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Abstract

Two-photon interference is highly important, fundamental, and indefeasible features of quan-
tum mechanics. It has numerous applications in production of quantum state, which is useful
in quantum communications, quantum information processing, and quantum metrology. In this
thesis, we experimentally observed a two-photon interference between a squeezed vacuum state
and a coherent state with continuous variables by homodyne detection for the first time. The
photon anti-bunching effect and bunching effect of the measured field were investigated by cal-
culating the second-order correlation function from the measured quadrature amplitudes, which
were obtained by two homodyne detection systems. This provides another method to observe
two-photon interference, and the method has the following merits:

First, we gave a new method to calculate the second-order correlation function. It provides a
link to close the gap between discrete variables and continuous variables in the field of quantum
optics.

Then, we experimentally observed two-photon interference (particle property) by measuring
amplitude quadratures (wave property) of the light field. In other words, we used a wave
method to investigate the particle property of light. It may give another evidence to show the
wave-particle duality of light.

At last, we experimentally observed the two-photon interference at two sideband frequencies
of laser light. As applications, it opens a new method to generate a single-photon frequency
comb and leads to potential applications in multi-channel quantum communications technology.

The detail of this thesis is included as follows:

1. We experimentally generated a squeezed vacuum state from a below threshold optical
parametric amplifier (OPA) with periodically poled KTiOPO4 (PPKTP) crystal. The OPA
could be controlled so as to de-amplify or amplify the injection beam by choosing the relative
phase between pump and injection beams. This ensures to produce the amplitude quadrature
or phase quadrature squeezed state with the squeezing level of -1 dB and anti-squeezing of 1.7
dB in the range of 5 MHz to the cavity linewidth of 35 MHz.

2. We reconstructed the Winger function of generated states by homodyne tomography. Using
homodyne detection, we measured a set of probability densities for the quadrature amplitudes
of the generated states. These histograms were inverted using inverse Radon transform to
reconstruct the Winger distribution which showed the fluctuation of the light fields in phase
space. It intuitively characterizes the generated vacuum states, coherent states, squeezed vacuum

states and displaced squeezed states in our experiment.



3. We experimentally observed a continuous-wave two-photon interference between a squeezed
vacuum state from an OPA and a weak coherent state on a beam splitter by measuring the
second-order correlation function with the homodyne detection system. A second-order corre-
lation function of ¢g(®(0) = 0.81 < 1, indicating the two-photon destructive interference, was
observed when an amplitude squeezed vacuum state acts as one of interference sources. On the
other hand, the two-photon constructive interference of ¢(*)(0) = 1.37 > 1 was also obtained

when the phase squeezed vacuum state is employed.
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Chapterl Introduction

Two-photon interference has played an important role in fundamental investigations of quan-
tum mechanics and has widely used in quantum communications, quantum information process-
ing, and quantum metrology [1-7]. Since 1980s, both two-photon interference and its applica-
tions have been extensively studied in theoretically and experimentally [8-14].

This chapter presents the the background and the motivations of our research. Firstly, we
will briefly introduce the background of this thesis. then, the originality and motivation of our
research will be introduced. At last, we will give the structure of this thesis.

1.1 Introduction

Quantum optics is a relatively young branch of physics. One of its goals is to interpret the non-
classical phenomena from semi-classical and quantum-mechanical physics point of view. This
may lead to a deeper understanding of nature of light. Up to now, lots of physical systems, such
as photons, atoms, ions and superconducting devices, have been employed in quantum optics
and quantum information processing. Quantum optics and quantum information processing
divide into two different regimes which depend on the degree of freedom of the observable. If
the observable is discrete in nature (e.g. the polarization and the orbital angular momentum
degree of freedom for a single photon), we refer to discrete variable regime. One the other hand,
if the observable has continuous values (e.g. the amplitude quadratures of a light field), we refer
to continuous variable regime. In other words, the discrete variables and continuous variables
pictures can be alternated depending on whether one is interested in probing the particle-like or
wave-like property of light. From the beginning of the last century, lots of great achievements,
such as generation of quantum states and quantum teleportations, have been made on quantum
optics or quantum information processing in both continuous variables and discrete variables
regime [15-20]. In these experiments, the two different observable was recorded either by photon
counting or homodyne detection. However, both dealing with quantum information processing
with continuous variables and discrete variables have the intrinsic limitations. For example,
with discrete variables, the transformation efficiency is low and the projection measurement
with the photons combined is random. One the other hand, with continuous variables, there are
demerits such as sensitivity to loss and difficult to information transmission. Recently, A hybrid
technique which combines continuous and discrete variables techniques attracts more and more
attention [21-25]. For example, Schrodinger kitten state [21] has been experimentally produced
by subtracting a single photon (discrete variables) from a quadrature squeezed vacuum state



(continuous variables) . In this protocol, the preparation of Schrodinger kitten state was realized
by combining a photon counter measurement with a homodyne measurement where the photon
counter was used to prepare a single photon state, whereas the homodyne detector employed as a
squeezing operation. This technique opens a new research direction, which will bring innovative
developments in the research fields of quantum optics and quantum information processing, for
linking the continuous variables and discrete variables in the field of quantum optics.

In this thesis, by measuring the the amplitude quadratures of light with homodyne detec-
tion, we will observe the two-photon interference, which indicates the particle property of light,
between a squeezed vacuum state and a coherent state on a beam splitter. To evaluate the
two-photon interference, a well known approach is to reconstruct the photon number proba-
bility distributions using homodyne tomography technique. However, in this research, we will
provide a novel method to demonstrate the quantum interference of light, in which photon
bunching and anti-bunching effects of the mixed field will be investigated by calculating the
second-order correlation function from the measured amplitude quadratures which can be ob-
tained by two homodyne detections systems. Since the squeezed vacuum state can be observed
over a range of analysis frequencies, the interfered coherent state should be prepared on one of
the frequencies which can be realized by performed an amplitude modulation or phase modula-
tion on laser light . In other words, the two-photon interference occurred at the two sidebands
frequencies of the laser frequency. Since the two-photon interference has been widely used to
generate single-photon states and entangled photon states for quantum information processing.
Hence, this makes it possible to produce quantum states at the sidebands frequencies. It is easy
to further extend to other sideband components using modern techniques, such as an optical
frequency comb generator. It maybe lead to potential applications in multi-channel quantum
communications technology in the future.

1.2 Motivation of this thesis

In this thesis, we will experimentally observe two-photon interference with continuous variables
by homodyne detection system for the first time. The nonclassical effect of photon anti-bunching
occurs when an amplitude squeezed vacuum state acts as one of the interference source, which
indicates the two-photon destructive interference. On the other hand, the photon bunching
effect appears, indicating the two-photon constructive interference, will be obtained when the
phase squeezed vacuum state is employed. The originality and motivation of my thesis are:

1. Different from other experiments, homodyne detection technique is used in our experiment.
It gives the quadrature amplitudes of the measured field, which relates to the wave property
of the light. On the other hand, the result (photon interference) relates to the particle
property of the light. We believe this gives another evidence for the wave-particle duality
of light [26-31].



2. Usually, the technique of single photon counting modules (SPCMs) is employed to interro-
gate the strong correlation photons [32,33]. In general, using the SPCM, experimentalists
do quantum optics experiments in the discrete variables regime. In our experiment, we
measure the second-order correlation function with homodyne detection which measure the
quadrature amplitudes of the measured field, and they are regarded as continuous vari-
ables.This provides opportunity to close the gap between discrete variables and continuous

variables in quantum optics field [34].

3. The two-photon interference in our experiment was observed at two sideband frequencies of
laser frequency. It is easy to further extend sideband components using optical frequency
comb technique. Adding the generation of the wideband squeezed state, it gives a new
method to produce a single-photon frequency comb. We believe it leads to potential
applications for future multi-channel quantum communications technology.

1.3 Structure of the thesis

The structure of this thesis is given as:

In chapter 2, we will introduce the background for quantum optics and the formalism which
is required to model the experiments in this thesis.

In chapter 3, we will introduce a scheme to generate an amplitude and phase quadrature
squeezed states which will be acted as interference sources in our experiment. We will also
introduce a method to reconstruct the Wigner function of quantum states with homodyne to-
mography.

In chapter 4, we will perform the two-photon interference by producing a displaced squeezed
state. By measuring the second-order correlation function with two set of homodyne detections,
we observed two different photon statistics of the generated state due to two different results of
the two-photon interference.

Finally, I will summarize the most important theoretical and experimental results of the
two-photon interference with continuous variables and make suggestions for improvements and

further studies that may yield interesting results.



Chapter2 Foundation of Quantum Optics

This chapter presents the basic theory of quantum optics which will be used in this thesis.
Firstly, we will briefly introduce the quantization of the electromagnetic field. Secondly, we will
introduce some states of light and their properties. Thirdly, balanced homodyne detection and
the main method for detecting states of light, will be introduced. Fourthly, We will introduce
the second-order correlation function ¢ (0) and ¢(®(0) in two-photon interference. At last, we
will introduce the two-photon number probabilities of displaced squeezed states.

2.1 The quantized field of light

2.1.1 Quantization of a single-mode field

A quantum mechanical picture of light begins with quantization of the electro-magnetic(EM)
field. Here we will briefly introduce this procedure. We start it with a single-mode radiation field
which is confined to a one-dimensional cavity along the z-direction with perfectly conducting
walls at z=0 and z=L [35-38]. The free electro-magnetic field obeys the Maxwell equations,

V-B=0, (2.1.1)
V-E=0, (2.1.2)
0B

E=— 2.1.

V x 5 (2.1.3)
OF

B = —_—. 2.1.4

V x HOEQD ot ( )

Assuming the electro-magnetic field to be polarized along the x-direction, the electric field of
a standing wave cavity with perfectly reflecting mirrors(the boundary conditions of the single-
mode field) can be written as,

9 2
Ey(2,t) = (S2)12¢(4) sin(kt), (2.1.5)

VEO
where w is the frequency of the mode and k is the wave number related to the frequency according
to k = w/c. The boundary condition at z=L can be w,, = ™, where m = 1,2,3,---, and w

in Eq.(2.1.5) is one of these frequencies. V' in Eq.(2.1.5) is the effective volume of the cavity
and a time-dependent factor having the dimension of length is given by q(t). As we shall see,
q(t) will act as a canonical position. From Eq(2.1.2) and Eq.(2.1.5),the magnetic field, which is



polarized along y-direction, can be described as,

H0OE0D 2w2 1/2 ./
B ) = —(— t kt 2.1.
y(z1) = B2 () Ral) cos(ke), (2.1.6)

Here ¢(t) plays the role of a canonical momentum for a harmonic oscillator, i.e. p(t) = q(t).
From Eq.(2.1.5) and Eq.(2.1.6), we can derive the Hamiltonian H

1
H= (" +w2), (2.L.7)

Similarly with the canonical variables p and q for classical system, we use the correspondence
rule to replace them by their operator equivalents p — p, ¢ — ¢ with [§,p] = ih. Thus the
electric field E,(z,t) and magnetic field become the operators E,(z,t) and B,(z,t), respectively.
And the Hamiltonian becomes

N 1, . R
=7+ %), (2.1.8)

Where the operators p and ¢ are Hermitian and correspond to observable quantities. Actually,
in quantum optics, we usually use another non-Hermittian creation operator a! and annihilation

operators a which are described as

N|—=

i = (2hw)~
f= (2hw)"

(wg +ip), (2.1.9)
(wi — ip). (2.1.10)

Q>
[N

The operators a' and @ satisfy the commutation relation

[a,a'] = aal —ala = 1. (2.1.11)

a+ =), (2.1.12)

To see how the system work, we first propose an energy eigenstate of the system |n), such as

Hin) = hw(a'a + %)|n> = E,|n), (2.1.13)

where F, is the energy eigenvalue. We apply the creation operator to both sides of the energy

eigenvalue equation
hw(atata + %amm — Enil|n). (2.1.14)
Using the commutation relation of Eq.(2.1.11), we get a new energy eigenvalue equation,
Halln) = (B, 4+ hw)a'|n), (2.1.15)

We can interpret it as the eigenvalue problem for a new state af|n) with a new energy eigenvalue
Eni1 = E, + hw. Tt is also why the a' is called the creation operator: it creats a quantum of



energy fw. Similarly, we can apply the annihilation operator to both sides of the Eq.(2.1.13)

and use the commutation relation,
Haln) = (E,, — hw)a|n). (2.1.16)

Obviously, it shows an opposite produce for the eigenstate a|n) with the energy eigenvalue
FE,_1 = FE, — hw, and clears annihilation operator & annihilates one quantum of erergy hw. For
the energy of the harmonic oscillator must always be positive, there must be a lowest energy
state |0) which is called vacuum state or ground state. we define

al0) = 0. (2.1.17)
We act Hamiltonian operator H on the state,
- 1 1
H|0) = hw(a'a + 2)|0) = Shw|0), (2.1.18)

so that the lowest energy eigenvalue is not zero, but so-called zero-point energy Ey = %hw As
mentioned above, the creation operator a! creates each time one quantum of energy fww, namely,
E,+1 = E, + hw, the energy eigenvalue of eigenstate |n) are

1
By =ho(n+3),n =012 (2.1.19)
Comparing Eq.(2.1.19) with Eq.(2.1.13), we can difine number operator 7 = afa and
nln) = nln). (2.1.20)

This kind of number states should be normalized according to (n|n) = 1. For the state a|n), we
have

aln) = cp|n — 1), (2.1.21)
where ¢, is a constant to be determined by inner product of a|n) with itself, namely,
((na")(aln)) = (nla'aln) = n
= (n—1|ccaln — 1) = |E2]. (2.1.22)
then we can obtain |c2| = n and ¢, = /n. Thus
aln) = v/nln — 1), (2.1.23)
atln) = vn+1jn +1). (2.1.24)

From Eq.(2.1.24), any number state |n) can be generated from the ground state |0) by repeated
action of creation operator af,

(ah"

In) = 0)-

vn

The number state described in Eq.(2.1.25) is also called ”Fock state” and is important for single

(2.1.25)

photon experiments. Furthermore, states with different number are orthogonal:

1 n=w

(n'|n) = dpp. = { 0 ntn. (2.1.26)

6



2.1.2 Quadrature Operators for a single-mode field
We can use the annihilation operator @ and creation operator a! to describe the electric field:
E, = so(ae™™! + ale™) sin (k2). (2.1.27)

But they are not Hermitian, and are therefore not observable. In order to be measured in the
lab, let us define the dimensionless pair of conjugate variables which play the role of position ¢
and momentum p. It is so-called quadrature operators,

X0 = ;—hq =at+a, (2.1.28)
a1
X% =g = i(al — a), (2.1.29)

in term of quadrature operators, the Eq.(2.1.27) is expressed as

o 1 N ~ o
E, = 550 [XO cos (wt) + X 2 sin (wt)] sin (kz). (2.1.30)

It is evident that X9 and X2 are associated with field amplitudes oscillating out of phase with
each other by 90°, and satisfy the commutation relation

(X0 X32] = 2i. (2.1.31)
Here we set the h = 2, and then the Heisenberg Uncertainty relation can be derived as
AZXOA2X2 > 1, (2.1.32)

in which A2X0? and A2X 2 are variances for the two quadrature operators. For a number state

|n), we can obtain
(n|X%n) = (n| (& +a) |n) = (n|af|n) + (n|a|n) = 0. (2.1.33)
Similarly, (n|X2|n) = 0. On the other hand,
(n|(X%)?[n) = (n] ((aT)* + (a)* + a'a + aal) |n)
= (n| ((@")? + (a)® +2aTa + 1) |n)
=2n+1, (2.1.34)
and
(n|(X2)?|n) = 2n + 1. (2.1.35)

Obviously, the uncertainties in both quadratures are the same, and the variances are calculated
as

AZXY = (0](X°)?|0) — (0]X°|0)* = 2n + 1
AZX3 = (0/(X2)2|0) — (0| X 2]0)2 = 2n + 1. (2.1.36)



And
A?XOA%ZX2 = (2n+1)% (2.1.37)

Here n > 0 and we can obtain A2X°A2X % > 1 which accords with the Heisenberg uncertainty
relation Eq.(2.1.32). For a special number state |0), we have

A2X0 — A2X2.=92n+1=1(n=0). (2.1.38)

vac

and call it the minimum uncertainty state.

2.2 States of light

In this section, I will introduce several states [35] of light which are important in quantum
optics and will be used in this thesis. It includes vacuum state, coherent state, squeezed state

and displaced squeezed state.

2.2.1 Vacuum state

The vacuum state is a state with the lowest energy. It satisfies
al0) = 0. (2.2.1)

the vacuum state has no coherent amplitude and contains no physical particles.

(01X 74cl0) = (0] Xe[0) = 0 (2.2.2)
(0]72]0) = (0]a'alo) =0 (2.2.3)

Fig. 2.1. Phase-space representation of a vacuum state.



Although there is no coherent amplitude, the vacuum state has quantum fluctuations. It is a
minimum uncertainty state with equal quantum noise in both quadratures. It can be shown in
Fig. 2.1.

A2X0  — AZRZ. =1, (2.2.4)

vac

These fluctuations are produced from the zero-point energy of ground state of the quantum
harmonic oscillator. We also called these fluctuations vacuum noise or shot noise or quantum
noise limit. These fluctuations occur in every possible optical mode and play important roles in

quantum optics. For example, they have important ramifications when considering optical loss.

2.2.2 Coherent state

Coherent state is the closest possible quantum analogy of the corresponding classical state.
The coherent state can be produced by applying the unitary displacement operator on a vacuum

state:
la) = D()|0). (2.2.5)
where D(a) is defined as
D(a) = exp(ad’ — a*d). (2.2.6)
It has the following properties
DY(a) = D7Y(a) = D(« (2.2.7)
Df(a)aD(e) = a+a (2.2.8)
Di(a)a’D(a) = a' + o (2.2.9)

Coherent state can also be described as the eigenstate of the annihilation operator a
ala) = ala). (2.2.10)

Since the annihilation operation is not Hermitian, the eigenvalues of @ are complex values. Hence,
the coherent state has a well-defined amplitude and phase. The set of coherent state |«) are
parameterised by their complex coherent amplitude o = |a|e?? in which the real and imaginary
components show up in the amplitude quadrature and phase quadrature, respectively. This
effect is shown in Fig. 2.2 using the phase diagram.

We can also expand coherent state («| in terms of the Fock states as form of

o) = cnn). (2.2.11)

n

Acting an annihilation operator a on both sides of the equation, using Eq.(2.2.10), we can obtain

ale) =ad culn) =D cav/nln—1). (2.2.12)



Fig. 2.2.

Phase-space representation of a coherent state.

the |a| and 6 are the amplitude and phase of the coherent state, respectively.

Equating coefficients of |n) on both sides, we can obtain the recursion relation

whose solution is

and the ¢y can be determined by

(o)) =

and ¢y can be calculated as

Thus the coherent state |«) can be expanded as

cnV/n = acp_1, (2.2.13)
an
Cp ﬁco, (2214)
|col® ZZ (n|n)
= Jeof? Z |a’ lco| el =1, (2.2.15)
co = ezl (2.2.16)
= ¢ lol/2 Z —yn (2.2.17)

Next we will introduce some properties of coherent state. Firstly, we calculate the mean of

photon number operator 7 = afa for a coherent state |a) with o = |ae??,

(n) =

{aln]a)

= (ala’a|a) = |of? (2.2.18)

10



To calculate the variance of the photon number operator A%n, we also calculate

(7% = (alataa’ala)
= (a|(aTaTaa — ata)|o)

= |a|* + |a)?, (2.2.19)
here we used Eq.(2.1.11). Thus we can obtain A%7 of a coherent state as
AR = (A%) — (R)? = |al?. (2.2.20)
Then we calculate the mean and variance of quadrature amplitude.

(X% = (a|X%a) = (a|(al + d)|a) = a+ o (
(X3) = (a|XF|a) = (ali(a +a)|a) = i(a +a") (2.2.22
A’X0 = ((X9)%) — (X% =1 (
A’XE = ((X2)%) - (X2)2 =1 (

At last we look at the probability of the detecting n photon. Using the Eq.(2.2.16), we obtain

‘a‘Qn

12
Py = [{nla)? = o0

(2.2.25)

Obviously, the probability of finding n photons for a coherent state is given by the Poisson
distribution Eq.(2.2.24). In Fig.2.3 we give some the photon number probability distributions in
a coherent state with different amplitudes. From Fig. 2.3, we can see that when the amplitude
|a| is large, such as |a| = 2, the photons have apparent probability distributions. When |«
decreases, such as |a| = 0.5, the probability of |1) and |2) become P(1) = 0.14 and P(2) = 0.011,
respectively. While the probability of |3) becomes P(3) = 0.0006 which can be ignored compared
to P(2). It can be used as one of interference sources to perform the two-photon interference in
this thesis.

2.2.3 Squeezed vacuum state

Different from coherent states, the squeezed vacuum states are another member of the family
of the minimum uncertainly states which take on unequal variances for the amplitude and phase
quadratures. The variances of one quadrature of squeezed states are squeezed by cost of the
increasing of the variances at the other quadrature.

Squeezed vacuum state is generated by applying the unitary squeezing operator on a vacuum
state.

1€) = 5(¢)]0). (2.2.26)

where S(¢) is defined as

S(¢) = exp(%C*ff - %C(&W). (2.2.27)
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where ( = rexp(ip) and r € R. The squeezing operator S (¢) satisfies
51(¢) =571(¢) = 5(~¢),
57(¢)aS(¢) = acoshr — a exp (i) sinh 7,
ST(O)at5(¢) = af coshr — aexp (—ip) sinh .

A squeezed vacuum state of light is shown in Fig. 2.4.
For a squeezed vacuum state, the mean of photon number operator is

() = (C[AIC) = sinh?r.
And the variance of the quadrature is found to be
AZX0 = e sin? (¢/2) + 72 cos? (¢ /2)
A2X2 = e cos? (¢/2) + (2 sin? (/2)
For ¢ = 0, these reduce to
A2X0 — 2,
A2X7 =%,

12

photon number probability distribution of coherent state with different amplitudes.

(2.2.28)
(2.2.29)
(2.2.30)

(2.2.31)

(2.2.32)
(2.2.33)

(2.2.34)
(2.2.35)



The corresponding uncertainty relation is
A?XOAZXE =1, (2.2.36)

It implies the minimum uncertainty state which may reduce in one quadrature at the expense
of increasing quadrature in the other.

NI

Fig. 2.4. Phase-space representation of a squeezed state.

Next, we will discuss the photon number probability of squeezed vacuum state. We start from
the vacuum state.

@)0) = 0. (2.2.37)
Since the squeezing operator S(¢) is unitary, we can re-write Eq.(2.2.25) as
S(¢)ast(¢)[¢) = o. (2.2.38)
Using Eq.(2.2.28), the Eq.(2.2.37) can be re-expressed as
(ap+atv)[C) =0 (2.2.39)

where p = coshr and v = €'Y sinhr. We also can expand the squeezed vacuum state as

)= Cnln) (2.2.40)
n=0
Insert Eq.(2.2.38) into Eq.(2.2.39), the coefficients of left side of Eq.(2.2.39) satisfy the relation,
1
v/ n \2
ntl = —— n—1- 2.2.41
Cn1 I (n + 1> Cn ( )

Obviously, the relation connects every even-photon state or every odd-photon state. So there
are two solutions to this relation. Since only the even solution contains the vacuum, we only

consider the amplitude probability of even-photon state.

2m — !

szz(—l)m(ew)m[( )l 2Cy, (2.2.42)

13



where the coefficients satisfy
[e.e] [e.e]
S0P =Y ComC5,, = 1. (2.2.43)
m=0 m=0

Insert the Eq.(2.2.40) into Eq.(2.2.41), we can obtain

o0

tanh? rm(2m — 1)!!
ColPL+ ) )i =1 (2.2.44)
m=0
Using a mathematical identity
2 — 1
1+ Z @m =D g3, (2.2.45)

Compare Eq.(2.2.42) and Eq.(2.2.43), we can re-write the Eq.(2.2.43) as

ICol2[1 — tanh? 7] "2 =1, (2.2.46)
we can easily obtain
Cy = Vcoshr, (2.2.47)
And then we use the identities
(2m)!l = 2™m], (2.2.48)
(2m — 1)l = (2m)!/2™m]. (2.2.49)

Thus we can calculate the coefficients for the even-photon state as

(2m)! (ei‘p tanh )™

2mm] vcoshr

and the squeezed vacuum state is re-written as

Com = (—1)™

(2.2.50)

0= Z V)t ). 251

Veoshr =
The probability of even-photon state is
2m)! tanhr 2m
P(2m) = |Com|? = — 2.2.52
(@m) = 1Cml" = sy Gz 2 ) (2.2:52)
while the probability of odd-photon state is
P(2m+1)=0. (2.2.53)

From Eq.(2.2.51) and Eq.(2.2.52), we can find the photon number probability of a squeezed
vacuum state is oscillatory. For all odd-photon state, the probability becomes zero. Choosing

14
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Fig. 2.5. photon number probability distribution of squeezed vacuum state.

different squeezing parameter r, the corresponding photon number probability distribution are
shown in Fig.2.5.

From Fig. 2.5, we can also find that when the squeezing parameter is large, such as r = 1, the
probability of |2),|4),|6) and |8) in the the squeezed state all have larger values, while as the
squeezing parameter decreases, the probability of the |4),|6) and |8) decrease. Such as when
r = 0.3, the probability of the |2) becomes P(2) = 0.04, while P(4) = 0.0025 and P(6) = 0.0002
which can be ignored compared to P(2), and such a squeezed vacuum state can be regarded as
a two-photon state.

2.2.4 Displaced squeezed state

The squeezed vacuum state can be displaced in similar to the way that the vacuum state
displaced to form the coherent state.The effect is shown in Fig.2.6 using phasor diagram. Acting

the displacement operator and squeezing operator on a vacuum state,

., ¢) = D()$(¢)|0). (2.2.54)

The S(¢) and D(«) satisfy,
D (@) S8T(0)aS(¢)D(a) = acoshr — al exp (ig) sinhr + o, (2.2.55)
D (a)ST(0)afS(¢)D(a) = af coshr — dexp (—ip) sinhr + o*. (2.2.56)

The displaced squeezed states are another member of the family of the minimum uncertainly
states which take on unequal variances for the amplitude and phase quadratures. Then we
also discuss the photon number probability distribution of displaced squeezed state. Similar to

15
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Fig. 2.6. Phase-space representation of a displaced squeezed state.

coherent state and squeezed vacuum state, the displaced squeezed state can also be expanded
to

|2, ¢) = Cu|n)
n=0

1 a1 9 9 —; >, (% tanhr)™/?
= ———exp{—— — ~ tanhr{(a®)%e"¥ + a”e |} x 2 L H.(2)]n),

where H,,(z) is the Hermite polynomial, and z can be described as

a + o*e’ tanhr
V2e% tanh r ( )

The probability of n-photon state is given as

1 n 1 ) .
P(n) = T p—— (tanh T) exp {—|al* — 3 tanh 7[(a*)%e™ + a’e |} | H,(2)|*. (2.2.59)
n. T
1 n 1 . .
- - h A2 h 2 ,—i(20—¢) 2,i(20—¢) H 2
e (tanhr) " x exp {—jal? = J tanhr{(Ja e %)+ [a e O 1, (),
(2.2.60)

where a@ = ]a]eie, and 20 — ¢ = 0 and 20 — ¢ = 7 correspond to displaced amplitude squeezed
state and displaced phase squeezed state, respectively. The Fig.2.6 shows the photon probability
distribution of two different displaced squeezed states for squeezing parameter || = 0.09 and
displacement || = 0.3 and coherent state with |a| = 0.3. From Fig.2.6, for the probability of |1)
(P(1)), we can find that Pags(1) is lager than that of the coherent state Poor (1), while Ppgs(1)
is smaller Poopg(1). One the other hand, for the probability of |2), we obtain opposite results.
Hence, the displaced squeezed states can be regarded as the result states of the two-photon
interference between a squeezed vacuum state and a coherent state. The displaced amplitude
squeezed state comes from destructive two-photon interference in which the two-photon state |2)
are suppressed and the single-photon state |1) are increased. The displaced phase squeezed state
comes from constructive two-photon interference in which the two-photon state |2) are increased
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Fig. 2.7.  photon number probability of displaced squeezed state and coherent state.
COH: coherent state, ASS: displaced amplitude squeezed state, PSS: displaced phase squeezed state.

and the single-photon state |1) are suppressed. The other properties of displaced squeezed state
are listed in Table 2.1.

Since the displaced squeezed states can be regarded as the results of the two-photon inter-
ference between squeezed vacuum state and coherent state, especially the probability of the
two-photon state, we will discuss it in section 2.6 in detail.
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2.3 Detection of squeezed state of light

Since a single photodetector is only able to measure fluctuations in the intensity or in the
number of photons, it is not a suitable detector to characterize a squeezed state. For a more
accurate description of a squeezed state, the least the squeezing and anti-squeezing level should
be measured to be able to derive the purity of the state, or quantum state tomography can
be down, which requires the measurement of a great number of consecutive quadratures. An

appropriate measurement technique is homodyne detection.

2.3.1 Balanced homodyne detection

The observation of quantum noise of generated state is performed by a balanced homodyne
detector which is the most adequate detection scheme since both the amplitude and phase
quadrature of the generated state can be measured [39-42]. The detection principle is shown
in Fig. 2.7, a weak signal beam @ combines with a strong local oscillator (LO) beam aro on a
50:50 beam splitter. The signal and the local oscillator have a relative phase 6 which is normally
adjusted by controlling the path length of the local oscillator beam. The power of local oscillator
is much stronger than the signal power. Each output light ¢ and d is detected with a photodiode
and finally the difference of two photocurrents is taken.

LO
> <
<Z»

Fig. 2.8.  Schematic of a homodyne detection scheme.

The output states of beam splitter can be expressed in terms of their input states via
a(t) +earo(t)
V2 ’
a(t) — e?aro(t)

\/§ )

The output beams are detected by two detectors and transformed into photocurrents. The

(2.3.1)

(2.3.2)
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difference between the output photocurrents from two detectors can be written as

Z_(t) = %c — %d
= nlel(t)e(t) — d' (t)d(t)]
= %n[ewdT(t)&LO(t) +e 7?8l (a(t), (2.3.3)

where 7 is the detection efficiency. Since the LO beam is far stronger than the signal beam, so
that we can treat the local oscillator wave classically, the operator dzo(t) and aro(t) is replaced
by |aro(t)|, and the current difference is re-written as we can obtain the noise variance by

measuring the photocurrent from the subtractor,

() = %n\aLo(t)\[ew&T(t) + e (). (2.3.4)

Inserting a = XO*‘% and af = % into Eq. (2.3.4), we obtain

A 1 5 Ao
i—(t) = §n|aLo(t)|[X0(t) cosf + X 2 sin ). (2.3.5)

Equation (2.3.5)simply tells us that the measurement of the difference current 7_(t) is equivalent
to the measurement of the # quadrature amplitude. If we change relative phase 6, we can measure
any quadrature amplitude.

What a spectrum analyzer can measure is the noise equivalent power of the photocurrent
i_(t), such as the variance A%;_(Q).

N 1 N A
A% (t) = 1n2|aLo(t)|2[A2X0(t) cos’ 6 + A%X 2 sin” 6)]. (2.3.6)

Obviously, the variances of the amplitude and phase quadratures of the signal beam can be
measured. Especially, when 6 = 0, the variances of amplitude quadrature of the signal beam is
measured, while § = /2, the variances of phase quadrature is detected.

2.3.2 Sideband modulation field in quantum optics

An amplitude modulation (AM) or phase modulation (PM) signal can be produced on the light
beam by applying a coherent excitation to its upper and lower sidebands [43]. In experiments, we
can produce the coherent state at the upper and lower sidebands (wp=+£2) of the central frequency
wo by modulating the laser light. In this section, we will introduce amplitude modulation and
phase modulation at frequency € relative to the central frequency wq, respectively.

A beam of light is amplitude modulated by a modulation index M at modulation frequency

2 can be written as
aam(t) = ap(1l + M cos () exp (iwot)
M
=ap[l + ?(exp (192t) + exp (—iQ2t)] exp (iwpt)

= ap{exp (iwot) + % exp [i(wo + Q)t] + % exp [i(wo — Q)t]}. (2.3.7)
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Fig. 2.9. Amplitude and phase modulation with the sideband frequency €.

here ag is complex. We can see that the effect of the amplitude modulation is to create two
modulation sidebands at wy — Q and wy + €.

Similarly, a light beam with phase modulation can be described as

apm (t) = agexp [iM cos (Qt)] exp (iwot)
M2
= ap[l +iM cos (Qt) — - cos? (Qt) + - -] exp (iwot)
2

M M
=ao{l + ZT[exp (12t) + exp (—i2t)] ?[exp (12Qxt) 4 exp (—i2Qt) + 2] + - - - } exp (iwpt)

~—

= ao[(l — ]\ZQ + - -)exp (int) + ’L(
MZ
- (? + -+ )(exp [i(wo + 2Q2)t] + exp [i(wo — 2Q)t]) + - - -], (2.3.8)

w‘i

+ -+ )(exp [i(wo + Q)t] + exp [i(wy — N)t])

we assume the modulation depth is small with M < 1, the phase modulated light is approxi-
mately

M M
apm (t) = ag exp (iwopt) + i?ao exp [i(wo + Q)] + i7ao exp [i(wy — Q)t]. (2.3.9)

The sidebands will only provide on measurements of the phase quadrature. It is the phase of
the sidebands with respect to the carrier that distinguishes amplitude modulation from phase
modulation. Fig. 2.9 shows the amplitude modulation and phase modulation, respectively.
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Quantum noise can be understood as sidebands due to the vacuum fluctuations of signals
beating local oscillator with a carrier frequency. Thus the sidebands are a consequence of the
zero-point energy of harmonic oscillator, and the quantum noise can be regarded as a continuum
of sidebands spanning all frequencies. All sidebands are uncorrelated with each other, and the

quantum noise is distributed equally between the amplitude quadrature and phase quadrature.

2.4 Second-order correlation function and two-photon interfer-

ence

In quantum optics, correlation functions are used to characterize the coherence propertied of
a light field [32,33,36]. For example, a first-order correlation function g(!)(t) is used to quantify
the coherence of a light field. A second-order correlation function is used to quantify the non-
classical nature of a light field. It is also used to distinguish a quantum interference from a
classical optical interference.

In this section, we will briefly introduce second-order correlation function and the relationship
between it and two-photon interference. We will begin with a review of the notions of classical
first-order correlation function and first-order coherence from a simple case, Young’s double-slit

interference experiment.

2.4.1 First-order correlation function

Classical optical interference experiments correspond to a measurement of the first-order cor-
relation function. In this section, we will introduce the first-order correlation from Young’s
double-slit interference.

As shown in Fig. 2.10, we use E(t1) and E(t2) to describe two electric fields (S4, Sp) which
pass through the two slits, respectively. Thus the electric field at position P can be written as
a linear superposition of fields.

E(t) = E(r1,t1) + E(r2, t2), (2.4.1)
The intensity of light is given by
I(r) = (|E(r,t)[*) = (E*(r,t)E(r, 1)), (2.4.2)
Inserting Eq. (2.4.1) into Eq. (2.4.2) , we can obtain
Ip(ri,m2) = (|E(r1,t1) %) + (| E(ra, t2)|?) + 2Re[(E*(r1,t1) E(r2, t2))]. (2.4.3)

Obviously, we can find the first term and the second term are the intensities related with the
field from two slits, while the third term is a cross term which relates to the coherence of the
light field.
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Fig. 2.10.  Sketch of the Young’s double-slit interference experiment.

We define the first-order correlation function of field from S as
(B (r1)E(r2))
VIEr) D E(r2)])

Thus we can write the intensity measured at P in terms of component intensities plus a coherence

g (r1,ra) = (2.4.4)

term:
Ip(t) = I(r1) + I(r2) + 23/I(r1)I(r2) Relg (1, 72)). (2.4.5)
Thus when [¢™)(r1,79)| = 1, the two light fields are complete coherence which indicates com-

plete interference occurs. When 0 < |g((rq,79)| < 1 indicates partial coherence and partial
interference. While |g(!)(ry,72)| = 0 exhibits complete incoherence and there is no interference

occurs.

2.4.2 Second-order correlation function

In 1956, Hanbury-Brown-Twiss (HBT) extended an optical intensity interferometer to second-
order coherence of light [32,36]. Later the coherence was further generalized to nth-order by
Glauber in a comprehensive quantum theory of optical coherence [33].The HBT experiment
gave a new method on optical interference. In this section, we will introduce the second-order
correlation function from the HBT experiment.

The scheme setup of HBT interferometer is shown in Fig. 2.11. A input mode a is split by a
50:50 beam splitter, each output is detected by a photo-detector. The setup measures a delayed
intensity correlation between the two detectors register intensity at time t; and to = t; + 7,
respectively. The intensity correlation is proportional to the time average, namely,

I(t,t+7) oc I(WI(E+ 7)), (2.4.6)

in which I(¢) and I(¢t 4 7) are the intensities at the two detectors. Consider a stationary wave
field, if the average of the intensity at each detector is I(t), the second-order correlation function
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with time delay 7 is defined as

SOy DL+ 7))
NI+ 7))

For a stationary wave, the average of the intensity is independent with time delay 7, namely,
(I(t)) = (I(t+ 7)) . Thus, the Eq. (2.4.7) can be re-written as

G =4 (fgjg); 7)) (248)

The second-order correlation function is limited by classical bounds 1 < g(® () < oo.

(2.4.7)

50:50 BS

6%

lime correlation
dela

Fig. 2.11.  Scheme of setup for Hanbury-Brown-Twiss experiment.

Equation (2.4.8) is a classical second-order correlation function. When the second-order cor-
relation function is expressed in the quantum theory of light, the intensities become normally-
ordered products of the creation (a'(¢)) and annihilation (a(t)) operators of the input field. Here
we consider a single-mode light field, the second-order correlation function can be described as

@) () — (at(t +r)at(t)a(t + 1)a(t))
7 @ wa(n)?

After applying the Schwarz inequality | (u,v) |? < (u,u) (v,v), we can find that the second-order

(2.4.9)

correlation function is bounded by one.

(1) ¢®(0) > 1, classical field, non-classical field, bunching effect, (2.4.10)
2) ¢@0) =g¢P () =1, coherent state, (2.4.11)
(3) ¢@(0) <1, non-classical field, anti-bunching effect. (2.4.12)

In experiments, we usually measure the g(2)(7') with zero-time delay.

_ W Ll (2.4.13)



From Eq. (2.4.13), we also can identify the Schwarz inequality by Poissonian statistics (super-
Poissonian statistics or sub-Poissonian statistics). Table 2.2 gives the relationship between the
g(2)(0) and photon statistics properties of a single-mode light field.

Table 2.2.  Relationship between ¢(?(0) and statistics properties of light field.

g(2)(0) photon distribution statistics property light field

g (0) =1 | Poissonian statistics random coherent state

9@ (0) <1 | sub-Poissonian statistics anti-bunching non-classical field

9(2)(0) > 1 | super-Poissonian statistics | bunching classical or non-classical
field

2.5 Two-photon interference between squeezed vacuum state

and coherent state

2.5.1 Two-photon rate in two-photon interference

In this section, we will consider two-photon interference between an squeezed vacuum state

and a weak coherent state on a beam splitter.

Squeezed vacuum state

50:50 BS

Coherent state

Fig. 2.12. Two-photon interference between a squeezed state and a coherent state

To understand how two-photon interference occurs, let us consider a principle scheme shown
in Fig. 2.12. A coherent state and a squeezed state from the OPO are combined on a beam
splitter to produce the measured field on one of its outputs. For simplicity, we only treat it
with a simple single mode model and both parametric gain of the OPO and the amplitude of
coherent state are not significant. It means that the average photon number of both squeezed
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state and coherent sate are far less than one. Hence, the input states have the form of [44]

[Win) = 1C) ®|a)
o2 ¢ (2.5.1)
~10,0) +«|0,1) + —10,2) — —=2,0),
10,0) + a0, 1) 7 0,2) 73 12,0)
in which |¢) is a squeezed state with a complex—valued squeezing parameter (,
€)= 10) = —=12), (25.2)
\f
and |«) is a coherent state with a complex amplitude «,
o2
|o) = 0) + a|1) + —=2), (2.5.3)

V2
where we neglect the contribution from more than two photons. Since the two-photon interfer-
ence is independent with reflectivity of beam splitter, to simplify the system, we combine them
on a 50:50 beam splitter and obtain the output of the beam splitter,

@ (a? —i—C)
1,0+ 0,1 + 1 F
2

a”—(
+ 50 (1200 +10,2)). (2.5.4)

We are only interested in the state from one output of the beam splitter, it can be written as

[Wour) = 10,0) 1,1)

) =10) + YLy 4
2
~ (o) + 1) + =S, (2.5.5)

V2l 2v2
In Eq. (2.5.5), |a?| ~ |¢| << || is used since |a| << 1. And the detectable two-photon rate at

one arm is given by

o —¢ ’2
22
||ef? exp2i0 — |r|expip|?
B 8
_ lof* = 2[of?|r| cos (20 — o) — |r[?
3 ;

where ¢ = |r|e? and a = |aje?. With the selection of the relative phase between the squeezed

Ry =

(2.5.6)

vacuum state and the coherent state, Ry can be bigger than two-photon rate of the coherent
state derived from Eq. (2.5.3) giving rise to photon bunching effect or smaller for the photon
anti-bunching effect. Especially when a? = ¢, the coefficient of |2) is zero, and there will be no
two-photon state in the output, which indicates complete destructive two-photon interference.
Fig 2.13 and Fig 2.14 show the two-photon rate with the function of the amplitude of the coherent
state and squeezing parameter of the squeezed vacuum state in constructive and destructive

interference , respectively.
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Fig. 2.13. Two-photon rate in destructive interference (26 — ¢ = 0).

Fig. 2.14. Two-photon rate in constructive interference (20 — ¢ = 7).
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2.5.2  ¢g®?(0) in the two-photon interference

Up to now, most of experiments on two-photon interference were extensively demonstrated
by directly measuring the two-photon rate with two single photon counting modules (SPCMs).
Actually, we also can demonstrate the two-photon interference by calculating the second-order
correlation function of the interfered field. We assume that o and ¢ are of the same order, the
second-order correlation function of the interfered field in Eq. (2.5.5) is given as

9(2) (0) _ <\Ijout1|&T&Tdd‘\I’0utl>
<\I’out1|&Td|\D0ut1>2
_la?—¢P
et
1 2|a|?|r| cos (20 — @) — |7’\27 (257)
o
Fig. 2.15 is a plot of g®)(0) for the two different phase difference (260 — ¢ = 0 and 20 — ¢ = 7)

with various of amplitude of coherent state a. The squeezing parameter is fixed with |r| = 0.09.
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Fig. 2.15.

The relationship of g(?(0) with a for different phase difference.

From Fig. 2.15, we can see that the 9(2)(0) shows a appreciable deviation from one, which
corresponds to a coherent state, when the amplitude of coherent state « is less than a specific
value, while approach one when « is lager than this value. For 20— = 0, g(2) (0) decreases below

one when |a|? > |r|/2 which indicates anti-bunching effect, and find a minimum value ¢(® (0) = 0

28



at a2 = |r| = 0.09 on increasing the o.. As the a increases further, g(®(0) grows larger and
approaches one. One the other hand, the g(2) (0) for 20 — ¢ = m decreases monotonously to one
as « increases and indicates bunching effect.

2.6 The two-photon probability of displaced squeezed states

Actually, the two-photon interference between a squeezed vacuum state and coherent state
can be regarded as generation of displaced squeezed state. In this section, we will discuss the
two-photon probability for displaced squeezed states, which will appear in our experiment.

In two-photon interference between squeezed vacuum state and coherent state, we usually
compare the two-photon rate of the generated displaced squeezed state Pys(2) with the inter-
ference coherent state P.,,(2). With the selection of the relative phase between the squeezed
vacuum state and the coherent state, the two-photon rate of the displaced squeezed state can be
bigger than that of the interfered coherent state Py;s(2) > P.op(2). It exhibits photon bunching
effect due to constructive two-photon interference. Similarly, with section of another relative
phase, we can obtain Pys(2) < P.p(2) which indicates destructive two-photon interference.
Especially when |a|? = |r|, Pys(2) = 0, we obtain complete destructive two-photon interference.

We first give the two-photon probability of coherent state and two kind of displaced squeezed
states from Eq.(2.2.24) and Eq.(2.2.59).

1
Poo(2) = §|a|4e—\a|2 (2.6.1)
P (2) = L (1 tanhr)Qexp{—]a\Q(l + tanhr) } H3(2) (2.6.2)
2coshr \2 ’
P(2) = m<§tanhr) exp {—|a|2(1 — tanh )} Hy(2) Hy(2"). (2.6.3)

Then, we plot the relationship between the two-photon probability P(2) with |a| for displaced
squeezed states with || = 0.09, as shown in Fig. 2.16.
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Fig. 2.16.  The relationship of P(2) with « for different states.

For the amplitude squeezed state, when a= 0, the statistics properties are decided by the
two-photon term in squeezed vacuum state, the P,,,(2) is bigger than that of the coherent state.
With the increasing in «, the P, (2) decreases to smaller than those of the coherent state
when |a|? > |r|/2 and find minimum value 0. as the a increasing further, P, (2) increases
and approach to the coherent state. For the phase squeezed state, with the increasing in «, the
statistics properties is gradually decided by the coherent state, and the P,,(2) monotonously

decreases to value of the coherent state and larger than P,,(2) at all the time.
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Chapter3 Generation of squeezed
vacuum state

Reduction or even completely suppressing the quantum noise of the light field has been a re-
search focus in quantum optics. The squeezed state, which quantum noise in one quadrature is
less than the quantum-noise-limit (QNL) in coherent state, has become a key resource in quan-
tum optics [45-47|, with applications in quantum communications [48], quantum informations
processing [49], ultra high-precision measurement [50] and ultra-weak signal measurement. In
this chapter, we will introduce a scheme for generation of squeezed states. In the first section,
we will briefly introduce the history of squeezing results from various cavity systems. In the sec-
ond section, we will introduce optical parametric process which was used in producing squeezed
state. In the third section , we will describe a experimental setup to generate the squeezed
vacuum state which is used to interfere with a coherent state in the next chapter. In the forth
section, we will present the measurement results of various quantum states, including vacuum
states, coherent states, squeezed vacuum states and displaced squeezed state. At last, we will
introduce the method to reconstruct the Wigner function of generated states.

3.1 Introduction

Theoretical considerations about the possible existence of light with squeezed quantum noise
can be traced back to 1920s [51-53]. However, the first experimental generation of squeezing was
produced by an American research group led by R. E. Slusher in 1985 [54] . In their experiment,
they used a four-wave mixing in a Na atomic beam and observed a squeezed state with 0.7 dB.
Another alternative technique for squeezed light generation is the phase-sensitive amplification
in an optical-parametric oscillator (OPO). The first experimental realisation of squeezing in an
OPO was performed in 1986 [55] resulting in almost 3 dB of noise reduction. In 1987, parametric
down conversion was used to generate pulsed squeezed light [56]. It resulted in squeezed pulses
of 100 ps length 0.6 dB below shot-noise level. In 1992, the record level of quadrature noise
suppression in an OPO was pushed to 6 dB below the standard quantum limit [57]. This result
was improved in 1998 to 6.5 dB [58]. In recent years, this technique has benefited from advances
in nonlinear materials, low-loss coatings, and low-noise detectors. This resulted in dramatic
improvements in degree of squeezing to 10 dB below standard quantum limit [59] in 2008. In
subsequent experiments, the observed squeezing levels are further increased. Recently, a 12.3dB
at 1550nm and 12.7dB at 1064nm quantum noise squeezing of a laser field was produced by a
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German group [60,61]. In 2016, a very great step forward was achieved by the same group and
a squeezed state with 15dB at 1064nm was observed [62].

Table 3.1 shows a short list of relevant squeezing measured results from the first experiment
with 0.7dB in 1985 to the lastest experiment with 15dB at a measurement frequency of 3MHz.
Most of them are based on optical parametric amplifier process and performed in the continuous-
wave regime.

Squeezed light is not only a special quantum mechanical state but has also several applications:
Any measurement that uses only one quadrature for detection can be improved to a sensitivity
below the standard quantum limit by using squeezed light for the measurement. Following the
proposal by Caves [69] squeezed light was used to improve interferometric measurements. To
our knowledge, the first experiment which employed squeezed light to improve a measurement
sensitivity was made at University of Texas in 1987 [70]. In that experiment the squeezed light
was used to improve the detection of phase modulation in an interferometer. The measurement
resulted in 3 dB increase in signal to noise ratio. The improvement of the sensitivity of the
interferometers can be used in practice for the detection of gravitational waves. At the moment
the most sensitive classical gravitational wave detector is Laser Interferometer Gravitational
wave Observatory ( LIGO) with the interferometer arm length of 2 to 4 km. A strong gravita-
tional wave would change the arm length by at most 107'7 m. The high sensitivity necessary
for this measurement can currently only be reached at low frequencies (below 1 kHz). At high
frequencies the detection is limited by the standard quantum limit. Here the measurements
below standard quantum limit could be performed using squeezed light. This application was
the motivation to be built a source of squeezed light with very high level of squeezing close to
15 dB below shot-noise level [62].

The applications mentioned above are emphasize on the squeezing level of the squeezed state.
However, there are some other applications which are sensitive to the purity of the squeezed state
with weak squeezing level. In 2007, N. B. Grosse [71] performed an experiment to demonstrate
the non-classical statistics (anti-bunching effect) of light, in which the best result was observed
using a squeezed state with squeezing 0.5dB and purity V0 x Vz =1.005. Recently, a complex
wave function [72, 73], which provided complete knowledge of a state was been measured by
optical interference, in which a weak but purity squeezed state was used as one of the interference
source.

In this thesis, we will discuss a two-photon interference between a squeezed state and a coherent
state, in which a squeezed vacuum state with weak squeezing level and high purity will be used.To
realize the two-photon interference, we will generate two different squeezed states (amplitude
squeezed state and phase squeezed state).

3.2 Optical parametric processes

Until last century, the history of optics was assumed that the optical media were linear which
has led to some simple rules in optics, such as the frequency of light do not change when it
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Table 3.1. A brief list of groups and results in generating squeezed state.
Year | author wavelength(nm) | non-linear crystal | Frequency Squeezing
1985 | Slusher [54] 589 four-wave mixing | 594.6MHz 0.7dB
1986 | Wu [55] 532,1064 MgO:LN 1.8MHz 3dB
1992 | Ou [45] 540,1080 KTP 1.1MHz 3.6dB
1992 | Polzik [57] 856 KNB 1.4MHz 6dB
1998 | Schneider [58] | 1064 MgO:LN 6.5MHz 6.5dB
1999 | Lam [63] 1064 MgO:LN 3MHz 7.1dB
2002 | Bowen [64] 1064 MgO:LN 220kHz 2.5dB
2006 | Suzuki [65] 860 PPKTP 1MHz 7dB
2007 | Takeno [66] 860 PPKTP 1MHz 9dB
2008 | Vahlbruch [59] | 1064 MgO:LN 5MHz 10dB
2010 | Mehmet [67] 1064 MgO:LN 5MHz 11.5dB
2010 | Eberle [61] 1064 PPKTP 5MHz 12.7dB
2011 | Mehmet [60] 1550 PPKTP 60kHz 12.3dB
2012 | Stefskzy [68] 1064 PPKTP 10Hz 10dB
2016 | Vahlbruch [62] | 1064 PPKTP 3MHz 15dB

propagates through an optical medium, optical properties of a medium are independent with
the intensity of the light. But since the laser was invented in 1960’s, high optical intensities
previously unattainable have revealed observations deviating from all of the simple rules men-
tioned above. Here we will introduce some optical nonlinear processes involving second-order
nonlinearity x(?) and how these processes can produce squeezed state. We can write the induced

polarisation, P, in a non-linear dielectric medium due an external electromagnetic, F, as

—

P=cy(xE+xPE>+ YO E +...), (3.2.1)

where the ¢j is the electric permittivity of the free space and the X(”) are the nrd-order non-
linear susceptibility. y() is the first-order linear susceptibility which is usually used to described
the absorption, refraction of a medium and satisfies n = \/1 4+ x(1). The third-order nonlinear
susceptibility, X(S) is responsible for four-wave processes such as the Kerr effect, third harmonic
generation and self phase modulation. The second-order nonlinear processes x(2) can be used
to drive processes such as second harmonic generation (SHG), optical parametric amplification
(OPA) and optical parametric oscillation (OPO). It actually involves the interaction of three
photons, so it is also called three-wave mixing processes. Two lower frequency photons combining
to produce a more higher frequency photon is known as the parametric up-conversions which is
called sum frequency processes. The processes of one higher frequency photon being converted
into two photons of low frequencies is known as parametric down-conversions which is also called

difference frequency processes.
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Fig. 3.1.  The up-conversion processes of SHG and SFG.

3.2.1 Parametric up conversion process

The optical parametric up conversion processes include sum frequency generation (SFG) where
two photons with different frequencies, w + A and w — A, are combined to produce one photon
with frequency 2w, as shown in Fig. 3.1. When the input photons have the same frequency w,
the combined process is called second harmonic generation (SHG). Here, we only discuss the
SHG process which was first experimentally achieved by Franken [74] in 1961. Considering two
photons at a lower frequency, w, combining to produce one photon at a higher frequency, in this
case at 2w. Thus we can write

WSHG = 2w = W + w, (3.2.2)

where wgpgg is the frequency of the second harmonic field and the w is the frequency of the
fundamental field. The systems are often placed inside a resonator such that the fundamental
field undergoes many passes through the material, substantially improving the efficiency of the

conversion.

3.2.2 Parametric down conversion process

Down conversion processes are ones in which higher frequency photons are converted into
lower frequency photons. With different conditions, the down conversion processes can be di-
vided into four categories: degenerate optical parametric amplifier (DOPA), non-degenerate
optical parametric amplifier (NDOPA), degenerate optical parametric oscillator (DOPO) and
non-degenerate optical parametric oscillator (NDOPQO). These various processes are integral in
squeezed state generation from a second-order nonlinearity x(? system. The down conversion
process is shown in Fig. 3.2.

We can different these processes by the features of the sub-harmonic outputs: The degenerate
processes where the two output photons are identical and non-degenerate processes where the
modes of the two output photons are different. Unlike the up conversion processes, the down
conversion processes have associated threshold powers below which the dissociations of higher
frequency photons into lower frequency sub-harmonic photons does not happen. The processes
only occur when the pump power is above the threshold . We call these processes DOPO and
NDOPO. However, even the threshold condition can not be satisfied, we can realize the processes
by introducing a seed field into the non-linear medium. These processes are called DOPA and
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Fig. 3.2. The down-conversion processes of OPA and OPO.

NDOPA. Thus the DOPA and NDOPA needn’t satisfy the threshold conditions. Actually, the
DOPO and NDOPO can be regarded introducing vacuum fields as seed fields.

The degenerate down conversion processes (DOPO and DOPA) have been proved to be the
most efficient source of generating single-mode quadrature squeezed state, such as squeezed
vacuum state, amplitude squeezed state and phase squeezed state. For non-degenerate modes,
the NDOPA and NDOPO have become key sources to generate two-mode squeezed state and
Einstein-Podolsky-Rosen (EPR) entangled state when they are operated below or above the
threshold.

3.2.3 Phase matching

In the previous section, we introduced various non-linear optical processes in which energies
(frequencies) are converted. Like all physical processes, these conversions must satisfy the energy
conservation law. For three photons with wi, we, w3, thus the non-linearity process should satisfy,

w1 = w1 + wa. (323)

Actually, in these processes, another law also should be satisfied, momentum conservation law.
The conservation of momentum in a nonlinear optical process is often referred as phase matching
condition. For the momentum of three photons to be conserved, we require their optical wave
vectors to fulfill the following equation,

-

];1 = ifé + k3, (3.2.4)

niw;
c

the ¢ is the speed of light in a vacuum. When the Eq. (3.2.4) is satisfied, we say the process is

where ]EZ| = and n; is the index of refraction of the nonlinear medium for the w; field and

phase matched. To understand easily, we can rewrite Eq.(3.2.4) as

ny n2 ng

— ==+ —. 2.
Ny + " (3.2.5)
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It is obviously that in order to phase matching to occur, the refractive indexes must be matched.
If the nonlinear processes is done in a birefringent crystal material, we can achieve phase match-
ing with two methods :

1. Angle matching: If the nonlinear processes is done in a birefringent crystal material,
and the refractive index depends on the polarization and direction of the light that passes
through, we can match the refractive indexes by changing the direction of the light. This
method is called angle matching.

2. Temperature matching: Since the characteristics of the crystals, such as refractive
index, can be changed by tuning the temperature of the crystal, we can realize the refractive
indexes matching by controlling the temperature of the crystal. This method is called
temperature matching.

3.3 Generation of squeezed vacuum state

In this section, we will introduce the generation of squeezed vacuum state using the degen-
erate optical parametric amplifier (DOPA). The experimental setup is shown in Fig. 3.3. The
main laser source is a commercially available continuous wave Nd:YAG laser which emits 2.0
W of coherent light at 1064 nm. A major fraction of this light is frequency-doubled by a SHG
and used to pump the an OPA which is composed of a periodically poled KTiOPO, (PPKTP)
crystal. The remaining light from the laser was first transmitted through a high finesse mode
clean cavity (MCC) and split into two parts: injection beam for OPA and local oscillator (LO)
for homodyne detector. By choosing appreciate relative phase between pump beam and injec-
tion beam, we can generate amplitude quadrature and phase quadrature squeezed state with
squeezing level of -1dB and anti-squeezing of 1.7dB in the range of 5MHz to 35MHz. All parts of
the experiment including second harmonic generation (SHG) cavity, optical parameter amplifier
(OPA) cavity, mode clean cavity (MCC) and the homodyne detector, will be introduced in detail
in the following section.

3.3.1 Second harmonic generation

The pump beam of the OPA cavity is frequency-doubled by a SHG cavity [75,76]. The
experimental layout is sketched in Fig. 3.4. All the optical parts of the SHG system were
arranged in a 9cm x 36¢m box. The SHG cavity is made by four mirrors in a bow-tie cavity,
using two plane mirrors (M, Mz) and two curved mirrors (Ms, My) with » = 50mm radius of
curvature. The total length of the cavity is about 398 mm, the free spectral range (FSR) and full
width half maximum (FWHM) are 753 MHz and 12.7MHz, thus the finesse can be calculated
as 59. The mirror M; is 90% refectivity mirror at 1064nm light. The output mirror My is
coated dichromatically so that it transmits 98% of the power for 532 nm light and reflects more
than 99.9% for 1064 nm light. The mirrors My and M3 are high reflectivity mirrors at 1064nm
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Fig. 3.3.  Schematic of experimental setup.

light. The mirror M is mounted on a piezo-electric transducer (PZT) which is used to control
the length of the cavity and keep the cavity resonant with the input fundamental frequency.
A type 0 periodically poled KTiOPO, (PPKTP) crystal, with both end facets anti-reflection
coat for both 1064 nm and 532 nm, is used in the cavity. The PPKTP, with dimensions of
1mm x Imm x 10mm, is housed in a home-made oven and placed between the curved mirrors,
where a smallest waist is 27 um. The temperature of PPKTP was controlled to the optimal
phase-matching temperature within an accuracy of 0.1 °C. In order to improve the stability of
the cavity, we build SHG system in a single aluminum box where the PPKTP crystal, the oven,
the thermal electric cooler and the four mirrors are fixed inside. The photograph of the SHG
cavity is shown in Fig. 3.5.

Nd:YAG SHG Cavity

Fig. 3.4. experimental setup of SHG cavity.
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The SHG cavity is locked using the dither-locking technique which has already been success-
fully used in lots of SHG and OPO experiments. In order to lock the cavity, the PZT of the
cavity is dithered by a 30 kHz sinusoidal signal with a 500 mV amplitude and the light leaking
from the cavity is monitored by a photodiode and then demodulated by a lock-in amplifier to
provide an error signal for controlling the length of the cavity, then the error signal is fed back
to PZT via a piezo driver.

Fig. 3.5.  The photograph of the SHG cavity.

To obtain the temperature characteristic of the PPKTP crystal, we measured the output power
of the SHG as a function of temperature with a 1.7W input beam. The measured results is shown
in Fig. 3.6. From the Fig. 3.6, we can find that the optimal phase matching temperature is about
32.5 °C and the full width at half maximum is about 5.5 °C. The measured results indicated
that we can control the phase matching temperature near room temperature and stably operate
the SHG.

We also measured the output power as a function of the input power for a single pass SHG
configuration with the optimal phase matching temperature 32.5 °C. The measured results is
shown in Fig.3.7. When the input power is 1.7TW, a 29.8mW output power is obtained. The
theoretical curve is given by

Psyg = P2, (3.3.1)

where the 7 is the single pass conversion coefficient. When v = 0.01W !, the measured results
are fitting with the theoretical values.

In order to obtain a high conversion efficiency for the SHG system, we locked the external
cavity to an incidence fundamental resonance. Then, we measured the output power as the
function of the input power with the optimal matching temperature and calculated the conversion
efficiency respectively. The results is shown in Fig. 3.8. For 1.7W input power, we obtained a
1.23W of green light from the output of the SHG cavity and about 72% conversion efficiency.
Further more, the maximum output power can be stably stayed for 4 hours with only 0.5%
fluctuation. It indicates that we can obtain a sufficient stability and high power pump light to
pump the OPA and generate squeezed vacuum state.
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39



. = " L] = = =" - ' : 170
- 1.2F - ) 1
2 . . 160
s i L] . L] i
§ [ ° _50
5 . ]
0.8r
g . 140
=] .
wn . 130
04 I . i 20
- . * ® SHG output power 110
° ® Conversion efficiency i
Il Il Il Il Il Il Il Il Il 1 Il Il Il Il Il Il Il Il
00 0.5 1 1.5 0
Input power [W]
Fig. 3.8. SHG output power and the conversion efficiency as a function of the input power.

3.3.2 Mode cleaner cavity

A travelling-wave resonator is used in our experiment which serves as optical low-pass filter
for high frequency phase noise on the laser beams as well as spatial mode cleaner cavity (MCC).
Including the injection beam to OPA, the beam from the MCC was also used as coherent beam

for two-photon interference and two local oscillators (LOs) for homodyne detectors.

MC Cavity

Nd:YAG PBS

- M lﬁ &42 Injection
>
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e
DHS oL

M3
PZT

Fig. 3.9.  The experimental setup of MCC.

As illustrated in Fig. 3.9, the resonator is set up as ring cavity with two flat mirrors and a
curved mirror. The MCC consists of two identical at input-output mirrors with reflectivity of
R = 99% and a curved mirror with a 1m radius of curvature and reflectivity of R = 99.99%,
and the total resonator length is 56cm. We observed a finesse of 160 and this provided a cavity
linewidth of about 100 kHz. Since the light from the MCC is in TEMOO mode, it is very

40



convenient for mode matching with OPA and LO.

To characterize the MCC, we measured the intensity noise of the transmitted beam by a
photodiode detection. The measured results is shown in Fig.3.10. In the figure, the measured
data is normalized by quantum noise limit (QNL), the data which is closer to 0 indicates QNL.
From Fig.3.10, we can find that the intensity noise of the input fundamental light closing QNL
at 25 MHz, while the light transmitted through the MCC becomes at 11 MHz and the intensity
noise decreased. This is because the light was filtered by the MC resonator. Since a higher
squeezing level can be measured at lower frequency, we measured the squeezed state at 11 MHz
in our experiment, and the measured results are in agreement with the theoretical value when

the measured frequency is larger than 5MHz.
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Fig. 3.10.  The intensity noise reduction by MCC.

Since the output light from the MCC is used for injection light to OPA and LOs light for
homodyne detectors, high stability without long term power fluctuation is required. So we
locked the MCC using the dither-locking technique which was used in locking the SHG before.
Fig. 3.11 shows a 135 mW transmitted light from the MCC stability stayed with 0.5% fluctuation
for 3 hours, and input power is 180mW.

3.3.3 Optical parameter amplifier

The squeezed light source in our experiment is a linear Optical parameter amplifier (OPA)
cavity. The layout of the OPA cavity is shown in Fig. 3.12. It consists of a Imm x 1mm x 15mm
type 0 PPKTP crystal and two concave mirrors. The input coupler is optically coated so that

41



150 T
L m 4
AN i

E L i
€ 100+ 137 - T : T - _
5t s | 1 |
% N %B& s T
o (0]
3 | 2 [ T ]
5 5 135} .
S s50f . ]
- O r 4 |
- 134 : ' : ' : .
0 10 20 30
B Time [s] b

0 " 1 " 1 "

0 1 2 3
Time [h]

Fig. 3.11. Long-term stability of MCC.

it is highly reflective at 1064 nm. The output coupler has a measured transmission of 5% at
1064nm. One of the concave mirrors is mounted on a pizoelectric transducer (PZT) so that
the OPA cavity length can be actively controlled for tuning onto the resonance with the laser
frequency. Both the input coupler and output coupler are coated high transmission at 532nm
so that the pump field interacts only once with the nonlinear medium. The length of the OPA
cavity is about 54mm, the FSR and FWHM are 2775 MHz and 277.4MHz, respectively, thus
the finesse can be calculated as 100. The OPA could be controlled so as to deamplify or amplify
the injection beam by choosing the relative phase between pump and injection coherent beams.
This ensures to produce the amplitude quadrature or phase quadrature squeezed state. The
photograph of the OPA cavity in our experiment is shown in Fig. 3.13.

SHG MC

Cavity Cavity
Aluminium Box

Homodyne
Detector

Fig. 3.12.  The experimental setup of the OPA cavity.
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The 1064nm light from MCC was used to inject the OPA cavity, and was mode matched into
resonator by two lens with f=100mm and f=200mm. An isolator is used to prevent the reflectivity
light from the OPA. The 532nm light from SHG was mode matched into resonator through
another two lens with f=200mm and f=750mm. The two light were combined on a dichroic
mirror. The relative phase between the pump beam and injection beam was controlled via an
external PZT actuated mirror. Monitoring the injection beam that was transmitted through the
OPA, showed alternating de-amplification and amplification when the phase of injection beam
was scanned. The relative phase was locked using a dither lock from a phase modulation on the
injection beam. The gain of the OPA was maximized by tuning the phase-matching condition of
the nonlinear crystal which was adjusted by an servo-control of the temperature. The generated
squeezed vacuum beam interfered with a LO beam on a 50:50 beam splitter and measured using
homodyne detection.

Fig. 3.13.  The photograph of the OPA cavity.

1. The temperature characteristic of the PPKTP crystal in OPA cavity

Similar to SHG cavity, we also need to measure the single pass temperature characteristic
of the PPKTP crystal in OPA cavity. To measure the temperature characteristic, we removed
the M1 and M2 of the OPA, and only measured the power of the second harmonic light with
a power meter. We chose the injection beam with 711mW and tuned the temperature by the
temperature control, and the result is shown in Fig.3.14. From the figure, we can see that the
optimal phase-matching temperature is 36°C and the FWHM is 2.9°C. The results also indicate
that we can obtain the optimal phase-matching temperature near room temperature. Then
we also measured the output power as a function of the input power for a single pass SHG
configuration with the optimal phase matching temperature 36 °C. As shown in Fig. 3.15, the
measured results are fitting with the theoretical values when v = 0.003W 1.

2. The amplification of injection beam in OPA cavity

In order to produce the squeezed vacuum beam from OPA, it is necessary to overlap the
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injection beam and the pump beam inside the OPA cavity and measure the classical gain which
indicates the power of the injection beam increase or not. Since the classical gain varied depend-
ing on the relative phase between the injection beam and pump beam, a external PZT actuated
mirror was inserted in the optical path of the injection beam. A triangle wave was sent to the
PZT to control the relative phase.

For the injection beam, mode matching was performed to the mode of resonator. Thus we
simulated and measured the waist of the injection beam, then inserted the crystal into the path
of the injection beam, and overlapped the beam waist with the center of the crystal. At the
center of the crystal, the beam waist is 91um and 252um at the end surfaces. After adjusting
the mirrors in the OPA cavity, the injection beam was mode matched into the resonator where
the resonance signal increased to the peak.

Similar to the injection beam, we simulated and measured the waist of the pump beam, and
adjusted the two lens ( =200 and f=750) in the path of pump beam, and made the beam
waist at the center of crystal where the beam waist is 65um and 230um at the end surfaces.
Throughout the processes, the injection beam and pump beam keep parallel and the beams
height were 75mm. A detector was placed after the OPA resonator and the classical gain was

—  With pump
—  Without pump

Intensity[a.u]

IR RN

0 0.1 0.2
Time [s]

Fig. 3.16. The amplification of injection beam in OPA cavity

measured. In order to observe the amplification of the injection beam, we inserted a dichroic
mirror between the OPA cavity and the detector. The dichroic mirror was used to cut the pump
light of 532 nm. Fig. 3.16 showed the intensity of the injection beam was amplified when relative
phase between the injection beam and the pump beam was scanned. From the figure, we can
see that the injection beam is amplified for about 530 times. Since the peak of the classical gain
changed, which indicated it is a phase sensitive amplification.

3. Locking the relative phase between the pump beam and injection beam

In order to produce different squeezed states, we should choose different relative phases be-
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tween injection beam and pump beam. Thus we should lock the relative phase . A dichroic
mirror was placed at the output of the OPA to remove the 532nm light from the OPA. The
1064nm light was transmitted to a 98% reflectivity mirror. the reflected light reached to ho-
modyne detector, and the 2% transmitted light reached to a highly sensitive detector and used
to lock the relative phase. The AC signal of the photodetector was divided into two parts by
an RF splitter, one of the signal was used to lock the OPA cavity to control the length of the
cavity, the other signal was used to lock the relative phase between the injection beam and pump
beam. Fig. 3.17 shows the results of locking the classical gain which control the relative phase
of injection beam and pump light.

L With pump (amplification }

——Without pump
——With pump (unlock) ‘With pump (deamplification)

Hwwr it “H‘IWH’”"HM Ve A e e 'IIHWNT“'

Intensity [a.u.]

N

0 05 1
Time [s]

Fig. 3.17.  Locking the relative phase between the pump beam and the injection beam.

When we locked the relative phase at de-amplification, we produced amplitude squeezed vac-
uum state, and the phase squeezed vacuum state was generated when the relative phase was
locked at amplification.

3.3.4 Homodyne detector

To observe the quadrature squeezed state, a homodyne detector was used in our experiment.
It is a most traditional detection scheme in continuous variable quantum optics region. Since
both the amplitude and phase quadrature variances of the generated squeezed state should be
measured. As shown in Fig.3.18, the homodyne detector consists of a 50:50 beam splitter, a pair
of photodetectors and a subtractor. A signal light is mixed with a strong LO on the 50:50 beam
splitter. Hence, only one mode, which is matched to the LO, is probed. Each beam splitter
output light was focused on a photodiodes (ETX500). By choosing the relative phase between
the measured signal and the LO light, the quadrature information of the measured signal can
be recorded. Using a PZT mirror in the path of LO beam, the relative phase between the both
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lights can be well controlled. The subtracted electronic signal of the homodyne detectors can

be directly observed on a spectrum analyzer (SA) or an oscilloscope.

Output
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signal / d
LO

2 S

7

Fig. 3.18.  Principle of homodyne detector.

s

We first checked the linearity of the homodyne detector by measuring shots noise levels as a
function of LO powers by a oscilloscope (OSC). With the signal beam blocked, the shot noise of
the homodyne detector can be recorded by sending only LO beam into the detector. Fig. 3.19
shows measured results which present eight measurement values with a LO power of 2mW, 4mW,
6mW, 8mW, 10mW, 12mW, 14mW and 16mW ( measured the DC component of the electronic
signal from the homodyne detector). Fig.3.19 shows the linear fit to eight measurement values
and the detector can be used in our experiment.

In order to obtain a precise squeezed level of the squeezed state, the signal-to-noise ratio of
the detector should be increased. We know that the dark noise of detector can not be ignored if
it is larger than 10 dB below the shot noise. With both the signal beam and LO beam blocked,
the dark noise of the homodyne detector can be recorded. And then we measured the shot
noises by sending the LO light into the homodyne detector with different LO power of 2mW,
4mW, 8mW, 16mW and 32mW. Fig.3.20 shows the dark noise clearance with different LO beam
power by measuring the AC component of the electronic signal from the homodyne detector on
a spectrum analyzer. From Fig. 3.20, we can see that when the LO power is larger than 8 mW,
the shot noise is larger than 10dB above the dark noise. In this experimnt, we used a 16mW
local oscillator beam, and the dark noise clearance was approximately 13 dB at a measurement
frequency of 11MHz. The spectrum analyzer was set with a resolution bandwidth (RBW) of
100 kHz and video bandwidth (VBW) of 100Hz.
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Fig. 3.19.  The linearity of the homodyne detector.
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3.4 Detection of squeezed vacuum state

3.4.1 Experimental procedure

The experiment was performed according to a strict produce of alignment and characterisation
of mode matching or visibility of the optical paths, followed by the data acquisition. The steps

of the experiment are given as,

1. Mode match the 1064nm laser coherent light into SHG resonator and MCC resonator.
Lock the length of the SHG cavity and lock the laser frequency to MCC, respectively.

2. Adjust the injection light into OPA cavity for optimal mode matched into resonator.
Then, incident the pump light into the OPA and adjusted the two mirrors in the path of
the pump beam so as to obtain the maximum classical gain. Check that the lock is stable
for de-amplification or amplification.

3. Adjust and measure the fringe visibility between LO beam and injection beam using a

homodyne detector.
4. Confirm the power balance for all beams on a spectrum analyzer.

5. Set the power of the pump beam, injection beam and LO beam with (P, = 365mW,
P;,, = 1mW and Pro = 16mW.

6. Re-lock the relative phase between pump beam and injection beam for de-amplification,
re-lock the OPA cavity.

7. Observe the squeezing level on a spectrum analyzer.
8. Acquire the experimental data.
9. Re-lock the relative phase in step 6 for amplification and repeat the step 7 and step 8.

10. Choose another pump power and repeat the experimental procedure mentioned above.

3.4.2 Detection of squeezed vacuum state

In order to measure the squeezed vacuum state, we measured the generated state with a ho-
modyne detector. The output of the homodyne detector was recorded with a spectrum analyzer.
The experimental setup is shown in Fig. 3.21.

When we performed the measurement with homodyne detection, the most important step is
to overlap the generated beam from the OPA and the LO beam. Hence, choosing an appropriate
injection beam power which made the power of the generated beam from the OPA equal the
power of LO beam , and interfered on the 50:50 beam splitter. A larger spatial overlapping
between them, a higher fringe visibility can be observed, and a higher detection efficiency can
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Fig. 3.21.  The experimental setup of homodyne detection.

be obtained. As shown in Fig. 3.22, we obtained a visibility with 98%, which can be calculated

as,
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Fig. 3.22.  The visibility between squeezed vacuum beam and LO beam.

Another important step is to align the balance between the two electronic signal from the two
detectors. We can directly checked the balance with spectrum analyzer. In our experiment, the
balance between the two electronic signal matched very well, as shown in Fig.3.23. It ensured
the accuracy of our measurement results.

As shown in Fig.3.21, the homodyne detection was performed when the relative phase between
the generated squeezed vacuum beam and LO beam was scanned by driving the PZT mirror,
and the squeezing level was observed on a spectrum analyzer. We set the pump beam withP, =
540mW, injection beam with P, = 1mW and LO beam with Prpo = 16mW, and set the

50



Noise power [dBm]|

'??0 2 4 6

Time [s]
Fig. 3.23.  The balance of homodyne detector.

spectrum analyzer with RBW =100kHz and VBW =100Hz. Fig.3.24 shows the measured noise
power in frequency domain. From Fig.3.24, We can see that the squeezing can be observed
from 5MHz to 3bMHz. We can also find that as the analysis frequency increases, the generated
squeezed state becomes purer. Since the purity of the squeezed state is very important for two-
photon interference in next chapter, we choose an analysis frequency with 11MHz, and observed
an amplitude or phase quadrature squeezed state with squeezing level of -1dB and anti-squeezing
of 1.7dB which is shown in Fig. 3.25. The upper and under transverse line show the generated
squeezed vacuum state is locked at squeezing and anti-squeezing, respectively. The principle of

amplitude or phase locking technique will be discussed in next chapter.

3.5 Reconstruction of the Wigner function using the homodyne
tomography

In classical physics, we can completely characterise an state by measuring the position and
momentum of the state simultaneously. On the other hand, in quantum physics, it is impossible
due to Heisenberg uncertainty principle. If we want to fully describe a quantum state, we have
to know its wave function or some other equivalent information. However, the wave function
is normally not measurable. In experiment, we usually reconstruct the Winger function and
density matrix of a quantum state, which are the equivalent information to the quantum wave
function.

In 1932, Wigner introduced a quasi-probability distribution into quantum mechanics [77] for
the first time , which is known as Wigner function. Using the Wigner function, we can eas-
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Fig. 3.25. Measurement of squeezed vacuum state at 11MHz.
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ily obtain the probability distribution of a observable variable. Wigner function contains all
information of a quantum state in phase space evolution. Unlike the classical probability distri-
bution, the Wigner function can give a negative value with quantum state, and it is described
as a quasi-probability distribution function.

The Wigner function was firstly reconstructed using a tomography technique by Bertrand in
1987 [78]. Soon after that, Vogel, et al described another way to reconstruct Wigner function
from the measured quadrature amplitude distributions by optical homodyne measurement [79].
The first experiment of quantum state reconstruction was carried out by Smithey, et al [80]. The
Wigner function of a vacuum and a quadrature squeezed state were reconstructed, in which the
signal field was combined with a strong local oscillator field at a 50:50 beam splitter and measured
by a balanced homodyne detection. We call this technique optical homodyne tomography.
Using the Winger function, we can reconstruct the density matrix of a quantum state in Fock
representation. It can directly provide the density matrix elements p,,, = (m||p||n) of the state.
In our work, we reconstructed the Wigner state to confirm the light fields which were generated
in our experiment.

In this section, we will introduce the reconstruction of the Winger function by homodyne
tomography [81-88] with inverse Radon transform and reconstruct the generated states in our
experiment. We first discuss the principle of the homodyne tomography and explain the method
of program, then introduce the experimental setup of homodyne tomography and give the ex-
perimental results.

3.5.1 The Wigner function

The Wigner function of quantum state is defined as a real function in phase space, which has
the basic characteristics of quasi probability distribution. Considering a quantum state |p) in
two-dimensional space, the Wigner function can be defined as (For discussing convenience, we
use x, p replace the X0, X2 )

o0

211 oo

/

(@ + 1) ol — 2 exp (-

ipx’

W(H?,p) - n

Yydz'. (3.5.1)

The main properties of Wigner function are shown as

1. The Wigner function is a real function in phase space, namely,

W(z,p) = W*(z,p). (3.5.2)
2. The Wigner function is a quasi-probability distribution function which satisfies

/W(x,p)dp = Pp(:n),/W(:c,p)dx = P,(p),. (3.5.3)

where P,(x) and P, (p) are the probability distribution function of the particle in momen-

tum and position space, respectively.
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3. The Wigner is normalized in x,p space,
oo o0
/ / W (z,p)dxdp = Trp = 1. (3.5.4)
—o0 J—o0
4. The Wigner function can be either positive or negative, which is different from the classical

probability distribution function. But for classical state, W(x,p) > 0.

The Wigner function can be used to uniquely defined a quantum state, and it is directly related
to the quadrature probability distribution pr(zg,#) which can be experimentally measured with

homodyne detection via
pr(zg,0) = / W (g cos @ — pgsin b, g sin 6 + pg cos 0)dpy. (3.5.5)

That is to say, the quadrature probability distribution pr(zg,0) is a integral projection of the
Winger function W (x,y) onto a vertical plane defined by the phase of the local oscillator.
We consider the quadrature probability distribution pr(z) and pr(p) for § =0 and 6 = 7 as

pr(e) = (algle) = [ Wie ) (3.5.6)

pr(o) = plole) = [ Wie.p)d. (3.5.7)

Then we can calculate the Winger function for some quantum states. For a vacuum state,
Using a|0) = 0 and @ = & + ip, we can obtain the wave function of a harmonic oscillator,

po(z) = (=)ie™™ (3.5.8)

Using the density operator of vacuum state p = |0) (0|, The Wigner function of vacuum state

can be calculated as,

1 [ x x o N
Wo(z,p) = p (z + 5 10) (0] = — 5) exp (—i2pa’)dx
1 [ x x
=2 [ onta+ Drenta - )
T J_oo 2 2
2
= —exp (—2x2 — 2p?). (3.5.9)

here h = 1/2 is used.
Similarly, we can calculate the Wigner function of coherent state, squeezed vacuum state and

displaced squeezed state.

2

Wa(z,p) = —exp [—2(2z — 20)% — 2(p — po)?], (3.5.10)
2

Wi(x,p) = = exp (—2e*"2* — 27 2"p?), (3.5.11)
T
2

Wy(z,p) = = exp [-2e* (z — x0)* — 2¢7*"(p — po)?]. (3.5.12)
T
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3.5.2 Inverse Radon transform

As described in the previous section, in order to reconstruct the Wigner function using the data
from the Homodyne detection, one of traditional methods is the inverse Radon transform. The
probability distribution pr(xg, ) obtained from homodyne detection and the Wigner function
have the relation as

pr(zg, 0) = / W (xg cos @ — pgsin b, pgsin 6 + pg cos 6)dp. (3.5.13)

The relation is called Radon transform. In experiment, we usually use an reverse transform
to reconstruct the Wigner function from the probability distribution pr(xg,#), this method is
called inverse Radon transform. First, we perform a Fourier transform on Eq.(3.5.13) into

o0

pr(€,0) = / pr(,0) oxp (—i€zg)dzg

[e.9]

= / / W (29 cos @ — pgsin b, pg sin 6 + pg cos 0) exp (—iéxg)dredpy

:/ / W (x,p) exp (—i&x cos theta — i&psin 0)dxdp, (3.5.14)

here we set x = xgcos — pygsinf and p = pysin b + py cos 6.

Then we perform a Fourier transform on Wigner function,

W(v,v) = / / W (x,p)exp (—iva — ivp)dxzdp, (3.5.15)
which has the same form with Eq.(3.5.14), thus we can obtain
pr(&,0) == / pr(xg, 0) exp (—ifxg)drg = W((£ cos 0, & sin6). (3.5.16)

Then we perform a inverse Fourier transform on Eq. (3.5.15),
1 o o -
W(x,p) = / / W (v,v)exp (—ive — ivp)dvdy
1 o0 ™ -
= e / / W((&cosB,&sinb)|| exp (ix cos b + ipé sin 0)dOdE
Q0 —o0 JO0

- (271T)2 /00 /Ow /OO pr(zg, 0)|&] exp [i€(x cos O + psin§ — xq)]drgdfdE. (3.5.17)

This equation is known as inverse Radon transform. In Eq.(3.5.17), the £ integration term is
independence with the probability distribution pr(zg, ), and we can write it as

K(a) =1

- / e exp (ia)de (3.5.18)

—00

Thus we can obtain the Wigner function by inverse Radon transform as

1 s o
W(z,p) = 32 /0 / pr(zg, 0)K (x cosf + psinf — xg)dzedh. (3.5.19)
—00
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3.5.3 Data processing of inverse Radon transform

In experiments, the probability distribution pr(xg, ) can be obtained from homodyne detec-
tion. Actually, the Eq.(3.5.19) and pr(zg, 6) are function with continuous value with —oco < z <
oo and 0 < 6 < 7, but the data from the experiment is discrete value, hence, the Eq.(3.5.19)
should be calculated not as integral but as a sum of discrete value. First, to calculate the
pr(zg, 0), we divided the zy and 6 into N equal parts and every part is dz and 06, thus the
Eq.(3.5.19) is re-written as

N, Ny

1 .
W(x,p) = 9.3 Z Zpr(xi, 0;) K (xcosb; + psinb; — x;)dx06. (3.5.20)
i=1 j=1

and the Eq. (3.5.18) is approximated as,

ke
K(a)= 1 / €] exp (i€a) dé

2 ) k.
1
= ﬁ[cos (keat) + kcasin (kea) — 1. (3.5.21)

where k. is cut off parameter. In experiment, K(«a) acts as a low pass filter. With this fil-
ter function, we can reproduce the continuous Wigner function by using discrete data which
measured from homodyne detection. We should choose an appropriate K («) to reconstruct the
Wigner function in our experiment. The Fig.3.26 shows K («) as a function of o when k. = 5.

10 :

K(ot)

Fig. 3.26. K(a) as a function of a when k. = 5.

56



3.5.4 Experimental setup and results of homodyne tomography

The experimental setup is shown in Fig. 3.27. The electronic signal of the homodyne detector
was amplified, band-pass filtered, mixed-down at 11 MHz, and low-pass filtered. Then they were
sampled by a 12-bit digital-analog-convertor (DAC) at the rate of 240 kS/s. And the relative
phase of the squeezed beam and the LO beam is driven by a PZT with amplitude 12 V,,_,, and
frequency with 0.05 Hz.

Squeezed EOM=— Light from MCC

vacuum state
> ' / \33dB

95%

.:‘ AD converter

Fig. 3.27. Experimental set up of homodyne tomography.

In our experiment, we reconstruct the Wigner function of vacuum state, coherent state, ampli-
tude quadrature squeezed state and phase quadrature squeezed state. The measurement results
are shown in Fig.3.28 and Fig.3.29, respectively.

3.6 Summary

In this chapter, we experimentally produced squeezed vacuum state from a DOPA. By choos-
ing appropriate relative phase between the pump beam and injection beam, the OPA can be
controlled to deamplify or amplify the injection beam, the amplitude quadrature and phase
quadrature squeezed state with the squeezing -1dB and anti-squeezing of 1.7 dB in the range
of 5MHz to 35MHz were generated. To obtain a purer squeezed state which is very important
in two-photon interference, we detected the squeezed state at the 11MHz, and obtained the
amplitude quadrature squeezed state with purity of V% V2 = 1.13 and the phase quadrature
squeezed state with purity of V0 x Vi =1.04.

We also introduced the Wigner function and the principle of reconstruction of Wigner function
by inverse Radon transform. Using the data from homodyne tomography, we reconstructed the
Winger function of different states which were generated in our experiment. The reconstructed
states are consistent with the results which were observed on the spectrum analyzer (SA).
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Fig. 3.28.  Wigner function of light states. above: vacuum state, below: coherent state.
left: Wigner function, right: Wigner function observing from the top
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Fig. 3.29.  Wigner function of a squeezed vacuum state. above: amplitude quadrature state,
below: phase quadrature state. left: Wigner function, right: Wigner function observing from the top.
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Chapter4 Two-photon interference with
continuous variables

In this chapter, we will report an experimental observation of a two-photon interference be-
tween a squeezed vacuum state from an optical parametric amplifier and a weak coherent state
on a beam splitter with continuous variables. In the first section, we will briefly introduce
the two-photon interference between a squeezed vacuum state and a weak coherent state. sec-
ondly, we will introduce the principle of the two-photon interference with continuous wave light.
Thirdly, we will introduce the generation of displaced squeezed state. The measurement system
will be introduced in the fourth section. At last, the experimental results and discussion will be

introduced.

4.1 Introduction

In 1974, Stoler [89] proposed a theoretical scheme to observe anti-bunching effect, where a
squeezed vacuum state from parametric down-conversion and a coherent state were used. This
phenomenon was first demonstrated experimentally by Koashi [10] with two-photon interference
between a squeezed vacuum state and a weak coherent state using a pico-second pulse laser
in 1993. Later, such a two-photon interference was also observed by interfering the squeezed
vacuum state with a coherent state on a beam splitter [11]. Since then, both the two-photon
interference and its applications with pulsed laser source have been extensively studied in exper-
iment [90-95]. Recently, , the complex wave functions, which provides complete information of a
quantum state, for biphoton state have also been measured by two-photon interference [72,73].
In most of these experiments, the coherence length and time delay between two photons were
measured when interference occurred. Thus, a technique of single photon counting and mod-
ules (SPCM) was usually employed to interrogate the strong correlation between photons, and
pulsed lasers were the most suitable light sources. For a continuous wave light source, it was
also suggested that an anti-bunched field can be produced by homodyning of an output from an
OPO with a strong coherent local oscillator. It is also turned out that the underlying principle is
two-photon interference [96,97]. However, it is not easy to observe continuous wave two-photon
interference because it is difficult to separate correlated photon pairs from the broadband emis-
sion of a sub-threshold OPO. Recently, this shortcoming was overcome by an optical filter
cavity [98] or an atomic filter [72], and two-photon interference with continuous wave field was
observed by employing an OPA with the technique of SPCM. Yet, the observation of two-photon
interference on a beam splitter still remains a technical challenge.
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Different from previous experiments, we used homodyne detection technique in our experi-
ment. Hence, the output beam from the OPA is mixed with a strong LO beam on a beam
splitter, and only one mode, which is completely matched to the LO, is probed. By choosing the
phase of the LO, two orthogonal amplitude quadratures of a signal are recorded. To investigate
photon statistics, one of important approaches is reconstruct the photon number probability
distributions using homodyne tomography technique. This technique has been widely used to
characterize aggregate measures of a quantum state in the past decade [99]. On the other hand,
using the measured amplitude quadratures, we can also obtain the second-order correlation func-
tion of measured field [71]. Up to now, the correlation measurement technique gives another
important approach to investigate nonclassical properties of light fields in quantum optics [71].
This approach is first used to measure the entanglement between two light fields [100]. Recently,
it was also employed to characterize squeezed state by analyzing the correlation between two
output photocurrents of two balanced homodyne detectors [101]. It was found that the esti-
mation of squeezing degree is independent of the amount of electronic noise, which is a crucial
issue in homodyne detection system. In this thesis, we will give the correlation between two
amplitude quadratures which can estimate the photon statistics and demonstrate two-photon
interference.

In this chapter, we will experimentally observe a two-photon interference between a squeezed
vacuum state and a coherent state with continuous variables for the first time. The homodyne
detection technique will be used to select two-photon state for interference from the broadband
emission of the OPA. The photon anti-bunching or bunching , which is corresponding to destruc-
tive or constructive two-photon interference, will be observed when amplitude squeezed vacuum
state or phase squeezed vacuum state interfere with a coherent field, respectively.

4.2 Continuous wave two-photon interference

4.2.1 Principle of continuous wave two-photon interference

To understand how two-photon interference occurs, let us consider a principle scheme shown
in Fig. 4.1. A continuous wave coherent state and a squeezed vacuum state from OPA are
interfered on an arbitrary beam splitter. We consider one of the output states which is split
by a 50:50 beam splitter and measured by two set of homodyne detectors. For simplicity, we
only treat it with a simple single mode model and both parametric gain of the OPO and the
amplitude of coherent state are not significant. It means that the average photon number of
both squeezed vacuum state and coherent sate are far less than one. Thus, we can write the
input states as below,

[Win) = |0,0) + 0, 1) + (4.2.1)

a? ¢
ﬁ|0’2> - 5\270%
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in which the squeezed vacuum state is generated from an OPA,

¢
- 2512, (4.2.2)

where ( is proportional to the level of squeezing and || < 1 ( it is a weak squeezed vacuum

|Wopo) = |0)

state) and the coherent state is

2
o
a)~|0)+all) + —|2 4.2.3
@) ~[0) + al1) ﬁ' ) (4.2.3)
where « is complex amplitude of the coherent state with |a| < 1. In chapter 2, a beam splitter
of 50:50 was given to demonstrate the two-photon interference between a squeezed vacuum
state and a coherent state. Here, without loss of generality, an arbitrary beam splitter with

transmissivity (¢) and reflectivity (r) [44] is used, and the output states can be listed as:

0,0),,; = |0,0) (4.2.4)
0,1),,, = 710,1) +¢[1,0) (4.2.5)
0,2),,, = 7212,0) +t20,2) + V2tr [1,1) (4.2.6)
12,00, = t212,0) +72]0,2) — V2tr [1,1) . (4.2.7)
Up to two-photon term, we then have the output state as
[Wour) = 10,0) + ral1,0) + tal0, 1) + (o + O)tr|1, 1)
1
+ —[(r%a? = t3¢)|2,0) + (t2a® — r20)[0,2)]. (4.2.8)

V2

We are only interested in the state from one output of the beam splitter, it can be writen as

1
[Wour1) = |0) + [ra + (o + O)tr]|1) + E(r%ﬁ —120)[2)

~|0) + rall) + —=(r?a® — t3¢)|2). (4.2.9)

S -
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where |r2a?| ~ [t2¢| << |ra| is used since |a| << 1, and |r|?, |t|* < 1. The two-photon rate is
given by

Ry = |—=(r?a® — t2Q)|. (4.2.10)

1
V2
When 7202 = t2(, the two-photon rate can be completely cancelled and destructive two-photon
interference occurs by interfering an amplitude squeezed state with a coherent state. On the
other hand, the two-photon rate can be larger than that of the coherent sate by employing phase
squeezed state and constructive two-photon interference occurs. To suppress the optics loss and
maximally utilize the squeezed vacuum state, we may choose a beam splitter with |r|? ~ 1. In
our experiment, we choose a beam splitter with reflectivity of 95%.

Up to now, most of experiments on two-photon interference were extensively demonstrated
by directly measuring the two-photon rate with two single photon counting modules (SPCMs).
One click of SPCM mean that an individual photon was detected on the central frequency of
the measured field with a bandwidth of from several MHz to THz. The two-fold coincidence
only measured two-photon rate of the output state in Eq. (4.2.9). For continuous wave field,
homodyne detection is a traditional detection technique. In a homodyne detection system, a
measured field is mixed with a LO on a symmetric beam splitter. This means that the output of
the homodyne detection gives the information of the complex amplitudes of whole wave light field
but not only the two-photon rate. Unlike SPCM system, the homodyne detection technique gives
the quadrature amplitude of the measured field on a given sideband frequency. Fortunately, it is
possible to calculate the photon statistics of the field with the measured quadrature amplitudes.
One of well-known techniques is quantum tomography. Another method is to calculate the
second-order correlation function from the measured quadrature amplitudes [71].

The second-order correlation function of the output state in Eq. (4.2.9) can be given as

4(0) = ('aaa)
(ala)?
_ (0627"2 _ 771’2)2
(@212 — t2)4 + adrd + 2a2r2(a2r? — t2)2

{ 0 a’r? = nt?,

(4.2.11)

1+8a2r24+16a4r4 ~ 4, a’r? = —nt?,
where |ar| << 1 is considered. Obviously, ¢®)(0) = 0 indicates photon anti-bunching effect for
completely destructive two-photon interference and g2 (0) =~ 4 displays photon bunching effect
for constructive two-photon interference. In a practical experiment, it is difficult to observe
9(2)(0) = 0 due to the purity of the squeezed state and un-unity detection efficiency. Hence,
g (0) < 1 indicates the two-photon destructive interference and ¢(®(0) > 1 gives the two-
photon constructive interference. Thus the second-order correlation function can be used to
interrogate two-photon interference.

Since using homodyne detection which is sensitive to the quadrature amplitudes of the mea-
sured state, we should re-write the Eq. (4.2.11) in term of two quadrature amplitudes. Using
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X ), Eq. (4.2.11) can be re-written as
g?(0) = < > < X2 @)2> _° <<X&0)2>] i 12, (4.2.12)
(5, <<Xff>2> -2y

where ¢ = 0, 5. The Eq. (4.2.11) gives a another method to measure the second-order corre-

lation function and provides a connection between discrete variables and continuous variables
in quantum optics regime. Unfortunately, what makes this measurement impossible is that
there are cross-quadrature terms for a single mode. However, in practice experiment, we can
realize the measurement by separating the beam into two parts and detecting their correlation
with a modified Hanbury-Brown and Twiss (HBT) interferometer. Since the second-order cor-
relation function charactizes photon statistics while quadrature amplitudes come from complex
amplitude of wave light field, Eq. (4.2.12) gives a direct evidence of wave-particle duality of
light.

4.2.2 Second-order correlation function from a modified HBT interferometer

As mentioned in previous section, the second-order correlation function g(®(0) is impossible
to be measured in the form of Eq. (4.2.12) because there are cross-quadrature terms for a single
mode, which can not be measured simultaneously. In experiment, we can separate the generated
signal mode @ into mode b and mode ¢ with a 50:50 beam splitter, and measure the intensity
correlation between them by a modified HBT interferometer, as shown in Fig. 4.2.

(bibcte)

R (4.2.13)

2
a2 (0) =

Iftb = (a+7)/V2 and é = (@ — »)/v/2 with ¥ is a vacuum mode, the Eq. (4.2.11) and Eq.

(4.2.13) become equivalent, namely, g((lz) (0) = gé C)( 0). Thus we can use this method to measure

the géz) (0).
As shown in Fig. 4.2, two homodyne detection systems are employed to record their quadrature

amplitudes,
X'g = et 4 e, (4.2.14)
X0 = et 4 emi0g (4.2.15)
where bf(¢f) and b(¢) are creation and annihilation operators for mode b and mode ¢. 6 and
¢ are relative phase between beam b(c) and LO and can be actively controlled to choose an

appropriate value. 0(¢) = 0 and 0(¢) = § indicate quadrature amplitude and quadrature phase
of mode b and mode ¢, respectively. Thus we can obtain

~ 1 - AT

b= 5()({3+i 2) (4.2.16)
A 1, - AT
bl = i(X*? —iX2). (4.2.17)
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Fig. 4.2.  Principle setup of measuring g(z)(O) with two HD systems.

Then we can calculate b'b as,

A 1. - AT PPN N« AT,
b = SR+ (X7)? + (X% — X X))
1 -~ AT
— Z[(X;})2 +(X2)* -2, (4.2.18)

here we used commutation relation

Ay AT . 21 k=1,
(X7, X2 = 2idy = { 0 k£ (4.2.19)

Similarly, é'¢ is obtained as

ite = i[(f(gf +(X2)2 -2, (4.2.20)

Inserting Eq (4.2.18) and Eq (4.2.20) into Eq (4.2.13), and it can be re-expressed as

T {EDHXE)?) — 2Ty (X)) + X (X)) + 4
(g ((XD)2) = 2)(2, ((X0)2) — 2)

In this equation, summations are made over the quadrature indices, §(¢) = 0, 5. Obviously, the

92(0) = g2 (0) (4.2.21)

cross-quadrature terms for a single mode disappear and this technique can be used to measure
photon statistics. The absence of cross-quadrature terms mean that each correlation term can be
independently measured by recording the information from the outputs of homodyne detectors,
and then the ¢g(®(0) can be reconstructed.
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To understand Eq. (4.2.21) easily, we transform the equation into a correlation measurement
form. Using

(AB) = (A) + (B) + cov(4, B). (4.2.22)

We re-express the intensity correlation between mode b and mode ¢ using quadrature ampli-

tudes as

Sl ()] + Sogle

S0 ol((X0)?
YR (X
(20 (X)) = 2)(5, ((

[cov((X7)?, (X)%)] - 2|
X)) - 203 (X9)2) +
)

+1, (4.2.23)

@ Yoo (X)) + 32, (X)) + 4
gbc( )= >

o (X)) +4

)
X&)
x22) - 2)
where cov((X?)?, (X2)?), <(X'g)2> and <(X§’)2> are the covariance and means of squared
quadratures of the measured states. In experiment, we measure four permutations of quadra-
tures independently, then calculate the covariance and means of squared quadratures, and finally
reconstruct g(?(0) according to Eq. (4.2.23).

Actually, the two-photon interference between a squeezed state and a coherent state on a beam
splitter can also be considered as displacing a squeezed vacuum state. The displaced result can

be expressed as
[Wout1) = D()S(r)|0), (4.2.24)

where ﬁ(a) and S (r) are displacement and squeezing operators, respectively. To calculate the
9(2) (0) simply, we perform the calculation in Heisenberg picture, which means that we start with
a mode from the vacuum state, and transform the creation operator and annihilation operator
with

DY (a)ST(r)aD(a)S(r) = a + acosh(r) — af sinh(r) (4.2.25)
DY (a)ST(r)a' D(a)S(r) = a + a' cosh(r) — asinh(r) (4.2.26)

For make the derivation simple, we restrict o« and r to be real quantities, and calculate the
second-order correlation function g(?)(0) as [71]

(ata'aa)
{aTa)?
sinh?(r)[2a + cosh(2r) — 202 coth(r)]

=1+ o s : (4.2.27)

g®(0) =

This expression is specific to pure state. To make our analysis more applicable to experiments,
we can generalize Eq.(4.2.27) for any state which has the quadrature variance V., V,> and
displacement value « as,

160‘2(6727“ _ efrer) 4 2(621" + 6727" o 2efrer>(ef2r + €2r)
(6—27' + eQr — Qe Ter + 40&2)2 ’

gd?0)=1+ (4.2.28)
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2

be real. We use the measured quadrature variance V? and V,? to replace the squeezing (e=2")

and coshr =

. r —r
where sinhr = = “'2‘3

are used and the displacement « is also restricted to

and anti-squeezing (e?") and re-express the Eq. (4.2.28) as:

160% (V- W) +2(Va + V2 - 2\/1/;9;1/2) (vo+vE)
(VéJ + Vag — 2\/‘/(107]/;4_40[2)2 ’

Here we use V2 x V2 represents the purity of the measured state and V) * V;> = 1 indicates

g2y =1+

(4.2.29)

a pure squeezed state. This equation is also used to curve theoretical predictions of g(Q)(O) for
two measured quadrature variances V.2 and V,? with various displacement of coherent state o
for a mode a.
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Fig. 4.3.  Principle scheme of cw two-photon interference.
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4.3 Two-photon interference between squeezed vacuum state

and coherent state

The experimental setup is shown in Fig. 4.3. The experiment can be divided into three parts:
preparation of coherent state, generation of displaced squeezed state and measurement of the
second-order correlation function with homodyne detection. The coherent state is prepared by
modulating the light from the MCC with a electro-optical modulator (EOM) on a sideband
frequency 11MHZ, and then interfere with a squeezed vacuum state from the OPA, which is
generate in the chapter 3, on a 95% beam splitter to generate a displaced squeezed state. The
generated displaced squeezed state is split into two beams with a 50:50 beam splitter. Each of
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the two output beam is measured a homodyne detector. After obtain the measured quadrature
amplitude, we can calculate the correlation between the two mode b and ¢, and observe the
photon anti-bunching and bunching effect of the measured state a.

4.3.1 Preparation of coherent state using a electro-optics modulator

Since the squeezed vacuum state was observed over a range of measurement frequencies, the
interfered coherent state should be prepared on one of measurement frequencies by modulating
the laser light with an electro-optical modulator (EOM). The principle of modulation has been
discussed in chapter 2. Here we will discuss how to realize it in experiment, and we choose the
modulation frequency at 2 = 11MHz.

Light
from MCC
m
o
= Signal generator
Qq
LO A ¢ Phase shifter
PZTO) &
B ()
, =) : LLPF |—
i)~ in(6,1) ina(6,1)

Fig. 4.4. Experimental setup of producing coherent state.

To realize a displacement of coherent state at the measurement frequency €2, a part of power
is transferred to the sidebands at €} with a EOM driven by an wave function which provided an
radio freqency (RF) signal at 2 = 11M Hz with a modulation depth M < 1. The displacement
depends on the modulation depth M, which can be actively controlled by varying amplitude of
the modulation signal. As shown in Fig.4.4.

The modulated beam is measured by a homodyne detector, at whose a pair of matched photo-
diodes (ETX500) with the quantum efficiency of 90% is employed. The output of the homodyne
detector are amplified, band-pass filtered, mixed down at 11MHz, and low-pass filtered. Then
they are sampled by a 12-bit DAC. To verify the system, we chose three different amplitudes
of the signals from the wave function with V,_, = 0.5mV, 0.8mV and 1.5mV, and obtained
coherent state with three different displacements with o = 0.2, 0.6 and 1.2, as shown in Fig.4.5.
This method obviously enables us to obtain an arbitrary displacement of coherent state as long
as the power of the modulated sidebands is much smaller than that of the LO.
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4.3.2 Interference between squeezed vacuum state and coherent state

As mentioned in previous section, the two-photon interference of a squeezed vacuum state and
coherent state can be considered as displacing a squeezed vacuum state. Hence we will discuss
the principle of generation displaced squeezed state in this section. We assume the modes of
squeezed vacuum state and coherent state as agq and Geop, respectively. After combined on a
high reflectivity beam splitter, the output state can be described as

dout = VRasg + VTacon, (4.3.1)

where R+ T = 1. We define the coherent state .o, = % + dacop With amplitude «,

Gout = V Risg + o+ VTdacon, (4.3.2)

For a high reflectivity beam splitter( R — 1), the output is re-expressed as

dout = VRigy + v. (4.3.3)

In practice experiment, the transmissivity T can not be neglected, and this influence is treated
as contamination of the vacuum field. In our experiment, we chose a beam splitter with reflec-
tivity of 95%. The results can be further improved using a beam splitter with reflectivity of 98%
or 99%.

& — + | o =

&

—ae— 1 AM )

¢ =

Fig. 4.6.  Generation of displaced squeezed state.
above: displaced amplitude squeezed state, below: displaced phase squeezed state.

W
e

Then we introduce the effect of the displaced squeezed state. As discussed above, we can
generate displaced squeezed state by interfering a squeezed vacuum state with a coherent state
on a beam splitter. Actually, a displaced squeezed state also can be regarded as displacing a
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squeezed vacuum state on a specific direction which was controlled by the phase of the coherent
state. If the phase of the coherent state is 0, the generated displaced squeezed state can be

regarded as displacing a squeezed vacuum state at amplitude direction or x direction. If the
ok
displacing a squeezed vacuum state at phase direction or p direction. In practice experiment, we

phase of the coherent state is the generated displaced squeezed state can be regarded as
can realize it by choosing different modulations (amplitude modulation and phase modulation).
In our experiment, we generated two kinds of displaced squeezed states by displacing two kinds
of squeezed vacuum state at x direction, as shown in Fig. 4.6.

We have produced two kinds of squeezed vacuum state (amplitude squeezed vacuum state
and phase squeezed vacuum state) in chapter 3. Using these two kinds of squeezed vacuum
states, we generated two kinds of displaced squeezed state by combining them with a coherent
state produced by amplitude modulating the beam from the MCC on a 95:5 beam splitter. The
principle setup is shown in Fig. 4.7.

__ Light from MCC

Squeezed EOM
vacuum state

a
»

PZT 6 %/ T

Fig. 4.7.  The principle setup of two-photon interference.

The generated displaced squeezed beam combined with a LO beam on a 50:50 beam splitter
and measured by a homodyne detector. The measurement and data acquisition systems (DAS)
are as same as that in measurement of coherent state. To confirm the generated displaced
squeezed states, we can reconstruct the Wigner function using the data from the homodyne
tomography. As an example, we generated an amplitude squeezed state with {V° = 0.87, Vi =
1.27,a = 0.39} and a phase squeezed state with {V? = 0.88, Vz =118, a= 0.6}. The Winger
function of the two displaced squeezed state were shown in Fig. 4.8. The obtained variance of
quadrature amplitudes and the displacement will be inserted into Eq.(4.2.29) and used to plot
the theoretical predictions of g(?(0) for the two kinds of displaced squeezed states.

4.4 Measurement of second-order correlation function ¢ (0)

4.4.1 Experimental setup of measurement system

In order to measure the second-order correlation function g(®(0), we separated the generated
displaced squeezed state into two beams with a 50:50 beam splitter, as shown in Fig. 4.10. The
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Fig. 4.8. Measurement results of displaced squeezed state.
left: displaced amplitude squeezed state, right: displaced phase squeezed state.

light from each output port of the beam splitter was received by two independent homodyne
detector. The homodyne condition fulfilled by a signal/LO power ratio of 1:1000. The relative
phase was actively controlled so as to measure the required either amplitude quadrature or phase
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quadrature . We estimate the total detection efficiency of 83%. The fringe visibility among the
LO beam, displaced beam and injection beam was shown in Table 4.1.

Table 4.1.  Visibility among all beams.

Visibility
LO1 and Inl 98.%
LO2 and In2 98.%
LO1 and Disl 92%
LO2 and Dis2 96%

LO:local oscillator beam, In: injection beam, Dis: displaced beam.

The photocurrents from the two photodiodes were subtracted from one another to give a signal
that was proportional to the quadrature amplitudes of signal beam. The relative phase between
the LO beam and displaced squeezed beam was controlled by a PZT mirror on the path of LO
beam. It was used to adjust the optical path length of the LO beam. An error signal to lock
the amplitude quadrature was accomplished by demodulating the amplitude modulation that
was left over from the Pound-Drever-Hall (PDH) locking of the OPA cavity length (AC lock).
The lock to the phase quadrature was obtained nulling the difference of the low-pass filtered
photocurrents (DC lock).

After locking quadrature amplitudes stably, we can acquire the data from the homodyne
detectors. The data acquired system is as same as that in homodyne tomography. Using the
data from the homodyne tomography, we can calculate the covariance and means of squared
quadratures, and finally reconstruct the ¢(®)(0) according to Eq.(4.2.23).
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4.4.2 Quadrature locking

To reconstruct the 9(2)(0), we should first measure the amplitude quadrature and phase
quadrature for the four permutations with (X2, X?2), (X}, Xcg), (ng, X?) and (ng, Xcg)
Hence, locking quadrature amplitudes stably is one of the most important and difficult work in
our homodyne detection measurement. We locked the anti-squeezing phase with direct current
(DC) lock and locked the squeezing phase with alternative current (AC) lock, respectively.

1. Locking quadrature phase using DC signal of the homodyne detector

To measure the phase quadrature of the electromagnetic field using homodyne detection sig-
nals, we locked the relative phase between the signal beam and LO beam on 0 or 7. When the
relative phase between signal beam and LO beam is 0 or 7, after mixing the two beams on a
50:50 beam splitter, the two output intensities from the beam splitter are equal. The principle
setup is shown in Fig. 4.11.

PZT 0

Fig. 4.10.  The principle setup of locking quadrature phase.

As shown in Fig.4.11, the DC components from the two detectors are subtracted from one
another and sent to proportional integral derivative controller (PID). By adjusting the PID, The
feedback signal from PID is sent to a high-voltage amplifier and send to the PZT mirror on the
LO beam. The optical path of the LO beam is controlled by scanning the PZT mirror which is
driven by the amplified feedback signal. Thus the relative phase between the signal beam and
LO beam can be controlled. The locking system locks the relative phase of the two beams to
the position where the output from the subtractor is zero.

2. Locking quadrature amplitude using AC signal of the homodyne detector
Similarly, to measure the amplitude quadrature of the electromagnetic field with homodyne

detector, we should lock the relative phase between the signal beam and LO beam on 0 or 7.
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When the relative phase between signal beam and LO beam is § or —7,

two beams on a 50:50 beam splitter, one of the output intensity is maximum, while another is

after interfering the

minimum. Hence we can lock one of the output beams at the maximum or minimum to make

the relative phase between the signal beam and LO beam is § or —F. The principle setup is

shown in Fig. 4.12.

PZT 6
o

)

N 7

Fig. 4.11.  The principle setup of locking quadrature amplitude.

As shown in Fig. 4.12, a 13 kHz sinusoidal modulation signal is generated from wave-function
and sent to a high-voltage amplifier. Then the amplified modulation signal is sent to PZT
mirror on the LO beam, and modulate the relative phase between the signal beam and LO
beam. The AC components from the beam splitter are subtracted from one another and mix
with a sinusoidal signal. Then the mixed signal is sent to PID and produce a error signal. The
error signal is also sent to high-voltage amplifier and PZT mirror on the LO beam.

4.4.3 Experimental procedure for whole experiment

Then we will introduce the whole experimental procedure for measuring the 9(2)(0), including
producing the squeezed vacuum state, preparing the coherent state and acquiring the data. The

main steps of the experiment are given as,

1. Mode match the 1064nm laser coherent light into SHG resonator and MCC resonator.
Lock the length of the SHG cavity and lock the laser frequency to MCC, respectively.

2. Adjust the injection light into OPA cavity for optimal mode matched into resonator.
Then, incident the pump light into the OPA and adjusted the two mirrors in the path of
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10.

11.

12.

13.

the pump beam so as to obtain the maximum classical gain. Check that the lock is stable
for de-amplification or amplification.

. Adjust and measure the fringe visibility between LO beam1 & injection beam1, LLO beam?2

& injection beam2, LO beaml & coherent beaml and LO beam2 & injection beam2 by
using two set of homodyne detectors.

. Confirm the power balance for all beams on a spectrum analyzer.

. Set the power of the pump beam, injection beam, coherent beam and LO beam with

P, =365mW, Py, = 1mW, P.,, = 1.3mW and Pro = 32mW

. Re-lock the relative phase between pump beam and injection beam for de-amplification,

re-lock the OPA cavity.

Check the squeezing level on a spectrum analyzer.

. Adjust a modulation depth for EOM.

. Lock the relative phase between the generated squeezed vacuum state and coherent state

to produce a displaced squeezed beam.

Lock relative phase between LO beam and generated displaced squeezed state on two
homodyne detectors and acquire the data. First lock to (XP, X?2) and record data; then

lock to (Xg, XQ) and record data; then lock to (Xb?', X?) and record data, then lock to

(sz, Xf ) and record data. Block the squeezed vacuum beam and coherent beam, and
detect the shot noise. Block all beam and detect the dark noise.

Change the modulation depth for EOM, and repeat the step 10.

Re-lock the relative phase in step 3 to amplification, and repeat the experiments for the
same modulation depth.

Choose another squeezing level by adjusting the pump power and repeat the experimental

procedure mention above.

4.5 Experimental results

The first step of our measurement is to measure the shot noise for the vacuum state, which is

used to calibrate the displacement («) of coherent state and the noise of all states generated in

our experiment. The shot noise is obtained by measuring the noise current from one of homodyne

detectors by blocking the signal beam, and this value serves as the unit of measurement for all

the measured states.
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4.5.1 The variance and the mean of the quadrature amplitudes

To investigate the two-photon interference, we should construct the second-order correlation
function with Eq. (4.2.23) which can be calculated with covariances and means of squared
quadrature of the mode b and c¢. Hence, we should first calculate the variances and means of
the quadrature amplitudes of the mode b and c¢, respectively.

After the phase of the LO beams are actively locked, The amplitude quadrature and phase
quadrature for beams b and c¢ are recorded. After the data are stored, the variance, the mean,
and covariance between beams b and ¢ can be calculated. Here, we give two measured results
for amplitude squeezed state with {V° = 0.87, Vi =127,a= 0.39} and phase squeezed state
with {V0 =0.88,V2 = 1.18, = 0.39} from our series of measured data as example. Table 4.2
shows the means and the variances of four permutations of the quadrature measurements for
amplitude squeezed state (ASS) and phase squeezed state (PSS).

Table 4.2.  Variances and means of generated states.

Quadrature X;r 2 Xl? X7 2 X'g

ASS Variance 1.30 0.95 1.22 0.93
Mean 0 0.82 0 0.75

PSY Variance 0.99 1.06 0.97 1.06
Mean 0 0.80 0 0.75

ASS: amplitude squeezed state, PSS: phase squeezed state.

Obviously, for the amplitude squeezed state, the variance of amplitude quadrature is below
the shot noise limit, while the phase quadrature is above the shot noise limit. One the other
hand, the variance of phase quadrature is below the shot noise limit and the variance of ampli-
tude quadrature is above the shot noise limit for the phase squeezed state. The means of the
quadrature amplitudes are used to determine the displacement («) of the coherent state which
can be controlled by amplitude modulating the laser light with an EOM.

4.5.2 Calculation of ¢®(0) with correlation measurement

To calculate g(?) (0), a convenient approach is to construct its covariance matrix for the squared
quadratures of the four permutations. The covariance matrix is described as

(4.5.1)

Ob,c =

7



We use the same data which was obtained above as example. For the amplitude squeezed state
with {V0 = 0.87, V=127 a= 0.39}, the covariance matrix is given by

3.32 0 0.10 0
4. -0.1

Obe = 0 & 0 019 . (4.5.2)
’ 0.10 0 2.98 0

0 =019 O 3.78

It clearly shows that the squared quadrature amplitude between mode b and c displays anti-
correlation ({(X{)?(X2)?) = ((X2)%(X})?) = —0.19) and the squared quadrature phase between
mode b and ¢ exhibits correlation (((XE)Q(X§)2) = <(X§)2(Xb%)2> = 0.10), respectively. Actu-
ally, these measured correlations come from the entanglement correlation which were produced
by combining a squeezed vacuum state and a coherent state on a beam splitter. Inserting the
covariances and means of squared quadratures into Eq.(4.2.23), a second-order correlation func-
tion of ¢g(?(0) = 0.81 < 1 is obtained. It clearly shows that photon anti-bunching effect is
observed and two-photon destructive interference occurs.

On the other hand, for the phase squeezed state with {V°? = 0.88, Vi=118,a= 0.39}, the

covariance matrix of squared quadratures from four permutations can be calculated as

197 0 004 O
0 842 0 0.32

004 0 190 O
0 032 0 6.33

Ob,c = (453)

Different from the previous case, there are only positive covariances or correlations of the squared
quadratures between the two modes b and c. In original entanglement correlation, there are
both correlations and anti-correlations between the two modes. Again inserting the values of
covariances and means into the Eq. (4.2.23), we can calculate a ¢?(0) = 1.37 > 1 which
indicates photon bunching effect due to two-photon constructive interference.

4.5.3 Second-order correlation function as a function of displacement

To find the effect of two-photon interference, we measured the second-order correlation func-
tion ¢®(0) for a small range of displacements « for the amplitude squeezed state with {V0 =
0.87,V2 = 1.27} and the phase squeezed state with {V? = 0.88, V2 = 1.18}, respectively. Fig.
4.13 shows the experimental results of g(2)(0) for the two different squeezed states with various
displacements of coherent state a.The displacement of coherent state can be controlled by the
amplitude of the modulation signal which is driven on the EOM for the coherent beam. From
Fig. 4.13, we can find that the plotted ¢(®)(0) shows appreciable deviation from one when the
displacement of the coherent state is less than a specific value, while approaching one when the
displacement is lager than this value. The measurement of ¢() (0) for the amplitude squeezed

state first decreases and finds a minimum value ¢ (0) = 0.81 < 1 at a = 0.39 on increasing the
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displacement of the coherent state. As the displacement increases further, 9(2)(0) monotonically
approached one. While 9(2) (0) for the phase squeezed state decreases monotonously to one as
the displacement of the coherent state increases.

The behavior of g(?) (0) indicates the photon statistics of generated field, photon anti-bunching
effect and photon bunching effect, which corresponded to destructive and constructive two-
photon interference between the squeezed vacuum state and the coherent state, respectively.

3.5

B Phase squeezed sate

® Amplitude squeezed state

Second-oreder correlation function

0.5 '
0.2 0.3

04 05 06 07 08 09
Displacement of coherent state ()

Fig. 4.12.  Experimental measurement of ¢(*)(0) as a function of displacement a

4.6 Discussion of the results

It should be borne in mind that the second-order correlation function in Eq. (4.2.12) is
extremely sensitive to the purity of the squeezed vacuum state and the coherent state. The best
results will be obtained only when both the squeezed state and coherent state are the minimum
uncertainty states (V0 x Vi = 1). For the coherent state, it was produced by transferring a
part of the optical power to the sidebands which makes it is almost a pure state. Hence, in
order to obtain a better g(Q)(()), we should generate a higher purity squeezed vacuum state.
In the present experiment, we prepared the amplitude squeezed vacuum state with a purity of
V0% V2 =0.87 % 1.27 = 1.13 and the phase squeezed vacuum state with a purity of VO V2 =
0.88 x 1.18 = 1.04, respectively. Recently, lots of techniques have been demonstrated to purify
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a squeezed state [?,102,103]. In our experiment, it can be realized by reducing the injection
beam power to decouple the extraneous noise and operate the OPA at far below threshold. We
can also obtain a higher purity squeezed vacuum state by choosing a larger analysis frequency.
We believe that the results can be significantly improved when a higher purity squeezed vacuum
state is used.

Another limitation of the experiment is the efficiency of the homodyne detector. The efficiency
of the homodyne detector can be written as 7z = 17,V? (1, is the quantum efficiency of the
detector and V?2 is the visibility of the signal beam and LO beam). Since the weak squeezed
vacuum state was used in our experiment in our experiment, the limitation of the quantum
efficiency is small and can be ignored. Thus the largest limitation of the detector is the visibility
of the signal beams and LO beam. We measured the visibility between the squeezed vacuum
state and the LO beam with 98% and visibility between the coherent state and the LO beam
with 92%. Obviously the visibility between the coherent state and LO beam can be improved
and a better results can be obtained.

4.7 Summary

We experimentally observed a continuous wave two-photon interference between a squeezed
vacuum state from an optical parametric amplifier and a weak coherent state on a beam splitter
by measuring the second correlation function with the homodyne detection system. A second-
order correlation function of g(?(0) = 0.81 < 1 , indicating the two-photon destructive inter-
ference, was observed when an amplitude squeezed vacuum state acts as one of interference
sources. On the other hand, the two-photon constructive interference of g(2) (0) = 1.37 > 1 was
also obtained when the phase squeezed vacuum state is employed as one of interference sources.
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Chapterb Summary and outlook

In this chapter, brief summary of the key results of this thesis are provided. From these
results, a number of future goals and investigations are identified.

5.1 Summary

Two-photon interference between a squeezed vacuum state from OPA and a weak coherent
state is of fundamental interest in quantum optics and widely used in in quantum information,
such as quantum communications generation of quantum state and quantum metrology. In this
thesis, we experimentally observed a two-photon interference between a squeezed vacuum state
and a coherent state on beam splitter with continuous variables by homodyne detection for the
first time. Two different photon statistics (photon bunching and photon anti-bunching) were
investigated by calculating the second-order correlation function from the measured quadrature
amplitudes, which are corresponding to constructive interference and destructive interference,
respectively. This provides another method to observe two-photon interference, and the main
work of this thesis are followed as:

A squeezed state with best squeezing of -1dB and anti-squeezing of 1.7dB at a wavelength
of 1064nm was produced from a below threshold optical parametric amplifier (OPA) with peri-
odically poled KTiOPO4 (PPKTP) crystal. The squeezing levels was controlled by the pump
power, thus we can obtain an appreciate squeezing level, such as 0.3dB in our experiment, to
realize the two-photon interference which was the core work of this thesis. By choosing an
appropriate relative phase between the pump beam and injection beam, the OPA could be con-
trolled so as to de-amplify or amplify the injection beam. This ensures to produce the amplitude
quadrature and phase quadrature squeezed state which were used as one of interference source
to realize the destructive interference and constructive interference, respectively.

With inverse Radon transform, we also reconstructed the Wigner function of different states
with by homodyne tomography. The reconstructed states intuitively characterizes the generated
vacuum states, coherent states, squeezed vacuum states and displaced squeezed states generated
in our experiment. They are consistent with the results which were observed on the spectrum
analyzer.

In this research, two-photon interference between a squeezed vacuum state and a weak coherent
state with continuous wave laser source by homodyne detection system for the first time. Photon
anti-bunching and bunching of the mixed field were investigated by calculating the correlations
among four permutations of measured quadratures components, which were obtained by two
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homodyne detection systems. The nonclassical effect of photon anti-bunching of ¢(? 0) =
0.81 < 1, indicating the two-photon destructive interference, was observed when an amplitude
squeezed vacuum state was used as one of interference sources. On the other hand, the two-
photon constructive interference of (2 (0) = 1.37 > 1 was also observed when the phase squeezed

vacuum state was used.

5.2 Outlook

What follows are some ideas that can build on the work that we have done so far.

Firstly, observation of the two-photon interference at multi-analysis frequencies. T'wo-photon
interference was widely used for generation of a single-photon state and entangled photon states
for quantum information technology [105,106]. In our experiment, the two-photon interference
occurs at sidebands of the laser frequency. Hence, this makes it possible to produce quantum
states at the sidebands of the laser frequency. It is easy to further extend sideband components
using optical frequency comb technique [107]. Adding the generation of the wideband squeezed
state [108], this opens an approach to produce a single-photon frequency comb. We believe
it leads to potential applications for future multi-channel quantum communications technology
[109-111].

Secondly, extending the two-photon interference to multi-photon interference. In our present
experiment, we observed the two-photon interference by measuring the second-order correlation
function of mixed states with a modified HBT interferometer, and it was mainly composed
of two homodyne detections. According to our theoretical prediction, the value of the third-
order [112] and four-order correlation function is oscillating by the change of displacement of
the coherent state. There must be more information contained in third-order or four-order
correlation functions, which will exist some interesting ptoperties of light. We can develop
our experimental setup to divide our mixed state into three or four equal intensity beams,
and each of them is combined with a strong local oscillator and measure the two quadrature
components. Using this equipment and signal algorithm, we could measure the third-order
and four-order correlation function which clearly demonstrate the quantum mechanical nature
of light. Actually, the physical principle behind the measuring process is three-photon and
four-photon interference [113].
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Resume

% E#E (Daohua Wu) R 54401 H 14 H HETHEEZNS

2 i
SRR 09 FE 09 H 01 H 2 s K 7Y 175 B TRE 8 AF
SERS 13 4R 06 A 30 H Ak IS
SRR 18 AE 09 H 01 H  ZZEIRZFE R F B & MERIR Za s R s L3R A%
SR 21 406 H 30 H 6 &7
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