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a b s t r a c t 

cation of trivalent iron(III) (Fe3+) ions was applied to rutile titanium(IV) oxide (TiO2) nanorods after chemical etching treatment in order to improve photocatalytic 
e-light irradiation. Chemical etching of rutile nanorods with {1 1 0} and {1 1 1} faces using aqueous sulfuric acid (H2SO4) or hydrogen (H2O2)–ammonia (NH3)
 0 1} and {1 1 n} (n < 1) faces, respec- tively. Fe -modified rutile nanorods after chemical etching exhibited higher photocatalytic activity for degradation of toluene
at before chemical etching. This improvement of photocat- alytic activity was attributed to a large amount of site-selectively-modified Fe3+ ions, resulting in an
sorption. Moreover, our results indicate that a rutile nanorod with large {0 0 1} and 1 1 0 exposed crystal faces is the most suitable structure for visible light
ective modification of Fe3+ ions.

1. Introduction

Titanium(IV) oxide (TiO2) has been a useful photocatalyst in
terms of its oxidation ability, stability and availability. It shows 
high photocatalytic activities for decomposition of organic pollut- 
ants under ultraviolet (UV) light irradiation. TiO2 photocatalysts 
have been developed for many applications, and their efficiency 
under visible-light irradiation has been improved by doping of tran- 
sition metal ion [1–3], nitrogen [4,5], sulfur [6,7], and carbon [8,9]. 
Recently, some visible-light-responsive TiO2 photocatalysts have 
been developed by modification with a metal surface complex that 
works as a sensitizer for visible light [10–13]. This method has the 
advantages of simple preparation and no introduction of defects 
in TiO2. We have reported that modification of trivalent iron(III) 
(Fe3+) ions on rutile TiO2 greatly improved activity for acetalde- 
hyde decomposition under visible-light irradiation [14]. That study 
indicated that photoexcited Fe3+ ions injected electrons into the 
conduction band of TiO2 as a counterpart of oxidation by the oxi- 
dized state of Fe3+ ions under visible-light irradiation. Thus, Fe3+ 

ions work as visible light sensitizers and oxidation sites. Hence, 
modification with an excess amount of Fe3+ ions might decrease 
photocatalytic activity due to inefficient reduction, resulting in 

back electron transfer from TiO2 into the oxidized state of Fe3+ ions. 
Therefore, it is important to ensure moderate reduction sites and 
visible-light absorption. 

In our previous study, Fe3+ ions were selectively modified on 
specific sites of rutile TiO2 [15]. This modification employs charac- 
teristic adsorption properties of Fe3+/Fe2+ ions on TiO2 and redox 
reaction over rutile TiO2 nanorods with 1 1 0 and 1 1 1 exposed 
crystal faces. It has been reported that Fe2+ ions are desorbed on 
TiO2, whereas Fe3+ ions are easily adsorbed on TiO2 [14]. There- 
fore, it is thought that modification of Fe3+ ions on TiO2 under UV 
irradiation induces site-selective modification of Fe3+ ions on oxi- 
dation sites of TiO2. Moreover, utilization of rutile TiO2 particles 
with exposed crystal faces is expected to improve site selectivity 
of Fe3+-modification because separation of redox reaction occurs 
on the rutile nanorods [15]. As a result, Fe3+ ions were modified 
mainly on 1 1 1 faces as oxidation faces of the rutile nanorods, 
and this sample showed high activity for acetaldehyde decomposi- 
tion under visible-light irradiation because of spatial separation of 
redox sites. 

However, the rutile nanorods have large 1 1 0 faces as reduc- 
tion sites and small 1 1 1 faces as oxidation sites, and the surface 
area of 1 1 1 faces is only 6% of the total surface area. Thus, it is dif- 
ficult for further enhancement of photocatalytic activity using these 
rutile nanorods because the surface area of oxidation faces limits 
the amount of site-selective-modified Fe3+ ions, which absorb vis- 
ible light. One possible solution is further control of the surface 
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morphology, especially oxidation faces. We have reported that new 
active crystal faces, i.e., 0 0 1 and 1 1 n (n < 1) faces, are eas-   
ily exposed by chemical etching treatment of rutile nanorods with 
aqueous hydrogen (H2O2)–ammonia (NH3) or sulfuric acid (H2SO4) 
solution [16]. Newly exposed crystal faces exhibited superior oxi- 
dation ability, resulting in enhancement of photocatalytic activity 
for toluene decomposition under UV irradiation. Therefore, newly 
exposed faces are expected to improve photocatalytic activity as 
a result of the different adsorption property of Fe3+ ions and/or 
formation of highly active Fe3+ ions on the faces. 

In the present study, site-selective modification of Fe3+ ions was 
applied to rutile nanorods after morphological control by chemical 
etching treatment, and the relationship between newly exposed 
faces and photocatalytic activity under visible-light irradiation was 
examined. Also, electron transfer properties of Fe3+-modified rutile 
nanorods were also analyzed by double-beam photoacoustic (DB- 
PA) spectroscopy. 

2. Experimental 

2.1. Sample preparation 

2.1.1. Preparation of pure rutile TiO2 nanorods [17,18] 
The starting material for rutile TiO2 nanorods  was  synthe- 

sized by hydrothermal treatment of aqueous titanium(III) chloride 
(0.15 mol dm−3) solution containing sodium chloride (5 mol dm−3) 
at 200 ◦C for 6 h. The residue was centrifuged and rinsed with deion- 
ized water and then dried in a vacuum oven. This sample was 
denoted as nE sample. 

2.1.2. Chemical etching with H2SO4 or H2O2–NH3 [16] 
For chemical etching of rutile nanorods with H2SO4, the synthe- 

sized nE sample (0.5 g) was added to concentrated H2SO4 (20 dm3) 
in a flask. After stirring at room temperature for 15 h, nanorods 
were filtered and washed with 1% aqueous NH3 solution and then 
with deionized water. The residue was dried at 70 ◦C in air. This 
sample was denoted as ES sample. 

For chemical etching of rutile nanorods with H2O2–NH3, the 
synthesized nE sample (0.5 g) was added to 30% aqueous H2O2 
(50 dm3) and 2.5% aqueous NH3 solution (5.0 dm3) in a flask. After 
stirring at room temperature for 1 h, nanorods were separated by 
filtration, washed with water several times, and dried at 70 ◦C in 
air. This sample was denoted as EH sample. 

2.1.3. Site-selective modification of specific exposed faces with 
Fe3+ ions [15] 

An aqueous suspension composed of prepared nanorods and 
an aqueous solution of iron(III) nitrate with ethanol was stirred 
for 6 h under an aerated condition. The stirring was carried out 
under UV irradiation with a 500 W super-high-pressure mer- 
cury lamp (Ushio, SX-UI501UO), the light intensity of which was 
1.0 mW cm−2. The supernatant and residue were separated by fil- 
tration immediately after stirring. The residue was washed with 
deionized water several times until the ionic conductivity of the 
supernatant was <10 S cm−1, and then the nanorods were dried in 
a vacuum oven. 

2.2. Characterization 

The crystal structures of the nanorods were confirmed by using 
an X-ray diffractometer (XRD; Rigaku, MiniFlex II) with Cu-Ka radi- 
ation (入= 1.5405 A). The specific surface areas (SBET) of nanorods 
were  determined  with  a  surface  area  analyzer  (Quantachrome, 
Nova 4200e) using the Brunauer–Emmett–Teller equation. The 
morphology of the nanorods was observed by field emission scan- 
ning electron microscopy (FE-SEM; JEOL, JSM-6701FONO) and 

transmission electron microscopy (TEM; Hitachi, H-9000NAR). The 
net amount of Fe3+  ions on the nanorod surface was estimated 
by analysis of the filtrate using inductively coupled plasma opti- 
cal emission spectroscopy (ICP-OES; Shimadzu, ICPS-8000). The 
diffuse reflectance (DR) spectra were measured using a UV–vis 
spectrophotometer (Shimadzu, UV-2500PC) equipped with an 
integrating sphere unit (Shimadzu, ISR-240A). 

 
2.3. Photocatalytic activity evaluation under visible light 

The photocatalytic activities of the nanorods were evaluated by 
photocatalytic decomposition of toluene in gas phase. One hun- 
dred milligrams of powder, which has complete extinction of the 
incident radiation, was spread on a glass dish (5.6 cm2), and the 
glass dish was placed in a 125 cm3 Tedlar bag (AS ONE Co. Ltd.). 
One hundred parts per million of gaseous toluene was injected 
into the Tedlar bag, and photoirradiation was performed at room 
temperature after the toluene had reached an adsorption equilib- 
rium. A light-emitting diode (LED; Lumileds, Luxeon LXHL-NRR8), 
which emitted light at a wavelength of ca. 455 nm with an inten- 
sity of 1.0 mW cm−2, was used for visible-light irradiation. After 
the irradiation was started, the evolved carbon dioxide (CO2) con- 
centration was measured using a gas chromatograph (Shimadzu, 
GC-8A) equipped with a Porapak N packed column, flame ioniza- 
tion detector (FID) and a methanizer (GL Science, MT-221). Toluene 
was analyzed by a gas chromatograph (Shimadzu, GC-1700AF) 
equipped with an FID and a TC-1 capillary column. 

 
2.4. DB-PA spectroscopic measurement 

A gas-exchangeable photoacoustic (PA) cell equipped with two 
valves for gas flow was used, and a sample was placed in the cell. 
The atmosphere was controlled by a flow of artificial air or N2 con- 
taining ethanol vapor (air + EtOH, N2 + EtOH), and measurements 
were conducted after shutting off the valves, i.e., in a closed sys- 
tem at room temperature. An LED emitting light at ca. 625 nm 
(Lumileds, Luxeon LXHL-ND98) was used as a probe light, and the 
output intensity was modulated by a digital  function  generator 
(NF, DF1905) at 80 Hz. In addition to the modulated light, a blue- 
LED (Lumileds, Luxeon LXHL-NB98, emitting light at ca. 470 nm, 
8.1 mW cm−2) was also used as simultaneous continuous irradi- 
ation for photoexcitation. The PA signal acquired by a condenser 
microphone buried in the cell was amplified and monitored by 
a digital lock-in amplifier (NF, LI5640). Detailed setups of DB-PA 
spectroscopic measurements have been reported previously [19]. 

3. Results and discussion

3.1. Physical and chemical properties of the hydrothermally 
prepared rutile TiO2 nanorods 

 
The crystal structure of the hydrothermally prepared nE sam- 

ple was attributed to pure rutile TiO2 without other crystal phases 
from the XRD pattern. Rod-like morphology with a length of 160 nm 
and width of 50 nm and 1 1 0 side exposed faces and  1 1 1  and 
0 0 1 edge exposed faces were confirmed by SEM (Fig. 1a), TEM 
and selected area electron diffraction (SAED) analyses (data not 
shown). These results coincide with results of previous studies [18]. 

3.2. Physical and chemical properties of rutile nanorods after 
H2SO4 or H2O2–NH3 etching 

 
XRD analysis showed that the rutile structure was retained after 

chemical etching, though peaks attributed to rutile became weak- 
ened and broadened, indicating that chemical etching induced 
surface morphological change without crystal structural changes. 
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Fig. 1. SEM images of (a) nE, (b) ES and (c) EH samples. 

Fig. 2. TEM images (a) of nE sample with site-selective modification of Fe3+ ions (5 wt% of initial amount of Fe3+) and EDS analysis on the edge faces (b) and the side faces (c) 
as indicated by arrows in (a). 

In the case of H2SO4 etching, rutile nanorods were etched along 
the [0 0 1] direction from the summit of the pyramid. Thus, H2SO4 
etching for 15 h resulted in an increase in the {0 0 1} surface area 
and a decrease in the {1 1 1} surface area (Fig. 1b). On the other 
hand, H2O2–NH3 etching sharpened the angle between edge faces 
and induced formation of a needle-like shape on the rod edge. Thus, 
H2O2–NH3 etching for 1 h resulted in appearance of 1 1 n (n < 1) 
faces as newly exposed faces on the edge and decreased in the sur- 
face area of 1 1 1 and 1 1 0 faces (Fig. 1c). These results coincide 
with results of our previous studies [16]. Information on these syn- 
thesized samples is summarized in Table 1. In our previous study, 
0 0 1 and 1 1 n (n < 1) faces showed excellent oxidation faces for 
toluene decomposition under UV irradiation, compared to 1 1 1 
faces [16]. Therefore, this property is expected to induce superior 
site-selective modification of Fe3+ ions on oxidation faces. 

3.3. Site-selective modification of Fe3+ ions on rutile nanorods 
after H2SO4 or H2O2–NH3 etching 

Site-selective modification of Fe3+ ions on the synthesized rutile 
TiO2 was carried out. Since Fe3+ ions were expected to be adsorbed 
predominantly on oxidation reaction sites, Fe3+ ions were pre- 
sumably modified on 1 1 1 , 0 0 1 and/or 1 1 n (n < 1) exposed 
crystal faces. Site-selective modification of Fe3+ ions on the synthe- 
sized rutile TiO2 was observed using TEM and energy dispersive 
X-ray spectroscopy (EDS). Fig. 2 shows TEM images (a) of nE sam-
ple with site-selective modification of Fe3+ ions (5 wt% of initial 
amount of Fe3+) and EDS analysis on the edge faces (b) and the 

side faces (c) as indicated by arrows in Fig. 2a. Fine particles were 
observed mainly on the edge faces (Fig. 2a), and Fe was detected 
by EDS analysis (Fig. 2b). In contrast, fine particles were hardly 
observed on the side faces (Fig. 2a), and much smaller Fe/Ti peak 
ratio was observed by EDS analysis (Fig. 2c). These results indi- 
cate Fe3+ fine particles were adsorbed mainly on the edge faces and 
partly on the side faces. Moreover, Fe3+ fine particles were observed 
on side faces in sample prepared without site-selective modifica- 
tion method (data not shown). This indicates that site-selective 
modification method has a large influence in adsorption of Fe3+ 

ions on oxidation faces. Table 2 shows initial and net amounts of 
Fe3+ ions modified on TiO2 estimated by ICP-OES measurements. 
A larger amount of Fe3+ ions was modified on ES and EH samples, 
compared to nE samples. This indicates that an increase in SBET, 
especially surface area of 0 0 1 or 1 1 n (n < 1) faces, by chemical 
etching has an influence in an increase in adsorbed Fe3+ ions on TiO2 
nanorods because morphology change was mainly observed on 
the edge. However, Fe3+ adsorption depended not only on surface 
area of oxidation faces but also kind of exposed faces of oxidation 
faces. For example, a larger amount of Fe3+ ions was modified on 
ES samples than EH samples although the surface area of oxida- 
tion faces of the ES sample ( 1 1 1 and 0 0 1 faces) was smaller 
than that of the EH sample ( 0 0 1 and 1 1 n (n < 1) faces). This is 
attributable to the adsorption property of Fe3+ ions depending on 
crystal faces. Judging from the relatively large surface area of 0 0 1 
faces of the ES sample, 0 0 1 faces seem to be more suitable than 
1 1 1 and 1 1 n (n < 1) faces for modification of a large amount 
of Fe3+. 

Table 1 
SBET and exposed crystal faces of nE, ES and EH samples. 

ES H2SO4 21 {1 1 0} {1 1 1} = {0 0 1} 
EH H2O2–NH3 20 {1 1 0} {1 1 n} (n < 1) > {1 1 1} = {0 0 1} 

Name Etchant SBET/m2 g−1 Side faces Edge faces 

nE 15 {1 1 0} {1 1 1} > {0 0 1} 
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Table 2 
Initial and net amounts of Fe3+ ions for site-selective modification of Fe3+ on nE, ES and EH samples. 

Sample name Rutile rods Fe3+(init)/wt% Fe3+(net)/wt% Fe3+(net)/Fe3+(init) 

Fe02nE nE 0.015 0.010 0.69 
Fe05nE nE 0.048 0.021 0.45 
Fe06nE nE 0.064 0.028 0.44 
Fe03ES ES 0.027 0.027 1.00 
Fe07ES ES 0.067 0.064 0.96 
Fe13ES ES 0.134 0.133 0.99 
Fe02EH EH 0.018 0.012 0.67 
Fe06EH EH 0.064 0.057 0.89 
Fe10EH EH 0.095 0.022 0.23 

Fig. 3 shows DR spectra of bare and Fe3+-modified TiO2. In the 
wavelength region between 400 and 500 nm of DR spectra, an 
upward shift of photoabsorption was observed. Photoabsorption 
was increased with an increase in the net amount of Fe3+ ions on 
ES samples. However, the relationship between photoabsorption 
and net amount of modified Fe3+ ion was not observed among ES 
and EH samples. This presumably indicates that Fe3+ ions on ES 
samples were site-selectively modified on 1 1 1 and 0 0 1 faces 
with high density and formed larger cluster of Fe3+ compound, com- 
pared to 1 1 1 and 1 1 n (n < 1) faces on EH samples. Therefore, 
not only the amount of Fe3+ ions but also density of Fe3+ ions has 
an influence on photoabsorption of Fe3+-modified TiO2. 

3.4. Photocatalytic activity for toluene decomposition under 
visible-light irradiation 

Fig. 4 shows the time course of CO2 evolution for decomposition 
of toluene under visible-light irradiation. Photocatalytic activity of 
Fe3+-modified nanorods after etching was higher than that before 
etching. The Fe07ES sample showed the highest activity. Its activ- 
ity was 3-times higher than that of nitrogen-doped TiO2 (N-TiO2; 
Sumitomo Chemical Co.), which is well known as a conventional 
visible-light-responsive TiO2. 

Fig. 5 shows dependence of the net amount of Fe3+ ions on appar- 
ent quantum yield (QY). In the case of Fe3+-modified ES samples, 
apparent QY increased with an increase in amount of Fe3+ modifi- 
cation because of the increase in visible-light photoabsorption. On 
the other hand, an increase in the amount of Fe3+ ions decreased 
apparent QY in the case of Fe3+-modified EH samples because an 
excess amount of Fe3+ ions decreased reduction sites by coverage 
of the TiO2 surface and/or formation of inactive aggregated Fe3+

1 
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0 
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Wavelength / nm 

Fig. 3. DR spectra of (a) bare and Fe3+-modified TiO2 (b) Fe03ES, (c) Fe05nE, (d) 
Fe07ES, (e) Fe13ES, (f) Fe06EH, (g) Fe02EH and (h) Fe10EH. 

species. This different behavior of photocatalytic activity despite 
similar amounts of Fe3+ ions can be explained by the adsorption 
property of Fe3+ ions on oxidation faces. Thus, a larger surface area 
of 0 0 1 faces is suitable for site-selective modification of a large 
amount of Fe3+ ions. This adsorption property of Fe3+ ions on 0 0 1 
faces is attributed to the excellent oxidation ability of 0 0 1 faces, 
where produced Fe2+ ions were easily recovered to Fe3+ ions and 
a larger amount of Fe3+ ions was modified during the modification 
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Fig. 4. Time courses of CO2 evolution for toluene decomposition over N-doped 
TiO2 ( ) and ES sample ( ), EH sample ( 口 ) and nE sample (▲) with site-selective 
modification of optimum amount of Fe3+ ions. 
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Fig. 5. Relation between net amount of Fe3+ ions and apparent quantum yield for 
photocatalytic toluene decomposition. ES samples (O), EH samples (口) and nE sam- 

ples (▲) with site-selective modification of Fe3+ ions. 
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Fe3+ ions on oxidation sites. However, the activity of Fe3+-modified 
EH samples was not as high as that of Fe3+-modified ES samples, 
because 1 1 n   (n < 1) faces have an inferior adsorption property 
of Fe3+ ions, resulting in a smaller amount of site-selective Fe3+ 

modification, compared to {0 0 1} faces. 
3+In order to discuss adsorption stability of Fe ions on TiO2 sur- 
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Fig. 6. Relation between net amount of Fe3+ ions and (a) IN2 , and (b) ratio of Iair to IN2 . 

ES samples ( ), EH samples ( 口 ) and nE samples (▲) with site-selective modification 
of Fe3+ ions. 

procedure, compared to other exposed faces ( 1 1 1 and 1 1 n 
(n < 1) faces). 

Fe3+-modified EH samples showed higher activity than that of 
Fe3+-modified nE samples due to the larger surface area of oxidation 
faces {1 1 n} (n < 1), resulting in modification of highly dispersed 
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faces, the powders after photocatalytic reaction were rinsed with 
deionized water and the rinsing water was filtered and analyzed 
by ICP-OES. However, Fe3+ ions in the rinsing water were hardly 
detected by ICP-OES. Moreover, DR spectrum of post-reaction sam- 
ple after the rinsing was almost same as that of pre-reaction one 
(data not shown). From these results, it was demonstrated that 
the adsorption of Fe3+ ions is stable in gaseous condition under 
photoirradiation. 

3.5. DB-PA spectroscopic detection of electron behavior under 
visible-light irradiation 

The behavior of electrons injected into rutile TiO2 was observed 
by DB-PAS [19]. At first, time-course curves of PA intensity for 
Fe3+-modified rutile nanorods in the presence of N2 + EtOH were 
obtained. PA intensity increased with visible-light irradiation 
because Ti4+ was reduced to Ti3+ by injected electrons from pho- 
toexcited Fe3+ ions [15]. Thus, increase in PA intensity is attributed 
to the amount of injected electrons in TiO2. Fig. 6a shows the rela- 
tion between net amount of Fe3+ ions and saturation limit of PA 
intensity under N2 + EtOH (IN2 ). The IN2 of Fe3+-modified nanorods 
after etching was larger than that before etching. This indicates that 
enhancement of photocatalytic activity by morphological change 
of oxidation faces was due to an increase in the amount of injected 
electrons. Thus, newly exposed 0 0 1 and 1 1 n (n < 1) faces were 
suitable faces for modification of Fe3+ ions, which inject a large 
amount of electrons into TiO2. 

Time-course  curves  of  PA  intensity  for  Fe3+-modified  rutile 
in the presence of air + EtOH were also obtained. PA intensity 
attributed to Ti3+ formation was greatly decreased because electron 
accumulation was retarded due to electron consumption by oxy- 
gen species on the TiO2 surface. Therefore, efficiency of reduction by 
injected electrons can be estimated using the saturation limit of PA 
intensity under air + EtOH (Iair). Fig. 6b shows the relation between 
net amount of Fe3+ ions and ratio of Iair to IN2 . Fe3+-modified EH 
samples showed a larger ratio of Iair to IN2 than did Fe3+-modified ES 
samples. This is because formation of 1 1 n (n < 1) faces decreases 
the surface area of 1 1 0 faces, which work as reduction reaction 
faces. 

Fig. 7 shows apparent QY as a function of difference between 
IN2 Iair, which expresses the amount of  electrons  that  were 
injected from Fe3+ ions into TiO2 and reacted with O2 on the TiO2 
surface. These values show a positive correlation among all of the 
prepared samples. Thus, high activity of Fe3+-modified ES samples 
was attributed to both large {0 0 1} faces as focused Fe3+ adsorption 
sites and maintenance of {1 1 0} faces as reduction sites. 

4. Conclusion 

We demonstrated that Fe3+ ions were modified on newly
exposed crystal faces of rutile nanorods, which were formed by 
chemical etching. Fe3+-modified rutile nanorods after chemical 
etching showed higher photocatalytic activities for degradation 
of toluene under visible-light irradiation. This is because newly 
exposed crystal faces ( 0 0 1 and 1 1 n (n < 1) faces) were suitable 
faces for modification of Fe3+ ions, which inject a large amount of 
electrons into TiO2. Optimized Fe3+-modified ES samples showed 

Fig. 7. Relation between IN2 − Iair and apparent quantum yield for photocatalytic 
toluene decomposition. ES samples ( ), EH samples ( 口 ) and nE samples (▲) with 
site-selective modification of Fe3+ ions. 

excellent photocatalytic activity because a large amount of Fe3+

ions was site-selectively modified on oxidation faces due to high 
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oxidation ability of 0 0 1 faces. On the other hand, photocatalytic 
activity of Fe3+-modified EH samples was not as high as that of opti- 
mized Fe3+-modified ES samples. DB-PAS measurements indicated 
that the reason for this was slow consumption of injected electrons 
as a result of decrease in surface area of 1 1 0 faces as reduction 
faces and less site-selectivity of Fe3+ modification. 
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