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SOME COMMENTS ON EDELSTEIN’S FIXED POINT

THEOREMS IN n-GENERALIZED METRIC SPACES

Tomonari Suzuki

Abstract

We study deeply two fixed point theorems in n-generalized metric spaces. The two theorems are

generalizations of the famous, Edelstein’s fixed point theorem in compact metric spaces.

1. Introduction

In 1962, Edelstein proved the following, famous fixed point theorem in compact

metric spaces.

Theorem 1 (Edelstein [5]). Let ðX ; dÞ be a compact metric space and let T be a

mapping on X. Assume

x0 y ) dðTx;TyÞ < dðx; yÞð1Þ

for any x; y A X. Then T has a unique fixed point z. Moreover fT nxg converges to z

for all x A X.

In 2000, Branciari introduced the following, very interesting concept.

Definition 2 (Branciari [2]). Let X be a nonempty set, let d be a function from

X � X into ½0;yÞ and let n A N. Then ðX ; dÞ is said to be a n-generalized metric space

if the following hold:

(N1) dðx; yÞ ¼ 0 , x ¼ y.

(N2) dðx; yÞ ¼ dðy; xÞ.
(N3) dðx; yÞaDðx; u1; u2; . . . ; un; yÞ for any x; u1; u2; . . . ; un; y A X such that x; u1;

u2; . . . ; un; y are all di¤erent, where

Dðx; u1; u2; . . . ; un; yÞ ¼ dðx; u1Þ þ dðu1; u2Þ þ � � � þ dðun; yÞ:

It is obvious that ðX ; dÞ is a metric space i¤ ðX ; dÞ is a 1-generalized metric space.

We have studied the topological structure of this space. Indeed, recent studies tell the

following:
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� 1- and 3-generalized metric spaces have the compatible topology (see [16]).
� For any n A Nnf1; 3g, there exists a n-generalized metric space which does not

have the compatible topology (see [10, 16]).
� All n-generalized metric spaces have the strongly compatible topology (see [15]).
� All n-generalized metric spaces have the strongest sequentially compatible

topology (see [13]).

Several fixed point theorems in n-generalized metric spaces have been proved. See

[10, 12] and others. Theorem 1 is also extended to n-generalized metric spaces. It is

interesting that there are two generalizations of Theorem 1.

Theorem 3 (Theorem 3.2 in [11]). Let ðX ; dÞ be a compact n-generalized metric

space. Let T be a mapping on X satisfying (1) for any x; y A X. Then T has a unique

fixed point z. Moreover fT nxg converges to z for all x A X.

Theorem 4 (Theorem 3.4 in [17]). Let ðX ; dÞ be a n-generalized metric space such

that X is compact in the strong sense. Let T be a mapping on X satisfying (1) for any

x; y A X. Then T has a unique fixed point z. Moreover for all x A X, fT nxg converges

to z in the strong sense.

In this paper, we study the above two theorems deeply.

2. Preliminaries

Throughout this paper we denote by N the set of all positive integers. For an

arbitrary set A, we also denote by aA the cardinal number of A. We define a subset

AðkÞ of Ak as follows: ðx1; x2; . . . ; xkÞ A AðkÞ i¤ ðx1; x2; . . . ; xkÞ A Ak and x1; x2; . . . ; xk
are all di¤erent. For a real number t, we denote by ½t� the maximum integer not

exceeding t.

In this section, we give some preliminaries.

Definition 5. Let ðX ; dÞ be a n-generalized metric space and let fxng be a

sequence in X and let x A X .

( i ) fxng is said to be Cauchy [2] if limn supm>n dðxn; xmÞ ¼ 0.

( ii ) fxng is said to converge to x [2] if limn dðxn; xÞ ¼ 0.

(iii) fxng is said to converge only to x [1] if

lim
n!y

dðxn; xÞ ¼ 0 and lim sup
n!y

dðxn; yÞ > 0

for any y A Xnfxg.
(iv) fxng is said to converge exclusively to x [17] if

lim
n!y

dðxn; xÞ ¼ 0 and lim inf
n!y

dðxn; yÞ > 0

for any y A Xnfxg.
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( v ) fxng is said to converge to x in the strong sense [17] if fxng is Cauchy and

fxng converges to x.

Remark. We know the following.
� ðvÞ ) ðivÞ ) ðiiiÞ ) ðiiÞ holds; see Proposition 2.3 (ii) in [17].

Definition 6. Let ðX ; dÞ be a n-generalized metric space.
� X is said to be compact [17] if for any sequence fxng in X , there exists a

subsequence fxf ðnÞg of fxng converging to some z A X .
� X is said to be compact in the strong sense [17] if for any sequence fxng in X ,

there exists a subsequence fxf ðnÞg of fxng converging to some z A X in the strong

sense.
� d is said to be sequentially continuous if limn dðxn; ynÞ ¼ dðx; yÞ provided fxng

and fyng converge to x and y, respectively.
� X is said to be Hausdor¤ [9] if limn dðxn; xÞ ¼ limn dðxn; yÞ ¼ 0 implies x ¼ y.

Let ðX ; dÞ be a n-generalized metric space. In the case where aX b nþ 3 holds,

we define a function d from X ðnþ3Þ into ½0;yÞ by

dðx; u1; . . . ; unþ2Þ ¼ max dðx; usð1ÞÞ þ
Xnþ1

j¼1

dðusð jÞ; usð jþ1ÞÞ : s A Snþ2

( )

for ðx; u1; . . . ; unþ2Þ A X ðnþ3Þ, where Snþ2 is the permutation group consisting of all

bijective mappings on f1; 2; . . . ; nþ 2g. Define a function h from X into ½0;yÞ by

hðxÞ ¼ inffdðx; u1; . . . ; unþ2Þ : ðx; u1; . . . ; unþ2Þ A X ðnþ3Þg

for x A X . In the other case, where aX < nþ 3 holds, we define hðxÞ ¼ y for all

x A X .

Proposition 7 (Proposition 4.1 in [11]). Let ðX ; dÞ be a n-generalized metric space

and let l A N such that l is divisible by n. Then ðX ; dÞ is a l-generalized metric space.

Lemma 8 (Proposition 2.7 in [17], Proposition 13 in [15]). Let ðX ; dÞ be a

n-generalized metric space. Let fxng and fyng be sequences in X converging to x

and y in the strong sense, respectively. Then

dðx; yÞ ¼ lim
n!y

dðxn; ynÞð2Þ

holds.

Lemma 9 (Lemma 5 in [15]). Let ðX ; dÞ be a n-generalized metric space. For any

ðx; y; zÞ A X 3.

dðx; zÞa dðx; yÞ þ dðy; zÞ þ 2hðxÞ
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and

dðx; zÞa dðx; yÞ þ dðy; zÞ þ 2hðyÞ

hold.

Remark. We assume aX b nþ 3 in Lemma 5 in [15]. However, in this paper,

we do not have to assume aX b nþ 3 because we have defined hðxÞ ¼ y in the other

case.

Lemma 10. Let ðX ; dÞ be a n-generalized metric space. Let ðu1; . . . ; unÞ A X n,

where nb 3. Assume hðukÞ ¼ 0 for some k A f1; . . . ; ng. Then

dðu1; unÞaDðu1; . . . ; unÞ

holds.

Proof. The conclusion follows from Lemma 9. r

Lemma 11 (Lemma 8 in [15]). Let ðX ; dÞ be a n-generalized metric space. Let

fxa : a A Eg be a Cauchy net in X such that for any a A E, there exists bb a satisfying

xa 0 xb. Then the following hold:

( i ) lima hðxaÞ ¼ 0.

(ii) If lima dðx; xaÞ ¼ 0 for some x A X, then hðxÞ ¼ 0.

Remark. In Lemma 8 in [15], we assume aX b nþ 3. However, from its proof,

aX ¼ y holds. So we do not have to assume aX b nþ 3.

Lemma 12. Let ðX ; dÞ be a n-generalized metric space. Let fxng be a Cauchy

sequence in X such that for any n A N, there exists m > n satisfying xm 0 xn. Then the

following hold:

( i ) limn hðxnÞ ¼ 0.

(ii) If limn dðxn; xÞ ¼ 0 for some x A X, then hðxÞ ¼ 0.

Proof. By Lemma 11, we obtain the desired result. r

3. Lemmas

In this section, we prove some lemmas.

Lemma 13. Let ðX ; dÞ be a n-generalized metric space. Let fxng be a sequence in

X converging to z. Then the following hold:

( i ) If fxng is Cauchy, then fxng converges exclusively to z.

( ii ) If fxng converges to z, limn dðxn; xnþ1Þ ¼ 0 and xn 0 z for any n A N, then fxng
is Cauchy, that is, fxng converges to z in the strong sense.
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(iii) If X is Hausdor¤, then fxng converges exclusively to z.

(iv) afn A N : xn ¼ xg < y for any x A Xnfzg.
( v ) If limn dðxn;wÞ ¼ 0 for some w A Xnfzg, then afn A N : xn ¼ xg < y for any

x A X.

Proof. We have proved (i) and (ii); see Proposition 2.3 in [17].

Let us prove (iii). Let w A X satisfy lim infn dðxn;wÞ ¼ 0. Then there exists

a subsequence f f ðnÞg of the sequence fng in N satisfying limn dðxf ðnÞ;wÞ ¼ 0. Since

limn dðxf ðnÞ; zÞ ¼ 0 holds, fxf ðnÞg converges to w and z. Since X is Hausdor¤, we have

w ¼ z.

We next show (iv). Arguing by contradiction, we assume that there exists

w A Xnfzg satisfying afn A N : xn ¼ wg ¼ y. Then we have

lim inf
n!y

dðxn; zÞb dðw; zÞ > 0;

which implies a contradiction. Therefore we have shown (iv).

Noting ðXnfzgÞ [ ðXnfwgÞ ¼ X , we obtain (v) from (iv). r

Lemma 14. Let ðX ; dÞ be a n-generalized metric space and let T be a mapping

on X. Define a sequence fxng in X by x1 A X and xnþ1 ¼ Txn. Assume the following:

( i ) fxng converges to z.

(ii) limn dðxn; xnþ1Þ ¼ 0.

Then fxng is Cauchy. That is, fxng converges to z in the strong sense.

Proof. We consider the following two cases:
� There exist k; l A N satisfying k < l and xk ¼ xl.
� xn ðn A NÞ are all di¤erent.

In the first case, we have xk ¼ xl ¼ T l�kxk and hence

0 ¼ lim
n!y

dðxn; xnþ1Þ ¼ lim
m!y

dðxmðl�kÞþk; xmðl�kÞþkþ1Þ ¼ dðxk; xkþ1Þ:

So Txk ¼ xk holds. Therefore we have xn ¼ xk ¼ z for any n A N with nb k. Thus,

fxng is Cauchy. In the second case, we have xn 0 z for su‰ciently large n A N. So by

Lemma 13 (ii), fxng is Cauchy. r

Lemma 15. Let ðX ; dÞ be a n-generalized metric space. Let fxng be a Cauchy

sequence in X. Put

A ¼ fy A X : limn dðxn; yÞ ¼ 0g:ð3Þ

Then the following hold:

( i ) If lim infn dðxn; zÞ ¼ 0 holds for some z A X, then z A A.

(ii) aAa 1.
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Proof. We have proved (i). See Lemma 12 in [12].

Arguing by contradiction, we assume aAb 2. Since fxng is Cauchy, by Lemma

13 (i), fxng converges exclusively to more than one point. This is a contradiction.

Therefore we have shown aAa 1. r

Lemma 16. Let ðX ; dÞ be a n-generalized metric space, where n is odd. Let fxng
be a sequence in X. Put A by (3). Then aAamaxf1; ðn� 1Þ=2g holds.

Proof. In the case where n ¼ 1, the conclusion obviously holds. So we as-

sume nb 3. Put k ¼ ðn� 1Þ=2. Arguing by contradiction, we assume aA > k.

Let ðy1; . . . ; ykþ1Þ A Aðkþ1Þ. Then since aAb 2 holds, by Lemma 13 (v), we have

afn A N : xn ¼ xg < y, which implies afxn : n A Ng ¼ y. Fix e > 0. Then there

exists m A N satisfying

xn B fy1; . . . ; ykþ1g;

maxfdðyj; xnÞ : j ¼ 1; . . . ; kþ 1g < e

for any nb m. Fix m; n A N with m < n < m and xm 0 xn. Then we have

dðxm; xnÞaDðxm; y1; xl1 ; y2; . . . ; xlk ; ykþ1; xnÞ < ðnþ 1Þe;

where minfl1; . . . ; lkgb m and ðxm; xn; xl1 ; . . . ; xlk ; y1; . . . ; ykþ1Þ A X ðnþ2Þ. This implies

that fxng is Cauchy. By Lemma 15 (ii), we obtain aAa 1, which implies a contra-

diction. Therefore we have shown aAa k. r

Lemma 17. Let ðX ; dÞ be a n-generalized metric space. Assume n A f1; 3g. Then

X is Hausdor¤.

Proof. Suppose that fxng converges to x and y. We put A by (3). Then by

Lemma 16, we have aAa 1. Since x; y A A holds, we obtain x ¼ y. r

Lemma 18. Let ðX ; dÞ be a n-generalized metric space, where n is even. Let fxng
be a sequence in X. Put A by (3) and assume aAb n=2þ 1. Then dðx; yÞ ¼ dðx; zÞ
holds for any ðx; y; zÞ A Að3Þ.

Proof. From the assumption, aAb 2 holds. By Lemma 13 (v), afn A N :

xn ¼ xg < y holds for any x A X . Taking a subsequence, we may assume that xn
ðn A NÞ are all di¤erent. Fix ðy0; . . . ; yn=2Þ A Aðn=2þ1Þ. Then we have

dðy0; yn=2Þa lim inf
n!y

Dðy0; xn; xnþ1; y1; xnþ2; . . . ; xnþn=2; yn=2Þ

¼ lim inf
n!y

dðxn; xnþ1Þ

a lim sup
n!y

dðxn; xnþ1Þ
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a lim sup
n!y

Dðxn; y0; yn=2; xnþ2; y1; xnþ3; y2; . . . ; xnþn=2; yn=2�1; xnþ1Þ

¼ dðy0; yn=2Þ:

Since ðy0; yn=2Þ A Að2Þ is arbitrary, we obtain

dðx; yÞ ¼ dðx; zÞ ¼ lim
n!y

dðxn; xnþ1Þ

for any ðx; y; zÞ A Að3Þ. r

Lemma 19. Let ðX ; dÞ be a n-generalized metric space. Let fxng be a sequence

in X. Then the following are equivalent:

( i ) fxng is Cauchy.

(ii) limn dðxf ðnÞ; xgðnÞÞ ¼ 0 for any subsequences f f ðnÞg and fgðnÞg of fng in N.

Proof. Obvious. r

4. Compactness

In this section, we study compactness and strong compactness.

Proposition 20. Let ðX ; dÞ be a n-generalized metric space. Then the following

are equivalent:

( i ) X is compact in the strong sense.

(ii) X is compact and d is sequentially continuous.

Proof. We first prove (i) ) (ii). It is obvious that X is compact. In order to

prove the sequential continuity of d, suppose that fxng and fyng converge to x and y,

respectively. We consider the following two cases:
� afn A N : xn 0 xg < y and afn A N : yn 0 yg < y.
� afn A N : xn 0 xg ¼ y or afn A N : yn 0 yg ¼ y.

In the first case, we have xn ¼ x and yn ¼ y for su‰ciently large n A N. So (2)

obviously holds. In the second case, without loss of generality, we may assume

afn A N : xn 0 xg ¼ y. Using Lemma 13 (iv), we can choose a subsequence f f ðnÞg
of fng in N such that xf ðnÞ ðn A NÞ are all di¤erent. From (i), without loss of generality,

we may assume fxf ðnÞg is Cauchy. By Lemma 12, we have hðxÞ ¼ 0. We have by

Lemma 10

lim sup
n!y

dðxn; ynÞa lim sup
n!y

Dðxn; x; y; ynÞ

¼ dðx; yÞ

a lim inf
n!y

Dðx; xn; yn; yÞ ¼ lim inf
n!y

dðxn; ynÞ:

Hence (2) holds. We have shown (ii).

Edelstein’s fixed point theorems 29



Let us prove (ii) ) (i). Let fxng be a sequence in X . Then there exists a sub-

sequence fxf ðnÞg of fxng converging to some z A X . Let fgðnÞg and fhðnÞg be arbitrary

subsequences of fng in N. Then we have by (ii)

lim
n!y

dðxf �gðnÞ; xf �hðnÞÞ ¼ dðx; xÞ ¼ 0:

We have obtained Lemma 19 (ii). By Lemma 19, fxf ðnÞg is Cauchy. r

Lemma 21. Let ðX ; dÞ be a n-generalized metric space. If X is compact, then X is

complete.

Proof. Let fxng be a Cauchy sequence. Since X is compact, there exists a sub-

sequence f f ðnÞg of fng in N such that fxf ðnÞg converges to some z. By Lemma 15 (i),

fxng converges to z. r

5. Contractive conditions

In this section, we state known results concerning contractive conditions.

Definition 22. Let X be a nonempty set and let d be a function from X � X into

½0;yÞ. Let T be a mapping on X .

(1) T is said to be an Edelstein contraction [5] if dðTx;TyÞ < dðx; yÞ for any

x; y A X with dðTx;TyÞ > 0.

(2) T is said to be a CJM contraction [4, 7, 8] if the following hold:

(2-i) For any e > 0, there exists d > 0 such that dðx; yÞ < eþ d implies

dðTx;TyÞa e.

(2-ii) T is an Edelstein contraction.

(3) T is said to be a Browder contraction [3] if there exists a function j from ½0;yÞ
into itself satisfying the following:

(3-i) j is nondecreasing and right continuous.

(3-ii) jðtÞ < t for any t A ð0;yÞ.
(3-iii) dðTx;TyÞa j � dðx; yÞ for all x; y A X .

In order to study the Browder and Boyd-Wong contractive conditions, Hegedüs and

Szilágyi in [6] considered subsets of ½0;yÞ2.

Definition 23 (see [14]). Let Q be a subset of ½0;yÞ2.
(1) Q is said to be Edelstein if u > 0 implies u < t for any ðt; uÞ A Q.

(2) Q is said to be CJM if the following hold:

(2-i) For any e > 0, there exists d > 0 such that ua e holds for any ðt; uÞ A Q

with t < eþ d.

(2-ii) Q is Edelstein.

(3) Q is said to be a Browder if there exists a function j from ½0;yÞ into itself

satisfying the following:
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(3-i) j is nondecreasing and right continuous.

(3-ii) jðtÞ < t for any t A ð0;yÞ.
(3-iii) ua jðtÞ for any ðt; uÞ A Q.

(4) Q is said to satisfy Condition Cð0; 0; 0Þ if the following hold:

(4-i) Q is Edelstein.

(4-ii) There does not exist t > 0 and a sequence fðtn; unÞg in Q satisfying

t < tn, t < un and limn tn ¼ limn un ¼ t.

(5) Q is said to satisfy Condition Cð1; 1; 2Þ if the following hold:

(5-i) Q is Edelstein.

(5-ii) There does not exist t > 0 and a sequence fðtn; unÞg in Q satisfying

limn tn ¼ limn un ¼ t.

We know the following:

Proposition 24 (see [14]). Let X be a nonempty set and let d be a function from

X � X into ½0;yÞ. Let T be a mapping on X. Define a subset Q of ½0;yÞ2 by

Q ¼ fðdðx; yÞ; dðTx;TyÞÞ : x; y A Xg:ð4Þ

Then the following hold:

( i ) T is an Edelstein contraction , Q is Edelstein.

( ii ) T is a CJM contraction , Q is CJM , Q satisfies Condition Cð0; 0; 0Þ.
(iii) T is a Browder contraction , Q is Browder , Q satisfies Condition Cð1; 1; 2Þ.

Theorem 25 (Theorem 13 in [10]). Let ðX ; dÞ be a complete n-generalized metric

space and let T be a CJM contraction on X. Then T has a unique fixed point z.

Moreover for all x A X, fT nxg converges to z in the strong sense.

6. Theorem 4

In order to clarify the mathematical structure of Theorem 4, we give two proofs of

Theorem 4. We first give a proof by using Theorem 25.

Proof of Theorem 4 by Theorem 25. Using (1), we first note that T is non-

expansive. That is,

dðTx;TyÞa dðx; yÞð5Þ

hold for all x; y A X . By Proposition 20, we next note that X is compact and d

is sequentially continuous. So by Lemma 21, X is complete. Define a subset Q of

½0;yÞ2 by (4).

We will show that Q satisfies Condition Cð1; 1; 2Þ. By Proposition 24, Q is

Edelstein. Arguing by contradiction, we suppose that fðtn; unÞg is a sequence in Q

converging to ðt; tÞ for some t A ð0;yÞ. We can choose ðxn; ynÞ A X 2 satisfying tn ¼
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dðxn; ynÞ and un ¼ dðTxn;TynÞ. Since X is compact in the strong sense, there exists a

subsequence f f ðnÞg of fng in N such that fxf ðnÞg and fyf ðnÞg converge to some x and y,

respectively. We have by (5)

lim
n!y

dðTxn;TxÞa lim
n!y

dðxn; xÞ ¼ 0:

So, fTxng converges to Tx. Similarly fTyng converges to Ty. Since d is sequentially

continuous, we have

dðx; yÞ ¼ lim
n!y

dðxn; ynÞ ¼ lim
n!y

tn ¼ t > 0

and

dðTx;TyÞ ¼ lim
n!y

dðTxn;TynÞ ¼ lim
n!y

un ¼ t > 0:

This contradicts (1). Thus, we have shown that Q satisfies Condition Cð1; 1; 2Þ.
In particular, Q satisfies Condition Cð0; 0; 0Þ. By Proposition 24, T is a CJM

contraction. So by Theorem 25, we obtain the desired result. r

We next give another proof of Theorem 4, by using Theorem 3. Before proving it,

we need some preliminaries.

Lemma 26. Let ðX ; dÞ be a n-generalized metric space. Let T be a mapping

on X. Assume the following:

( i ) There exists z A X such that fT nxg converges to z for all x A X.

(ii) There exists u A X satisfying T nu0 z for n A N and limn dðT nu;T nþ1uÞ ¼ 0.

Then fT nxg converges to z in the strong sense for all x A X.

Proof. Arguing by contradiction, we assume that there exist k; l A N satisfying

k < l and T ku ¼ T lu. As in the proof of Lemma 14, we can prove T nu ¼ T ku ¼ z

for any n A N with nb k. This contradicts (ii). Therefore we have shown that T nu

ðn A NÞ are all di¤erent.

By Lemma 14, fT nug is Cauchy. So by Lemma 12, we obtain hðzÞ ¼ 0. Fix

x A X . Then we have by Lemma 9

lim
n!y

sup
m>n

dðT nx;TmxÞa lim
n!y

sup
m>n

ðdðTmx; zÞ þ dðT nx; zÞ þ hðzÞÞ ¼ 0:

Therefore we have shown that fT nxg is Cauchy. r

Proposition 27. Let ðX ; dÞ be a compact n-generalized metric space. Let T be

a mapping on X satisfying (1) for any x; y A X. Let z be a unique fixed point of T.

Assume that there exists u A X satisfying T nu0 z for any n A N and limn dðT nu;T nþ1uÞ
¼ 0. Then for all x A X, fT nxg converges to z in the strong sense.
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Proof. By Theorem 3, we obtain Lemma 26 (i). From the assumption, Lemma

26 (ii) holds. So by Lemma 26, we obtain the desired result. r

Proof of Theorem 4 by Theorem 3. Since X is compact in the strong sense, X is

compact. Therefore all the assumptions of Theorem 3 hold. By Theorem 3, T has a

unique fixed point z. Moreover fT nxg converges to z for all x A X . We consider the

following two cases:
� afT nx : n A Ng < y for all x A X .
� afT nu : n A Ng ¼ y for some u A X .

In the first case, the conclusion obviously holds. In the second case, we note T nu0 z

for all n A N. Since X is compact in the strong sense, there exists a subsequence f f ðnÞg
of fng in N such that fT f ðnÞug and fT f ðnÞþ1ug converge to some v and w in the strong

sense, respectively. By Lemma 13 (i), fT f ðnÞug and fT f ðnÞþ1ug converges exclusively to

v and w, respectively. Since fT f ðnÞug and fT f ðnÞþ1ug converges to z, we obtain v ¼ w ¼
z. By Lemma 8, we have

lim
n!y

dðT f ðnÞu;T f ðnÞþ1uÞ ¼ dðz; zÞ ¼ 0:

Since fdðT nu;T nþ1uÞg is nonincreasing, we have limn dðT nu;T nþ1uÞ ¼ 0. By Proposi-

tion 27, we obtain the desired result. r

7. Theorem 3

In this section, we study Theorem 3. Indeed we prove finer results than Theorem

3, depending on n.

Theorem 28. Let ðX ; dÞ be a compact n-generalized metric space, where n A f1; 3g.
Let T be a mapping on X satisfying (1) for any x; y A X. Then the following hold:

( i ) T has a unique fixed point z.

(ii) fT nxg converges exclusively to z for all x A X.

Proof. By Theorem 3, T has a unique fixed point z. Thus, (i) holds.

By Theorem 3 again, for any x A X , fT nxg converges to z. By Lemma 17, we

note that X is Hausdor¤. So by Lemma 13 (iii), fT nxg converges exclusively to z.

r

Theorem 29. Let ðX ; dÞ be a compact 2-generalized metric space. Let T be a

mapping on X satisfying (1) for any x; y A X. Then the following hold:

( i ) T has a unique fixed point z.

( ii ) fT nxg converges to z for all x A X.

(iii) If fT nxg converges to y, then Ty ¼ z holds.
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Proof. By Theorem 3, (i) and (ii) hold.

We put

A ¼ fu A X : limn dðT nx; uÞ ¼ 0g:ð6Þ

In order to prove (iii), suppose limn dðT nx; yÞ ¼ 0. We consider the following two

cases:
� y ¼ z.
� y0 z.

In the first case, we have Ty ¼ Tz ¼ z. In the second case, arguing by contradiction,

we assume Ty0 z. Then we note Ty0 y because z is a unique fixed point of T and

y0 z holds. Using (5), we have

lim
n!y

dðT nx;TyÞa lim
n!y

dðT n�1x; yÞ ¼ 0:

Thus, Ty A A holds. Therefore we have ðz; y;TyÞ A Að3Þ. By Lemma 18, we have

dðz;TyÞ ¼ dðz; yÞ:

On the other hand, we have by (1)

dðz;TyÞ ¼ dðTz;TyÞ < dðz; yÞ;

which implies a contradiction. Therefore we obtain Ty ¼ z. r

Theorem 30. Let ðX ; dÞ be a compact n-generalized metric space, where nb 4

holds. Let T be a mapping on X satisfying (1) for any x; y A X. Then the following

hold:

( i ) T has a unique fixed point z.

( ii ) fT nxg converges to z for all x A X.

(iii) If fT nxg converges to y, then T ½n=2��1y ¼ z holds.

Proof. By Theorem 3, (i) and (ii) hold.

Fix x A X and put A by (6). We will show that A is T-invariant. Indeed, let

y A A. Then we have by (5)

lim
n!y

dðT nx;TyÞa lim
n!y

dðT n�1x; yÞ ¼ 0:

So Ty A A holds. Therefore we have shown that A is T-invariant. We consider the

following three cases:
� n is odd.
� n is even and aAa n=2 holds.
� n is even and aAb n=2þ 1 holds.

In the first case, by Lemma 16, we note

aAa ðn� 1Þ=2 ¼ ½n=2� ¼ ð½n=2� � 1Þ þ 1:
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So we obtain T ½n=2��1y ¼ z for any y A A. In the second case, we note

aAa n=2 ¼ ½n=2� ¼ ð½n=2� � 1Þ þ 1:

We also obtain T ½n=2��1y ¼ z for any y A A. In the third case, arguing by contradiction,

we assume Ty0 z for some y A A. It is obvious that y0 z holds. Thus, ðz; y;TyÞ A
Að3Þ holds. By Lemma 18, we have

dðz;TyÞ ¼ dðz; yÞ:

On the other hand, we have

dðz;TyÞ ¼ dðTz;TyÞ < dðz; yÞ;

which implies a contradiction. Therefore Ty ¼ z for any y A A. We obtain

T ½n=2��1y ¼ T ½n=2��2z ¼ z

for all y A A, where T 0 is the identity mapping on X . r

We prove the following lemma, which is useful when we show that we cannot prove

Theorem 3 by Theorem 25. See also Section 8.

Lemma 31. Let ðX ; dÞ be a n-generalized metric space. Let T be a mapping on X

satisfying (1) for any x; y A X. Assume that there exists u A X satisfying

lim
n!y

dðT nu;T nþ1uÞ > 0:

Then T is not a CJM contraction.

Proof. We first note that fdðT nu;T nþ1uÞg is strictly decreasing. Put t :¼
limn dðT nu;T nþ1uÞ > 0. Define a subset Q of ½0;yÞ2 by (4). Define a sequence

fðtn; unÞg by

tn ¼ dðT nu;T nþ1uÞ and un ¼ dðT nþ1u;T nþ2uÞ:

We have

t < un < tn and lim
n!y

tn ¼ lim
n!y

un ¼ t:

Therefore Q does not satisfy Condition Cð0; 0; 0Þ. By Proposition 24, T is not a CJM

contraction. r

8. Examples

We finally give examples which are strongly connected with the results in

Section 7.
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Lemma 32. Let n A N be an even positive integer. Let X be a nonempty set and

let A and B be subsets of X with A [ B ¼ X, A \ B ¼ q and aAa n=2. Let S be a

mapping from X into a metric space ðY ; rÞ. Let M be a positive real number and let f

be a function from X � X into ½0; 3M� satisfying the following:

f ðx; xÞ ¼ 0:ð7Þ

x0 y5Sx ¼ Sy ) f ðx; yÞ > 0:ð8Þ

f ðx; yÞ ¼ f ðy; xÞ:ð9Þ

ðx; yÞ A Bð2Þ ) f ðx; yÞ ¼ M:ð10Þ

ðx; yÞ A ðA� BÞ [ ðB� AÞ ) f ðx; yÞaM:ð11Þ

Define a function d from X � X into ½0;yÞ by

dðx; yÞ ¼ rðSx;SyÞ þ f ðx; yÞ:ð12Þ

Then ðX ; dÞ is a n-generalized metric space.

Proof. We can prove (N1) and (N2) by (7)–(9). In order to prove (N3), we fix

ðu0; . . . ; unþ1Þ A X ðnþ2Þ. We consider the following two cases:
� ðu0; unþ1Þ A Að2Þ.
� Otherwise.

In the first case, since 2aaAa n=2 holds, we note nb 4. We have

af j A f0; . . . ; ng : ðuj; ujþ1Þ A ðA� X Þ [ ðX � AÞg

a 1þ 2ðn=2� 2Þ þ 1 ¼ n� 2

and hence

af j A f0; . . . ; ng : ðuj; ujþ1Þ A Bð2Þgb ðnþ 1Þ � ðn� 2Þ ¼ 3:

So we have by (10)

dðu0; unþ1Þa 3M þ rðSu0;Sunþ1Þ

a 3M þ rðSu0;Su1Þ þ � � � þ rðSun;Sunþ1Þ

aDðu0; . . . ; unþ1Þ:

In the second case, since aAa n=2 holds, we have

af j A f0; . . . ; ng : ðuj; ujþ1Þ A ðA� X Þ [ ðX � AÞga 2n=2 ¼ n
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and hence

af j A f0; . . . ; ng : ðuj; ujþ1Þ A Bð2Þgb ðnþ 1Þ � n ¼ 1:

So we have by (10) and (11)

dðu0; unþ1ÞaM þ rðSu0;Sunþ1Þ

aM þ rðSu0;Su1Þ þ � � � þ rðSun;Sunþ1Þ

aDðu0; . . . ; unþ1Þ:

Thus (N3) holds in all cases. r

Similarly we can prove the following lemma.

Lemma 33. Let n A N be an odd positive integer. Let X be a nonempty set and let

A and B be subsets of X with A [ B ¼ X, A \ B ¼ q andaAa ðn� 1Þ=2. Let S be a

mapping from X into a metric space ðY ; rÞ. Let M be a positive real number and let f

be a function from X � X into ½0; 4M� satisfying (7)–(10) and the following:

ðx; yÞ A ðA� BÞ [ ðB� AÞ ) f ðx; yÞa 2M:ð13Þ

Define a function d from X � X into ½0;yÞ by (12). Then ðX ; dÞ is a n-generalized

metric space.

Proof. We can prove (N1) and (N2) by (7)–(9). In order to prove (N3), we fix

ðu0; . . . ; unþ1Þ A X ðnþ2Þ. We consider the following two cases:
� ðu0; unþ1Þ A Að2Þ.
� Otherwise.

In the first case, since 2aaAa ðn� 1Þ=2 holds, we note nb 5. We have

af j A f0; . . . ; ng : ðuj; ujþ1Þ A ðA� X Þ [ ðX � AÞg

a 1þ 2ððn� 1Þ=2� 2Þ þ 1 ¼ n� 3

and hence

af j A f0; . . . ; ng : ðuj; ujþ1Þ A Bð2Þgb ðnþ 1Þ � ðn� 3Þ ¼ 4:

So we have by (10)

dðu0; unþ1Þa 4M þ rðSu0;Sunþ1Þ

a 4M þ rðSu0;Su1Þ þ � � � þ rðSun;Sunþ1Þ

aDðu0; . . . ; unþ1Þ:
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In the second case, since aAa ðn� 1Þ=2 holds, we have

af j A f0; . . . ; ng : ðuj; ujþ1Þ A ðA� XÞ [ ðX � AÞga 2ðn� 1Þ=2 ¼ n� 1

and hence

af j A f0; . . . ; ng : ðuj; ujþ1Þ A Bð2Þgb ðnþ 1Þ � ðn� 1Þ ¼ 2:

So we have by (10) and (13)

dðu0; unþ1Þa 2M þ rðSu0;Sunþ1Þ

a 2M þ rðSu0;Su1Þ þ � � � þ rðSun;Sunþ1Þ

aDðu0; . . . ; unþ1Þ:

Thus (N3) holds in all cases. r

Lemma 34. Let n A N. Let X be a nonempty set and let A and B be subsets of

X with A \ B ¼ q. Assume that A consists of at most ðn� 1Þ=2 elements in the case

where n is odd. Let S be a mapping from X into a metric space ðY ; rÞ satisfying

SðAÞ \ SðBÞ ¼ q. Let M be a positive real number. Define a function d from X � X

into ½0;yÞ by

dðx; xÞ ¼ 0

dðx; yÞ ¼ dðy; xÞ ¼ rðSx;SyÞ if ðx; yÞ A A� B

dðx; yÞ ¼ M þ rðSx;SyÞ otherwise:

Then ðX ; dÞ is a n-generalized metric space.

Remark. See Lemma 4 in [10], Lemmas 4.2 and 4.3 in [11] and Lemma 27 in

[12].

Proof. (N1) and (N2) are obvious. Divide the following three cases:

(a) n ¼ 2.

(b) n is even.

(c) n is odd.

In the case of (a), we fix ðx; y; u; vÞ A X ð4Þ. We further consider the following three

cases:

(a-1) x; v A A and y; u A B.

(a-2) y; u A A and x; v A B.

(a-3) Otherwise.
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In the case of (a-1), we have

dðx; yÞ ¼ rðSx;SyÞ

a rðSx;SuÞ þ rðSu;SvÞ þ rðSv;SyÞ

¼ dðx; uÞ þ dðu; vÞ þ dðv; yÞ:

Similarly we can prove (N3) in the case of (a-2). In the case of (a-3), noting

fðx; uÞ; ðu; vÞ; ðv; yÞg \ ðX 2nðA� B [ B� AÞÞ0q;

we have

dðx; yÞaM þ rðSx;SyÞ

aM þ rðSx;SuÞ þ rðSu;SvÞ þ rðSv;SyÞ

a dðx; uÞ þ dðu; vÞ þ dðv; yÞ:

Thus we obtain (N3) in the case of (a). Therefore ðX ; dÞ is a 2-generalized metric

space. By Proposition 7, ðX ; dÞ is a n-generalized metric space for all even positive

integers n. In the case of (c), using Lemma 33, we can prove that ðX ; dÞ is a

n-generalized metric space for all odd positive integers n. r

Now we give two examples. In Section 6, we give a proof of Theorem 4 by

Theorem 25. On the other hand, Theorem 3 cannot be proved by Theorem 25 because

of the following examples.

Example 35. Let m A N and M ¼ f0; . . . ; mg. Put A ¼ f00; . . . ; 0mg, B ¼
f1=n : n A Ng and X ¼ A [ B. Define a mapping S from X into ½0; 1� by S0j ¼ 0

and Sð1=nÞ ¼ 1=n. Define a function d from X � X into ½0;yÞ by

dðx; xÞ ¼ 0

dðx; yÞ ¼ dðy; xÞ ¼ jSx� Syj if ðx; yÞ A A� B

dðx; yÞ ¼ 1þ jSx� Syj otherwise:

Define a mapping T on X by T0j ¼ 00 and Tð1=nÞ ¼ 1=ðnþ 1Þ. Then the following

hold:

( i ) ðX ; dÞ is a n-generalized metric space for all even positive integers n.

( ii ) X is compact.

(iii) T is an Edelstein contraction.

(iv) T is not a CJM contraction.

( v ) fT n1g converges to 0j for any j A M.

(vi) 0j is not a fixed point of T for any j A Mnf0g.
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Proof. (i) follows from Lemma 34. (ii), (v) and (vi) are obvious. Since

limn dðT n1;T nþ11Þ ¼ 1 holds, we obtain (iv) by Lemma 31.

Let us prove (iii). We have

dðTð1=nÞ;Tð1=mÞÞ ¼ dð1=ðnþ 1Þ; 1=ðmþ 1ÞÞ ¼ 1þ m� n

ðnþ 1Þðmþ 1Þ

< 1þm� n

nm
¼ dð1=n; 1=mÞ;

dðTð1=nÞ;T0jÞ ¼ 1=ðnþ 1Þ < 1=n ¼ dð1=n; 0jÞ;

dðT0k;T0lÞ ¼ dð00; 00Þ ¼ 0 < 1 ¼ dð0k; 0lÞ

for any m; n A N and j; k; l A M with n < m and k < l. Thus (iii) holds. r

Example 36. Let n A N with nb 4. Put m :¼ ½n=2� � 1 A N and M ¼ f0; . . . ; mg.
Put A ¼ f00; . . . ; 0mg, B ¼ f1=n : n A Ng and X ¼ A [ B. Define a mapping S from X

into ½0; 1� by S0j ¼ 0 and Sð1=nÞ ¼ 1=n. Define a function d from X � X into ½0;yÞ
by

dðx; xÞ ¼ 0

dðx; yÞ ¼ dðy; xÞ ¼ jSx� Syj if ðx; yÞ A A� B

dð0j ; 0kÞ ¼
j þ 1

j þ 2
þ k þ 1

k þ 2
if ð j; kÞ A M ð2Þ

dðx; yÞ ¼ 1þ jSx� Syj otherwise:

Define a mapping T on X by T0j ¼ 0maxf0; j�1g and Tð1=nÞ ¼ 1=ðnþ 1Þ. Then the

following hold:

( i ) ðX ; dÞ is a n-generalized metric space.

( ii ) X is compact.

(iii) T is an Edelstein contraction.

(iv) T is not a CJM contraction.

( v ) fT n1g converges to 0j for any j A M.

(vi) T ½n=2��20m is not a fixed point.

Proof. (i) follows from Lemmas 32 and 33. (ii), (v) and (vi) are obvious. Since

limn dðT n1;T nþ11Þ ¼ 1 holds, we obtain (iv) by Lemma 31.

Let us prove (iii). As in the proof of Example 35, we can prove

dðTð1=nÞ;Tð1=mÞÞ < dð1=n; 1=mÞ;

dðTð1=nÞ;T0jÞ < dð1=n; 0jÞ:
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for any m; n A N and j A M with n < m. We have

dðT00;T0jÞ ¼ dð00; 0j�1Þa
1

2
þ j

j þ 1

<
1

2
þ j þ 1

j þ 2
¼ dð00; 0jÞ

for any j A Mnf0g. We also have

dðT0j ;T0kÞ ¼ dð0j�1; 0k�1Þ ¼
j

j þ 1
þ k

k þ 1

<
j þ 1

j þ 2
þ k þ 1

k þ 2
¼ dð0j; 0kÞ

for any ð j; kÞ A ðMnf0gÞð2Þ. Thus (iii) holds. r
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