

Fabrication and characterization of a p-type Cu3Nb208 photocathode toward photoelectrochemical reduction of carbon dioxide

著者	Kamimura Sunao, Murakami Naoya, Tsubota
	Toshiki, Ohno Teruhisa
journal or	Applied Catalysis B: Environmental
publication title	
volume	174-175
page range	471-476
year	2015-09
URL	http://hdl.handle.net/10228/00006666

doi: info:doi/10.1016/j.apcatb.2015.03.034

Fabrication and characterization of a p-type Cu₃Nb₂O₈ photocathode toward photoelectrochemical reduction of carbon dioxide

Sunao Kamimura, Naoya Murakami, Toshiki Tsubota, Teruhisa Ohno*

Department of Applied Chemistry, Faculty of Engineering, Kyushu Institute of Technology, 1-1 Sensuicho, Tobata, Kitakyushu 804-8550, Japan

KEYWORDS: photoelectrochemical reduction of carbon dioxide, photocathode

* Corresponding author: tohno@che.kyutech.ac.jp

 $^{\odot}$ 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

ABSTRACT

We report a new p-type Cu₃Nb₂O₈ as a thin film photocathode, which was fabricated through spin-coating by a metal organic decomposition method. The p-type Cu₃Nb₂O₈ photocathode exhibited a strong cathodic photocurrent, and the incident photon-to-current conversion efficiency plot confirmed that the p-type Cu₃Nb₂O₈ photocathode has the ability to utilize the visible light (λ < ca. 480 nm). Furthermore, we demonstrated photoelectrochemical reduction of carbon dioxide with the primary product being carbon monoxide by utilizing the ptype Cu₃Nb₂O₈ photocathode under AM 1.5 G solar light irradiation. From the results of Mott-Schottky analysis, UV-vis measurement and ultraviolet photoemission spectroscopy, the conduction band potential of p-type $Cu_3Nb_2O_8$ was estimated to be -1.21 V versus a normal hydrogen electrode (NHE) at pH=7 with its conduction band edge located at a more negative potential than the reduction potential of carbon dioxide to carbon monoxide. Although the cathodic photocurrent of the p-type Cu₃Nb₂O₈ photocathode gradually decayed with time, it recovered upon thermal annealing in air. This behavior suggests that the photocurrent response of the p-type $Cu_3Nb_2O_8$ photocathode is intimately related to variation of the valence state of copper ions. In this paper, the photoelectrochemical properties of the p-type $Cu_3Nb_2O_8$ photocathode are described in conjunction with optical, electrical and structural properties, and characteristics of the p-type $Cu_3Nb_2O_8$ photocathode for the photoclectrochemical reduction of carbon dioxide are discussed.

1. INTRODUCTION

The challenge of reducing carbon dioxide (CO_2) to chemical fuels has attracted considerable attention due to its potential for addressing the issues of depletion of fossil fuel and global warming [1-3]. Photoelectrochemical reduction utilizing a semiconductor photocathode is a promising approach for reducing CO₂ because it can proceed with a low electrical bias potential in contrast to electrochemical reduction due to a part or all of the energy being supplied by incident light. Photoelectrochemical reduction of CO₂ was first reported in 1978 by Halmann, who carried out a study in which CO_2 dissolved in an aqueous solution was converted to formic acid, formaldehyde and methanol by utilizing a p-type GaP photocathode under mercury lamp irradiation [4]. Inoue *et al.* investigated the use of several semiconductor powders in CO_2 saturated water under xenon lamp illumination, and they proposed that conversion processes of CO₂ to formic acid, formaldehyde and methanol were multi-electron reductions coupled with protons in an aqueous solution [5]. Based on these breakthroughs, most of the works on photoelectrochemical reduction of CO₂ have focused on proton-coupled multi-electron reduction utilizing p-type III-V and II-VI semiconductor photocathodes (e.g., InP and GaAs) [6,7]. Although p-type III-V and II-VI semiconductors exhibit remarkable photocurrent responses for reducing CO₂, they are unstable under light illumination and need excessively high overpotential for the reduction of CO_2 [8-10].

Recently, research in this field has resulted in the design and development of a new class of photocathodes utilizing metal-oxide, oxynitride and sulfide semiconductors [11-13]. Metal-oxide semiconductors have attracted much attention as promising candidates of a photocathode for photoelectrochemical reduction of CO₂ because of their superior corrosion resistance. Metal-oxide semiconductors are typically classified into two categories, n-type semiconductors and p-

type semiconductors, depending on whether the majority carriers are electrons or holes, respectively. To utilize a photocathode for photoelectrochemical reduction of CO₂, a p-type semiconducting metal oxide is essential. A p-type semiconducting metal oxide acts as a photocathode because photo-excited electrons created in the conduction band (CB) by irradiation of incident light are more energetic than the band gap, while an n-type semiconductor acts as a photoanode as holes are created in the valence band (VB) by irradiation of incident light.¹⁴ To date, much effort has been devoted to exploring p-type semiconducting metal oxides functioning as photocathodes for photoelectrochemical reduction of CO₂; however, that reports have been limited to CuO, Cu₂O, Co₃O₄, CaFe₂O₄, and CuFeO₂ [15-18]. Therefore, we focused on the development of a new p-type metal-oxide semiconductor for photoelectrochemical reduction of CO₂.

After examining a number of p-type semiconducting metal oxides, we successfully developed a new p-type $Cu_3Nb_2O_8$ photocathode that was fabricated through spin coating by a metal organic decomposition method. The $Cu_3Nb_2O_8$ photocathode exhibited a strong cathodic photocurrent with irradiation of AM 1.5 G solar-simulated light, leading to photoelectrochemical reduction of CO_2 with the primary product being carbon monoxide (CO). As far as we know, there has been no report on photoelectrochemical characteristics of the p-type $Cu_3Nb_2O_8$ and its photoelectrochemical reduction of CO_2 . In this paper, we present the photoelectrochemical properties of the p-type $Cu_3Nb_2O_8$ photocathode in conjunction with optical, electrical and structural properties, and we discuss its photoelectrochemical reduction of CO_2 .

2. EXPERIMENTAL SECTION

2.1. Fabrication

Three different series of samples were fabricated. One series was fabricated onto a metal Ti substrate by the spin coating method for analysis of linear sweep voltammetry and chronoamperometry measurements. The metal Ti substrate (15 mm×40 mm, thickness: 0.1 mm, Nilaco. Co.) was ultrasonically cleaned in ethanol and acetone each for 1 hour. Then 0.4 M CuO precursor solution (SYM-Cu04, Kojundo Chemical lab. Co.) and 0.5 M NbO_{2.5} precursor solution (SYM-Nb05, Kojundo Chemical lab. Co.) as starting reagents were weighed precisely to molar ratios of Cu : Nb = 1.5 : 1.0 and mixed thoroughly. The mixture was then deposited on the metal Ti substrate and accelerated rapidly in air. The spin speed was 1000 revolutions per minute and spin time was 30 seconds. The prepared thin film of the mixture on the metal Ti substrate was calcined at 873 K for 2 h in air. It should be noted that I-V characteristics confirmed ohmic contact between $Cu_3Nb_2O_8$ and the calcined Ti substrate (Figure S1, Supporting information). The second series was fabricated on a quartz substrate by the spin coating method for analysis of UV-vis measurements. The quartz substrate (25 mm \times 25 mm, thickness: 1 mm) was ultrasonically cleaned in acetone and ethanol each for 1 hour. The precursor solutions mentioned above were deposited on the quartz substrate and then accelerated rapidly in air. The spin speed was 1000 revolutions per minute and spin time was 30 seconds. The prepared thin film of the mixture on the quartz substrate was calcined at 873 K for 2 h in air. The third series was fabricated on a quartz substrate on which platinum was deposited at ca. 500 nm by magnetron sputtering (SC-701HMCII, Sanyu Electron Co.) for Mott-schottky analysis. The precursor solutions were deposited on the Pt/quartz substrate and then accelerated rapidly in air. The spin speed was 1000 revolutions per minute and spin time was 30 seconds. The prepared thin film of the mixture on the quartz substrate was calcined at 873 K for 2 h in air. Spin coating was carried out 10 times for Mott-Schottky analysis.

2.2. Characterization

The crystalline phase of Cu₃Nb₂O₈ was characterized by using a powder X-ray diffraction (XRD) instrument (MiniFlex II, Rigaku Co.) with CuK α (λ =1.5418 Å) radiation (cathode voltage: 30 kV, current: 15 mA). The absorption spectrum was acquired at room temperature with a UV/VIS spectrometer (UV-2600, Shimadzu Co.). Mott-schottky analysis was carried out by using an electrochemical analyzer (604D, ALS Co.) with a Cu₃Nb₂O₈ electrode, platinum electrode, Ag/AgCl electrode and non-CO₂ bubbled 0.5 M NaHCO₃ solution (pH=8.6) used as a working electrode, counter electrode, reference electrode and electrolyte, respectively. X-ray photoelectron spectroscopy (XPS) measurements were also performed using a Kratos AXIS Nova spectrometer (Shimazu Co.) with a monochromatic Al K α X-ray source. The binding energy was calibrated by taking the carbon (C) 1s peak of contaminant carbon as a reference at 248.7 eV.

2.3. Photoelectrochemical measurements

Linear sweep voltammetry and chronoamperometry measurements were carried out by using an automatic polarization system (HSV-100, Hokuto Denko Co.) with a three–electrode system, in which a Cu₃Nb₂O₈ electrode, a glassy carbon electrode and a silver-silver chloride (Ag/AgCl) electrode were used as a working electrode, counter electrode and reference electrode, respectively. The electrolyte used was 0.5 M NaHCO₃ solution, which was bubbled with CO₂ gas for 30 minutes to remove dissolved air. The pH of 0.5 M NaHCO₃ solution after

bubbling with CO₂ gas for 30 minutes was pH=7.3. It should be noted that the CO₂ gas continuously flowed into the reactor during the linear sweep. The light source used was a solar-simulated system (PEC-L15, Peccell Tech. Inc.). The light intensity of the solar-simulated light was determined by utilizing a thermopile power meter (ORION-TH), and the intensity was 100 mW/cm². Incident photon to current efficiency (IPCE) measurement was carried out by using an automatic polarization system (HSV-100, Hokuto Denko Co.) and light-emitting diodes as the light source peaking at 365 nm, 415 nm, 455 nm, 470 nm, 505 nm, 530 nm and 720 nm (light intensity: 1.0 mW/cm²). The IPCE at each irradiation wavelength was calculated by the following equation:

$$IPCE(\%) = \frac{1239.7 \times J(mA/cm^2)}{\lambda(nm) \times I(mW/cm^2)} \times 100$$

where J is photocurrent density of the Cu₃Nb₂O₈ electrode, λ is irradiation wavelength of the light-emitting diodes and *I* is irradiation intensity of the light-emitting diodes.

2.4. Evaluation of reduction products

Photoelectrochemical reduction of CO₂ to CO over the Cu₃Nb₂O₈ electrode was carried out by using an automatic polarization system (HSV-100, Hokuto Denko Co.) with a three–electrode photoelectrochemical cell system in which the Cu₃Nb₂O₈ electrode, glassy carbon electrode and silver-silver chloride (Ag/AgCl) electrode were used as a working electrode, counter electrode and reference electrode, respectively. After CO₂ bubbling for 30 min, the cell was sealed and irradiated by AM 1.5 G solar-simulated light for 20 min. The gaseous CO₂ reduction products, including CO and CH₄, were detected by gas chromatography (490 Micro GC, Agilent Technology Co.). The liquid CO₂ reduction product, formic acid (HCOOH), was detected by

using single-channel ion chromatography (ICS900, Thermo Fisher Scientific Inc.), and other products including methanol (CH₃OH), ethanol (C₂H₅OH), and formaldehyde (HCOH) were detected by gas chromatography (G-3500, Hitachi Co.) with a DB-WAXetr column (122-7332, Agilent Co.).

3. RESULTS AND DISCUSSION

Figure 1(a) shows the XRD pattern of $Cu_3Nb_2O_8$. The XRD pattern corresponded to the powder diffraction file for the triclinic phase of $Cu_3Nb_2O_8$ (JCPDS 00-033-0476), indicating that $Cu_3Nb_2O_8$ polycrystalline can be synthesized. The thickness of the $Cu_3Nb_2O_8$ polycrystalline layer was estimated from a cross-section SEM image to be approximately 145 nm (Figure S2, Supporting information). Figure 1(b) shows the UV-Vis spectrum of the $Cu_3Nb_2O_8$ in the photon energy range between 1 eV and 6 eV. As shown in the inset picture, the obtained $Cu_3Nb_2O_8$ on the quartz glass was a dark yellow color. The band gap was found by extrapolation of the absorption band edge, and it was estimated to be 2.5 eV.

To clarify the flat band potential (E_{fb}) of Cu₃Nb₂O₈, Mott–Schottky analysis was carried out by using an alternating current (AC) electrochemical impedance method at 0.5 kHz, 1 kHz and 2 kHz with AC 5 mV of amplitude in a non-CO₂ bubbled 0.5 M NaHCO₃ solution (pH=8.6), and the resulting Mott–Schottky plots are shown in Fig. 2(a). Negative slopes were observed at all AC frequencies, suggesting that Cu₃Nb₂O₈ behaves as a p-type semiconductor. In the case of ptype semiconductors, E_{fb} is generally located near the VB, and it can be estimated from the intersection of a plot of $1/C^2$ against *E* by the following equation [19]:

$$\frac{1}{C^2} = \frac{2}{e\varepsilon\varepsilon_0 N} \left(E - E_{fb} - \frac{kT}{e} \right),$$

where *C* is capacitance, *e* is the electron charge, ε is the dielectric constant, ε_0 is permittivity of vacuum, *N* is an acceptor density, *E* is the electrode potential, E_{fb} is the flat band potential, *k* is the Boltzmann constant, and *T* is temperature. As shown in Fig. 2(a), the x-axis intersection was E = +1.05 V versus Ag/AgCl (pH=8.6) for all frequencies (0.5 kHz, 1 kHz and 2 kHz) and can be used to determine E_{fb} from the above equation $E = E_{fb} - kT/e$. This calculation showed that E_{fb} was approximately +1.11 V versus Ag/AgCl (pH= 7) by correcting the solution pH using the relation $E = E_0 - 0.059V(pH)$. This result indicated that the VB potential and CB potential of p-type Cu₃Nb₂O₈ are approximately +1.31 V and -1.21 V versus a normal hydrogen electrode (NHE) at pH= 7, respectively. Figure 2(b) shows the band potential diagram for p-type Cu₃Nb₂O₈, together with the thermodynamic potentials for CO₂ reduction to various reduction products versus NHE at pH= 7. As shown in this figure, the CB potential of the p-type Cu₃Nb₂O₈ was higher than the redox potential of CO₂, suggesting that photoelectrochemical reduction of CO₂ is possible by utilizing the p-type Cu₃Nb₂O₈ photocathode.

Figure 3(a) shows linear sweep voltammetry of the p-type Cu₃Nb₂O₈ photocathode in 0.5 M NaHCO₃ solution bubbled with CO₂ gas with irradiation of AM 1.5 G solar-simulated light. The p-type Cu₃Nb₂O₈ photocathode exhibited a cathodic photocurrent in response to irradiation of solar light, and the cathodic photocurrent density reached -0.18 mA/cm^2 at -0.30 V applied potential versus Ag/AgCl. As shown in the inset figure, the onset potential of the p-type Cu₃Nb₂O₈ photocathode was estimated to be approximately +0.25 V versus Ag/AgCl (pH=7.3). The onset potential is generally close to E_{fb} ; however, the p-type Cu₃Nb₂O₈ photocathode showed that the potential difference between onset potential and E_{fb} was ca. -1 V. This large discrepancy between onset potential and E_{fb} is thought to be caused mainly by slow kinetics for proton-coupled multi-electron reduction of CO₂ that results in electron accumulation on the

surface of the p-type $Cu_3Nb_2O_8$ photocathode, and then subsequent surface recombination occurs until sufficient applied potential is achieved for an appreciable charge transfer across the p-type Cu₃Nb₂O₈/NaHCO₃ electrolyte junction, similar to α -Fe₂O₃ and p-type GaP [20-23]. Thus, in the case of the Cu₃Nb₂O₈ photocathode, efficient electron-hole separation and charge transfer should only require applied potential from +0.25 V versus Ag/AgCl toward negative potential. Figure 3(b) shows the time dependence of a cathodic photocurrent of the p-type Cu₃Nb₂O₈ photocathode in 0.5 M NaHCO₃ solution bubbled with CO₂ gas at -0.20 V applied potential versus Ag/AgCl. When AM 1.5 G solar-simulated light was irradiated to the p-type Cu₃Nb₂O₈ photocathode, the cathodic photocurrent rapidly increased and then gradually decreased with time. After 20 minutes, the photocurrent was decreased to approximately 98% of that in the initial state. However, the XRD pattern of the p-type Cu₃Nb₂O₈ photocathode barely changed after the chronoamperometry measurement (Figure S3, Supporting information). This result implies that photocorrosion or reduction of the p-type Cu₃Nb₂O₈ photocathode itself might occur, as will be discussed later in detail. To clarify the irradiation wavelength dependence of a cathodic photocurrent in the p-type Cu₃Nb₂O₈ photocathode, the action spectrum was acquired by determining the IPCE at -0.3 V versus Ag/AgCl. Figure 4 shows the IPCE action spectrum of the p-type Cu₃Nb₂O₈ photocathode in 0.5 M NaHCO₃ solution bubbled with CO₂ gas, together with its absorption spectrum. The IPCE action spectrum was consistent with the absorption spectrum, and each IPCE was approximately 1.4%, 4.3%, and 6.7% with an irradiation wavelength at 505 nm, 415 nm, and 365 nm, respectively. These results indicate that the p-type $Cu_3Nb_2O_8$ photocathode responds to visible-light irradiation (also sunlight illumination), leading to electron-hole generation and charge transfer in the Cu₃Nb₂O₈ / NaHCO₃ electrolyte junction to drive CO₂ reduction.

Photoelectrochemical reduction of CO₂ to CO over the p-type Cu₃Nb₂O₈ photocathode was measured at different applied potentials ranging between 0 V and -0.4 V versus Ag/AgCl, and the results are shown in Fig. 5. It should be noted that AM 1.5 G solar-simulated light was irradiated for 20 minutes, based on the results of the chronoamperometry measurement (refer to Fig.3(b)). As seen in this figure, CO evolution increased with an increase in the applied potential, the tendency of which corresponded to the results of the photocurrent response of the p-type Cu₃Nb₂O₈ photocathode with applied potential (refer to Fig. 3(a)), suggesting that a cathodic photocurrent arose from the photoelectrochemical reduction of CO₂ to CO. The thermodynamic potential for photoelectrochemical reduction of CO₂ to CO in the presence of protons is generally explained by the following equation:

$$CO_2 + 2H^+ + 2e^- \rightarrow CO + H_2O$$
 (-0.53 V vs. NHE at pH = 7).

Here, the conduction potential of the p-type $Cu_3Nb_2O_8$ photocathode was estimated to be – 1.21 V versus NHE at pH=7, and photoelectrochemical reduction of CO₂ to CO over the p-type Cu₃Nb₂O₈ photocathode was therefore reasonable. However, the calculated faradic efficiency for CO evolution was approximately 9% at –0.20 V applied potential versus Ag/AgCl, indicating that most of the cathodic photocurrent of the p-type Cu₃Nb₂O₈ photocathode was consumed to produce other chemical products or for reduction of the electrode itself. Taking into consideration the fact that other chemical products, including formic acid, methane, formaldehyde, methanol and ethanol, were not observed from the results of gas chromatography and ion chromatography analysis, it is highly possible that a cathodic photocurrent leads to photocorrosion or reduction of the p-type Cu₃Nb₂O₈ photocathode itself. Previously, Thimsen *et al.* and Peng *et al.* revealed that photocorrosion of copper oxides (Cu₂O) was ascribed to variation of the valence state of copper from Cu (I) to Cu (0) and Cu (II) species [24,25]. To

investigate the valence state of copper in the p-type $Cu_3Nb_2O_8$ photocathode, XPS measurement was done before and after chronoamperometry measurement, and the results of the Cu 2p spectra are shown in Fig. 6. Before chronoamperometry measurement, major peaks at 933.8 eV and 953.8 eV were observed, and these peaks were attributed to typical values of Cu $2p_{3/2}$ and $2p_{1/2}$, respectively. Divalent copper Cu (II) compounds generally exhibit strong satellite peaks with higher binding energy sides compared with each of the copper $2p_{3/2}$ and $2p_{1/2}$ lines [26,27]. As clearly seen in this figure, strong satellite peaks were observed as an indication of the presence of Cu (II) species in the p-type $Cu_3Nb_2O_8$ photocathode before chronoamperometry measurement. On the other hand, the peak profile of the Cu 2p XPS spectrum was clearly changed after chronoamperometry measurement; strong sharp peaks located at 932.4 eV and 952.2 eV were newly observed. These peaks were identified to be monovalent copper Cu (I) and/or metal copper Cu (0) [28], indicating that Cu (II) species in the p-type $Cu_3Nb_2O_8$ photocathode was reduced to Cu (I) and/or Cu (0) species by chronoamperometry measurements, resulting in a decay of the cathodic photocurrent with time, as shown in Fig. 3(b). However, taking into consideration that the Nb 3d and O 1s XPS spectrum was not changed by chronoamperometry measurements (Figure S4, Supporting information), it is highly possible that Nb and O ions in the p-type Cu₃Nb₂O₈ were stable. It should be emphasized that the decay of the cathodic photocurrent recovered when the p-type $Cu_3Nb_2O_8$ photocathode was thermally annealed in air. Figure 7 shows the results of chronoamperometry of the p-type Cu₃Nb₂O₈ photocathode in 0.5 M NaHCO₃ solution bubbled with CO₂ gas at -0.20 V applied potential versus Ag/AgCl measured up to 3 cycles. The incident light source was AM 1.5 G solar-simulated light (intensity: 100 mW/cm²). In the first cycle, a cathodic photocurrent rapidly increased when incident light was irradiated, followed by a decrease with time due to the reduction of Cu (II) in the p-type

 $Cu_3Nb_2O_8$ photocathode, which is similar response behavior to that shown in Fig. 3(b). After this measurement, the p-type Cu₃Nb₂O₈ photocathode was annealed for 10 minutes by using a hot plate, on which the heating temperature was kept at 873 K. In the second cycle, a similar chronoamperometry response was observed. The same test was repeated three times in succession. The decay of the cathodic photocurrent with time followed by its recovery with thermal annealing, as clearly shown in this figure, indicated that the valence state of copper in the p-type Cu₃Nb₂O₈ photocathode recovered back from Cu (0) and Cu (I) to Cu (II) species (Figure S5, Supporting information). Thus, the p-type Cu₃Nb₂O₈ photocathode exhibited a cathodic photocurrent with irradiation of visible light and AM 1.5 G solar-simulated light with a part of the cathodic photocurrent arising from the photoelectrochemical reduction of CO_2 to COand the other part leading to reduction of the p-type Cu₃Nb₂O₈ photocathode itself. The reduction of the p-type Cu₃Nb₂O₈ photocathode was ascribed to the variation of valence state of copper from Cu (II) to Cu (0) and Cu (I) species, while it was recovered by thermal annealing in air. Although there is no clear evidence, we speculated that the reduction of the electrode of the ptype Cu₃Nb₂O₈ photocathode can be prevented by a protecting layer, electron collecting layer, and deposition of metallic particles, similar to a Cu₂O/ZnO:Al/Pt photocathode [29,30].

4. CONCLUSIONS

We successfully developed a new series of p-type $Cu_3Nb_2O_8$ photocathode that could be fabricated through spin coating by a metal organic decomposition method. The p-type $Cu_3Nb_2O_8$ photocathode exhibited a relatively strong cathodic photocurrent with irradiation of AM 1.5 G solar-simulated light, and the cathodic photocurrent density reached -0.18 mA/cm² at -0.30 V applied potential versus Ag/AgCl. Furthermore, we demonstrated photoelectrochemical reduction of CO₂ by utilizing the p-type Cu₃Nb₂O₈ photocathode in an aqueous CO₂-bubbled NaHCO₃ solution (pH=7.3). The only reduction product observed was carbon monoxide with a calculated faradic efficiency of 9% at -0.20 V applied potential versus Ag/AgCl, and other chemical products including formic acid, methane, formaldehyde, methanol and ethanol were not observed. The XPS analysis confirmed reduction of the p-type Cu₃Nb₂O₈ photocathode itself by the photoelectrochemical measurement, which was ascribed to variation of the valence state of copper from Cu(II) to Cu(0), Cu(I). Although we found that the reduction of the p-type Cu₃Nb₂O₈ photocathode could be recovered by thermal annealing in air, other aspects such as the protecting layer, electron collecting layer, and deposition of metallic particles are not clear yet. Further research is required to improve the CO₂ conversion efficiency of the p-type Cu₃Nb₂O₈ photocathode and understand the CO₂ reduction mechanism in depth.

ASSOCIATED CONTENT

Supplementary Material I-V characteristics of p-type Cu₃Nb₂O₈ photocathode, Cross-section SEM image, XRD pattern and XPS spectra of the p-type Cu₃Nb₂O₈ photocathode before and after photoelectrochemical measurement.

ACKNOWLEDGEMENTS

The authors thank to Prof. Tetsuya Haruyama, Prof. Yoichi Shimizu of Kyushu Institute of Technology, and Takeshi Fukuma of Kanazawa Univ. for their valuable contributions to this study. This work has been supported by a grant from Advanced Catalytic Transformation program for Carbon utilization (ACT-C), Japan Science and Technology Agency (JST).

REFERENCES

- [1] S. C. Roy, O. K. Varghese, M. Paulose, C. A. Grimes, ACS Nano, 4 (2010) 1259.
- [2] M. Tahir, N. S. Amin, Energ. Conv. Man., 76 (2013) 194.
- [3] S. N. Habisreutinger, L. Schmidt-Mende, J. K. Stolarczyk, *Angew. Chem., Int. Ed.* 52 (2013) 7372.
- [4] M. Halmann, Nature, 275 (1978) 115.
- [5] T. Inoue, A. Fujishima, S. Konishi, K. Honda, Nature, 277 (1979) 637.
- [6] S. Sato, T. Arai, T. Morikawa, K. Uemura, T. M. Suzuki, H. Tanaka, T. Kajino, J. Am. Chem. Soc., 133 (2011) 15240.
- [7] S. Kaneco, H. Katsumata, T. Suzuki, K. Ohta, Chem. Engn. J., 116 (2006) 227.
- [8] B. A. Blajeni, M. Halmann, J. Manassen, Sol. Energy Mater., 8 (1983) 425.
- [9] J. Schefold, J. Phys. Chem., 96 (1992) 8692.
- [10] E. E. Barton, D. M. Rampulla, A. B. Bocarsly, J. Am. Chem. Soc., 130 (2008) 6342.
- [11] M. Schreier, P. Gao, M. T. Mayer, J. Luo, T. Moehl, M. K. Nazeeruddin, S. D. Tilley, M. Grätzel, *Energy Environ. Sci.*, 8 (2015) 855.
- [12] K. Sekizawa, K. Maeda, K. Domen, K. Koike, O. Ishitani, J. Am. Chem. Soc., 135 (2013)4596.
- [13] T. Arai, S. Tajima, S. Sato, K. Uemura, T. Morikawa, T. Kajino, *Chem. Comm.* 47 (2011)12664.
- [14] N. K. Awad, E. A. Ashour, N. K. Allam, J. Renewable Sustainable Energy 6 (2014) 022702-1.
- [15] G. Ghadimkhani, N. R. de Tacconi, W. Chanmanee, C. Janaky, K. Rajeshwar, *Chem. Comm.* 49 (2013) 1297.

- [16] X. Huang, T. Cao, M. Liu, G. Zhao, J. Phys. Chem. C, 117 (2013) 26432.
- [17] J. Gu, A. Wuttig, J. W. Krizan, Y. Hu, Z. M. Detweiler, R. J. Cava, A. B. Bocarsly, J. Phys. Chem. C, 117 (2013) 12415.
- [18] Y. Matsumoto, M. Obata, J. Hombo, J. Phys. Chem., 98 (1994) 2950.
- [19] L. Kavan, M. Grätzel, S. E. Gilbert, C. Klemenz, H. J. Scheel, J. Am. Chem. Soc., 118 (1996) 6716.
- [20] G. Horowitz, Appl. Phys. Lett., 40 (1982) 409.
- [21] H. Flaisher, R. Tenne, M. Halmann, J. Electroanaly. Chem., 402 (1996) 97.
- [22] S. D. Tilly, M. Cornuz, K. Sivula, M. Grätzel, Angew. Chem., 122 (2010) 6549.
- [23] J. Gu, Y. Yan, J. W. Krizan, Q. D. Gibson, Z. M. Detweiler, R. J. Cava, A. B. Bocarsly, J. Am. Chem. Soc., 136 (2014) 830.
- [24] A. Paracchino, V. Laporte, K. Sivula, M. Grätzel, E. Thimsen, *Nat. Mater.*, 2011, 10, 456–461.
- [25] L. Huang, F. Peng, H. Yu, H. Wang, Sol. State Sci., 11 (2009) 129.
- [26] S. Poulston, P. M. Parlett, P. Stone, M. Bowker, Surf. Int. Anal., 24 (1996) 811.
- [27] Y. Nakabayashi, M. Nishikawa, Y. Nosaka, Electrochem. Acta, 125 (2014) 191.
- [28] S. W. Lee, Y. S. Lee, J. Heo, S. C. Siah, D. Chua, R. E. Brandt, S. B. Kim, J. P. Mailoa, T. Buonassisi, R. G. Gordon, *Adv. Energy Mater.*, 4 (2014) 1301916.
- [29] S. D. Tilly, M. Schreier, J. Azevedo, M. Stefik, M. Grätzel, *Adv. Funct. Mater.*, 24 (2014)303.
- [30] Y. Kou, S. Nakatani, G. Sunagawa, Y. Tachikawa, D. Masui, T. Shimada, S. Takagi, D. A.Tryk, Y. Nabetani, H. Tachibana, H. Inoue, *J. Catalysis*, 310 (2014) 57.

Figure 1. (a) XRD pattern of the p-type $Cu_3Nb_2O_8$ photocathode together with standard PDF data for $Cu_3Nb_2O_8$ (00-033-0476). (b) UV-Vis spectrum of p-type $Cu_3Nb_2O_8$ on the quartz glass.

Figure 2. (a) Mott–Schottky plots at 0.5 kHz, 1 kHz and 2 kHz measured under dark conditions. (b) Position of the conduction band and valence band of p-type $Cu_3Nb_2O_8$ photocathode together with the redox potential of various reduction products / CO_2 .

Figure 3. (a) Linear sweep voltammetry of p-type $Cu_3Nb_2O_8$ photocathode under "chopped" AM 1.5 G solar-simulated light irradiation. The inset shows a reproduction of a part of the same figure at a finer resolution. The electrolyte is CO₂-bubbled aqueous NaHCO₃ solution (pH = 7.3) (b) Chronoamperometry of p-type Cu₃Nb₂O₈ photocathode with applied potential at -0.2 V versus Ag/AgCl under AM 1.5 G solar-simulated light illumination.

Figure 4. IPCE plots of p-type $Cu_3Nb_2O_8$ photocathode with applied potential at -0.3 V versus Ag/AgCl in CO₂-bubbled NaHCO₃ solution, together with absorption spectrum of the p-type $Cu_3Nb_2O_8$.

Figure 5. Photoelectrochemical reduction of CO_2 to CO over p-type $Cu_3Nb_2O_8$ photocathode at different applied potential ranging between 0 V and -0.4 V versus Ag/AgCl.

Figure 6. XPS spectra of Cu 2p of the p-type Cu₃Nb₂O₈ photocathode obtained before and after chronoamperometry measurement at -0.2 V versus Ag/AgCl in CO₂-bubbled NaHCO₃ solution.

Figure 7 Chronoamperometry of p-type $Cu_3Nb_2O_8$ photocathode in 0.5 M NaHCO₃ bubbled with CO₂ gas at -0.20 V applied potential versus Ag/AgCl measured up to 3 cycles. The annealing was carried out by using a hot plate with temperature kept at 823 K in air.

Highlights

- 1. A new p-type $Cu_3Nb_2O_8$ as a thin film photocathode was fabricated.
- 2. P-type Cu₃Nb₂O₈ exhibited cathodic photocurrent under solar-simulated light.
- 3. Photoelectrochemical reduction of CO_2 product was CO by using p-type $Cu_3Nb_2O_8$.