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Abstract  

Complete mixing of the water column of lakes is important to ensure that 

nutrients and dissolved oxygen are replenished and equalized throughout the lake.  

This ensures that organisms within the lake at all trophic levels can perform 

necessarily metabolism and have a maximized habitat range. Lakes that receive 

effluent high in total dissolved solids from mine operations can be prevented from 

performing complete water column turnover. When this occurs the lake is termed 

meromictic. Two lakes, one naturally remediating and the other actively receiving 

effluent discharge, have both exhibited historical meromictic conditions 

(meromixis). Over a three year period, the water quality in both lakes was analyzed 

and related to their current meromictic state. The CE-QUAL-W2 model was 

calibrated to predict total dissolved solids concentrations within the active receiver 

lake and one-year predictive simulations were run with total dissolved solids 

reductions of 10%, 25%, 50% and 75% at the lake inflow. The lake undergoing 

natural remediation exhibited substantial breakdown of meromictic stability during 

the study and was deemed monomictic while the active receiver demonstrated 

meromictic stability and variability in mixolimnion turnover depth. Calibration of 

CE-QUAL-W2 revealed that fluctuations in surface total dissolved solid 

concentrations and dissolved organic carbon from natural and effluent inputs had 

substantial influences on heat distribution in the effluent receiver. Reducing total 

dissolved solids inputs into the active receiver lake only elicited change in 

mixolimnion total dissolved solids concentrations but little change in 

monimolimnion concentrations. The 50% and 75% reduction simulations resulted 

in a much shallower mixolimnion depth and stronger meromictic stability in the 

lake. 
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Lay Summary 

The Lakehead University Department of Biology mission statement is as 

follows, "Faculty and students in the Department of Biology are bound together by a 

common interest in explaining the diversity of life, the fit between form and 

function, and the distribution and abundance of organisms." This project is focused 

on the limnological science field of biology. Within an aquatic habitat, water column 

mixing controls feeding and reproduction habits of organisms across many trophic 

levels. Water column mixing controls the distribution of heat and availability of 

nutrients and oxygen for these organisms. Researching and modeling how lakes 

physically and chemically respond and progress through mixing alterations due to 

industrial influence is an essential first step to understanding how the biotic 

components of the lake also respond. The goals and discoveries of this thesis will 

not only outline the future health and state of the study lakes but will also attempt 

to relate this to improvement in habitat as well.  
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General Introduction 

Water Quality of Gold Mining Effluent Discharge 

Water is used as the medium for the chemical reactions that extract gold 

from the ore (gold-containing rock) in the milling processes at gold mines. Many 

reagents are added to the process water to optimize gold extraction. Although the 

reagents used can vary depending on the extraction process, common reagents 

include calcium hydroxide (Ca(OH)2), sodium hydroxide (NaOH), sodium cyanide 

(NaCN), potassium amyl xanthate (PAX) and copper sulphate (CuSO4). These 

reagents aid in efficient removal of gold from the ore and balancing of pH within the 

mill process. After gold removal, the mill process water is treated. Cyanide is 

removed via sulphur dioxide treatment (Devuyst EA et al 1989) and metal removal 

utilizes either ferric chloride (FeCl) or ferric sulphate (Fe3(SO4)2) to precipitate and 

collect the heavy metals as a floc/colloid (Matilainen et al 2005, Veolia 2011) and 

Ca(OH)2 to balance pH. Even after treatment, the discharge water (effluent) typically 

still contains elevated concentrations of calcium (Ca2+), chloride (Cl-), sodium (Na+), 

magnesium (Mg2+), potassium (K+) and sulphate (SO4-2) that can be sourced to 

either the mill reagents or the chemical composition of the ore itself. These elevated 

ion concentrations quickly increase the salinity and density of the freshwater 

systems receiving the effluent and can alter natural water column mixing and flow 

patterns. Many biological and chemical cycles are altered as a result of elevating ion 

concentrations in freshwater lakes, however, the focus here will largely be on the 

effects of water column mixing. 

Lake Mixing: Dimictic Lakes 

Lakes in which the whole water column mixes or turns-over are classified as 

holomictic and when this turnover occurs twice annually, the lake is further 

classified as dimictic (Hutchinson and Loffler 1955, Lewis 1983). Depending on 

latitude, this commonly occurs during spring and fall. These lakes are termed 

dimictic because they mix twice per year. Water column mixing, although controlled 

by many variables, is influenced in large part by the strength of the density gradient 

across the water column, from the lake surface, to the lake sediment (Birge 1916, 
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Hutchinson 1957, Schmidt 1928, Walker 1974, Hakala 2004). A water-column 

density gradient can be attributed to a difference in temperature and/or salinity. 

When discussing this gradient in relation to either temperature or salinity, the 

terms thermal stability and chemical stability are used, respectively. The larger the 

difference in temperature and/or salinity across the water, the stronger the density 

gradient and the more work or energy needed for complete water column mixing 

(Birge 1916, Schmidt 1928). Since a majority of Canada’s freshwater lakes have 

relatively low background salinity (Armstrong FAJ and Schindler DW 1971, Moser et 

al 1998), most density gradients within these lakes result from changes in water 

temperature influenced by hot summers and cold, ice-forming winters. Therefore, 

temperature has dominant control over water column mixing in a majority of 

Canada’s freshwater lakes. This is why these lakes are able to mix in the spring and 

fall; when the temperature gradient deteriorates and the lake becomes isothermal 

(same temp from surface to bottom) (Hutchinson and Loffler 1955). 

Temperature gradients generally produce three distinct layers (strata) 

within a water body: the epilimnion, metalimnion and hypolimnion (Hutchinson 

1957, Imberger 1985). The epilimnion contains low-density, warm water in the 

surface strata while the hypolimnion contains high-density, cold water in the lower 

strata (Hutchinson 1957, Imberger 1985). The epi- and hypolimnions are separated 

by a stratum of rapid temperature change known as the metalimnion and on a plot 

of depth vs. temperature; the linear gradient of temperature change within the 

metalimnion is the thermocline (Hutchinson 1957, Imberger 1985). 

Lake Mixing: Meromictic Lakes  

The dimictic, seasonal cycle of water column mixing (turnover) can be 

altered if a large input of saline water into a freshwater lake occurs, such as releases 

of effluent from mining operations. This influx of highly saline water can cause 

salinity to have the dominant control of water column density rather than 

temperature (Walker 1974, Miller et al 1993). If a strong salinity gradient develops, 

there will still be resistance for the lake to fully mix, even if isothermal temperatures 

occur. A lake where full water column turnover is not possible is termed a 
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meromictic lake (Findenegg 1935, Lewis 1983, Northcote and Halsey 1969) and the 

lake is said to have meromictic stability. If meromictic conditions result from saline 

water introduction from surface inflow, it is more specifically termed ectogenic 

meromixis (Boehrer and Schultze 2008, Ficker et al 2011, Hutchinson 1957). In a 

freshwater receiving environment, saline water will plunge towards the lake bottom 

because it is more dense than the water contained within the lake (Hogg et al 2013, 

Imberger and Hamblin 1982). If a large enough volume of saline water is 

introduced, a mixolimnion (low-salinity, surface-water strata) overlaying a 

monimolimnion (high-salinity, deep-water strata) will result (Findenegg 1935, 

Hutchinson 1937). The stratum of rapid salinity change between these layers is 

termed the chemolimnion and contains the linear chemocline gradient (Hutchinson 

1937) (Figure I). Mixo- and monimolimnion strata will be unable to mix with each 

other because of the difference in density between them (Hutchinson 1957, Boehrer 

and Schultze 2008). True meromictic conditions are defined by the maintained 

presence and stability of these layers through turnover events. The low-salinity 

mixolimnion is maintained by settling of ionic compounds to lower strata and low-

salinity precipitation and melt-water run-off (Boehrer and Schultze 2008). The 

mixolimnion has the ability to mix within itself during isothermal conditions in the 

spring and fall, and the mixolimnion depth and turnover depth are the same during 

this time (Boehrer and Schultze 2008). The mixolimnion also contains the thermal 

layers present in a typical thermally-stratified lake (epi-, meta- and hypolimnion) 

(Boehrer and Schultze 2008). The monimolimnion has the ability to mix within itself 

as well, although to a lower extent (Likens and Hasler 1960). This is similar to 

mixing that can occur within the hypolimnion of a thermally-stratified lake 

(Hutchinson 1938, McCarter et al 1952).  
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Figure I. Schematic of the layers within a meromictic lake (modified from Gammon 

et al 2009). Layers not proportionally represented. 

Variables Affecting Lake Mixing and Meromictic Events   

After meromixis has established in a lake, a variety of natural processes that 

can progress the lake back towards holomixis (complete turnover) by equalizing the 

density of mixo- and monimolimnion waters. Attempting to predict lake mixing 

events and if holomixis will reoccur requires understanding of the dominant 

mechanisms and lake characteristics that affect mixing within a specific study lake. 

Some of these mechanisms and characteristics may include wind effects, 

topographic sheltering, solar radiation/heating, bathymetry, basin morphometry, 

precipitation, evaporation and surface inflow/outflow location and water quality. 

Each lake system is physically and chemically unique and there is variability in 

which characteristics and mechanisms are dominant in regulating whether 

meromictic stratification is maintained or deteriorated. Each meromictic lake 

progresses uniquely through a meromictic event.  

Wind Effects and Topographic Sheltering  

Lake mixing and meromictic stability are largely affected by wind action on 

the lake surface (Birge 1916, Walker 1974). The magnitude of the wind’s effect on a 

lake is site specific and varies depending on wind characteristics, such as speed and 

direction, sheltering structures such as topography and vegetation and lake 

characteristics such as fetch and bathymetry. These variables are dynamically linked 

and their effect on wind-induced lake mixing has been studied in the laboratory 

using wind tunnels (Markfort et al 2010) as well as in the field, utilizing 

meteorological stations situated at various lake locations while simultaneously 

measuring water temperature changes at depth (Huber et al 2008). The roughness 
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and height of surrounding topography and vegetation dictates its wind-sheltering 

ability and the effect of these variables can change since lake shorelines often have 

heterogeneous composition (forest, wetland, grassland, mountains etc.). If wind 

direction changes, there is also change in the fetch and the sheltering structures the 

wind interacts with prior to reaching the lake. Long Lake in Washington is an 

example where the predominant wind direction and fetch directly impact water 

quality (Berger et al 2004). Due to lake orientation and pre-dominant wind 

direction, cyanobacteria populations are pushed to one end of this reservoir, 

impacting temperature as well as dissolved oxygen (DO) levels. Wind speed also 

contributes to the effect of the wind on lake mixing and water quality. It was found 

that high wind speeds experienced by an open pit lake for a period of four days 

forced a lowering of the thermocline by ~10 m (Huber et al 2008).  

Lake Mary and Stewart’s Dark Lake in Wisconsin, Hall Lake in Washington 

and Yellow Lake in British Columbia are lakes where meromictic stability persists 

even though the difference in density between the mixo- and monimolimnions is 

small (Edmondson 1964, Likens and Hasler 1960, Northcote and Hasley 1969, 

Weimer and Lee 1973). High wind sheltering of these lakes by their surrounding 

topography has reduced the ability of these lakes to mix and this is thought to have 

initiated meromixis. As insufficient mixing in these lakes continued through 

multiple seasons, chemical constituents began to accumulate in the lower strata of 

the lakes and eventually resulted in them becoming meromictic. These lakes 

currently exhibit biogenic meromixis, where chemical constituents are cycled from 

the sediments to the monimolimnion by microorganisms, however, the initiation 

and maintenance of meromixis is attributed to insufficient wind mixing due to 

topographic sheltering.  

Solar Radiation 

 The amount of solar radiation interacting with the surface of a waterbody 

directly impacts its temperature trends and heat budget (Annear and Wells 2007). 

Variables such as meteorological conditions, shoreline or inflow shading by 

topography, inflow morphometry and directional orientation (north, south etc.) and 
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littoral zone surface area can all influence solar radiation’s effect on both in-lake and 

inflow temperatures (Annear et al 2006, Cole and Wells 2013). The temperature in 

turn impacts the hydrodynamics, water quality and ultimately biological cycles 

within the system.  

Bathymetry and Basin Morphometry 

Bathymetry (topography at depth) and basin morphometry (surface area, 

average depth, maximum depth etc.) can largely impact the route of water flow, 

residency time and mixing within an aquatic ecosystem. An example where 

bathymetry directly impacted changes in mixing and water quality was in Lake 

Whatcom in Washington, where submerged glacial sills prevented transfer of 

hypolimnion water between adjacent basins/bays (Pickett and Hood 2008). 

Periodically, high winds would generate a seiche within this large lake that would 

push hypolimnion water over these sills, allowing exchange of heat, DO and other 

water quality parameters between the basins/bays (Pickett and Hood 2008).  

It is known that lake dimensions such as surface area, mean depth and 

volume can influence thermal stratification and heat budgets in lakes (Gorham 

1964). Other studies have attempted to investigate the correlation between these 

lake dimensions and mixolimnion depth in meromictic lakes. Such a correlation 

would enable predictions of mixolimnion depth change using simple basin 

dimensions as indicators. When a mixolimnion becomes isothermal and is able to 

fully mix within itself, there is an exchange of ions, heat etc. across the 

chemolimnion where the mixo- and monimolimnion meet. This exchange can result 

in a volume change of these strata where either the mixolimnion forces further 

turnover and gains volume or the mixolimnion is prevented from deep mixing and 

the monimolimnion gains volume. This change in volume is accompanied by a 

change in depth of the mixolimnion, which is an indicator of whether meromictic 

stability is advancing or deteriorating. Understanding how basin dimensions 

influence a change in mixolimnion depth can aid in predicting changes in 

meromictic state over time. The basin morphometry measurements that are 

strongly correlated with mixolimnion depth are lake surface area and maximum 
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lake depth (Bryhn 2009, McGuire and Currie 1993). One of these studies found other 

variables including fetch, mean depth, epilimnion depth, mixo- and monimolimnion 

salinity, difference in mixo- and monimolimnion salinity, elevation and latitude 

correlated less with mixolimnion depth (McGuire and Currie 1993). Although the 

data sets in these studies were large and therefore their methods and results having 

some scientific validity, both studies indicated that their results had limitations and 

may be too generalized, especially regarding chemical variables. One study 

completely voided chemical variables (Bryhn 2009) while the other did not consider 

concentrations in the chemocline, which is the stratum where meromictic stability is 

increased, maintained or deteriorated. Instead an average salinity was used to 

represent the entire mixolimnion salinity and the salinity at the lake bottom was 

used to represent the entire monimolimnion salinity (McGuire and Currie 1993). 

Making mixolimnion depth predictions based solely on basin dimensions, such as 

surface area and maximum depth, using underrepresented chemical data could lead 

to erroneous predictions. These studies also indicated their generality and inability 

to predict conductivity or salinity directly, which limits precise prediction of 

meromictic trends (Bryhn 2009, McGuire and Currie 1993). Clearly, chemical 

variables need also be considered with these predictions and bathymetry/basin 

morphometry has only a partial influence on lake mixing.   

Precipitation, Evaporation, Inflow and Outflow Rate and Water Quality 

Precipitation often has low ionic concentrations and can directly dilute both 

a lake surface as well as the inflowing surface water. Dilution effects by precipitation 

can readily alter mixing dynamics in meromictic lakes.  High inputs of low-salinity 

precipitation have resulted in reoccurrence of meromixis in lakes with high 

background salinity that had recovered from past meromictic events. Studies on 

Mono Lake in California discovered two recent meromictic events separated by 7 

years (Jellison et al 1998). Meromictic reoccurrence was linked to changes in inflow 

rate and inflow water quality and demonstrated how previously meromictic lakes 

that are still saline are sensitive to changes in inflow rate and water chemistry. The 

study also demonstrated how there is a fine balance between holomixis and 
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meromixis in recovering and previously meromictic lakes (Jellison et al 1998, 

Romero and Melack JM 1996).    

Studies performed on Mono Lake, six lakes on Rottnest Island in Western 

Australia and the Dead Sea in Israel looked at evaporation as being a main process 

contributing to deterioration of meromixis (Bunn and Edward 1984, Jellison and 

Melack 1993b, Steinhorn 1985). Evaporation of lake surface water can concentrate 

dissolved constituents thereby causing equalization of salinity between the mixo- 

and monimolimnion. It should be noted that changes in lake surface elevation due to 

precipitation, surface inflow and evaporation are connected to the variables 

discussed above in Bathymetry and Basin Morphometry (i.e. change in maximum 

depth and surface area) (Bryhn 2009, McGuire and Currie 1993).  

Calculating Mixing Potential: Preliminary Stability Equations 

The initial attempt to understand the dominant processes in lake mixing 

came from Wilhelm Schmidt’s work on developing stability equations (Schmidt 

1915, Schmidt 1928). These equations made it possible to calculate the amount of 

work required by the wind to mix a lake to uniform temperature without the 

addition or removal of heat (Hutchinson 1957, Schmidt 1915, Schmidt 1928). 

George Evelyn Hutchinson modified these equations for meromictic lakes allowing 

calculation of the amount of work required to mix the mixo- and monimolimnion of 

a meromictic lake if isothermal conditions exist (Hutchinson 1937). The basic 

theory behind these equations stems from the fact that there are two types of 

stability that compose total stability (ST) within a lake and maintain the 

layers/stratification within the lake: thermal stability (St) (due to temperature) and 

chemical stability (Sc) (due to dissolved solutes) (Ambrosetti and Barbanti 2005). 

Comparing the magnitudes of St and Sc from season to season and year to year is one 

way of tracking if a lake is evolving towards a meromictic or holomictic state 

(Ambrosetti and Barbanti 2005). It is interesting to note that for meromictic lakes 

that have extended periods of thermal stability in summer or winter, the chemocline 

will be sheltered from mixing action of wind and therefore the fall and spring are 

the most likely times when changes in meromictic state will occur, when thermal 
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stability is minimal (Walker 1974).  

Meromictic Trend Predictions – A Combination of Many Variables 

Based on the above review of lake mixing, it is clear that it is a complex 

process controlled by many mechanisms and variables. Most of the historic studies 

on meromictic lakes involved some mathematical analysis of observed field data to 

postulate why meromixis originated and deteriorated and if meromixis has the 

potential to occur again. Often, only one or a few of the possible variables are 

analyzed and discussed. Exclusion of one or more variables could result in 

erroneous predictions, especially if the excluded variable is a dominant controller of 

lake mixing dynamics and water quality for a particular system. These studies and 

the data they provide are significant for building limnological knowledge of 

meromictic lakes. The use of mathematical equations in calculating water mixing 

has progressed substantially since Schmidt and Hutchinson’s stability equations, 

however; the predictions and conclusions drawn from these studies can be further 

enhanced by numerical/mathematical inclusion of all variables. Combined efforts of 

limnologists, chemists, mathematicians, engineers and physicists have resulted in 

the construction of hydrodynamic and water quality models. These models have 

been designed to encompass and numerically link together all of the variables 

discussed above, including topographic shading, heat exchange and shear stresses 

resulting from water flow drag,; all of which are critical in understanding the 

hydrodynamics of a system (Patterson et al 1984). The magnitude of the effect of 

these variables on hydrodynamics and water quality changes depending on the 

system. 

Hydrodynamic and Water Quality Modeling 

In general, the development of hydrodynamic and water quality models 

requires conceptualizing and understanding the dominant variables that control 

water movement and quality in aquatic systems and then developing mathematical 

equations that link these variables together (Reckhow and Chapra 1983). In order to 

predict water flow direction and velocity throughout a system, a variety of hydraulic 

equations have been developed (Chapra 1997, Cole and Wells 2013, Martin and 
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McCutcheon 1999). Understanding where and at what rate water is flowing through 

a particular system is critical when trying to make projections about water quality 

since water is the transport medium for water quality constituents (Reckhow and 

Chapra 1983). The mathematical complexity of how to predict water flow will only 

be discussed in simplistic terms here however; many good resources discuss these 

topics in detail (Chapra 1997, Cole and Wells 2013, Martin and McCutcheon 1999).  

Although the topic of modeling has been discussed here as a simplified 

process of data input, output and calibration/validation; hydrodynamic and water 

quality modeling set-up and performance is a multi-faceted process that is not 

always immediately successful depending on the complexity of the system of study. 

Successful and accurate modeling can only occur if sufficient and appropriate data 

that encompass the dominant mechanisms acting upon and within the system have 

been collected and applied to an appropriate model. It is clear that lakes are 

dynamic systems and although similar variables and properties control water flow 

and mixing within them, the variables and properties exhibiting the most dominant 

control can change from lake to lake depending on system specifics. It is impossible 

to perfectly predict system conditions that will occur in the complexity of the real 

world however, the use of hydrodynamic and water quality models are the best 

tools we have available for doing so. Multiple hydrodynamic and water quality 

models exist, many of which utilize a similar scientific and mathematical framework 

as discussed below.  

 Some commonly used hydrodynamic and water quality models include 

DYRESM (dynamic reservoir simulation model), HSPF (hydrological simulation 

program), WASP (water quality analysis simulation program), RMA-10 and 11 

(resource modeling associates) and EFDC (environmental fluid dynamics code). 

Some of these are currently managed by the US EPA (United States Environmental 

Protection Agency). Some of the main characteristics of the various models are 

dimensionality (1-D, 2-D or 3-D), whether both hydrodynamics and water quality 

are modeled or if coupling of two models is required, whether sediment diagenesis 

algorithms are built into the source code and the cost/technical support availability. 
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There can also be variability in the algorithms used to calculate hydrodynamics and 

water quality. The model selected by the user must be applicable to the variability 

and mechanisms within the system to be modeled. For example, if exchange of a 

certain parameter between the sediment and water column is a main regulator of 

that parameter in the water column, the model should have some sediment 

exchange abilities. A variety of good reviews on model types and applications are 

available (Chapra 1997, Martin and McCutcheon 1999, Reckhow and Chapra 1983). 

For the present study, the CE-QUAL-W2 model was utilized and so its 

specifics will be discussed. 

CE-QUAL-W2 Model Input Data 

 The CE-QUAL-W2 model requires five main categories of data: geometric 

data, boundary conditions, initial conditions, hydraulic parameters and kinetic 

parameters. The combination of all of this data together can be used to calibrate the 

model, ultimately allowing for the ability to make future predictions of water quality 

for the system. 

Geometric data is essentially the lake bathymetry, which is used to construct 

the volume-area-elevation table and the model grid as well as a sufficient portion of 

topography surrounding the lake to the shoreline (Cole and Wells 2013). CE-QUAL-

W2 utilizes a finite-difference grid to simulate the water body. Although a finite 

difference grid does not conform to the exact dimensions of a system as perfectly as 

a finite-element grid does, the computational exercises are simpler than with a 

finite-element model and predictive capabilities are typically not drastically reduced 

for most systems (Figure II). The mathematical techniques and equation set-ups 

used by these methods also vary (Mercer and Faust 1980b).  
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Figure II. Comparison of finite difference and finite element grid set-ups (adapted 

from Mercer and Faust 1980a).  

The model grid is the computerized representation of the lake’s dimensions 

and is essentially “how the computer views the lake” in terms of the real-world 

shape, size and directional orientation.  

In CE-QUAL-W2, the finite-difference grid is a series of cells (rectangles) 

forming horizontal segments and vertical layers (Cole and Wells 2013). In order to 

give the lake 2-dimensionality, the segments divide the lake into sections from the 

lake inlet to the lake outlet (horizontally/longitudinally) while the layers divide the 

lake into sections from surface to bottom (vertically). A side view schematic of a 

model grid illustrates the layers, segments and cells (Figure III) while a top view 

illustrates the numbered segments (Figure IV). Inactive (empty) segments are 

placed at the beginning and end of each branch as shown by the segment numbering 

scheme in Figure IV. If more complex hydrodynamics and water quality are 

observed in specific strata within the lake, layer heights can be adjusted to coarsen 

or fine the grid (Figure V). In CE-QUAL-W2, the grid is composed of either one or 

more “waterbodies” that are composed of one or more “branches” (Cole and Wells 

2013). Branches address variability in bottom slope or shoreline orientation within 

a system (Figure V) whereas waterbodies address variability in meteorological 

conditions, water quality or turbulence schemes. The bathymetry file specifies the 

slope, segment widths, segment angle orientations, layer heights, initial water 

elevation and bottom sheer stresses for each branch. Bathymetry and surrounding 

topography can affect water flow patterns and therefore the accuracy of the model 

grid is critical for proper model calibration. 
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Figure III. Side view schematic of a model grid for single branch including 

segments, layers and cells as well as the grid dimensions. 

 

Figure III. Side view schematic of a model grid for single branch including 

segments, layers and cells as well as the grid dimensions. 

 

Figure IV. Top view schematic of model grid showing numbered segments. 
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Figure V. Joining of branches to form a complete waterbody. Notice the difference in 

slope and grid dimensions (layer thickness) between the two branches (Cole and 

Wells 2013).  

Boundary conditions are data that represent the inputs and outputs of 

momentum, heat and constituents to and from the waterbody at grid boundaries 

(inflows, outflows, water surface and sediment). In/outflow volumes, temperatures 

and constituent concentrations, meteorological conditions and precipitation all 

contribute to the boundary condition representation. Actual momentum, heat and 

constituents entering the system are accounted for from the in/outflows but the  

heat exchange due to solar radiation at the water surface, heat exchange with the 

sediment and the wind’s contribution to mixing and momentum are also taken into 

account both from input data and coefficient adjustment. Once this data has been 

inputted/adjusted at the boundaries of the grid, it drives the transport of water and 

constituents through the waterbody system. In order for accurate modeling to 

occur, consistent monitoring of boundary condition data needs to occur and 

coefficients need to be an accurate representation of the system.    

Initial conditions are data that are used to indicate what physical and 

chemical variables are present in the waterbody system at the time of model start-

up. Once the model simulation has begun, initial conditions are “washed out” of the 

system domain and replaced by the data inputted at the model grid boundaries. 

Initial condition variables specified include temperature and constituent 

concentrations and can be set as isoconditions (whole waterbody is the same), 

vertically variable (heterogeneous across the layers) or horizontally/longitudinally 

and vertically variable (each segment and layer is unique) (Cole and Wells 2013). 
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Hydraulic parameters are related to the hydrodynamic equations of the 

model. These parameters can be adjusted and dictate how momentum [eddy 

viscosity (m2 sec-1)] and heat and constituents [eddy diffusivity (m2 sec-1)] are 

transported both horizontally (dispersion) and vertically (diffusion) through the 

system domain. The magnitude of bottom friction resulting from flow over the 

sediment is also dictated by the hydraulic parameters (Cole and Wells 2013). 

 Kinetic parameters are related more to the water quality equations of the 

model and there are 120 kinetic coefficients that can be adjusted in the CE-QUAL-

W2 model, all related to the rates of processes/reactions influencing constituent 

cycling such as settling, burial, decay, mortality, excretion, adsorption, respiration, 

grazing and conversion. Essentially, these parameters control the source-sink 

relationships within the system domain. Equations are more refined around 

nitrogen and phosphorus since these constituents are known to have a major effect 

on phytoplankton, zooplankton, epiphyton and macrophytes. However, any steady-

state constituent can be modeled if enough is known about its kinetics (Cole and 

Wells 2013). 

Model Calibration 

 Calibration data is essentially field data from known locations and dates 

within the waterbody to compare with the model outputs/predictions. This is the 

point where boundary condition data and calibration data come together to confirm 

whether the model is accurately predicting the hydrodynamics and water quality 

concentrations for the waterbody. By only providing the model with initial condition 

data from within the model domain/grid (in-lake data) on Day 1 of the simulation 

and giving it no further in-lake data, it requires the model to only use the boundary 

condition data for computations within the system. Since boundary condition data is 

truly what drives the model, this data should be as comprehensive and well-

characterized as possible for an effective model. Having a large data set of 

calibration data (in-lake) will not be useful if what is entering and leaving the 

system is not well known.          

 Model equations contain many coefficients that sometimes are not suited to 
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certain systems and must be adjusted so that they properly represent the conditions 

of a specific system. One very commonly adjusted parameter is the wind-sheltering 

coefficient (wsc). In the CE-QUAL-W2 model, this coefficient ranges from 0.3 to 0.9 

and is used as a multiplier for wind speed data, ultimately reducing the effect of the 

wind speed on the lake. Often, meteorological data acquired for modeling is 

obtained by meteorological stations that are not present on the study lake shore but 

in a more open area (i.e. airport). Therefore, most meteorological stations are not 

capturing wind speeds representative of actual wind speeds present on the lake 

surface where wind-sheltering by topography or vegetation has occurred. For this 

reason, most wind speed data is often higher than the actual wind speeds present at 

the lake surface and so adjustment of the wind-sheltering coefficient is required. 

Large deviations in model results can occur if this value is not correct since the 

input/output of heat and input of momentum to/from the lake surface is largely 

impacted by wind. Multiple model runs and adjustments are typically necessary 

before a model can be deemed properly calibrated. Model calibration and validation 

are performed simultaneously. Once a model run is completed, absolute mean 

errors (AME) are calculated for the comparison of calibration data with model 

output data. It is up to the modeler what they accept as an appropriate AME for a 

specific parameter however the AME should be as small as possible. For example, 

AME<1.0°C is a common goal for temperature calibration. A variety of error 

reporting strategies have been used for to interpret CE-QUAL-W2 outputs however, 

the AME has proven to be the most useful. As a direct quote from the CE-QUAL-W2 

manual, “… the AME provides the best indication of model performance since it is 

directly interpretable. For example, an AME of 0.5°C means that the model results 

are, on the average, within 0.5°C of the observed data” (Cole and Wells 2013). The 

AME calculation is shown below: 

AME = ∑ | Predicted – Observed | 
             Number of observations 

CE-QUAL-W2 – Transport Scheme 

The main equations encompassed in most hydrodynamic models, including 

CE-QUAL-W2, are based around laws of conservation of energy, momentum and 
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mass and allow the model to transport a fluid phase about a control volume (model 

domain/grid) (Cole and Wells 2013, Martin and McCutcheon 1999). Equations 

ultimately calculate sheer stresses in the x, y and z-directions 

(horizontal/longitudinal, lateral and vertical respectively) (Figure VI). Sheer 

stresses do not only occur between flowing water and the bottom/shoreline, they 

also occur between layers or columns of water flowing within the waterbody. 

Simply put, at the boundary of two flowing water strata (layers), the two layers still 

inflict sheer stresses on each other and so calculations for this occur throughout the 

entire model grid. A continuity equation links all of the sheer stresses and 

ultimately, velocities together.  

   

Figure VI. Directionality in a model domain (modified from Martin and McCutcheon 

1999). 

CE-QUAL-W2 is a laterally-averaged model meaning that its equations are 

designed such that all variables in the lateral (y-direction) are assumed to be 

constant within the system. The premise behind modeling in 2-dimensions and 

averaging the third is that the computational requirements of the model are 

lessened and simplified. For many aquatic systems, 3D-variablity in flow, heat and 

water quality is not so great that 3D-modeling is required and often, 2D-modeling is 

sufficient. For CE-QUAL-W2, all transport equations in the y-direction are averaged 

(Figure VI). 

Eddy viscosity and diffusivity are the transport of momentum and 

heat/water quality constituents respectively. Since density influences fluid flow, the 

equation of state is also incorporated in these models and it relates fluid density to 

temperature and dissolved substances in the system. 

The model grid (discussed previously) represents the domain where the 
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hydrodynamic and water quality equations perform calculations to transport 

momentum and heat/constituents through the system. Figure VII displays the 

locations in the grid where specific variables are defined and calculated in space. 

Any particular cell in the model grid is located at layer K, segment I. 

 

Horizontal velocity, longitudinal eddy viscosity and diffusivity, internal sheer stress  
Pressure, average cell width, density, temperature, constituent concentration 
Vertical velocity, vertical eddy diffusivity  
Vertical eddy viscosity  

Figure VII. Locations of various parameter transport equations. Any particular cell 

(K, I) is denoted by layer “K” and segment “I” (Modified from Cole and Wells 2013).   

As data is provided to the model via boundary condition input files, the 

model inputs the data into the hydraulic and water quality equations at the 

respective locations in the grid. The results of calculations at a cell (K, I) are used to 

perform calculations at cell (K+1, I+1) downstream in the grid (Figure VIII). This 

process continues iteratively both horizontally and vertically though the model grid. 

The opposite can also occur if negative flow conditions occur in the waterbody 

(Figure IX).  
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Figure VIII. Schematic of positive horizontal flow velocity from cell (K, I) to cell 

(K+1, I+1) (Modified from Cole and Wells 2013).   

 

Figure IX. Schematic of negative horizontal flow velocity from cell (K, I) to cell (K-1, 

I-1) (Modified from Cole and Wells 2013).   

To perform all of the calculations for hydrodynamics and water quality, CE-

QUAL-W2 uses the ULTIMATE-QUICKEST computation scheme (Leonard 1979). 

This computational scheme works to minimize numerical diffusion that can occur at 

areas of strong gradients where data variability can be large from grid cell to grid 

cell. The ULTIMATE computation scheme allows for the ability of data at 3 nodes to 

be used to solve equations at any one cell (Leonard 1979). To perform a calculation 

at a cell, data from the node of the upstream cell as well as data from two other 

nodes of cells in a single, coordinate direction are used (Leonard 1979). The 

QUICKEST portion of the computation scheme works to minimize over or 

underestimations of data that tend to occur at the trailing edge of a sharp gradient if 
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only the ULTIMATE formulations are used (Leonard 1991). 

Limitations and Assumptions of CE-QUAL-W2 

 The model manual (Cole and Wells 2013) outlines the main limitations and 

assumptions of the model. The two-dimensionality of CE-QUAL-W2 is one of its 

main assumptions. Again, this means that all momentum, heat and constituents are 

assumed to be the same in the lateral (z) direction/dimension. Currently, the 

Boussinesq and hydrostatic approximations are used regarding the vertical 

turbulence schemes. Essentially this means that the model may have difficulty 

predicting vertical accelerations if they are present. CE-QUAL-W2 does not have a 

sediment diagenesis component currently meaning it does not have the ability to 

model complex kinetic exchanges between the sediment and water column. Only 

first order, temperature-controlled reactions are possible to model using an 

Arrhenius multiplier. As already discussed, the transport schemes included in the 

model have a component of limitation as well. The ULTIMATE method should be 

used because it makes up for both the numerical stability that can occur from the 

UPWIND scheme and the over and under predictions that can occur from the 

QUICKEST scheme if gradients of variability are appreciable. 

Chemical Cycling in Meromictic Lakes: An Overview  

There are some key distinctions in chemical composition between seasonally 

anoxic or meromictic lakes and holomictic lakes, much of which can be attributed to 

increase in ion and metal concentrations with depth and decrease in redox potential 

with depth from prolonged anoxic conditions (Hongve 1997). The prolonged 

absence of oxygen in the monimolimnion of a meromictic lake is unique and alters 

the oxidation states of many constituents such as sulphur (S), iron (Fe), manganese 

(Mn), magnesium (Mg) nitrogen (N), copper (Cu) and zinc (Zn).  

Sulphur Compounds 

Sulphur is typically not a limiting nutrient in aquatic systems for 

phytoplankton due to its abundance and it is typically required by species at a 

similar concentration to phosphorus (Lehman and Branstrator 1994, Urban et al 

2001). The chemical form of sulphur in aquatic systems is controlled either directly 
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or indirectly by many factors including oxygen content (Davison and Heaney 1978, 

Hem 1960b), pH, Eh (Hem 1960b, Hem and Cropper 1959, Hem and Skougstad 

1960), other chemical constituents present in the system (Hem 1960a,b) and 

microbiological activity (Jørgenson  1979, Rudd et al 1986). Although sulphur 

typically takes an anionic form, the oxidation state of sulphur can range from S2- to 

S6+, which further increases the possible chemical species it can form (Hem 1960b). 

Sulphate (SO42-), bisulphate (HSO4-), thiosulphate (S2O32-), sulphide (S2-), and 

metallic sulphides (MeS where Me = Cu, Fe, Zn etc.) are common forms that sulphur 

takes during its lake cycle (Hem 1960b, Jørgenson 1990). Sulphate salts that contain 

Na+, K+, Mg2+ etc. typically do not precipitate until the lake is supersaturated and 

therefore these salts can become highly concentrated in meromictic lakes (Hongve 

1980). These salts can precipitate during evaporation at the surface of the lake. It is 

also possible that co-precipitation of these ions on settling organic molecules can 

occur. In anoxic conditions, sulphur reduction converts SO42- to S2- or HS2- in high pH 

or SO42- to H2S in acidic/neutral waters (Cook 1982, Hem 1960b, Urban et al 2001). 

Sulphite and thiosulphate are known intermediates of sulphide oxidation/reduction 

and they can be either reduced back into sulphide or oxidized into sulphate (Hem 

1960b, Jørgenson 1990, Rudd et al 1986). H2S persists in acidic conditions but its 

presence can be removed by metals such as Fe, which will form FeS or FeS2 

precipitates (Hem 1960b). Organic sulphur is a dominant form of sulphur in lake 

systems and is abundant in lake sediments (Kling et al 1991, Rudd et al 1986). In 

sediment pore waters, sulphates will convert to sulphides and can form organic 

sulphur. This has been shown to be a dominant removal mechanism of sulphur from 

the water column (Rudd et al 1986). Organic sulphur has been found to be dominant 

fate of reduced sulphur in lake sediments (Kling et al 1991, Nriagu and Soon 1985, 

Rudd et al 1986), however, sulphides have also been found to comprise a significant 

proportion of sediment total sulphur (Carignan and Tessier 1988, Giblin et al 1990). 

During lake turnover, both sulphides and organic sulphur forms, can be oxidized to 

sulphate, although sulphide oxidation is typically favoured (Kling et al 1991, Nriagu 

and Soon 1985, Rudd et al 1986). Understanding the main chemical pathways of 
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sulphur in lake systems is important in trying to understand the long term fate of 

sulphur in meromictic lakes and how this links to lake remediation. 

Iron and Manganese 

When not bonded with organic molecules or metals, iron predominantly 

forms either soluble or insoluble oxides, hydroxides or carbonate molecules 

(Hongve 1980, Hongve 1997). Oxidized iron (Fe3+) (ferric) is relatively insoluble 

compared to reduced iron (Fe2+) (ferrous) however both forms precipitate in their 

hydroxide forms (Fe(OH)2 and Fe(OH)3) (Hongve 1980, Hongve 1997).  Fe3+ is the 

more stable form during oxic conditions while Fe2+ predominates during anoxic 

conditions (Mortimer 1941). During anoxic conditions it is common for dissolved Fe 

concentrations to increase in the water column (Hamilton-Taylor et al 1996, Hongve 

1997, Mortimer 1941). This process intensifies when DO drops to <1 mg L-1 

(Mortimer 1941). When anoxic conditions occur in the water column, the Fe 

contained in the sediment as insoluble ferric compounds can be reduced to its more 

soluble ferrous form allowing it to be readily mobilized from the sediment to the 

water column (Mortimer 1941). This process will continue to occur until oxic 

conditions return. During turnover, Fe is oxidized and precipitated back again to the 

sediments (Hamilton-Taylor et al 1996, Mortimer 1941). During anoxia, solubilized 

Fe in the hypolimnion that approaches the oxic epilimnion via eddy diffusion is 

readily oxidized and descends back into the anoxic hypolimnion (Mortimer 1941, 

Shaked et al 2002). It is also possible for the opposite to occur where Fe becomes 

insoluble and is removed from the water column. This occurs as a result of FeS or 

FeS2 formation in high-sulphur lakes (Davison and Heaney 1978). Fe2+ also readily 

complexes with organic compounds such as tannic acid (Hem 1960a). This stable 

complex does not prevent typical redox-controlled cycling of Fe between ferrous 

and ferric forms but it can slow this process, keeping Fe2+ dissolved, even in anoxic 

conditions (Hem 1960a).     

Congruent redox cycling occurs with Mn but with some differences. The 

redox potential of Mn is greater than that of Fe meaning its oxidation occurs at a 

slower rate/reduction at a faster rate (Davison 1993, Hongve 1997). Thus, Mn 
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remains reduced and therefore dissolved in the water column longer during 

turnover than rapidly oxidizing Fe does (Davison 1993, Hongve 1980, Hongve 

1997). The source of elevated Mn concentrations in anoxic depths of lakes has thus 

been linked to dissolution and sinking of Mn slowly oxidized from the epilimnion 

rather than exclusive solubilized Mn from the sediment (Balistrieri et al 1992, 

Davison 1981, Davison et al 1982). However, Mn can still be sourced from the 

sediment and Mn that rises from anoxic bottom waters and enters oxic surface 

waters may not be immediately oxidized/precipitated and therefore has the 

potential to rise higher into the water column and get transported through the 

outlet of the lake (Davison et al 1982). Although MnS formation is possible in anoxic 

bottom waters, it is usually not favoured due to Mn levels typically being lower than 

those necessary for precipitation (Balistrieri et al 1992).  

Zinc and Copper 

Zn and Cu dynamics can differ and be more complex than that of Fe and Mn. 

Phytoplankton can readily harvest these micronutrients and release them during 

decay (Riley 1939, Hamilton-Taylor et al 1996). Zn and Cu concentrations tend to be 

lower in anoxic conditions at a lake bottom due to precipitation as ZnS and CuS 

(Hamilton-Taylor et al 1996).  Cu also readily adsorbs onto organic matter, which 

can act as an alternative removal mechanism (Riley 1939). Zn and Cu, similar to Fe 

and Mn, typically form insoluble compounds in oxic conditions. For all of these 

reasons, Cu and Zn typically are more elevated closer to lake surfaces during 

stratification rather than near bottom.  

Nitrogen  

The common forms of nitrogen found in aquatic systems include dissolved 

N2, ammonia (NH4+), organic nitrogen (proteins etc.), nitrite (NO2-) and nitrate  

(NO3-) (Keeney 1973). Reduction of dissolved nitrogen to ammonia is known as 

nitrogen fixation and is performed by heterocyst cells in nitrogen-fixing 

cyanobacteria bacteria and other capable photosynthetic bacteria (Keeney 1973). It 

is interesting to note that the molybdenum:sulphate ratio can control the activity of 

nitrogen-fixing cyanobacteria (Howarth and Cole 1985, Marion et al 1990). Sulphate 
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acts as an inhibitor to nitrogen fixation enzymes since it similar to the molybdate 

ion, which is essential for proper function of the enzymes required for nitrogen 

fixation (Howarth and Cole 1985, Marino et al 1990). Ammonia created from 

nitrogen fixation is either directly or indirectly assimilated into aquatic organisms 

(bacteria, phyto- and zooplankton, macrophytes, invertebrates, fishes etc.) and 

becomes organic nitrogen (Keeney 1973). The indirect pathway first involves 

nitrification, which is oxidation of ammonia into nitrite and subsequently to nitrate, 

which is then assimilated into organic nitrogen (Keeney 1973. When organisms die 

and decay, the organic nitrogen is converted to ammonia once again by bacteria in a 

process known as ammonification (Keeney 1973). Some nitrogen may not undergo 

this process and can be stored long-term in the sediments in a process known as 

sedimentation (Keeney 1973). Ammonia developed from ammonification can be 

once again directly assimilated into organic molecules within organisms or it can 

undergo nitrification to form nitrate, which is highly soluble and also biologically 

available for re-incorporation into organic forms (Keeney 1973). The processes of 

sedimentation, ammonification and nitrification at the sediment-water interface are 

dominant when dictating the fate and form of nitrogen present in an aquatic system. 

Dissolved oxygen concentration, temperature, pH and temperature are variables 

that can affect which nitrogen-conversion pathway will be favoured (Keeney 1973). 

Meromictic events can alter the nitrogen cycle within a lake, particularly at 

the sediment-water interface. The nitrogen cycle can begin to resemble summer 

conditions in a eutrophic lake since both have low dissolved oxygen levels in their 

lower strata (Keeney 1973). During meromixis, decaying organic nitrogen will 

predominantly undergo ammonification and increase NH4+ levels within lower 

strata (Keeney 1973). The absence of full water column turnover in the spring and 

fall eliminates the vertical transport of NH4+ from lower to upper strata and this 

further accumulates NH4+ in the monimolimnion and depletes it in the mixolimnion 

(Jellison et al 1993). The 6-year meromictic event in Mono Lake, CA showed all of 

these trends (Jellison et al 1993).  With high volumes of ammonia being contained to 

the monimolimnion, decreases in algal photosynthesis were observed in the 
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mixolimnion (Jellison et al 1993). When meromixis deteriorated, upward vertical 

flux of the monimiolimnion-stored ammonia cause great increases in the 

mixolimnion, although a great deal of the nitrogen was lost to the atmosphere as N2 

(Jellison et al 1993). The concentrations of nitrogenous compounds contribute to 

the overall TDS and chemical stability in a meromictic lake and so having an 

understanding of nitrogen mechanisms in a system is important. Since nitrogen is a 

critical nutrient for biota of all trophic levels, changes in populations as a result of 

meromixis can be partially inferred from the form and concentration of nitrogen in 

the system. 

Chlorophyll a 

 Chlorophyll a (chl a) is commonly used as an indicator of phytoplankton 

biomass in aquatic systems (Lorenzen 1966, Osmund et al 1965). There are many 

variables that affect chl a correlation with phytoplankton biomass and often, a direct 

correlation is not possible (Cullen 1982, Lorenzen 1965).  Phaeophytin a, which is 

chl a minus its magnesium ion, can also be measured by both fluorescence and 

laboratory measurement methods of chl a and if possible, subtraction of 

phaeophytin concentrations from chl a concentrations should occur (Cullen 1982, 

Lorenzen 1965, Lorenzen 1966, Osmund et al 1965). In a similar way, chl a from 

dead phytoplankton can also contribute to concentrations measured by these 

methods, resulting in an over-estimation of phytoplankton biomass (Cullen 1982, 

Lorenzen 1965). The sinking of the perished phytoplankton often results in a 

“chlorophyll maxima” at depth that is not always an accurate representation of live, 

viable phytoplankton (Cullen 1982, Lorenzen 1965). As well, adaptability of various 

species to specific habitats can influence chl a and biomass comparisons. Species 

adapted to low light conditions in more nutrient-rich bottom waters have been 

found to produce higher chl a concentrations to survive compared to high-light, low 

nutrient surface waters (Cullen 1982). Rapid production of chl a can also occur by 

some species if they are taken from a high-light environment and placed in a low-

light environment (Cullen 1982). Such experiments are a testament to the 

complexity of phytoplankton dynamics and how thought should be put into 
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interpreting chl a data. 

Silica 

It is common for Si to increase in concentration in anoxic waters resulting 

from its release from sediment (Mortimer 1941). Ferri-silico-humate is a complex in 

the sediment and it contains Si and Fe. Its destruction during reducing conditions is 

a main source of dissolved Si (and Fe) into the water column (Mir and Kachroo 

1982, Mortimer 1941). Oxic conditions can reform the complex, causing Si and Fe 

precipitation. Si dynamics also follow closely with phytoplankton growth, 

particularly the diatoms, which incorporate Si into their frustules. Measurable 

depreciation of Si can occur in surface waters if phytoplankton growth is productive 

(Mir and Kachroo 1982, Mortimer 1941, Munawar and Munawar 1975). 

Meromixis and Lake Biodiversity 

 Multiple habitats are present within meromictic lakes since both anoxic and 

oxic sediment and water are present for an extended period of time. The added 

variation of pH, dissolved solids concentrations and the redox state of chemical 

species (sulphur, nitrogen etc.) further increase the habitat structure within the 

system. The multitude of habitats present can have a high level of biodiversity, 

hosting organisms able to survive in each particular environment. 

Meromictic Lake Cadagno in Switzerland has a variety of phototrophic 

sulphur bacteria within its 11.5 m - 14 m chemocline (Tonolla et al 1999). Species 

requiring more light and oxygen but utilizing the higher nutrient levels for growth 

were found near the chemocline surface whereas species more tolerate of high 

sulphide were present towards the chemocline bottom (Tonolla et al 1999). In 

addition, sulphur-reducing and sulphur-oxidizing bacteria have shown a source-sink 

relationship in sulphur conversion within the chemocline (Tonolla et al 2004). A 

shift in dominance of purple sulphur bacteria to green sulphur bacteria occurred in 

this lake and it was linked to a potential mixing event during that year that would 

have altered conditions within the lake (Tonolla et al 2005). This has been observed 

in other lakes as well (Jorgensen et al 1979).  

A unique relationship between phytoplankton and purple sulphur 
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photosynthetic bacteria was observed in meromictic Big Soda Lake, Nevada (Cloern 

et al 1983). Nutrient levels in the epilimnion strata were too low during summer 

thermal stratification to support phytoplankton growth however the clearness of 

the water allowed enough light passage such that the bacteria were able to flourish 

in the hypolimnion where nutrients were more plentiful. During winter turnover 

(non-ice forming lake), nutrients from the hypolimnion entered the epilimnion and 

allowed dense populations of diatoms to develop. This ultimately decreased the 

populations of the bacteria below due to the reduced light extinction into the 

hypolimnetic strata. Nitrogen accumulation in the monimolimnion of Mono Lake, NV 

reduced phytoplankton growth in the lake during the period of meromixis and as 

the meromictic stability in the lake began to deteriorate, ammonium allocation into 

upper strata allowed phytoplankton to flourish once again (Jellison and Melack 

1993a). Antarctic meromictic lakes are especially unique environments due to 

extreme temperatures and light conditions (Laybourn-Parry et al 2002). As a 

common trend, only a small number of species have evolved to survive and thrive in 

such extreme environments (Laybourn-Parry et al 2002).  

The distribution of macrophytes in the littoral zone is controlled largely by 

the optimal temperature, light, inorganic carbon availability and sediment 

composition (Barko et al 1996). Even though most macrophytes (aquatic plants) 

present in effluent-receiving lakes are rooted in littoral mixolimnion strata above 

the chemocline, macrophytes can still be affected by the availability or toxicity of 

nutrients in the water column and sediment. Macrophytes are able to adapt to 

changes in their environment such as alterations in water levels from year-to-year 

(Leck and Brock 2000) and halophytes are able to live in high-salinity environments 

(Nielsen et al 2003). Macrophytes able to survive rapidly-changing or extreme 

conditions have evolved either a tolerance or strategy to recognize and respond to 

the change. This ability to survive has been part of the evolutionary history of these 

plants and rapid environmental changes, such as salinity, can negatively impact 

macrophytes, such as inhibiting seed germination (Nielsen et al 2003).    

   Unlike plants, fish can be affected by the anoxic conditions in the lake 
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bottom since it decreases their habitat range. Fish have a variety of behaviors that 

will allow them to cope with decreased oxygen levels and minimize energy use 

(Kramer 1987). Air breathing, aquatic surface respiration or habitat relocation are 

common strategies utilized (Kramer 1987). Yellow perch (Perca flavecens) have 

demonstrated decreased food consumption at around 3.5 mg L-1 and growth 

reduction at 2 mg L-1 dissolved oxygen (Carlson et al 2011). Northern pike (Esox 

lucius) prefer shallower, warmer waters (Casselman and Lewis 1996) and could 

likely survive in the mixolimnion. However, loss of macrophytes in near-shore areas 

that serve as breeding and nursing areas for E. lucius as a result of effluent discharge 

(discussed earlier) can negatively impact E. lucius populations (Casselman and 

Lewis 1996).  In addition, if sediment porewaters are high in hydrogen sulphide, sac 

fry growth and survival is greatly reduced (Casselman and Lewis 1996). E. lucius 

juveniles are more tolerant of lower oxygen than adults (Casselman and Lewis 

1996). 

  As a whole, organisms are able to adapt to new conditions in their 

environment and can develop tolerance. If their environment changes too rapidly 

though, aquatic organisms typically cannot adapt quick enough and populations and 

system biodiversity can be negatively impacted. When effluent discharge into a 

freshwater system occurs, changes in salinity, development of meromixis and 

change in dissolved oxygen will ultimately follow in most cases. Organisms of these 

freshwater systems have evolved in a low-salinity, high-oxygen environment, and 

the changes caused by effluent discharge are often too rapid for these organisms to 

adapt. Organisms can be either lost from the system or have their growth and 

fecundity reduced as a result. 
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CHAPTER 1 – Water Quality and Meromictic State of Study Lakes 
Introduction 
Mining Effluent Water Quality Regulations 

Tailings water from gold mining operations is managed and treated until its 

quality is within the Federal (Metal Mining Effluent Regulations) and Provincial 

(Municipal Industrial Strategy of Abatement) limits as well as the Certificate of 

Approval (COA)/Environmental Compliance Approval (ECA) that has been 

developed for the operation (Environmental Protection Act 2007, Ministry of the 

Environment 1999, Minister of Justice 2015). Provincial Water Quality Objectives 

(PWQO) (Ministry of the Environment and Energy 1994) and/or Site Specific Water 

Quality Objectives (SSWQO) are also used to guide operations towards acceptable 

water quality of their discharged effluent. Water that meets compliant levels of 

heavy metals, ammonia, cyanide, pH etc. and continually passes acute and chronic 

toxicity tests is discharged to a natural surface water environment. This is the 

common practice used for most metal mine environmental management strategies. 

Some elements typically not governed by the above regulations include Ca2+, Cl-, Na+, 

K+ and SO42-. These ions are discharged at elevated concentrations into freshwater 

receiving environments and therefore, both historic and current mining operations 

are often associated with lakes having elevated salinity, which can lead to 

meromictic conditions. 

Natural Meromictic Lakes in Ontario 
Ontario has very few documented, naturally occurring meromictic lakes 

(Anderson et al. 1985). Since most lakes in Ontario have low salinity, a majority of 

Ontario’s natural meromictic lakes have resulted from unique water quality in 

combination with lake morphometry and wind sheltering. A prime example of this is 

Sunfish Lake near Waterloo, ON, which demonstrates biogenic meromixis (Duthie 

and Carter 1970).  

Of the 58 lakes studied in the Experimental Lakes Area (ELA) near Kenora, 

ON, four lakes are meromictic (Schindler 1971). Two of these lakes (Lakes 120 and 

241) were meromictic prior to being used for field experiments and have remained 

meromictic throughout experimentation years (Brunskill et al 1971, Campbell 1977, 
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Campbell and Torgersen 1980, Rudd et al 1941). The other two lakes (Lakes 227 

and 230) were turned meromictic due to the introduction of nitrogen and 

phosphorus for eutrophication experiments (Cook 1984, Johnson and Vallentyne 

1971, Rudd et al 1941, Schindler 1980).  

Mine-Influenced Meromictic Lakes in Ontario 

Although Ontario has a long history of mining, very few primary/peer-

reviewed studies on the lakes receiving discharged effluent from these mining 

operations are available. Except for a select few lakes that have been studied, the 

presence of meromixis in these mine effluent-receiving lakes is largely unknown. At 

the now-decommissioned Winston Lake Mine near Schreiber, ON (owned by INMET 

Mining Corporation (First Quantum Minerals Limited)), two meromictic lakes have 

been studied. Copper and iron mining occurred here from 1988 to 1999 and 

meromictic conditions persisted in Cleaver and Horneblende Lakes downstream of 

the mine as a result of receiving high-salinity effluent (Denhom et al 1995, Haapa-

aho 2003). Studies on Cleaver and Horneblende Lakes from October 1999 – March 

2001 found that Cleaver still remained meromictic whereas Horneblende had 

returned to being holomictic once again (Haapa-aho 2003).  

Near Atikokan, ON, Steep Rock Iron Mines Limited and Caland Ore Limited 

operated the Hogarth and Caland pits. Open-pit iron mining occurred from 1944 to 

1979 and the pits were allowed to flood after production ceased (McNaughton and 

Lee 2010). A variety of limnological and geochemical studies have been performed 

on these pit lakes (Godwin 2012, McNaughton and Lee 2010, Mikkelsen 2012). Both 

pits are meromictic (Godwin 2012, McNaughton and Lee 2010) and expected to 

overflow in the next 65-72 years as predicted using hydrodynamic modeling 

(Mikkelsen 2012). The utilization of the Caland Pit for aquaculture of chinook 

salmon and rainbow trout is an example of practical usage of a mine-impacted 

aquatic ecosystem (McNaughton and Lee 2010).  

Also in northern Ontario is the meromictic Mattabi Crown Pillar Pit Lake near 

Ignace (Brassard et al 1996). Research on the Crown Pillar Pit Lake showed that it 

was a promising site for disposal of acid-generating tailings in its anoxic strata 
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(Brassard et al 1996). Keeping the tailings in an anoxic environment would 

minimize acid-generation from the tailings. Lakes near salt mining operations are 

also at risk of becoming meromictic due to effluent discharge or spills. One such 

example is Lake Hallstättersee in Austria which continually receives saline 

wastewater and was downstream of two large brine spills (Ficker et al 2011). Lake 

Hallstättersee alternates between holo- and meromixis.  

Although not in Ontario, Kennady Lake in the NWT is an example of a system 

where meromixis is expected to occur as a result of diamond mining planned to 

start in 2016 at the De Beers Gahcho Kué Project (Vandenberg et al 2015). Kennady 

Lake is expected to develop meromictic stability, especially after mine closure, and 

maintaining this meromixis in Kennady Lake is the current post-closure strategy 

(Herrell et al 2015). Maintaining meromixis in Kennady Lake will ensure that saline 

water accumulated from site run-off, groundwater inputs, pit dewatering and 

effluent discharge will be kept isolated from the overlying low salinity water which 

will be allowed to flow through the system and therefore downstream watersheds 

will be less impacted (Herrell et al 2015, Vandenberg et al 2015). This strategy has 

been utilized successfully in the past at other Canadian mine operations (Brassard et 

al 1996, Fisher and Lawrence 2006, Hamblin et al 1999). 

Meromixis in Lim and Frank Lakes 

In the present study, I examined water quality in two mine influenced lakes, 

Lim Lake and Frank Lake, had their current water quality examined. Alterations of 

multiple water quality parameters have occurred in Lim and Frank Lakes as a result 

of receiving effluent from the Hemlo operation (Tables 1.1 and 1.2, Appendix B). 

Baseline studies were conducted for Lim and Frank Lakes in 1983 (Wood 1984) and 

1984 (SENES Consultants Limited 1984) respectively. Lim Lake received treated 

effluent from Golden Giant Mine from 1985-2006 and from David Bell Mine from 

1986-1999 (Beak International Incorporated 2000d), while Frank Lake has been 

receiving effluent from David Bell and Williams since 1999 and 1987 respectively 

and will continue to until mining ceases at Williams (Beak International 

Incorporated 2000a, Orr and Stecko 2006b).  
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Despite water quality improvements in Lim Lake that occurred in the two 

years after discharge cessation, natural dilution of the surface strata of Lim Lake 

resulted in the meromictic conditions being established (Weech and Orr 2009a). 

Lim Lake first exhibited meromixis after early ice-on in fall 2008 and this 

incomplete turnover persisted into spring 2009 (Weech and Orr 2009a). Turnover 

only occurred down to 6-7 m during these seasons (max lake depth = 12 m). A 

profile taken during fall 2009 also indicated persistence of meromictic stability in 

the lake from 8m to the bottom (unpublished data).    

 Frank Lake first began showing some meromictic stability in September 

1992 since constant temperature was observed down to 19m but specific 

conductance (sp-cond) and DO demonstrated the presence of a monimolimnion 

(ESP 1993). Chemical stability was apparent but to a lesser degree during the fall 

2009 EEM (Beak International Incorporated 2000a). The first documented mention 

of meromixis in Frank Lake occurred in the 2008 EEM where a definite chemocline 

between 5 m - 6 m and anoxic conditions were observed at 5 m (Orr and Stecko 

2009b). It is possible that the chemocline had already been established in 2005 but 

only conductivity (not specific conductance) was reported in the 2005 EEM so 

interpretation is difficult (Orr and Stecko 2006b). Data measured in November 2010 

(after fall turnover) by Hemlo staff showed a chemocline between 10m and 12m, 

indicating that meromixis was still present in Frank Lake (unpublished data).    

Objectives 

The objectives of the current study’s first chapter were to: 

1) Perform a comprehensive water quality study of both Lim and Frank Lakes 

and relate the water quality, particularly sulphur, to the meromictic stability in 

the study lakes. 

2) Use water quality at the time of turnover (spring and fall) to compare the 

meromictic states of Lim and Frank Lakes and whether stability is 

deteriorating or strengthening over the study duration and relate this to the 

lakes’ management strategies.  
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3) Identify which parameter(s) could be used to develop a model that could 

predict meromictic stability trends in Frank Lake, which is currently receiving 

effluent discharge. 

Hypotheses 

At the time of commencing this study (2011), it had been three years since an 

in-depth water quality study had been performed on the lakes. It was therefore 

important to monitor and assess the current water quality and meromictic state of 

both lakes. Based on past literature on mine-impacted meromictic lakes such as 

Cleaver Lake and the past consultant studies on Lim and Frank Lakes, it was 

hypothesized that both Lim and Frank Lakes were still meromictic due to a short 

natural remediation time (Lim Lake) and current effluent discharge receiving 

(Frank Lake).  

Sulphur is one of the highest concentrated anions and salt components in both 

lakes and so initially it was selected as the parameter acting as a proxy for 

predicting mixing trends and focal parameter for modeling.  
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Methods 

Study Site 

Location 

The Hemlo Gold Mine property operated by Barrick Gold (Figure 1.1, 

Appendix A) is the site of two lakes, Frank Lake (48.65 lat, -85.84 lon) and Lim Lake 

(48.40 lat, -85.53 lon). The mine is located approximately 335 km east of Thunder 

Bay, ON., 35 km east of Marathon, ON. and currently consists of the operational 

Williams and decommissioned David Bell and Golden Giant complexes (closed in 

2014 and 2006 respectively). 

Lake Morphometry and Hydrology  

Lim Lake 

Lim Lake is an oval-shaped lake, 1 km long and 0.3 km wide with an average 

depth of 6 m and a maximum depth of 13 m. Lim Lake’s bathymetry is bowl-like, 

sloping from the shores towards the deep zone in the approximate center of the lake 

(Figure 1.2, Appendix A). Lim Lake has a 1.3 X 106  m3 volume, 0.301 km2 (30.1 ha) 

surface area and an estimated 155-175 day residence time during discharge (Sigma 

Engineering 1984). From inflow to outflow, the lake is orientated along a north-west 

to south-east axis and is surrounded by a 0.4 km2 watershed area, which provides 

brief inflow during spring melt and during heavy rain events (Sigma Engineering 

1984). Outflow from the lake passes through a beaver dam and is consistent for 

most of the year, slowing during the winter months as the water elevation in the 

lake drops below the dam. There is unconsolidated flow that enters the lake off of 

the natural ridge on the northwestern shore that separates Lim Lake from the 

tailings management facility at the Hemlo Operation.     

Frank Lake 

Frank Lake is a U-shaped lake, 1.40 km long and 0.25 km wide with an 

average depth of 10 m and a maximum depth of 28 m. Frank Lake’s bathymetry is 

more complex than Lim Lake’s, having a main channel with two deep zones (12 m 

and 28 m deep) and two bays jutting North at either end of the main channel (8 m 

and 9 m deep) (Figure 1.3, Appendix A). Frank Lake has a 2.4 X 106  m3 volume, 0.49 
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km2 (49 ha) surface area and 270 day residency time (SENES Consultants Limited 

1984). This residency time was calculated for the entire lake but the current 

meromictic state of the lake only has the top 6-11 m of the water column actively 

flowing through the lake, which likely shortens the residency time. From inflow to 

outflow the lake is orientated along a west to east axis and is surrounded by a 3.4 

km2 watershed (SENES Consultants Limited 1984), which provides inflow through 

an intermittent beaver dam for much of the year. Spring run-off promptly followed 

by discharge of effluent at a mutual location makes judging natural inflow difficult; 

however, an estimated 60% of flow into Frank Lake is from mine effluent (Weech 

and Orr 2009b). Outflow passes through a beaver dam and is consistent for most of 

the year, slowing during the winter months as the water elevation in the lake drops 

below the dam. 

Historical Water Quality 

Lim Lake 

Some of the major studies performed on Lim Lake include; a Baseline Study 

in 1983 (Wood 1984), an Aquatic Environmental Assessment (AEA) in 1999 (Beak 

International Incorporated 2000c, International Incorporated 2000d) and 

Environmental Effects Monitoring (EEM) in 2005 (Orr and Stecko 2006a) and 2008 

(Weech and Orr 2009a). Concentrations for relevant water quality parameters from 

these studies can be found in Table 1.1 (Appendix A). Parameters that have been the 

best indicators of effluent effects on Lim Lake include hardness, conductivity and 

sulphate. Baseline metal concentrations were all very low. The AEA in 1999 found 

that most parameters available for comparison with baseline data had increased 

(Beak International Incorporated 2000c). More specifically, concentrations of 

antimony, copper, molybdenum and nickel were elevated in the 1999 study 

compared to baseline (Beak International Incorporated 2000c). Antimony, copper, 

molybdenum and nickel had increased the most from baseline, although antimony 

and copper had decreased in Lim Lake in the years leading up to the study. The 

1999 study found that mercury, arsenic, iron, lead and zinc had shown little change 

in Lim Lake since baseline data was collected (Beak International Incorporated 
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2000c). The 2005 EEM occurred just prior to the cessation of discharge in 2006 and 

all of the aforementioned water quality parameters remained elevated in Lim Lake 

but had decreased since the 1999 study (Orr and Stecko 2006a). Decreases in 

conductivity, hardness, major cations and most metals were found (Orr and Stecko 

2006a). The second EEM study occurred 2 years after the cessation of discharge in 

2008 and found that many water quality improvements had occurred since 

discharge cessation (Weech and Orr 2009a). All water quality parameters except 

iron had decreased. A major difference in water quality observed in the 2008 EEM 

compared to the 2006 EEM on Lim Lake was more elevated concentrations of nearly 

all parameters with increased depth (Weech and Orr 2009a). In general, all of the 

studies indicated that effluent effects became less apparent downstream of Lim Lake 

especially in Herrick Lake, which offered a great deal of dilution.  

Frank Lake 

Some of the major studies performed on Frank Lake include; Baseline Study 

in 1984 (SENES 1984), Aquatic Environmental Assessments in 1992 (ESP 1993), 

1999 (Beak International Incorporated 2000a, Beak International Incorporated 

2000b) and EEM’s in 2005 (Orr and Stecko 2006b) and 2008 (Weech and Orr 

2009a). Concentrations for relevant water quality data from these studies can be 

found in Table 1.2 (Appendix A).        

 Baseline water quality data showed low concentrations of all parameters 

(SENES 1984). The lake was slightly acidic, poorly buffered (low alkalinity) and had 

elevated aluminum, which is common for Canadian Shield lakes (SENES 1984). The 

AEA done in 1992 found that conductivity, hardness, alkalinity, calcium, magnesium, 

manganese, potassium, sodium, sulphate, nitrate, nitrite, antimony, barium, 

molybdenum, nickel, and strontium had increased compared to baseline data (ESP 

1993). Increases in these major cations, anions and metals were sourced to mine 

effluent. Copper, iron and zinc concentrations had not been significantly altered. The 

1999 AEA found that elevated parameters remained consistent with the 1992 study 

while others increased such as molybdenum and zinc (Beak International 

Incorporated 2000c). Both Cycle 1 and 2 EEM’s found continued evidence of effluent 
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effects on Frank Lake water quality (Orr and Stecko 2006b and Weech and Orr 

2009b). Elevated levels of all of the aforementioned parameters from the 1992 

study continued to remain elevated in Frank Lake in both studies. In both 2005 and 

2008, samples taken in Frank Lake prior to initiation of spring effluent discharge 

demonstrated lower concentrations of many water quality parameters indicating 

dilution over winter and spring melt. In general, all studies found that effluent 

effects are most noticeable in Frank Lake and parameter elevations become nearly 

undetectable once Frank Creek meet the White River. 

Spangle Lake (Reference Lake) 

Although a number of lakes have been utilized for comparison of water 

quality in Lim and Frank Lake studies, Spangle Lake (49.62 lat, -85.88 lon) will be 

focused on here since it has been included in studies since the beginning of 

operations. It has been a common reference lake for both study lakes and it was 

sampled in the current study (Table 1.3, Appendix A). Spangle Lake is a J-shaped 

lake, 3.0 km long, 0.5 km wide (Harkness RA and Morgan JD) with a maximum depth 

of 16 m (Beak International Incorporated 2000c). The lake is orientated in a 

southwest-to-northeast direction with two deep zones of equivalent depth in the 

large bay and smaller bay to the northeast (Beak International Incorporated 2000c). 

Spangle Lake has not been influenced by mining activity and therefore has lower 

concentrations of nearly all metals and other ions in comparison to Lim and Frank 

Lakes. Consistently-elevated levels of aluminum and iron and occasionally-elevated 

levels of cadmium, chromium, cobalt, copper, iron and zinc compared to PWQO or 

Canadian Water Quality Guidelines (CWQG) have been measured in Spangle Lake 

which indicate that geological composition of the surrounding watershed has an 

influence on the lake’s water quality (Harkness RA and Morgan JD, Beak 

International Incorporated 2000a and 2000c, Orr and Stecko 2006a and 2009a, 

Weech and Orr 2006b and 2009b). During summer months, Spangle Lake does show 

oxygen decreases in its lower strata, typically from 5-8 m to the bottom, depending 

on the sample year (ESP 1993, Beak International Incorporated 2000a and 2000c, 

Weech and Orr 2009a and 2009b). This lower-strata oxygen depletion in Spangle 
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Lake is solely due to summer thermal stratification since oxygen has always been 

replenished to bottom strata after fall turnover. Spangle Lake is dimictic since no 

chemical stratification exists within the lake as indicated by constant specific 

conductance through the water column (Beak International Incorporated 2000b and 

2000d, Weech and Orr 2009a and 2009b).  

Field Sampling Program  

Water Sampling  

Sampling for the project began in July 2011 and continued until fall 2013. 

Water sampling locations in both Lim and Frank Lakes are illustrated in Figures 1.2 

and 1.3 respectively (Appendix A). Sample depth locations in Lim and Frank Lakes 

for the study duration can be viewed in Figures 1.4 and 1.5 respectively (Appendix 

A). Some additional multi-probe data was collected between these sample dates. 

Spangle Lake (reference lake) was sampled twice during the study in August 2011 

and March 2012.  

Sampling occurred at the deepest zones using a Wildco Teflon Kemmerer 

bottle as well as at the in/outlets when flow was observed. Sample bottles were 

rinsed once using sample water prior to filling. Field duplicates were performed 

once per sampling session and a traveling blank was performed once. Depth profiles 

for temperature, pH, specific conductance, salinity, DO, TDS, turbidity and 

chlorophyll a were obtained using a Hach Hydromet Hydrolab Datasonde 4a at 1 m 

intervals. Temperature, sp-cond and DO from the multi-probe were used to dictate 

depths of the epi-, meta- and hypolimnions as well as mixo- and monimolimnions 

and where samples were to be taken as stratification changed throughout the 

summer. The multi-probe was lowered to a particular depth and when readouts 

were stable, the data was recorded and the probe was lowered to the next depth. 

During summer months, an average of three samples were taken from the epi- and 

metalimnions and two samples from the hypolimnion. Three or more samples were 

taken from monimolimnion in Frank Lake. Fall, spring and winter sample depth 

locations were also dictated using the multi-probe. Chl a samples were taken at epi- 

and metalimnion sample depths in summer and select depths near the surface 
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during fall, winter and spring. Inlets and outlets were also sampled for chl a. Chl a 

samples were sometimes taken from deeper waters however this was rare since 

most phytoplankton dynamics occur in strata near to the surface. Chl a samples 

were covered in tinfoil after sampling and frozen. 

In the winter of 2013, multi-probe readings and water samples were 

collected from three additional locations in Frank Lake other than the deep zone 

(Figure 1.3, Appendix A). The two bays (both approx. 8 m deep) off of Frank Lake’s 

main channel as well as the 12 m deep zone in the main channel were also sampled 

to determine if consistent water quality occurred horizontally and laterally across 

the entire lake in each stratum. Due to its smaller size and simpler bathymetry, Lim 

Lake was only sampled at its deep zone and no other locations within the lake 

system. 

Characterization of the sulphur species in the lakes has been a main goal of 

the study because sulphur is the highest elevated constituent in both study lakes. 

The sulphur species of focus included total sulphur (TS), sulphate (SO42-), 

thiosulphate (S2O32-) and hydrogen sulphide (H2S). 

H2S Sampling 

There was a potential for H2S formation in the depths of Lim and Frank Lake 

based on the observed conditions (high sulphur concentrations and anoxic 

conditions). Obtainment of H2S samples was performed utilizing a peristaltic pump 

attached to enclosed tubing and a needle. The tubing was lowered to a known depth 

congruent with the Kemmerer samples and the pump was used to draw the water 

up to the surface. The needle was used to inject water into sample bottles containing 

zinc acetate and sodium hydroxide preservatives. This set-up attempted to ensure 

that none of the H2S that may be present in the sample was exposed to oxygen prior 

to preservation.                              

Laboratory Procedures  

All laboratory analyses were conducted at the Lakehead University 

Environmental Laboratory (LUEL) which is ISO 17025 Accredited by Canadian 

Association for Laboratory Accreditation Incorporated (CALA). 
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Alkalinity and pH were measured using a Mettler DL53 Compact Titrator with 

Mettler Probe #DG111-SC calibrated at pH 4, 7 and 10. Conductivity was measured 

with a Mettler SevenMulti meter equipped with a conductivity module with 

automated temperature compensation calibrated at 200μS cm-1. Fifty mL aliquots of 

unpreserved sample were used in the measurement of these parameters. Transport 

times, sample login and laboratory scheduling prevented a 24 hr measurement of 

these parameters however these parameters were measured within 48 hrs of 

sampling (Joncas 2012c, Joncas 2012a). Hardness was calculated using the formula 

(American Water Works Association et al 2006):  

Hardness (mg L-1) = (2.497*Calcium (mg L-1)) + (4.118*Magnesium (mg L-1)) 

Total dissolved and suspended solids (TDS and TSS) were measured within 7 

days of sampling. Gravimetric analysis was employed using a 200 mL unpreserved 

sample aliquot and filtering it through a pre-weighed 0.45 µm glass filter using 

vacuum filtration. The filter was kept for TSS analysis and 50 mL of the filtered 

sample was placed in a pre-weighed beaker and used for TDS analysis. Both the filters 

and the filtered 50 mL aliquots were heated in ovens for 12 hrs at 103°C and 180°C 

respectively. Final weighing occurred using an OHAUS Analytical Scale calibrated to 5 

decimal places and reported values were presented as the weight per volume of the 

entire sample (Joncas 2012b).          

 Total metal samples were preserved the day of sampling using 3-5 drops of 

50% nitric acid (HNO3) and analysis was performed using a 50 mL sample aliquot 

with 0.4 mL of concentrated HNO3 added. Samples were heated at 95°C in a CEM Mars 

5 microwave unit until a five-fold concentration of the sample had been achieved 

(~24 hrs). Sample volumes were then increased up to 10 mL with double distilled 

water (DDW) and mixed by inversion. Total and dissolved metals were analyzed 

using a VarianPro Inductively Coupled Argon Plasma Spectrometer (ICP-AES) for Al, 

As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, Pb, S, Si, St, V, and Zn (Joncas 

2012d). If a particular metal was continually below the detection limit, it was not 

deemed critical for further analysis and after a number of sampling sessions, Be, Cd, 

Cr, Pb and Vd were removed from Lim and Frank Lake analysis as well as Co from the 
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Lim Lake analysis (Joncas 2012e).        

Anions including chloride (Cl-), sulphate (SO42-), phosphate (PO43-), nitrate 

(NO3-) and nitrite (NO2-) were analyzed using 5 mL aliquots of unpreserved sample. A 

5-25-fold dilution of many of the Frank Lake samples occurred due to the high 

concentration of many of the anions. A Dionex ICS-1100 Ion Chromatograph (IC) with 

an AS14 separation column in conjunction with an AS-DV automated sampler was 

used to analyze the samples.       

Total phosphorus (TP) was analyzed using a SKALAR Sans+ automated 

chemistry analyzer (50 mm flow cell, 880 nm filter) with Flowaccess software. Ten to 

thirty mL of unpreserved sample was mixed with potassium peroxodisulfate and a 

disodium tetraborate solution and UV radiation was used to destroy organic 

phosphates. Sulfuric acid was added to digest ortho-phosphates at 97°C. 

Neutralization occurred via sodium hydroxide. A phosphor-molybdic acid complex 

was formed by reacting ammonium heptamolybdate and potassium antimony (III) 

oxide tartrate in acidic media with diluted phosphate solutions. The phosphor-

molybdic acid complex was reduced by ascorbic acid and its blue colour could be 

spectrophotometrically measured at 880 nm (Joncas and Walford 2012a).   

Total nitrogen (TN) was analyzed using the SKALAR Sans+ automated 

chemistry analyzer with SA1070 (30 mm flow cell, 8mL sample cups) and version 6.2 

software. Ten to thirty mL of unpreserved sample was mixed with potassium 

peroxodisulfate/sodium hydroxide solution and then borax buffer after being heated 

to 90°C. This solution was then UV digested to convert all nitrogen forms into nitrate 

which can converted to nitrite using a cadmium copper redactor which can be 

measured using the Greiss reaction at 540 m. Total Kjeldahl Nitrogen was calculated 

by subtracting NO2- and NO3- values from TN values (Joncas and Walford 2012b).    

Ammonia nitrogen (N-NH3) was analyzed using a Dionex ICS-1100 Ion 

Chromatograph with sample aliquots obtained from the routine bottle. 

Approximately 5 mL aliquots were mixed with a stream of methanesulfonic acid 

eluent and passed through the column at high pressure. Various cations were 

separated based on attraction to the column and conductivity of the peaks were then 
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measured with a conductivity cell. A Dionex IC-120 (4 mm system) with an ionpac 

CS16 analytical column (5x250 mm) and an ionpac CG16 guard column (5x50 mm) in 

a weakly acidic medium, an AS40 autosampler and PEAKNET version 4.30 version 

software were used to analyze the samples (Raitsakas and Walford 2011).   

 Dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) were 

measured with the SKALAR Sans+ automated chemistry analyzer. Sample aliquots 

were acidified upon introduction to the SKALAR and flushed with nitrogen gas to 

remove the inorganic carbon. The sample was then oxidized with UV radiation in 

acid-persulfate to convert carbon to CO2. Dialysis was performed and then CO2 was 

measured by determining change in absorbance of a weakly buffered alkaline 

solution with a phenolphthalein indicator. 

Sulphide analysis to measure H2S occurred using a primary/peer-reviewed 

method (Cline 1969). A Cary 5e spectrophotometer was used for the 

spectrophotometric analysis.  

When developing total sulphur to sulphate ratios, all of the sulphate 

concentrations were multiplied by 0.33 in order to obtain only the mass of sulphur 

from each mg L-1 sulphate concentration and exclude the mass of the oxygen 

molecules. 

Chl a sample analysis involved thawing and filtering 1 L of sample through a 

≥5 μm filter using vacuum filtration and then dissolving the filter and its contents in 

15 mL of 90% acetone using periodic vortexing and then settling for 18-24 hrs. 

Spectrophotometric analysis using the Cary 5e spec at 660, 670, 680 and 750 nm 

was used to give ug L-1 of chl a.   

Isopleth Development 

 Isopleths (contours of depth, time and parameter concentrations) were used 

to display the data because they allowed for a large amount of data to be displayed 

in a single figure. Although line graph interpretation can be simpler, comparing line 

graphs from many data sets can be cumbersome. To develop the isopleths, Golden 

Software’s SURFER 12 was used. A grid file was developed for each parameter to 

produce a contour map of depth (y-axis), time (x-axis) and concentration (z-axis). 
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Triangulation with linear interpolation was used as the gridding method to develop 

the contour plots because it resulted in the best representation of the data whereas 

other gridding methods such as kriging or nearest neighbor resulted in contour 

plots that were largely different from observed data. 

Statistical Analysis    

SPSS-Statistical Software (Ver. 23) was used to perform hierarchical cluster 

analyses for water quality data from Lim and Frank Lakes for 2011 and 2013. The 

data was log-transformed in Excel prior to statistical calculations due to the fact that 

the parameters were measured with differing scales (units: mg L-1, ug L-1, pH, °C). 

The data was also standardized to have a standard deviation of 1. Both 

transformation and standardization are common practices when statistically 

analyzing water quality data (Baxter 1995, Cao et al 1999). An average-linkage 

(between groups) clustering technique was utilized. “Chaining” was minimal using 

this method and non-monotonic inversions were absent. Detection limit (DL)*0.5 

was used for all <DL results however parameters that had <DL results for a majority 

of the samples were not included in the cluster analysis. Pearson correlation was 

used as the proximity index (measure of dissimilarity). 

A univariate ANOVA was also performed to determine variation significance 

by layer (1=epilimnion or mixolimnion, 2=metalimnion or chemocline and 

3=hypolimnion or monimolimnion), year (1=2011, 2=2012 or 3=2013) and season 

(Spring=ice-off, Summer=thermal stratification, Fall=thermal stratification 

deteriorating, Winter= thermal stratification absent/ice-on). A significance level of 

p<0.05 was used. November data was considered winter data because ice formation 

occurred the day before or after sampling during this month in all years. Percent 

change in the average concentration of each parameter from 2011 to 2013 included 

data from all of 2011 For Lim Lake, when calculating percent change in water 

quality parameters in 2011 versus 2013; data from the whole water column was 

used. For Frank Lake, when calculating this percent change, an individual 

percentage was calculated for each layer (mixo-, chemo- and monimolimnion) 

because these layers were present throughout the study. Calculating three separate 
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percentages made it possible to discern which layers had the most or least change.  
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Results             

Statistical Analyses – Water Chemistry 

The cluster analyses and ANOVAs for both study lakes identified parameters 

that fluctuated similarly through the water column and varied significantly between 

layers, years and seasons for all data. If certain parameters increased and/or 

decreased similarly through the water column at similar times during the study, 

they would be grouped together and form clusters. Ultimately this helped to 

illustrate parameters that responded similarly to specific events in the field such as 

natural remediation and turnover (Lim Lake), prolonged meromixis and 

fluctuations in effluent discharge (Frank Lake) or the May 2013 rain event (both 

lakes). The clusters resulting from the 2011 Lim (Figure 1.6) and Frank Lake (Figure 

1.8) data had a higher level of dissimilarity (had longer internodes) than the 2013 

data clusters for these lakes (Figure 1.7 and Figure 1.9 respectively). Similar 

parameters tended to cluster together and some similarities between clusters were 

observed from 2011 versus 2013. It is important to note that some of the 

parameters (silicon, total phosphorus, nitrate, ammonia, total kjeldahl nitrogen, 

dissolved organic and inorganic carbon) were not measured after June 2013 and so 

less data was available for analysis and likely had a small impact on the cluster 

results for both lakes.  

Tables 1.4 and 1.5 illustrated the parameter averages in each layer in Lim 

and Frank Lakes respectively in 2011 and 2013, the percent change between these 

years as well as variance significance. Tables 1.6 to 1.8 in Appendix B demonstrate 

the actual significance results for layers, years and seasons in Lim Lake respectively. 

The same results are demonstrated for Frank Lake in Tables 1.9 to 1.11 respectively 

in Appendix B. 

Lim Lake 

In 2011, the parameters in Cluster 1: (Ca, hardness, Na, K, Sr, Ba, Mg, 

alkalinity, Fe, Mn, sp-cond, TDS and Ni) (Figure 1.6) had much higher concentrations 

in lower strata, especially in summer 2011, but equalized during fall 2011 turnover. 

These parameters largely comprised the TDS of the lake. Ni’s presence in the cluster 
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was debatable and it could have been considered an independent parameter. Cluster 

2’s parameters (DIC, Cl, sulphate and total sulphur) also demonstrated large 

concentration increase with depth but also showed an increase in surface strata 

during fall 2011, which made it dissimilar from cluster 1. Cluster 3’s parameters 

(ammonia, TotP and Si) all increased with depth during summer but decreased 

greatly in concentration during fall compared to other parameters. The parameters 

of both Clusters 4 (temp and pH) and Cluster 5 (DO, NO3 and Cu) had a greater 

magnitude in upper strata and decreased with depth; however, the gradient of 

decrease was not quite as smooth for Cluster 5. TKN, Zn, DOC, chl a and Al were all 

independently-varying parameters in 2011. TKN increased with depth like cluster 1 

and 2 but showed very little surface strata variability in fall, which made it unique. 

Chl a, Al and Zn demonstrated sporadic increases in isolated strata but these 

increases differed slightly both spatially and temporally. DOC had a relatively 

constant concentration from surface to bottom in 2011. 

In 2013, similar clusters resulted (Figure 1.7); however some parameters 

joined a different cluster compared to 2011. Cluster 1 was maintained and 

contained (Ca, hardness, total sulphur, K, Na, Sr, Mg, sp-cond, sulphate, Cl, Zn, TDS, 

Ni, Ba, Fe, alkalinity, Mn, TKN and DIC). Cluster 1 gained all of the parameters of 

Cluster 2 in 2011 (total sulphur, sulphate, Cl and DIC) as well as Zn and TKN, which 

clustered independently in 2011. The common trend with the Cluster 1 parameters 

was an increasing concentration with depth early in the year, surface decrease 

during the rain event and continued decrease and eventual equalization throughout 

the water column after fall turnover. The magnitude of increase with depth varied 

for each parameter. The parameters of Cluster 2 (Chl a and pH) demonstrated 

higher levels in surface strata but remained largely unaltered during the rain event.  

Cluster 3 parameters (temp, Al and Tot P) also demonstrated higher levels near the 

surface but demonstrated an isolated surface increase during the rain event of May 

2013. Cluster 4 (DO, NO3 and Cu) was the exact same as Cluster 5 in 2011. Higher 

concentrations of these parameters were found in surface strata. 

Ammonia, Si and DOC were all independent parameters in 2013. These 
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parameters were all only measured up to June 2013. Ammonia and Si increased very 

slightly with depth but both responded differently to the rain event. Ammonia 

almost completely eliminated from the water column after the rain event whereas Si 

increased slightly in all strata during the rain event. DOC was largely constant from 

surface to bottom but increased greatly in surface water after the rain event.  

 

Figure 1.6. Hierarchical cluster analysis of Lim Lake water quality parameters for 

Jul 2011-Nov 2011 using the average-linkage (between groups) cluster method. 
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Figure 1.7. Hierarchical cluster analysis of Lim Lake water quality parameters for 

Feb 2013-Nov 2013 using the average-linkage (between groups) cluster method. 

  

 The ANOVAs indicated that a majority of parameters varied significantly 

between layers (epi-, meta- and hypolimnion). These parameters included 

temperature, DO, alkalinity, sp-cond, DIC, ammonia, nitrate, Ba, Ca, Cu, Fe, K, Mg, Mn, 

Na, Ni, Si, Sr, pH, TDS and hardness. Although many of these parameters clustered 
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differently from each other, they all were part of clusters that varied with some 

magnitude through the water column, whether it was increasing or decreasing with 

depth. Parameters not demonstrating a significant variance with depth included chl 

a, DOC, Cl, Al, total sulphur, sulphate, Zn, TKN and TotP. In 2011, all of these 

parameters except total sulphur, sulphate and TotP clustered individually due to 

varying uniquely in the water column. Although total sulphur, sulphate and TotP 

increased markedly with depth in summer 2011, after the fall 2011 turnover, their 

increase in concentration with depth during other stratification periods was much 

less for the remainder of the study. 

All parameters excluding DO, Al, Ba, Fe, Mn, Zn and TotP varied significantly 

between years. As indicated in Table 1.4, all of these parameters, except Mn (sig. 

level=0.054), increased or decreased by 0-21% on average from 2011 to 2013. All 

other parameters demonstrated an increase or decrease of >21% magnitude on 

average from 2011 to 2013; excluding pH, alkalinity, DOC, Mg and Ni.  

The only parameters that did not demonstrate significant variability with 

season were DO, DOC, Al and Ni. The significance level for DO (0.065) was a much 

lower magnitude than the other parameters and was close to the significance level 

of p<0.05. DOC demonstrated independent variability since it was not part of a 

cluster in either 2011 or 2013 and the same occurred for Al in 2011. 

To summarize, significant variation in many parameters were observed 

between layers, years and seasons in Lim Lake. A variety of these parameters varied 

in unison and formed distinctive clusters. The recovering state of Lim Lake and 

occurrence of a full water column turnover monomictic mixing regime in the lake as 

well as the rain event of 2013 are the main influences on the concentration 

variations observed. 
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Table 1.4. Average parameter concentrations in Lim Lake layers and whole-lake percent change 
from 2011/2013. Associated ANOVA significance results for layers, years and seasons also displayed. 

 

 
 

Parameter 

Epi Meta Hypo 

 

Whole Year Average 

Whole 

Year % 

Change 

2011 2013 2011 2013 2011 2013 2011 2013 2011- 

2013 

Temp a,b,c,d 15.77±7.58 6.48±5.32 11.10±4.67 4.58±3.74 5.47±0.89 3.78±0.48 10.00±6.77 4.33±3.51 
-56.71 

DO b 9.33±1.08 9.69±0.79 5.84±4.72 8.82±2.20 1.27±4.83 3.82±3.12 6.96±4.49 7.30±3.30 
4.91 

Chl a a,c,d 1.32±0.44 3.04±1.17 2.23±0.99 1.99±1.52 1.48±0.24 2.03±1.30 1.50±0.57 2.72±1.28 
80.90 

pH a,b,c,d 7.08±0.18 7.13±0.07 6.81±0.13 7.05±0.17 6.76±0.09 6.81±0.14 6.92±0.19 7.00±0.17 
1.23 

Alkalinity b,c,d 34.69±4.42 31.56±3.90 41.58±10.83 34.08±3.37 58.89±10.96 39.88±4.40 43.45±12.2 35.30±4.91 
-18.74 

Hardness b,c,d 200.06±19.40 153.80±27.58 237.68±30.10 172.46±26.51 277.59±29.04 187.82±24.15 231.04±37.60 166.53±27.3 
-27.92 

Sp-Cond a,b,c,d 649.73±55.99 451.86±85.27 750.50±127.97 510.56±78.42 886.18±95.81 562.17±69.10 113.10±121.0 59.41±82.32 
-47.47 

Tot Sulphur c,d 109.84±45.55 54.29±12.31 96.29±15.10 62.38±11.35 143.29±54.88 67.98±10.03 306.66±46.49 221.47±11.61 
-27.78 

Sulphate c,d 265.53±95.95 202.51±58.88 316.24±138.51 235.18±59.13 329.10±129.15 269.63±60.67 736.36±117.89 496.97±61.89 
-32.51 

TDS b,c,d 421.60±33.23 300.83±57.94 483.40±74.03 339.22±57.83 593.96±63.76 364.30±57.53 484.70±82.08 324.95±58.94 
-32.96 

DIC b,c,d 7.41±1.41 5.09±2.08 10.14±3.84 5.91±1.77 12.18±3.14 7.67±1.12 9.51±3.18 6.46±1.92 
-32.08 

DOC c 8.25±0.77 10.14±1.19 8.57±0.69 9.68±0.88 9.14±0.58 9.73±0.53 8.55±0.75 9.82±0.87 
14.81 

Cl c,d  14.37±3.33 9.88±1.53 17.87±6.34 10.99±1.33 19.45±5.54 12.62±1.84 16.75±5.10 10.91±1.84 
-34.85 

Ammonia b,c,d 0.36±0.18 0.15±0.03 0.90±0.58 0.18±0.09 2.42±0.94 0.41±0.32 1.04±0.96 0.27±0.24 
-73.70 

NO3 b,c,d 0.14±0.02 0.19±0.02 0.11±0.07 0.19±0.02 0.03±0.05 0.16±0.07 0.11±0.06 0.18±0.05 
67.03 

TKN c,d 0.90±0.68 0.40±0.12 2.20±1.20 0.42±0.14 2.72±1.92 0.71±0.33 1.56±1.46 0.54±0.27 
-65.26 

TotP d 0.0081±0.006 0.0129±0.008 0.0138±0.012 0.0114±0.005 0.0286±0.029 0.0109±0.003 0.0146±0.02 0.0116±0.005 
-20.55 

Al b 0.057±0.078 0.061±0.17 0.032±0.008 0.046±0.007 0.037±0.018 0.041±0.010 0.044±0.052 0.047±0.013 
5.72 

Ba b,d  0.022±0.002 0.022±0.001 0.025±0.004 0.021±0.001 0.026±0.002 0.026±0.004 0.024±0.003 0.023±0.003 
-4.33 

Ca b,c,d  75.47±7.35 57.61±10.53 90.02±11.51 64.73±10.19 105.66±11.34 70.73±9.34 87.50±14.57 62.49±10.50 
-28.59 

Fe b,d 0.052±0.032 0.058±0.042 0.318±0.357 0.067±0.039 0.062±0.298 0.426±0.365 0.262±0.30 0.211±0.28 
-19.41 

K b,c,d 12.16±1.28 8.64±1.80 14.85±2.48 9.76±1.66 17.44±2.02 10.91±1.61 14.27±2.63 9.47±1.80 
-33.62 

Mg b,c,d 2.82±0.255 2.42±0.318 3.13±0.339 2.63±0.265 3.34±0.215 2.72±0.214 3.05±0.31 2.55±0.27 
-16.30 

Mn b,d 0.062±0.04 0.047±0.02 0.331±0.31 0.072±0.02 0.584±0.22 0.264±0.13 0.264±0.26 0.138±0.12 
-47.49 

Na b,c,d 34.28±3.50 25.34±5.69 42.06±6.47 28.64±5.37 49.02±5.16 31.69±5.28 40.33±7.14 27.36±5.66 
-32.15 

Ni b,c 0.014±0.001 0.012±0.001 0.017±0.001 0.014±0.001 0.015±0.002 0.015±0.001 0.015±0.002 0.014±0.001 
-9.18 

Si b,c,d 0.39±0.24 0.69±0.12 0.64±0.29 0.72±0.13 1.08±0.44 0.99±0.18 0.58±0.40 0.83±0.20 
42.34 

Sr b,c,d 0.070±0.008 0.057±0.009 0.070±0.03 0.062±0.008 0.102±0.013 0.068±0.007 0.081±0.02 0.061±0.006 
-24.08 

Zn d 0.006±0.0038 0.005±0.0041 0.014±0.010 0.007±0.0037 0.010±0.0061 0.006±0.0029 0.008±0.008 0.006±0.003 
-20.46 

a All units are in mg L-1 except Sp-Cond (µS cm-1), Chl a (µg L-1) and pH (units). 
b Significant difference (p < 0.05) between depths. 
c Significant difference (p < 0.05) between years. 
d Significant difference (p < 0.05) between seasons. 
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Frank Lake 

In 2011, the most definitive cluster with the most parameters was Cluster 1 

(Ca, hardness, TDS, Mo, sp-cond, Mn, Ni, alkalinity, Al, Ba, sulphate, K, Na and DIC) 

(Figure 1.8). All of these parameters demonstrated lower concentrations in the 

mixolimnion versus the monimolimnion but also showed an increased mixolimnion 

concentration during fall 2011. Parameters of Cluster 2 (chl a, Si and DOC) formed a 

loose cluster but all of these parameters demonstrated a relatively constant 

concentration from surface to bottom and demonstrated a whole water column 

decrease towards fall. Parameters of Cluster 3 (DO, Sr, temp and pH) were all lower 

in magnitude below the chemocline. Parameters of Cluster 4 (NO3, Cl, ammonia and 

Mg) all demonstrated little to no increase in concentration with depth but during 

fall, their surface strata concentration increased markedly. Total sulphur, Zn, TKN, 

TotP and Fe all varied independent within the water column. Total sulphur 

increased to a lesser magnitude with depth but showed a substantial increase in fall 

2011. TKN and Fe varied little in the water column but TKN showed successive 

whole-water column decrease into fall. Zn and TotP both showed increases at 

isolated depths but differed spatially and temporally from each other. 

In 2013, Cluster 1 (Ca, hardness, TDS, sp-cond, sulphate, total sulphur, K, Na, 

Mg, NO3, Cl, Ba, Sr, Alk, Mo, DIC and TKN) was similar to Cluster 1 in 2011 (Figure 

1.9). Total sulphur, Mg, NO3, Cl, Sr and TKN joined Cluster 1 and Mn, Ni and Al were 

removed from it. This cluster was formed by parameters that again, increased in 

concentration below the chemocline and demonstrated a particular decrease in 

surface concentration after the May 2013 rain event. The residual effect of these 

decreased surface concentrations occurred for the remainder of the year. Cluster 2 

(ammonia and pH) had a relatively higher level of dissimilarity but both showed 

higher concentrations in the mixolimnion aside from isolated strata where ammonia 

concentrations were particularly high. Cluster 3 (Si, Zn, Mn, Ni and TotP) also had a 

relatively high level of dissimilarity but concentrations increased slightly with 

depth, decreased in upper strata after the rain event but increased again in these 

upper strata towards the fall. Cluster 4’s parameters (chl a, DOC, Al, DO and Fe) 

were more elevated above the mixolimnion in connection with the rain event. Only 
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temperature varied independently in 2013. 

 

 

Figure 1.8. Hierarchical cluster analysis of Frank Lake water quality parameters for 

Jul 2011-Nov 2011 using the average-linkage (between groups) cluster method. 
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Figure 1.9. Hierarchical cluster analysis of Frank Lake water quality parameters for 

Feb 2013-Nov 2013 using the average-linkage (between groups) cluster method. 

 

The ANOVAs indicated that a majority of parameters varied significantly 

between layers (mixo-, chemo- and monimolimnion). These parameters included 

temperature, DO, alkalinity, sp-cond, DIC, TotP, TKN, ammonia, NO3, TDS, Al, Ba, Ca, 

Fe, K, Mn, Mo, Na, Ni, total sulphur, Si, Sr, Zn, sulphate, pH and hardness. In 2011, all 
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of these parameters except Fe and TKN either belonged to clusters that varied in 

some capacity with depth or showed an independent trend of depth variability and 

formed an independent cluster. In 2013, Fe and TKN were influenced by the May 

rain event resulting in them merging with clusters that demonstrated layer 

variability in 2013. Parameters that did not vary significantly with depth were chl a, 

DOC, Mg and Cl. Chl a and DOC were part of the same cluster (Cluster 2) in 2011, as 

were Mg and Cl (Cluster 4). In general, these parameters did not vary greatly with 

depth aside from alterations in fall 2011, March 2012 and May 2013 and the clusters 

they were part of in 2011 and 2013 were representative of their concentration 

changes at these times.  

 The number of parameters that varied significantly from 2011 to 2013 and 

the number that did not were the same, dividing the parameter list in half. Table 1.5 

specified the percent change of each parameter in 2011 versus 2013 in the mixo-, 

chemo- and monimolimnions of each year. Parameters that did demonstrate 

variability between the years included temperature, chl a, sp-cond, TKN, ammonia, 

NO3, TDS, Al, Ba, K, Mg, Mo, total sulphur, Si and Cl. In general, most of the 

parameters that demonstrated a significant difference in years demonstrated either 

a decrease or increase in all three layers (i.e. all three layers had either a positive or 

negative % change) (Table 1.5). Al, Ba, Cl and Si were some exceptions to this. 

Parameters that did not demonstrate significant variability over the years were DO, 

alkalinity, DIC, DOC, TotP, Ca, Fe, Mn, Na, Ni, Sr, Zn, sulphate, pH and hardness. Most 

of these parameters demonstrated increase in some layers but decreases in others 

when comparing 2011 and 2013 (Table 1.5). 

 Regarding seasons, all parameters except DO, alkalinity, DOC, TDS, Al, Fe, Mn, 

Na, Ni, Sr and pH showed significant variability. A majority of these parameters also 

demonstrated variability between years as discussed above.  

 To summarize, significant parameter concentration variations between 

layers, years and seasons occurred in Frank Lake and clustered groups of 

parameters varied in unison. Undoubtedly, the meromictic stability and incomplete 

turnover that occurs in Frank Lake is a main influence on water quality in the lake. 
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In addition, the alterations of effluent discharge into the lake through the year and 

the rain event of 2013 largely impacted the concentration variations observed 

during the study.   
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Table 1.5. Average parameter concentrations in Frank Lake layers during 
2011/2013 and associated ANOVA significance results for layers, years and seasons. 
Significant difference between years highlighted in gray.  
 

 

Parameter 

Mixolimnion Chemolimnion Monimolimnion % Change 2011 vs. 2013 

2011 2013 2011 2013 2011 2013 Mixo Chemo Monimo 

Temp a,b,c,d 12.47±6.96 4.46±5.10 6.35±2.82 3.96±0.34 4.84±0.02 4.48±0.11 -64.26 -37.57 -7.31 

DO b 9.77±1.08 9.13±1.88 4.28±3.11 5.64±2.81 0.14±0.22 0.36±0.33 -6.56 31.91 162.18 

Chl a a,c,d 0.52±0.14 2.11±0.58 1.03±0.16 1.58±0.50 0.83±0.09 1.33±0.09 307.13 54.00 60.60 

Alkalinity b 34.54±2.27 28.07±7.55 33.76±1.94 30.37±1.76 43.59±1.04 46.05±4.79 -18.71 -10.03 5.64 

Sp-Cond a,b,c,d 1988.00± 
207.59 

1531.60± 
435.24  

2050.44± 
123.14 

1911.35± 
145.69 

2314.55± 
56.63 

2211.58± 
78.69 

-22.96 -6.78 -4.45 

DIC b,d 6.35±3.02 7.98±3.55 6.34±2.31 6.07±1.67 11.37±1.35 7.59±2.41 25.81 -4.28 -33.27 

DOC 4.51±0.63 7.90±2.68 5.67±0.80 5.41±1.04 5.12±0.22 4.56±1.07 75.00 -4.49 -10.86 

TotP b,d 0.009±0.01 0.011±0.00 0.013±0.01 0.007±0.01 0.012±0.01 0.018±0.01 30.13 -45.62 45.77 

TKN b,c,d 9.69±10.88 13.03±6.82 12.39±11.44 18.34±2.52 8.70±4.35 14.74±2.55 34.45 48.05 69.49 

Ammonia b,c,d 4.34±1.53 1.70±1.21 3.17±1.40 1.91±1.21 2.93±0.74 0.40±0.95 -60.75 -39.78 -86.53 

NO3  b,c,d 30.53±10.97 18.27±7.26 24.08±8.75 22.96±3.90 22.85±4.86 17.86±3.22 -40.14 -4.69 -21.80 

TDS b,c,d 1407.81± 
134.32 

1086.53± 
324.76 

1513.29± 
62.05 

1367.36± 
117.41 

1761.95± 
33.03 

1661.15± 
64.39 

-22.82 -9.64 -5.72 

Al b,c 0.035±0.01 0.113±0.07 0.048±0.01 0.052±0.01 0.055±0.01 0.041±0.01 225.23 7.60 -24.87 

Ba b,c,d 0.020± 
0.003 

0.017± 
0.003 

0.018± 
0.002 

0.019± 
0.001 

0.024± 
0.001 

0.022± 
0.001 

-13.38 7.89 -8.87 

Ca b,d 176.53± 
21.53 

134.09± 
38.95 

195.06± 
23.69 

171.15± 
18.74 

255.12± 
17.52 

236.24± 
21.46 

-24.04 -12.26 -7.40 

Fe b 0.018± 
0.004 

0.080± 
0.067 

0.024± 
0.004 

0.026± 
0.010 

0.019± 
0.012 

0.009± 
0.010 

343.33 9.86 -55.28 

K b,c,d 75.05±9.25 59.23±17.80 75.53±5.31 73.10±6.01 76.95±2.56 75.17±3.80 -21.08 -3.21 -2.31 

Mg c,d 4.46±0.42 3.53±0.90 4.38±0.22 3.96±0.36 4.18±0.39 4.08±0.18 -20.82 -9.59 -2.34 

Mn b 0.037±0.02 0.062±0.01 0.123±0.07 0.090±0.04 0.458±0.03 0.384±0.09 68.77 -27.01 -16.07 

Mo b,c,d 0.203±0.03 0.146±0.04 0.240±0.02 0.181±0.03 0.299±0.01 0.258±0.02 -28.03 -24.65 -13.46 

Na b 161.12± 
19.08 

145.32± 
45.57 

164.13± 
10.68 

177.52± 
24.33 

173.38± 
6.29 

186.34± 
19.26 

-9.80 8.16 7.47 

Ni b 0.023± 
0.003 

0.024± 
0.006 

0.038± 
0.008 

0.029± 
0.005 

0.073± 
0.003 

0.055± 
0.009 

4.45 -24.87 -23.91 

Tot Sulphur b,c,d 336.25± 
148.05 

205.27± 
64.63 

365.06± 
162.95 

262.35± 
26.93 

439.78± 
161.68 

333.91± 
21.69 

-38.95 -28.14 -24.07 

Si b,c,d 0.50±0.30 0.91±0.18 1.07±0.35 0.90±0.15 1.03±0.38 1.35±0.29 84.07 -15.53 30.16 

Sr b 1.84±0.23 1.51±0.42 1.63±0.22 1.78±0.11 0.84±0.09 1.13±0.21 -18.29 9.31 35.13 

Zn b,d 0.007± 
0.005 

0.007± 
0.003 

0.008± 
0.004 

0.007± 
0.003 

0.014± 
0.007 

0.010± 
0.004 

13.85 -8.75 -25.94 

Sulphate b,d 1078.73± 
398.94 

700.96± 
285.50 

894.99± 
383.07 

935.11± 
165.67 

1523.16± 
340.08 

1256.06± 
157.89 

-35.02 4.48 -17.54 

Cl c,d 68.29± 
25.80 

43.56± 
15.83 

52.79± 
19.51 

56.12± 
7.26 

57.99± 
11.97 

50.05± 
6.54 

-36.21 6.31 -13.68 

pH a,b 7.09±0.145 7.01±0.141 6.63±0.140 6.88±0.142 6.54±0.044 6.72±0.048 -1.09 3.77 2.81 

Hardness b,d 459.15± 
55.16 

349.34± 
100.85 

505.09± 
59.53 

443.65± 
48.13 

654.26± 
43.75 

606.70± 
53.85 

-23.91 -12.16 -7.27 

a All units are in mg L-1 except Sp-Cond (µS cm-1), Chl a (µg L-1) and pH (units). 
b Significant difference (p < 0.05) between depths. 
c Significant difference (p < 0.05) between years. 
d Significant difference (p < 0.05) between seasons. 
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Lim Lake and Frank Lake – Other Water Quality Trends  
Inlet Water Quality 

Lim Lake 

Inlet flow was intermittent based on spring run-off and precipitation events 

and all samples were collected at the primary inlet at the lake’s northwest end 

(Figure 2, Appendix A). Most water quality parameters had lower concentrations 

than in-lake values with the exception of DOC, Al, Fe and Si, which were more 

concentrated, and pH, which was lower (Table 1.12, Appendix B). Cu values were 

<DL for all inflow samples.    

Frank Lake 

 A majority of the flow entering Frank Lake via the primary inlet at the lake’s 

west end (Figure 3, Appendix A) originated from the effluent discharge from the 

water treatment plant as well as watershed run-off that mixes with the effluent 

prior to entering the lake. This resulted in variable water quality and flow volume 

entering the lake depending on precipitation, melt-water and whether effluent 

discharge was active or not. Parameters that were most highly concentrated in 

Frank Lake inflow included sp-cond, TDS, sulphate, total sulphur, Ca, Na, K, Cl, Al, Fe 

and Zn (Table 1.13, Appendix B). Most parameters were of the highest concentration 

during 2011 followed by 2013. The 2012 concentrations were the lowest observed 

during the study however samples were taken outside of the time of effluent 

discharge during this year. DOC was typically higher at the inlet versus in-lake 

values while DIC was typically lower. Ca, Na, K, Cl, NO3, NH3, Al, Fe and Zn 

concentrations at Frank Lake’s inlet during 2011 all increased in concentration late 

in the discharge year and after effluent discharge was re-initiated into the lake 

(discussed more later). 

In-Lake Water Quality 

 During the study, fall turnovers in Lim Lake (max depth=12.0 m) were 

consistently more complete than spring turnovers. To compare, fall turnovers in 

Lim Lake occurred to the following depths; 2011 (10.5 m), 2012 (11.5 m) and 2013 

(12.0 m), while the spring turnovers in 2012 and 2013 were to 11.0 m and 5.0 m 

respectively. In Frank Lake (max depth=26.0 m), full water column turnover did not 
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occur in either fall or spring. Fall turnover in the mixolimnion of Frank Lake became 

more shallow through the study; 2011 (11 m), 2012 (9 m) and 2013 (6 m) while 

spring turnover occurred to 9 m in both 2012 and 2013.  

 The occurrence of full water column turnover and breakdown of chemical 

stability in Lim Lake and only mixolimnion turnover in Frank Lake were main 

influences on the water chemistry and parameter concentrations measured in each 

lake. During turnover in Lim Lake, concentrations of major ions and metals would 

equalize through the water column whereas in Frank Lake, a consistent 

concentration difference occurred between the mixo- and monimolimnions. In 

addition, the removal of anoxic conditions in the bottom waters of Lim Lake during 

turnover changed redox cycling at the sediment-water interface, resulting in 

concentration fluxes.  

The water quality trends of the physical parameters as well as major ions 

and metals can be found in Appendix A. For Lim Lake, these included temperature, 

dissolved oxygen, chlorophyll a, hardness, Ca, Na, K, Cl, Mg, Ba, Sr, Fe, Mn, Al, Ni, Cu, 

Zn, Si, TotP, NO3, NH3, TKN, alkalinity, pH, DOC, DIC and SO4:TotS ratio, all of which 

were demonstrated in Figures 1.10–1.36 respectively. For Frank Lake, temperature, 

dissolved oxygen, chlorophyll a, hardness, Ca, Na, K, Cl, Mg, Ba, Sr, Fe, Mn, Al, Ni, Zn, 

Si, TotP, NO3, NH3, TKN, alkalinity, pH, DOC, DIC and SO4:TotS ratio were 

demonstrated in Figures 1.37–1.63 respectively. A dotted contour line was used in 

certain figures to represent the Provincial Water Quality Objective (PWQO) for the 

parameter, thereby illustrating when a particular parameter exceeded the objective.  

In order to compare the parameter concentration changes over the study 

duration, the average concentration through the whole water column in Lim Lake 

and in the mixo- and monimolimnions in Frank Lake during turnover were 

calculated. Fall turnover effectively homogenized the water column of Lim Lake and 

the mixo- and monomilimnions in Frank Lake and therefore, fall served as the best 

time to compare concentration changes from year-to-year and meromictic stability 

in both lakes. Tables 1.14 and 1.15 (Appendix B) illustrated these average 

concentrations and the percent change for Lim Lake (whole water column) and 
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Frank Lake (mixo- and monimolimnion) respectively between 2011 and 2013. In 

Lim Lake, the average concentrations of a majority of the water quality parameters 

at fall turnover decreased from 2011 to 2013. Parameters that increased in Lim 

Lake were DOC, Al, Cu, Fe, Si and Zn. In Frank Lake, all of the same parameters 

decreased across the study except for pH, DOC, Si and Fe, which all decreased in 

both the mixo- and monimolimnions and Al, Mn and Ni which all decreased in the 

mixolimnion only. 

In Frank Lake, samples obtained from 2 m in April 2012, 1 m in February 

2013 and 0 m and 3 m in May 2013 showed distinct differences from all other 

samples. April 2012 2 m sample was higher in Cl, Al, and Fe and lower in sp-cond, 

Ca, Na, K, Mg and Mo. February 2013 1 m sample was higher in Al and Fe while 

other parameters such as Ca, Na and Cl showed slight decreases. This Feb 2013 

sample was distinctly browner in colour than other samples from Frank Lake. May 

2013 0 m and 3 m samples were higher in Al and Fe and lower in Ca, Na, K, Cl, Mg, 

Mo, Ni and Zn. Zn showed distinct increases in early Oct 2011 from 0-2 m, 9 m and 

17-24 m and demonstrated similar increases at similar depths in March 2013 

(Figure 1.53, Appendix A). Distinct Zn decreases occurred in late Oct and Nov 2011 

as well as in the entire mixolimnion in May-June 2013. Cu was <DL in almost every 

sample throughout the study (no figure).   

Temperature 

In both Lim and Frank Lakes, temperature trends throughout all study years 

were similar, with stable stratification occurring in summer and under the ice in 

winter (Figures 1.10 and 1.37 respectively, Appendix A). Ice-off was early in 2012, 

occurring in March, compared to 2013, when it occurred in May. Ice-off in 2013 was 

rapid, with a major sheet of ice melting in a two-day span. In fall and spring, 

isothermal conditions occurred for a period of time. Throughout the study, the 

monimolimnion of Frank Lake was slightly warmer than the overlying hypolimnion. 

Just prior to ice cover, monimolimnion waters remained at ~4.8°C, ~4.4°C and 

~4.3°C below the chemocline in 2011, 2012 and 2013 respectively. This 

temperature trend is known as dichothermy (Yoshimura 1936a, b, Yoshimura 
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1937). 

Dissolved Oxygen and Chlorophyll a 

Dissolved oxygen (DO) was the key parameter for identifying turnover extent 

in both Lim and Frank Lakes and DO trends in each lake were very different. DO 

depletion in bottom strata was evident in Lim Lake during summer and winter 

stagnation, however, replenishment of DO to these anoxic strata occurred during fall 

and partially in spring (Figure 1.11, Appendix A). In Lim Lake, DO replenishment 

was more complete in fall than spring and spring 2012 replenishment was more 

complete than spring 2013. DO replenishment in Frank Lake to the anoxic, bottom 

strata did not occur at any point in the study (Figure 1.38, Appendix A).  

In general, DO demonstrated clinograde trends during stratification in both 

lakes, however, heterograde trends were observed periodically. During summer 

2011, a positive heterograde curve (maximum DO concentration) was observed 

from 2-5 m in Lim Lake. Heterograde trends in Frank Lake by definition were 

negative but could have also been classified as positive. Regardless, these 

heterograde trends in Frank Lake were observed during July 2011 (2 m), March 

2013, April 2013 and August 2013 (all 4-6 m). DO was higher above and below 

these depths. 

Chl a concentrations in Lim and Frank Lakes coincided roughly with DO 

heterograde peaks but not in all situations. The positive heterograde DO curve in 

Lim Lake coincided with a maximum chl a concentration in the water column 

(Figure 1.12, Appendix A) however, other chl a peaks were observed and did not 

coincide with an increase in DO. In Frank Lake, maximum chl a concentration depths 

did not coincide perfectly with DO heterograde peak depths but some temporal 

overlap occurred (Figure 1.39, Appendix A). No phytoplankton biomass data was 

available to support these DO and chl a trends but live specimens of Daphnia sp. and 

Chaborus flavicans (Figure 1.64, Appendix A) were found under the ice in April 2013 

in samples near the surface and at 11.0m respectively, indicating zooplankton 

presence in the Frank Lake. 
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Specific Conductance and Total Dissolved Solids 

Like DO, sp-cond (corrected to 25°C) was a key parameter for identifying 

turnover extent and meromictic stability in both Lim and Frank Lakes (Figures 1.65 

and 1.66 respectively) as well as the mixo-, chemo- and monimolimnion depths in 

Frank Lake. Laboratory TDS trends in Lim and Frank Lakes (Figures 1.67 and 1.68 

respectively) closely matched trends demonstrated by field sp-cond. 

 Average sp-cond and TDS concentrations at fall turnover in Lim Lake 

decreased by 47% from 2011 to 2013 (Table 1.14, Appendix B). In Frank Lake, 

decreases of sp-cond and TDS from 2011 to 2013 in the mixolimnion were 26.9% 

and 29% respectively and 8.8% and 18% in the monimolimnion respectively (Table 

1.15, Appendix B). Comparison of the whole year averages of sp-cond and TDS in 

Table 1.5 also demonstrated the decrease from 2011 to 2013.  

In Frank Lake, double chemoclines occurred in spring and summer seasons. 

The shallow chemocline, occurring in the mixolimnion, corresponded roughly to 

temperature stratification and followed the metalimnion trend. The deep 

chemocline formed the separation of the mixo- and monimolimnion and was located 

just below the hypolimnion. During fall, the shallow chemocline in the mixolimnion 

deteriorated and only the deeper chemocline persisted into winter. 

Unique sp-cond trends occurred in the mixolimnion during fall 2011. As 

mentioned above, after deterioration of the shallow chemocline, isohaline 

conditions existed in the mixolimnion, however, the sp-cond measured during these 

isohaline conditions increased from early October to November. Maximal peaks of 

sp-cond occurred at 7m (2000 µS cm-1) during early October (Oct 5, 2011) and at 9 

m (2150 µS cm-1) in late October (Oct 26, 2011) in the mixolimnion. Figure 1.73 

(Appendix A) clearly demonstrated these sp-cond peaks. As turnover continued, 

these peaks disappeared and by Nov 16, 2011 the mixolimnion reached its 

maximum depth of 11 m for 2011 and peaks were absent. These sp-cond peaks 

occurred in conjunction with concentration increases in major anions and metals 

including total sulphur and sulphate (Figures 1.71 and 1.72 respectively) as well as 

Ca, Na, K, Cl, NO3, NH3, Al, Fe and Zn (all Figures in Appendix A). During 2011, 
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effluent discharge into Frank Lake ceased from August 29th to September 19th 

(Figure 1.74, Appendix A). The re-initiation of effluent discharge into the lake 

occurred 16 days prior to the first sp-cond peak in Frank Lake in early October 

2011. The reinitiated effluent discharge flow volume was similar to earlier in 2011 

(Figure 1.74, Appendix A), however, the same parameters listed above that had 

concentration peaks in the Frank Lake mixolimnion also had increased 

concentrations in the reinitiated effluent discharge (Figures 1.75 – 1.77, appendix 

A). The two concentration increases were clearly linked. 
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Figure 1.65. Lim Lake specific conductance (µS cm-1) multi-probe profiles, Jul 2011-
Nov-2013. 

Figure 1.66. Frank Lake specific conductance (µS cm-1) multi-probe profiles, Jul 
2011-Nov-2013.  
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Figure 1.67. Lim Lake total dissolved solids (mg L-1) laboratory analysis from Jul 
2011-Nov 2013. 

 
Figure 1.68. Frank Lake total dissolved solids (mg L-1) laboratory analysis from Jul 
2011-Nov 2013. 
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Sulphur Compound Characterization       

 Total sulphur and sulphate were the only sulphur species identified during 

the study in both lakes and were the most highly concentrated ions measured. 

Sulphite (SO32-), thiosulphite (S2O32-) and sulphide (S2-) were analyzed but were 

below detection limits (<DL) in all samples. In general, total sulphur and sulphate 

concentrations increased with depth throughout the study in both lakes, except for 

during periods of full water column turnover in Lim Lake. Sulphate values were 

equivalent or higher than total sulphur values throughout the study. Other lake-

specific trends are discussed below. 

Lim Lake 

For a brief period of time in summer 2011, both total sulphur (Figure 1.69) 

and sulphate (Figure 1.70) had a lower concentration in bottom strata than in the 

mid-lake strata. These decreases disappeared in the fall. A substantial increase in 

total sulphur and sulphate occurred during late October 2011 throughout the water 

column. After this increase, both parameters substantially decreased and were more 

stable through the water column for the remainder of the study. Sulphate 

demonstrated slight decreases during winter months. The average concentration of 

total sulphur and sulphate at fall turnover decreased 59.30% and 69.34% from fall 

2011 to fall 2013 respectively (Table 1.14, Appendix B). The ratio of total sulphur to 

sulphate for each sample was close to or slightly above 1 throughout the study 

(Figure 1.36, Appendix A). Ratios <1 occurred in bottom waters during summer 

2011 as well as during late fall 2011. A ratio of exactly 1 represented equivalent 

amounts of total sulphur and sulphate in a sample.     
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Figure 1.69. Lim Lake total sulphur (mg L-1) profiles from Jul 2011-Nov 2013.  
 

 
Figure 1.70. Lim Lake sulphate (mg L-1) profiles from Jul 2011-Nov 2013. 
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Frank  Lake 

Total sulphur (Figure 1.71) and sulphate (Figure 1.72) concentrations were 

consistently higher below the chemocline. A substantial increase in total sulphur 

and sulphate occurred during October 2011 but by November 2011, concentrations 

had lowered. A similar increase in sulphate occurred in fall 2012. Winter sampling 

identified decreased sulphate concentrations from the fall previous. Notable surface 

decreases in total sulphur and sulphate occurred during both spring 2012 and 2013 

with the greatest decrease in sulphate concentration was down to 68 mg L-1 at 0 m 

in June 2013. The decrease occurring in spring 2013 was not sustained but its effect 

was noticeable at the surface into the summer. Average total sulphur decreased by 

31.8% and 26.7% in the mixo- and monimolimnions respectively from fall 2011 to 

2013 (Table 1.15, Appendix B). Average sulphate decreased by 56.3% and 47.8% in 

the mixo- and monimolimnions respectively from fall 2011 to fall 2013 (Table 1.15, 

Appendix B). 

Total sulphur to sulphate ratios were ~1 for a majority of the study (Figure 

1.63, Appendix B). Notable times when the ratio was <1 were during summer 2011 

and in spring and summer 2013 in surface strata. The ratio was >1 during fall 2011 

throughout the whole water column but typically was only observed in bottom 

strata. 
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Figure 1.71. Frank Lake total sulphur (mg L-1) profiles from Jul 2011-Nov 2013. 

 
Figure 1.72. Frank Lake sulphate (mg L-1) profiles from Jul 2011-Nov 2013. 
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Rain Event 

 Both Lim and Frank Lake experienced a large rain event during the time of 

sampling in May 2013. Approximately 44.5 mm of rain fell over 2 days and had an 

immediate and long term effect on both the in-lake and inflow water quality in both 

study lakes. This was the largest rain event measured in the study.   

Comparison to Spangle Lake (Reference Lake) 

 Only two data sets were acquired for Spangle Lake during the current study 

in August 2011 and March 2012. Similar to observations made by consultants in 

previous years, oxygen depletion through the water column was observed in both of 

these sample sets along with stable thermal stratification (Figure 1.78, Appendix A). 

In addition, sp-cond was constant from the surface to the bottom of Spangle Lake 

during both of these sample sessions, indicating that chemical stability in the lake is 

completely absent (Figure 1.79, Appendix A). Chl a concentrations in Spangle Lake 

were comparable in magnitude to Lim and Frank Lakes (~1.5-2.5 µg L-1) and the 

characteristic concentration spike at depth that occurred in Lim and Frank Lakes 

also occurred at 2 m during August 2011 in Spangle Lake (Figure 1.78, Appendix A). 

Concentrations of all parameters, especially those contributing to TDS, were all 

markedly lower in Spangle Lake compared to the study lakes (Table 1.3, Appendix 

B).   
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Discussion 

Lim Lake and Frank Lake – Turnover Extent and Meromictic State 

The results showed that the two lakes differed in the extent and occurrence 

of circulation within their water columns. 

Lim Lake 

The trends of many parameters suggested that Lim Lake was not meromictic 

but rather could be considered monomictic, meaning it has one complete turnover 

per year. This one complete annual turnover occurred during the fall of each study 

year. Both thermal and chemical stability were absent during fall for a long enough 

time for wind to promote a turnover event that encompassed the entire water 

column of Lim Lake. The presence of constant temperature, DO, sp-cond and 

ion/metal concentrations during each fall were the main indicators that the 

meromictic stability observed in the 2008 EEM study (Weech and Orr 2009a) had 

begun to deteriorate.  

The nearly complete turnover in spring 2012 supported this conclusion and 

suggested that Lim Lake might even be dimictic once again. However, the 

incomplete turnover of spring 2013 indicated that Lim Lake was still not free of 

meromictic stability. The chemical stability still present in Lim Lake was enough to 

limit full spring turnover. It has been observed in lakes with elevated dissolved 

solids, such as Lim Lake, that chemical stability that is carried over from fall or 

develops over the stagnant winter months can prevent mixing in spring (Hutchinson 

1957, Wetzel 2001, Wetzel et al 1972). If this chemical stability is further enhanced 

by early/rapid thermal stratification at the surface due to a warm or late spring, 

turnover in spring will be inhibited since the wind will not have had sufficient time 

to mix the water column (Hutchinson 1957). Such periodic incomplete turnover was 

observed in the spring in Lawrence Lake, Michigan and the fall in Crooked Lake, 

Indiana (Wetzel 2001, Wetzel et al 1972). During the current study, both springs 

were rapid and warm and helped to support this theory. 

Decreases in many parameters occurred in Lim Lake over the study duration 

since the lake was now free from the influence of effluent and it is expected that this 
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trend will continue as each successive year brings the lake back to near-background 

levels. It is possible that increased concentrations of parameters in the sediment 

that have resulted from effluent discharge may continue to influence the water 

column in Lim Lake, especially if anoxic conditions continue to occur during winter, 

spring and summer and redox cycling is promoted. Again, since the study occurred 

in such close proximity of the lake transitioning from meromictic to monomictic and 

eventually dimictic, the long term seasoning cycling that will likely reach 

equilibrium in the lake had not yet been established. As the lake approaches 

background levels of most parameters, more consistent annual chemistry trends 

will result. Another key observation was that even after the large rain event in May 

2013, Lim Lake was still able to turnover in the fall of that year despite heavy 

dilution of its surface waters.  

Frank Lake 

 During the current study, Frank Lake’s chemical stability was strong and 

persistent and Frank Lake could be classified as meromictic. Presence of a 

chemocline and an anoxic monimolimnion with elevated concentrations of nearly all 

parameters supported this statement. However, the mixolimnion turnover in Frank 

Lake was not static and variability of turnover depth occurred, particularly during 

fall. Fall turnover became shallower as the study progressed moving from 11 m in 

2011, to 9 m in 2012 and 6 m in 2013. The year-to-year meromictic stability and 

turnover in Frank Lake will continue to vary depending on precipitation events 

during open-water periods, effluent discharge volume/water quality and 

meteorological conditions at the time of turnover. Inputs of large volumes of low 

salinity water from rain or snowmelt accompanied by low winds will minimize 

turnover in Frank Lake by increasing the difference in salinity between the mixo- 

and monimolimnions and ultimately increasing the overall chemical stability 

through the lake’s deep water column. 

Chemical Parameter Variations 

The results of the cluster analyses, ANOVAs and isopleths identified 

parameters that varied similarly, both spatially (layers) and temporally (year and 
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season), with a high or low level of significance. However, not all parameters were 

controlled by the same mechanisms. The main assumptions of the ANOVA include; 

the probability distribution of the data is normal, the observations are sampled 

randomly and independently of each other and the variances of the populations are 

the same (Lunney 1970). Data is said to be parametric when it fits these criteria. If 

the data does not meet these assumptions it is considered non-parametric and other 

statistical techniques such as a Kruskal-Wallis test should be used. Log-

transformation and normalization of data can allow it to satisfy the assumptions of 

the ANOVA and other parametric tests such as t-tests (Zuur et al 2010, O’Hara and 

Kotze 2010). 

Lim Lake – Monomictic 

Parameters Elevated In Bottom Strata 

 The clusters resulting from Lim Lake’s 2011 and 2013 data were illustrated 

in Figures 1.6 and 1.7 respectively. Lim Lake was in the process of natural 

remediation during the study and this had a main influence on the results of the 

statistical analyses. Ions and metals largely contributing to the TDS of the lake (Ca, 

hardness, total sulphur, K, Na, Sr, Mg, sp-cond, sulphate, Cl, Zn, Ni, Ba, Fe, alkalinity, 

Mn, TKN and DIC) demonstrated the highest concentrations in bottom waters 

during summer 2011 and were still elevated but to a lesser extent in bottom waters 

during winters and summer 2013. The turnover events resulted in a decrease and 

equalization of these parameters through the water column. Ca, hardness, K, Na, Sr, 

Mg, Cl, Ni, Ba, alkalinity and TKN were all elevated in bottom strata prior to turnover 

events, not necessarily due to their enhanced solubility in anoxic conditions, but due 

to their propensity to settle overtime. All of these parameters excluding Zn 

(discussed later) and Ni, which tended to vary more independently in the water 

column, increased and decreased sporadically and were found to vary significantly 

between layers as indicated by the ANOVA (Table 1.4).  

Other parameters that were elevated in bottom strata prior to turnover, such 

as Fe and Mn, were predominantly controlled by redox conditions/cycling 

influenced by anoxic conditions (Hamilton-Taylor et al 1996, Hongve 1980, Hongve 
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1997, Mortimer 1941). Fe was likely sourced from the sediments in the form of 

reduced, soluble complexes, which is a typical occurrence in anoxic conditions 

(Hamilton-Taylor et al 1996, Hongve 1980, Hongve 1997, Mortimer 1941). Return 

of turnover to the lake in fall 2011 oxidized the reduced/solubilized ferrous iron 

into oxidized/precipitated ferric complexes such as ferri-silico-humate or Fe(OH)3 

(Mir and Kachroo 1982, Mortimer 1941). Regarding Mn; some of the increased Mn 

in bottom strata during anoxic conditions was likely sourced from the sediment but 

a small amount of Mn in the anoxic bottom waters was potentially sourced from the 

epi- and metalimnions, where Mn slowly oxidized/precipitated, settled and then 

reduced/solubilized in the hypolimnion (Balistrieri et al 1992, Davidson 1981, 

Davidson 1993, Davidson et al 1982, Hangrove 1980, Hongve 1997). The slow 

oxidation of Mn was demonstrated by the maintenance of higher Mn in oxidized 

waters and a slight Mn gradient during April 2012, where turnover occurred 

efficiently down to 10.5 m. The lowering of Mn in the epilimnion during summer 

months could have been due to either this slow oxidation principle or dilution from 

heavy rain events, such as the one that occurred in May 2013.  

Some of the parameters that contributed to TDS and increased with depth 

during stratification (DIC, Cl, sulphate and total sulphur) also increased throughout 

the whole water column during the fall 2011 turnover event (Figure 1.6,  Cluster 2). 

These increases could have only been sourced from the anoxic bottom waters and 

sediment since effluent discharge into the lake had ceased. The form of sulphur in 

water is largely controlled by pH, Eh and oxygen concentration (Cook 1982, Davison 

and Heaney 1978, Hem 1960a, b, Hem and Cropper 1959, Hem and Skougstad 1960, 

Jørgenson 1990, Urban et al 2001). The influx of oxygen to the lake bottom during 

this turnover likely oxidized and mobilized some of the sulphur that had been 

precipitated and removed from the water column as H2S, FeS etc. during prolonged 

anoxia (Carignan and Tessier 1988, Giblin et al 1990, Kling et al 1991, Rudd et al 

1986, Nriagu and Soon 1985). It is possible that this was the first full turnover event 

to occur in Lim Lake since the first observation of meromixis in 2008 (Weech and 

Orr 2009a), which is why such great increases in the water column of these 



 

81 
 

parameters were observed. The decrease in sulphate concentrations that occurred 

during winter months indicated that sulphur reduction and allocation to the 

sediments was likely occurring during the return of anoxic conditions under the ice. 

No pore water or sediment data was sampled to support this theory. The allocation 

of sulphur to the sediments as organic and inorganic forms was a likely mechanism 

that aided in the lowering of sulphate and ultimately TDS in Lim Lake and promoted 

deterioration of meromixis. 

To better understand the increase in sulphur compounds during the fall 2011 

concentration spike, a ratio of total sulphur to sulphate was developed to discover 

the proportion of sulphate contributing to the total sulphur concentrations (Figure 

1.36, Appendix A). The <1 ratios observed in late October 2011 indicated the 

presences of other forms of sulphur other than sulphate. Note that the low ratios in 

bottom waters during summer 2011 were likely for the same reason. Since 

thiosulphite and sulphite were <DL for these samples, it is likely that sulphur was in 

the form of either H2S (not tested) or organic complexes such as CH3__S__CH3, CH3-

__S__S__CH3, CH3__S__C2H5, CH3_CH2CH2__SH etc. (Puacz W et al 2001) or sulphur esters 

in the water column. Ion chromatography measurement of sulphate does not 

destroy these organic compounds in the same way that inductive coupled plasma 

measurement of total sulphur does (Edwards et al 1992). So, this was one potential 

reason for the <1 ratio in summer 2011 and early October 2011. Accumulation of 

sulphur in anoxic water and sediment is typical in high-sulphur lakes (Baker et al 

1992). Sulphur has been accumulating in the Lim Lake sediments as a result of 

effluent discharge based on sediment sulphur levels of 4700-15000 mg kg-1 

observed previously (Beak International Incorporated 2000b) and so, a great deal of 

sulphur is available for mobilization to the water column. After the fall turnover 

event of 2011, both total sulphur and sulphate had slightly increasing gradient with 

depth during stratification periods but to a much lesser magnitude which was why 

the ANOVA did not indicate that they varied significantly between layers (Table 1.4).  

Parameters elevated in bottom strata that were eliminated almost 

completely from the water column during turnover were ammonia, Si and TotP 
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(Figure 1.6, Cluster 3). Oxidation of all of the ammonia to nitrate during turnover 

was the likely cause for such a decrease (Keeney 1973). Ammonia in deep, low 

oxygen waters can be sourced from the sediment, organism excretion or organic 

decay (ammonification) (Keeney 1973). No summer 2013 ammonia data was 

available for comparison to summer 2011. After summer 2011, ammonia 

concentrations continued to decrease throughout the study and were not as 

dynamic as nitrate’s.   

Although Si data was only available up until June 2013, some characteristic 

trends were observed. Summer decrease of Si that occurred in epilimnion waters 

was likely a result of phytoplankton harvesting and then subsequent population 

death in the fall causing release of this Si back into the water column (Mir and 

Kachroo 1982, Mortimer 1941, Munawar and Munawar 1975). 

Parameters Elevated in Surface Strata 

Some parameters demonstrated higher concentrations in surface strata 

(Figure 1.6, Cluster 4: temp and pH, Figure 1.7, Cluster 5: DO, NO3 and Cu). All of 

these except NO3 demonstrated a significant level of layer variance from the ANOVA. 

The presence of temp and DO in this cluster is logical since surface strata remain 

warm and well oxygenated for much of the year compared to the bottom strata. NO3 

is the most common form of oxidized nitrogen and often is more elevated at the 

surface during anoxic conditions (Keeney 1973). One exception from this NO3 trend 

occurred during May and June 2013 when nitrate increases expanded throughout 

the whole water column. The initial increase at the surface in May, which then 

continued into bottom waters in June, indicated that the increase might have been 

linked to the heavy rain event of May but nitrate inflow into the lake was not 

excessively concentrated during this month (0.058 mg L-1), indicating that the 

nitrate was internally sourced. The amount of nitrogen sourced from the 

atmosphere by nitrogen-fixing bacteria is variable depending on the available 

concentration of nitrogen available to these organisms in the water column (Flett et 

al 1980). It is possible that nitrate originating from nitrification in the littoral-zone 

sediments due to wind mixing could be the source. Nitrite was <DL for the entire 
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study except for the near-bottom samples taken in May (0.028 - 0.032 mg L-1) 

indicating that nitrification at the sediment surface was occurring. The lake was 

already sufficiently stratified by this time so exchange between epi- and 

hypolimnion waters was likely minimal but it is possible that combined effects of 

wind, rain temperature and rain TDS influenced stratification destabilization within 

the lake and allowed some vertical diffusion to occur. The profiles obtained are only 

a snap-shot in time and so exact lake dynamics in relation to the rain event are 

uncertain. A congruent decrease in ammonia in bottom waters was observed during 

the rain event indicating that it could have contributed to some of the nitrate 

increases. 

Cu decreases observed in the hypolimnion were likely the result of co-

precipitation or adsorption onto settling organic matter (Riley 1939). The elevated 

levels of Cu at Lim Lake’s surface were not sourced from the inlet where all samples 

measured <DL. This indicated that Cu in the lake must have been sourced either 

from the sediment, precipitation, groundwater, run-off at another area of the lake 

(potentially off of the north-shore ridge separating Lim Lake and the tailings) or 

from decay of phytoplankton, which had had Cu accumulated as micronutrients in 

their cells (Riley 1939, Hamilton-Taylor et al 1996). 

Parameters Varying Uniquely 

Parameters showing unique variability at points in time during the study 

included TKN, Zn DOC, chl a and Al (2011) as well as ammonia, Si and TKN (2013). 

TKN demonstrated little change in surface waters but was usually more 

concentrated in bottom strata indicating that a large portion of it was sourced to 

ammonia. The increases of Zn at 3 m, 6 m and 9 m during early October 2011 could 

be linked to phytoplankton decay dynamics in the epilimnion and the fact that 

oxidized forms of Zn are typically insoluble (Hamilton-Taylor et al 1996). DOC was 

relatively constant through the water column early in the study and increased in 

surface strata following the rain event. Chl a will be discussed later. Al and Si both 

showed few constant trends throughout the study. Slightly higher concentrations 

with depth occurred with sporadic increases and decreases in the upper strata that 
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were largely variable.  

Rain Event of May 2013 

The large rain event in May 2013 resulted in a substantial decrease of many 

of the TDS-contributing parameters in surface waters and this decrease carried 

through into the summer and fall turnover of 2013 (Figure 1.7, Cluster 1: Ca, 

hardness, total sulphur, K, Na, Sr, Mg, sp-cond, sulphate, Cl, Zn, TDS, Ni, Ba, Fe, 

alkalinity, Mn, TKN and DIC). Sulphate remains to be the highest elevated of these 

ions in Lim Lake. The significant levels of variability that occurred between years for 

many of these parameters was largely enhanced by this rain event since it created a 

greater divide in water quality from earlier in the study. Dilution via precipitation 

and run-off has been and will continue to be the main mechanism by which Lim 

Lake’s water quality improves, since this lake is at the headwaters of the watershed 

and surface inflow is sporadic and only contributes small volume inputs to the lake. 

Only Al, TotP and DOC increased in surface waters as a result of the rain event. DOC, 

Al, Fe, Zn and Si all demonstrated average concentration increases at the time of 

turnover from 2011 to 2013 (Table 1.14, Appendix B) and it was likely that effluent 

discharge actually diluted these parameters in Lim Lake. As the lake remediates, 

concentrations will return to background levels (Table 1.1, Appendix B). All of these 

parameters except Zn demonstrated higher concentrations at the inlet (Table 1.12, 

Appendix B) indicating the influence of the surrounding watershed geology on these 

parameters. Cu also demonstrated and increase over the study but the increase was 

very minimal. 

Frank Lake – Meromictic 

 Typical redox trends in Frank Lake were not quite as obvious as in Lim Lake. 

The influence of effluent on Frank Lake made it difficult to discern concentration 

fluctuations due to effluent and dilution from rain and snowmelt versus redox 

conversions or biological cycling. In general, a majority of the results of the 

clustering and ANOVA exercises were influenced in large part by the effluent and 

natural input dilutions.  
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Effluent Discharge Effects 

In Frank Lake, most parameters were elevated in the bottom strata of the 

monimolimnion as indicated by the dominance of Cluster 1 in both 2011 and 2013 

(Figures 1.6 and 1.7 respectively). In general, most of these parameters have settled 

to the bottom of Frank Lake as a result of decades of effluent discharge. The re-

initiation of effluent discharge on September 20, 2011 after being stopped on Aug 

31, 2011 formed the basis of the clustering patterns of 2011. Many of the water 

quality parameters of Cluster 1 increased in concentration throughout the water 

column of Frank Lake after effluent discharge re-initiated including TDS (Figure 

1.68), sp-cond (Figure 1.66), total sulphur (Figure 1.71) and sulphate (Figure 1.70). 

Inlet water quality into Frank Lake after re-commencement of effluent discharge 

demonstrated increases in sp-cond, TDS, total sulphur and sulphate (Figure 1.75, 

Appendix A), Ca, Na, K, Cl, NO3 and NH3 (Figure 1.76) as well as Al, Fe, Zn, Si, DOC 

and Mg (Figure 1.77). It is known that inflows of a higher density than the receiving 

waterbody they enter (whether from temperature or salinity) will plunge until they 

meet their equal density within the lake (Hogg et al 2013, Imberger and Hamblin 

1982). This plunging phenomenon was what resulted in these water quality changes 

within Frank Lake.  

Mn increased with depth beginning below the monimolimnion (Figure 1.50, 

Appendix A). As mentioned, Mn is insoluble in oxidized form which explains the 

lowered mixolimnion concentrations during turnover. The precipitated Mn falls 

towards the monimolimnion slowly passing through the chemocline and re-

dissolving as it is reduced in the anoxic conditions (Balistrieri et al 1992, Davidson 

1981, Davidson et al 1982). 

Lowered DIC during fall 2011 turnover may have resulted from co-

precipitation of DOC with Fe oxidation (Hongve 1997). Harvesting of CO2 from the 

epilimnion by phytoplankton was a likely cause of DIC depletion during summer 

and release of DIC from the sediments during anoxic conditions as carbon dioxide or 

bicarbonate was the likely cause during summer months (Hutchinson 1941). 

Cluster 2 (chl a, Si and DOC) and Cluster 4 (NO3, Cl, ammonia and Mg) in 



 

86 
 

2011 formed as a result of the same effluent discharge event discussed above. The 

effluent contributed to dilutions of the parameters of Cluster 2 in the whole water 

column and elevated the parameters of Cluster 4 at the surface. Prior to fall, these 

parameters did not have a strong concentration change with depth. Concentrations 

of Si and DOC in the re-initiated effluent (Figure 1.77, Appendix A) did not increase 

in concentration as appreciably as NO3, Cl, ammonia and Mg did (Figure 1.76, 

Appendix A). The ANOVA results also reflected the results of these cluster patterns. 

Chl a, DOC, Mg and Cl were all parameters that did not demonstrate significant 

variation between layers throughout the study (Table 1.4).  

Cluster 3 parameters (DO, Sr, temp and pH) were not affected by the effluent 

discharge event. Sr is the only parameter that would have been expected to vary 

from the effluent but its concentration in the effluent did not increase greatly after 

discharge re-initiation (Figure 1.77, Appendix A). The fact that Sr had a much lower 

concentration below the chemocline throughout the study (Figure 1.47, Appendix A) 

indicated that some sort of removal mechanism of this parameter was occurring, 

either from biological harvesting or chemical mechanisms. 

Effect of Rain Event  

The rain event in May 2013 gave a brief snapshot in time of what sort of 

water chemistry might be expected in the Frank Lake if it were allowed to remediate 

naturally and if effluent discharge were absent. Parameters that were diluted during 

the rain event of May 2013 indicated that they have an elevated concentration in the 

lake as a result of effluent. The parameters that increased in concentration have 

likely been diluted by effluent and their concentrations will likely increase once 

again after discharge ceases. The parameters that increased in these samples were 

chl a, DOC, Al and Fe and excluding chl a (discussed later), surface concentrations 

after the rainfall were a representation of the typical background concentrations 

observed in natural run-off from the watershed (Table 1.2, Appendix B) (SENES 

Consultants Limited 1984). Frank Lake’s inflow passes through a swamp-like area, 

which may allow it to accumulate elevated amounts of DOC and bound Al and Fe. 

In addition to the dilution or concentration-increase effect of the rain, 
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clustering trends were also dictated by the how surface and bottom concentrations 

changed throughout the summer after effluent discharge commenced. The dilution 

effect was maintained to an extent by the parameters found in Cluster 1 of 2013. By 

fall 2013, some of these parameters returned to concentrations observed earlier in 

the year (alkalinity, Mn, Fe and Ba) while some, and even after a whole summer of 

effluent discharge, did not (Ca, hardness, total sulphur, K, Na, Sr, Mg, sp-cond, etc.). 

For example, the alkalinity in 1985, prior to mine influence was 7.9 mg L-1 (SENES 

Consultants Limited 1984) and so the alkalinity depletion down to 16 mg L-1 during 

the precipitation event of May 2013 was approaching the background concentration 

(Table 1.2, Appendix B). A 30 mg L-1 concentration had returned by fall 2013. On the 

other hand, the parameters of Cluster 3 (Si, Zn, Mn, Ni and TotP) were diluted by the 

rain but had begun to return to typical concentrations from earlier in the year by 

June 2013. The concentration increase effect was maintained by some parameters of 

Cluster 4: Al and Fe.  

Parameters Varying Uniquely 

Fe dynamics at the bottom of Frank Lake were minimal throughout the study, 

indicating that the typical redox cycling of iron during anoxic conditions was not 

occurring in Frank Lake’s monimolimnion (Figure 1.49, Appendix A). The absence of 

Fe indicated that it was likely contained in the sediments as FeS (Davison and 

Heaney 1978). The occurrence of elevated Fe in the Apr 2012, Feb 2013 and May 

2013 surface samples was discussed previously.  

Zn demonstrated increases at 0-2 m, 9 m and 17-24 m during fall 2011, 

which was a very similar to the Zn trend in Lim Lake at the same time. Again, 

phytoplankton presence in the lake during summer was supported by DO and chl a 

trends indicating that Zn harvested by the phytoplankton may have been released 

during fall decay. The subsequent decrease towards the end of fall was likely the 

result of precipitation of the oxidized Zn (Hamilton-Taylor et al 1996). Si trends in 

the epilimnion were also characteristic of phytoplankton growth and decay with Si 

consumed in the summer and then released again during fall (Mir and Kachroo 

1982, Mortimer 1941, Munawar and Munawar 1975). The increased Zn 
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concentration that occurred at depth in fall 2011 can be explained by the elevated 

Zn concentration measured at the inlet after re-initiation of effluent discharge 

(discussed earlier) (Figure 1.77, Appendix A).  

Warm temperatures in February 2013 were the likely cause of changes to 

some surface parameters similar to the rain event of May 2013. The brown 

colouration of the Feb 2013 sample also supported an allochthonous source of 

inflowing water. The brown colouration was attributed to humic or fulvic acids in 

the water and metals such as Fe often complex with these organic compounds and 

are prevented from oxidation as a result (Gensemer and Playle 1999, Hem 1960a). It 

is possible that warm temperatures that occurred in Feb 2013 allowing melt-water 

from shore to flow under the ice. Frank Lake’s current water colour is clear and so 

the stained water must have been from external input. Recall that a similar sample 

occurred in Lim Lake. 

Effluent and Rain: Combined Effect 

The combination of the effluent discharge alterations of fall 2011 and the 

rain event in spring 2013 forced a divide in water quality and had a dominant effect 

on the ANOVA results for all of the independent variables (layer, year and season). 

As discussed, parameters that tended to be highly concentrated in the effluent were 

diluted by the rain while parameters low in the effluent tended to be more 

concentrated in the natural inputs. It was these parameters that demonstrated a 

significant level of variability between years (chl a, sp-cond, TKN, ammonia, NO3, 

TDS, Al, Ba, K, Mg, Mo, total sulphur, Si and Cl). However, some parameters that 

were diluted or further concentrated by the rain had enough influence from the 

2013 year of discharge to demonstrate a non-significant variability between years. 

These parameters included alkalinity, Ca, Fe, Mn, Na, Zn, sulphate and hardness. 

Other parameters that did not vary significantly between years were only measured 

up to June 2013 (DIC, DOC, TotP) or were not appreciably changed by the effluent 

alterations or the rain event (Sr, pH). 
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Lim Lake and Frank Lake – Other Water Quality Trends 

Temperature 

Temperature trends in Lim Lake (Figure 1.10, Appendix A) and Frank Lake’s 

(Figure 1.37, Appendix A) mixolimnion were typical of a freshwater lake at this 

latitude. Solar heating during summer formed thermal stratification while the 

cooling air temperatures in the fall formed isothermal conditions, allowing the lake 

to turnover to a depth free from chemical stability.  

The meromictic state of Frank Lake slightly altered its seasonal temperature 

trends. Throughout all seasons, the monimolimnion had a fairly stable and warmer 

temperature, between 4.4-5°C, compared to the overlying hypolimnion. This 

increase in temperature in the monimolimnion commonly occurs in meromictic 

lakes, such as in Soap Lake, WA (Anderson 1958) and Sunfish Lake, ON (Duthie and 

Carter 1970), and is known as dichothermy, which is thermal stratification with a 

minimum occurring in the middle lake strata (Hutchinson 1957, Yoshimura 1936a, 

b, Yoshimura 1937). Dichothermy occurs in meromictic lakes during summer 

because surface heating, cooling and wind do not greatly influence the sheltered 

monimolimnion; therefore allowing it to maintain a more consistent temperature 

(Yoshimura 1936a, b, Yoshimura 1937).  Any heat gained from sediment or solar 

radiation that is able to penetrate through the mixolimnion is preserved in the 

monimolimnion. During late fall, mesothermy occurs in Frank Lake, where a 

maximum temperature occurs in the middle lake layers, in this case at the 

chemocline, and this again is commonly observed in meromictic lakes (Hutchinson 

1957, Yoshimura 1936a, b, Yoshimura 1937). 

Dissolved Oxygen and Chlorophyll a 

As mentioned, DO was the best demonstrated turnover extent in both study 

lakes. The decrease in DO in Lim Lake (Figure 1.11, Appendix A) during summer and 

winter months could be attributed to animal and plant respiration, bacterial 

decomposition of organic matter and oxidation of inorganic constituents 

(Hutchinson 1957). This oxygen depletion can be very detrimental for aquatic 

organisms; however, much of Lim Lake’s volume remained relatively well 
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oxygenated despite these DO depletion events and DO was replenished to the water 

column during turnover. In Frank Lake, the anoxic conditions present in bottom 

strata (Figure 1.38, Appendix A) were due to the meromictic state of the lake and 

the inability of turnover to replenish DO during either spring or fall.  

Heterograde DO trends observed in Lim and Frank Lakes could be loosely 

attributed to phytoplankton photosynthesis and/or zooplankton respiration in the 

lake. The positive heterograde curve in July 2011 in Lim Lake (Figure 1.11, 

Appendix A) corresponded with the maximum chl a concentration in the water 

column (Figure 1.12, Appendix A). Correlation of these two parameters has been 

long observed by limnologists (Eggleton 1956). The heterograde trends of July 

2011, April 2013 and August 2013 in Frank Lake (Figure 1.38, Appendix A) were 

difficult to classify as either negative or positive. By definition the trends were 

negative, since a metalimnetic minimum concentration occurred (Shapiro 1960, 

Wetzel 2001). The live Daphnia sp. and Chaborus flavicans specimens were observed 

in some of Frank Lake’s near-surface and a single chemocline sample respectively, 

including under the ice, and therefore, respiration and grazing on phytoplankton 

populations was occurring. This supports the idea of the curves being negative 

heterograde. In support of these trends being positive heterograde, chl a trends 

demonstrated that there was at least some phytoplankton growth/photosynthesis 

in the mixolimnion in select strata (Figure 1.39, Appendix A). DO production by 

phytoplankton populations could have been occurring but populations may not 

have been high enough to raise DO concentrations higher than at the surface, hence 

the absence of a DO maximum at these depths.  

Without biomass data to support them, using chl a concentrations to discuss 

viable phytoplankton activity is limited but still acceptable. Phaeophytin a (chl a 

minus central Mg2+ ion) and chl a from degrading and settling phytoplankton can be 

measured by both multi-probe sensors as well as lab extraction methods and can 

contribute erroneously to the total chl a concentration (Cullen 1982, Lorenzen 

1965, Lorenzen 1966, Osmund et al 1965). Another reason chl a data interpretation 

is limited is due to the fact that phytoplankton populations at depth have been 
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observed to produce higher concentrations of chl a due to low light conditions as an 

adaptive strategy (Cullen 1982) and in such scenarios, chl a does not accurately 

represent biomass.  

Despite these potential error sources, the heterograde oxygen trends 

observed during the study as well as some of the micronutrient trends to be 

discussed above are all suggestive of the occurrence of at least some 

phytoplankton/zooplankton dynamics in both lakes. Following the rain event of 

May 2013, chl a increases in Frank Lake surface strata could have been due to 

phytoplankton growth stimulated by a lower-salinity environment or it could have 

been allochthonous input of chl a from run-off. In general, chl a values in Lim Lake 

and Frank Lake (0.3-3.0 μg L-1) were indicative of oligo/mesotrophic classification 

(Wetzel 2001).  

Specific Conductance and Sulphur Compound Characterization  

A double chemocline was observed in Frank Lake during the spring and 

summer (Figure 1.66, Appendix A). The development and persistence of the upper 

chemocline, which disappeared during each fall turnover, was a result of both 

settling of TDS into the hypolimnion and monimolimnion and dilute water loadings 

from run-off and rain into the epilimnion. The lower chemocline, which was stable 

throughout the study, was the separation of the mixolimnion and monimolimnion. 

The shallow chemocline of spring and summer 2013 and shallow turnover to only 

6m in fall 2013 were likely a result of the May 2013 rain event and the surface water 

dilution that ensued. The major rain event and early cessation of effluent discharge 

in Sept 2012 were the main contributors to sp-cond decrease throughout the study. 

The total sulphate to sulphur ratio was typically around 1 during the study 

identifying that sulphate was the dominant form of sulphur in the water samples 

(Figure 1.63, Appendix A). Points in time when the ratio was <1, such as in fall 2011 

and at the surface in May 2013, indicated that other forms of sulphur were present 

in the lake, such as H2S (not sampled in 2011) or organic-S. Organic-S from 

watershed run-off and wetland inputs could have been the reason for the especially 

low ratio in May 2013. Although not tested in all sample sessions, no H2S was 
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detected in samples obtained from Frank Lake and sulphur smell was not commonly 

apparent in samples. The abundance of sulphur and anoxic conditions in the water 

column suggest that sulphur reduction forming both sulphides and organic sulphur 

are occurring in Frank Lake (Carignan and Tessier 1988, Giblin et al 1990, Kling et al 

1991, Rudd et al 1986, Nriagu and Soon 1985) and working to reduce 

concentrations in the water column. Annual inputs from mine effluent were 

constantly replenishing the lake with sulphate making this mechanism difficult to 

discern using the sulphur data. The decrease in sulphate during the winter months 

was likely due to sulphate reduction and allocation to the sediment and the lack of 

effluent discharge during this time made this mechanism possible to discern (Figure 

1.72, Appendix A). 

Spangle Lake (Reference Lake) 

 Spangle Lake demonstrated much lower levels of all parameters than both 

Lim and Frank Lakes. The fact that this lake had not had any influence from effluent 

discharge was clearly demonstrated by its water quality. The constant sp-cond from 

the surface to the bottom of Spangle Lake (Figure 1.79, Appendix A), even during the 

strongest times of thermal stratification in summer and winter (Figure 1.79, 

Appendix A), indicated that the lake has not chemical stability influencing its mixing 

regime. The oxygen depletion at depth in Spangle Lake (Figure 1.78, Appendix A) 

was not due to incomplete turnovers but rather due to bacterial consumption 

during decay of organic matter and respiration by zooplankton and fish. The spike 

in chl a at 2 m indicated that some phytoplankton activity also was present in 

Spangle Lake (Figure 1.78, Appendix A).   

Conclusion 

Using the water quality data observed in Lim and Frank Lakes through the 

year as well as at turnover, it is clear that a majority of the differences between the 

lakes are due to the lakes being in differing stages of meromixis. Recovery of the two 

lakes to normal conditions will certainly vary and TDS was the best parameter for 

indicating chemical stability. In Lim Lake, the TDS-contributing parameters 

decreased markedly during the study. This decrease was accompanied by turnover 
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ability during fall and partially ability during spring in the lake for the first time 

since the first observation of meromictic conditions in 2008. This monomictic 

mixing regime removed anoxic conditions during turnover events, which was a 

great influence on the water chemistry observed in Lim Lake. The management 

strategy of ceasing discharge in Lim Lake and allowing natural remediation to occur 

was what allowed the meromictic event in Lim Lake to occur. Although the lake 

demonstrated great improvement in water quality and mixing ability, the 

incompleteness of spring turnover in the lake and the presence of elevated 

concentrations of most parameters indicated that it is still in the process of 

remediation and both dilution and allocation of sulphate to the sediments during 

periodic anoxic conditions will be the prime mechanisms by which Lim Lake’s 

remediation continues.  

In Frank Lake, the largest influences on the lake’s water quality were its 

continued effluent discharge inputs and stable chemical stability (meromixis). The 

presence of anoxic conditions year-round in Frank Lake influenced the water quality 

and the form of chemical species in the lake. Dilution by rain and meltwater as well 

as high TDS inputs from effluent discharge will continue to control mixolimnion 

turnover depth during spring and fall in Frank Lake. Similar to Lim Lake, sulphate 

removal from the water column and allocation to the sediments during anoxic 

conditions will ultimately reduce TDS in Frank Lake as well. After the cessation of 

mining, Frank Lake will be included in the post-closure management strategy for the 

site. At mine closure, elevated levels of TDS from sulphate, Ca, Na, K etc. will still 

influence chemical stability in the lake. It is likely that both the greater depth and 

complex bathymetry (bays) of Frank Lake will lengthen the time it takes for it to 

become free of meromixis compared to Lim Lake. The fact that effluent will continue 

to be discharged into Frank Lake long after mine closure will influence the lake’s 

recovery. Elevated-TDS effluent will continue to be input into the lake however, the 

expected lowering of TDS levels in this effluent may help to begin dilution in Frank 

Lake and slowly deteriorate chemical stability, along with continued inputs from 

rain and meltwater. This management strategy is different from Lim Lake’s and 
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could minimize the potential for the development of a very low TDS upper stratum 

in Frank Lake. 

In addition, it would be interesting to see how the biological components of 

the lakes change as the meromictic state changes. As dissolved solids in the lakes 

begin to decrease and turnover becomes exclusively dimictic, habitat area will 

expand for fish and changes in water and sediment chemistry will follow. 

Freshwater species that may have been lost from the lake systems due to effluent 

effects and meromixis may be able to recover in time.    

Based on the water chemistry trends in Frank Lake in relation to effluent and 

precipitation events and the variability in turnover depth from year to year, the 

exact remediation progression of Frank Lake through post-management strategies 

and natural remediation is difficult to predict. Remediation is clearly influenced by 

many variables and required a more detailed study encompassing the dominant 

variables influencing the water quality in the lake. Utilization of the CE-QUAL-W2 

model in Chapter 2 allowed for probable predictions regarding the lake’s response 

to varied TDS inputs and remediation of meromixis in the lake. 
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CHAPTER 2 – Water Quality Modeling of Mixing Trends in Frank Lake 

Introduction 

The purpose of studying and/or modeling mine-impacted pits/lakes is often 

based around the need to maintain meromictic conditions for the purpose of 

isolating low-quality water, tailings or waste rock from upper strata such that 

downstream watersheds are minimally impacted (Brassard et al 1996, Fisher and 

Lawrence 2006, Hamblin et al 1999, Herrell et al 2015, Fisher and Lawrence 2006, 

Hamblin et al 1999, Vandenberg et al 2015). A less common but very useful 

application, which was utilized in the Alberta oil sands, is to model hypothetical 

systems with differing management strategies in order to determine the potential of 

meromixis with the goal of preventing meromixis altogether (Mackenzie et al 2004). 

The purpose of the current study was unique in comparison to these other modeling 

projects since removal of meromictic stability in Frank Lake was the ultimate goal. 

As Chapter 1 showed for Lim Lake, after effluent discharge ceased, the TDS of 

Lim Lake’s surface strata quickly declined and initially, meromictic stability 

developed. Although the meromictic stability in Lim Lake is now deteriorating, the 

occurrence of meromixis during natural remediation indicated that the current 

meromictic stability in Frank Lake has the potential to be strengthened and 

prolonged after its effluent discharge ceases. A water quality model was required to 

characterize the dominant mechanisms affecting its TDS concentrations and 

ultimately, its meromictic state. The methodology selected for this purpose was the 

CE-QUAL-W2 model. 

CE-QUAL-W2 Model - Overview 

Thomas M. Cole of the United States Army Corps of Engineers and Dr. Scott A. 

Wells of Portland State University’s Environmental and Civil Engineering 

Department have been the prominent developers of CE-QUAL-W2 hydrodynamic 

and water quality model since 1975. CE-QUAL-W2 is a two-dimensional, laterally 

averaged model that can model variables in the longitudinal/horizontal and vertical 

directions/planes (Cole and Wells 2013). It is well suited to Frank Lake because of 

the horizontal and vertical variability within the lake. The hydrodynamic portion of 
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the model simulates and predicts water surface elevation, velocity and 

temperatures. The results of the hydrodynamics equations are coupled to the water 

quality equations and used to drive the transport of water quality constituents 

through the system (Cole and Wells 2013). TDS is the proxy for all chemical 

parameters in the lake (Chapter 1) and will be used in the model to predict the 

meromictic trends in Frank Lake. 

Lowered TDS levels within Frank Lake will begin to occur after effluent 

discharge water quality improves post-closure and after effluent discharge ceases 

entirely since the effluent is the source of the higher TDS levels within the lake. The 

gradual TDS reduction strategies will more effectively breakdown meromictic 

conditions in Frank Lake since the mixolimnion will not be allowed to rapidly 

develop a lowered TDS as in Lim Lake. It is hypothesized that having a mixolimnion 

that is slowly diluted will allow it to mix more effectively with the upper strata of 

the monimolimnion during turnover events and cause lowering of chemocline 

stability. It should be noted that once discharge into the lake ceases completely, 

meromictic conditions could re-initiate and allow meromictic stability to return. 

Objectives 

1) To collect required field data for the calibration/validation of the CE-

QUAL-W2 water quality model to predict TDS concentrations in Frank 

Lake. 

2) After calibration of the model, perform predictive model scenarios that 

vary TDS input into Frank Lake (10%, 25%, 50% and 75% TDS 

reductions) to better understand how the meromictic stability of the lake 

will change in each scenario.  
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Methods 

The field season of 2013 was designed to collect appropriate data for the CE-

QUAL-W2 model and build its required input files to simulate temperature and TDS. 

A much more detailed description of model set-up can be found in Appendix C. The 

model is developed in four steps: 1) bathymetry and topographic datasets are used 

to build the model grid, 2) input files for boundary conditions, initial conditions and 

model control are built, 3) model calibration/validation is performed by comparing 

model outputs with observed calibration data, and 4) the model is used to make 

predictions representative of user-devised scenarios.   

Bathymetry, Topography and Model Grid Development 

 This comprises the geometric data requirements of the model. Bathymetric 

data from within the lake was obtained using a depth sonar and UnderSee Explorer 

software. The final data set was composed of latitude, longitude and depth (x, y and 

z) data points. Topographic data was obtained from the geogratis government 

website and was merged with the bathymetric data set in Golden Software’s 

SURFER 12 program. The final map and boat passes are displayed in Figure 2.1. 

Development of the model grid also occurred in SURFER using the thalweg and 

shoreline morphometry to build the segments and an automated script to iteratively 

develop the layers within each segment (Figure 2.2). Segment lengths were kept 

relatively consistent to ensure numerical stability of the model. Shoreline 

morphometry is what dictated segment size and orientation. When the lake width 

from shoreline to shoreline changed appreciably, a new segment was used to 

represent that area of the lake. Figure 2.3 conveys the branches and segments 

developed for Frank Lake. Ultimately, a 3-branch grid was formed with 52 segments 

and 33 layers. An internal head boundary was used to connect branch 2 and branch 

3 with branch 1 at segments 4 and 13 respectively and ultimately forming the 

bathymetry file. 
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Figure 2.1. Frank Lake boat tracks for collecting bathymetry dataset. The merged 

DEM points are also shown for the topography and MASL elevations. 

 

 

Figure 2.2. Frank Lake thalwegs used for segment placement ultimately used for 

model grid development.               

MASL 
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Figure 2.3. W2 Control and Bathymetry GUI projections of the top, side and end 

views of the Frank Lake model grid.   
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Boundary Condition Data 

 Flow rate (ft sec-1) data was collected during each sample session at the inlet 

and outlet. For modeling purposes, flow rates were converted to flow volumes (m3 

sec-1) using stream cross-sectional dimensions (Buchanan and Somers 1976). 

 Temperature and conductivity were measured at the inlet and outlet and 

pressure was measured within the lake every 30 minutes using data logger 

instruments. Data logger software was used to convert conductivity to specific 

conductance and pressure to water elevation. Pressures were also barometrically 

compensated and double checked using staff gauges in the lake. All of the sp-cond 

and TDS values measured in the lab were used to develop a correlation and 

equation such that sp-cond data could be converted to TDS for model input.  

 Meteorological data was measured hourly at the site station and an input file 

containing temperature, dew point temperature, wind speed, wind direction, cloud 

cover and short-wave solar radiation was developed for the model. 

Initial Conditions 

 The initial conditions were organized into a longitudinal profile file, which 

gave each segment and layer in the model a specified temperature and TDS data 

value. Data acquired from Frank Lake’s deep zone in the main channel were used to 

create this file and initial all branches in the grid. The model was started on April 11, 

2013 at 11:30 am, Julian Day=101.48). An initial ice thickness of 0.4m was used 

(field measured).  

Calibration Data 

Data was measured at the deep zone within Frank Lake on April 11, 2013 at 

11:30am (initial conditions) (JDAY=101.48), May 22, 2013 at 12:00pm 

(JDAY=141.50), June 11, 2013 at 12:00pm (JDAY=162.50), August 19, 2013 at 

12:00pm (JDAY=162.50) and November 13, 2013 at 12:00pm (JDAY=316.50). 

Model Calibration 

 Using all of the data, input files were built and an in-depth model calibration 

and sensitivity analysis was performed using the CE-QUAL-W2 version 3.72 

software. Initially, model simulations were performed for only flow and 
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temperature to ensure that the heat budget (inflow and outflow temperatures and 

meteorological data) and associated hydraulic coefficients were adequately 

captured and appropriate. Including water quality computations in the initial 

calibrations adds in unnecessary complexity that can convolute the user’s analysis 

of model calibration. Only after confirming that momentum and heat are being 

properly predicted by the model is it practical to “turn ON” water quality 

computations in the model and allow it to calculate and predict TDS concentrations. 

The control file for the model is used to turn “ON” or “OFF” water quality 

computations. Simply put, the hydrodynamics were calibration/validation was 

performed first and then the water quality calibration/validation was performed 

thereafter. Main parameters adjusted during the calibration process for the Frank 

Lake model are outlined in the results and discussion sections.   

Model Simulation Scenarios 

Once the model was properly calibrated and encompassed the main 

mechanisms influencing the transport of momentum, heat and the TDS water 

quality constituent in Frank Lake had been characterized, short-term predictive 

simulations were performed. TDS concentration at the lake inflow was the only 

variable adjusted during the simulations. A summary of the scenario simulations 

performed was outlined in Table 2.1. The simulations were performed for one year 

and all other boundary condition data and coefficients were held constant during 

each simulation. The TDS concentration reductions for the scenarios were selected 

for the purpose of experimentation to understand the short-term response of the 

lake over a wide range of TDS input reductions. 

Table 2.1. Details of predictive TDS scenarios simulated for Frank Lake. 

Scenario Number TDS Concentration Reduction Result Figure 

1 10% Figure 2.18 

2 25% Figure 2.19 

3 50% Figure 2.20 

4 75% Figure 2.21 
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Results 

Model Calibration 

Model Grid 

The volume-elevation comparison from both UnderSee Explorer (field 

bathymetry data) and SURFER 12 (model grid data) indicated a strong agreement of 

the volume (m3) versus elevation (masl) (Figure 2.4). This indicated that lake 

volume and dimensions were preserved during grid development. The UnderSee 

volume was 4.0% higher; having an additional 100,000 m3 more water than the 

SURFER volume. It was possible that some volume was lost between the segments 

during the blanking procedure as a result of the interpolation occurring in the 

gridding algorithms in SURFER.  

 

Figure 2.4. Volume-elevation graph for Frank Lake raw bathymetry (UnderSee) and 

model grid (SURFER) datasets.  

Water Balance 

Field-measured water elevation from the data logger in Frank Lake and the 

water level output from the model demonstrated a relatively successful water 

balance (Figure 2.5), with some deviation occurring early in the year from April to 

July (Figure 2.6). This confirmed that inflows, outflows and meteorological inputs 

and outputs were captured relatively well in the field. 
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Figure 2.5. Water elevation measured in the field versus elevation predicted by the 

model.  

 

Figure 2.6. Deviation in water elevation measured in the field versus elevation 

predicted by the model. 
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Temperature and Total Dissolved Solids 

 Initially, temperature simulations were performed with water quality 

computations “turned OFF” in the model to confirm heat budget accuracy. The initial 

calibration simulations for temperature using the default hydraulic coefficients and 

recommended settings demonstrated good surface temperature agreement between 

the model and the field profiles however, the simulated thermocline was deeper 

than observed (Figure 2.7). In addition, the bottom strata temperatures were 

warmer than observed. The average mean error (AME) values for four of five of the 

simulations were all >1.0°C indicating that improvement was required. Field-

observed data (calibration data) were physically measured in the lake while the 

model-predicted data was outputted from the model based on boundary conditions. 

 

Figure 2.7. Frank Lake 2013 temperature simulation with water quality 

computations “turned OFF”, default coefficients and recommended settings used. 

 

 

Field Observed 
Model Predicted 
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Adjustment of the wind-sheltering coefficient to reduce the effect of the wind 

on the lake’s surface and decreasing the sediment temperature from 8.0°C to 6.0°C, 

calibration results improved and the AME’s were all <1.0°C excluding November 

2013’s profile (Figure 2.8). 

 

Figure 2.8. Frank Lake 2013 temperature simulation with water quality 

computations “turned OFF”, wind-sheltering coefficient and sediment temperature 

adjusted. 
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Following successful heat budget calibration, water quality computations 

were “turned ON” in the model and the temperature plots were once again analyzed 

(Figure 2.9). Including TDS simulation into the model negatively impacted the 

temperature calibration results as indicated by the increased AME’s. Good upper 

and lower strata temperature simulation occurred but the predicted thermocline 

was much deeper in the water column than expected. The main observation drawn 

from this was that TDS was having a substantial influence on momentum and heat 

transfer within Frank Lake. 

 

Figure 2.9. Frank Lake 2013 temperature simulation with water quality 

computations “turned ON”, wind-sheltering coefficient and sediment temperature 

adjusted same as previous. 

With TDS computations now present in the model, TDS simulations were 

produced. The TDS simulations demonstrated that the model predicted the general 

trends of the double chemocline in Frank Lake reasonably well, especially in the 

early part of the year. In addition, the depth of turnover in both April and November 
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(°C) 

(°C) (°C) (°C) (°C) 
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2013 was captured appropriately and the monimolimnion of Frank Lake was 

maintained throughout the simulation (Figure 2.10).   

 

Figure 2.10. Frank Lake 2013 TDS simulation with water quality computations 

“turned ON”, wind-sheltering coefficient and sediment temperature adjusted.  

In order to better understand the effect of TDS on the heat budget in Frank 

Lake and ultimately improve the temperature simulation with TDS computations 

now included in the model (Figure 2.10), a sensitivity analysis was conducted. This 

analysis involved adjustment of coefficients that control how solar radiation and 

heat were being distributed and transported in Frank Lake. A summary of these 

coefficients and their final adjustments can be found in Table 2.2 in Appendix C. 

After adjusting these coefficients, the temperature (Figure 2.11) and TDS 

calibrations (Figure 2.12) greatly improved and lowered AME’s occurred for all 

calibration dates. The average mean errors for the five calibration dates were 

0.04°C, 0.36°C, 0.41°C, 0.95°C and 0.55°C. These indicated on average the difference 

between the model predicted and field observed data at any given depth. 

Field Observed 
Model Predicted 

(mg L-1) (mg L-1) 

(mg L-1) 

(mg L-1) (mg L-1) 
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Respectively, each of these average mean errors were 1.08%, 7.85%, 6.91%, 14.08% 

and 14.38% of the average temperature observed in their respective plot. The 

thermocline in Frank Lake was simulated much more accurately and closely 

matched the observed profile. The chemocline profiles and depths became more 

refined in the TDS simulations as well. The average mean errors for the five 

calibration dates were 1.78 mg L-1, 76.62 mg L-1, 94.45 mg L-1, 61.66 mg L-1 and 

71.76 mg L-1. Respectively, each of these average mean errors were 0.12%, 5.19%, 

6.51%, 4.23% and 5.02% of the average temperature observed in their respective 

plot. This simulation was the best possible calibration obtained for simulating both 

temperature and TDS in Frank Lake.  

 

Figure 2.11. Frank Lake 2013 temperature simulation with water quality 

computations “turned ON”, wind-sheltering coefficient, sediment temperature and 

solar radiation coefficients adjusted. 

Field Observed 
Model Predicted 

(°C) 

(°C) (°C) (°C) (°C) 

1.08 % error 7.85 % error 6.91 % error 14.08 % error 

14.38 % error 
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Figure 2.12. Frank Lake 2013 TDS simulation with water quality computations 

“turned ON”, wind-sheltering coefficient, sediment temperature and solar radiation 

coefficients adjusted. 

Model Animations 

Animations (videos) of the entire 2013 model simulation for temperature 

and TDS are present on a CD-ROM as Windows Media Player file located at the end 

of this document. Figures 2.13-2.17 illustrate the grid animations for TDS on the 

dates that observed/calibration data was measured in the field. Units are in g m3 

which is equivalent to mg L-1. The distinct mixo- and monimolimnions were clear in 

the model start and end simulations (Figures 2.13 and 2.17 respectively). The rain 

event and its associated surface dilution were clear in the May and June simulations 

(Figures 2.15 and 2.15 respectively). The August simulation (Figure 2.16) illustrated 

the effect of effluent discharge and increased TDS on the surface strata of the lake. 

 

Field Observed 
Model Predicted 
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(mg L-1) 

0.12 % error 5.19 % error 6.51 % error 4.23 % error 

5.02 % error 
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Figure 2.13. Screenshot of Frank Lake 2013 TDS simulation animation on April 11, 

2013 (model start). 

 

Figure 2.14. Screenshot of Frank Lake 2013 TDS simulation animation on May 22, 

2013.  
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Figure 2.15. Screenshot of Frank Lake 2013 TDS simulation animation on June 12, 

2013. 

 

Figure 2.16. Screenshot of Frank Lake 2013 TDS simulation animation on August 

20, 2013. 

M
o

n
im

o
li

m
n

io
n

 
o

n
 

M
ix

o
li

m
n

io
n

 
M

ix
o

li
m

n
io

n
 

M
o

n
im

o
li

m
n

io
n

 
o

n
 



 

112 
 

 

Figure 2.17. Screenshot of Frank Lake 2013 TDS simulation animation on 

November 13, 2013 (model end).  

Model Predictive Simulations 

The TDS simulations for Frank Lake for scenarios 1 through 4 are present in 

Figures 2.18-2.21 respectively. The most notable changes in TDS concentrations 

occurred near the surface strata of Frank Lake, particularly during August and 

November. The further the TDS concentrations was reduced, the lower the TDS 

concentration in the surface strata during August and November. A stable 

chemocline was maintained in each scenario with some variability in the chemocline 

depth occurring in the 50% and 75% reduction scenarios. In these scenarios, the 

chemocline became shallower after fall turnover and a sharper chemocline was 

observed, indicating an increase in meromictic stability had occurred. Regardless of 

the scenario tested, the monimolimnion TDS concentration was the same in each 

and no reduction in monimolimnion TDS was observed. 
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Figure 2.18. Frank Lake 2013 TDS simulation with concentrations reduced by 10%. 

 

Figure 2.19. Frank Lake 2013 TDS simulation with concentrations reduced by 25%. 

Field Observed 
Model Predicted 

Field Observed 
Model Predicted 

(mg L-1) (mg L-1) (mg L-1) (mg L-1) 

(mg L-1) 

(mg L-1) (mg L-1) (mg L-1) (mg L-1) 

(mg L-1) 



 

114 
 

 

Figure 2.20. Frank Lake 2013 TDS simulation with concentrations reduced by 50%. 

 

Figure 2.21. Frank Lake 2013 TDS simulation with concentrations reduced by 75%. 
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Discussion 

The main objectives of this chapter were to calibrate the CE-QUAL-W2 model 

for temperature and TDS and then run TDS reduction scenarios to understand how 

Frank Lake’s meromictic stability would respond.  

CE-QUAL-W2 was utilized for this study because it was known that 2D-

variability was present within the Frank Lake system due to inflows dispersing 

horizontally across the lake (high-TDS influent or low-TDS natural inflow). In 

addition, the model is capable of performing long-term simulations by varying the 

computational time-step and can effectively model TDS. 

Calibration 

  The calibration process for the Frank Lake model required adjustment of a 

variety of coefficients to better represent the mechanisms controlling distribution of 

momentum, heat and TDS concentrations in Frank Lake. A summary of the 

coefficients adjusted and their final value were listed in Table 2.2 in Appendix C. It is 

worth briefly discussing these coefficients and their function because they were 

indicators of mechanisms occurring in Frank Lake during 2013. 

 To improve the initial temperature calibration (Figure 2.7), the coefficients 

controlling sediment temperature (TSED) and the magnitude of the effect of the 

measured wind speeds on the lake surface (wind sheltering coefficient, WSC) were 

adjusted. Adjustment of the sediment temperature improved model prediction 

deviations that were occurring in the bottom strata of Frank Lake. An initial value of 

8.0°C was used because it was recommended to use the average annual air 

temperature of the area as the sediment temperature for initial model runs (Cole 

and Wells 2013). However, this technique is not always an accurate representation 

of reality and with the persistent 4-5°C water in the monimolimnion of Frank Lake, 

sediment temperatures are likely not 8.0°C. A value of 6.0°C was used, since 

sediment in littoral zones above the chemocline will heat during the summer 

months. The wind-sheltering coefficient was adjusted from the original value 0.7-0.8 

down to 0.4-0.5. Essentially what this meant was that all of the wind speeds were 

reduced by a factor of 0.4-0.5, thus decreasing the amount of surface mixing in 
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Frank Lake. This reduction in wind effect is a common practice in modeling since 

meteorological stations are often in non-sheltered areas compared to aquatic 

systems and are not surrounded by topography and vegetation. For the current 

study, an improved temperature calibration resulted with wind reduction however, 

the values used (0.4-0.5) are typical of values used in modeling in mountainous 

regions with substantial wind-sheltering topography (Cole and Wells 2013). 

Meteorological data was collected from the top of the tailings area dam and may 

have been measuring a greater wind speed than what was actually occurring at the 

surface of Frank Lake. So, it is possible that a coefficient adjustment of such a large 

magnitude was appropriate.  

In order to improve temperature calibration after TDS computations had 

been included in the model, the fraction of incident solar radiation absorbed on the 

surface (BETA) and the light extinction coefficient (EXH2O) were adjusted. The 

BETA coefficient controlled the fraction of incident shortwave solar radiation 

absorbed on the surface (longwave components of shortwave solar) and it is closely 

connected with the EXH2O variable (Cole and Wells 2013, Williams et al 1980). To 

achieve an appropriate calibration, a BETA value of 1.0 was required. This ensured 

that 100% of the longwave incident solar radiation was absorbed on the surface of 

Frank Lake in the upper layers of the model. The EXH2O coefficient controlled the 

ability of shortwave solar radiation to penetrate into deep lake strata as it 

encountered light-absorbing/deflecting components in the water column. An 

EXH2O value of 1.0 m-1 was used, specifying that the shortwave solar radiation that 

encountered the lake surface was not able to pass into deep strata. To gauge a 

comparison, an EXH2O value for pure water is 0.25 m-1. Having to regulate the BETA 

and EXH20 coefficients in the Frank Lake model suggested that the heat distribution 

in Frank Lake was being largely influenced by the elevated TDS present in the lake, 

particularly at the surface. The total light extinction present in an aquatic system 

can be influenced by the water itself (λH2O), inorganic suspended solids/TDS (λISS), 

particulate organic matter (λPOM), algae/phytoplankton (λa), zooplankton (λzoo) and 

plants/macrophytes (λmacro). The equation below represents how CE-QUAL-W2 
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develops the total light extinction coefficient given user input. 

 

In the current Frank Lake model, computations for total suspended solids, 

phytoplankton, zooplankton and macrophytes were not performed because no data 

was input for these constituents. Recall that phytoplankton growth in Frank Lake 

was suggested by the chl a trends discussed in Chapter 1 and live zooplankton 

specimens were found within Frank Lake samples. The presence of these organisms 

in Frank Lake meant that they were also contributing to light shattering and 

extinction in the upper water column. This helped to explain the need for such a 

large adjustment of both the BETA and EXH2O coefficients from the default values of 

0.45. 

  A further complication regarding light extinction in Frank Lake was the 

water colour variable, which has been changed by the effluent. Both the current 

study and a previous consultant study found that in general, the effluent discharged 

into Frank Lake has diluted the dissolved organic carbon (DOC) within the lake and 

made the water more clear (LePage and Russel 2013). However, the late date of 

discharge initiation and the substantial inputs of run-off and natural inflow into 

Frank Lake in 2013 increased the dissolved organic carbon (DOC) in the lake, 

particularly at the lake surface (Figure 1.61, Appendix A). The humic and fulvic acids 

measured as DOC are associated with the brown colouration of natural waters 

(Morris et al 1995, Poniewozik et al 2011). Light extinction can be largely affected 

by brown-coloured water and its DOC components by decreasing the permeation of 

light into deeper strata (Hem 1960a, Morris et al 1995, Verduin 1982).  

To summarize, TDS, phyto- and zooplankton as well as increased DOC in 

Frank Lake in 2013 all contributed to prevention of the light penetration into deep 

strata in Frank Lake and hence, adjustment of the appropriate coefficients was 

required. 

Possible Calibration Improvement Strategies  

There are a multitude of improvements that can be made to the calibration of 

the Frank Lake model regarding both temperature and TDS calibrations. Regarding 
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the water balance deviations, it is possible that the characterization of the head vs. 

flow relationship developed for the beaver dam/spillway at the outlet could be 

improved such that flow becomes greater when upstream head/water level within 

the Frank Lake is high. Revisiting the algorithm associated with the spillway could 

improve the water balance within the model. The Water Balance Utility was 

designed as an external feature to the CE-QUAL-W2 model and allows for calculation 

of deviations between model predictions and field data. Deficiencies or excesses in 

water level can be adjusted by using tributaries (if the model is lacking water) or 

pumps (if the model has too much water). The ability of this utility to help with the 

water balance is only effective to a point but its effectiveness should be investigated 

for the Frank Lake model. If a tributary or pump is used to improve the water 

balance, the location and associated TDS concentration of each will have to be 

logically designed and such that improvements to the TDS calibration will ensue. In 

addition, no precipitation TDS data was available and an estimated value was used. 

Experimentation of the precipitation TDS concentration could potentially improve 

TDS calibrations as well. 

 As mentioned, the EXH2O and BETA coefficients are a function of the 

suspended substances in the water column (both dissolved and particulate). Since 

the TDS concentrations in Frank Lake varied greatly (particularly at the lake 

surface) as a result of the May 2013 rain event and effluent discharge starting in 

June 2013, it is possible that the EXH20 and BETA appropriate for the lake varied 

over time. CE-QUAL-W2 has been designed such that an input file for a time-varying 

EXH2O is possible. This was originally designed because as phytoplankton and 

macrophytes grow throughout the year, the light absorption at the surface changes. 

Development of a time-varying light extinction input file for Frank Lake may help to 

improve model projections of temperature and possibly TDS in Frank Lake.    

There are a number of settings in the model that can allow for adjustment of 

density and how it relates to the placement of inflows into the model grid and thus, 

a sensitivity analysis to test some of these options needs to occur.  
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Simulation Scenarios and Frank Lake Meromixis 

 One year simulation scenarios were used to test Frank Lake’s response to 

decreased TDS concentrations supplied to the lake at the inlet using reductions of 

10%, 25%, 50% and 75% reduction scenarios were performed. The chemocline 

depths were not largely impacted by the 10% and 25% scenarios however, the 

chemocline depth was found to be closer to the surface in the 50% and 75% 

reduction scenarios. In addition, much greater dilution occurred near the lake’s 

surface in the 50% and 75% scenarios. The shallowing of the chemocline in these 

scenarios indicated an increase in meromictic stability and a shallower depth of fall 

turnover in Frank Lake. This was a similar occurrence to what happened in Lim 

Lake where an abrupt reduction in inflowing TDS concentration promoted 

meromictic stability. In all scenarios, no change in the monimolimnion TDS 

concentrations occurred. Essentially, regardless of what sort of TDS reduction were 

to occur at the inflow of Frank Lake, it will not work to deteriorate meromictic 

stability in Frank Lake over a one year timeframe. 

Few published studies have attempted to model meromictic trends with CE-

QUAL-W2 with the goal of trying to quickly and successfully destabilize the 

chemocline using inflow water quality. In the study performed for Kennady Lake 

where meromictic stability was attempting to be maintained, it was found that 

meromictic stability was established very quickly after closure and was maintained 

in the model for up to 100 years (Herrell et al 2015, Vandenberg et al 2015). The 

large difference between the Kennady Lake and Frank Lake is that Kennady Lake 

has large surpluses of high TDS groundwater draining to it, which enhanced and 

maintained its meromictic stability in the model (Herrell et al 2015). Other past 

studies not involving modeling that have studied meromictic stability trends all 

found that meromictic stability deterioration occurred in the study lake(s) because 

some mechanism equalized or brought the dissolved solids concentrations close 

enough together in the upper and lower strata to promote mixing (Jellison et al 

1998, Romero and Melack 1996).  

Unlike Lim Lake during its effluent receiving years, Frank Lake has had long-
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term and stable meromixis, even during the years of receiving effluent. This fact 

suggests that it is unlikely that turnover in Frank Lake will occur as a result surface 

strata TDS concentrations increasing enough from effluent discharge to equalize 

with bottom strata concentrations. The Frank Lake watershed captures too much 

dilution water and the lake is too deep for this to occur. The deterioration of 

meromictic stability in Frank Lake will likely occur via a slow descent of the 

chemocline towards the bottom of the lake as wind mixing slowly lifts chemical 

constituents up from the monimolimnion into the mixolimnion (Hutchinson 1957). 

Initially, this process requires less work since the chemocline is closer to wave 

action, however, as the chemocline drops, its protection from wind increases and 

there is a tendency for its stability to increase (Hutchinson 1957, Walker 1974). It is 

possible that this stability increase will be minimal since as the chemocline drops, 

the surface area and volume of the monimolimnion also decreases and therefore 

less work is required to mix the remaining monimolimnion strata with the 

mixolimnion (Hutchinson 1957). As discussed in Chapter 1, the removal of sulphate 

from the water column will likely become more apparent after effluent discharge 

ceases. Sulphate allocation to the sediments as both inorganic (sulphides) and 

organic sulphur forms will prompt long and short term sulphur storage and will act 

as a TDS-reduction mechanism in the monimolimnion of Frank Lake (Carignan and 

Tessier 1988, Giblin et al 1990, Kling et al 1991, Rudd et al 1986, Nriagu and Soon 

1985). This coupled with dilution in the mixolimnion waters will be the main 

mechanisms by which Frank Lake’s meromixis deteriorates.  

Future Modeling Scenarios 

Long-term scenarios examining Frank Lake’s meromictic stability are 

required. Currently, a long-term post-closure management plan had been designed 

for Frank Lake and input TDS and potentially flow files can be developed to 

represent how the lake will respond to the plan. The 5%, 10%, 25%, 50% and 75% 

reduction scenarios performed in the current study were only a start of possible 

scenarios that could be considered now that the model is appropriately calibrated. 

All other boundary condition data will be kept constant during such scenarios. A 
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great level of confidence could be placed in the model if more years of data are 

collected and model calibration can be performed with other data sets, especially if 

those new calibration data sets encompassed different boundary conditions 

experienced by Frank Lake (dry year, wet year, year without effluent discharge etc.). 

For these long-term scenarios, the physical and chemical data collected at the inflow 

of Frank Lake prior to the discharge period will be used to represent the type of 

water quality flowing into the lake after mine closure since this is the best 

representation of “natural inflow” into the lake currently available.    

Conclusion 

If TDS concentrations in the surface strata in Frank Lake are allowed to dilute 

substantially as suggested by the 50% and 75% scenario results and based on the 

results of the Kennady Lake study, the meromictic stability in the lake will be 

strengthened and the meromictic state of the lake will likely be prolonged. The 

addition of successively lowered TDS into Frank Lake from the Hemlo site could 

cause the TDS concentration in the mixolimnion to slowly decrease overtime rather 

than rapidly dilute from precipitation and run-off as was observed in Lim Lake. 

Continuing to keep the TDS concentration in the mixolimnion slightly elevated could 

allow turnover events, especially in the fall, to be more effective at breaking down 

the chemocline, since the chemical stability between the mixolimnion and 

monimolimnion will not be increased by the presence of a highly-diluted 

mixolimnion. However, if elevated TDS concentrations still remain in Frank Lake 

after the long-term post-closure management strategies have occurred, meromictic 

conditions still have the potential to develop. If such a scenario occurred and Frank 

Lake’s TDS concentrations are above natural inflow concentrations, dilution of the 

surface water in Frank Lake is certain to occur and the potential for the 

development of a mixolimnion remains.  
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Appendix A: Figures 

 
Figure 1.1. Location of Barrick’s Hemlo Gold Mine in Ontario (adapted from Orr and 
Stecko 2006). 

 
Figure 1.2. Water sampling and data logger locations in Lim Lake. 
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Figure 1.3. Water sampling and data logger locations in Frank Lake. 

Figure 1.4. Lim Lake sample locations at depth (+) for sample sessions in Jul 2011-
Nov 2013. 
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Figure 1.5. Frank Lake sample locations at depth (+) for sample sessions in Jul 
2011-Nov 2013. 

 
Figure 1.10. Lim Lake  temperature (°C) profiles from Jul 2011-Nov 2013.  
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Figure 1.11. Lim Lake dissolved oxygen (mg L-1) profiles from Jul 2011-Nov 2013. 

Figure 1.12. Lim Lake chlorophyll a (µg L-1) multi-probe profiles from Jul 2011-Nov 
2013. Jun 2013 data from lab extractions at 0, 3 and 6 m. 
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Figure 1.13. Lim Lake hardness (mg L-1) profile calculations from Jul 2011-Nov 
2013. 

Figure 1.14. Lim Lake calcium (mg L-1) profiles from Jul 2011-Nov 2013. 
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Figure 1.15. Lim Lake sodium (mg L-1) profiles from Jul 2011-Nov 2013. 

Figure 1.16. Lim Lake potassium (mg L-1) profiles from Jul 2011-Nov 2013.  
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Figure 1.17. Lim Lake magnesium (mg L-1) profiles from Jul 2011-Nov 2013. 

 
Figure 1.18. Lim Lake chloride (mg L-1) profiles from Jul 2011-Nov 2013.  
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Figure 1.19. Lim Lake barium (mg L-1) profiles from Jul 2011-Nov 2013. 

Figure 1.20. Lim Lake strontium (mg L-1) profiles from Jul 2011-Nov 2013. 



 

141 
 

Figure 1.21. Lim Lake iron (mg L-1) profiles from Jul 2011-Nov 2013. Dashed 
contour = PWQO (0.30 mg L-1). 

Figure 1.22. Lim Lake manganese (mg L-1) profiles from Jul 2011-Nov 2013. 
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Figure 1.23. Lim Lake aluminum (mg L-1) profiles from Jul 2011-Nov 2013. Dashed 
contour = PWQO (0.075 mg L-1).  

 
Figure 1.24. Lim Lake nickel (mg L-1) profiles from Jul 2011-Nov 2013.  
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Figure 1.25. Lim Lake copper (mg L-1) profiles from Jul 2011-Nov 2013. 

Figure 1.26. Lim Lake zinc (mg L-1) profiles from Jul 2011-Nov 2013. Dashed 
contour = PWQO (0.020 mg L-1). 



 

144 
 

 
Figure 1.27. Lim Lake silicon (mg L-1) profiles from Jul 2011-Jun 2013. 

Figure 1.28. Lim Lake total phosphorus (mg L-1) profiles from Jul 2011-Nov 2013. 
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Figure 1.29. Lim Lake nitrate (mg L-1) profiles from Jul 2011-Nov 2013. 

Figure 1.30. Lim Lake ammonia (mg L-1) profiles from Jul 2011-Jun 2013. 
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Figure 1.31. Lim Lake total kjeldahl nitogen (mg L-1) profiles from Jul 2011-Jun 
2013. 

Figure 1.32. Lim Lake alkalinity (mg L-1) profiles from Jul 2011-Nov 2013. 
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Figure 1.33. Lim Lake pH multi-probe profiles from Jul 2011-Nov 2013. 

Figure 1.34. Lim Lake dissolved organic carbon (mg L-1) profiles from Jul 2011-Jun 
2013. 
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Figure 1.35. Lim Lake dissolved inorganic carbon (mg L-1) profiles from Jul 2011-
Jun 2013. 

Figure 1.36. Lim Lake total sulphur to sulphate ratio from Jul 2011-Nov 2013. 
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Figure 1.37. Frank Lake temperature (°C) profiles from Jul 2011-Nov 2013. Note 
variable contour gradients in legend between 3°C and 4°C to demonstrate 
dichothermy.  

Figure 1.38. Frank Lake dissolved oxygen (mg L-1) profiles from Jul 2011-Nov 2013. 
Note variable contour gradients in legend between 4-6mg L-1 and 8-8.5mg L-1 to 
demonstrate negative heterograde trends. 
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Figure 1.39. Frank Lake chlorophyll a (µg L-1) multi-probe profiles from Jul 2011-
Nov 2013. 

 
Figure 1.40. Frank Lake hardness (mg L-1) profile calculcations from Jul 2011-Nov 
2013. 
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Figure 1.41. Frank Lakecalcium (mg L-1) profiles from Jul 2011-Nov 2013. 

Figure 1.42. Frank Lake sodium (mg L-1) profiles from Jul 2011-Nov 2013. 
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Figure 1.43. Frank Lake potassium (mg L-1) profiles from Jul 2011-Nov 2013. 

Figure 1.44. Frank Lake magnesium (mg L-1) profiles from Jul 2011-Nov 2013. 
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Figure 1.45. Frank Lake chloride (mg L-1) profiles from Jul 2011-Nov 2013. 

Figure 1.46. Lim Lake barium(mg L-1) profiles from Jul 2011-Nov 2013. 
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Figure 1.47. Frank Lake strontium (mg L-1) profiles from Jul 2011-Nov 2013. 

Figure 1.48. Frank Lake molybdenum (mg L-1) profiles from Jul 2011-Nov 2013. 
PWQO=0.040 mg L-1. 
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Figure 1.49. Frank Lake iron (mg L-1) profiles from Jul 2011-Nov 2013. 

Figure 1.50. Frank Lake manganese (mg L-1) profiles from Jul 2011-Nov 2013. 
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Figure 1.51. Frank Lake aluminum (mg L-1) profiles from Jul 2011-Nov 2013. 
Dashed contour = PWQO (0.075 mg L-1). 

Figure 1.52. Frank Lake nickel (mg L-1) profiles from Jul 2011-Nov 2013. Dashed 
contour=PWQO (0.025 mg L-1). 
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Figure 1.53. Frank Lake zinc (mg L-1) profiles from Jul 2011-Nov 2013. 

Figure 1.54. Frank Lake silicon (mg L-1) profiles from Jul 2011-Jun 2013. 
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Figure 1.55. Frank Lake total phosphorus (mg L-1) profiles from Jul 2011-Nov 2013. 

Figure 1.56. Frank Lake nitrate (mg L-1) from Jul 2011-Nov 2013. 
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Figure 1.57. Frank Lake ammonia (mg L-1) from Jul 2011-Jun 2013. 

 
Figure 1.58. Frank Lake total kjeldahl nitrogen (mg L-1) from Jul 2011-Nov 2013. 
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Figure 1.59. Frank Lake alkalinity (mg L-1) profiles from Jul 2011-Nov 2013. 

Figure 1.60. Frank Lake pH multi-probe profiles from Jul 2011-Nov 2013. 



 

161 
 

 
Figure 1.61. Frank Lake DOC (mg L-1) profiles from Jul 2011-Jun 2013. 

 
Figure 1.62. Frank Lake DIC (mg L-1) profiles from Jul 2011-Jun 2013. 
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Figure 1.63. Frank Lake total sulphur to sulphate ratio from Jul 2011-Nov 2013. 

 
Figure 1.64. Live Chaborus flavicans present in the 11.0m Frank Lake sample during 
April 2013 (photo taken at Lakehead University). 
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Figure 1.73. Frank Lake specific conductance (µS cm-1) for early and late Oct and 
Nov 2011, illustrating peaks at 7m and 9m in early and late Oct 2011 respectively. 
 

Figure 1.74. Frank Lake effluent discharge flow volume (m3) from May 2011 - Nov 
2011. 
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Figure 1.75. Frank Lake effluent discharge specific conductance, TDS, sulphate and 
total sulphur concentration (mg L-1) and specific conductance (µS cm-1) from Jul 
2011 - Oct 2011. Dashed interval indicates absence of effluent discharge. 
 

Figure 1.76. Frank Lake 2011 inlet calcium, sodium, potassium, chloride, nitrate 
and ammonia concentrations (mg L-1). Dashed interval indicates absence of effluent 
discharge. 
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Figure 1.77. Frank Lake 2011 inlet aluminum, iron, zinc, silicon, DOC, magnesium 
and strontium concentrations (mg L-1). Dashed interval indicates absence of effluent 
discharge. 

Figure 1.78. Spangle Lake DO and chl a profiles in Aug-2011 and Mar-2012. 
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Figure 1.79. Spangle Lake temp and specific conductance profiles in Aug-2011 and 
Mar-2012. 
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Appendix B: Tables  

Table 1.1: Water quality parameter concentrations for Lim Lake from 1983-2008. 

Parameter Baseline 19831 AEA 

19992 

EEM 

20054 

EEM 

20085 

Conductivity (µs cm-1) 33.5 26703 1666 467 

Sulphate (mg L-1) No data 1300 841 509 

Hardness (mg L-1) 25.5 1000 652 385 

Calcium (mg L-1) No data 400 355.5 132 

Manganese (mg L-1) No data 0.74 0.12 0.0301 

Potassium (mg L-1) No data 81 53.75 19.9 

Sodium (mg L-1) No data 190 145 59.4 

Ammonia (mg L-1) No data 13 5.03 0.44 

Nitrate (mg L-1) No data 11 6.45 1.67 

Nitrite (mg L-1) No data 0.3 0.18 No Data 

Antimony (mg L-1) <0.005 0.18 0.138 0.072 

Arsenic (mg L-1) <0.003 <0.005 <0.002 <0.001 

Copper (mg L-1) <0.001 0.009 0.0063 0.0055 

Iron (mg L-1) 0.003 0.023 0.04 0.13 

Lead (mg L-1) <0.001 <0.0005 <0.005 0.001 

Mercury (mg L-1) <0.000015 0.00025 <0.0001 <0.0001 

Molybdenum (mg L-1) <0.020 0.25 0.07 0.044 

Nickel (mg L-1) 0.014 0.079 0.07 0.037 

Zinc (mg L-1) 0.0175 0.034 0.019 0.008 

1Reference: (Wood 1984), Table X and IX, Average of Sites LL1(1m and 4m) (close to outlet rather than deep zone).                                          
2Reference: (Beak International Incorporated 2000c), Table 3.5, Site LIM-2 (closest to deep zone, 0.5m from bottom). 
3Reference: (Beak International Incorporated 2000c), Table 3.3, Lim Lake (average of all in-lake samples in 1999). 
4Reference: (Orr and Stecko 2006a), Table D.4, Lim Lake outlet (surface) (average from 2005, n=1 or 13,                                                                           
sample analyses was more comprehensive at outlet versus within lake). 
5Reference: (Weech and Orr 2009a), Table D.3b, Lim Lake outlet (surface) (average from 2008, n=2, 12 or 13). 
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Table 1.2: Water quality parameter concentrations for Frank Lake from 1984-2008. 
Parameter Baseline 19841 AEA 

19922 

AEA 

19993 

EEM 

20055 

EEM 

20086 

Conductivity (µs cm-1) 57.0 1970 20484 2431 1503.8 

Sulphate (mg L-1) 4.0 850.5 940 1135 722 

Hardness (mg L-1) 26 847 810 743 520 

Alkalinity (mg L-1) 7.9 19 30 21.1 22.2 

Calcium (mg L-1) 7.85 331.5 320 294 154.14 

Magnesium (mg L-1)  1.55 4.67 4.5 4.55 3.42 

Manganese (mg L-1) 0.0205 0.5705 0.52 0.094 0.1282 

Potassium (mg L-1) 0.4 63.05 68 73.07 50.62 

Ammonia (mg L-1) No data 6.775 4.01 4.065 1.038 

Nitrate (mg L-1) <0.005 11.4 12 21 17.648 

Nitrite (mg L-1) 0.027 0.45 0.47 0.2 0.205 

Antimony (mg L-1) <0.001 0.337 0.22 0.13 0.056 

Aluminum (mg L-1) 0.008 0.045 0.15 0.017 0.0702 

Barium (mg L-1) 0.011 0.064 0.028 0.021 0.015 

Copper (mg L-1) 0.003 <0.004 0.004 0.009 0.00462 

Iron (mg L-1) 0.24 0.0175 0.17 0.095 0.1154 

Molybdenum (mg L-1) <0.005 0.42 0.4 0.371 0.120 

Nickel (mg L-1) 0.0035 0.02 0.066 0.0525 0.037 

Sodium (mg L-1) 0.95 78.5 120 198 127.3 

Zinc (mg L-1) 0.0075 0.006 0.026 0.014 0.0061 

1Reference: (SENES 1984), Table 3, Average of Sites F2(0.3m) and F2(20m) (closest to main channel deep zone). 
2Reference: (ESP 1993), Table A-1, Average of Sites 3T(1m) and 3B(1m from bottom) (closest to main channel deep zone). 
3Reference: (Beak International Incorporated 2000a), Table 3.4, Site FR2 (closest to main channel deep zone, 0.5m from bottom). 
4Reference: (Beak International Incorporated 2000a), Table 3.2, Frank Lake (average of all in-lake samples in 1999). 
5Reference: (Orr and Stecko 2006b), Table D.4, Frank Lake outlet (surface) (average from 2005, n=1, 5 or 6), sample analyses was more 
comprehensive at outlet versus within lake). 
6Reference: (Weech and Orr 2009b), Table D.4, Frank Lake (surface) (average from 2008, n=4 or 5, not specified if outlet or within lake). 
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Table 1.3: Water quality parameter concentrations for Spangle Lake from 1984-2012. 

Parameter Baseline 19841 

AEA 
19922 

AEA 
19993 

EEM 
20055 

EEM 
20086 

Current 
Study 

2011/127 

Current 
Study  

2011 Inlet 
Conductivity (µs cm-1) 50 32 254 26.6 29.6 32.015 33.3 

Sulphate (mg L-1) 4.5 5.59 4.2 3.0 2.3 1.961 1.64 

Hardness (mg L-1) 14.8 13 16 11.46 13 14.464 14.81 

Alkalinity (mg L-1) 5.15 12 6.8 5.6 8.6 10.180 10.7 

Calcium (mg L-1) 4.2 3.71 4.6 3.54 5.22 4.235 4.30 

Magnesium (mg L-1)  1.04 0.97 1.1 0.795 0.88 0.944 0.987 

Manganese (mg L-1) 0.041 0.072 0.14 0.0114 0.022 0.042 0.0049 

Potassium (mg L-1) 0.22 <0.4 <1.0 0.312 0.52 0.457 0.385 

Ammonia (mg L-1) 0.034 0.04 0.06 <0.1 <0.05 0.028 0.077 

Nitrate (mg L-1) 0.013 0.46 0.03 0.095 <0.03 0.073 <0.010 

Nitrite (mg L-1) <0.001 <0.03 <0.10 <0.01 <0.1 <0.009 <0.009 

Antimony (mg L-1) <0.005 <0.002 <0.002 <0.0001 <0.005 n/a n/a 

Aluminum (mg L-1) <0.003 <0.025 0.36 0.18 0.14 0.140 0.116 

Barium (mg L-1) 0.007 0.007 0.009 0.0068 <0.01 0.007 0.006 

Copper (mg L-1) <0.001 <0.003 <0.002 0.001 0.0018 0.004 <0.002 

Iron (mg L-1) 0.16 0.319 0.65 0.166 0.16 0.231 0.082 

Molybdenum (mg L-1) <0.001 <0.01 <0.002 <0.01 <0.001 <0.040 <0.040 

Nickel (mg L-1) <0.001 <0.01 <0.002 <0.01 <0.002 <0.002 <0.002 

Sodium (mg L-1) 0.55 2.48 0.66 0.56 0.502 0.739 0.7 

Zinc (mg L-1) 0.007 0.002 0.0015 <0.01 0.0027 0.006 0.006 

1Reference: (Harkness RA and Morgan JD 1985), Table 3, Average of Sites F2(0.3m) and F2(20m) (closest to main channel deep zone). 
2Reference: (ESP 1993), Table A-1, Average of All Sites 3T (no map to distinguish sample which sample site was deep zone). 
3Reference: (Beak International Incorporated 2000a and c), Table 3.5, Site SP3 (closest to main channel deep zone, 0.5m from bottom). 
4Reference: (Beak International Incorporated 2000a and c), Table 3.3, Spangle Lake (average of all in-lake samples in 1999). 
5Reference: (Orr and Stecko 2006c), Table D.1, Spangle Lake outlet (surface) (average from 2005, n=1 or 5), sample analyses was more comprehensive at 
outlet versus within lake). 
6Reference: (Weech and Orr 2009a),Table D.3,Spangle Lake(surface) (average from 2008, n=1 or 5, not specified if outlet or within lake) 
7Collected during August 2011 and March 2012 of current study at 1, 2, 4, 7, 9 and 15m (averaged). 
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Table 1.6. Lim Lake ANOVA results for variability significance between layers from Jul 2011-Nov 2013. 
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Table 1.7. Lim Lake ANOVA results for variability significance between years from Jul 2011-Nov 2013. 
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Table 1.8. Lim Lake ANOVA results for variability significance between seasons from Jul 2011-Nov 2013. 
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Table 1.9. Frank Lake ANOVA results for variability significance between layers from Jul 2011-Nov 2013. 
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Table 1.10. Frank Lake ANOVA results for variability significance between years from Jul 2011-Nov 2013. 
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Table 1.11. Frank Lake ANOVA results for variability significance between seasons from Jul 2011-Nov 2013. 
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Table 1.12. Average, maximum and minimum parameter concentrations at Lim Lake inlet during 2012 
(n=2) and 2013 (n=7). All units are mg L-1 except pH and Sp-cond (μS cm-1). All data from water samples. 

  2012 2013 

Parameter PWQO Avg ± StDev Max Min Avg ± StDev Max Min 

Alk n/a 9.05 ± 1.48 10.10 8.00 8.24 ± 1.26 9.70 6.30 

pH 6.5-8.5 6.18 ± 0.13 6.27 6.09 6.04 ± 0.08 6.17 5.97 

Sp-Cond n/a 34.20 ± 3.39 36.60 31.80 33.64 ± 5.76 39.30 25.80 

TDS n/a 96.2 ± 29.9 117.4 75 76.1 ± 12.8 94.4 60.4 

Hardness n/a 20.03 ± 1.88 21.36 18.71 18.05 ± 1.77 21.49 18.05 

DOC n/a 16.4 ± 11.9 24.8 8 25.42 ± 6.6 32.6 19.2 

DIC n/a 4.82 ± 6.05 9.1 0.54 2.45 ± 0.09 2.51 2.38 

SO4
 

n/a 2.86 ± 0.23 3.02 2.69 1.41 ± 0.34 1.74 0.93 

Total Sulphur n/a 1.22 ± 0.007 1.22 1.21 0.696 ± 0.08 0.79 0.56 

Ca n/a 6.14 ± 0.61 6.58 5.71 5.40 ± 0.64 6.59 4.64 

Na n/a 1.00 ± 1.06 0.93 1.08 1.07 ± 0.24 1.32 0.74 

K n/a 0.28 ± 0.01 0.29 0.27 0.23 ± 0.17 0.43 0.05 

Mg n/a 1.14 ± 0.85 1.20 1.08 1.11 ± 0.06 1.31 0.89 

Cl n/a 0.43 ± 0.00 0.43 0.43 0.32 ± 0.12 0.49 0.20 

Al 0.075 0.474 ± 0.09 0.541 0.407 0.468 ± 0.09 0.612 0.378 

Fe 0.30 0.349 ± 0.11 0.429 0.268 0.39 ± 0.07 0.49 0.27 

Mn n/a 0.0013±0.0011 0.002 0.0005 0.0023±0.008 0.0036 0.0008 

Si n/a 1.323 ± 0.43 1.628 1.018 1.265 ± 0.007 1.27 1.26 

Zn 0.02 0.0085±0.0007 0.009 0.008 0.0077±0.003 0.014 0.005 

NO3 n/a 0.11 ± 0.03 0.13 0.09 0.14 ± 0.06 0.2 0.06 

NH3 n/a <DL <DL <DL 0.050 ± 0.0 0.053 0.048 
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Table 1.13. Average, maximum and minimum parameter concentrations at Frank Lake inlet during 2011 (n=5), 2012 (n=2) and 2013 (n=7). All units 
are mg L-1 except pH and Sp-cond (μS cm-1). All data from water samples. 

Parameter 

 2011 2012 2013 

PWQO Avg ± StDev Max Min Avg ± StDev Max Min Avg ± StDev Max Min 

Alk  n/a 38.1±3.8 43.3 34 16.6±3.3 18.9 14.3 28.0±11.9 40.2 10.7 

pH 6.5-8.5 7.1±0.08 7.3 7.0 6.7±0.07 6.8 6.7 6.9±0.4 7.3 6.4 

Sp-Cond         n/a 2406±446 2710 1710 168.5±85 229 108.1 935.9±1058 2090 60.1 

TDS n/a 1722±259 1919 1316 132.8±36.2 158.4 107.2 653.2±705 1414 71.1 

Hardness n/a 518±82.4 598.5 409.4 40±14.7 50.4 29.6 212.7±227 474.5 22.4 

SO4 n/a 1222±592 1788 538 50.2±35 75.2 25.3 324.3±395 778 3.0 

Total Sulphur n/a 479±252 759.2 243.8 14±7.8 19.6 8.4 112.58±134 263.2 3.5 

DOC n/a 2.6±0.07 2.7 2.5 11.6±11 19.4 3.8 15.3±5.1 21.9 9.3 

DIC n/a 7.95±2.4 9.5 3.9 5.5±5.0 9.0 1.8 4.6±2.5 8.9 1.0 

Ca n/a 199.7±32.2 231.3 157.5 14.4±5.7 18.4 10.3 82±88.7 184.3 8.02 

Na n/a 204.8±37 234.8 151 13.5±7.5 18.7 8.2 77.5±89.9 187.4 4.5 

K n/a 98.7±19.9 114.4 69.6 6.3±2.9 8.4 4.2 33.2±36.8 75.6 2.7 

Cl n/a 91.6±46.4 138.7 40 3.5±2.9 5.6 1.5 24±29.2 55.8 0.3 

Mg n/a 4.7±0.6 5.3 3.9 1±0.1 1.08 0.9 1.9±1.4 3.5 0.6 

Si n/a 0.904±0.355 1.497 0.579 2.345±1.142 3.154 1.538 0.530±0.753 1.40 0.090 

Mo 0.04 0.202±0.055 0.243 0.106 0.078±0.001 0.078 0.077 0.123±0.055 0.19 0.061 

Al 0.075 0.11±0.1 0.22 0.014 0.24±0.052 0.28 0.207 0.017±0.004 0.022 0.012 

Cu 0.005 0.006±0.002 0.007 0.003 0.015±0.01 0.016 0.014 0.014±0.004 0.018 0.009 

Mn n/a 0.027±0.01 0.037 0..015 0.029±0.031 0.051 0.007 0.051±0.024 0.089 0.021 

Ni 0.025 0.035±0.014 0.050 0.020 0.020±0.007 0.025 0.015 0.033±0.014 0.059 0.017 

Fe 0.30 0.05±0.024 0.077 0.026 0.192±109 0.27 0.12 0.141±0.124 0.284 0.012 

Zn 0.02 0.006±0.006 0.017 0.002 0.0055±0.0007 0.006 0.005 0.0037±0.002 0.007 0.0010 

NO3 n/a 37.15±17.6 54.43 18.0 0.767±0.218 0.921 0.613 12.478±11.35 22.55 0.229 

NH4 n/a 8.85±4.12 12.53 2.898 <DL <DL <DL 1.769±1.953 3.665 0.076 
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Table 1.14. Average parameter concentrations in Lim Lake during fall 2011 (n=6), 2012 (n=) and 2013 (n=5) turnover and percent 
change from fall 2011 to fall 2013 (negative % indicates an decrease). ± represents standard deviation. All units are mg L-1 except pH and 
Sp-cond (μS cm-1). *multi-probe data. ϯdata from June 2013 and percent decrease from fall 2011-June 2013. 

Parameter Fall 2011 Fall 2012 Fall 2013 
% Change 

2011 to 2013 

Alk  39.53 ± 0.27 33.85 ± 0.61 31.78 ± 0.08 -19.60 

pH* 7.034 ± 0.01 7.33 ± 0.10 7.033 ± 0.06 -0.015 

Sp-Cond* 653.83 ± 0.39 507.46 ± 4.33 343.08 ± 3.01 -47.53 

TDS 449.3 ± 5.14 357.3 ± 42.9 238.6 ± 1.3 -46.90 

Hardness 218.58 ± 2.99 182.2 ± 2.88 122.60 ± 1.40 -43.91 

DOC 8.26 ± 0.19 8.13 ± 0.23 9.88 ± 0.36ϯ 19.65ϯ 

DIC 9.26 ± 0.51 9.08 ± 0.41 5.62± 11.54ϯ -39.33ϯ 

SO4 351.33 ± 1.06 286.07 ± 5.77 107.73 ± 1.09 -69.34 

Total Sulphur 87.07 ± 1.32 61.89 ± 8.19 40.66 ± 0.91 -53.30 

Ca 82.61 ± 1.29 64.89 ± 9.13 45.51 ± 0.50 -44.91 

Na 38.14 ± 0.57 28.29 ± 3.84 17.49 ± 0.40 -54.14 

K 13.30 ± 0.20 9.72 ± 1.30 6.64 ± 0.15 -50.03 

Mg 2.99 ± 0.04 2.57 ± 0.32 2.18 ± 0.04 -27.11 

Cl 16.67 ± 0.04 11.82 ± 0.88 8.13 ± 0.56 -51.22 

Al 0.0387 ± 0.01 0.0452 ± 0.01 0.0448 ± 0.00 15.72 

Cu 0.003 ± 0.0 0.0033 ± 0.0 0.0034 ± 0.0 13.33 

Fe 0.102 ± 0.001 0.071 ± 0.02 0.170 ± 0.004 66.86 

Mn 0.14 ± 0.0 0.09 ± 0.01 0.09 ± 0.0 -37.42 

Si 0.168 ± 0.005 0.397 ± 0.253 0.85 ± 0.136ϯ 408.11ϯ 

Zn 0.0036 ± 0.001 0.005 ± 0.001 0.0054 ± 0.002 51.20 

NO3 0.013 ± 0.004 0.14 ± 0.009 0.01 ± 0.0 -92.25 

NH3 0.41 ± 0.03 0.36 ± 0.06 0.23 ± 0.08 ϯ -42.52 ϯ 
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Table 1.15. Average parameter concentrations on Frank Lake mixo- and monimolimnion during fall 2011 (mix: n=3, moni: n=4), 2012 (mix: n=3, moni: 
n=5) and 2013 (mix: n=2, moni: n=7) turnover and percent change from fall 2011 to fall 2013 (negative % indicates a decrease). Mixolimnion depths 
included. ± represents standard deviation. All units are mg L-1 except pH and Sp-cond (µS cm-1). *multi-probe data, variable n. ϯ data from June 2013and 
percent decrease from fall 2011-June 2013.

Parameter 

Fall 2011 Average Fall 2012 Average Fall 2013 Average 

% Change 2011-

2013 

Mix =11m Moni Mix=9m Moni Mix=6m Moni Mix Moni 

Alk  36.8±2.0 44.0±0.5 27.9±0.9 38.7±7.1 29.6±0.1 38.7±9.2 -19.6 -12.0 

pH* 
6.9±0.03, 

n=12 

6.1±0.1, 

n=16 

7.4±0.1, 

n=10 

6.5±0.1, 

n=16 

7.1±0.04, 

n=6 

6.5±0.1, 

n=20 
3.1 6.4 

Sp-Cond* 2071±2 2228±24 1842±22 2146±51 1513±45 2032±138 -26.9 -8.8 

TDS 1534±4.5 1750±12.3 1344±24.3 1606±99 1086±5.8 1424±208 -29.2 -18.6 

Hardness 478.7±24 626.1±21.9 416.9±4.1 505.7±42.7 343.1±2.7 463.6±92.5 -28.3 -26.0 

SO4 1268.5±2.8 1562.9±23.6 1032.8±68.6 1392.8±135.4 554.2±1.9 816.6±165.2 -56.3 -47.8 

Tot Sul 288.1±3.8 362.6±17.5 253.4±3.0 303.3±19.8 196.6±1.1 265.7±45.5 -31.8 -26.7 

DOC 4.1±0.1 5±0.1 4±0.1 4.4±0.4 10.2±4.3 ϯ 5.3±0.6 ϯ 145.0ϯ 5.5 ϯ 

DIC 8.6±0.4 12.7±1.2 8.2±0.2 9.8±1.2 2.8±2.3 ϯ 8.1±3.3 ϯ -67.9 ϯ -35.7 ϯ 

Ca 184.0±9.6 243.5±8.3 160.3±1.6 195.6±17.0 132.3±1.03 179.6±36.6 -28.1 -26.2 

Na 179.1±2.2 176.3±4.7 181.6±2.1 192.2±6.0 117.9±0.4 138.5±8.7 -34.2 -21.4 

K 81.6±1.1 77.3±2.8 74.2±0.9 77.7±3.1 55.2±0.3 66.7±4.7 -32.4 -13.7 

Cl 77.8±0.2 60.0±0.9 58.4±3.4 54.4±4.4 38.7±0.5 42.3±1.8 -50.2 -25.7 

Mg 4.6±0.05 4.4±0.55 4.1±0.05 4.2±0.20 3.1±0.02 3.7±0.30 -33.5 -16.6 

Si 0.4±0.004 0.8±0.05 0.8±0.1 1.2±0.2 1.0±0.04 1.2±0.3 ϯ 177.0 ϯ 50.0ϯ 

Mo 0.23±0.003 0.30±0.01 0.18±0.001 0.24±0.03 0.13±0.001 0.19±0.05 -43.5 -36.7 

Al 0.035±0.004 1.9±3.7 0.054±0.006 0.042±0.003 0.074±0.001 0.053±0.01 110.0 -97.2 

Mn 0.06±0.001 0.5±0.1 0.05±0.001 0.3±0.1 0.06±0.004 0.2±0.2 0.0 -60.0 

Ni 0.03±0.001 0.07±0.004 0.02±0.001 0.05±0.01 0.03±0.0 0.04±0.01 0.0 -45.1 

Fe 0.02±0.003 0.02±0.01 0.03±0.004 0.01±0.005 0.05±0.001 0.03±0.01 150.0 50.0 

Zn 0.0043±0.0012 0.0155±0.011 0.0067±0.0029 0.0098±0.0027 0.0065±0.0021 0.0079±0.0013 51.1 -48.4 

NO3 35.6±0.1 23.1±1.0 27.1±0.4 23.4±4.2 14.4±0.8 14.5±1.8 -59.6 -37.3 

NH4 5.5±0.1 2.9±0.1 0.9±0.01 0.8±0.1 2.13±0.0 1.8±0.1 -61.4 -36.6 
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Appendix C 

Frank Lake CE-QUAL-W2 Model Development - Detailed Methods 

Bathymetry, Topography and Model Grid Development     

 Advanced software (Burlison UnderSee Explorer version 2.7.1.0) and 

hardware (Lowrance GPS/Depth sounder) were used to obtain and electronic .SLG 

data file of updated bathymetry on Lim and Frank Lakes in August and October 

2013 respectively. The software has the ability to output volume-area-elevation 

data, which is critical for model calibration. The hardware simultaneously measured 

latitude, longitude and depth at a set distance interval (1 and 3m were used) and a 

computer was used to view the developing bathymetry in UnderSee Explorer. A plot 

of the tracking routes for Frank Lake can be seen in Figure 2.1. In the UnderSee 

Explorer software, the Global Adjustment feature was used to set the water surface 

elevation to a known reference water level. It was ensured that this bathymetry 

water level was congruent with the HOBO-data logger water level value. In order to 

input the shoreline into UnderSee Explorer, the lake is viewed in Google Earth and a 

polygon was carefully developed around the lake and saved as a .KML file. The .KML 

file wa readily input into UnderSee and surrounded the lake bathymetry dataset. 

UnderSee automatically gave this shoreline the same elevation as the set water 

surface. From UnderSee, the bathymetry and shoreline x, y, z coordinates are 

exported to Microsoft Excel.  

 Golden Software’s SURFER 12 was used to open this Excel file to develop the 

contour map shown in both Figures 2.1 and 2.2. The coordinate system was set to 

the Lambert Conformal Conic projection so that the x, y, z data points were all in 

meters rather than latitude and longitude. In order to incorporate topography data 

around the bathymetry and shoreline data, a digital elevation model (DEM) dataset 

was obtained from http://geogratis.gc.ca/site/eng/extraction. The DEM and 

bathymetry datasets were overlapped in SURFER and the DEM data points present 

within the lake area were deleted from the dataset.  

In order to develop the model grid, a thalweg (deepest flow channel) was 

drawn for the main channel (branch 1) and bays (branches 2 and 3) for Frank Lake 

and model segments were built using the thalwegs as a guide. 

http://geogratis.gc.ca/site/eng/extraction
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Using SURFER, each segment was individually “blanked” away from the rest 

of the map and the volume of each 1m layer elevation within the blanked segment 

was calculated. Using the calculated volumes, 1m layer heights and the segment 

lengths, the average width of each grid cell was calculated using a rearrangement of 

the equation: 

Volume = Length x Width x Height 

Such that width was the unknown variable: 

Width = Volume/(Length x Height) 

A code/script written for SURFER’s SCRIPTER software was used to aid in 

this repetitive and iterative calculation process. The reason that an average cell 

width is calculated is due to the fact that the bottom of lake ecosystems is not square 

but is actually sloping and irregular and so the volume-calculated width is the best 

representation of the width of any particular cell. Figure 2.22 illustrates how the 

width of a cell varies across its height (from top to bottom) and why this premise is 

employed. 

 
Figure 2.22. Schematic representation of how cell width varies from cell top to 

bottom, which dictates the need for an average cell width. 

Using the average widths and segment directional orientations (radians), the 

bathymetry input file for the model was developed. 

Cell 
Height

Variable 
widths 
across cell 
depth
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Inflow and Outflow Data        

Flow data at the inlet and outlet was obtained using a Swoffer Model 2100 

Series Current Meter. The meter measured the amount of rotations of a propeller in 

a given amount of time and converted those values to ft sec-1 values. The methods 

outlined by the United States Geological Survey (Buchanan and Somers 1976) to 

measure flow formed the basis of the methods used in the field for this project. 

Simply, a start bank is chosen on a cross section of stream with few obstructions 

(rocks, logs etc.) and flow measurements are taken at 12’’ – 24’’ intervals along the 

cross section from the start bank to the end bank. Areas of the stream where the 

depth exceeded 6 inches, flow was taken at the top, middle and bottom of the flow 

sample location. At each individual flow location, 10-15 flow measurements were 

taken so a confident average could be calculated. Depth and distance from the start 

bank were recorded at each location on the cross section. Based on the ft sec-1 data 

and the measured stream dimensions, ft3 sec-1 flow volumes were calculated and 

converted to m3 sec-1 for the model. The flow meter was calibrated using 

manufacturer procedure in the lab prior to each field session. Interpolation between 

the sample sessions of inflows and outflows was used to build temporally-

comprehensive model input files. 

Inflow and Outflow Temperature and TDS 
In order to obtain continuous data for temperature and sp-cond at the 

in/outlets of Frank Lake, data loggers were deployed. Data loggers utilized for the 

study included; ONSET HOBO U24’s (sp-cond, temperature) and an RBR Global XR-

420CTD (sp-cond, temperature, depth). The data loggers were placed in white PVC 

piping (to prevent solar heating) with holes drilled for adequate water flow and 

submersed using cinder blocks in the main streams flowing in and out of Frank 

Lake. All loggers were set to capture data every 30 minutes. Based on the memory 

and calibration requirements of the logger manufacturers, data was downloaded at 

various time intervals and the loggers were cleaned of biofouling and re-calibrated. 

The more precise locations of the data loggers can be viewed in Figure 1.3 in 

Appendix A. 

HOBOware version 3.7.5 and Ruskin version 1.12.1 software programs were 
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utilized to manage the data from their respective loggers. Prior to export, data from 

these loggers required compensation/manipulation using the Data Compensation 

Assistants built into the software. Using the Conductivity Assistant, temperature and 

conductivity were used to calculate sp-cond for each logged datum. A correlation 

between the lab-analyzed sp-cond and TDS from water samples (Figure 2.23) was 

used to calculate TDS using the HOBO-measured sp-cond so that a comprehensive 

TDS data set could be used for model input.  

 

Figure 2.23 Correlation between laboratory-analyzed specific conductance and TDS 

for development of TDS constituent input file for model. 

Water Elevation 

An ONSET HOBO U20 (pressure, temperature) logger was placed within 

Frank Lake using a cinder block and sling apparatus at a depth where they would be 

safe from ice to measure changes in lake surface elevation throughout 2013. Using 

the Barometric Compensation Assistant in HOBOware, the pressure measurements 

(kPa) from the loggers were compensated for barometric pressure and referenced 

to a known elevation point on the lake. This allowed for conversion of pressure data 

into water elevation (m) change. Barometric pressure data obtained from Hemlo’s 

meteorological station were used to compensate for any changes in pressure 

measured by the HOBO water level logger that were attributed to air pressure 

change rather than actual water level change. Although the water level data was not 
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directly used in the modeling input data, it was utilized to identify discrepancies in 

water levels predicted by the model and can be used as an input into the W2 Water 

Balance Utility. This utility creates an inflow file to act as a tributary inflow to 

compensate for a deficiency in water in the model water balance. As well, a staff 

gauge was installed on a rock out crop on both lakes to allow for a “real-world 

double check” of the instrument-logged water level data. 

Meteorological Data 

A meteorological station measuring data every hour was present within 

4.0km of Frank Lake. Data measured by the station included date, time, 

temperature, dew point temperature, wind speed, wind direction and short-wave 

solar radiation, all of which were required inputs for the model. Using a variety of 

calculations, short-wave solar radiation was used to calculate cloud cover, which is 

on a 1-10 scale in the model, and was also input to the model. Wind sheltering 

coefficients were set to 0.50 for the segments comprising branch 1 and the segments 

of branches 2 and 3 that were in proximity to the connection of these branches with 

branch 1. Otherwise, the segments of branches 2 and 3 were presumed to be more 

sheltered from the wind and had WSC’s of 0.40. All of the segments were given a 

shade level of 1.0 in the shade file meaning that 100% long-range radiation 

exposure on the water’s surface. 

Hydraulic and Kinetic Coefficients 

 Initially, default coefficients were used however adjustments of multiple 

coefficients were required to obtain an appropriate model calibration.   
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Table 2.2. Parameters adjusted in sensitivity analysis.  

Parameter Adjusted Value Original Value 

Wind-Sheltering Coefficient  0.5 and 0.4 0.8 and 0.7 

Height of wind measurement from 

lake 

18.4 5 

TSED (sediment temperature) 6.0 8.0 

BETA (fraction incident solar rad 

absorbed at surface) 

1.0 0.45 

EXH2O (light extinction coefficient) 1.0 0.45 

 

Other Model Details 

 In order to connect the west-bay near the inlet (branch 2) and the east-bay 

near the outlet (branch 3) to the main channel of Frank Lake (branch 1), an internal 

head boundary condition was used. Segment 13 in Branch 1 was used as the 

connection of branch 3 to branch 1 since it was the deepest segment present in the 

branch (Figures 2.2 and 2.3). 

The outflow from Frank Lake occurs through a beaver dam. A variety of 

outflow structures are able to be modeled in CE-QUAL-W2 however a spillway was 

utilized for Frank Lake since it was the most accurate representation of this beaver 

dam. Even though this is not a human-engineered structure, an upstream head (Δh) 

(water elevation above the spillway crest) vs. flow relationship and equation 

through the dam was performed since it is required for accurate modeling of 

outflow (Figure 2.24). The equation for the linear relationship of flow and Δh was 

used to calculate model coefficients for the structure to suit the spillway equation 

required by CE-QUAL-W2: 

Q = α1Δhβ1 

Q = flow rate (m3 sec-1)                                                Δh = Zu - Zsp (masl) 

Zu = upstream head (lake elevation) (masl)           Zsp  = spillway crest elevation (masl) 

α1 = empirical coefficient                                             β1 = empirical coefficient 
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Figure 2.24. Upstream head versus flow relationship for the beaver dam which was 

represented as a spillway at the outlet of Frank Lake. 

Graph File 

The graph file is used to manipulate the hydraulic parameters and water 

quality constituents that wish to be modeled. It is essentially a file that allows the 

user to specify the format they that they wish outputs to occur in, including output 

units (mg L-1 versus ppt etc.).   

Control File 

The control file is essentially master file for a particular model as is 

essentially the dashboard where the “knobs and dials” of the model are adjusted. All 

aspects of model set-up including hydraulic and kinetic parameters/coefficients, 

time step controls, model structure properties, input file names and model output 

preferences. The control file used for Frank Lake can be found below. 

 

Listed below are all of the input files used in the modeling of Frank Lake:  

qin_br1.npt, qin_br2.npt, qin_br3.npt – branch inflow rate files 

tin_br1.npt, tin_br2.npt, tin_br3.npt – branch inflow temperature files  

cin_br1.npt, cin_br2.npt, cin_br3.npt – branch inflow constituent files  

qpr_br1.npt, qpr_br2.npt, qpr_br3.npt - branch precipitation rate files  

y = 0.735x - 0.0068 
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tpr_br1.npt, tpr_br2.npt, tpr_br3.npt - branch precipitation temperature files 

cpr_br1.npt, cpr_br2.npt, cpr_br3.npt - branch precipitation constituent files  

w2_con – control file 

bath.csv – waterbody bathymetry file 

met.npt – waterbody meteorological file 

wsc.npt – wind-sheltering coefficient file 

shade.npt – shade coefficient file 

lpr.npt – longitudinal profile file  

graph.npt – graph file 

el_obs2013.npt – observed water elevations file 

calibtempseg6.npt, calibtempseg13.npt, calibtempseg33.npt, calibtempseg48.npt – 

temperature calibration files 

calibtdsseg6.npt, calibtdsseg13.npt, calibdsseg33.npt, calibdsseg48.npt –                              

TDS calibration files 
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Frank Lake Control File 

W2 Model Version 3.7 

TITLE C ...............................TITLE.................................... 
Frank Lake Model 2013, Steven Uchtenhagen Lakehead University 
3 branches, 52 Segments, 33 Layers, Flow and Temperature Calibration 
Branch 1: main lake channel, Branch 2: in bay, Branch 3: out bay 
Simulation Period is 2013 from April 11/13(1130am) to Nov 11/13(12pm) 
1 spillway at outlet(DISTR), internal head at BR1 and BR3 connection 
FRESH,no tribs,EXO,=1.0,THETA=0.55,Dx=0.0162,AZC=W2, 
SPILLDOWN=DISTR 
 
 
GRID         NWB     NBR     IMX     KMX   NPROC  CLOSEC 
1       3      52      33       1     OFF 
 
IN/OUTFL     NTR     NST     NIW     NWD     NGT     NSP     NPI     NPU 
0       0       0       0       0       1       0       0 
 
CONSTITU     NGC     NSS     NAL     NEP    NBOD     NMC     NZP 
2       0       0       0       0       0       0 
 
MISCELL     NDAY SELECTC HABTATC ENVIRPC AERATEC INITUWL 
100     OFF     OFF     OFF     OFF     OFF 
 
TIME CON  TMSTRT   TMEND    YEAR 
101.48  316.50    2013 
 
DLT CON      NDT  DLTMIN DLTINTR 
1     1.0      ON 
 
DLT DATE    DLTD    DLTD    DLTD    DLTD    DLTD    DLTD    DLTD    DLTD    DLTD 
101.48  102.00 
 
DLT MAX   DLTMAX  DLTMAX  DLTMAX  DLTMAX  DLTMAX  DLTMAX  DLTMAX  
DLTMAX  DLTMAX 
4.00   100.0 
 
DLT FRN     DLTF    DLTF    DLTF    DLTF    DLTF    DLTF    DLTF    DLTF    DLTF 
0.70000 0.70000 
 
DLT LIMI    VISC    CELC 
WB 1          ON      ON 
 
BRANCH G      US      DS     UHS     DHS     UQB     DQB   NLMIN   SLOPE  SLOPEC 
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BR1            2      27       0       0       0       0       1 0.00000 0.00000 
BR2           30      40       0       4       0       0       1 0.00000 0.00000 
BR3           43      51       0      13       0       0       1 0.00000 0.00000 
 
LOCATION     LAT    LONG    EBOT      BS      BE    JBDN 
WB 1      48.652  85.840 316.859       1       3       1 
 
INIT CND     T2I    ICEI  WTYPEC   GRIDC 
WB 1        -1.0    0.40   FRESH    RECT 
 
CALCULAT     VBC     EBC     MBC     PQC     EVC     PRC 
WB 1          ON      ON      ON      ON      ON      ON 
 
DEAD SEA   WINDC    QINC   QOUTC   HEATC 
WB 1          ON      ON      ON      ON 
 
INTERPOL   QINIC   DTRIC    HDIC 
BR1           ON     OFF      ON 
BR2           ON     OFF      ON 
BR3           ON     OFF      ON 
 
HEAT EXCH  SLHTC    SROC   RHEVC   METIC  FETCHC     AFW     BFW     CFW   
WINDH 
WB 1        TERM      ON     OFF      ON     OFF     9.2    0.46     2.0    18.4 
 
ICE COVER   ICEC  SLICEC  ALBEDO     HWI   BETAI  GAMMAI  ICEMIN   ICET2 
WB 1          ON  DETAIL    0.25    10.0     0.6    0.07    0.05     3.0 
 
TRANSPOR   SLTRC   THETA 
WB 1    QUICKEST 0.55000 
 
HYD COEF      AX      DX    CBHE    TSED      FI   TSEDF   FRICC      Z0 
WB 1      0.0162  0.0162     0.3  6.0000    0.01 1.00000   CHEZY   0.001 
 
EDDY VISC    AZC   AZSLC   AZMAX     FBC       E   ARODI STRCKLR BOUNDFR  TKECAL 
WB 1          W2     IMP 1.00000       3   9.535   0.431    24.0    10.0     IMP 
 
N STRUC     NSTR DYNELEV 
BR 1           0     OFF 
BR 2           0     OFF 
BR 3           0     OFF 
 
STR INT    STRIC   STRIC   STRIC   STRIC   STRIC   STRIC   STRIC   STRIC   STRIC 
BR 1 
BR 2 
BR 3 
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STR TOP    KTSTR   KTSTR   KTSTR   KTSTR   KTSTR   KTSTR   KTSTR   KTSTR   
KTSTR 
BR 1 
BR 2 
BR 3 
 
STR BOT    KBSTR   KBSTR   KBSTR   KBSTR   KBSTR   KBSTR   KBSTR   KBSTR   
KBSTR 
BR 1 
BR 2 
BR 3 
 
STR SINK   SINKC   SINKC   SINKC   SINKC   SINKC   SINKC   SINKC   SINKC   SINKC 
BR 1 
BR 2 
BR 3 
 
STR ELEV    ESTR    ESTR    ESTR    ESTR    ESTR    ESTR    ESTR    ESTR    ESTR 
BR 1 
BR 2 
BR 3 
 
STR WIDT    WSTR    WSTR    WSTR    WSTR    WSTR    WSTR    WSTR    WSTR    
WSTR 
BR 1 
BR 2 
BR 3 
 
PIPES       IUPI    IDPI    EUPI    EDPI     WPI   DLXPI     FPI  FMINPI   WTHLC DYNPIPE 
 
 
PIPE UP    PUPIC   ETUPI   EBUPI   KTUPI   KBUPI 
 
 
PIPE DOWN  PDPIC   ETDPI   EBDPI   KTDPI   KBDPI 
 
 
SPILLWAYS   IUSP    IDSP     ESP    A1SP    B1SP    A2SP    B2SP  LATSPC 
SP 1          27       0 344.650   0.735 1.02569   0.735 1.02569    DOWN 
 
SPILL UP   PUSPC   ETUSP   EBUSP   KTUSP   KBUSP 
SP 1       DISTR                       2       5 
 
SPILL DOWN PDSPC   ETUSP   EBUSP   KTDSP   KBDSP 
SP 1       DISTR                       2       2 
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SPILL GAS GASSPC    EQSP     ASP     BSP     CSP 
SP 1         OFF 
 
GATES       IUGT    IDGT     EGT    A1GT    B1GT    G1GT    A2GT    B2GT    G2GT  
LATGTC 
 
 
GATE WEIR    GA1     GB1     GA2     GB2   DYNGC    GTIC 
 
 
GATE UP    PUGTC   ETUGT   EBUGT   KTUGT   KBUGT 
 
 
GATE DOWN  PDGTC   ETDGT   EBDGT   KTDGT   KBDGT 
 
 
GATE GAS  GASGTC    EQGT  AGASGT  BGASGT  CGASGT 
 
 
PUMPS 1     IUPU    IDPU     EPU  STRTPU   ENDPU   EONPU  EOFFPU     QPU   WTHLC 
DYNPUMP 
 
 
PUMPS 2     PPUC    ETPU    EBPU    KTPU    KBPU 
 
 
WEIR SEG     IWR     IWR     IWR     IWR     IWR     IWR     IWR     IWR     IWR 
 
 
WEIR TOP    KTWR    KTWR    KTWR    KTWR    KTWR    KTWR    KTWR    KTWR    
KTWR 
 
 
WEIR BOT    KBWR    KBWR    KBWR    KBWR    KBWR    KBWR    KBWR    KBWR    
KBWR 
 
 
WD INT      WDIC    WDIC    WDIC    WDIC    WDIC    WDIC    WDIC    WDIC    WDIC 
 
 
WD SEG       IWD     IWD     IWD     IWD     IWD     IWD     IWD     IWD     IWD 
 
 
WD ELEV      EWD     EWD     EWD     EWD     EWD     EWD     EWD     EWD     EWD 
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WD TOP      KTWD    KTWD    KTWD    KTWD    KTWD    KTWD    KTWD    KTWD    
KTWD 
 
 
WD BOT      KBWD    KBWD    KBWD    KBWD    KBWD    KBWD    KBWD    KBWD    
KBWD 
 
 
TRIB PLA    PTRC    PTRC    PTRC    PTRC    PTRC    PTRC    PTRC    PTRC    PTRC 
 
 
TRIB INT    TRIC    TRIC    TRIC    TRIC    TRIC    TRIC    TRIC    TRIC    TRIC 
 
 
TRIB SEG     ITR     ITR     ITR     ITR     ITR     ITR     ITR     ITR     ITR 
 
 
TRIB TOP   ELTRT   ELTRT   ELTRT   ELTRT   ELTRT   ELTRT   ELTRT   ELTRT   
ELTRT 
 
 
TRIB BOT   ELTRB   ELTRB   ELTRB   ELTRB   ELTRB   ELTRB   ELTRB   ELTRB   
ELTRB 
 
 
DST TRIB    DTRC    DTRC    DTRC    DTRC    DTRC    DTRC    DTRC    DTRC    DTRC 
BR 1         OFF 
BR 2         OFF 
BR 3         OFF 
 
HYD PRIN  HPRWBC  HPRWBC  HPRWBC  HPRWBC  HPRWBC  HPRWBC  HPRWBC  
HPRWBC  HPRWBC 
NVIOL         ON 
U             ON 
W             ON 
T             ON 
RHO           ON 
AZ            ON 
SHEAR         ON 
ST            ON 
SB            ON 
ADMX          ON 
DM            ON 
HDG           ON 
ADMZ          ON 
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HPG           ON 
GRAV          ON 
 
SNP PRINT   SNPC    NSNP   NISNP 
WB 1          ON       6      17 
 
SNP DATE    SNPD    SNPD    SNPD    SNPD    SNPD    SNPD    SNPD    SNPD    SNPD 
WB 1      101.48  103.50  141.50  162.50  231.50  316.40 
 
SNP FREQ    SNPF    SNPF    SNPF    SNPF    SNPF    SNPF    SNPF    SNPF    SNPF 
WB 1       0.050     1.0   500.0   500.0   500.0   500.0 
 
SNP SEG     ISNP    ISNP    ISNP    ISNP    ISNP    ISNP    ISNP    ISNP    ISNP 
WB 1           2       6      13      14      15      16      25      26      27 
30      33      39      40      43      48      50      51 
 
SCR PRINT   SCRC    NSCR 
WB 1          ON       2 
 
SCR DATE    SCRD    SCRD    SCRD    SCRD    SCRD    SCRD    SCRD    SCRD    SCRD 
WB 1      101.48   102.0 
 
SCR FREQ    SCRF    SCRF    SCRF    SCRF    SCRF    SCRF    SCRF    SCRF    SCRF 
WB 1        0.05    0.25 
 
PRF PLOT    PRFC    NPRF   NIPRF 
WB 1          ON       5      17 
 
PRF DATE    PRFD    PRFD    PRFD    PRFD    PRFD    PRFD    PRFD    PRFD    PRFD 
WB 1      101.48  141.50  162.50  231.50  316.40 
 
PRF FREQ    PRFF    PRFF    PRFF    PRFF    PRFF    PRFF    PRFF    PRFF    PRFF 
WB 1       500.0   500.0   500.0   500.0   500.0 
 
PRF SEG     IPRF    IPRF    IPRF    IPRF    IPRF    IPRF    IPRF    IPRF    IPRF 
WB 1           2       6      13      14      15      16      25      26      27 
30      33      39      40      43      48      50      51 
 
SPR PLOT    SPRC    NSPR   NISPR 
WB 1          ON       5      17 
 
SPR DATE    SPRD    SPRD    SPRD    SPRD    SPRD    SPRD    SPRD    SPRD    SPRD 
WB 1      101.48  141.50  162.50  231.50  316.40 
 
SPR FREQ    SPRF    SPRF    SPRF    SPRF    SPRF    SPRF    SPRF    SPRF    SPRF 
WB 1       500.0   500.0   500.0   500.0   500.0 
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SPR SEG     ISPR    ISPR    ISPR    ISPR    ISPR    ISPR    ISPR    ISPR    ISPR 
WB 1           2       6      13      14      15      16      25      26      27 
30      33      39      40      43      48      50      51 
 
VPL PLOT    VPLC    NVPL 
WB 1          ON       1 
 
VPL DATE    VPLD    VPLD    VPLD    VPLD    VPLD    VPLD    VPLD    VPLD    VPLD 
WB 1      101.48 
 
VPL FREQ    VPLF    VPLF    VPLF    VPLF    VPLF    VPLF    VPLF    VPLF    VPLF 
WB 1         1.0 
 
CPL PLOT    CPLC    NCPL TECPLOT 
WB 1          ON       1     OFF 
 
CPL DATE    CPLD    CPLD    CPLD    CPLD    CPLD    CPLD    CPLD    CPLD    CPLD 
WB 1      101.48 
 
CPL FREQ    CPLF    CPLF    CPLF    CPLF    CPLF    CPLF    CPLF    CPLF    CPLF 
WB 1        1.00 
 
FLUXES      FLXC    NFLX 
WB 1         OFF       0 
 
FLX DATE    FLXD    FLXD    FLXD    FLXD    FLXD    FLXD    FLXD    FLXD    FLXD 
WB 1 
 
FLX FREQ    FLXF    FLXF    FLXF    FLXF    FLXF    FLXF    FLXF    FLXF    FLXF 
WB 1 
 
TSR PLOT    TSRC    NTSR   NITSR 
ON       1       7 
 
TSR DATE    TSRD    TSRD    TSRD    TSRD    TSRD    TSRD    TSRD    TSRD    TSRD 
101.48 
 
TSR FREQ    TSRF    TSRF    TSRF    TSRF    TSRF    TSRF    TSRF    TSRF    TSRF 
0.04 
 
TSR SEG     ITSR    ITSR    ITSR    ITSR    ITSR    ITSR    ITSR    ITSR    ITSR 
2       6      13      27      33      48      51 
 
TSR LAYE    ETSR    ETSR    ETSR    ETSR    ETSR    ETSR    ETSR    ETSR    ETSR 
0.0     0.0 
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WITH OUT    WDOC    NWDO   NIWDO 
OFF       1       1 
 
WITH DAT    WDOD    WDOD    WDOD    WDOD    WDOD    WDOD    WDOD    WDOD    
WDOD 
101.48 
 
WITH FRE    WDOF    WDOF    WDOF    WDOF    WDOF    WDOF    WDOF    WDOF    
WDOF 
7 
 
WITH SEG    IWDO    IWDO    IWDO    IWDO    IWDO    IWDO    IWDO    IWDO    IWDO 
27 
 
RESTART     RSOC    NRSO    RSIC 
OFF 
 
RSO DATE    RSOD    RSOD    RSOD    RSOD    RSOD    RSOD    RSOD    RSOD    RSOD 
 
 
RSO FREQ    RSOF    RSOF    RSOF    RSOF    RSOF    RSOF    RSOF    RSOF    RSOF 
 
 
CST COMP     CCC    LIMC     CUF 
ON     OFF       1 
 
CST ACTIVE   CAC 
TDS           ON 
GENERIC# 1    ON 
GENERIC# 2    ON 
PO4          OFF 
NNH4-N       OFF 
NO3-N        OFF 
DSI-SI       OFF 
PSI-SI       OFF 
FE           OFF 
LDOM         OFF 
RDOM         OFF 
LPOM         OFF 
RPOM         OFF 
DO           OFF 
TIC-C        OFF 
ALK AS CaCO3 OFF 
LDOM-P       OFF 
RDOM-P       OFF 
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LPOM-P       OFF 
RPOM-P       OFF 
LDOM-N       OFF 
RDOM-N       OFF 
LPOM-N       OFF 
RPOM-N       OFF 
 
CST DERI   CDWBC   CDWBC   CDWBC   CDWBC   CDWBC   CDWBC   CDWBC   CDWBC   
CDWBC 
DOC          OFF 
POC          OFF 
TOC          OFF 
DON          OFF 
PON          OFF 
TON          OFF 
TKN          OFF 
TN           OFF 
DOP          OFF 
POP          OFF 
TOP          OFF 
TP           OFF 
APR          OFF 
CHLA         OFF 
ATOT         OFF 
%DO          OFF 
TSS          OFF 
TISS         OFF 
CBOD         OFF 
pH           OFF 
CO2          OFF 
HCO3         OFF 
CO3          OFF 
 
CST FLUX   CFWBC   CFWBC   CFWBC   CFWBC   CFWBC   CFWBC   CFWBC   CFWBC   
CFWBC 
TISSIN       OFF 
TISSOUT      OFF 
PO4AR        OFF 
PO4AG        OFF 
PO4AP        OFF 
PO4ER        OFF 
PO4EG        OFF 
PO4EP        OFF 
PO4POM       OFF 
PO4DOM       OFF 
PO4OM        OFF 
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PO4SED       OFF 
PO4SOD       OFF 
PO4SET       OFF 
NH4NITR      OFF 
NH4AR        OFF 
NH4AG        OFF 
NH4AP        OFF 
NH4ER        OFF 
NH4EG        OFF 
NH4EP        OFF 
NH4POM       OFF 
NH4DOM       OFF 
NH4OM        OFF 
NH4SED       OFF 
NH4SOD       OFF 
NO3DEN       OFF 
NO3AG        OFF 
NO3EG        OFF 
NO3SED       OFF 
DSIAG        OFF 
DSIEG        OFF 
DSIPIS       OFF 
DSISED       OFF 
DSISOD       OFF 
DSISET       OFF 
PSIAM        OFF 
PSINET       OFF 
PSIDK        OFF 
FESET        OFF 
FESED        OFF 
LDOMDK       OFF 
LRDOM        OFF 
RDOMDK       OFF 
LDOMAP       OFF 
LDOMEP       OFF 
LPOMDK       OFF 
LRPOM        OFF 
RPOMDK       OFF 
LPOMAP       OFF 
LPOMEP       OFF 
LPOMSET      OFF 
RPOMSET      OFF 
CBODDK       OFF 
DOAP         OFF 
DOAR         OFF 
DOEP         OFF 
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DOER         OFF 
DOPOM        OFF 
DODOM        OFF 
DOOM         OFF 
DONITR       OFF 
DOCBOD       OFF 
DOREAR       OFF 
DOSED        OFF 
DOSOD        OFF 
TICAG        OFF 
TICEG        OFF 
SEDDK        OFF 
SEDAS        OFF 
SEDLPOM      OFF 
SEDSET       OFF 
SODDK        OFF 
 
CST ICON   C2IWB   C2IWB   C2IWB   C2IWB   C2IWB   C2IWB   C2IWB   C2IWB   
C2IWB 
TDS         -1.0 
GENERIC# 1   0.0 
GENERIC# 2 100.0 
PO4         -1.0 
NNH4-N      -1.0 
NO3-N       -1.0 
DSI-SI      -1.0 
PSI-SI      -1.0 
FE          -1.0 
LDOM        -1.0 
RDOM        -1.0 
LPOM        -1.0 
RPOM        -1.0 
DO          -1.0 
TIC-C       -1.0 
ALK         -1.0 
LDOM-P      -1.0 
RDOM-P      -1.0 
LPOM-P      -1.0 
RPOM-P      -1.0 
LDOM-N      -1.0 
RDOM-N      -1.0 
LPOM-N      -1.0 
RPOM-N      -1.0 
 
CST PRIN  CPRWBC  CPRWBC  CPRWBC  CPRWBC  CPRWBC  CPRWBC  CPRWBC  
CPRWBC  CPRWBC 
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TDS           ON 
GENERIC# 1    ON 
GENERIC# 2    ON 
PO4          OFF 
NNH4-N       OFF 
NO3-N        OFF 
DSI-SI       OFF 
PSI-SI       OFF 
FE           OFF 
LDOM         OFF 
RDOM         OFF 
LPOM         OFF 
RPOM         OFF 
DO           OFF 
TIC-C        OFF 
ALK AS CaCO3 OFF 
LDOM-P       OFF 
RDOM-P       OFF 
LPOM-P       OFF 
RPOM-P       OFF 
LDOM-N       OFF 
RDOM-N       OFF 
LPOM-N       OFF 
RPOM-N       OFF 
 
CIN CON   CINBRC  CINBRC  CINBRC  CINBRC  CINBRC  CINBRC  CINBRC  CINBRC  
CINBRC 
TDS           ON      ON      ON 
GENERIC# 1    ON      ON      ON 
GENERIC# 2    ON      ON      ON 
PO4          OFF     OFF     OFF 
NNH4-N       OFF     OFF     OFF 
NO3-N        OFF     OFF     OFF 
DSI-SI       OFF     OFF     OFF 
PSI-SI       OFF     OFF     OFF 
FE           OFF     OFF     OFF 
LDOM         OFF     OFF     OFF 
RDOM         OFF     OFF     OFF 
LPOM         OFF     OFF     OFF 
RPOM         OFF     OFF     OFF 
DO           OFF     OFF     OFF 
TIC-C        OFF     OFF     OFF 
ALK AS CaCO3 OFF     OFF     OFF 
LDOM-P       OFF     OFF     OFF 
RDOM-P       OFF     OFF     OFF 
LPOM-P       OFF     OFF     OFF 
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RPOM-P       OFF     OFF     OFF 
LDOM-N       OFF     OFF     OFF 
RDOM-N       OFF     OFF     OFF 
LPOM-N       OFF     OFF     OFF 
RPOM-N       OFF     OFF     OFF 
 
CTR CON   CTRTRC  CTRTRC  CTRTRC  CTRTRC  CTRTRC  CTRTRC  CTRTRC  
CTRTRC  CTRTRC 
TDS          OFF     OFF     OFF 
GENERIC# 1   OFF     OFF     OFF 
GENERIC# 2   OFF     OFF     OFF 
PO4          OFF     OFF     OFF 
NNH4-N       OFF     OFF     OFF 
NO3-N        OFF     OFF     OFF 
DSI-SI       OFF     OFF     OFF 
PSI-SI       OFF     OFF     OFF 
FE           OFF     OFF     OFF 
LDOM         OFF     OFF     OFF 
RDOM         OFF     OFF     OFF 
LPOM         OFF     OFF     OFF 
RPOM         OFF     OFF     OFF 
DO           OFF     OFF     OFF 
TIC-C        OFF     OFF     OFF 
ALK AS CaCO3 OFF     OFF     OFF 
LDOM-P       OFF     OFF     OFF 
RDOM-P       OFF     OFF     OFF 
LPOM-P       OFF     OFF     OFF 
RPOM-P       OFF     OFF     OFF 
LDOM-N       OFF     OFF     OFF 
RDOM-N       OFF     OFF     OFF 
LPOM-N       OFF     OFF     OFF 
RPOM-N       OFF     OFF     OFF 
 
CDT CON   CDTBRC  CDTBRC  CDTBRC  CDTBRC  CDTBRC  CDTBRC  CDTBRC  
CDTBRC  CDTBRC 
TDS          OFF     OFF     OFF 
GENERIC# 1   OFF     OFF     OFF 
GENERIC# 2   OFF     OFF     OFF 
PO4          OFF     OFF     OFF 
NNH4-N       OFF     OFF     OFF 
NO3-N        OFF     OFF     OFF 
DSI-SI       OFF     OFF     OFF 
PSI-SI       OFF     OFF     OFF 
FE           OFF     OFF     OFF 
LDOM         OFF     OFF     OFF 
RDOM         OFF     OFF     OFF 
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LPOM         OFF     OFF     OFF 
RPOM         OFF     OFF     OFF 
DO           OFF     OFF     OFF 
TIC-C        OFF     OFF     OFF 
ALK AS CaCO3 OFF     OFF     OFF 
LDOM-P       OFF     OFF     OFF 
RDOM-P       OFF     OFF     OFF 
LPOM-P       OFF     OFF     OFF 
RPOM-P       OFF     OFF     OFF 
LDOM-N       OFF     OFF     OFF 
RDOM-N       OFF     OFF     OFF 
LPOM-N       OFF     OFF     OFF 
RPOM-N       OFF     OFF     OFF 
 
CPR CON   CPRBRC  CPRBRC  CPRBRC  CPRBRC  CPRBRC  CPRBRC  CPRBRC  CPRBRC  
CPRBRC 
TDS           ON      ON      ON 
GENERIC# 1    ON      ON      ON 
GENERIC# 2    ON      ON      ON 
PO4          OFF     OFF     OFF 
NNH4-N       OFF     OFF     OFF 
NO3-N        OFF     OFF     OFF 
DSI-SI       OFF     OFF     OFF 
PSI-SI       OFF     OFF     OFF 
FE           OFF     OFF     OFF 
LDOM         OFF     OFF     OFF 
RDOM         OFF     OFF     OFF 
LPOM         OFF     OFF     OFF 
RPOM         OFF     OFF     OFF 
DO           OFF     OFF     OFF 
TIC-C        OFF     OFF     OFF 
ALK AS CaCO3 OFF     OFF     OFF 
LDOM-P       OFF     OFF     OFF 
RDOM-P       OFF     OFF     OFF 
LPOM-P       OFF     OFF     OFF 
RPOM-P       OFF     OFF     OFF 
LDOM-N       OFF     OFF     OFF 
RDOM-N       OFF     OFF     OFF 
LPOM-N       OFF     OFF     OFF 
RPOM-N       OFF     OFF     OFF 
 
EX COEF    EXH2O    EXSS    EXOM    BETA     EXC    EXIC 
WB 1        1.00     0.1     0.1    1.00     OFF     OFF 
 
ALG EX       EXA     EXA     EXA     EXA     EXA     EXA     EXA     EXA     EXA 
Wb 1        0.20 
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ZOO EX       EXZ     EXZ     EXZ     EXZ     EXZ     EXZ 
0.20 
 
MACRO EX     EXM     EXM     EXM     EXM     EXM     EXM 
0.0100 
 
GENERIC    CGQ10   CG0DK   CG1DK     CGS 
CG 1     0.00000 0.00000 0.00000 0.00000 
CG 2     0.00000 -1.0000 0.00000 0.00000 
 
S SOLIDS     SSS   SEDRC   TAUCR 
SS# 1    1.00000     OFF    1.00 
 
ALGAL RATE    AG      AR      AE      AM      AS    AHSP    AHSN   AHSSI    ASAT 
ALG1     2.00000 0.04000 0.04000  0.1000  0.1000 0.00300 0.01400 0.00000 
100.000 
 
ALGAL TEMP   AT1     AT2     AT3     AT4     AK1     AK2     AK3     AK4 
ALG1     5.00000 25.0000 35.0000 40.0000 0.10000 0.99000 0.99000 0.10000 
 
ALG STOI    ALGP    ALGN    ALGC   ALGSI   ACHLA   ALPOM   ANEQN    ANPR 
ALG1     0.00500 0.08000 0.45000    0.18    0.05 0.80000       2 0.00100 
 
EPIPHYTE    EPIC    EPIC    EPIC    EPIC    EPIC    EPIC    EPIC    EPIC    EPIC 
EPI1         OFF 
 
EPI PRIN    EPRC    EPRC    EPRC    EPRC    EPRC    EPRC    EPRC    EPRC    EPRC 
EPI1         OFF 
 
EPI INIT   EPICI   EPICI   EPICI   EPICI   EPICI   EPICI   EPICI   EPICI   EPICI 
EPI1     0.00000 
 
EPI RATE      EG      ER      EE      EM      ES    EHSP    EHSN   EHSSI 
EPI1     2.00000 0.04000 0.04000 0.10000   0.001   0.003   0.014 0.00000 
 
EPI HALF    ESAT     EHS   ENEQN    ENPR 
EPI1      75.000 35.0000       2   0.001 
 
EPI TEMP     ET1     ET2     ET3     ET4     EK1     EK2     EK3     EK4 
EPI1     5.00000 25.0000 35.0000 40.0000 0.10000 0.99000 0.99000 0.10000 
 
EPI STOI      EP      EN      EC     ESI   ECHLA    EPOM 
EPI1      0.0005    0.08    0.45  0.0018    0.05    0.80 
 
ZOOP RATE     ZG      ZR      ZM    ZEFF   PREFP  ZOOMIN    ZS2P 



 

209 
 

Zoo1        1.50    0.10    0.01    0.50    0.50    0.01     0.3 
 
ZOOP ALGP  PREFA   PREFA   PREFA   PREFA   PREFA   PREFA   PREFA   PREFA   
PREFA 
Zoo1         0.5 
 
ZOOP ZOOP  PREFZ   PREFZ   PREFZ   PREFZ   PREFZ   PREFZ   PREFZ   PREFZ   
PREFZ 
Zoo1        0.00 
 
ZOOP TEMP    ZT1     ZT2     ZT3     ZT4     ZK1     ZK2     ZK3     ZK4 
5.0    25.0    35.0    40.0     0.1    0.99    0.99   0.100 
 
ZOOP STOI     ZP      ZN      ZC 
0.00500 0.08000 0.45000 
 
MACROPHY  MACWBC  MACWBC  MACWBC  MACWBC  MACWBC  MACWBC  
MACWBC  MACWBC  MACWBC 
Mac1         OFF 
 
MAC PRINT  MPRWBC  MPRWBC  MPRWBC  MPRWBC  MPRWBC  MPRWBC  
MPRWBC  MPRWBC  MPRWBC 
Mac1         OFF 
 
MAC INI  MACWBCI MACWBCI MACWBCI MACWBCI MACWBCI MACWBCI 
MACWBCI MACWBCI MACWBCI 
Mac1     0.00000 
 
MAC RATE      MG      MR      MM    MSAT    MHSP    MHSN    MHSC    MPOM  LRPMAC 
Mac 1       0.30    0.05    0.05    30.0     0.0     0.0     0.0     0.9     0.2 
 
MAC SED     PSED    NSED 
MAC 1        1.0     1.0 
 
MAC DIST    MBMP    MMAX 
Mac 1       40.0   500.0 
 
MAC DRAG  CDDRAG     DMV    DWSA   ANORM 
Mac 1        2.0 7.0E+04     8.0     0.3 
 
MAC TEMP     MT1     MT2     MT3     MT4     MK1     MK2     MK3     MK4 
Mac 1        5.0    25.0    35.0    40.0     0.1    0.99    0.99     0.1 
 
MAC STOICH    MP      MN      MC 
Mac 1      0.005    0.08    0.45 
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DOM       LDOMDK  RDOMDK   LRDDK 
WB 1         0.1   0.001    0.01 
 
POM       LPOMDK  RPOMDK   LRPDK    POMS 
WB 1        0.08   0.001    0.01     0.1 
 
OM STOIC    ORGP    ORGN    ORGC   ORGSI 
WB 1       0.005    0.08    0.45    0.18 
 
OM RATE     OMT1    OMT2    OMK1    OMK2 
WB 1     4.00000 25.0000  0.1000 0.99000 
 
CBOD        KBOD    TBOD     RBOD   CBODS 
BOD 1        0.1    1.02     1.85     0.0 
 
CBOD STOIC  BODP    BODN    BODC 
BOD 1      0.004    0.06    0.32 
 
PHOSPHOR    PO4R   PARTP 
WB 1       0.001 0.00000 
 
AMMONIUM    NH4R   NH4DK 
WB 1       0.001    0.12 
 
NH4 RATE   NH4T1   NH4T2   NH4K1   NH4K2 
Wb 1       5.000  25.000   0.100   0.990 
 
NITRATE    NO3DK    NO3S FNO3SED 
WB 1        0.03   0.001    0.00 
 
NO3 RATE   NO3T1   NO3T2   NO3K1   NO3K2 
Wb 1       5.000  25.000   0.100   0.990 
 
SILICA      DSIR    PSIS   PSIDK  PARTSI 
WB 1     0.10000  1.0000 0.30000 0.20000 
 
IRON         FER     FES 
WB 1         0.5     2.0 
 
SED CO2     CO2R 
WB 1         1.2 
 
STOICH 1   O2NH4    O2OM 
WB 1        4.57     1.4 
 
STOICH 2    O2AR    O2AG 
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ALG1     1.10000 1.40000 
 
STOICH 3    O2ER    O2EG 
EPI1     1.10000 1.40000 
 
STOICH 4    O2ZR 
ZOO1     1.10000 
 
STOICH 5    O2MR    O2MG 
MAC1         1.1     1.4 
 
O2 LIMIT   O2LIM 
0.7 
 
SEDIMENT    SEDC  SEDPRC   SEDCI    SEDK    SEDS    FSOD    FSED    SEDB DYNSEDK 
WB 1         OFF     OFF 0.00000     0.1     0.1 1.00000 1.00000    0.01     OFF 
 
SOD RATE   SODT1   SODT2   SODK1   SODK2 
Wb 1       4.000  25.000   0.100   0.990 
 
S DEMAND     SOD     SOD     SOD     SOD     SOD     SOD     SOD     SOD     SOD 
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
0.00000 0.00000 0.00000 0.00000 0.00000 
 
REAERATION  TYPE    EQN#   COEF1   COEF2   COEF3   COEF4 
WB 1        LAKE       6 0.00000 0.00000 0.00000 0.00000 
 
RSI FILE..................................RSIFN................................. 
rsi.npt - not used 
 
QWD FILE..................................QWDFN................................. 
qwd.npt - not used 
 
QGT FILE..................................QGTFN................................. 
qgt.npt - not used 
 
WSC FILE..................................WSCFN................................. 
wscexp.npt 
 
SHD FILE..................................SHDFN................................. 
shade.npt 
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BTH FILE..................................BTHFN................................. 
WB 1    bath_frank.csv 
 
MET FILE..................................METFN................................. 
WB 1    met2013 (working).npt 
 
EXT FILE..................................EXTFN................................. 
WB 1    ext_1.npt - not used 
 
VPR FILE..................................VPRFN................................. 
WB 1    vpr_br1.npt 
 
LPR FILE..................................LPRFN................................. 
WB 1    lpr_april2013free5.npt - not used 
 
QIN FILE..................................QINFN................................. 
BR 1    qin_br1.npt 
BR 2    qin_br2.npt 
BR 3    qin_br3.npt 
 
TIN FILE..................................TINFN................................. 
BR 1    tin_br1.npt 
BR 2    tin_br2.npt 
BR 3    tin_br3.npt 
 
CIN FILE..................................CINFN................................. 
BR 1    cin_br1.npt 
BR 2    cin_br2.npt 
BR 3    cin_br3.npt 
 
QOT FILE..................................QOTFN................................. 
BR 1    qot_br1.npt 
BR 2    qot_br2.npt - not used 
BR 3    qot_br3.npt - not used 
 
QTR FILE..................................QTRFN................................. 
TR1     qtr_tr1.npt - not used 
 
TTR FILE..................................TTRFN................................. 
TR1     qtr_tr1.npt - not used 
 
CTR FILE..................................CTRFN................................. 
TR1     ctr_tr1.npt - not used 
 
QDT FILE..................................QDTFN................................. 
BR1     qdt_tr1.npt - not used 



 

213 
 

BR1     qdt_tr2.npt - not used 
BR1     qdt_tr3.npt - not used 
 
TDT FILE..................................TDTFN................................. 
BR1     tdt_tr1.npt - not used 
BR1     tdt_tr2.npt - not used 
BR1     tdt_tr3.npt - not used 
 
CDT FILE..................................CDTFN................................. 
BR1     cdt_tr1.npt - not used 
BR2     cdt_tr2.npt - not used 
BR3     cdt_tr3.npt - not used 
 
PRE FILE..................................PREFN................................. 
BR1     qpr_br1.npt 
BR2     qpr_br2.npt 
BR3     qpr_br3.npt 
 
TPR FILE..................................TPRFN................................. 
BR1     tpr_br1.npt 
BR2     tpr_br2.npt 
BR3     tpr_br3.npt 
 
CPR FILE..................................CPRFN................................. 
BR1     cpr_br1.npt 
BR2     cpr_br2.npt 
BR3     cpr_br3.npt 
 
EUH FILE..................................EUHFN................................. 
BR1     euh_br1.npt - not used 
BR2     euh_br2.npt - not used 
BR3     euh_br3.npt - not used 
 
TUH FILE..................................TUHFN................................. 
BR1     tuh_br1.npt - not used 
BR2     tuh_br2.npt - not used 
BR3     tuh_br3.npt - not used 
 
CUH FILE..................................CUHFN................................. 
BR1     cuh_br1.npt - not used 
BR2     cuh_br2.npt - not used 
BR3     cuh_br3.npt - not used 
 
EDH FILE..................................EDHFN................................. 
BR1     edh_br1.npt - not used 
BR2     edh_br2.npt - not used 
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BR3     edh_br3.npt - not used 
 
TDH FILE..................................TDHFN................................. 
BR1     tdh_br1.npt - not used 
BR2     tdh_br2.npt - not used 
BR3     tdh_br3.npt - not used 
 
CDH FILE..................................CDHFN................................. 
BR1     cdh_br1.npt - not used 
BR2     cdh_br2.npt - not used 
BR3     cdh_br3.npt - not used 
 
SNP FILE..................................SNPFN................................. 
WB 1    snp.opt 
 
PRF FILE..................................PRFFN................................. 
WB 1    prf.opt 
 
VPL FILE..................................VPLFN................................. 
WB 1    vpl.w2l 
 
CPL FILE..................................CPLFN................................. 
WB 1    cpl.opt 
 
SPR FILE..................................SPRFN................................. 
WB 1    spr.opt 
 
FLX FILE..................................FLXFN................................. 
WB 1    flx.opt - not used 
 
TSR FILE..................................TSRFN................................. 
tsr.opt - not used 
 
WDO FILE..................................WDOFN................................. 
wdo.opt 
 
 


