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We present results on the distribution of εNd and [Nd] from the TAG hydrothermal vent

field and adjacent locations collected during the GEOTRACES GA03 cruise in October

2011. Our results show that Nd isotopes directly below and above the plume do not

significantly deviate from average NADW (εNd =−12.3± 0.2). Within the plume, however,

isotope values are shifted slightly toward more radiogenic values up to εNd = −11.4.

Interestingly at the same time a significant decrease in [Nd] along with rare earth element

(REE) fractionation is observed, indicating enhanced scavenging within the plume despite

the change in Nd isotopes. Elemental concentrations of Nd are reduced by 19.6–

18.5 pmol/kg, coinciding with the maximum increase of mantle derived helium (xs3He)

from 0.203 to 0.675 fmol/kg, resulting in an average 1.8 pmol/kg decrease in [Nd] relative

to an expected linear increase with depth. The inventory loss of Nd within the plume sums

up to 614 nmoles/m2, or 6%, if a continuous increase of [Nd] with depth is assumed.

Compared to BATS and the western adjacent station USGT11-14, the local inventory loss

is even higher at 10%. The tight relationship of xs3He increase and [Nd] decrease allows

us to estimate scavenging rates at TAG suggesting 40 mol/year are removed within the

TAG plume. A global estimate using power output along ocean ridges yields an annual Nd

removal of 3.44 × 106 mol/year, which is about 71% of riverine and dust flux combined

or 6–8% of the estimated global flux of Nd into the ocean. The change in Nd isotopic

composition of up to 0.7 more radiogenic εNd values suggests an exchange process

between hydrothermally derived particles and seawater in which during the removal

process an estimated 1.1 mol/year of hydrothermal Nd is contributed to the seawater at

the TAG site. This estimate is only 0.1% of the global Nd signal added to the ocean by

boundary exchange processes at ocean margins, limiting the ability of changing the Nd

isotopic composition on a global scale in contrast to the more significant estimated sink

of elemental Nd in hydrothermal plumes from this study.
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INTRODUCTION

The isotopic composition of the rare earth
elements (REE) neodymium (Nd), expressed in
εNd = {(143Nd/144Nd)sample/(

143Nd/144Nd)CHUR−1} × 104,
with CHUR = 0.512638 (Jacobsen and Wasserburg, 1980), has
been widely used as water mass tracer for modern and paleo
ocean circulation patterns (Piepgras and Wasserburg, 1982;
Goldstein and Hemming, 2003; Piotrowski et al., 2004; Pena and
Goldstein, 2014). Despite continued investigation, the sources
and sinks in the Nd cycle are complicated to quantify: Rivers and
dust input only contribute a relatively small amount of Nd into
the ocean and influence mostly the upper mixed layer with ∼4.3
× 106 moles/year (Goldstein and Jacobsen, 1987; Tachikawa
et al., 1999, 2003; Arsouze et al., 2009; Rempfer et al., 2011), an
additional “missing flux” of 3.8 to 5.5× 107 mol/year (Tachikawa
et al., 2003; Rempfer et al., 2011) is needed to yield an oceanic
residence time short enough to explain the heterogeneous
distribution of εNd in seawater (Goldstein and Hemming, 2003;
Tachikawa et al., 2003; Arsouze et al., 2009). The missing flux has
been identified as an exchange process, which enables decoupling
of Nd isotope composition from Nd concentration (Lacan and
Jeandel, 2005; Arsouze et al., 2007, 2009). Recently, the role of
ocean margins has received particular attention, as they are a
principle player in the global marine cycle of trace elements
and their isotopes (TEI) (Lacan and Jeandel, 2001; Jeandel and
Oelkers, 2015; Rousseau et al., 2015). From these and other
studies, it arose that shelf sediments are a key source and sink
of TEI. A more complex source-sink interplay has been invoked
for hydrothermal activity and their associated plume dispersion
in the deep ocean. While for iron (Fe) (Klunder et al., 2011;
Conway and John, 2014; Resing et al., 2015) or manganese
(Mn) (Middag et al., 2010; Hatta et al., 2015), hydrothermal
activities are an important source, REE are scavenged when
hydrothermal fluid mixes with seawater (Klinkhammer et al.,
1983; German et al., 1991; Elderfield and Schultz, 1996). In
addition, a potential influence of hydrothermal activity on the
marine Nd isotopic composition has not been documented yet.
One of the most recent studies in the Southeast Pacific Ocean has
already suggested that the deep water Nd isotopic composition is
influenced by hydrothermal activity (Jeandel et al., 2013). These
authors observed an εNd increase from −6 in the Southeastern
Pacific, typical for water masses of Southern Ocean origin (Carter
et al., 2012; Grasse et al., 2012; Stichel et al., 2012; Basak et al.,
2015), to−3.7, which was interpreted as potential influence from
the East Pacific Rise. However, REE patterns did not show any
difference from the other samples in that profile. The scarcity
of available combined REE and εNd data from hydrothermal
plumes has so far limited the study of the impact of hydrothermal
activity in geochemical models to the Nd cycle, whereas such
systems were not included in previous modeling studies of the
global seawater εNd distribution (Jones et al., 2008; Siddall et al.,
2008; Arsouze et al., 2009; Rempfer et al., 2011).

Here we present for the first time a coupled profile of
REE concentrations and Nd isotopic composition within the
Trans-Atlantic Geotraverse (TAG) hydrothermal plume, one
of the most intensely studied hydrothermal sites. We will

compare the TAG profile with stations in the West Atlantic,
such as the Bermuda Atlantic Time Series (BATS: USGT11-
10 and Pahnke et al., 2012) and an adjacent station west of
the vent field (USGT11-14) to determine changes in the Nd
budget caused by hydrothermal plumes (Figure 1). The three
profiles were sampled along the US-GEOTRACESNorth Atlantic
Zonal Transect (NAZT). The TAG station and USGT11-14 are
located within the North Atlantic Gyre between the Gulf Stream
and North Atlantic Drift (NAD) in the north and the North
Equatorial Current (NEC) in the south. Station BATS is located
at the western edge of the North Atlantic Gyre, where the Deep
Western Boundary Current (DWBC) transports North Atlantic
Deep Water (NADW) to the south (Figure 1). The presence of
the hydrothermal plume at TAG is indicated by a significant
increase in primordial He (δ3He, Jenkins et al., 2015a). In this
study, we will use this enrichment in δ3He, expressed in excess
He (xs3He), to identify the extent of the plume, referring to all
samples with this enrichment as “within the plume.”

METHODS

Samples were collected during the second leg of the US-
GEOTRACES GA03 North Atlantic Zonal Transect (NAZT) on
the R/V Knorr (KN204-1). The TAG station was sampled Nov.
28 2011 with 11 consecutive CTD casts. Neodymium and other
REE concentrations, Nd isotopes and He isotopes were measured
from the same cast and bottles. Sample preparation for Nd and
Nd isotopes is described in Stichel et al. (2015). Samples were
collected in 10 L Niskin bottles mounted on a stainless steel
CTD rosette (Conductivity, Temperature, Depth) with additional
sensors for beam attenuation and fluoresence. Sub-samples
of about 5 L were filtered through AcroPak500 (0.8/0.45µm)
filter cartridges into acid-cleaned pre-weighed LDPE collapsible
containers and acidified to pH <2 with 2mL 6M HCl (quartz
distilled, for all mineral acids) per L seawater. In the home
laboratory sub-samples were weighed and an enriched 146Nd
spike was added gravimetrically to yield an optimum146Nd/142Nd
close to 1. Sub-samples were pre-concentrated by adjusting the
pH to ∼3.5 and successively pumping through C18 cartridges
(waters, WAT051910) loaded with 350 µL Bis(2-ethylhexyl)
hydrogen phosphate (HDEHP, CAS:298-07-7) at 20 mL/min.
Barium and remaining sea salts were eluted with 5mL 0.01M
HCl and REEs were collected with 30mL 6M HCl. Prior to pre-
concentration the loaded cartridges were cleaned with 2mL 6M
HCl followed by a rinse with MilliQ water (18.2 MΩcm) until
pH settled to 5. The eluted REE solution was dried down and 600
µL aqua regia was added to oxidize organic compounds followed
by an evaporation step. The residual was dried down again twice
using 1mL 1M HNO3. The final sample was taken up in 0.5mL
1M HNO3 and loaded onto a 100 µL TRU-resin bed (Eichrom,
100–150µm bead size). Further elution of 5 resin volumes 1M
HNO3 removed Ca, Sr and remaining Ba. Light REE were
collected with 4 resin volumes of 1MHCl. Purification of Nd was
achieved using Teflon distilled 0.2M alpha- hydroxyisobutyric
acid (Alpha-HIBA) adjusted to a pH of 4.5 on ∼700 µL of
AG50W-X8 (200–400 mesh) resin. Procedural blanks (onboard
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FIGURE 1 | Study area with sampled locations USGT11-10 (BATS, yellow square), USGT11-14 (blue triangle), and USGT11-16 (TAG, red circle). Major currents of the

North Atlantic Gyre are illustrated as surface currents in dashed white lines (Gulf Stream, North Atlantic Drift, NAD and North Equatorial Current, NEC) and the Deep

Western Boundary Current (DWBC, black line). The figure is designed with ODV® software (Schlitzer, 2016a).

acidified MilliQ water) showed a negligible amount of Nd of
<1.5% of the smallest sample size.

Isotopic composition of TAG was measured on a Thermal
Ionization Mass Spectrometer (TIMS, VG-Sector) as NdO+

using 1 µL silica gel as activator (see Stichel et al. (2015) for
details) at University of Hawaii yielding an external error of
±0.2 εNd, 2SD with n = 29. Isotopic composition of USGT11-
10 and USGT11-14 was measured using a Thermo Neptune-Plus
Multi-Collector ICP-MS at Lamont-Doherty Earth Observatory
(LDEO) and University of South Carolina (USC), respectively. At
LDEO, a JNdi-1Nd standardwasmeasured before and after every
sample and for three analysis periods yielded an average external
error of ±0.3 εNd, 2SD, with n = 83. At USC, a JNdi-1 standard
wasmeasured every four samples with an aimed intensity of 2.5V
on 145Nd. The resulting average external error of 143Nd/144Nd
was±0.4 εNd, 2SD, n= 53.

All three labs corrected for internal mass fractionation using
146Nd/144Nd = 0.7219 in an exponential mass fractionation
law and their respective biases from the accepted value of
143Nd/144Nd = 0.512115 (Tanaka et al., 2000) for the JNdi-1 Nd
standard.

Rare earth elements concentrations were measured at the
University of Oldenburg using an offline seaFAST isotope
dilution ICP-MS method described in Behrens et al. (2016). The
method is intercalibrated with three other laboratories and agrees
within analytical uncertainty with the intercalibration results
from BATS (Pahnke et al., 2012; Behrens et al., 2016). The
external reproducibility of the data presented here is <4% (RSD)
except for La (5%) and Ce (8%).

RESULTS AND DISCUSSION

Vertical and Lateral Distribution of Water
Masses at TAG
With a few exceptions, the vertical distribution in Figure 2 and
Table 1 of Nd concentrations [Nd] and isotopic compositions

(εNd) in the water column at TAG follows similar patterns
as profiles in the West Atlantic (BATS and USGT11-14) and
the East Atlantic (e.g., USGT10-05, Stichel et al., 2015 not
shown). Surface [Nd] of 15.6 pmol/kg at TAG is slightly elevated
and with an isotopic composition of εNd = −11.3 ± 0.2 less
radiogenic compared to USGT11-14 (15.1 pmol/kg, εNd = −8.4
± 1.6), BATS (14 pmol/kg, εNd = −9.5 to −9.2, this study and
Pahnke et al., 2012) and USGT10-05 (12.5 pmol/kg, εNd = −9.9,
Stichel et al., 2015), which can be attributed to dust deposits
from the extension of the Sahara dust plume (Mahowald et al.,
2005). Within the surface layer at TAG, [Nd] decrease to a
minimum at 111m coinciding with the fluorometer potential
maximum, suggesting scavenging within the mixed layer by
biological productivity (Figure 2, Table 1). From this minimum
in [Nd], an increase from 13.7 to 17.8 pmol/kg at 960m is
attributed to remineralization (Stichel et al., 2015; Lambelet
et al., 2016). The sharpest increase in [Nd] is between 111
and 420m (+3.3 pmol/kg). Within this depth range, εNd stays
fairly constant with some fluctuations −10.9 ± 1.3 (2SD) and
gradually decreases to less radiogenic values of εNd = −11.9 at
around 1,000m marking the transition of North Atlantic Central
Water (NACW) to NADW. At about 1,500m, the presence
of ∼80% Upper Labrador Sea Water (ULSW, Jenkins et al.,
2015b) corresponds to the least radiogenic isotope composition
of εNd =−12.8. Within the Classical Labrador Seawater (CLSW),
at 2,100 and 2,990m, the isotopic composition is more radiogenic
and constant at around −12.1 ± 0.1. From 420m, [Nd] is
constant to 2,100m and increases from 17.5 ± 0.5 to 19.6
pmol/kg at 2,990m. The typical increase below 2,000m was
documented in other studies in the Atlantic Ocean and most
recently, based on high resolution profiles, has been attributed
to a combination of increase from particle release and lateral
advection of preformed REE along with reversible scavenging
(Siddall et al., 2008; Stichel et al., 2015; Lambelet et al., 2016;
Zheng et al., 2016). This increasing slope in [Nd] is interrupted
by a sudden decrease at 3,184m, coinciding with the upper
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FIGURE 2 | Vertical distribution of dissolved Nd concentration (A), Nd isotopic composition (B) and (C) mantle derived excess He (xs3He, Jenkins et al., 2015a).

Color coding the same as in Figure 1. The dashed red line shows the vertical position of the neutrally buoyant hydrothermal plume in the water column. The figure is

designed with ODV® software (Schlitzer, 2016a).

extent of the TAG hydrothermal plume (Jenkins et al., 2015a).
[Nd] reaches a minimum of 18.48 pmol/kg within the plume,
at the depth of maximum mantle derived excess helium (xs3He,
Jenkins et al., 2015a). Neodymium isotopes increase by +0.7 at
this maximum of xs3He. Below the plume, [Nd] and εNd settle
back to values that would follow their respective trends above
the plume. Using the average [Nd] of two sample depths and
multiplying by the vertical distance between these samples, we
can calculate the inventory of Nd in the water column by adding
up the inventories of each depth interval. If the [Nd] profile
followed a simplified but expected linear increase with depth
from 2,000m to the seafloor, the inventory at the plume depth
should be 10,493 nmol/m2. The actual Nd inventory, however,
is 9,879 nmol/m2 due to the lower [Nd] at the TAG plume.
The calculated deficit in the Nd inventory between 2,987m and
3,487m at TAG station therefore adds up to 614 nmol/m2 or
about 6% (Figure 2A). However, compared to stations USGT11-
14 at 27.58◦N 49.63◦W and BATS (USGT11-10), the overall
[Nd] at TAG is much lower. Using the [Nd] increase slope of
these 2 stations as a reference, the Nd inventory is reduced by
roughly 10% (1,362 nmol/m2) between 2,987 and 3,605m from
the BATS inventory of about 13,837 to 12,474 nmol/m2 at this
depth (Figure 2).

TAG Hydrothermal Plume and Its Influence
on REE Distribution
At the TAG site, other dissolved REE overall show a similar trend
as [Nd] (Table 2). However, we observe some fractionation of
light and heavy REE (LREE, HREE) within the water column.
At about 110m water depth, where [Nd] is at its lowest value
(13.7 pmol/kg, Figure 2) the enrichment of PAAS (Taylor and
McLennan, 1985) normalized HREE (Tm+Yb+Lu)N over LREE
(La+Pr+Nd)N is at a maximum value of 5.29 (Figure 3),
with N for normalization to Post Archaean Australian Shale
(PAAS, Taylor and McLennan, 1985). It has been documented
in earlier studies that LREE are preferentially scavenged onto
particles in the upper water column over HREE (Elderfield and
Greaves, 1982) and corroborates that scavenging on particles
formed at the chl-max is the main driver of [Nd] decrease.
Toward 960m HREEN/LREEN continue their decreasing trend,
suggesting release from particles as [Nd] increases in the water
column. At the core of upper NADW (1,200m), these ratios
peak at 4.19 and only slightly change up to 4.62 in lower
NADW (1,500–2,000m). Within the TAG plume a preferential
scavenging of LREE is observed again. This feature coincides
with a strong increase in Eu/Eu∗ = (2 × EuN/{SmN + GdN})
from 0.965 to 1.22, suggesting the presence of mantle derived Eu
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TABLE 1 | Vertical distribution of Nd isotopic composition and concentration, along with xs3He, δ
3He and He concentrations of Jenkins et al. (2015a).

Depth 143Nd/144Nd int. error ε
a
Nd

ext. error [Nd] xs3Heb δ
3Heb [He]b

(m) (SEM) (2SD) (pmol/kg) (fmol/kg) (%) (pmol/kg)

USGT11-16 3 0.512058 0.000006 −11.30 0.22 15.6

26.136◦N/44.826◦W 40 0.512062 0.000008 −11.24 0.31 15.7 0.005 −1.43 1.68

Depth: 3,810m 90 0.512099 0.000009 −10.51 0.36 14.4 0.010 −1.21 1.68

111 0.512060 0.000014 −11.28 0.53 13.7 0.008 −1.31 1.69

186 0.512111 0.000010 −10.28 0.40 14.0 0.025 −0.62 1.70

235 0.512101 0.000005 −10.48 0.24 14.7 0.030 −0.43 1.70

420 0.512043 0.000015 −11.61 0.58 17.0 0.081 1.62 1.74

801 0.512038 0.000005 −11.70 0.24 17.5 0.220 7.26 1.76

962 0.512026 0.000015 −11.95 0.58 17.7 0.168 5.02 1.78

1,194 0.512030 0.000006 −11.85 0.22 17.4 0.168 5.01 1.78

1,493 0.511979 0.000008 −12.85 0.31 17.3 0.205 6.54 1.77

2,092 0.512014 0.000008 −12.17 0.31 17.1 0.199 6.23 1.79

2,987 0.512018 0.000009 −12.09 0.36 19.6 0.207 6.35 1.83

3,184 0.512052 0.000005 −11.43 0.24 18.5 0.675 24.4 1.86

3,284 0.512038 0.000005 −11.71 0.24 18.8 0.623 22.5 1.85

3,384 0.512038 0.000005 −11.71 0.24 19.5 0.484 16.8 1.88

3,487 0.512028 0.000005 −11.90 0.24 21.4 0.200 6.09 1.83

3,605 0.512025 0.000005 −11.96 0.24 21.6 0.162 4.66 1.80

USGT11-10 42 0.512149 0.000005 −9.53 0.22 0.004 −1.49 1.68

31.737◦N/64.19◦W 76 0.512157 0.000004 −9.39 0.22 0.001 −1.59 1.68

Depth: 4,527m 89 0.512144 0.000005 −9.64 0.22 0.017 −0.94 1.72

110 0.512126 0.000006 −9.98 0.38 13.7 0.015 −1.06 1.70

182 0.512124 0.000005 −10.03 0.38 0.012 −1.20 1.70

233 0.512136 0.000005 −9.80 0.24 0.016 −1.04 1.71

281 0.512120 0.000004 −10.11 0.24 0.017 −0.98 1.72

497 0.512093 0.000005 −10.63 0.24 0.055 0.60 1.71

797 0.512058 0.000003 −11.32 0.38 17.2 0.182 5.71 1.76

969 0.511970 0.000004 −13.03 0.22 18.1 0.205 6.56 1.77

1,197 0.511943 0.000006 −13.55 0.22 18.3

1,493 0.511939 0.000003 −13.63 0.22 17.8 0.224 7.28 1.78

1,794 0.511946 0.000005 −13.50 0.22 17.1 0.242 7.97 1.79

2,094 0.511970 0.000004 −13.03 0.22 16.8 0.215 6.80 1.80

2,289 0.511984 0.000005 −12.75 0.38 16.9 0.185 5.42 1.84

2,990 0.511981 0.000004 −12.81 0.38 20.3 0.174 5.10 1.82

3,584 0.511996 0.000004 −12.52 0.22 25.2 0.185 5.46 1.83

4,179 0.511986 0.000003 −12.72 0.22 28.7 0.181 4.90 1.94

4,419 0.511990 0.000003 −12.65 0.38 28.9 0.177 4.87 1.91

4,431 0.511980 0.000003 −12.84 0.38

4,462 0.511998 0.000006 −12.48 0.24

4,493 0.512005 0.000005 −12.35 0.24

4,511 0.511984 0.000003 −12.76 0.24 29.5

4,523 0.511993 0.000004 −12.58 0.22 29.0 0.168 4.88 1.81

4,531 0.511975 0.000004 −12.94 0.24

4,550 0.511982 0.000007 −12.79 0.24

USGT11-14 1 0.512209 0.000041 −8.37 1.58 15.1

27.583◦N/49.633◦W 40 0.512099 0.000006 −10.51 0.24 15.2 0.000 −1.62 1.68

Depth: 4,501m 69 0.512118 0.000011 −10.15 0.42 12.5 0.002 −1.56 1.69

99 0.512104 0.000004 −10.42 0.14 14.6 0.010 −1.26 1.70

(Continued)
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TABLE 1 | Continued

Depth 143Nd/144Nd int. error ǫ
a
Nd

ext. error [Nd] xs3Heb δ
3Heb [He]b

(m) (SEM) (2SD) (pmol/kg) (fmol/kg) (%) (pmol/kg)

114 0.512102 0.000012 −10.46 0.45 12.9 0.009 −1.28 1.70

134 0.512119 0.000007 −10.12 0.26 12.9 0.014 −1.09 1.71

184 0.512130 0.000006 −9.90 0.24 13.2 0.031 −0.38 1.71

234 0.512121 0.000005 −10.09 0.19 14.9 0.067 1.11 1.71

429 0.512086 0.000008 −10.77 0.32 15.1 0.179 5.67 1.74

647 0.512047 0.000004 −11.53 0.16 18.7 0.229 7.63 1.76

773 0.512063 0.000006 −11.22 0.24 16.6 0.195 6.19 1.76

965 0.512035 0.000007 −11.77 0.29 15.9 0.206 6.55 1.78

1,196 0.512013 0.000006 −12.20 0.22 16.4

1,448 0.511994 0.000005 −12.56 0.2 15.8 0.203 6.50 1.77

1,794 0.512022 0.000007 −12.01 0.26 15.4 0.193 5.97 1.79

2,394 0.512022 0.000008 −12.01 0.3 18.8 0.182 5.46 1.81

2,696 0.512029 0.000016 −11.88 0.6 16.3 0.172 5.03 1.81

3,395 0.512036 0.000016 −11.74 0.62 23.2 0.121 2.99 1.81

3,990 0.512015 0.000005 −12.16 0.2 28.9 0.121 2.98 1.82

4,094 0.512018 0.000011 −12.10 0.44 27.2

4,218 0.512013 0.000006 −12.20 0.22 26.7 0.128 3.28 1.81

aεNd = {R/CHUR−1} × 10,000, with R = 143Nd/144Nd and CHUR = 0.512638 (Jacobsen and Wasserburg, 1980). bData from Jenkins et al. (2015a).

FIGURE 3 | Vertical distribution of Eu/Eu* (A), PAAS (Taylor and McLennan, 1985) normalized Dy/Er (B) and HREE (Tm+Yb+Lu) over LREE (La+Pr+Nd) (C) and their

associated anomalies within the TAG plume at station USGT11-16. The figure is designed with ODV® software (Schlitzer, 2016a).

leached out of basaltic plagioclases, and amoderate decrease from
0.704 to 0.626 in the overall homogenous DyN/ErN at the highest
xs3He, indicating the influence of hydrothermal activity on REE
(Figure 3).

Implications on the Global Nd Cycle
The significant depletion of [Nd] within the hydrothermal plume
correlates well with xs3He (Jenkins et al., 2015a), in that high
excess He corresponds to low [Nd] and vice versa (Figure 4A).

The depletion of [Nd] within the TAG plume thus corroborates
that hydrothermal activity is a net sink for Nd and other REE
(German et al., 1990) and is attributed to the formation of
ferrihydrite (Ohnemus and Lam, 2015) co-precipitating REE.
With paired He and Nd data available from one hydrothermal
plume for the first time, we revisit this scavenging by estimating
the annual removal of Nd using an approach suggested in
Jenkins et al. (2015a). If we assume a linear increase of Nd with
depth below ∼2,000m such as observed at stations USGT11-10
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FIGURE 4 | Comparison of xs3He and Nd (A) and Nd isotopic composition (B) at stations USGT11-14 and TAG between 3,184 and 3,605m. The figure is designed

with ODV® software (Schlitzer, 2016a).

and−14, the minimum average deficit of Nd within the plume
is about 1.8 pmol/kg by the shape of the profile of TAG station.
Since [Nd] in the plume negatively correlate with xs3He, we
can make use of this relationship to estimate Nd scavenging
rates based on He fluxes (Jenkins et al., 2015a). The net heat
injection into the plume is ∼100 J/kg at the plume maximum,
which is accompanied by an xs3He anomaly of 0.73 fmol/kg
yielding a He:heat ratio of ∼7.3 × 10−18 mol/J (Jenkins et al.,
2015a). Applying this to Nd, we get a Nd:heat ratio −1.8 ×

10−14 mol/J. Jenkins et al. (2015a) have used the estimated power
output at TAG of 70 × 106 W (Goto et al., 2003) to compute
3He output (15 mmol/year), and based on the tight correlation
of He and Nd, we derive a scavenging rate of∼40 mol/year. This
local removal of Nd is around 6 orders of magnitude smaller
than the annual estimated Nd flux of 3.8–5.5 × 107 mol/year
(Tachikawa et al., 2003; Rempfer et al., 2011) into the ocean.
We are aware that it is difficult and prone to high uncertainty
to extrapolate from a single site to a global estimate. However,
if we assume similar particle loads in other hydrothermal vent
fields, and we extrapolate this He-Nd-heat relationship to a global
estimate using a global heat flux of ∼3.2 × 1012 W along ocean
ridges (Stein et al., 2013), the removal rate by hydrothermal
activity sums up to ∼1.8 × 106 mol/year. This is about the same
as the estimated dust input of 1.8 × 106 mol/year (Rempfer
et al., 2011). Again, this is an estimate based on the data this
study here provides and it does not take into account factors
that could influence hydrothermal plume dispersion such as
changing deep ocean currents or differences in ridge geometry.
Nevertheless, we argue that the heat flux-He relationship is a
valid approach, because the global 3He flux is only slightly higher
than recently modeled global 3He fluxes of 450 ± 50 mol/year
(Schlitzer, 2016b) compared to 686 mol/year using the values
reported in Jenkins et al. (2015a). Our estimate suggests that
global hydrothermal activity removes as much Nd from the water
column as Nd is released from dust. As mentioned earlier, this
number is based on Nd deficit within the profile of the TAG

station. If we use the inventory deficit based on the increase of
[Nd] with depth at USGT11-10 and −14, which show stronger
[Nd] increase with depth, the Nd loss would be about 1.9 times
higher, yielding ∼3.4 × 106 mol/year, which is about 71% of
riverine and dust flux combined (Goldstein and Jacobsen, 1987;
Tachikawa et al., 1999, 2003; Arsouze et al., 2009; Rempfer et al.,
2011) or 6–8% of the estimated total global flux (Tachikawa et al.,
2003; Rempfer et al., 2011) of Nd into the ocean.

Isotopic Exchange Processes
The [Nd] depletion is accompanied by a slight increase in εNd
from−12.1± 0.4 above to−11.4± 0.2 (2SD) at the maximum of
the plume (Figures 2, 4B and Table 1), suggesting an exchange of
Nd isotopes between seawater and a hydrothermal source. While
scavenging of REE within a hydrothermal plume by Fe-Mn oxide
particles that form as hydrothermal fluids get in contact with
oxic seawater has been suggested earlier (German et al., 1990),
an isotopic influence on the water column by hydrothermal
activity has, to our knowledge, not been documented before.
Even though Nd is removed from the water column, the shift
in isotopic composition toward more radiogenic values suggests
an exchange process that releases radiogenic Nd into the water
column to alter its isotopic composition locally. The peak
excursion of ∼0.7 εNd units coincides with the local minimum
of [Nd] within the plume. We therefore use the above derived
removal flux for Nd (40 mol/year) for a mass balance to calculate
the extra Nd needed to explain the shift in the seawater isotopic
composition using an end-member εNd composition close to
that of vent fluids (εNdvent = +11.9, Mills et al., 2001). We
assume here that this end-member composition is found in an
unknown hydrothermal flux added to the system (Fvent) that
is then scavenged within the plume in exchange with ambient
seawater. In steady state, the removal of Nd within the plume
(Fplume, i.e., 40 mol/year) must be further balanced by the
addition of seawater (Fsw), hence the sum of ’fresh’ Nd supplied
by seawater and Fvent is equal to Fplume. The mass balance would
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then follow this relationship: εNdplume(Fplume) = εNdsw(Fplume-
Fvent)+ εNdvent(Fvent). With εNdplume and εNdsw representing the
isotopic composition within the plume (−11.4) and outside the
plume (−12.1), respectively. Solving for Fvent, the observed shift
in the Nd isotopic composition along with the scavenging of 40
mol/year needs to be balanced by a release of ∼1.1 mol/year Nd
to yield the observed isotopic composition within the plume. So
the TAG hydrothermal plume is a net sink for Nd and REE in
general, however, by isotopic exchange processes the Nd isotopic
composition of seawater is altered towardmore radiogenic values
relative to surrounding water masses. If we assume similar
exchange processes in other hydrothermal systems, we can
estimate a global flux released from hydrothermal systems. This
yields 5.2 × 104 mol/year, accounting for only 0.1% of the
estimated release (Tachikawa et al., 2003; Rempfer et al., 2011)
from boundary exchange. This suggests that the removal of
Nd from seawater by hydrothermal vents is about 35–66 times
higher than the Nd added to seawater by these systems. This
estimate suggests that on a basin wide scale, the influence of a
hydrothermally derived Nd isotopic signal is low and limits the
ability to change Nd isotopic seawater composition. However,
the influence on [Nd] as a sink is noticeable as mentioned
in the previous section and should be taken into account in
forthcoming modeling estimates of the Nd cycle.

SUMMARY

For the first time a neutrally buoyant hydrothermal plume
was sampled for seawater Nd isotopic composition and REE
concentrations and compared with xs3He on a GEOTRACES
section cruise (GA03). The data show a clear influence of the
hydrothermal plume on the REE concentrations andNd isotopes.
Shale (PAAS, Taylor and McLennan, 1985) normalized Eu/Eu∗,
Dy/Er and HREE (Tm+Yb+Lu) over LREE (La+Pr+Nd) show
clear influence within the hydrothermal plume. The presence of
mantle derived Eu is indicated by a significant positive Eu/Eu∗

at the maximum of xs3He. Fractionation of REE is evident
by the relative enrichment of HREE over LREE within the
plume. This is further corroborated by decreasing DyN/ErN.
Elemental concentrations of Nd are reduced by 19.6–18.5
pmol/kg, coinciding with the maximum increase of xs3He from
0.205 to 0.675 fmol/kg, resulting in an average 1.8 pmol/kg
decrease in [Nd] relative to an expected linear increase with
depth. The inventory loss of Nd within the plume sums up to
∼614 nmol/m2, or 6%. Compared to BATS and the western

adjacent station USGT11-14, the local inventory loss is even
higher at 10%. The tight relationship of xsHe3 increase and
[Nd] decrease allows us to estimate scavenging rates at TAG
suggesting ∼40 mol/year are removed within the TAG plume.
A global estimate using power output of ∼3.2 × 1012 W along
ocean ridges (Stein et al., 2013) yields an annual Nd removal
of ∼3.4 × 106 mol/year, which is about 71% of riverine and
dust flux combined (Goldstein and Jacobsen, 1987; Tachikawa
et al., 1999, 2003; Arsouze et al., 2009; Rempfer et al., 2011) or
6–8% of the estimated total global flux (Tachikawa et al., 2003;
Rempfer et al., 2011) of Nd into the ocean. The change in Nd

isotopic composition of up to 0.7 more radiogenic εNd values
suggests an exchange process between hydrothermally derived
particles and seawater in which during the removal process an
estimated 1.1 mol/year of hydrothermal Nd is contributed to
the seawater at the TAG site. This estimate is ∼0.1% of the
global Nd signal added to the ocean by boundary exchange
processes at ocean margins (Tachikawa et al., 2003; Rempfer
et al., 2011), limiting the ability of changing the Nd isotopic
composition on a global scale in contrast to the more significant
estimated sink of elemental Nd in hydrothermal plumes from this
study.
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