clamped at -70 mV, 

where no spontaneous SV release and thus postsynaptic spiking would be expected. 

Therefore, it is hard to distinguish between the desired QuasAr3 responses to membrane 

voltage changes or noise. To investigate whether QuasAr3 signals are indeed caused by 

evoked APs, a control experiment by application of tetrodotoxin (TTX), a NaV channel 

blocker that inhibits the generation of APs, could be performed. At this point of the project, 

however, it is not possible yet to draw a conclusion on whether QuasAr3 can be used to 

monitor APs in SGNs and probe the presynaptic mechanism of postsynaptic response 

diversity.  

 

Overall, the sensitivity of the wide-field imaging setup could be further increased in order to 

achieve robust fluorescence QuasAr3 responses, which are reliably distinguishable from 

background noise.  Voltage imaging is a balancing act between signal detection and speed. 

While extremely fast on- and off- kinetics of the voltage indicator and high-speed acquisition 

by the camera are required to monitor APs, the signal-to-noise ratio (SNR) decreases under 

high-speed conditions. Technically, an increase in the SNR could be achieved by a higher 

NA objective (currently 60x, NA 0.9) to capture as many photons as possible. On the other 

hand, the choice of the objective is limited by the required large working distance, since for 

IHC patch-clamp recordings, an upright microscope with a water-dipping objective is most 

suitable. Further, the SNR could be increased by a low camera readout noise, and a high 

quantum efficiency of the camera chip in the far-red imaging range (>700 nm). However, 

voltage imaging also requires fast acquisition of a reasonable area (at least 15x15 µm to 
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enable recording from one IHC with several adjacent boutons) with reasonable resolution 

(approximately 200 nm to distinguish individual boutons).  

 

Aside from signal-to-noise issues, there is another caveat regarding the high-speed kinetics 

of voltage indicator fluorescence. Since the number of photons that are emitted by the 

sensor and detected by the camera per time and pixel gets highly reduced especially during 

high-speed recordings where the exposure time is extremely short (≤ 1 ms), thus requiring 

higher illumination intensities for adequate signal amplitudes. Thereby, the brightness and 

quantum yield of the indicator becomes very important. Rhodopsin based voltage indicators 

have a small quantum yield (<0.001) and require high irradiance because of their complex 

photo cycle (Hochbaum et al., 2014; Maclaurin et al., 2013). Even though Arch variants are 

robust to photobleaching (Kralj et al., 2011), the high irradiance at the imaged tissue might 

induce thermal damage. This was however not observed in this study. During simultaneous 

IHC patch-clamp recording and QuasAr3 imaging in SGNs, patch-clamped IHCs were 

repetitively irradiated with approximately 1000 W/cm2 637 nm laser light for 1 s and showed 

stable Ca2+-currents and exocytosis. SGN boutons however have a much smaller volume 

compared to IHCs, whereby thermal tissue heating might have a different effect.   

 

If optimization of the wide-field imaging setup through an increase in sensitivity and thereby 

more reliable optical detection of APs might not lead to the desired outcome, one could 

think about alternative GEVIs. A good alternative to rhodopsin-based voltage indicators are 

e.g. FRET-based voltage indicators, such as the recently developed blue-shifted Ace-

mNeon versions (Gong et al., 2015). The FRET pair consists of an opsin with the bright and 

photostable fluorescent protein mNeonGreen (Gong et al., 2015). The fast kinetics (<0.5 

ms) of Ace-mNeon allowed single-cell and single-AP resolution in mouse and fly brains in 

vivo (Gong et al., 2015). Unfortunately, the fluorescent spectrum of Ace-mNeon is blue-

shifted, which would not allow simultaneous Ca2+-imaging in presynaptic IHC AZs using the 

well-established small molecule green Ca2+-indicators Fluo-4FF or Fluo-5N (Frank et al., 

2009; Meyer et al., 2009). Combination of pre- and postsynaptic imaging would provide a 

functional link between heterogeneous presynaptic AZ properties and postsynaptic SGN 

spike response diversity. Nonetheless, one could use one of the less well-established red 

fluorescent Ca2+-indicators or at least make use of the fluorescently labelled RIBEYE-

binding peptide (Francis et al., 2011) to mark presynaptic AZs and estimate the presynaptic 

ribbon size as measure for AZ strength (Frank et al., 2009). Since AAV2/6 mediated gene 

expression after postnatal virus injection into the round window of the cochlea worked well, 

this method could be applied to other genetically encoded sensors such as Ace-mNeon.  
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6 Outlook 

To understand synaptic transmission, it is essential that we identify and characterize the 

molecular components involved in it and their role in the functional molecular networks 

mediating this process. One obvious crucial step in synaptic transmission is exocytosis, but 

in addition, we will have to understand the post-synaptic processes that are responsible for 

decoding and transmitting the presynaptic output better. Finally, we will have to combine 

the synaptic physiology with computational methods to produce a systems relevant model 

for processing of sound information. This is possible by examining auditory synaptic 

information processing on the molecular, anatomical, physiological, and systems level, as 

it provides knowledge about the molecular key players in synaptic transmission and about 

how auditory information processing works along the auditory pathway.  

 

There is evidence that IHCs decompose auditory information such as sound pressure 

intensity through their heterogeneous synaptic properties. This enables them to forward 

already decomposed information along separate neuronal trajectories towards the brain. 

Using presynaptic Ca2+-imaging and postsynaptic single unit ANF recordings, Gipc3 was 

identified as a presynaptic candidate protein for modulating the activation of presynaptic 

Ca2+-influx and thereby modulating the spontaneous SGN firing rate (Ohn et al., 2016). 

Genetic deletion of Gipc3 in mice shifted the Ca2+-channel Vhalf to more hyperpolarized 

potentials, thereby increasing IHC exocytosis and spontaneous SGN discharge rates (Ohn 

et al., 2016). In addition, the gradient of Ca2+-channel Vhalf and maximal Ca2+-influx along 

the IHC symmetry axis was reversed compared to wild-type AZs (Ohn et al., 2016). Despite 

Gipc3, the molecular players allowing for such heterogeneous IHC synapse properties 

have, however, not been identified yet. Voltage imaging in SGNs that receive input from a 

single IHC will provide novel insights into the mechanism of how IHCs decompose 

stimulatory input via their multiple heterogeneous AZs and how SGNs respond to it. Hence, 

SGN voltage imaging might be a useful tool to screen for new candidate molecules 

modulating presynaptic synapse heterogeneity and change postsynaptic SGN response 

properties. Since AAV-mediated expression of GEVIs makes this technique applicable to 

any transgenic candidate mouse line, it may allow us to investigate whether synapse 

heterogeneity and postsynaptic responses might be altered in different knockout mice. Even 

though, the QuasAr3 imaging experiments presented in this work are not yet conclusive on 

whether this particular GEVI is suitable to detect APs in SGNs, voltage imaging using GEVIs 

and AAV2/6 mediated gene expression in SGNs has a great potential. Voltage imaging is 

technically very challenging and constitutes a balancing act between acquisition speed, 
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fluorescence signal detection and noise. Further, high GEVI expression levels and their 

correct plasma membrane localization are required. Nonetheless, voltage imaging is a 

cutting-edge technique and once, it is fully established, will provide novel insights into 

synaptic sound coding strategies through its high temporal resolution.  

 

Towards the overall goal to identify and characterize novel molecular components involved 

in IHC exocytosis, I found that RIM-BP2 plays a key role at IHC AZs. By studying the 

morphological and physiological effects of genetic RIM-BP2 disruption in constitutive RIM-

BP2 knockout mice, I found that in murine IHCs RIM-BP2 (1) positively regulates the 

number of synaptic CaV1.3 Ca2+-channels (Figure 14, 15) and thereby facilitates SV release 

(Figure 16), and (2) enhances fast SV recruitment after RRP depletion (Figure 18, 24). This 

was physiologically reflected by a mild auditory synaptopathy. The elevated hearing 

thresholds and reduced ABR wave I amplitude in combination with normal otoacoustic 

emissions in RIM-BP2 knockout mice (Figure 21) are also often found in human patients 

with impaired speech comprehension (Moser et al., 2006b). Hence, the question arises, 

whether humans also express RIM-BP2 and whether it is associated with human hearing 

loss. Interestingly, the human gene for RIM-BP2 was mapped to the human chromosome 

12q24.33 (Yan et al., 2005), which was previously defined as the gene locus of DFNA41, 

an autosomal dominant sensorineural hearing loss that is progressive and usually starts in 

the second decade of life (Blanton et al., 2002). Furthermore, the mouse and human RIM-

BP2 amino acid sequences share 83% identity (NCBI Blast (Altschul et al., 1997) result of 

NP_056162.4 [homo sapiens] versus NP_001074857.1 [mus musculus]). Hence, both, the 

gene location of RIM-BP2 in the DFNA41 locus and the high amino acid sequence 

homology between human and mouse RIM-BP2 suggest that indeed RIM-BP2 might play 

a role in IHC synaptic transmission in humans and that it might be a relevant candidate 

affected by the human hereditary hearing loss. Indeed, RIM-BP2 was indeed found to be 

expressed by human IHCs (Girotto et al., 2014). Surprisingly however, a RIM-BP2 mutation 

in humans caused a reduction in patients’ hearing thresholds (Girotto et al., 2014), which 

stands in contrast to the elevated hearing thresholds found in the RIM-BP2 knockout mouse 

model (Figure 21). Hence, more in depth analysis is required e.g. to map and pinpoint the 

affected protein sequence location and domain of the human RIM-BP2 mutation. As a next 

step, one could generate and characterize a mouse model carrying this human RIM-BP2 

mutation. Thereby one could relate the findings from mice to humans and learn more about 

the molecular function of RIM-BP2 in IHC synaptic transmission. Finally, gene therapy might 

be employed as a future perspective to restore hereditary hearing loss in humans using 

virus mediated transgenic expression of deafness genes (reviewed in: Ahmed et al., 2017). 
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Previously, gene replacement successfully restored hearing in deaf mice lacking the 

vesicular glutamate transporter vGlut3 or adaptor protein 2 (Akil et al., 2012; Jung et al., 

2015b).  

Finally, it will be interesting to explore the function of the other RIM-BP isoforms (RIM-BP1 

and RIM-BP3) in knockout mouse models. I collected preliminary data from a RIM-BP1 and 

RIM-BP2 double-knockout (RIM-BP1/2 DKO) mouse line (Grauel et al., 2016) by measuring 

presynaptic Ca2+-influx and exocytic capacitance changes during IHC perforated patch-

clamp recordings and ABRs (by Nadine Dietrich). Surprisingly, both the presynaptic Ca2+-

influx and exocytosis were increased compared to RIM-BP2 single-knockout IHCs, whereas 

ABR thresholds were further elevated. Hence, RIM-BP1 might turn out to be an attractive 

new candidate to further disentangle the unconventional synaptic machinery of IHCs.  
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