

Improvement of visible light responsivity of rutile TiO2 nanorods by site-selective modification of iron(III) ion on newly exposed faces formed by chemical etching treatment

| 著者                | Nakamura Misa, Ono Asami, Baea Eunyoung,<br>Murakamia Naoya, Ohno Teruhisa |  |  |  |
|-------------------|----------------------------------------------------------------------------|--|--|--|
| journal or        | Applied Catalysis B: Environmental                                         |  |  |  |
| publication title |                                                                            |  |  |  |
| volume            | 130-131                                                                    |  |  |  |
| page range        | 264-269                                                                    |  |  |  |
| year              | 2013-02-07                                                                 |  |  |  |
| URL               | http://hdl.handle.net/10228/00006674                                       |  |  |  |

doi: info:doi/10.1016/j.apcatb.2012.11.012

# Improvement of visible light responsivity of rutile $TiO_2$ nanorods by site-selective modification of iron(III) ion on newly exposed faces formed by chemical etching treatment

# Misa Nakamura<sup>a</sup>, Asami Ono<sup>a</sup>, Eunyoung Bae<sup>a</sup>, Naoya Murakami<sup>a</sup>, Teruhisa Ohno<sup>a, b, c,\*</sup>

<sup>a</sup> Department of Materials Science, Faculty of Engineering, Kyushu Institute of Technology, 1-1 Sensuicho, Tobata, Kitakyushu 804-8550, Japan

<sup>c</sup> JST, ACT-C, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan

## abstract

cation of trivalent iron(III) (Fe<sup>3+</sup>) ions was applied to rutile titanium (V) oxide (TiO<sub>2</sub>) nanorods after chemical etching treatment in order to improve photocatalytic e-light irradiation. Chemical etching of rutile nanorods with {1 1 0} and {1 1 1} faces using aqueous sulfuric acid (H<sub>2</sub>SO<sub>4</sub>) or hydrogen (H<sub>2</sub>O<sub>2</sub>)–ammonia (NH<sub>3</sub>) 0 1} and {1 1 *n*} (*n* < 1) faces, respec- tively. Fe -modified rutile nanorods after chemical etching exhibited higher photocatalytic activity for degradation of toluene at before chemical etching. This improvement of photocat- alytic activity was attributed to a large amount of site-selectively-modified Fe<sup>3+</sup> ions, resulting in an sorption. Moreover, our results indicate that a rutile nanofod with large {0 0 1} and 1 1 0 exposed crystal faces is the most suitable structure for visible light ective modification of Fe<sup>3+</sup> ions.

#### 1. Introduction

Titanium(IV) oxide (TiO<sub>2</sub>) has been a useful photocatalyst in terms of its oxidation ability, stability and availability. It shows high photocatalytic activities for decomposition of organic pollutants under ultraviolet (UV) light irradiation. TiO2 photocatalysts have been developed for many applications, and their efficiency under visible-light irradiation has been improved by doping of transition metal ion [1–3], nitrogen [4,5], sulfur [6,7], and carbon [8,9]. Recently, some visible-light-responsive TiO<sub>2</sub> photocatalysts have been developed by modification with a metal surface complex that works as a sensitizer for visible light [10-13]. This method has the advantages of simple preparation and no introduction of defects in TiO<sub>2</sub>. We have reported that modification of trivalent iron(III) (Fe<sup>3+</sup>) ions on rutile TiO<sub>2</sub> greatly improved activity for acetaldehyde decomposition under visible-light irradiation [14]. That study indicated that photoexcited Fe<sup>3+</sup> ions injected electrons into the conduction band of TiO<sub>2</sub> as a counterpart of oxidation by the oxidized state of Fe<sup>3+</sup> ions under visible-light irradiation. Thus, Fe<sup>3+</sup> ions work as visible light sensitizers and oxidation sites. Hence, modification with an excess amount of Fe<sup>3+</sup> ions might decrease photocatalytic activity due to inefficient reduction, resulting in

back electron transfer from  $TiO_2$  into the oxidized state of  $Fe^{3+}$  ions. Therefore, it is important to ensure moderate reduction sites and visible-light absorption.

In our previous study, Fe<sup>3+</sup> ions were selectively modified on specific sites of rutile TiO<sub>2</sub> [15]. This modification employs characteristic adsorption properties of  $Fe^{3+}/Fe^{2+}$  ions on  $TiO_2$  and redox reaction over rutile  $TiO_2$  nanorods with 119 and 111 exposed crystal faces. It has been reported that Fe<sup>2+</sup> ions are desorbed on TiO<sub>2</sub>, whereas Fe<sup>3+</sup> ions are easily adsorbed on TiO<sub>2</sub> [14]. Therefore, it is thought that modification of  $Fe^{3+}$  ions on  $TiO_2$  under UV irradiation induces site-selective modification of Fe3+ ions on oxidation sites of TiO<sub>2</sub>. Moreover, utilization of rutile TiO<sub>2</sub> particles with exposed crystal faces is expected to improve site selectivity of Fe<sup>3+</sup>-modification because separation of redox reaction occurs on the rutile nanorods [15]. As a result, Fe<sup>3+</sup> ions were modified mainly on **{** 1 1) faces as oxidation faces of the rutile nanorods, and this sample showed high activity for acetaldehyde decomposition under visible-light irradiation because of spatial separation of redox sites.

However, the rutile nanorods have large  $\{1 \ 1 \ 0\}$  faces as reduction sites and small  $\{1 \ 1\}$  faces as oxidation sites, and the surface area of  $\{1 \ 1\}$  faces is only 6% of the total surface area. Thus, it is difficult for further enhancement of photocatalytic activity using these rutile nanorods because the surface area of oxidation faces limits the amount of site-selective-modified Fe<sup>3+</sup> ions, which absorb visible light. One possible solution is further control of the surface

© 2012. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

<sup>&</sup>lt;sup>b</sup> JST, PRESTO, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan

morphology, especially oxidation faces. We have reported that new active crystal faces, i.e.,  $\{0, 0, 1\}$  and  $\{1, n\}(n < 1)$  faces, are easily exposed by chemical etching treatment of rutile nanorods with aqueous hydrogen (H<sub>2</sub>O<sub>2</sub>)-ammonia (NH<sub>3</sub>) or sulfuric acid (H<sub>2</sub>SO<sub>4</sub>) solution [16]. Newly exposed crystal faces exhibited superior oxidation ability, resulting in enhancement of photocatalytic activity for toluene decomposition under UV irradiation. Therefore, newly exposed faces are expected to improve photocatalytic activity as a result of the different adsorption property of Fe<sup>3+</sup> ions and/or formation of highly active Fe<sup>3+</sup> ions on the faces.

In the present study, site-selective modification of  $Fe^{3+}$  ions was applied to rutile nanorods after morphological control by chemical etching treatment, and the relationship between newly exposed faces and photocatalytic activity under visible-light irradiation was examined. Also, electron transfer properties of  $Fe^{3+}$ -modified rutile nanorods were also analyzed by double-beam photoacoustic (DB-PA) spectroscopy.

#### 2. Experimental

#### 2.1. Sample preparation

#### 2.1.1. Preparation of pure rutile TiO<sub>2</sub> nanorods [17,18]

The starting material for rutile  $TiO_2$  nanorods was synthesized by hydrothermal treatment of aqueous titanium(III) chloride (0.15 mol dm<sup>-3</sup>) solution containing sodium chloride (5 mol dm<sup>-3</sup>) at 200 °C for 6 h. The residue was centrifuged and rinsed with deionized water and then dried in a vacuum oven. This sample was denoted as nE sample.

#### 2.1.2. Chemical etching with $H_2SO_4$ or $H_2O_2$ -NH<sub>3</sub>[16]

For chemical etching of rutile nanorods with  $H_2SO_4$ , the synthesized nE sample (0.5 g) was added to concentrated  $H_2SO_4$  (20 dm<sup>3</sup>) in a flask. After stirring at room temperature for 15 h, nanorods were filtered and washed with 1% aqueous NH<sub>3</sub> solution and then with deionized water. The residue was dried at 70 °C in air. This sample was denoted as ES sample.

For chemical etching of rutile nanorods with  $H_2O_2$ –NH<sub>3</sub>, the synthesized nE sample (0.5 g) was added to 30% aqueous  $H_2O_2$  (50 dm<sup>3</sup>) and 2.5% aqueous NH<sub>3</sub> solution (5.0 dm<sup>3</sup>) in a flask. After stirring at room temperature for 1 h, nanorods were separated by filtration, washed with water several times, and dried at 70 °C in air. This sample was denoted as EH sample.

# 2.1.3. Site-selective modification of specific exposed faces with $Fe^{3+}$ ions [15]

An aqueous suspension composed of prepared nanorods and an aqueous solution of iron(III) nitrate with ethanol was stirred for 6 h under an aerated condition. The stirring was carried out under UV irradiation with a 500 W super-high-pressure mercury lamp (Ushio, SX-UI501UO), the light intensity of which was  $1.0 \text{ mW cm}^{-2}$ . The supernatant and residue were separated by filtration immediately after stirring. The residue was washed with deionized water several times until the ionic conductivity of the supernatant was <10 S cm<sup>-1</sup>, and then the nanorods were dried in a vacuum oven.

#### 2.2. Characterization

The crystal structures of the nanorods were confirmed by using an X-ray diffractometer (XRD; Rigaku, MiniFlex II) with Cu-K*a* radiation ( $\lambda = 1.5405$  A). The specific surface areas ( $S_{\text{BET}}$ ) of nanorods were determined with a surface area analyzer (Quantachrome, Nova 4200e) using the Brunauer–Emmett–Teller equation. The morphology of the nanorods was observed by field emission scanning electron microscopy (FE-SEM; JEOL, JSM-6701FONO) and transmission electron microscopy (TEM; Hitachi, H-9000NAR). The net amount of  $Fe^{3+}$  ions on the nanorod surface was estimated by analysis of the filtrate using inductively coupled plasma optical emission spectroscopy (ICP-OES; Shimadzu, ICPS-8000). The diffuse reflectance (DR) spectra were measured using a UV–vis spectrophotometer (Shimadzu, UV-2500PC) equipped with an integrating sphere unit (Shimadzu, ISR-240A).

## 2.3. Photocatalytic activity evaluation under visible light

The photocatalytic activities of the nanorods were evaluated by photocatalytic decomposition of toluene in gas phase. One hundred milligrams of powder, which has complete extinction of the incident radiation, was spread on a glass dish (5.6 cm<sup>2</sup>), and the glass dish was placed in a 125 cm<sup>3</sup> Tedlar bag (AS ONE Co. Ltd.). One hundred parts per million of gaseous toluene was injected into the Tedlar bag, and photoirradiation was performed at room temperature after the toluene had reached an adsorption equilibrium. A light-emitting diode (LED; Lumileds, Luxeon LXHL-NRR8), which emitted light at a wavelength of ca. 455 nm with an intensity of 1.0 mW cm<sup>-2</sup>, was used for visible-light irradiation. After the irradiation was started, the evolved carbon dioxide (CO2) concentration was measured using a gas chromatograph (Shimadzu, GC-8A) equipped with a Porapak N packed column, flame ionizationdetector(FID) and a methanizer (GLScience, MT-221). Toluene was analyzed by a gas chromatograph (Shimadzu, GC-1700AF) equipped with an FID and a TC-1 capillary column.

#### 2.4. DB-PA spectroscopic measurement

A gas-exchangeable photoacoustic (PA) cell equipped with two valves for gas flow was used, and a sample was placed in the cell. The atmosphere was controlled by a flow of artificial air or N<sub>2</sub> containing ethanol vapor (air + EtOH, N<sub>2</sub> + EtOH), and measurements were conducted after shutting off the valves, i.e., in a closed system at room temperature. An LED emitting light at ca. 625 nm (Lumileds, Luxeon LXHL-ND98) was used as a probe light, and the output intensity was modulated by a digital function generator (NF, DF1905) at 80 Hz. In addition to the modulated light, a blue-LED (Lumileds, Luxeon LXHL-NB98, emitting light at ca. 470 nm, 8.1 mW cm<sup>-2</sup>) was also used as simultaneous continuous irradiation for photoexcitation. The PA signal acquired by a condenser microphone buried in the cell was amplified and monitored by a digital lock-in amplifier (NF, LI5640). Detailed setups of DB-PA spectroscopic measurements have been reported previously [19].

## 3. Results and discussion

# 3.1. Physical and chemical properties of the hydrothermally prepared rutile TiO<sub>2</sub> nanorods

The crystal structure of the hydrothermally prepared nE sample was attributed to pure rutile  $TiO_2$  without other crystal phases from the XRD pattern. Rod-like morphology with a length of 160 nm and width of 50 nm and  $\{1 \ 1 \ 0\}$ side exposed faces and  $\{1 \ 1 \ 1\}$  and  $\{0 \ 1 \ 2$  dge exposed faces were confirmed by SEM (Fig. 1a), TEM and selected area electron diffraction (SAED) analyses (data not shown). These results coincide with results of previous studies [18].

# 3.2. Physical and chemical properties of rutile nanorods after $H_2SO_4$ or $H_2O_2$ -NH<sub>3</sub> etching

XRD analysis showed that the rutile structure was retained after chemical etching, though peaks attributed to rutile became weakened and broadened, indicating that chemical etching induced surface morphological change without crystal structural changes.



Fig. 1. SEM images of (a) nE, (b) ES and (c) EH samples.



Fig. 2. TEM images (a) of nE sample with site-selective modification of  $Fe^{3+}$  ions (5 wt% of initial amount of  $Fe^{3+}$ ) and EDS analysis on the edge faces (b) and the side faces (c) as indicated by arrows in (a).

In the case of  $H_2SO_4$  etching, rutile nanorods were etched along the [001] direction from the summit of the pyramid. Thus,  $H_2SO_4$ etching for 15 h resulted in an increase in the {0 0 1} surface area and a decrease in the {1 1 } surface area (Fig. 1b). On the other hand,  $H_2O_2$ -NH<sub>3</sub> etching sharpened the angle between edge faces and induced formation of a needle-like shape on the rod edge. Thus,  $H_2O_2$ -NH<sub>3</sub> etching for 1 h resulted in appearance of 1{1 n ( $\mathfrak{H} < 1$ ) faces as newly exposed faces on the edge and decreased in the surface area of { 1 1  $\mathfrak{g}$ nd 1 { 0 fages (Fig. 1c). These results coincide with results of our previous studies [16]. Information on these synthesized samples is summarized in Table 1. In our previous study, {0 1  $\mathfrak{g}$ nd 1 { n ( $\mathfrak{h} < 1$ ) faces showed excellent oxidation faces for toluene decomposition under UV irradiation, compared to { 1 1 } faces [16]. Therefore, this property is expected to induce superior site-selective modification of Fe<sup>3+</sup> ions on oxidation faces.

# 3.3. Site-selective modification of $Fe^{3+}$ ions on rutile nanorods after $H_2SO_4$ or $H_2O_2$ - $NH_3$ etching

Site-selective modification of Fe<sup>3+</sup> ions on the synthesized rutile TiO<sub>2</sub> was carried out. Since Fe<sup>3+</sup> ions were expected to be adsorbed predominantly on oxidation reaction sites, Fe<sup>3+</sup> ions were presumably modified on {1 1}, {0 0 1} and/or {1 n Jn < 1} exposed crystal faces. Site-selective modification of Fe<sup>3+</sup> ions on the synthesized rutile TiO<sub>2</sub> was observed using TEM and energy dispersive X-ray spectroscopy (EDS). Fig. 2 shows TEM images (a) of nE sample with site-selective modification of Fe<sup>3+</sup> ions (5 wt% of initial amount of Fe<sup>3+</sup>) and EDS analysis on the edge faces (b) and the

side faces (c) as indicated by arrows in Fig. 2a. Fine particles were observed mainly on the edge faces (Fig. 2a), and Fe was detected by EDS analysis (Fig. 2b). In contrast, fine particles were hardly observed on the side faces (Fig. 2a), and much smaller Fe/Tipeak ratio was observed by EDS analysis (Fig. 2c). These results indicate Fe<sup>3+</sup> fine particles were adsorbed mainly on the edge faces and partly on the side faces. Moreover, Fe<sup>3+</sup> fine particles were observed on side faces in sample prepared without site-selective modification method (data not shown). This indicates that site-selective modification method has a large influence in adsorption of Fe<sup>3+</sup> ions on oxidation faces. Table 2 shows initial and net amounts of Fe<sup>3+</sup> ions modified on TiO<sub>2</sub> estimated by ICP-OES measurements. A larger amount of Fe<sup>3+</sup> ions was modified on ES and EH samples, compared to nE samples. This indicates that an increase in  $S_{\text{BET}}$ , especially surface area of 001 or  $1 \ln (n < 1)$  faces, by chemical etching has an influence in an increase in adsorbed Fe<sup>3+</sup> ions on TiO<sub>2</sub> nanorods because morphology change was mainly observed on the edge. However, Fe<sup>3+</sup> adsorption depended not only on surface area of oxidation faces but also kind of exposed faces of oxidation faces. For example, a larger amount of Fe<sup>3+</sup> ions was modified on ES samples than EH samples although the surface area of oxidation faces of the ES sample ({1 1 1} and 0{0 1 faces) was smaller than that of the EH sample (001 and 14 n (n < 1) faces). This is attributable to the adsorption property of Fe<sup>3+</sup> ions depending on crystal faces. Judging from the relatively large surface area of  $\{001\}$ faces of the ES sample, 001 faces seem to be more suitable than 11 and 11 n (n < 1) faces for modification of a large amount of Fe<sup>3+</sup>.

SBET and exposed crystal faces of nE, ES and EH samples.

| Name | Etchant       | $S_{\text{BET}}/\text{m}^2 \text{g}^{-1}$ | Side faces | Edge faces                                         |
|------|---------------|-------------------------------------------|------------|----------------------------------------------------|
| nE   |               | 15                                        | {1 1 0}    | {1 1 1} > {0 0 1}                                  |
| ES   | $H_2SO_4$     | 21                                        | {1 1 0}    | $\{1\ 1\ 1\} = \{0\ 0\ 1\}$                        |
| EH   | $H_2O_2-NH_3$ | 20                                        | {1 1 0}    | $\{1\ 1\ n\}\ (n < 1) > \{1\ 1\ 1\} = \{0\ 0\ 1\}$ |

Table 2

Initial and net amounts of Fe<sup>3+</sup> ions for site-selective modification of Fe<sup>3+</sup> on nE, ES and EH samples.

| Sample name | Rutile rods | Fe <sup>3+</sup> (init)/wt% | Fe <sup>3+</sup> (net)/wt% | Fe <sup>3+</sup> (net)/Fe <sup>3+</sup> (init) |
|-------------|-------------|-----------------------------|----------------------------|------------------------------------------------|
| Fe02nE      | nE          | 0.015                       | 0.010                      | 0.69                                           |
| Fe05nE      | nE          | 0.048                       | 0.021                      | 0.45                                           |
| Fe06nE      | nE          | 0.064                       | 0.028                      | 0.44                                           |
| Fe03ES      | ES          | 0.027                       | 0.027                      | 1.00                                           |
| Fe07ES      | ES          | 0.067                       | 0.064                      | 0.96                                           |
| Fe13ES      | ES          | 0.134                       | 0.133                      | 0.99                                           |
| Fe02EH      | EH          | 0.018                       | 0.012                      | 0.67                                           |
| Fe06EH      | EH          | 0.064                       | 0.057                      | 0.89                                           |
| Fe10EH      | EH          | 0.095                       | 0.022                      | 0.23                                           |

Fig. 3 shows DR spectra of bare and Fe<sup>3+</sup>-modified TiO<sub>2</sub>. In the wavelength region between 400 and 500 nm of DR spectra, an upward shift of photoabsorption was observed. Photoabsorption was increased with an increase in the net amount of Fe<sup>3+</sup> ions on ES samples. However, the relationship between photoabsorption and net amount of modified Fe3+ ion was not observed among ES and EH samples. This presumably indicates that Fe<sup>3+</sup> ions on ES samples were site-selectively modified on/1 1 1 and 0 0 13 faces with high density and formed larger cluster of Fe<sup>3+</sup> compound, compared to t = 1 and 1 f = n (p < 1) faces on EH samples. Therefore, not only the amount of Fe<sup>3+</sup> ions but also density of Fe<sup>3+</sup> ions has an influence on photoabsorption of Fe<sup>3+</sup>-modified TiO<sub>2</sub>.

## 3.4. Photocatalytic activity for toluene decomposition under visible-light irradiation

Fig. 4 shows the time course of CO<sub>2</sub> evolution for decomposition of toluene under visible-light irradiation. Photocatalytic activity of Fe<sup>3+</sup>-modified nanorods after etching was higher than that before etching. The Fe07ES sample showed the highest activity. Its activity was 3-times higher than that of nitrogen-doped TiO<sub>2</sub> (N-TiO<sub>2</sub>; Sumitomo Chemical Co.), which is well known as a conventional visible-light-responsive TiO<sub>2</sub>.

Fig. 5 shows dependence of the net amount of Fe<sup>3+</sup> ions on apparent quantum yield (QY). In the case of Fe<sup>3+</sup>-modified ES samples, apparent QY increased with an increase in amount of Fe<sup>3+</sup> modification because of the increase in visible-light photoabsorption. On the other hand, an increase in the amount of  $\mathrm{Fe}^{3+}$  ions decreased apparent QY in the case of Fe<sup>3+</sup>-modified EH samples because an excess amount of Fe<sup>3+</sup> ions decreased reduction sites by coverage of the TiO<sub>2</sub> surface and/or formation of inactive aggregated Fe<sup>3+</sup>

species. This different behavior of photocatalytic activity despite similar amounts of Fe<sup>3+</sup> ions can be explained by the adsorption property of Fe<sup>3+</sup> ions on oxidation faces. Thus, a larger surface area of  $\emptyset$  0 1 faces is suitable for site-selective modification of a large amount of  $Fe^{3+}$  ions. This adsorption property of  $Fe^{3+}$  ions on  $\{001\}$ faces is attributed to the excellent oxidation ability of {0 0 1} faces, where produced Fe<sup>2+</sup> ions were easily recovered to Fe<sup>3+</sup> ions and a larger amount of Fe<sup>3+</sup> ions was modified during the modification



Fig. 4. Time courses of CO2 evolution for toluene decomposition over N-doped  $TiO_2$  (x) and ES sample (  $\square$  EH sample (  $\square$  ) and nE sample (  $\blacktriangle$ ) with site-selective modification of optimum amount of Fe3+ ions.



Fig. 3. DR spectra of (a) bare and  $Fe^{3+}$ -modified TiO<sub>2</sub> (b) Fe03ES, (c) Fe05nE, (d) Fe07ES, (e) Fe13ES, (f) Fe06EH, (g) Fe02EH and (h) Fe10EH.



photocatalytic toluene decomposition. ES samples (O), EH samples (D) and nE samples (A) with site-selective modification of Fe3+ ions.



**Fig. 6.** Relation between net amount of  $Fe^{3+}$  ions and (a)  $I_{N_2}$ , and (b) ratio of  $I_{air}$  to  $I_{N_2}$ . ES samples (9, EH samples ( $\Box$ ) and nE samples ( $\bigstar$ ) with site-selective modification of Fe<sup>3+</sup> ions.

procedure, compared to other exposed faces (  $\{\!\!\!1 \ 1 \ \!\!\!\}$  and  $\{\!\!\!1 \ n \}$  (n < 1) faces).

Fe<sup>3+</sup>-modified EH samples showed higher activity than that of Fe<sup>3+</sup>-modified nE samples due to the larger surface area of oxidation faces {1 1 *n*} (n < 1), resulting in modification of highly dispersed



**Fig. 7.** Relation between  $I_{N_2} - I_{air}$  and apparent quantum yield for photocatalytic toluene decomposition. ES samples ( ),  $\mathcal{P}H$  samples (  $\Box$  ) and nE samples ( ) with site-selective modification of Fe<sup>3+</sup> ions.

Fe<sup>3+</sup> ions on oxidation sites. However, the activity of Fe<sup>3+</sup>-modified EH samples was not as high as that of Fe<sup>3+</sup>-modified ES samples, because  $\{1 \ n\}$  (n < 1) faces have an inferior adsorption property of Fe<sup>3+</sup> ions, resulting in a smaller amount of site-selective Fe<sup>3+</sup> modification, compared to {0 0 1} faces.

In order to discuss adsorption stability of Fe  $\vec{i}$ oths on TiO<sub>2</sub> surfaces, the powders after photocatalytic reaction were rinsed with deionized water and the rinsing water was filtered and analyzed by ICP-OES. However, Fe<sup>3+</sup> ions in the rinsing water were hardly detected by ICP-OES. Moreover, DR spectrum of post-reaction sample after the rinsing was almost same as that of pre-reaction one (data not shown). From these results, it was demonstrated that the adsorption of Fe<sup>3+</sup> ions is stable in gaseous condition under photoirradiation.

# 3.5. DB-PA spectroscopic detection of electron behavior under visible-light irradiation

The behavior of electrons injected into rutile TiO<sub>2</sub> was observed by DB-PAS [19]. At first, time-course curves of PA intensity for Fe<sup>3+</sup>-modified rutile nanorods in the presence of N<sub>2</sub> + EtOH were obtained. PA intensity increased with visible-light irradiation because Ti<sup>4+</sup> was reduced to Ti<sup>3+</sup> by injected electrons from photoexcited Fe<sup>3+</sup> ions [15]. Thus, increase in PA intensity is attributed to the amount of injected electrons in TiO<sub>2</sub>. Fig. 6a shows the relation between net amount of Fe<sup>3+</sup> ions and saturation limit of PA intensity under N<sub>2</sub> + EtOH ( $I_{N_2}$ ). The  $I_{N_2}$  of Fe<sup>3+</sup>-modified nanorods after etching was larger than that before etching. This indicates that enhancement of photocatalytic activity by morphological change of oxidation faces was due to an increase in the amount of injected electrons. Thus, newly exposed 0 0 l} and  $\xi$  1 n  $\xi$ n < 1) faces were suitable faces for modification of Fe<sup>3+</sup> ions, which inject a large amount of electrons into TiO<sub>2</sub>.

Time-course curves of PA intensity for Fe<sup>3+</sup>-modified rutile in the presence of air + EtOH were also obtained. PA intensity attributed to Ti<sup>3+</sup> formation was greatly decreased because electron accumulation was retarded due to electron consumption by oxygen species on the TiO<sub>2</sub> surface. Therefore, efficiency of reduction by injected electrons can be estimated using the saturation limit of PA intensity under air + EtOH ( $I_{air}$ ). Fig. 6b shows the relation between net amount of Fe<sup>3+</sup> ions and ratio of  $I_{air}$  to  $I_{N_2}$ . Fe<sup>3+</sup>-modified EH samples showed a larger ratio of  $I_{air}$  to  $I_{N_2}$  than did Fe<sup>3+</sup>-modified ES samples. This is because formation of  $\{1 \ 1 \ n\}(n < 1)$  faces decreases the surface area of  $\{1 \ 1 \ 0\}$  faces, which work as reduction reaction faces.

Fig. 7 shows apparent QY as a function of difference between  $I_{N_2} I_{air}$ , which expresses the amount of electrons that were injected from Fe<sup>3+</sup> ions into TiO<sub>2</sub> and reacted with O<sub>2</sub> on the TiO<sub>2</sub> surface. These values show a positive correlation among all of the prepared samples. Thus, high activity of Fe<sup>3+</sup>-modified ES samples was attributed to both large {0 0 1} faces as focused Fe<sup>3+</sup> adsorption sites and maintenance of {1 1 0} faces as reduction sites.

# 4. Conclusion

We demonstrated that  $Fe^{3+}$  ions were modified on newly exposed crystal faces of rutile nanorods, which were formed by chemical etching.  $Fe^{3+}$ -modified rutile nanorods after chemical etching showed higher photocatalytic activities for degradation of toluene under visible-light irradiation. This is because newly exposed crystal faces ( $0 \ 0 \ \beta$  and  $\frac{1}{4} \ 1 \ n \ n < 1$ ) faces) were suitable faces for modification of  $Fe^{3+}$  ions, which inject a large amount of electrons into TiO<sub>2</sub>. Optimized  $Fe^{3+}$ -modified ES samples showed excellent photocatalytic activity because a large amount of  $Fe^{3+}$ ions was site-selectively modified on oxidation faces due to high oxidation ability of  $\{0\ 0\ 1\}$  faces. On the other hand, photocatalytic activity of Fe<sup>3+</sup>-modified EH samples was not as high as that of optimized Fe<sup>3+</sup>-modified ES samples. DB-PAS measurements indicated that the reason for this was slow consumption of injected electrons as a result of decrease in surface area of  $\{1\ 1\ 0\}$  faces as reduction faces and less site-selectivity of Fe<sup>3+</sup> modification.

### Acknowledgements

This work was supported by the Knowledge Cluster Initiative implemented by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), the JST PRESTO program, and the JST ACT-C program.

## References

- W. Choi, A. Termin, M.R. Hoffmann, Journal of Physical Chemistry 98 (1994) 13669–13679.
- [2] N. Serpone, D. Lawless, Langmuir 10 (1994) 643-652.
- [3] H. Kisch, L. Zang, C. Lange, W.F. Maier, C. Antonius, D. Meissner, Angewandte Chemie International Edition 37 (1998) 3034–3036.
- [4] S. Sato, Chemical Physics Letters 123 (1986) 126-128.

- [5] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293 (2001) 269–271.
- [6] T. Umebayashi, T. Yamaki, H. Itoh, K. Asai, Applied Physics Letters 81 (2002) 454–456.
- [7] T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui, M. Matsumura, Applied Catalysis A: General 265 (2004) 115–121.
- [8] T. Ohno, T. Tsubota, K. Nishijima, Z. Miyamoto, Chemistry Letters 33 (2004) 750–751.
- [9] H. Irie, Y. Watanabe, K. Hashimoto, Chemistry Letters 32 (2003) 772–773.
- [10] L. Zang, C. Lange, I. Abraham, S. Storck, W.F. Maier, H. Kisch, Journal of Physical Chemistry B 102 (1998) 10765–10771.
- [11] L. Zang, W. Macyk, C. Lange, W.F. Maier, C. Antonius, D. Meissner, H. Kisch, Chemistry: A European Journal 6 (2000) 379–384.
- [12] S. Ikeda, N. Sugiyama, B. Pal, G. Marci, L. Palmisano, H. Noguchi, K. Uosaki, B. Ohtani, Physical Chemistry Chemical Physics 3 (2001) 267–273.
- [13] W. Macyk, H. Kisch, Chemistry: A European Journal 7 (2001) 1862–1867.
  [14] T. Ohno, D. Haga, K. Fujihara, K. Kaizaki, M. Matsumura, Journal of Physical
- Chemistry B 101 (1997) 6415–6419.
   [15] N. Murakami, A. Ono, M. Nakamura, T. Tsubota, T. Ohno, Applied Catalysis B:
- Environmental 97 (2010) 115–119.
- [16] E. Bae, N. Murakami, M. Nakamura, T. Ohno, Applied Catalysis A: General 380 (2010) 48–54.
- [17] E. Hosono, S. Fujihara, K. Kakiuchi, K. Imai, Journal of the American Chemical Society 126 (2004) 7790–7791.
- [18] E. Bae, N. Murakami, T. Ohno, Journal of Molecular Catalysis A: Chemical 300 (2009) 72–79.
- [19] N. Murakami, O.O.P. Mahaney, R. Abe, T. Torimoto, B. Ohtani, Journal of Physical Chemistry C 111 (2007) 11927–11935.