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Arctic tundra landscapes are composed of a complex mosaic of patterned ground features, varying in soil
moisture, vegetation composition, and surface hydrology over small spatial scales (10–100m). The
importance of microtopography and associated geomorphic landforms in influencing ecosystem structure
and function is well founded, however, spatial data products describing local to regional scale distribution of
patterned ground or polygonal tundra geomorphology are largely unavailable. Thus, our understanding of
local impacts on regional scale processes (e.g., carbon dynamics) may be limited. We produced two key
spatiotemporal datasets spanning the Arctic Coastal Plain of northern Alaska (~60,000 km2) to evaluate
climate-geomorphological controls on arctic tundra productivity change, using (1) a novel 30m
classification of polygonal tundra geomorphology and (2) decadal-trends in surface greenness using the
Landsat archive (1999–2014). These datasets can be easily integrated and adapted in an array of local to
regional applications such as (1) upscaling plot-level measurements (e.g., carbon/energy fluxes), (2)
mapping of soils, vegetation, or permafrost, and/or (3) initializing ecosystem biogeochemistry, hydrology,
and/or habitat modeling.

Design Type time series design • observation design

Measurement Type(s) geographic feature • vegetation layer

Technology Type(s) image analysis • computational modeling technique

Factor Type(s) spatiotemporal_interval

Sample Characteristic(s) North Slope Borough • tundra • coastal plain
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Background & Summary
Arctic polygonal tundra landscapes are highly heterogeneous, disproportionately distributed across
mesotopographic gradients, varying in surficial geology, ground ice content, and soil thermal regimes1,2.
The high density of ice wedges present in this low relief landscape facilitates subtle variations (~0.5 m) in
surface microtopography, markedly influencing hydrology3,4, biogeochemistry5–10, and vegetation
structure11,12. Fine-scale differences in microtopography have been shown to control a variety of key
ecosystem attributes and processes that influence ecosystem function, such as snow distribution and
depth13, surface and subsurface hydrology13,14, vegetation composition2,11,12, carbon dioxide and
methane fluxes5,6,15,16, soil carbon and nitrogen content17–19, and an array of soil characteristics18,20.
Despite the prominent control of microtopography and associated geomorphology on ecosystem
function, land cover data products available to represent landforms across the Pan-Arctic are strikingly
limited21. The relative absence of these key geospatial datasets characterizing permafrost lowlands, may
severely limit our ability to understand local scale controls on regional to global scale patterns and
processes21.

Datasets presented here were developed to investigate the potential local to regional controls on past
and future trajectories of arctic tundra vegetation productivity22, inferred from spatiotemporal patterns of
change in the Normalized Difference Vegetation Index (NDVI). We present two geospatial data products,
(1) a 30 m resolution tundra geomorphology map, and (2) a decadal scale NDVI trend map (1999–2014),
developed to represent the landform heterogeneity and associated productivity change across the Arctic
Coastal Plain (ACP) of northern Alaska (~60,000 km2). We validated the tundra geomorphology map
using 1000 reference sites, and evaluated the sensor bias used to develop the NDVI trend map. Produced
geospatial datasets will be useful for an array of applications, some of which may include the (1) upscaling
of plot-level measurements (e.g., carbon and energy fluxes), (2) mapping of soils, vegetation, or
permafrost, and/or (3) initializing ecosystem biogeochemistry, hydrology, and/or habitat modeling.

Methods
Polygonal tundra geomorphology mapping
We focused this mapping initiative on the Arctic Coastal tundra region of northern Alaska, which
stretches from the western coast along the Chukchi sea to the Beaufort coastal plains at the Alaskan-
Canadian border (latitude: 68–71˚ N; longitude: 140–167˚ W). Two ecological landscape units (~60,000
km2), the Arctic peaty lowlands and the Arctic sandy lowlands were used to define the spatial extent of
the ACP23. The region is dominated by continuous permafrost several hundred meters thick24.
Permafrost ground ice content ranges from low in sandy lowlands to very high in peaty lowlands23,25,
while the maximum active layer depth ranges from 20–120 cm26. These two arctic tundra regions (i.e.,
sandy and peaty lowlands) were specifically targeted in this analysis, due to their geomorphologic
similarity to ~1.9 million km2 of tundra across the Pan-Arctic27. The tundra mapping approach described
here will be useful for the development of comparable products across northern latitudes. Refer to the
primary research article22, for detailed site descriptions.

Image processing
Twelve cloud free Landsat 8 satellite images were acquired during the summers of 2013 and 2014, used in
the tundra geomorphology classification (Table 1). All Landsat data products were downloaded from the
United States Geological Survey (USGS) earth explorer web-based platform (https://earthexplorer.usgs.
gov). We used only the 9 spectral bands provided by the Operational Land Imager (OLI) instrument for
mapping, while ignoring the 2 additional Thermal Infrared Sensor (TIRS) bands due to defective optics in
the infrared sensor28. Landsat 8 OLI spectral bands include (1) coastal/aerosol (Ultra blue), (2) blue, (3)
green, (4) red, (5) near infrared (NIR), (6) shortwave infrared 1 (SWIR1), (7) shortwave infrared 2
(SWIR2), (8) panchromatic, and (9) cirrus. Prior to image mosaicking, reflectance values were
normalized across satellite scenes, by calculating top-of-atmosphere reflectance29, which minimized the
radiometric difference between images associated with varying atmospheric conditions, acquisition dates,
and solar zenith angles29, while the Landsat Surface Reflectance Code (LaSRC) was used for atmospheric
correction. Images were mosaicked within ArcGISTM 10.4 (ESRI).

Image classification
We expand upon geomorphic mapping procedures developed for a subregion of the ACP of northern
Alaska on the Barrow Peninsula (1800 km2)5, using a novel automated object based image analysis
(OBIA) approach for tundra geomorphic mapping across the ACP (58,691 km2). The OBIA land cover
classifier (eCognition™ version 9.1, Trimble) was parameterized using various rules, thresholds, spectral
indices, and proximity functions using individual and combined spectral bands, spectral indices, and
geometric object shapes/sizes (i.e., perimeter, area, roundness) and corresponding reference data (i.e.,
field/ground truth points and high resolution aerial/satellite imagery) to differentiate between
geomorphic landforms (Fig. 1). Fifteen tundra geomorphic landforms were mapped at 30 × 30 m spatial
resolution (Fig. 2a), including (qualitatively ranked from wet to dry), coastal saline water (CS), lakes
(large:>90 ha, medium:≤ 90 and >20 ha, small:≤ 20 ha), rivers, ponds, coalescent low-center polygons
(CLC), nonpatterned drained thaw lake basins (nDTLB), low-center polygons (LC), sandy barrens (SB),
flat-center polygons (FC), riparian corridors (RC), high-center polygons (HC), drained slopes (DS), sand

www.nature.com/sdata/

SCIENTIFIC DATA | 5:180058 | DOI: 10.1038/sdata.2018.58 2

https://earthexplorer.usgs.gov
https://earthexplorer.usgs.gov


dunes (SD), ice/snow (Ice), and urban. Spectral indices used in image classification included Albedo30,
Normalized Difference Vegetation Index (NDVI)31 (ρNIR- ρRed

ρNIRþρRed
), Normalized Difference Water Index

(NDWI)32 (ρGreen - ρNIR
ρGreenþρNIR

), and BlueMax ( ρBlue
ρMaxDif f

), where MaxDiff refers to the maximum difference between
all bands (1-9).

All pixels within the processed Landsat 8 image mosaic were aggregated into clusters or image ‘objects’
based on similar spectral properties of neighbouring pixels using multiresolution segmentation and
spectral difference algorithms. These segmentation algorithms were parameterized to represent object
characteristics such as shape, compactness, and spectral similarity. We split all image objects into two
broad classes, wet tundra and dry tundra using NDWI thresholds, identified using landform specific field

Product ID Sensor Satellite Year* Month* Day*

LC80690112013249LGN00 OLI/TIRS Landsat 8 2013 Sept. 5

LC80720112013254LGN00 OLI/TIRS Landsat 8 2013 Sept. 10

LC80740112014191LGN00 OLI/TIRS Landsat 8 2014 July 9

LC80770102013193LGN00 OLI/TIRS Landsat 8 2013 July 11

LC80770112013193LGN00 OLI/TIRS Landsat 8 2013 July 11

LC80790102013191LGN00 OLI/TIRS Landsat 8 2013 July 9

LC80800102014217LGN00 OLI/TIRS Landsat 8 2014 Aug. 4

LC80800112014249LGN00 OLI/TIRS Landsat 8 2014 Sept. 5

LC80820122013244LGN00 OLI/TIRS Landsat 8 2013 Aug. 31

LC80830102014222LGN00 OLI/TIRS Landsat 8 2014 Aug. 9

LC80830112014190LGN00 OLI/TIRS Landsat 8 2014 July 8

LC80840122013194LGN00 OLI/TIRS Landsat 8 2013 July 12

Table 1. Mosaicked Landsat scenes used to create the tundra geomorphology map. *Acquisition date.

Figure 1. Simplistic schematic representation of the classification procedure used to map polygonal tundra

geomorphology on the ACP. Underlined text represents Band, Area, Function, or Index thresholds used for

assigning classes. Proximity functions are used to reclassify image objects based on distance from another

geomorphic landform. See ‘Tundra Classification’ section for acronym definitions.
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Figure 2. Geospatial datasets representing the heterogeneity in both landform and NDVI across the ACP

of northern Alaska. The tundra geomorphology map (a) was validated with 1000 reference sites (700 and 300

in the Arctic Peaty Lowlands and Arctic Sandy Lowlands, respectively) using 249 SPOT-5 ortho-tiles (b), while

the NDVI trend map (c) was developed using between 40 to 110 image observations per 30 m pixel (d).
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observations5,15. The following classification procedure (Fig. 1, Supplementary File 1), extracts all image
objects from wet and dry tundra and reclassifies them into specific geomorphic landforms.

Wet Tundra Classification. We decomposed our classification of wet tundra into three steps, (1)
extraction of CLC and nDTLB, (2) open water body differentiation, and (3) rectification of
misclassifications. Initially, we differentiated CLC from all wet tundra objects using a low productivity
(NDVI) threshold, which was associated with sparse vegetation cover and the presence of open water.
Although, both CLC and nDTLB are found in aquatic to wet environments, we differentiated CLC from
nDTLB landforms using the characteristically high NDVI values of nDTLB5,15 and morphological
features. Due to the rapid formation of nDTLB following lake drainage33, this young geomorphic
landform often contains a relatively large non-polygonal surface area34 (i.e., limited effects of ice
aggregation and heaving processes associated with microtopographic variability), thus we use a moderate
edge to area ratio and high NDVI threshold for nDTLB feature extraction.

All unvegetated open water pixels were extracted using a low-moderate blue band threshold (Fig. 1). A
spectral difference segmentation algorithm, was looped 5x to iteratively combine all neighbouring open
water objects with similar spectral properties. This object merging process enabled the identification of
each spatially isolated water body (i.e., lake, pond, or river), where structural properties such as area,
perimeter, or edge (i.e., perimeter) to area ratio can be used to differentiate waterbodies. Therefore, we
defined CS, lakes, and ponds using structural properties, area and edge to area ratio. Water bodies were
decomposed into CS (>100,000 ha) large lakes (≤ 100,000 > 90 ha), medium lakes (≤ 90 > 20 ha), small
lakes (≤ 20 >1 ha), and ponds (≤ 1 ha). The 100,000 ha area threshold was used to define CS to avoid
large lake misclassification errors, as Teshekpuk Lake (70.61˚ N, −153.56˚ W), has an area of ~83,000 ha.
Due to misclassifications of ponds as lakes, associated with the high interconnectivity between irregularly
structured open water objects, we used a low edge to area ratio on lakes, to ensure accurate classification
of ponds. Rivers were differentiated from all open water objects using a NDVI threshold and a
‘roundness’ function. Integrating both approaches successfully extracted rivers, as high NDVI thresholds
were used to differentiate open water from vegetated aquatic standing water objects, and low roundness
values identified the characteristic elongated and meandering structure of rivers. Despite the late summer
image acquisition dates used in this classification (Table 1), ice/snow image objects identified using high
SWIR2 thresholds, were found in large lakes or adjacent to steep topographic gradients such as river
valleys or near a snow fence. All ice/snow objects that occurred on lakes were reclassified as lake area,
while the remaining ice/snow was reclassified as Ice.

Although, classification functions developed for wet tundra performed well, the majority of
misclassifications were associated with the relatively course spatial resolution object patch size (30 m).
To rectify these misclassifications, we used neighborhood or proximity functions to develop relationships
between nearby geomorphic landforms using spectral and structural parameters for nDTLB, CLC, pond,
and lakes. For example, nDTLB was often misclassified as CLC or pond, occurring near lake perimeters.
Because aquatic-wet landforms occurring near lake perimeters are typically represented by nDTLB,
having recently formed after partial or complete lake drainage, we reclassified older landforms such as
CLC and ponds adjacent to lakes as nDTLBs. All remaining unclassified wet tundra objects that did
not meet the criteria for nDTLB, CLC, pond, river, CS, or lakes in wet tundra were classified as LC
(i.e., dominant wet geomorphic landform).

Dry Tundra Classification. We differentiated landforms in dry tundra following two steps, (1)
threshold identification and extraction of FC and RC, and (2) rectification of misclassifications. A series
of reference sites identified from ground based observations and/or oblique aerial photography were used
to define NDWI and NDVI thresholds needed to extract FC and RC, respectively. These two geomorphic
landforms were difficult to classify due to the similarity in vegetation composition and surface hydrology.
However, we were able to differentiate between these two landforms, as FC was slightly higher in surface
wetness, associated with the 2 fold difference in trough area relative to HC5. The high variability in NDVI
of shrub canopies in RC relative to other landforms, made RC difficult to extract. Nevertheless, because
RC typically occurred near riverine environments, we used both a low-moderate NDVI threshold and a
proximity function adjacent to rivers to extract RC. Sand and gravel objects were easily extracted using a
high BlueMax threshold. All lightly vegetated wet-moist sand and gravel objects were classified as SB
using a moderate-high NDVI threshold, whereas drier sand and gravel objects were classified as SD. Due
to the use of sand and gravel in the development of urban infrastructure such as roads and buildings,
automated procedures initially classified these feature as SD, as they had a similar spectral signature.
However, we manually reclassified SD as Urban near native Alaskan villages and oil drilling platforms
(i.e., near Prudhoe Bay). Although, we made significant progress with the development of classification
procedures for Urban landforms using spectral patterns and geometric structures, we abandoned this
development due to the relatively limited area impacted by urban infrastructure across the ACP.
Additionally, DS was extracted using a high albedo threshold, as this landform was very dry and often
dominated by lichen plant communities, which are highly reflective15. Similar to misclassifications
associated with object patch size identified in wet tundra, we found analogous misclassifications of SB
near rivers as CLC and ponds. Therefore, we reclassified CLC and pond classes that were adjacent to
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rivers as SB. All remaining unclassified dry tundra objects not classified as DS, FC, RC, SB, SD, or Urban
were classified as HC (i.e., dominant dry geomorphic landform).

Decadal scale NDVI trend analysis
Following the approach of Nitze & Grosse35, the NDVI trend map (Fig. 2d) was computed using all
available imagery collected from the Landsat sensors Thematic Mapper (TM), Enhanced Thematic
Mapper+ (ETM+), and Observing Land Imager (OLI), acquired between July 1st and August 30th
(i.e., peak growing season) of 1999-2014, across the ACP. We excluded imagery preceding 1999 due to
the paucity of image acquisition and limited coverage across the ACP. All surface reflectance data used to
derive this product were downloaded as radiometrically and geometrically terrain-corrected product from
the USGS EROS Science Processing Architecture interface (https://espa.cr.usgs.gov). The ‘FMask’
algorithm36 was used to detect and mask out all non-valid data, such as clouds, shadows, snow/ice,
and nodata pixels. For each pixel, linear trends of NDVI were calculated using the non-parametric
Theil-Sen linear regression method, which calculates the median of all possible slopes across every point
in time37,38. The Theil-Sen regression is robust against outliers and outperforms least-squares regression
in remote sensing data39. Each pixel within the NDVI trend map was based on a total of 40-110 Landsat
images (Fig. 2c) for the Theil-Sen slope calculation. The final NDVI trend product was spatiotemporally
similar to coarser resolution products40,41 identifying heterogeneous patterns of greening and browning
across the ACP of northern Alaska.

Data Records
The presented ACP tundra geomorphology map (Data Citation 1), NDVI trend map (Data Citation 2)
and all spatial and climate data used in Lara et al.22 are archived at the Scenarios Network of Alaska and
Arctic Planning (SNAP) data portal. These spatial data products were clipped to the ACP domain and
formatted as geotiff rasters.

Although the tundra geomorphic map was developed using OBIA which clusters spectrally similar
nearby pixels into objects, the final map was resampled at the original 30 ×30 m pixel resolution and
presented as a single-band raster (Fig. 2a). The map attribute table includes the following data columns:
geomorphic landform (i.e., sand dune, low-center polygon), area (km2), and soil moisture regime (SMR).
In addition, a color palette file (.clc) is provided to reproduce map (Fig. 2a). The annotated functions and
code used for the classification of tundra landforms within eCognition™ v. 9.1, are made available in the
supplementary information. All threshold values were replaced with qualitative ranges (i.e., low, low-
moderate, moderate, moderate-high, or high) as reflectance values and image statistics will vary between
scenes, thus user specific refinement will be required. Further, it is important to note that the
classification procedure developed here has only been evaluated in lowland arctic tundra ecosystems and
misclassifications may arise if applied in dissimilar tundra environments. For example, we applied the
developed classification procedure to higher elevation drier hillslope tundra, south of the ACP, finding
the rate of misclassification to increase, as algorithms/functions were initially developed explicitly for
polygonal tundra similar to the ACP of northern Alaska. To include different tundra landforms with
different vegetation, hydrology, and soil characteristics, further development will be required.

The NDVI trend map is presented as a four-band raster (Fig. 2d). Band 1 represents the decadal scale
rate of change or slope calculated by the Theil-Sen regression. Band 2 represents the intercept or the
NDVI data scaled to the year 2014. While, Band 3 and 4 are the upper and lower 95% confidence
intervals of the slope of each individual pixel.

Technical Validation
Tundra Geomorphology Map
To validate the tundra geomorphology map, we used an array of oblique aerial/ground based
photography and 249 high resolution Satellite Pour l’Observation de la Terre 5 (SPOT-5) orthorectified
image tiles covering >80% of the ACP, provided by the Geographic Information Network of Alaska
(GINA, gina.alaska.edu). A stratified random sampling of 700 and 300 reference sites in the Arctic peaty
lowlands and Arctic sandy lowlands23, respectively (Fig. 2b), were used for the accuracy assessment. At
each of the 1000 sites, we manually generated a reference dataset for geomorphic landforms using high
resolution products (Table 2, Supplementary Table 2). This process has been used previously5, identifying
95.5% agreement between reference sites (e.g., geomorphology) generated from satellite platforms relative
to that observed on the ground.

Overall map accuracy was 75.7% and Cohens Kappa was 0.725 (Table 3), suggesting the strength of
agreement between the independent validation (i.e., reference) dataset and classification to be good to
very good42,43. Our map had relatively high user and producer accuracies (Table 3), with the exception of
FC, which had a producer accuracy of 40.5%. This relatively low producer accuracy was expected as we
had difficulties identifying unique spectral and structural characteristics of FC that that differed from HC.
This identification challenge was highlighted in the accuracy assessment, as 64% of misclassified FC were
classified as HC, similar to other tundra geomorphic classifications5. The relatively low producer
accuracies for FC, CLC, and DS are likely associated with the challenge of decomposing a complex
continuously evolving geomorphic landscape13,33,44,45 such as the Arctic tundra into discrete landform
units. Despite these difficulties, our accuracy assessment suggests the tundra geomorphology map well
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represented the spatial distribution and heterogeneity of tundra landforms. We present for the first time,
a detailed framework for characterizing arctic tundra landforms across the Pan-Arctic.

NDVI Trend Map
We evaluated the potential sensor bias between TM, ETM+, and OLI, used to derive the NDVI Trend
Map by comparing the mean value for each pixel, year, and sensor computed from three different
locations in northern Alaska (Fig. 3). Each location was composed of 40,000 pixels (~36 km2). The three
centroids of each location are found in the (1) Arctic sandy lowlands of the ACP (longitude: −154.50,
latitude: 70.09), (2) foothills of the Brooks Range on the North Slope (longitude: -159.61, latitude: 66.60),
and (3) Selawik lowlands in northwestern Alaska (longitude: −152.92, latitude: 69.29). Minor
discrepancies were to be expected between sensor platforms as the images were not acquired at the
same time or day.

We identified minor NDVI sensor biases between sensors (Fig. 3), while sensor specific NDVI
distributions were consistent. Most of the data used to generate the NDVI trend map was acquired from
the ETM+ sensor, as it was available throughout our data acquisition window (i.e., 1999–2014), whereas
data from TM and OLI were only available between 2005-2011 and 2013-2014, respectively. Mean sensor
bias estimates for TM and OLI across all subregions of Alaska, indicate NDVI to be slightly under- and
overestimated relative to ETM+, though the variability was high within each year and subregion (Fig. 3).

Ecological Landscape Landform Latitude Longitude

Arctic Peaty Lowland non-patterned Drained Thaw Lake Basin 71.236855 −156.3785131

Arctic Peaty Lowland High-center polygon 71.210642 −156.4676783

Arctic Peaty Lowland Pond 71.191358 −156.3469935

Arctic Peaty Lowland River 70.181085 −147.2617363

Arctic Peaty Lowland Riparian corridor 70.165456 −148.4265964

Arctic Sandy Lowland Lake 70.166375 −154.2431094

Arctic Sandy Lowland Drained slope 70.160143 −153.6316156

Arctic Sandy Lowland Sand dune 70.3493 −152.7590333

Table 2. Example of the reference dataset generated to validate the tundra geomorphology map. The
complete (1000 point) reference dataset can be found in the Supplementary Table 2.

Reference Sites

Geomorphic type SB SD RC DS HC FC LC nDTLB CLC Pond River Lake CS User accuracy

Classification

SB 12 2 2 1 63%

SD 3 12 2 71%

RC 4 1 80%

DS 50 19 4 69%

HC 35 215 30 22 2 70%

FC 11 32 3 71%

LC 1 6 34 11 152 5 7 2 70%

nDTLB 3 16 53 1 1 2 70%

CLC 2 2 15 2 71%

Pond 18 100%

River 2 2 2 10 63%

Lake 1 1 156 99%

CS 1 28 97%

Producer accuracy 71% 100% 80% 55% 75% 41% 77% 82% 56% 100% 83% 96% 100% 1000

Overall accuracy 76%

Cohens Kappa 0.73

Table 3. Accuracy assessment represented as a confusion matrix. Bolded diagonal values within the
matrix represent correctly identified pixels, where User and Producer accuracies are presented on the right
vertical axis and bottom horizontal axis.
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The minor sensor bias identified here, was similar to that identified across North American high latitude
terrestrial ecosystems41. Although, it is likely that sensors are slightly positively (OLI) and negatively
(TM) biased with respect to ETM+ across northern Alaska, sensor calibrations appeared to well represent
the tundra subregion on the ACP (Fig. 3). NDVI values from both TM and OLI sensors clustered
above and below the 1 to 1 line for the subregion on the ACP (Fig. 3), suggesting NDVI data was not
positively or negatively skewed between sensors. A slight positive linear NDVI bias (+0.00063) was
detected across all sensor data, suggesting a satisfactory agreement between sensors used to compute
NDVI on the ACP.
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