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1. INTRODUCTION 

The mammalian gastrointestinal (GI) tract consists of the mouth, pharynx, esophagus 

stomach, small intestine, caecum and large intestine. Its main function is to process food 

and allow the efficient reabsorption of nutrients and water. The small intestine, which 

includes the duodenum, jejunum, and ileum, is the major organ for the absorption of 

nutrients. The large intestine or colon consists of the ascending, transcending, and 

descending colon. It reabsorbs water and salts from food and excretes waste material from 

the body (Atuma et al., 2001; Mowat, 2003). The GI tract is the largest surface of the 

body in contact with the external environment, approximately 400 m2. This barrier 

between the host and the external environment has to be accessible to dietary products, 

therefore creating vulnerability to be attacked from pathogenic organisms (Mowat, 2003). 

 Homeostasis in the colon 
The amount of bacteria in the intestinal lumen of the colon represents one of the most 

densely and complex colonized environments (Kurashima et al., 2013; Pott and Hornef, 

2012). In humans, the gut commensal resident bacteria (also called microbiota) increases 

in number and complexity from the stomach to the colon, and is estimated to be made up 

by 1014 bacteria pertaining as many as 1000 species, most of which are poorly identified 

and functionally uncharacterized (O'Hara and Shanahan, 2006; Wang et al., 2015b). 

However, the host and the gut microbiota peacefully coexist in a mutualistic relationship 

under homeostatic conditions. The host provides a safe niche, rich in nutrients to its gut 

microbiota. In return, intestinal microbes provide important functions and profits to the 

host (O'Hara and Shanahan, 2006), which are related to pathogen protection, nutrition, 

host metabolism and immune modulation (Guinane and Cotter, 2013). Apart from that, 

the intestinal lumen is also continuously exposed to a huge number of foreign antigens, 

and although most of them are innocuous and include food antigens as well as commensal 

bacteria and their microbial products, they represent a challenge for the immune system 

(Baumgart and Dignass, 2002; McCole and Barrett, 2007). This co-evolution of mammals 

with their intestinal flora has led to a situation of tolerance in the gut (Mowat and Bain, 

2011). 

Based on the classical interpretation of the immune system, this huge variety of 

antigens should be recognized as foreign material and induce an immune response. 

However, the intestinal immune response against common food antigens would lead to a 
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massive inflammatory response of the gut, compromising the host viability (Baumgart 

and Dignass, 2002; McCole and Barrett, 2007). A constant molecular interaction between 

the microbiota and the host is required for the establishment and maintenance of intestinal 

homeostasis and tolerance. This requires finely tuned pro-and anti-inflammatory immune 

responses to antigens within the GI tract (Kaser et al., 2010; Maloy and Powrie, 2011). 

The maintenance of this thin equilibrium between immune activation and suppression is 

marked by a situation of controlled ‘physiological inflammation’, where distinct 

populations of intestinal epithelial cells (IECs) and immune cells, amongst them resident 

and inflammatory macrophages in the gut maintain a balance and ensure protective 

immunity when required (Mowat and Bain, 2011) (section 1.2.3).  

1.1.1 The mucosal epithelial barrier  
The intestinal epithelial barrier is a highly organized mucosal surface that consists of a 

monolayer of IECs covered by a stratified mucus layer (Muniz et al., 2012). There are 

four major IEC lineages that arise from pluripotent stem cell progenitors (Barker et al., 

2008). These include absorptive enterocytes, the mucus-producing goblet cells, 

enteroendocrine cells, which are specialized hormone-producing endocrine cells in the GI 

tract, and Paneth cells, which are the main producers of antimicrobial peptides (Kim and 

Ho, 2010). Besides other critical functions, the mucosal epithelial barrier also prevents 

the entry of microbes into the lamina propria and as explained above, it is in permanent 

cross-talk with a huge load of microorganisms (Zheng, 2012).  

To provide a balanced response (homeostasis) to these massive antigenic challenges 

without impeding nutrient absorption and the protection of the body against potentially 

harmful pathogenic bacteria and toxic substances, the intestine has developed powerful 

defense mechanisms that comprise physical, biochemical and cellular controls (Baumgart 

and Dignass, 2002; McCole and Barrett, 2007). Physical controls include peristalsis, 

mucus secretion by goblet cells, and an uninterrupted monolayer of epithelial cells 

regulated by tight junctions. Moreover, it has become clear that the epithelium is more 

than an inert anatomical barrier and contributes to intestinal health in a much more 

complex and multi-layered fashion than simply by regulating intestinal permeability 

(Tomasello and Bedoui, 2013). For instance, it is able to initiate inflammatory responses 

by the expression of Pattern Recognition Receptors (PRRs) by enterocytes that act as 

dynamic sensors of the microbial environment and as active participants in directing 

mucosal immune cell responses (Peterson and Artis, 2014; Rakoff-Nahoum et al., 2004; 
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Vaishnava et al., 2008). Biochemical controls include secretion of antibacterial molecules 

such as defensins, cathelicidins, cryptidins, lactoferrin or lysozyme mainly by Paneth 

cells in the base of the crypts of Lieberkuhn, which together with the mucus layer form 

the glycocalix that traps and aids expulsion of invading microorganisms, a process aided 

by peristaltic movement (Mowat, 2003). Moreover, globet cells synthesize and secrete 

bioactive molecules such as secretory and membrane-bound mucins, trefoil peptides, 

resistin-like molecule (RELM)β, and Fc-γ binding protein (Fcgbp), which are 

components of mucus and contribute to both barrier function and mucosal repair (Kim 

and Ho, 2010; Taupin and Podolsky, 2003). Finally, an intense trafficking of immune 

cells in and out of the gut, and a highly specialized immunological system warrant the 

integrity of the mucosa and the constant surveillance of the full system (Guarner and 

Malagelada, 2003). It is therefore not surprising, that to deal with its massive antigenic 

load, the intestine exhibits one of the largest immunologic compartments in the body 

(Fiocchi, 2003). In summary, the mucus layer, epithelial cells and immune cells together 

constitute the intestinal mucosal barrier and prevent the trillions of microorganisms living 

in the intestine from reaching systemic sites (Perez-Lopez et al., 2016). 

 Mucosal immunity in homeostasis 
By definition, the immune system is the system that protects the body from foreign 

antigens, such as microbes, viruses, cancer cells, and toxins by producing the immune 

response (McGhee and Fujihashi, 2012; Warrington et al., 2011). The mucosal immune 

system, consists of an organized mucosa-associated lymphoid tissue (MALT) and is the 

part of the immune system juxtaposed to the mucosal surfaces and in direct contact with 

the external antigens (McGhee and Fujihashi, 2012).  It comprises the largest mass of 

lymphoid tissue, containing up to 70% of the body’s immune cells, since the mucosa is 

the main place of pathogen recognition, tolerance induction and generation of 

Immunoglobulin A (IgA) antibody response to luminal environmental antigens (Jung et 

al., 2010). The gut-associated lymphoid tissue (GALT), either as organized lymphoid 

structures or diffusely distributed, plays a central role in the induction of immune 

tolerance against harmless materials, but also in the induction of the protective immunity 

to harmful antigens (Chistiakov et al., 2014). 
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1.2.1 Intestinal tolerance 
The involvement of intestinal microbiota in the generation, regulation, differentiation and 

maturation of the immune system has become one of the hottest topics in the field (Agace 

and McCoy, 2017; Ericsson and Franklin, 2015; Thaiss et al., 2016). The immune system 

is highly complex, but can be simplistically viewed as having two “lines of defense”, 

namely the innate immunity and adaptive immunity (Warrington et al., 2011). However, 

the two systems are not mutually exclusive mechanisms, they overlap and interrelate 

extensively (Figure 1).  

 

 

Figure 1. The innate and adaptive immune response. 

In addition to soluble factors and tissue-specific cells the innate immune response consists of hematopoietic immune 
cells including granulocytes (neutrophils, eosinophils and basophils), mast cells, macrophages, dendritic cells, and 
natural killer cells. The adaptive immune response is slower to develop, but is antigen specific and has memory. It 
consists of B cells and T lymphocytes. NK T cells and T cells are cytotoxic lymphocytes that straddle the interface of 
innate and adaptive immunity (obtained from Nat Rev Cancer (Dranoff, 2004)). 

 

The innate immunity represents the first line of defense against a foreign threat. It 

is an antigen-independent (non-specific) defense mechanism and involves mechanical and 

chemical barriers (Dranoff, 2004; McGhee and Fujihashi, 2012). However, resident 

commensal bacteria occupying the ecological niche in the gut may also be regarded as 

part of the host’s innate defense system as they provide a colonization resistance to 
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pathogenic microbes (Stecher and Hardt, 2008). The cellular components of the innate 

immune system include neutrophils, eosinophils, basophils, mastocytes, natural killer 

(NK)-cells, γδT cells, dendritic cells (DCs), monocytes and macrophages (Dranoff, 

2004). Leukocytes of hematopoietic origin, in particular monocytes and macrophages, are 

considered one of the central cell types of the intestinal innate immunity (Dranoff, 2004; 

Parihar et al., 2010). However, the innate immune system has no immunologic memory. 

The adaptive immunity in contrast is antigen-dependent and specific and is therefore able 

to recognize or “memorize” the same antigen in case of re-exposure. This immunologic 

memory is the hallmark of the adaptive immunity and allows the host to mount a more 

rapid and efficient immune response upon subsequent exposure to the same antigen than 

in the first encounter with the antigen (Peterson and Artis, 2014; Warrington et al., 2011).  

The switch between the induction of active immunity or tolerance depends on the 

local microenvironment, which makes a significant contribution to determining the 

initiation of the response (Faria and Weiner, 2005). In this sense, the cross-talk between 

innate and adaptive immunity in the gut maintains and exports the tolerogenic response to 

the systemic immune system, a process regulated by a variety of cells, their secretion 

products and their interactions with endogenous mediators (Abraham and Medzhitov, 

2011; Mowat, 2003). Briefly, intestinal microorganisms are recognized by innate immune 

cells such as macrophages and DCs through their PRRs, which detect a broad spectrum of 

microbial molecules. In response to invading bacteria, the signals from PRRs converge to 

transcription factors, which start the transcription of genes responsible for the synthesis of 

pro-inflammatory proteins mounting a defensive inflammatory reaction (Belkaid and 

Hand, 2014; Shalapour and Karin, 2015) (see section 1.3). However, non-pathogenic 

bacteria, which might present a different pattern of surface markers than pathogenic ones, 

may also elicit regulatory cytokines such as transforming growth factor β (TGFβ) or 

Interleukin-(IL-)10 leading to the induction of tolerance. The way in which macrophages 

discriminate between pathogens and commensal bacteria in the gut remains one of the 

major studied questions of mucosal immunology (Bermudez-Brito et al., 2012; Shanahan, 

2001b). 

Resident intestinal macrophages reside in the lamina propria in close association 

with the intestinal epithelial layer and are the largest reservoirs of macrophages in the 

body (Mowat and Bain, 2011). The immunobiology of intestinal macrophages remains 

poorly understood, partly due to the difficulty in isolating these cells. It is assumed that 
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resident intestinal macrophages perform crucial homeostatic functions, such as capture of 

any luminal bacteria breaching the epithelial monolayer without provoking overt 

inflammation, but also contribute to the induction of T cell anergy, deletion of reactive 

lymphocytes and the generation and expansion of cluster of differentiation (CD) 4+ T 

regulatory cells (Treg) in the lamina propria (Bain and Mowat, 2014; Mowat, 2003; 

Mowat and Bain, 2011) (see section 1.2.3). Treg are responsible for secreting suppressive 

mediators, including inhibitory molecules such as cytotoxic T-lymphocyte-associated 

Protein 4 (CTLA-4) as well as the cytokines IL-10, TGFβ and IL-35 (Faria and Weiner, 

2005; Tsuji and Kosaka, 2008). TGFβ is mainly produced by both, stromal and Treg in 

the gut and, in addition to its immunosuppressive properties, is also a critical factor for 

IgA class switching, which helps to generate the IgA-predominant milieu characteristic of 

the intestine (Stavnezer and Kang, 2009). In addition, TGFβ plays a key role in the 

induction of IL-10-secreting regulatory cells (Apetoh et al., 2010). 

Thus, the innate and adaptive intestinal immune system has the constant task to 

survey the intestinal milieu and respond robustly to pathogenic insult, while repressing 

such responses towards innocuous antigens, e.g. dietary proteins or commensal 

microorganisms, since they would be dangerous for the body integrity. Indeed breakdown 

in the discrimination between harmless and harmful antigens results in the development 

of chronic inflammatory conditions such as inflammatory bowel disease (IBD) (Round 

and Mazmanian, 2009) (see section 1.3.1). 

1.2.2 The mononuclear phagocyte system (MPS) 
The mononuclear phagocyte system (MPS) is a family of functionally related innate 

immune cells including bone marrow precursors, blood monocytes tissue macrophages 

and DCs. They play crucial roles in the maintenance of homeostatic surveillance, reaction 

to infection and injury, as well as in the regenerative response after injury (Chow et al., 

2011; Yona et al., 2013). MPS cells share many features, importantly their phagocytic 

activity, but are also extremely plastic in their patterns of gene expression, defying 

identification based upon surface markers. The proliferation and differentiation of MPS 

cells is controlled by macrophage colony-stimulating factor (M-CSF) and IL-34, acting 

through a common receptor, colony stimulating factor 1 receptor (CSF1R) (Jenkins and 

Hume, 2014). Within the mammalian blood system, only hematopoietic stem cells 

(HSCs) possess the ability of multi-potency and self-renewal over the life span of an 
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organism (Figure 2) (Gabrilovich et al., 2012; King and Goodell, 2011; Seita and 

Weissman, 2010).  

 

Figure 2. The haematopoietic tree. 

Haematopoietic stem cells (HSCs) have the capacity to self-renew over the lifespan and give rise to all the 
cell types of the bone marrow and peripheral blood. They differentiate in a stepwise manner. Other 
pluripotent progenitors and multipotent progenitors (MPPs) have less self-renewal capacity. Over the 
course of the differentiation process, progenitor cells choose a specific branch of the haematopoietic system 
and loose the potential to differentiate into other lineages until the cells reach the stage of committed 
progenitors, which can give rise to only one lineage. The figure illustrates the network of progenitor cells 
that gives rise to the various haematopoietic cell lineages. This process is more complex and simplified in 
this illustration. CMP, common myeloid progenitor; CLP, common lymphoid progenitor; CMLP, common 
myelolymphoid progenitor;  GMP, granulocyte and macrophage progenitor; MCP, mast cell progenitor; 
MDP, macrophage and DC progenitor; CDP, common DC progenitor; MEP, megakaryocyte and 
erythrocyte progenitor; cDC, conventional DC; pDC, plasmacytoid DC (modified from Nat Rev Immunol 
(Gabrilovich et al., 2012)). 
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Van Furth and colleagues initially proposed the concept of MPS in the 1970's with 

a linear model as a family of cells that are derived from a common progenitor and 

differentiate into blood monocytes, which then give rise to macrophages and DCs 

throughout the body (van Furth and Cohn, 1968). However, although this simplistic 

model still remains, it has become clear that the model is much more complex. It has now 

been expanded to include subpopulations regulated by specific growth and transcription 

factors as well as epigenetic modifications that result in subset-specific gene expression 

signatures, and distinct ontogenies (Alvarez-Errico et al., 2015; Davies and Taylor, 2015). 

Functional HSCs are found in the population of bone-marrow cells that does not express 

the cell-surface markers normally present on lineage (Lin)-committed differentiated 

haematopoietic cells. However, they express high levels of stem-cell antigen 1 (SCA1) 

and c-Kit (Chow et al., 2011). HSCs initially give rise to the multipotent progenitors 

(MPPs) which no longer possess self-renewal ability. However they keep their full 

lineage differentiation potential (Seita and Weissman, 2010). Further downstream, MPPs 

advance to oligopotent progenitors, which then give rise to lineage restricted progenitor 

cells and finally to effector cells, such as monocytes, macrophages and DCs (Gabrilovich 

et al., 2012) (Figure 2). Nevertheless, the MPS system is complex and still currently 

under revision (Geissmann et al., 2010; Seita and Weissman, 2010; Woolthuis and Park, 

2016). 

1.2.3 Monocytes and macrophages in the colon 
Macrophages are found in all tissues and play important roles in development, 

homeostasis, tissue repair and immunity. They are remarkably plastic cells, present in 

different tissues throughout the body, which allows them to assume a plethora of 

phenotypes and functions (Murray and Wynn, 2011). In mice, especially in the intestinal 

mucosa, the best and most commonly used marker to identify macrophages is F4/80 

(Austyn and Gordon, 1981; Gordon et al., 2011; Platt and Mowat, 2008). In addition to 

F4/80, most murine macrophage populations also express the pan-myeloid markers 

CD11b and CD68, as well as CD115, consistent with their derivation from monocytes 

(Sasmono et al., 2003).  

Resident intestinal macrophages, exhibit a limited capacity to respond to bacterial 

adjuvants due to downregulation of their bacterial recognition receptors, such as toll-like 

receptors (TLRs). Therefore, in conventional conditions, they do not respond to bacterial 

antigen stimuli through upregulation of pro-inflammatory cytokines, reactive oxygen 
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species (ROS) or reactive nitrogen species (RNS), but they produce anti-inflammatory 

cytokine IL-10 (Mahida et al., 1989; Murai et al., 2009; Smith et al., 2011). These 

features enable them not to react with commensal bacteria that have crossed the epithelial 

barrier with inflammatory response. In addition, IL-10 produced by macrophages is 

crucial for regulatory T cell differentiation in the intestine (Murai et al., 2009). However 

they contribute to the local clearance of bacteria from the tissue, translate alert signals to 

other immune cells, secrete cytokines to establish the local homeostatic immune cell 

network, and participate in the stimulation of the adaptive immune system and 

maintenance within the lamina propia (Zigmond and Jung, 2013). Alternatively, activated 

macrophages represent a wide array of phenotypes. This spectrum includes macrophages 

with wound-healing and regulatory properties, which arise during innate or adaptive 

immune responses, under the influence of IL-10 and TGFβ to dampen the immune 

response and limit inflammation (Mosser and Edwards, 2008) (see section 1.3.1.3). 

The modern view of macrophage population’s origin is that monocytes do not 

always substantially contribute to all tissue macrophage compartments in the body and 

therefore do not depend entirely on the recruitment of monocytes derived from HSCs in 

the bone marrow (Epelman et al., 2014a; Ginhoux and Jung, 2014; van Furth and Cohn, 

1968). In many tissues, they develop from primitive macrophages existing in the yolk sac 

or fetal liver and are maintained independently from HSCs in the bone marrow in steady-

state conditions, as it is the case for instance for Kupffer cells in the liver, Langerhans 

cells in the skin, alveolar macrophages in the lung, microglia in the central nervous 

system, peritoneal macrophages in serosal tissues and red pulp macrophages in the spleen. 

These macrophages are maintained in adults independently of the bone marrow in 

homeostatic conditions through a process of self-renewal (Davies and Taylor, 2015; 

Epelman et al., 2014a; Ginhoux and Jung, 2014; Hashimoto et al., 2013). However, in 

some tissues, especially in the intestinal mucosa, the vast majority of resident 

macrophages are continually replenished from circulating monocytes originating from the 

bone marrow (see section 1.2.2). It takes around four to five days for those monocytes to 

acquire the phenotype of resident mucosal and lamina propria macrophages, characterized 

by the expression of F4/80, CD64, major histocompatibility complex (MHC) class II, 

CD11c, and CX3C chemokine receptor 1 (CX3CR1) (Bain et al., 2013). Moreover, by 

tracking macrophage development from birth to adulthood in the intestinal mucosa, it was 

observed that although primitive macrophages are present after birth in neonatals, they 

are not maintained in adulthood (Bain et al., 2014; Bain et al., 2013). This further 
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confirms that in contrast to other tissues, macrophages that reside in the GI mucosa are 

replaced continuously by blood monocytes and that yolk sac–derived macrophages are 

short-lived or rare (Cipriani et al., 2016; Zigmond and Jung, 2013). 

Nevertheless, in the context of inflammation, the recruitment and differentiation of 

blood monocytes from bone marrow stem cells is involved in the maintenance of the 

tissue-resident macrophage population through highly regulated differentiation events, 

also in tissues that do not rely on this source of macrophages under homeostatic 

conditions, e.g. skin, liver, brain or lung (Bain et al., 2014; Hoeffel et al., 2015; Lavin et 

al., 2015). The ontogeny and classification of different tissue macrophages are 

summarized in Figure 3. 

 

 

Figure 3. Macrophage ontogeny and contribution to populations of resident tissue 
macrophages. 
Contribution of macrophage lineages to populations of adult resident macrophages. HSC-derived 
populations include embryonic populations and no definitive evidence of yolk sac origin (embryonic), 
whereas HSCs (adult) are continually replaced by circulating adult monocytes from the bone marrow 
(modified from Immunity (Epelman et al., 2014b)). 

 

Circulating monocytes in mice constitute around 1.5 to 4 % of the total peripheral 

leukocyte blood pool during the steady state (Robbins and Swirski, 2010). Monocytes are 

defined as cells that express CD11b and CD115, and may also express the F4/80 antigen 

at intermediate or low levels, particularly if they are in the process of differentiating into 

macrophages (Sunderkotter et al., 2004; Youn and Gabrilovich, 2010). As described 

above (see section 1.2.2), they develop from myeloid precursors in the bone marrow, 

prior to intravasation into the bloodstream (Epelman et al., 2014a). In the differentiation 
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process, monocyte commitment is influenced primarily by the presence of the growth 

factor M-CSF (Gow et al., 2010; Sunderkotter et al., 2004). Heterogeneous monocyte 

subsets have been identified across several mammalian species. In mice in particular, 

monocytes can be subdivided based on the expression of the lymphocyte antigen 6 

complex, locus (Ly6) C into Ly6Clo and Ly6Chi populations (Bain et al., 2014; Epelman 

et al., 2014a; Epelman et al., 2014b). Mouse LY6Chi and LY6Clo cells are the equivalent 

of human CD14+ and CD14loCD16+ monocyte subsets, respectively (Ginhoux and Jung, 

2014). Morphologically, the Ly6Chi population is larger and more granulocytic than its 

Ly6Clo counterpart and expresses lower levels of chemokine surface receptor CX3CR1 

(Randolph et al., 1998; Shi and Pamer, 2011). 

The C-C chemokine receptor type (CCR) 2 is very important for Ly6Chi monocyte 

trafficking, and it is well accepted that Ly6Chi monocytes rely on CCR2 to mediate egress 

from the bone marrow (Bain et al., 2014; Nakanishi et al., 2015) (see section 1.3.1.2). 

Mice lacking this receptor have severely reduced circulating levels of all monocytes, and 

in particular Ly6Chi monocytes, while mice lacking CX3CR1, which is highly expressed 

in Ly6Clo but not Ly6Chi monocytes, show little modification of circulating monocyte 

numbers. As such, deployment of monocytes into the circulation from the bone marrow 

relies on CCR2 but is independent of CX3CR1 (Fairbairn et al., 2011; Shi and Pamer, 

2011). Macrophage-like Ly6Clo cells in the blood patrol the endothelial surface of the 

vessel and coordinate its repair by recruiting neutrophils as required, whereas Ly6Chi 

monocytes are poised to traffic to sites of infection and inflammation and differentiate by 

default into CX3CR1hiLy6Clo cells (Ginhoux and Jung, 2014; Zigmond et al., 2012). As 

stressed above, the intestinal macrophage compartment is unique in that it continuously 

recruits monocytes in homeostasis for its replenishment, most probably because of tonic 

low-grade inflammation (as described above as “physiological inflammatory state”), 

caused by the microflora exposure of this tissue (Zigmond et al., 2012). 

Given the plasticity of monocytes to give rise to various macrophage and DC 

populations, once at tissues, they can acquire a wide range of functions and phenotypes, 

which are modulated by signals from the environment (Figure 4) (Davies and Taylor, 

2015; Mosser and Edwards, 2008).  
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Figure 4. Macrophage plasticity is orchestrated by cytokines. 

Classically activated macrophages arise in response to interferon-γ, which can be produced during an 
adaptive or innate immune response and TNF, which is produced by APCs. Wound-healing (alternatively 
activated) macrophages arise in response to IL-4, which can be produced during an adaptive or innate 
immune response. Regulatory macrophages are generated in response to various stimuli, including immune 
complexes, prostaglandins, G-protein coupled receptor ligands, glucocorticoids, apoptotic cells or IL-10. 
Each of these three populations has a distinct physiology. Classically activated macrophages have 
microbicidal activity, whereas regulatory macrophages produce high levels of IL-10 to suppress immune 
responses. Wound-healing macrophages have a role in tissue repair (modified from Nat Rev Immunol 
(Mosser and Edwards, 2008)). 

 

 Mucosal immunity in inflammation 
The intestinal immune system has the constant task to survey the intestinal milieu and 

respond robustly to pathogenic insult, while repressing such responses towards innocuous 

antigens. However, deregulation in this equilibrium as occurs in IBD, implicates an 
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imbalance between pro- and anti-inflammatory cytokines, impeding the resolution of 

inflammation and instead leading to disease perpetuation and tissue destruction. Although 

cytokines participate in the repair of the intestinal mucosal epithelial barrier, they have 

been also implicated in mucosal injury and tissue damage as well as in tumor 

angiogenesis, progression and metastasis (Bouma and Strober, 2003; Fukata and Abreu, 

2009; Sartor, 2006). 

1.3.1 Inflammatory bowel disease 
IBD is a chronically relapsing inflammatory disorder (Triantafillidis et al., 2009)  

characterized by an overactive immune system and an excessive production of cytokines 

(Sartor, 2006). The two major types of IBD are ulcerative colitis (UC), which is limited to 

the colon, and Crohn’s disease, which can affect any part of the gastrointestinal tract 

(Bouma and Strober, 2003; Li et al., 2013). Histologically, UC is characterized by non-

transmural inflammation that is limited to the mucosa and submucosa with cryptitis and 

crypt abscesses (Baumgart and Sandborn, 2007; Khor et al., 2011). On the other hand, in 

Crohn’s disease the inflammation of the gastrointestinal mucosa is transmural and 

typically implicate the development of complications including strictures, abscesses or 

fistulas. It is characterized by thickened submucosa, transmural inflammation, fissuring 

ulceration and granulomas (Abraham and Cho, 2009c; Baumgart and Sandborn, 2007; 

Khor et al., 2011). Differential diagnosis in patients with IBD is nowadays of pivotal 

importance for a personalized clinical management, as each entity involves specific 

therapeutic strategies (Dignass et al., 2012; Dignass et al., 2010; Kornbluth et al., 2004; 

Lichtenstein et al., 2009). Nevertheless, non-classical forms of either UC or Crohn’s 

disease still represent a remarkable clinical matter, as due to the heterogeneity of these 

diseases no single diagnostic core standard could be established yet (Dignass et al., 2012; 

Dignass et al., 2010; Kornbluth et al., 2004; Lichtenstein et al., 2009; Magro et al., 2013). 

Therefore, 5% to 15% of cases do not meet strict criteria for either UC or Crohn’s disease 

and in up to 14% of patients classified as UC and Crohn’s disease the diagnosis changes 

over time (D'Arcangelo and Aloi, 2017; Louis, 2015; Tontini et al., 2015). For these 

reasons, the terms indeterminate colitis (IC) or inflammatory bowel disease unclassified 

(IBDU) were introduced by pathologists for the diagnosis of surgical colectomy 

specimens showing an overlap between the features of UC and Crohn’s disease 

(Tremaine, 2012). 



32 
 

Both forms significantly impair quality of life and require prolonged health care 

interventions. Their unknown cause, unpredictable presentations and symptoms, the less 

than optimal treatments and a continuous rise in their incidence and prevalence 

worldwide makes the treatment of these diseases particularly challenging (Lamhonwah et 

al., 2003). Current IBD therapies are rather broad in action and not particularly focused 

on patient characteristics. Understanding the contribution of host and environmental 

factors will promote individualized management of this heterogeneous patient population 

(Abreu, 2002; Baumgart and Sandborn, 2007; Michielan and D'Inca, 2015). 

IBD is associated with a range of extra-intestinal manifestations (EIMs). Most 

IBD patients have colonic inflammation, although some patients develop EIMs prior to 

the onset of colonic symptoms and might be the initial presenting symptoms of the IBD. 

Up to 36% of patients with IBD have at least one EIM (Bernstein, 2001; Levine and 

Burakoff, 2011). These manifestations can involve nearly any organ system and some are 

related to active inflammation (i.e. joint, skin, ocular and oral manifestations) (Langholz, 

2010). In addition, the risk of cancer was found to be higher in patients suffering from UC 

than from Crohn’s disease, predisposing factors being the duration of the disease, EIMs, 

and the onset of the disease at early age (Pohl et al., 2000) (see section 1.3.2). 

Although the exact etiologies of IBD are unknown, it is considered as 

multifactorial. It has been proposed that, in genetically susceptible individuals it is due to 

disruption of gut homeostasis leading to altered and chronic activation of the immune 

system and inflammatory cascades against the microorganisms of the intestinal flora, 

which triggers the disease (Kole and Maloy, 2014; Michielan and D'Inca, 2015; Muniz et 

al., 2012; Podolsky, 2002a; Podolsky, 2002b; Rubin et al., 2012). However, how and why 

individuals generate inappropriate host immune responses and initiate the development of 

IBD is not completely understood (Gulbake et al., 2016). Despite tight and highly evolved 

regulation mechanisms of the immune system, dysfunctions and disturbances can arise, 

leading to hyper-inflammatory conditions and autoimmune disease, which has been 

suggested to be a result of several factors (Abraham and Medzhitov, 2011; Autschbach et 

al., 2002; Kaser et al., 2010; McGhee and Fujihashi, 2012). In particular, the altered 

immune response taking place in IBD may be caused by a loss of barrier function, which 

overwhelms normal immune regulation, as well as dysfunction of regulatory mediators of 

the immune system. In this sense the intestinal mucosal epithelial barrier is thought to be 

the effector arm that mediates intestinal inflammation (McGhee and Fujihashi, 2012; 

Neurath, 2014; Podolsky, 2002a).  
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The well-known familial occurrence of IBD has suggested for a long time that this 

condition could have a genetic basis (Orholm et al., 1991). Over the years, high number 

of susceptibility loci has been associated with IBD (Machado et al., 2006; McGovern et 

al., 2010).  Although the genetic component is stronger in Crohn’s disease than in UC, 

and despite their distinct clinical and histological features, approximately 30% of these 

IBD-related genetic loci are shared between both conditions, indicating that these diseases 

engage common pathways (Andersen et al., 2011; Franke et al., 2010). Candidate genes 

include those that regulate innate immunity and intestinal homeostasis, including 

epithelial barrier function, epithelial restitution, microbial defence, innate immune 

regulation, ROS generation, autophagy, regulation of adaptive immunity, endoplasmatic 

reticulum (ER) stress and metabolic pathways associated with cellular homeostasis 

(Imielinski and Hakonarson, 2010; Lees et al., 2011; Machado et al., 2006; McGovern et 

al., 2010; Thompson and Lees, 2011). Additional genetic studies have revealed that gene 

products involved in the elimination of endogenous small organic cations, drugs and 

environmental toxins are linked to Crohn’s disease and UC etiology (Bilsborough and 

Viney, 2004; Cucchiara et al., 2007; Waller et al., 2006).  

Over the years a plethora of theories have been proposed to explain the pathology 

of IBD, ranging from infectious to psychosomatic, social, metabolic, vascular, genetic, 

allergic, autoimmune and immune-mediated (Fiocchi, 1998; Fiocchi, 2009). However, as 

illustrated in Figure 5, the general consensus nowadays is that this disease is the result of 

combined effects of four basic components: global changes in the environment, the input 

of multiple genetic variations, alterations in the intestinal microbiota and aberrations of 

innate and adaptive immune responses (Sartor, 2006). Of note, it has also been concluded 

that none of these four components can by itself trigger or maintain intestinal 

inflammation (Triantafillidis et al., 2011). 
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Figure 5. The four basic components of IBD etiology. 

Interaction of various factors contributing to chronic intestinal inflammation in a genetically susceptible 
host. Genetic susceptibility is influenced by the intestinal microbiota, which provide antigens and adjuvants 
that stimulate either pathogenic or protective immune responses. Environmental triggers are necessary to 
initiate or reactivate the disease (modified from Nat Clin Pract Gastroenterol Hepatol (Sartor, 2006)). 

 

Lifestyle choices such as diet are thought to contribute to IBD by altering the 

commensal flora or promoting obesity related inflammatory responses (Ferguson et al., 

2007). Thus, the interactions between genetic and environmental factors will shape the 

gut epithelial-innate immune interface and lead to unique phenotypes in patients with 

IBDs. Moreover, experimental and clinical evidence suggests that uncontrolled activation 

of macrophages and T cells is a central mechanism in the pathophysiology of chronic 

intestinal inflammation (Fiocchi, 1998; Rubin et al., 2012; Shanahan, 2001a). 

Furthermore, luminal bacteria also play a role in the initiation and progression of the 

disease. It has been demonstrated that in inflamed mucosa or even during inactive IBD, 

the composition of the fecal microbiota changes (dysbiosis), and these bacteria can 

potentially translocate into the intestinal barrier. This is mediated by a reduction of the 
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interlayer biofilm and the mucus layer, which results in the loss of the epithelial integrity 

leading to the translocation of harmful bacteria and the consequent chronic activation of 

the inflammatory immune response. Finally, cell-mediated immunity against the luminal 

microbiota generates intestinal lesions and impairs resolution of the lesions leading to 

chronic intestinal disease (Pirzer et al., 1991). In this sense, IBD patients exhibit 

increased intestinal permeability, however, it is not clear whether this is a cause or 

consequence of the disease (Uluckan and Wagner, 2017). 

1.3.1.1 Disturbances in innate and adaptive immunity 

IBD was traditionally viewed as predominantly T-cell-driven (Podolsky, 2002a) and the 

adaptive immune system was regarded to be the key contributor to the pathogenesis of 

IBD (Huang and Chen, 2016; Xavier and Podolsky, 2007). However, it is now clear that 

the innate immune response is equally as important in inducing gut inflammation in these 

patients, implicating altered innate microbial sensing and autophagy, mucosal barrier 

functions, innate immune responses, cytokine, chemokine and microbial peptide 

production (Huang and Chen, 2016; McGhee and Fujihashi, 2012; Muniz et al., 2012; 

Neurath, 2014). Supporting this conclusion, patients with innate immunodeficiencies tend 

to develop IBD, and similarly patients with Crohn’s disease have defective innate 

immune responses (Smith et al., 2009). This has refocused the attention to this arm of the 

immune system. 

Belonging to the innate immune system, macrophages, along with DCs, are the 

main antigen presenting cells (APCs) in the intestinal mucosa and present foreign 

antigens to cells of the adaptive immune system, thereby integrating the innate and 

adaptive systems for quick, yet broad, responses to microorganisms and antigens 

(Abraham and Medzhitov, 2011; Joeris et al., 2017; Sanders et al., 2017; Sansonetti, 

2004). The specific role of monocytes and macrophages in the context of intestinal 

inflammation will be further discussed in detail below (see section 1.3.1.2). Similarly to 

macrophages, intestinal DCs, can function to provide protection and defense, induce 

tolerance or mediate inflammation (Bilsborough and Viney, 2004; Mowat and Bain, 

2011). These cells are able to acquire inflammatory properties during intestinal 

inflammation, such as the ability to produce IL-6 and the stimulation of Th1 responses 

(Interferon-γ (IFN-γ), IL-2, IL-10, IL-12, Tumor necrosis factor- (TNF-) α, TNF-β) 

(Laffont et al., 2010) and are able to promote colonic Th17 responses (IL-17A, IL-17F, 

Th17, IL-6, TNF-α, IL-21 and IL-22, IL-23, TGF-β) to commensal-derived ATP. Of note, 
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acute and chronic mouse models of colitis, were also associated with a significant 

increase in recruited monocyte-derived DCs, besides monocyte-derived macrophages, 

that produced high levels of pro-inflammatory cytokines and showed enhanced TLR 

responsiveness (Damsker et al., 2010; Platt et al., 2010; Platt and Mowat, 2008; Varol et 

al., 2009). Moreover, in colonic mucosa of IBD patients, interactions between DCs and T 

cells promote production of inflammatory cytokines and chemokines as well as an 

increase of expression of chemokines receptors (Drakes et al., 2005). 

A cell type belonging to the innate immune system and that accumulates in the 

lamina propria and within epithelial crypts are the neutrophils. They similarly to 

macrophages and DCs, correlate with clinical disease activity and epithelial injury in 

IBD. Moreover, the activation of neutrophils, as for macrophages, implicates the 

production of ROS and nitrogen species as well as myeloperoxidase (MPO) within 

intestinal mucosa, which induces oxidative stress that participates in the intestinal damage 

associated to these conditions (Chin and Parkos, 2006; Smith et al., 2009). However, 

neutrophils also contribute to the resolution of inflammation, by synthesizing anti-

inflammatory mediators such as lipoxin A4 (Witte et al., 2010).  

The NK cells also belong to the innate leukocyte population and contribute to 

intestinal inflammation by secreting Th1 and Th17 cytokines (Colonna, 2009; Cua and 

Tato, 2010; Maloy and Kullberg, 2008; Wolk et al., 2010). Another important NK cell 

feature is that they contribute to the control of viral and bacterial infections, kill tumor 

cells and establish a relationship between innate immunity and adaptive immunity 

(Colucci et al., 2003). Other leukocyte populations, such as NK T cells and γδ T cells that 

straddle the interface of innate and adaptive immunity (Figure 1) can similarly to NK 

cells secrete Th1 and Th17 cytokines that contribute to the pathogenesis of intestinal 

inflammation  (Colonna, 2009; Cua and Tato, 2010; Maloy and Kullberg, 2008; Rescigno 

et al., 2008). 

Of note, the recruitment of innate immune cells to sites of tissue injury and 

inflammation is choreographed by integrins, chemokines, chemokine receptors and 

microbial signals. Therefore, its modulation may be useful for disease intervention 

(Xavier and Podolsky, 2007).  Upregulation of chemokines and chemokine receptors has 

been described in studies examining clinical and experimental colitis (Charo and 

Ransohoff, 2006). The major chemokine and chemokine receptors associated with the 

onset of IBD include C-X-C motif chemokine (CXCL)8/IL-8, CCL5/regulated on 
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activation, normal T cell expressed and secreted (RANTES), CCL2/monocyte 

chemotactic protein-(MCP-) 1, CCL6/ MCP-3, CCR5, CCR2, CCR1 and Chemerin, 

which regulate the infiltration of inflammatory cells such as neutrophils, macrophages, 

and T cells (Ajuebor and Swain, 2002; Buechler, 2014; Lin et al., 2014).  

It has been reported that chemokine or chemokine receptor antagonists as well as 

monoclonal antibodies specific for adhesion molecules can be used to treat IBD patients 

(Bizzarri et al., 2006; Danese et al., 2005). Accordingly, the influx of inflammatory cells 

into the mucosa increases the release of many metabolic and inflammatory mediators 

including cytokines, chemokines, nitric oxide (NO), oxygen radicals, prostaglandins, 

leukotrienes, histamine, proteases, and matrix metalloproteinases, contributing to further 

tissue damage and the onset of tumorigenesis (Abraham and Cho, 2009a; Abraham and 

Cho, 2009b; Abreu, 2002; Capaldo and Nusrat, 2009; Dranoff, 2004; Fukata and Abreu, 

2009; Neurath, 2014).  

Abnormal innate immune responses result in the imbalance of the adaptive 

immunity, which leads to its excessive activation and therefore a vicious cycle forms.  

Therefore, the comprehensive analyses of innate and adaptive immunity and exploration 

of how they are connected is important for understanding the pathology of IBD and 

developing more effective treatments (Khor et al., 2011; Shanahan, 2001a; Xavier and 

Podolsky, 2007).  

Basically, the adaptive immune responses are effected by a combination of 

resident and recruited cell populations, such as mucosal B cells producing secretory IgA 

and of IgG as well as a complex mixture of T cells (mainly Th1, Th17 or Th2) and 

regulatory T and B cells (Xavier and Podolsky, 2007). In this sense, antibody production 

in active IBD has been found to be increased in the blood circulation, but also in the 

intestinal mucosa (MacDermott et al., 1981). Furthermore B cells are able to synthesize 

the immunomodulatory cytokines IL-10 and TGF-β, although their role in IBD has not 

been extensively studied yet (Salinas et al., 2013). The role of B lymphocytes has been 

studied in animal models of experimental colitis and it seems that, at least in some of 

these models, B cells might contribute to an inflammatory response (Olson et al., 2004). 

However, at the moment limited attention is being given to B cells in IBD but renewed 

interest might occur if B cell depletion for instance by using rituximab, which is targeting 

CD20, a cell surface molecule expressed mainly on mature B lymphocytes, turns out to be 

effective in IBD management (Bauer et al., 2012; Furtado and Isenberg, 2013; Perosa et 
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al., 2010). Nevertheless, a clinical trial in patients with UC showed that this is not a 

promising treatment strategy, which does not mean that it will not be effective in other 

clinical manifestations of IBD, neither it rules out that B cells are involved in the 

pathophysiology of IBD (Leiper et al., 2011). 

However, T cells are well established key players of intestinal inflammation in 

IBD and are the main cells involved in the adaptive immune response. It has been 

confirmed that a dysregulated T cell response with abnormal development of activated T 

cell subsets may lead to the onset of inflammation by an excessive release of cytokines 

and chemokines which have multiple pathogenic effects on both, the adaptive and the 

innate arms of the immune system (Huang and Chen, 2016; Neurath, 2014; Xavier and 

Podolsky, 2007). In particular, while Crohn’s disease has long been considered to be 

driven by a Th1 response, UC has been rather associated with a non-conventional Th2 

response (Fuss et al., 1996). However, beside the well-known classical Th1 and Th2 

responses, a role for Th17 cells has also evolved in the context of IBD pathogenesis 

(Geremia and Jewell, 2012). These cells are activated through several cytokines, but the 

main cytokine mediating Th17 responses is IL-17, and the production of this cytokine is 

stimulated by the production of IL-6, TGFβ and IL-23 by innate immune cells and APCs, 

and have been found to be increased in IBD and most forms of experimental colitis (see 

also Table 1) (Abraham and Cho, 2009b; Lawrance et al., 2001; Sartor, 2006).  

Altered patterns of cytokine production by immune cells in patients with IBD 

were initially described in the mid to late 1980s. Over the years, they were found to play a 

major role in driving intestinal inflammation and leading to local complications, such as 

neoplasms and EIMs in patients with IBD (Neurath, 2014). The cytokine responses 

characterizing these diseases are the key pathophysiologic elements that govern the 

initiation, development and the resolution of the inflammation. Therefore, some cytokines 

are strongly associated to the severity of the disease and could be future candidate 

biomarkers of the clinical course and therapeutical decision making (Florholmen and 

Fries, 2011; Kochhar and Lashner, 2017; Ministro and Martins, 2017).  Selected 

cytokines implicated in the pathogenesis of IBD are summarized in Table 1 (Neurath, 

2014). 

 



39 
 

 
Table 1. Key cytokines implicated in the pathogenesis of IBD 

Cytokines play a fundamental role in controlling mucosal inflammation in IBD and in the pathogenesis of 
progressive and destructive forms of IBD that are associated with complications such as intestinal stenosis, 
rectal bleeding, abscess and fistula formation, and the development of colitis-associated neoplasias 
(obtained from Nat Rev Immunol (Neurath, 2014)). 

 

1.3.1.2 Monocytes and macrophages in the intestine 

Macrophages in the intestinal mucosa represent the largest pool of tissue macrophages in 

the body under healthy homeostatic conditions (Smith et al., 2011). Moreover, their 

numbers dramatically increase in the intestinal mucosa during the acute phase of IBD, 

wound-healing and malignancy, mainly due to recruitment as monocytes from HSC in the 

bone marrow (Bain et al., 2014; Bain and Mowat, 2014; Hume, 2006; Mowat and Bain, 

2011). The largest amount is found in the lamina propria but they can be found in all 

layers of the intestine and their number closely correlates with the amount of bacteria in 

the intestine, being very reduced in germ free mice (Lee et al., 1985). Macrophages in the 

intestine express a large number of T cell co-stimulating molecules and triggering 

receptor expressed on myeloid cells-1 (TREM-1), which promotes secretion of 

macrophage pro-inflammatory factors (Schenk et al., 2007). Moreover, its expression is 

low in normal intestinal tissue, but higher in experimental colitis models and IBD patients 
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(Baj-Krzyworzeka et al., 2006), indicating that abnormal innate immunity dominated by 

macrophages plays a vital role in pathogenesis of IBD. Of note, pro-inflammatory 

cytokines are normally produced by monocytes and polymorphonuclear cells that have 

migrated to the inflammatory focus, rather than by resident intestinal macrophages (Smith 

et al., 2011). 

Besides their crucial role in immune tolerance, monocytes and macrophages 

represent essential players during inflammation and immune assaults in a plethora of 

tissues, including the intestine (Bain et al., 2014; Bain and Mowat, 2014). Inflammation 

mediated by these cells is basically composed of tissue recruitment, differentiation and 

activation in situ, conversion to anti-inflammatory phenotype and restauration of tissue 

homeostasis (Murray and Wynn, 2011). Once activated, pro-inflammatory macrophages 

(M1 or classically activated phenotype) produce a large number of mediators and 

cytokines including IL-1, IL-6, IL-12, TNFα and inducible nitric oxide synthase (iNOS) 

amongst others (Barrientos et al., 2008; Granata et al., 2006; Sanchez-Munoz et al., 

2008), as well as chemoattractants resulting in the recruitment of additional leukocytes 

(Ajuebor and Swain, 2002; Barrientos et al., 2008; Charo and Ransohoff, 2006; DiPietro, 

1995). In order to control inflammation, it has been suggested, that these plastic cells 

switch from being pro-inflammatory to a broad spectrum of alternatively activated 

macrophages, exhibiting anti-inflammatory and pro-tissue repair functions (Daley et al., 

2010; Mosser and Edwards, 2008; Murray and Wynn, 2011; Stein et al., 1992) (Brancato 

and Albina, 2011) (see section 1.3.1.3).  

Monocytes and macrophages are recruited by chemokines in a process known as 

chemotaxis, and the most important chemokines involved in inflammatory cell 

recruitment were mentioned above (see section 1.3.1.1). Ly6ChiCCR2+ pro-inflammatory 

monocytes, are recruited over CCR2 and its ligands CCL2, but also CCL7, which are 

induced by infections and result in high circulating levels in the serum as well as in the 

inflamed tissues. This is the most important mechanism for the recruitment of these cells 

(Bain et al., 2014; Platt et al., 2010; Shi and Pamer, 2011). However, monocytes also 

express the receptors CCR1 and CCR5, which bind to a variety of chemokines, including 

the shared ligands CCL3, also known as macrophage inflammatory protein-1α (MIP-1α), 

and CCL5. The receptor CX3CR1 is particularly important for Ly6Clo monocyte 

recruitment. However, also other chemokine receptors and adhesion molecules have been 

implicated in monocyte recruitment (Imhof and Aurrand-Lions, 2004; Shi and Pamer, 
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2011). Recruited to the healthy intestinal lamina propria, they give rise to resident 

CX3CR1+ macrophages that contribute to the maintenance of gut homeostasis (Zigmond 

et al., 2012). Although migration is critical in immune response and homeostasis 

maintenance, it was shown to have a negative role in some diseases. In this line, several 

studies revealed that reduced macrophage motility is associated with a decreased capacity 

to enhance tumor cell invasion or inflammatory disorders including IBD (Chanmee et al., 

2014; Mowat and Bain, 2011; Zigmond et al., 2012). Consistently, ablation of either 

CCR2 or CCL2 has been demonstrated to ameliorate acute gut inflammation (Bain and 

Mowat, 2014; Ginhoux and Jung, 2014; Mowat and Bain, 2011) 

As illustrated in Figure 6, Ly6ChiCCR2+ monocytes are continuously generated in 

the bone marrow from macrophage and DC precursor (MDP) and common monocyte 

progenitor (cMoP) intermediates. They are recruited in a CCR2 dependent manner, to 

give rise to a number of macrophage subsets in both healthy and inflamed colon, which in 

turn trigger the recruitment of other immune cells and initiate the adaptive immune 

response (Bain et al., 2014; Ginhoux and Jung, 2014; Nakanishi et al., 2015) .  

Infiltrated monocytes are responsible for the amplification of the local immune 

response through the synthesis of pro-inflammatory soluble molecules and the secretion 

of vascular and extracellular matrix remodeling factors such as vascular endothelial 

growth factors (VEGFs) and proteolytic enzymes like metalloproteases (Mosser and 

Edwards, 2008; Yona and Jung, 2010; Yona et al., 2013). Once infiltrated, they give rise 

to macrophages and inflammatory DCs that amplify the inflammatory response by 

secreting further pro-inflammatory mediators. Additionally, recruited macrophages and 

inflammatory DCs amplify the chemoattractant signal for successive waves of other 

monocyte-derived myeloid cells or neutrophils, and also for other immune cell lineages 

such as the T and B lymphocytes (Koh and DiPietro, 2011; McGhee and Fujihashi, 2012; 

Shi and Pamer, 2011). This monocyte-derived cell infiltration is essential to establish an 

initial pro-inflammatory and chemoattractant microenvironment and allows the adaptive 

immune system to trigger further immune responses when inflammation cannot be 

resolved by the innate immune system. In this sense, unrestrained pro-inflammatory 

responses of lamina propria macrophages and DCs participate in the induction of chronic 

inflammation by continued recruitment of inflammatory cells (Cekici et al., 2014; Koh 

and DiPietro, 2011; Merle et al., 2015; Ortega-Gomez et al., 2013).  
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Figure 6. Monocyte recruitment from haematopoietic stem cells in the bone marrow. 

Monocytes are continuously generated in the bone marrow from HSCs via macrophage and MDP and 
cMoP intermediates. In the steady state, Ly6Chi and Ly6Clo monocyte subsets in the circulation form a 
developmental continuum but are functionally distinct. GMP, granulocyte–macrophage progenitor 
(obtained from Nat Rev Immunol (Ginhoux and Jung, 2014)). 

 

It is therefore not surprising, that increased leukocyte infiltration into the lamina 

propria is a hallmark of active IBD and experimental colitis, with several immune cells, 

such as T cells, monocytes, DCs and neutrophils contributing to disease initiation, 

subsequent tissue damage and disease perpetuation (Abraham and Cho, 2009a; Abraham 

and Cho, 2009b; Abreu, 2002; Fukata and Abreu, 2009). The critical role of innate 

immune responses in IBD is further underscored by the observation that infliximab, a 

monoclonal antibody against TNF (see Table 1), has emerged as an efficient treatment 
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with quick disease activity reduction and IBD patient life quality improvement 

(Hindryckx et al., 2017; Nanda et al., 2013; Radin et al., 2017). 

1.3.1.3 Wound-healing 

IBD is characterized by chronic inflammation due to an imbalance between pro- and anti-

inflammatory cytokines at the submucosal level leading to disruption of epithelial barrier 

function and tissue destruction. The complete repair of the epithelial layer is a key goal of 

current IBD treatment, as it has been related to long-term remission of this pathology 

(Bernstein, 2015; Henderson et al., 2011; Maloy and Powrie, 2011; Neurath and Travis, 

2012). However, epithelial cell migration, apart from being important for wound-healing 

processes, is also a pro-tumorigenic property of cancer cells and cancer has been 

proposed to be an over healing wound. This suggests a potential problem in targeting 

epithelial repair mechanisms for IBD treatment (Schafer and Werner, 2008). 

Regardless of the type of wound, the same basic physiological principles apply to 

how wounds heal (Johnstone and Farley, 2005). Due to its exposure to external 

environmental factors, the intestinal epithelium can be injured by various factors, such as 

toxic luminal substances, normal digestion, inflammation, interactions with microbes, 

oxidative stress, and pharmaceuticals (Banan et al., 2000a; Banan et al., 2000b; Vongsa et 

al., 2009). Rapid resealing of the epithelial surface barrier following injuries or 

physiological damage is essential to preserve the normal homeostasis and depends on the 

precise balance of migration, proliferation, and differentiation of the epithelial cells 

adjacent to the wounded area (Danese and Peyrin-Biroulet, 2012; Feil et al., 1987; Moyer 

et al., 2007; Okamoto and Watanabe, 2005; Papi and Aratari, 2014). First, epithelial cells 

surrounding the wound lose their columnar polarity and take on a flattened morphology, 

dedifferentiate, form pseudopodia-like structures and reorganize their cytoskeleton to 

rapidly migrate into the wound area to restore barrier integrity. After migration, they re-

differentiate and adopt their initial polarity and phenotype. This process has been termed 

“epithelial restitution”, it is independent of cell proliferation and occurs within minutes to 

hours both, in vitro and in vivo (Dignass and Podolsky, 1993; Dise et al., 2008; Sturm and 

Dignass, 2008; Taupin and Podolsky, 2003). Then, epithelial cell proliferation is 

necessary to replenish the decreased cell pool. This generally begins hours or days after 

the injury (Dignass and Podolsky, 1993; Taupin and Podolsky, 2003). Finally, maturation 

and differentiation of undifferentiated epithelial cells is needed to maintain the mucosal 

barrier function (Sturm and Dignass, 2008). However, the separation of intestinal 
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epithelial wound-healing in these described three distinct processes is rather artificial and 

simplified and may overlap particularly in vivo due to its regulation by a broad spectrum 

of structurally distinct regulatory factors, including cytokines, growth factors, adhesion 

molecules, neuropeptides and phospholipids (Fiocchi, 1998; Okamoto and Watanabe, 

2004; Okamoto and Watanabe, 2005; Sturm et al., 1999). 

As stressed above, macrophages constitute an essential element of inflamed 

tissues, where they contribute to a variety of functions, due to their property to adopt 

different functional phenotypes that differ in the expression of surface proteins and the 

production of cytokines (Murray and Wynn, 2011; Pull et al., 2005; Sica and Mantovani, 

2012). Two of the best characterized in vitro phenotypes are the pro-inflammatory M1 

phenotype that mediates the defense of the host from microorganisms and the wound-

healing M2 phenotype. In vivo, hyper-activation of the M1 phenotype leads to massive 

tissue destruction and further recruitment of inflammatory cells, leading to additional 

disease perpetuation. Wound-healing macrophages however, exhibit potent anti-

inflammatory activity through expression of high levels of anti-inflammatory cytokines 

and scavenger molecules. They are mainly activated in response to IL-4 and IL-13 and 

express factors that are important for tissue repair and fibrosis (Daley et al., 2010; Gensel 

and Zhang, 2015; Novak and Koh, 2013; Xiao et al., 2008). They also antagonize M1 

macrophage responses, which may be crucial for the activation of the wound-healing 

response and for tissue homeostasis to be restored (Sindrilaru et al., 2011). Recent studies 

have shown that M1 macrophages can themselves ‘convert’ into anti-inflammatory 

macrophages with an M2 wound-healing phenotype (Arnold et al., 2007; Biswas and 

Mantovani, 2010). A third type of macrophages are the regulatory macrophages that can 

arise following innate or adaptive immune responses. Regulatory macrophages do not 

contribute to the production of the extracellular matrix, and may express high levels of 

co-stimulatory molecules and present antigens to T cells. The main characteristics of 

these three macrophage populations are summarized in Table 2 (Mosser and Edwards, 

2008). 
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Table 2. Characteristics and potential biomarkers of classically activated, wound-
healing and regulatory macrophages.  

DCIR, DC immunoreceptor; HVEM, herpesvirus entry mediator; IL-27Rα, IL-27 receptor α-chain; ITIM, 
immunoreceptor tyrosine-based inhibiting motif; SPHK1, sphingosine kinase 1 (obtained from Nat Rev 
Immunol (Mosser and Edwards, 2008)). 
 

Several growth factors play important roles in intestinal growth as well as aiding 

intestinal repair after injury or inflammation, and many of them are known to be produced 

by macrophages, but also by mesenchymal cells. An increasing body of evidence shows 

that a number of peptides are important in the regulation of gastrointestinal mucosal 

growth (Akhurst et al., 1988; Duncan and Grant, 2003; McCole and Barrett, 2007; Sturm 

and Dignass, 2008; Xian et al., 1999). These peptides include members of the epidermal 

growth factor (EGF) family, TGF-β family, fibroblast growth factor (FGF) family, 

insulin-like growth factor (IGF) family, trefoil factor family (TFF), heparin-binding 

epidermal-like growth factor (HB-EGF), growth hormone (GH), erythropoietin (Epo), 

granulocyte colony stimulating factor (G-CSF), glucagon-like peptide 2 (GLP-2), 

keratinocyte growth factor (KGF) and hepatocyte growth factor (HGF), amongst others 

(Chen et al., 1999; Chen et al., 2013; Dignass and Podolsky, 1993; Lawrance et al., 2001; 



46 
 

Leppkes et al., 2014; Li et al., 2016a; Scharl et al., 2016; Shen et al., 2015; Smith et al., 

2011). Several of these growth factors have been shown to be altered and suggested to 

play a role in IBD pathogenesis. They can regulate cell proliferation but also mediate 

processes such as extracellular matrix formation, cell migration and differentiation, 

immune regulation, and tissue remodeling.  

1.3.1.3.1 Insulin-like growth factor-1 (IGF-1) 

IGF-1 is a 70 amino acid polypeptide growth hormone synthesized primarily in the liver 

but also in the GI. It is found in the fetal intestine and in human milk, suggesting a role in 

intestinal development (Han et al., 1988; Hormi and Lehy, 1994; Menard and Pothier, 

1991) and its production can be regulated by GH, insulin, and caloric intake (Bortvedt 

and Lund, 2012). Nevertheless, IGF-1 can be locally produced through autocrine or 

paracrine mechanisms apart from its endocrine source in the liver, and macrophages have 

been proposed as a major source of extra-hepatic IGF-1 (Gow et al., 2010).  

As illustrated in Table 2, IGF-1 is a marker of wound-healing macrophages, 

mainly induced by IL-4, contributing to wound-healing through the induction of 

migration and helping tissue regeneration (Chen et al., 1999; Leoni et al., 2015; Mosser 

and Edwards, 2008; Roszer, 2015; Sierra-Filardi et al., 2011). IL-4 is a cytokine produced 

by various immune cells, which is considered a major regulator of wound-healing and 

tumor-associated macrophage (TAM) phenotypes and determines the balance of pro- and 

anti-inflammatory cytokines produced (Mosser and Edwards, 2008; Paul and Zhu, 2010).  

Although IGF-1 has been implicated in a number of anti-inflammatory effects, in 

particular in the context of artherosclerosis, muscle and skin repair (Higashi et al., 2010; 

Spies et al., 2001; Sukhanov et al., 2007; Tidball and Welc, 2015), other reports suggest 

that IGF-1 has pro-inflammatory functions. For instance, IGF-1 has been reported to 

enhance chemotactic migration and to stimulate TNF-α expression in 

monocytes/macrophages (Hochberg et al., 1992; Renier et al., 1996). Thus, additional 

studies are required to clarify the action of IGF-1 on intestinal inflammatory processes. 

The IGF-1 pathway has been linked to cancer and IBD by modulating the innate 

and adaptive immune systems as well as through its multi-functional involvement in the 

tumor microenvironment (TME) (Sanchez-Lopez et al., 2015; Smith, 2010). IGF-1 has 

been implicated in inflammation, inflammatory cell recruitment, proliferation, cell growth 

and sustaining macrophage alternative activation, collectively a number of features that 

promote tumorigenesis upon sustained and high exposure to this growth factor (Knuever 
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et al., 2015; Lawrance et al., 2001; Li et al., 2015; Mourkioti and Rosenthal, 2005; Pelosi 

et al., 2007).  

Moreover, besides its role as a growth hormone, IGF-1 can function as 

chemoattractant (Roussos et al., 2011) and experimental evidence suggests that IGF-1 

production by myeloid cells regulates inflammatory cell recruitment (Knuever et al., 

2015; Mourkioti and Rosenthal, 2005; Pelosi et al., 2007). In fact, IGF-1 can induce 

macrophage migration in transwell chambers, which is impaired by chemical inhibitors of 

integrin and p38 signaling (Furundzija et al., 2010). However, migration and wound-

healing are not always beneficial processes, as they can also promote tumorigenesis. In 

this sense, increasing evidence has shown the importance of IGF-1 receptor signaling in 

colorectal cancer (Brahmkhatri et al., 2015; Dowling et al., 2016; Sanchez-Lopez et al., 

2015; Schafer and Werner, 2008; Vigneri et al., 2015; Wang et al., 2015a; Yao et al., 

2016; Zhuang et al., 2016). The early evidence linking the IGF-1 receptor to cancer was 

the finding that the transformation of mouse embryo fibroblasts (MEFs) requires an 

intact Igf1r gene (Salisbury and Tomblin, 2015). Nowadays, the IGF-1 pathway is 

gaining tremendous interest due to its important role in cancer as well as IBD 

(Brahmkhatri et al., 2015; El Yafi et al., 2005; Lawrance et al., 2001; Sanchez-Lopez et 

al., 2015; Sipos et al., 2008). Numerous cancer types have been shown to be associated 

with aberrant IGF-1 signaling, moreover a large amount of work performed in vitro, 

in vivo, and in clinical studies have shown that increased IGF-1 and IGF1R activity 

contributes to the pathogenesis of colorectal cancer. Thus, IGF-1 has been linked to 

wound-healing, inflammatory cell recruitment, alternative macrophage activation and cell 

proliferation as well as activation of the phosphoinositide 3-kinase (PI3K) and β-catenin 

pathways implicated in resistance to therapeutic agents (Clayton et al., 2011; Mourkioti 

and Rosenthal, 2005; Spadaro et al., 2017; Vigneri et al., 2015)..   

IGF-1 expression is also increased in the intestine of animal models of IBD and in 

patient's with Crohn’s disease (Theiss et al., 2004). In fact, evidence suggests that IGF-1 

may increase the risk of intestinal cancer and fibrosis, and high levels of IGF-1 in the 

circulation may increase the risk of colon cancer (Shim and Cohen, 1999; Wang et al., 

2015a). IGF-1 is one of the most potent natural stimulators of growth and proliferation in 

multiple cell types in the body, and despite its possible benefits, GH in IBD therapy may 

introduce some risks and complications, such as colon cancer, due to its effector hormone 

IGF-1. Therefore, further investigation is required on the role of IGF-1 in IBD (Eivindson 
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et al., 2005; Lawrance et al., 2001; Lund and Zimmermann, 1996; Pucilowska et al., 

2000; Simmons et al., 1995; Simmons et al., 2002; Theiss et al., 2004; Xin et al., 2004; 

Zatorski et al., 2016). 

Binding of IGF-1 to IGF1R, a transmembrane tyrosine kinase receptor with 

structural homology to insulin receptors (IRs), induces its autophosphorylation, which can 

lead to the activation of insulin receptor substrate 1(IRS-1)/PI3K/AKT and extracellular 

signal–regulated kinase (ERK pathways) (Foulstone et al., 2005; Furundzija et al., 2010; 

Kuemmerle and Zhou, 2002). However, the IGF-1 system involves complex regulatory 

networks (Figure 7). Key molecules include the ligands IGF-1 and IGF-2, the type 1 and 

type 2 IGF receptors (IGF1R and IGF2R, respectively), IGF-1R and IR hybrids, the IGF-

binding proteins (IGFBPs), and the proteins involved in intracellular signaling distal to 

IGF-1 receptor (Pollak, 2004). Importantly, IGFs and IGFBPs can be also locally 

produced through autocrine or paracrine mechanisms apart from its endocrine source 

from the liver. These mechanisms often involve interactions between stromal- and 

epithelial-cell subpopulations (Denduluri et al., 2015).  
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Figure 7. Schematic representation of the IGF-1 bioregulation system, signaling 
pathways and the cellular processes downstream of IGF-I. 

Apart from IGF-I, the system consists of the receptors IGF1R, IGF2R, IR, and IGF-IR, IR hybrids, and at 
least six high affinity IGFBPs. IGF-I circulates mainly in an IGF/IGFBP-3/ALS complex. Binding of 
IGFBPs to IGF-I prevents the ligand to interact with the receptor(s) and IGFBPs can modulate, the extent of 
IGF-1-dependent cellular effects. Proteolysis of IGFBPs by proteases, such as urokinase-type plasminogen 
activator (uPA), plasmin and MMPs, results in an increase of bioavailability of IGF-1 for interaction with 
the IGF-1R. Some IGFBPs can exert also an IGF-IR-independent bioactivity. ALS, acid-labile subunit; 
ECM, extracellular matrix. 
The arrows indicate an activating effect and the dashed lines represent an inhibitory effect. 
(Modified from Front. Endocrinol. (Philippou et al., 2013)) 
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1.3.2 Colitis-associated cancer (CAC) 
Colorectal cancer (CRC) defines the presence of a malignant tumor in the colon or 

rectum. It is estimated that each year more than one million people will develop CRC 

worldwide and the mortality of this disease is approximately 35% in the developing 

world. CRC is the third most common malignancy and fourth most common cause of 

cancer mortality worldwide (Huxley et al., 2009). The risk of developing CRC throughout 

a lifetime is about 5%. The statistical lifetime risk is similar in men and women despite 

higher incidence rates in men because women have longer life expectancy (Siegel et al., 

2016). The causes of CRC and its mechanism of pathogenesis are complex and 

heterogeneous. Diet and lifestyle factors, somatic and hereditary mutations contribute to 

the development of CRC. Risk factors include diets rich in unsaturated fats, processed 

and red meat, total energy intake and reduced physical activity as well as excessive 

alcohol consumption. Most cases of CRC occur sporadically and contributing factors 

include age, male sex, previous chromosome polymorphisms and family history of CRC 

(Huxley et al., 2009).  

Nevertheless, chronic inflammation is one of the main reasons for development of 

neoplasia in the colon. Colitis-associated cancer (CAC) is a type of CRC induced by 

inflammatory disorders in the colon, such as IBD. Although inflammation induced cancer 

is considered less frequent than those caused by hereditary mutations or sporadic causes, 

it is a serious complication in IBD (Rogler, 2014; Sussman et al., 2012; Yang and Jobin, 

2014). The link between inflammation and carcinogenesis is not a recent one, more than 

150 years ago, Rudolf Virchow hypothesized that inflammation could be linked to 

subsequent carcinogenesis (Balkwill and Mantovani, 2001). Considerable evidence 

suggests that chronic inflammation plays an important role in the development of CAC. 

Individuals with longstanding colonic inflammation due to IBD have an increased 

susceptibility to CAC (Bernstein et al., 2001). The risk of CRC increases with the 

duration of the disease. Thus, there is an incidence of 2% after 10 years of illness, 9% 

after 20 years and more than 20% of IBD patients develop CAC within 30 years of 

disease onset with more than 50% of these patients will dying from this type of cancer 

(Goel et al., 2011; Lakatos and Lakatos, 2008). Moreover, the risk increases with the 

duration of illness, severity and extent of inflammation (Itzkowitz and Harpaz, 2004; 

Lanas, 2009; Rigas and Tsioulias, 2015). Additionally, recent data suggests that chronic 
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inflammation may partially mediate the link between obesity and CAC (Belkina and 

Denis, 2012).  

Even though immune mediated mechanisms are responsible for CAC, there are 

similarities between inflammation induced carcinogenesis and other types of CRC. The 

important stages of colon cancer development such as formation of aberrant crypt foci 

(ACF), polyps, adenomas and carcinomas are similar between CAC and CRC, even 

though different pathogenic sequences have been proposed for colitis associated 

tumorigenesis, such as chronic inflammation and injury-dysplasia carcinoma (Barker et 

al., 2009; Bernstein et al., 2001; Goldstone et al., 2011). They also exhibit comparable 

genetic similarities such as chromosomal and microsatellite instabilities. Nevertheless, 

despite these similarities there are important differences between inflammation and 

sporadic-induced CRC. The frequency and timing of genetic alterations, as the activation 

of proto-oncogenes such as Ras and the inactivation of tumor suppressor genes such as 

adenomatous polyposis coli and p53 that are important for the development of the 

majority of CRCs, differ remarkably in sporadic CRC and CAC (Eshghifar et al., 2017; 

Fodde, 2002; Hadziavdic et al., 2008; Hisamuddin and Yang, 2004; Hisamuddin and 

Yang, 2006). 

During colorectal carcinogenesis, colonic epithelial cells accumulate genetic 

mutations, which are mostly induced by environmental factors that confer a selective 

growth advantage (Erreni et al., 2011). It has been shown that CRC expands in a bottom-

up fashion (Barker et al., 2009; Preston et al., 2003). This model assumes the origin of the 

cancer cells at the bottom of the crypts, where intestinal stem cells are located, and their 

expansion towards colon lumen (Preston et al., 2003). At the onset, chronic inflammation 

causes injuries, which leads to development of dysplasia proceeding to colorectal 

carcinoma (Radtke and Clevers, 2005; Terzic et al., 2010). Aberrant crypts are the first 

notable changes that can develop further to tumorigenic tissue. Furthermore, through 

promotion and progression, adenocarcinoma develops with the possibility of invasion, 

resulting in metastasis (Goldstone et al., 2011; Radtke and Clevers, 2005; Ullman and 

Itzkowitz, 2011). It has become clear that besides the occurrence of genetic or epigenetic 

abnormalities, an inflammatory microenvironment involving growth factors and 

cytokines secreted by activated monocytes and macrophages also plays a pivotal role in 

the formation of benign polyps and can lead to the development of invasive colorectal 

tumors (Erreni et al., 2011). Over the past years the link between inflammation and 

cancer is starting to have implications for prevention and treatment. However, although 
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considerable progress has been made in IBD research, a complete understanding of the 

mechanisms and the pathogenesis of CAC is not yet fully achieved, which makes it 

particularly challenging (Gulbake et al., 2016). 

1.3.2.1 Immunological tumor microenvironment (TME) 

Tumors are complex tissues comprising not only the tumor cells, but also the TME, which 

provide the growing tumor with nutrients and growth factors, and also contribute space 

for the tumor to expand and to escape the host immune response. The tumor-associated 

environment is composed of the extracellular matrix (ECM) and normal cells e.g. 

fibroblasts, vascular and lymphatic endothelial cells, pericytes and smooth muscle cells, 

as well as cells of innate and adaptive immunity, all of which interact with each other and 

with the malignant cells (Fridman et al., 2013; Hanahan and Weinberg, 2011; Pietras and 

Ostman, 2010). Tumor progression depends on the interaction of tumor cells with 

components of the TME. Moreover, tumor cells are able to remodel the stroma and to 

establish a permissive microenvironment for their progression (Pietras and Ostman, 2010; 

Romero-Lopez et al., 2017; Roussos et al., 2011). The capacity of carcinomas to recruit 

and activate immune cells, including macrophages – referred to as TAMs  when recruited 

to the tumors - largely depends on malignant cells having acquired an undifferentiated 

phenotype with loss of epithelial markers and expression of mesenchymal markers as part 

of the so-called epithelial-to-mesenchymal transition (EMT). In turn, tumor cells, 

particularly those that have undergone an EMT secrete factors that modulate and activate 

cells in the TME (Su et al., 2014). 

A major contributor to the TME is inflammation and inflammatory mediators. The 

recognition of chronic inflammation as a trait acquired by tumor cells necessary for 

survival, growth, and metastasis has intensified studies on the role of intratumoral 

inflammatory cells and pro-inflammatory cytokines in cancer initiation and progression 

(Colotta et al., 2009; Hanahan and Weinberg, 2011; Mantovani et al., 2008). Similar to 

most other solid tumors, almost all immune cell types but also non-immune cell types 

may be found in colon carcinomas, including monocytes, macrophages, neutrophils, 

myeloid-derived suppressor cells (MDSCs), DCs, mast cells, NK-cells, naive and 

memory lymphocytes, B cells and various subsets of T cells, cancer-associated fibroblasts 

(CAFs), endothelial cells, endothelial progenitor cells (EPCs), platelets, and 

mesenchymal stem cells (MSCs) (Fridman et al., 2012; Lee et al., 2010; Murdoch et al., 

2008). Nevertheless, myeloid cells (mainly monocytes and macrophages) are the 
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predominant leukocytes that infiltrate tumors and are known to support primary tumor 

growth and progression (Gabrilovich et al., 2012; Murdoch et al., 2008; Parihar et al., 

2010; Sanchez-Lopez et al., 2015). Interestingly, targeting the recruitment of immune 

cells to the site of inflammation has evolved as a strategy to impede tumorigenesis 

(Grivennikov et al., 2010). 

The two main factors contributing to this infiltration are inflammation and 

chemokines secreted by both tumor cells and stromal cells (Coussens and Werb, 2002; 

Erreni et al., 2011; Green et al., 2009; Jedinak et al., 2010). Although infiltrates of 

inflammatory cells can vary in size and composition from tumor to tumor, their presence 

demonstrates that the host is not ignorant of the developing tumor, but rather attempts to 

interfere with tumor progression, a process referred to as immune surveillance (Zitvogel 

et al., 2006). In this sense, the initial role of infiltrating cells is not necessarily tumor 

promotion, and they may constitute an attempt of the host to eliminate detected tumor 

cells (de Visser et al., 2006; Zitvogel et al., 2006). However, during tumorigenesis, the 

dynamic interaction between stromal and tumor cells changes in favor of tumor 

progression as it influences and exploits stromal cells to promote tumor cell proliferation, 

survival, and metastasis (de Visser et al., 2006; Murray and Wynn, 2011; Zitvogel et al., 

2006).  

It has been established that IBD promotes CAC development mainly through 

activation of nuclear factor-κB (NF-κB) and signal transducer and activator of 

transcription 3 (STAT3) (Greten et al., 2004; Grivennikov et al., 2009), and possibly yes-

associated protein 1 (YAP1) and Notch (Taniguchi et al., 2015). These transcription 

factors can activate genes that promote the survival of epithelial cells and expose them to 

growth-promoting inflammatory cytokines (Terzic et al., 2010). More recently, it became 

clear that even without pre-existing IBD, inflammation occupies a key position in the 

development of sporadic CRC. As soon as the adenomatous polyposis coli locus is lost in 

mice and ACF lesions - pre-neoplastic lesions on the mucosa - appear, there is an 

accompanying loss of mucin-2 production and junctional adhesion molecules, resulting in 

barrier defects and invasion of ACF lesions and early adenomas with commensal enteric 

bacteria or their products (Grivennikov et al., 2012). Similarly, humans with germline 

adenomatous polyposis coli mutation develop hundreds of colon tumors in their first few 

decades of life, a condition referred to as familial adenomatous polyposis (FAP) 

(Zeineldin and Neufeld, 2013). 
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Besides different stimuli like growth factors and immunosuppressive cytokines 

supplied by the TME, one of the factors that determine the nature of inflammatory 

infiltrates found in the TME is the hypoxic environment. It is created early in the tumor 

development through activation of hypoxia-responsive genes in tumor cells and favors the 

influx of inflammatory cells, in particular macrophages and granulocytes (Aller et al., 

2004; Denko et al., 2003). These cells not only survive in the hypoxic environment but 

contribute to it by hyper-production of ROS upon local activation (Lluis et al., 2007).  

Nevertheless, factors released by the TME can either promote or inhibit tumor cell 

survival and metastatic dissemination, as well as access and responsiveness to therapy. 

Therefore, understanding the cellular and molecular interactions operative in the tumor 

microenvironment is of crucial importance, and changing the chronic to acute 

inflammation at the tumor site might be therapeutically beneficial (Whiteside, 2008). 

1.3.2.2 Tumor-associated macrophages (TAMs) 

Macrophages comprise a large amount of the immune cell infiltrate in solid tumors 

(Lewis and Pollard, 2006). They are derived from blood monocytes that are recruited to 

the tumor by growth factors, chemokines, and angiogenic factors such as CSF-1, CCL2, 

CCL3, CCL4, CCL5, VEGF, and angiopoietin-2 and are thought to be involved in every 

aspect of tumor development and progression (Lewis and Pollard, 2006; Sica et al., 2008; 

Sica and Bronte, 2007; Tariq et al., 2017).  

Given the heterogeneity of macrophages, it is possible to find different TAM 

populations within the same tumor with a combination of both pro-inflammatory and anti-

inflammatory gene expression. Especially at early stages of tumor development 

macrophages involved in the cancer-initiating inflammatory process may begin acting as 

pro-inflammatory cells and undergo classical activation (also referred to as TAM1) 

(Franklin et al., 2014; Noy and Pollard, 2014). However, once tumors are established, 

macrophages are educated to become anti-inflammatory (also referred to as TAM2) 

(Colegio et al., 2014; Franklin et al., 2014; Noy and Pollard, 2014). Nevertheless, the 

mechanisms of this switch are not fully understood, although it has been suggested that 

environmental signals such as secreted tumor factors, accumulation of lactic acid or 

hypoxia may mediate this transition (Wen et al., 2015; Wenes et al., 2016; Zhang et al., 

2014a). Micro-environmental signals contributing to the switch and differentiation into 

mature macrophages include M-CSF, granulocyte-macrophage colony-stimulating factor 

(GM-CSF), prostaglandin E2 (PGE2), TGF-β, IL-6, IL-4 and IL-10. These factors have 
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the potential to modulate and polarize monocytes mainly into TAMs (Chanmee et al., 

2014; Goerdt and Orfanos, 1999; Mantovani et al., 2002). Several studies identified IL-4 

as a major regulator of the phenotypes of TAMs (Wang and Joyce, 2010). IL-4 is 

produced by Th2 lymphocytes, eosinophils, basophils or macrophages, as well as tumor 

cells and is an important cytokine in determining the balance of pro-inflammatory and 

anti-inflammatory cytokines, which in turn impinges on the type of immune reaction 

generated (Coussens et al., 2013; Huang and Chen, 2016; Martinez and Gordon, 2014).  

 It is clear that TAMs promote tumor angiogenesis and tissue remodeling with a 

potent ability to facilitate tumor initiation, progression, suppression of cytotoxic T 

lymphocyte (CTL) responses and metastasis through the secretion of several cytokines 

and growth factors (Grivennikov et al., 2010; Mantovani et al., 2002; Ruffell et al., 2014). 

It remains to be determined which TAM type is more important in tumor promotion, but 

it should be noted that TAM1 cells secrete classical pro-inflammatory cytokines, 

chemokines, and effector molecules, including IL-1, IL-6, TNF, IL-23, and iNOS, which 

are known to contribute to tumor initiation and early promotion (Grivennikov et al., 

2010). On the other hand, TAM2 cells produce growth factors and anti-inflammatory 

molecules, such as IL-10, TGF-β, and arginase 1 (ARG1) (Gabrilovich and Nagaraj, 

2009; Ruffell et al., 2014) (57, 60). Moreover, they promote angiogenesis and cancer cell 

migration and intravasation (Lin and Pollard, 2007). A phenotypic characterization that 

encompasses all TAMs has not emerged yet, but they seem to exhibit several 

characteristics of regulatory macrophages and also wound-healing macrophages. It is 

therefore hypothesized that the original classically activated macrophages that might have 

participated in tumor formation can progressively differentiate to a regulatory phenotype 

and eventually become cells that share the characteristics of both regulatory and wound-

healing macrophages (Mosser and Edwards, 2008).  

1.3.2.3 Wound-healing in CAC 

Severe mucosal tissue damage requiring efficient wound-healing is a main feature of IBD 

(Rieder et al., 2007). As described above (see section 1.3.1.3), proper wound-healing and 

tissue repair response requires precise coordination of overlapping but distinct phases to 

achieve resolution of inflammation and restore tissue integrity and homeostasis (Serhan 

and Savill, 2005). However, in severe injury or chronic inflammation, multiple aspects of 

wound-healing may be deregulated and can lead to the development of cancer (Balkwill 

and Mantovani, 2001; Chanmee et al., 2014; Sussman et al., 2012). In this sense, although 
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wound-healing programs and intestinal barrier integrity generally protect against injury 

and colitis, dysregulated wound-healing and epithelial regeneration is considered one of 

the requirements of CAC development, resulting in uncontrolled proliferation 

(Francescone et al., 2015; Low et al., 2014). Therefore, because of the overlap between 

mechanisms involved in wound-healing and tumorigenesis, tumors have been described 

as “wounds that do not heal” (Dvorak, 1986), and it is well accepted that chronic 

inflammation can result in excessive tissue regeneration and thereby enhance the 

progression of initiated tumor cells (Kuraishy et al., 2011). In fact, in mice, using the 

azoxymethane (AOM)/dextran sodium sulfate (DSS) experimental model of CAC, 

wound-healing pathways has been demonstrated to be required for the development and 

perpetuation of coltis-associated tumorigenesis (Sussman et al., 2012). This is in 

accordance with the idea that inflammation caused by tissue injury orchestrates wound-

healing and tissue regeneration, but when it cannot be properly resolved or it is + 

propagated chronically by repetitive injury, may result in tumor promotion by 

uncontrolled wound-healing processes (Kuraishy et al., 2011).  

Injury and ulceration induce wound-healing-regeneration responses, which includes 

migration of stem cells and their enhanced proliferation and expansion to fill in for 

damaged mucosa (Kuraishy et al., 2011). However, migration and proliferation, apart 

from being important for wound-healing processes, are also pro-tumorigenic properties of 

cancer cells (Schafer and Werner, 2008). If these cells harbor oncogenic mutations, which 

might be acquired from the pro-inflammatory environment (see section 1.3.1.1), local 

repetitive injury and regeneration will instigate their proliferation and tumor formation 

(Kuraishy et al., 2011). Additionally, immune cells secrete various cytokines and 

chemokines into the TME, some of which, e.g. EGF, IGF-1, IGF-2 or VEGF, actively 

induce proliferation. This is especially true for cells of the innate immune system, which 

is important for wound-healing and tissue remodeling (Beck and Podolsky, 1999; Dvorak, 

1986; Lund and Zimmermann, 1996; Rieder et al., 2007; Theiss et al., 2004).  

In the colon, intestinal stem cells reside at the origin of the migration, which is 

found just above the crypt base. Hence, the differentiated, functional cells are found 

toward the top of the colonic crypt. These cells become senescent in the latest stages of 

the differentiation process and are shed into the lumen. There is a finely tuned steady 

supply of cells generated in the low-to-mid-crypt region (Kaur and Potten, 1986; Loeffler 

et al., 1986). Similarly to homeostatic proliferation in the physiological steady-state, crypt 

regeneration after damage induction also appears to be initiated in the crypts. In fact, it 
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has been reported that epithelial cell proliferation is increased in association with the 

inflammatory process in several experimental models (Ioachim et al., 2004; Weiss et al., 

2014; Weiss et al., 2004).  However, it is unclear whether this proliferative activity is due 

to the direct stimulation of proliferation by cytokines, growth factors, and other mediators 

or whether it is attributed to the response of epithelial cell loss and subsequent altered 

cell-cell contacts. In consequence, enhanced proliferation may be a compensatory 

response to replace the loss of cells due to necrosis or apoptosis. Although this process is 

thought to contribute to tissue regeneration and recovery of homeostasis, the increase of 

cellular turnover in these stem cells enhances the risk of mutations leading to a 

carcinogenic phenotype (Negroni et al., 2015; Tanaka, 2009; Vogelstein et al., 1988) 

 The p38 MAPK signaling pathway 
MAPKs are serine/threonine protein kinases that convert a variety of extracellular stimuli 

into a wide range of cellular responses (Kyriakis and Avruch, 2012). MAPK pathways are 

ubiquitously expressed and activated by a variety of extracellular stressors including pro-

inflammatory cytokines, growth factors, hormones, osmotic shock, UV irradiation, 

bacterial lipopolysaccharide (LPS) and oxidative stress (Cuenda and Rousseau, 2007; 

Hazzalin et al., 1996). MAPKs are evolutionarily conserved among eukaryotes and 

control fundamental cellular processes such as gene regulation, growth, differentiation, 

migration, apoptosis, and proliferation (Cuadrado and Nebreda, 2010; Keyse, 2000). In 

mammals five MAPK groups have been characterized, the extracellular signal-regulated 

kinase (ERK) 1/2, c-Jun N-terminal kinase (JNK), ERK 3/4, ERK5 and p38 (Roux and 

Blenis, 2004). There are four isoforms of p38 MAPK, encoded by different genes, namely 

p38α (MAPK14), p38β (MAPK11), p38γ (MAPK12) and p38δ (MAPK13), each with 

differential tissue expression and overlapping but also distinct physiological roles 

(Cuadrado and Nebreda, 2010; Enslen et al., 2000; Keyse, 2000). 

BMDMs and peritoneal macrophages express all p38 MAPK isoforms, but p38α  

is the most abundantly expressed (Hale et al., 1999; Kitatani et al., 2009; Korb et al., 

2006; Risco et al., 2012). Coordinated activation of the four p38 MAPKs has been 

suggested in macrophages and it is considered that all may play a role in inflammation 

(Fearns et al., 2000). Moreover, analysis of monocytes, macrophages, neutrophils and T 

cells has shown that expression of p38 family members varies with the differentiation 

state of the cells (Hale et al., 1999). However, the expression of p38 MAPK isoforms in 

isolated intestinal macrophages has not been explored yet. 
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Several signaling events are involved in macrophage activation, phenotype 

plasticity, regulation of cell proliferation and survival. One of the pathways implicated in 

these processes includes the protein kinase p38α (Cuenda and Rousseau, 2007), which 

regulates the production of key inflammatory mediators, including TNFα, IL-1β, and 

cyclooxygenase-2 (COX-2) (Balkwill and Mantovani, 2001; Kim and Choi, 2015). The 

p38 MAPK pathway may regulate cytokines by a general effect on transcription, the 

activation of specific transcription factors, but also by post-transcriptional regulation 

(mRNA processing, nuclear export, mRNA stability and translation) (Cuadrado and 

Nebreda, 2010; Cuenda and Rousseau, 2007; Kaminska, 2005; Rani and Ransohoff, 

2005; Ronkina et al., 2010). Genetic inactivation of p38α in myeloid cells has provided 

evidence for the importance of this signaling pathway in cytokine production and 

inflammatory responses in vivo in models of colitis and arthritis (Guma et al., 2012; 

Otsuka et al., 2010) and in vitro in macrophages derived from mice (Bachstetter et al., 

2014; Kang et al., 2008).  

The MAPK signaling pathway functions as a cascade that is composed of a 

canonical three tier hierarchy of kinases (Cuenda and Rousseau, 2007). At the very top, 

the MAPK kinase kinase (MAP3K) is activated by cellular signaling components in 

response to a stimulus. Once active, the MAP3K phosphorylates an associated MAPK 

kinase (MAP2K), inducing conformational changes that mediate binding to its target 

MAPK, the terminal component of the cascade (Roux and Blenis, 2004). Once the MAPK 

is phosphorylated, and therefore activated, it can phosphorylate a plethora of cellular 

factors to control gene expression and various other cellular processes (Figure 8) 

(Kyriakis and Avruch, 2012; Roux and Blenis, 2004; Trempolec et al., 2013).  

Multiple MAPK pathways belonging to distinct sub-families are present in nearly 

all eukaryotic organisms and exist in parallel (Johnson and Lapadat, 2002; Kyriakis and 

Avruch, 2012). While one might think of each MAPK pathway as being separated and 

linear, evidence reflects that a stimulus can activate different MAPKs as well as different 

isoforms within each MAPK pathway. Therefore, it is likely that the final cellular 

outcome depends on the contribution of different MAPKs. Some components of signaling 

pathways are shared between families and this seems to increase in components that lie 

upstream in the cascade (Johnson and Lapadat, 2002).  

The canonical activation of p38 MAPKs is achieved through the dual-specificity 

MAP2Ks MKK3, MKK4 and MKK6, which phosphorylates p38 in the activation loop 



59 
 

sequence Threonine-Glycine-Tyrosine (Cuenda and Rousseau, 2007; Kyriakis and 

Avruch, 2012). The MKK responsible for the activation of a specific cell type is also 

dependent on the stimuli and the cell type (Remy et al., 2010). MKK3 and MKK6 are the 

dominant MKKs in the activation of the p38 MAPK pathway (Alonso et al., 2000; 

Cuadrado and Nebreda, 2010; Zarubin and Han, 2005). Both are highly selective for p38 

MAPKs but do not activate JNKs and ERK1/2 (Brancho et al., 2003; Cuenda and 

Rousseau, 2007). However, MKK4, an upstream kinase of JNK, has also been shown to 

be capable of activating p38α and p38δ in specific cell types (Zarubin and Han, 2005).  

 

 

Figure 8. p38 MAPK signaling pathway.  

A variety of stimuli, activate p38 MAPK through complex kinase cascades that phosphorylate p38 MAPKs. 
Once activated, the different p38 MAPKs either phosphorylate cytoplasmic targets or translocate into the 
nucleus leading to the regulation of transcription factors involved in cellular responses. MKK6 is the major 
activator of all p38 MAPK isoforms, while MKK3 and MKK4 are more specific and can only activate some 
isoforms (modified from Atlas of Genetics and Cytogenetics in Oncology and Haematology; 2011, Vol. 15, 
N° 3 ; p. 316-326) 
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p38α is ubiquitously expressed at significant levels in most cell types, and has 

therefore been considered the dominant form within this family, whereas the others seem 

to be expressed in a more tissue-specific manner, e.g. p38β in brain p38γ in skeletal 

muscle and p38δ in endocrine glands (Cuadrado and Nebreda, 2010). p38α activation can 

lead to cellular outcomes in a cell- and context- specific manner. In consistence, the 

relative contribution of upstream kinases also depends on the stimuli and the cell type. 

Nevertheless, little is known about how these interconnected components relays and 

integrate specific information (Brancho et al., 2003; Otto et al., 2012). In contrast to 

p38α, p38β appears to be required neither for acute nor chronic inflammatory responses 

(Igea and Nebreda, 2015). The mechanism that accounts for the specificity of MAP2Ks to 

activate MAPK isoforms is mediated partially by an interaction between an N-terminal 

region located on the MAP2K and different docking sites present on the MAPK, as well 

as by the structure of the MAPK activation loop (Bardwell and Thorner, 1996; Biondi and 

Nebreda, 2003; Enslen et al., 2000). MAPK pathways also use molecular scaffolds to 

achieve signaling specificity. These can physically co-localize proteins in a cascade, 

while excluding components of other parallel MAPK pathways, in order to mediate a 

specific signal. However, although a number of scaffold proteins have been implicated in 

the regulation of different MAPK signaling modules, not many have been found to 

participate in the p38 MAPK cascade (Kolch, 2005; Morrison and Davis, 2003). 

Feedback inhibition of MAPK signaling is achieved in most cases through MAPK 

phosphatases (MKPs) that reverse the phosphorylation of its own components or 

components of a neighboring pathway and return the MAPK to its inactive state. This 

mechanisms further contributes to signaling fidelity (O'Rourke and Herskowitz, 1998; 

Owens and Keyse, 2007). Given the strong evidence implicating p38 MAPK in a variety 

of pathological conditions, it is of interest to interfere therapeutically with the activity of 

p38 MAPKs. Therefore, several chemical inhibitors have been developed. However, 

despite the high sequence homology of p38 MAPK isoforms, they differ in their 

sensitivity to these compounds (Coulthard et al., 2009; Cuenda and Rousseau, 2007). p38 

MAPK chemical inhibitors include SB-203580, VX-745, VX-702, RO-4402257, SCIO-

469, BIRB-796, SD-0006, PH-797804, AMG-548, LY-2228820, SB-681323 and GW-

856553, amongst others (Buhler and Laufer, 2014; Genovese, 2009). Several of the 

compounds have proven efficacy in preclinical models and have good pharmacological 

properties and therefore have reached clinical trials, as for instance PH-797804, BIRB-
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796, VX-702, SB-203580 and LY-2228820 (Buhler and Laufer, 2014; Cohen, 2009; 

Cohen et al., 2009; Goldstein et al., 2010; Tate et al., 2013). 

The p38 MAPK pathway has been implicated in different pathological conditions. 

The effect of p38 MAPK inhibition has been studied in a number of chronic inflammatory 

diseases and cancer (Cai et al., 2017; Del Reino et al., 2014; Lin et al., 2016; Rajashekhar 

et al., 2011; Sakkinen et al., 2016; Yang et al., 2014; Yong et al., 2009; Yu et al., 2016). 

Table 3 shows a list of p38 MAPK inhibitors that have been tested in disease models. 

 

Inhibitor Indication Model Outcome Reference 
SB-203580 Asthma In vivo: in BAL fluid of 

rat 
Inhibition of TNF-α and IL-1β 
production 

(Escott et al., 
2000; Haddad 
et al., 2001) 

 RA In vivo: Murine model 
of collagen-induced 
arthritis 

Prevention of RA progression (Badger et al., 
1996) 

 IBD In vivo: DSS-induced 
ulcerative colitis mice 
model 

Reduction of mRNA levels of 
pro-inflammatory cytokines 
RICK inhibition 

(Hollenbach et 
al., 2004) 

 Cancer-related 
diseases 

In vitro: PC12 cancer 
cells 

Block of neuronal outgrowth (Morooka and 
Nishida, 1998) 

  In vitro: Colon cancer 
cells 

Growth inhibition and 
apoptosis induction 

(Lim et al., 
2006) 

  In vitro: Human breast 
epithelial cells 

Inhibition of H-Ras-induced 
invasion/migration 

(Kim et al., 
2003; Song et 
al., 2006) 

  In vitro: Human breast 
epithelial cells 

Inhibition of TGF-β-induced 
invasion/migration 

(Kim et al., 
2004; Kim et 
al., 2005; Kim 
et al., 2007) 

  In vitro: Human glioma 
cells 

Inhibition of GDNF-induced 
migration 

(Song and 
Moon, 2006) 

  In vivo: MMTV-neu 
model 

Inhibition of tumor suppressor 
pathways 

(Bulavin et al., 
2004) 

SB-239063 Asthma In vivo: in BAL fluid of 
rat 

Reduction of neutrophil 
infiltration, IL-8, IL-6 and 
MMP-9 

(Underwood 
et al., 2000) 

 Brain 
inflammation 
and stroke 

In vivo: in rat Reduction of infarct volume (Barone et al., 
2001a; Barone 
et al., 2001b; 
Legos et al., 
2001) 

SB-220025 RA In vivo: Murine model 
of collagen-induced 
arthritis 

Prevention of RA progression (Jackson et al., 
1998) 

SB-202190 Cancer In vitro: Human gastric 
cancer cells 

Reduction of AP-1 activity 
and increase of the sensitivity 
to chemotherapy 

(Guo et al., 
2008) 

 Atherosclerosis In vivo: in rabbit Prevented macrophage 
(J774A.1) content of rabbit 
atherosclerotic plaques 
through apoptosis 

(Croons et al., 
2009) 
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1.4.1.1 p38α MAPK in IBD 

Given the role of p38 MAPK signaling in the regulation of inflammatory pathways, the 

implication of this pathway in IBD has been extensively investigated. Solid evidence has 

been found showing that p38 MAPK signaling plays an important role in bowel 

inflammation and may be responsible for the immune-pathogenesis of the overactive 

immune system. Moreover, p38 MAPK activity was found increased in patients 

suffering from IBD (Hommes et al., 2002; ten Hove et al., 2002; van Montfrans et al., 

2002). After the activation of p38 MAPK, pro-inflammatory cytokines, such as IL-1β and 

TNF-α, are increasingly produced and secreted. Inversely, IL-1β and TNF-α can activate 

p38 MAPK as well, establishing a positive feed-back loop (Li et al., 2006). Moreover, 

p38α in lymphatic endothelial cells has been involved in the TNFα-dependend up-

regulation of mucosal addressin cell adhesion molecule-1 (MAdCAM-1), which 

regulates lymphocyte homing to Peyer’s patches and lymph nodes in the gut and plays 

 CRC In vivo: Xenografts of 
human colon cancer 
cell lines 

Induction of apoptosis and 
inhibition of proliferation 

(Chiacchiera 
et al., 2009) 

  In vivo: APCmin model Induction of apoptosis and 
inhibition of proliferation 

(Chiacchiera 
et al., 2009) 

SB-242235 RA In vivo: Murine model 
of adjuvant-induced 
arthritis 

Inhibition of TNF-α (Badger et al., 
2000) 

RW-J67657 Systemic 
inflammation 

In vivo: LPS-injected 
mice and rats 

Reduction of TNF-α release (Wadsworth et 
al., 1999) 

SD-282 Brain 
inflammation 
and stroke 

In vivo: APP571 mice 
(have higher activity of 
p38 MAPK) 

Protection of brain against 
ischemic injury 

(Maroney et 
al., 2001) 

BIRB-796 Cancer In vitro: Paracrine 
tumor cell 

Inhibition of IL-6 secretion 
and proliferation 

(Yasui et al., 
2007) 

R-130823 RA In vivo: Murine model 
of adjuvant-induced 
arthritis 

Reduction of hind paw 
swelling 

(Wada et al., 
2005) 

Talmapimod 
(SCIO-469) 

MM In vivo: Mouse 
plasmacytoma model 
of MM 

Inhibition of MM tumor 
weight 

(Navas et al., 
2006) 

LY-2228820 Breast Cancer In vivo: Xenografts of 
human breast cancer 
cell lines 

Reduction of tumor growth (Campbell et 
al., 2014) 

PH-797804 Breast Cancer In vivo: PyMT model 
in mice 

Sensitization of tumor cells to 
cisplatin induced apoptosis 

(Pereira et al., 
2013) 

 CAC In vivo: AOM/DSS 
induced colon tumor 

Induction of apoptosis and 
inhibition of proliferation 

(Gupta et al., 
2014) 

Table 3. p38 MAPK inhibitors used in in vitro and in vivo studies. 

BAL: Bronchoalveolar lavage; GDNF: Glial cell-derived neurotrophic factor; MM: Multiple myeloma; PyMT: 
polyoma middle T; RA: Rheumatoid arthritis; RICK: Rip-like interacting caspase-like apoptosis-regulatory 
protein kinase 
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an important role in chronic intestinal inflammation (Oshima et al., 2001). Consistent 

with this result, in an animal model for mucosal infection based on Citrobacter 

rodentium infection, p38α has been shown to be critical for chemokine expression, 

subsequent immune cell recruitment into the intestinal mucosa, and clearance of the 

pathogen (Kang et al., 2010). 

On the other hand, p38α has been found to have distinct functions in mouse 

myeloid cells versus the colonic epithelium in the context of experimental models, such 

as the DSS-induced acute colitis model (Gupta et al., 2014; Otsuka et al., 2010; Wakeman 

et al., 2012). When p38α is downregulated in IECs, intestinal barrier function is lost, 

leading to more epithelial damage and more inflammation. However, p38α 

downregulation in myeloid cells was found to have a protective function, probably due to 

well-known involvement in the regulation of cytokines (Cuadrado and Nebreda, 2010; 

Gupta et al., 2014; Gupta et al., 2015; Otsuka et al., 2010). Of note, the different functions 

of this kinase in IECs or in myeloid cells in the context of inflammation-associated colon 

tumorigenesis highlights the importance of selectively targeting specific cell types and 

should be taken into consideration for more successful therapeutic interventions in this 

pathway. Perhaps this is why the p38α inhibitors have not yielded clear results in clinical 

trials so far (Gupta et al., 2015; Patterson et al., 2014). 

1.4.1.2 p38α MAPK in CAC 

Using several animal models, p38α signaling has been reported to be involved in 

tumorigenesis and the pathogenesis of a broad range of human cancers, such as breast, 

colon, lung and liver (Wagner and Nebreda, 2009; Xu et al., 2014; Yong et al., 2009)                     

(Cuadrado and Nebreda, 2010; Igea and Nebreda, 2015). In a mouse model of AOM/DSS 

induced colitis-associated tumorigenesis, it has been shown that p38α in IECs has a dual 

function in colon cancer development. On the one hand, p38α in IECs is involved in the 

maintenance of mucosal homeostasis by regulating intestinal epithelial barrier function 

and therefore protecting mice from DSS-induced intestinal inflammation and AOM/DSS-

induced tumorigenesis. However, p38α inhibition in transformed colon epithelial cells 

reduces the tumor burden through inhibition of proliferation and induction of apoptosis. 

Thus, p38α suppresses DSS-induced epithelial damage and inflammation-associated 

tumorigenesis, but contributes to the proliferation and survival of tumor cells.(Gupta et 

al., 2014).  
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2. OBJECTIVES 

p38α MAPK plays crucial roles in inflammation and tissue homeostasis. For example, 

p38α controls the production of leukocyte chemoattractants and other pro-inflammatory 

mediators, and is therefore a potential target for therapeutic intervention in inflammatory 

diseases (Corvinus et al., 2005; Cuadrado and Nebreda, 2010; Grivennikov et al., 2010). 

There is also evidence implicating this kinase in macrophage activation as well as in the 

regulation of phenotype plasticity, cell proliferation and survival (Cuenda and Rousseau, 

2007).  Genetic inactivation of p38α in myeloid cells has provided evidence for the 

importance of this signaling pathway in cytokine production and inflammatory responses 

in models of colitis, skin inflammation and sepsis (Kim et al., 2008; Otsuka et al., 2010; 

Wagner and Nebreda, 2009). Although p38α is thought to contribute to the pathogenesis 

of IBD, clinical trials and animal studies have not yielded promising results so far (Gupta 

et al., 2015; Patterson et al., 2014). There is evidence that p38α in IECs suppresses 

inflammation-associated tumorigenesis, but contributes to the survival of colon tumor 

cells (Gupta et al., 2014), However, whether myeloid p38α signaling can affect intestinal 

homeostasis, repair mechanisms and tumorigenesis remains unclear. Thus, a better 

understanding of how macrophage functions are controlled during CAC would provide 

important insights into their impact on systemic and local inflammation.  

Considering the above information, we propose four main objectives:  

 

1. To characterize the role of myeloid p38α signaling in the regulation of intestinal 

mucosal homeostasis and inflammation using the DSS-induced colitis mouse 

model. 

 

2. To evaluate the impact of myeloid p38α downregulation on CAC using the 

AOM/DSS-induced model of colitis-associated tumorigenesis.  

 

3. To characterize novel downstream targets of p38α signaling and how these 

impinge on the proliferation, migration or survival of IECs. 

 

4. To decipher the molecular and cellular mechanisms regulated by myeloid p38α 

signaling in IBD and CAC using in vitro and in vivo models.  
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3. MATERIALS AND METHODS 

 Commercial reagents and kits 

3.1.1 Reagents 

Reagent Reagent Abbreviation 
Commercial 

House 
Reference 

30% Acrylamide/Bis 

(37.5:19) 

 Biorad 1610158 

4’,6‐diamidino‐2‐

phenylindole 

DAPI Invitrogen MP-36930 

Actinomycin D ActD Sigma-Aldrich A1410 

Agarose D1 medium EEO  Conda Pronadisa 8021 

Ammonium chloride  Sigma-Aldrich A9434 

Ammonium persulfate APS Sigma-Aldrich A3678 

Azoxymethane AOM Sigma-Aldrich A2853 

Bovine serum albumin BSA Sigma-Aldrich A7906 

Bradford Reagent  Sigma-Aldrich B6916 

Bromophenol blue  Sigma-Aldrich B8026 

β-mercaptoethanol  Sigma-Aldrich M7154 

Calcium chloride CaCl2 Sigma-Aldrich 449709 

CD16/32 Blocking 

Antibody 

Cluster of Differentiation 

16/32 Blocking Antibody 

eBioscience 16-0161-85 

Chloroform  Merck 1024451000 

Collagenase D  Roche 11088866001 

Collagenase V  Sigma-Aldrich C9263 

Deoxynucleotide 

triphosphate mix (10 mM) 

dNTPs mix  Fermentas R0192 

Dextran sodium sulfate 

(molecular weight 36-50 

kDa) 

DSS  MP Biomedicals 160110 

Dimethylsulfoxide DMSO Sigma-Aldrich D8418 

Dispase  Gibco 17105-041 
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Reagent Reagent Abbreviation 
Commercial 

House 
Reference 

DNA Gel Loading Dye (6x)  Thermo 

Scientific 

R0611 

DNA ladder  Niborlab LR100-5 

DNase Deoxyribonuclease Roche 10104159001 

DPX Mounting medium  Leica 3808600E 

Dulbecco’s modified eagle 

medium 

DMEM Sigma-Aldrich D5796 

Ethylene glycol tetraacetic 

acid 
EGTA 

Sigma-Aldrich E3889 

Ethylenediamine 

tetraacetic acid 
EDTA 

Sigma-Aldrich E5134 

Fetal bovine serum FBS Thermo 

Scientific 

E6541L 

Fluorescein isothiocyanate-

dextran 

FITC-dextran Sigma-Aldrich FD4 

Formalin (10%, buffered)  Sigma-Aldrich HT501128 

Glycerol  Sigma-Aldrich 49782 

Glycine  Sigma-Aldrich G7126 

Goat Serum  Dako X090710 

Hank’s balanced salt 

solution 

HBSS Gibco 14175-137 

Heparin  Sigma-Aldrich H4784 

Hepes  Sigma-Aldrich 90909C 

Hoechst  Sigma-Aldrich 861405 

Interleukin-4 IL-4 BD pharmingen 550067 

Isopropanol  Sigma-Aldrich I9516 

L-glutamine  LabClinics x0550 

Lipopolysaccharide LPS Sigma-Aldrich L4005 

Liquid DAB 3,3′-Diaminobenzidine  Dako K346811 



73 
 

Reagent Reagent Abbreviation 
Commercial 

House 
Reference 

Mayer's Hematoxylin 

Solution  

 PanReac 

AppliChem 

CA254766.1611 

Methanol  PanReac 

AppliChem 

131091-1214 

Mitomycin C MMC Sigma-Aldrich M0503 

Nitrocellulose membrane 

0.2 µm 

 WhatmanTM 10401396 

Nonyl 

phenoxypolyethoxylethanol 

NP-40 AppliChem A1694,0250 

Pellet Paint Co-Precipitant  Millipore 69049 

Penicillin/Streptomycin 

(100x) 

P/S LabClinics P11-010 

Peroxidase-Blocking 

Solution  

 Dako STB14 - S202386 

Phenol: chloroform  Sigma-Aldrich P2069 

Phenylmethylsulfonyl 

fluoride 

PMSF Sigma-Aldrich P7626 

Phosphate buffered saline 

10x 

PBS 10x Sigma-Aldrich D1408 

Polyethylene glycol 400 PEG 400  Sigma-Aldrich 81170 

Ponceau red  Sigma-Aldrich P3504 

Potassium bicarbonate  Sigma-Aldrich P9144 

Primers for PCR and qRT-

PCR 

 Sigma-Aldrich - 

Prolong Gold Antifade 

Mountant with DAPI 

4’,6‐diamidino‐2‐

phenylindole 

Invitrogen P36935 

Propidium iodide PI Sigma-Aldrich P4864 

Propylene glycol  Sigma-Aldrich W294004 

Protease inhibitor cocktail  Sigma-Aldrich P8340 

Proteinase K solution  Dako S3020 
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Reagent Reagent Abbreviation 
Commercial 

House 
Reference 

Random primers  Invitrogen 48190-011 

Recombinant mouse 

insulin-like growth factor-1 

Rm IGF-1 Abcam ab9861 

RNAsin  Promega N2111 

RNAsin 2500U  Promega N2111 

Roswell Park Memorial 

Institute 1640 

RPMI 1640 Sigma-Aldrich R8758 

Sodium azide  Sigma-Aldrich 438456 

Sodium chloride NaCl Sigma-Aldrich 433209 

Sodium citrate  Sigma-Aldrich 71497 

Sodium dodecyl sulfate SDS Sigma-Aldrich 71725 

Sodium fluoride SF Sigma-Aldrich S7920 

Sodium orthovanadate  Sigma-Aldrich S6508 

Sodium Pyruvate  Sigma-Aldrich P2256 

Superscript IV reverse 

transcriptase 

 Invitrogen 18090050 

SYBR Green  Life 

technologies 

4472954 

TEMED N,N,N´,N´‐

tetramethylethylenediamine 

Sigma-Aldrich T9281 

Triton X-100  Sigma-Aldrich T9284 

TRIZMA-base  Sigma-Aldrich T6066 

TRIZMA-HCl  Sigma-Aldrich T3253 

Trizol  Ambion 15596018 

Trypsin-EDTA  Sigma-Aldrich T3924 

Trypsin-EDTA  Sigma-Aldrich T3924 

Tween-20  Sigma-Aldrich P7949 

Tween-80  Sigma-Aldrich P4780 

Table 4. Commercial Reagents. 
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3.1.2 Inhibitors 

Inhibitor Commercial House Reference Target 

LY-2228820 Axon Medchem 1895 p38α and p38β 

MK2 inhibitor III Calbiochem 475864 MK2 

PF-3644022 Sigma PZ0188 MK2 

PH-797804 Sellech  Chemicals S2726 p38α and p38β 

PQ401 MedChem Express HY-13686 IGF1R 

SB-203580 Axon MedChem 1363 p38α and p38β 

SB-747651A Axon Medchem Axon1897 MSK1 

Table 5. Commercial Inhibitors. 

3.1.3 Kits 

Kit Commercial House Reference 

Annexin V kit BD Transduction 556547 

BIOTAQTM PCR Kit Bioline BIO-21071 

Deoxyribonuclease I Roche 04716728001 

DNase I treatment Roche 04716728001 

FITC BrdU Flow Kit BD Transduction 559619 

IL-1β/IL-1F2 quantikine ELISA 

kit R&D Systems MLB00C 

LIVE/DEAD Fixable Yellow 

Dead Cell Stain Kit 

Life Technologies L-34959 

Mouse chemokine array   R&D systems ARY020 

Mouse Cytokine Antibody Array 

C1000  

Raybiotech; RayBio C-

Series 

AAM-CYT-1000-2 

Mouse/Rat IGF-I Quantikine 

ELISA Kit 

R&D Systems MG100 

On-column Purelink Dnase kit Invitrogen 12185-010 

Pure Link RNA mini Kit Ambion 12183-018A 

RNeasy mini kit Quiagen 74104 

Senescence β Galactosidase 

staining kit 

Cell Signaling 9860 
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Kit Commercial House Reference 

Super Script II Reverse 

Transcriptase Invitrogen 18064-014 

TNF-α platinum ELISA kit eBioscience BMS607 

TUNEL Roche 11684795910 

Table 6. Commercial Kits. 

 Buffers and Solutions 
Laboratory stock solutions and common buffers were prepared as described in weblink: 

http://onlinelibrary.wiley.com/doi/10.1002/0471143030.cba02as00/abstract, following 

Current Protocols in Cell Biology, 2001.  Buffers and used in this thesis are specified 

below, or in the corresponding sections. 

 

Buffer/Solution Composition Preparation Methodology 

Cell/Tissue Lysis 

Buffer 

1% NP40, 150 mM NaCl, 

50 mM Trizma HCl (pH 

7.5), 2mM EDTA, 2 mM 

EGTA, 20mM SF, 2 mM 

PMSF, 2 mM Sodium 

orthovanadate, 1 mM 

DTT 

Add up with 

distilled water to 

final volume, store 

at 4ºC; Protease 

inhibitor cocktail 

(Sigma-Aldrich; 

1:100) is added just 

before use. 

Western 

Blotting, ELISA 

Citrate Buffer, 

pH 6 

10 mM Sodium citrate  

 

Add up to final 

volume in distilled 

water and adjust pH 

to 6 with 1 M HCl.  

IHC, Antigen 

Retrieval 

Electrophoresis 

Buffer (10x) 

250 mM Trizma base, 

1.92 M Glycine, 1 % SDS  

Dissolved in 

distilled water and 

bring volume up to 

final volume.  

Western Blotting 
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Buffer/Solution Composition Preparation Methodology 

Fluorescence-

activated cell 

sorting (FACS) 

buffer 

1mM EDTA, 4% FBS Add up with PBS to 

final volume. 

Flow Cytometry 

Hotshot reagent 25 mM NaOH, 0.2 mM 

disodium EDTA (pH 12) 

Add up to final 

volume in distilled 

water. 

DNA Extraction 

IF Blocking 

Buffer  

3 % BSA, 0.1 % Triton X-

100, 0.02 % Sodium 

Azide 

Add up to final 

volume in PBS. 

CD16/32 blocking 

antibody was added 

in a 1:50 dilution 

just prior to use. 

IF 

IHC Blocking 

Buffer  

10% goat serum, 0.3% 

Triton X-100  

Add up to final 

volume in PBS. 

IHC 

Neutralizing 

reagent 

40 mM Trizma-HCL (pH 

5) 

Add up to final 

volume in distilled 

water. 

DNA Extraction 

PBSBT 3 % BSA, 0.1 % Triton X-

100, 0.02 % Sodium 

Azide 

Add up to final 

volume in PBS. 

IF 

P-buffer 10 mM Hepes, 1 mM 

Sodium pyruvate, 10 mM 

glucose, 3 mM CaCl2, 145 

mM NaCl 

 In vitro 

permeability 

assay 

PI solution  25 µg/ml PI, 0.1 mg/ml 

RNase 

Add up with PBS to 

final volume. 

BrdU labeling 

Ponceau Red 

Staining 

Solution 

0.1 % Ponceau red, 5 % 

Acetic acid 

Dissolved in 

distilled water, and 

bring up to final 

volume. 

Western Blotting 
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Buffer/Solution Composition Preparation Methodology 

PQ401 oral 

gavage vehicle 

30% PEG 400, 0.5% 

Tween-80, 0.5% 

Propylene Glycol 

Add up with 

distilled water to 

final volume. 

Oral Gavage 

Red Cell Lysis 

(RCL) buffer  

150 mM ammonium 

chloride, 1 mM potassium 

bicarbonate, 0.1 mM 

EDTA  

Dissolved in 

distilled water and 

bring volume up to 

final volume and 

adjust pH to 7.2-7.4 

Flow Cytometry 

Sample Loading 

Buffer (5x) 

312.5 mM Trizma-HCl 

(pH 6.8), 50% Glycerol, 5 

% SDS, 0.05 % 

Bromophenol blue, 10 

mM DTT  

Add up with 

distilled water to 

final volume and 

rotate on a wheel for 

30 min. Store in 

aliquots at -20ºC.  

Western Blotting 

TAE Buffer (1x) 40 mM Tris-acetate (pH 

7.6), 1 mM EDTA 

Add up to final 

volume in distilled 

water. 

Agarose Gel 

Electrophoresis 

TBS (10x) 0.1 M Tris base 

1.5 M NaCl 

Add up to final 

volume in distilled 

water and adjust pH 

to 6 with 7.4 M HCl.  

Western Blotting 

TBST Buffer 50 mM Trizma/HCl (pH 

7.5),  150 mM NaCl, 0.1% 

Tween-20 

Add up to final 

volume in distilled 

water. 

Western Blotting 

Transfer Buffer 

(10x) 

250 mM Trizma base, 

1.92 M Glycine 

 

Dissolved in 

distilled water and 

bring volume up to 

final volume. 20% 

methanol was added 

to 1X transfer buffer 

before use.  

Western Blotting 
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Buffer/Solution Composition Preparation Methodology 

Tris-EDTA 

Buffer, pH 9 

10 mM Trizma base, 1 

mM EDTA  

Add up to final 

volume in distilled 

water and adjust pH 

to 9. 

IHC, Antigen 

Retrieval 

Table 7. Preparation of Buffers and Solutions. 

 

 In Vivo models 

3.3.1 Mice 
All mice were healthy and had access to regular chow diet and autoclaved sterile water ad 

libitum. The animals were housed in a barrier system (temperature: 20-26ºC; relative 

humidity: 40-70%) and were provided with a controlled 12 hour light-dark cycle. For 

setting-up of breedings, male and female mice were put together at a minimum age of 6 

weeks. Litters were weaned at 4 weeks of age and marked with an ear-tag. Genotyping 

was performed from the obtained ear tissues. Littermate controls were used in all 

experiments. Experimental groups were age- and sex-matched and mice were randomly 

allocated to the treatment groups and killed by cervical dislocation. The mice used in this 

thesis were obtained in C57BL/6 background and housed according to national and 

European Union regulations in conventional housing conditions. Animal experiments 

were approved by the Animal Research Committee of the University of Barcelona. 

3.3.2 Mice genotypes 
p38α-ΔMC mice to downregulate of p38α in myeloid cells were generated by crossing 

p38αlox/lox mice (Ventura et al., 2007) with LysM-Cre mice (Clausen et al., 1999). p38β-/- 

mice were previously described (Beardmore et al., 2005). To check efficiency of p38α 

deletion, peritoneal macrophages or bone marrow-derived macrophages (BMDM) were 

obtained and p38α protein was evaluated by western blotting.  

IGF-1ΔMC mice, expressing IGF-1lox/lox and LysM-Cre, were generously provided 

by Dr. Nadia Rosenthal and Dr. Lina Wang (Monash University, Melbourne, Australia) 

(Tonkin et al., 2015). To check efficiency of IGF-1 deletion, peritoneal macrophages 

were analyzed for IGF-1 messenger RNA (mRNA) expression by quantitative reverse 

transcription-polymerase chain reaction (qRT-PCR).  
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3.3.3 DSS-induced acute colitis 
For induction of acute colitis (resembling colonic inflammation in IBD patients), mice 

received 1.5% DSS (w/v) ad libitum in the drinking water (Wirtz et al., 2007) for 6 days. 

DSS is toxic for the colonic mucosa and causes colitis (Okayasu et al., 1990). At day 6, 

DSS was removed and mice were provided with regular drinking water. Body weight and 

disease activity index (DAI)  are commonly used indicators for the severity of DSS-

induced colitis (Cooper et al., 1993) and were recorded daily. DAI was determined by 

combining scores of weight loss, stool consistency and rectal bleeding (divided by 3) as 

previously described (Cooper et al., 1993) (see Table 8).  

 

Disease Activity Index 
(based on Cooper et al, 1993) 

 

Score 
Weight 

loss 

Stool 

consistency 

Visible blood in 

stools or rectal 

bleeding 

0 < 1% Formed and 

h d 

absence  

1 1-5% Formed but 

f  

-- 

2 5-10% Loose stools presence 

3 10-15% Mid diarrhea 

t   

--- 

4 >15% Diarrhea  gross bleeding  

DAI (0-4) = Σ score of each parameter / n parameters 

evaluated 

 

Table 8. Disease activity index (DAI). 
During DSS-induced colitis DAI was recorded daily as an indicator for intestinal inflammation 
susceptibility. 

 

After DSS treatment, mice were sacrificed at the indicated time points and 

samples were collected for histological, biochemical or cytometric analysis. Colons were 

collected as described in section 3.3.5. 
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3.3.3.1 PQ401 treatment 

The IGF1R inhibitor PQ401 was administered by oral gavage at a dose of 30 mg/kg in 

PQ401 oral gavage vehicle. Control mice were treated in the same manner with the 

vehicle. The first dose was given one day prior to the start of DSS administration and was 

continued daily until mice were sacrificed. The dosing protocols were well tolerated by 

the animals.  

3.3.4 AOM/DSS-induced tumorigenesis 
To induce colon tumors, we applied a combination of the carcinogen AOM with repeated 

administration of DSS in the drinking water as previously described (Neufert et al., 2007). 

Mice received a single injection of AOM (10 mg/kg) diluted in PBS, and 5 days later, 

1.5% DSS was administered for 5 days, followed by 14 days of regular drinking water. 

The DSS treatment was repeated for 2 additional cycles. Animals were sacrificed 100 

days after the AOM injection, except when indicated otherwise. Colon and tumor samples 

were collected as described in section 3.3.5. 

3.3.4.1 PQ401 treatment 

Mice treated with AOM/DSS to induce tumorigenesis, were administered with PQ401 

beginning from day 55 after AOM injection daily for 20 consecutive days. The dosing 

protocols were well tolerated by the animals. 

3.3.5 Colon and tumor sample collection 
Colons were removed, separated from the cecum at the ileocecal junction and flushed 

with cold PBS to remove feces and blood. After removing excess fat, the colons were 

opened longitudinally and samples for RNA and protein extracts were obtained by cutting 

a tiny piece horizontally beginning from the proximal up to the distal colon with a 

thickness of around 3 mm using sterile surgical blades (Quirumed #153-HB22). These 

samples were immediately shock-frozen in liquid nitrogen upon collection and stored at -

80ºC until use. Before starting RNA or protein extraction of frozen samples, they were 

defrosted at 4ºC. The remaining colon (still the mayor part of the colon) was fixed as 

“swiss-rolls” in 10% formalin solution at RT overnight prior to paraffin embedding using 

the RM2255 Rotary Microtome (Leica). In the case of mice killed after application of the 

tumorigenesis protocol, tumor sizes were measured using a digital caliper in a blinded 

manner, prior to sample collection (from colon and tumors) and fixation. 
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 Cellular models 

3.4.1 Isolation of macrophages 

3.4.1.1 Bone marrow-derived macrophages (BMDMs) 

Bone marrow precursor cells were isolated from femurs and tibias of mice and cultured in 

complete DMEM (30% L-cell, 20% heat-inactivated FBS, 1% P/S) as previously 

described (Bailon et al., 2010) in an incubator at 37°C and 5% carbon dioxide (CO2) 

3.4.1.1.1 Treatment  

If not otherwise indicated, cells were deprived from M-CSF for 18 h in DMEM (10% 

heat-inactivated FBS, 1% P/S) at day 6 of differentiation to synchronize the culture and 

render the cells quiescent. The inhibitors PH-797804 (2 µM), SB-203580 (10 µM) and 

LY-2228820 (0.1 µM) were added 1 h before stimulation with LPS (10 ng/ml) or IL-4 

(10 ng/ml; R&D Systems). 

3.4.1.2 Peritoneal macrophages  

Mice were sacrificed and peritoneal cells were collected to assess the efficiency of p38α 

deletion. Prior to colon dissection, a small incision was made in the abdominal skin of the 

mice using surgical scissors. The skin was carefully retracted manually to expose the 

intact peritoneal wall and 5 ml of cold PBS were injected through the peritoneal wall 

using 5 ml syringes (Sudelab #15922500) and 21G needles (BD Microlance #304432). 

After a gentle peritoneal massage to wash the peritoneal cavity, the PBS containing 

peritoneal cells were recovered with the syringe and cells were pelleted at 1200 rpm for 5 

min. For isolation and amplification of peritoneal macrophages, the cells were 

resuspended in 3 ml of DMEM containing 1% P/S and seeded onto non-treated tissue 

culture plates (Nunc #150239). After 1 h in an incubator at 37°C and 5% CO2, mainly 

macrophages and monocytes adhere to the plates, which were then washed twice with ice-

cold PBS to remove all dead and non-adherent cells and complete DMEM was added 

containing 20% heat-inactivated FBS, 30% L-cell conditioned medium and 1% P/S. 

Depending on the number of macrophages on the plates, cells were left to proliferate in 

complete DMEM medium for one or two days, until enough cells were obtained and 

collected for protein extraction (see section 3.6.3.1).  



83 
 

3.4.1.3 Colonic lamina propria macrophages 

To obtain colon macrophages, the large intestine was excised, washed and opened 

longitudinally. They were then washed in HBSS containing 2% FBS, and cut into 

approximately 0.5 cm sections using sterile surgical blades. These pieces were then 

shaken vigorously in 10 ml HBSS with 2% FBS and the supernatant was discarded. 

HBSS containing 2 mM EDTA was then added and the tube was placed in a shaking 

incubator for 15 min at 37ºC, before being shaken vigorously and the supernatant 

discarded. Prior to a second incubation with HBSS/EDTA at 37ºC for 30 min, the tissue 

was washed once with HBSS, shaking vigorously and the supernatant discarded. After 

this second incubation, the step was repeated and the remaining tissue was digested in 

pre-warmed RPMI (Roswell Park Memorial Institute) 1640 containing 2 mM L-

glutamine, 1% P/S and 10% FBS (complete RPMI 1640 medium) containing collagenase 

D (1.25 mg/ml), collagenase V (0.85 mg/ml), dispase (1 mg/ml) and DNase (30 µg/ml) 

for 30-45 min in a shaking incubator at 37° C, shaking vigorously every 7 min until no 

intact tissue was left, but without exceeding 45 min of total incubation time in the 

presence of the enzyme mix. The resulting cell suspension was passed through a 40 µm 

cell strainer (BD Falcon # 352340) and then washed twice in complete RPMI 1640 

(centrifuged 5 min at 200 g and resuspended in complete RPMI 1640). This cell 

suspension was used to seed the cells onto non-treated plastic tissue culture plates in order 

to select and enrich monocyte/macrophage population from the whole lamina propria 

digestion in an incubator at 37°C and 5% CO2. The cells were resuspended in complete 

RPMI 1640 medium and were pelleted again by centrifugation and recovered in DMEM 

containing 1% P/S. After 30 min, the cells were collected and used for purification of 

total RNA. 

3.4.2 CMT-93 cell culture 
The mouse colon cancer cell line CMT-93 was a kindly gift from Dr. Christine Loscher 

(Immunomodulation Group, Dublin City University). This cell line was derived from an 

induced carcinoma of mouse rectum and was used at passages 14-34 (Franks and 

Hemmings, 1978). Cells were cultured in DMEM (10 % heat-inactivated FBS, 1 % P/S, 2 

mM L-glutamine) in an incubator at 37°C and 5% CO2. 
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3.4.2.1.1 Sub-culturing 

For cell line maintenance and sub-culturing, cells were usually passed at 80% of cellular 

confluence and never reached confluence. For sub-culturing, cells were washed with PBS 

and incubated with trypsin solution for 5-10 min. Trypsin was inactivated with serum 

containing medium and centrifuged (200 g, 5 min) and then in fresh media and passed to 

a new culture dish. 

3.4.2.1.2 Treatment  

CMT-93 cells were treated with the inhibitors PH-797804 (2 µM), SB-203580 (10 µM), 

MK2 inhibitor III (10 µM), PF-3644022 (20 µM) and SB-747651A (10 µM), for the 

times indicated in the corresponding sections. Mitomycin C (MMC) treatment was 

performed for the specified times at the concentration of 5 µg/ml if not otherwise 

indicated in the corresponding section 

3.4.3 Generation of L-cell conditioned medium 
Conditioned medium (L-cell) to generate macrophages from bone marrow precursor cells 

was obtained from the mouse fibroblast cell line L929 (ATCC CCL 1, NCTC clone 929), 

which produces large quantities of M-CSF during proliferation. This is the only growth 

factor produced by these fibroblasts affecting macrophages. The addition of monoclonal 

antibodies against M-CSF to the medium blocks production of macrophages in culture 

(Lokeshwar and Lin, 1988). 7x105 L929 cells were cultured in high glucose DMEM 

supplemented with 10% heat-inactivated FBS at 37°C and 5% CO2. Cells were grown in 

150 mm flasks up to confluence and after 7 days the supernatant was removed, 

centrifuged to remove the cells in suspension and kept in aliquots at -80 ºC until the 

moment of use. Once thawed, the aliquots were stored at 4 ºC to prevent degradation of 

M-CSF resulting from freezing and thawing cycles. The content of M-CSF was 

determined by a test of proliferation (BrdU incorporation) in BMDM. In our studies, we 

used the concentration of 30% of supernatant which is equivalent to 1200 U ml-1 of 

recombinant M-CSF (eBioscience, San Diego, CA), since this dose is able to saturate the 

M-CSF receptors on the surface of macrophages (Stanley, 1985). 
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 In Vivo studies 

3.5.1 Intestinal permeability in mice 
For determination of in vivo intestinal permeability, the mice were starved from food for 

6 h and from water for 2 h, prior to administration of FITC-dextran (MW 3000-5000), 

prepared in PBS at a concentration of 100 mg/ml and administered to each mouse by oral 

gavage (0.44 mg/g body weight). After 4 h, mice were anesthetized using isoflurane 

(induction dose: 5%, maintenance dose: 2% using a precision vaporizer; Esteve 

#13400264), blood was collected by cardiac puncture using 1 ml syringes (ENFA #JS1) 

and 25G needles (Sudelab #1780242) and mice were sacrificed by cervical dislocation. 

The blood was immediately transferred to BD Microtainer SST blood collection tubes 

(BD #365968) and stored at 4ºC in the dark until samples from all the experimental mice 

were collected and SST tubes were processed following the manufacturer’s instructions 

for serum separation. The serum was diluted with an equal volume of PBS and 100 µl of 

the diluted serum were added in triplicates to a 96-well microplate (Corning #3650). The 

FITC concentration in the serum of the mice was determined by spectrofluorometric 

measurement (BioTek #FLx800), with an excitation of 485 nm (20 nm band width) and 

an emission wavelength of 528 nm (20 nm band width), using serially diluted FITC-

dextran as standard. 

 In Vitro studies 

3.6.1 Mouse genotyping 

3.6.1.1 DNA extraction 

Hotshot reagent (80µl) was added to the tube containing the ear tissue, and was heated at 

95ºC for 30 min. Samples were left to cool down for 5 min on RT and short spinned. 

Then, 80µl of neutralizing agent was added to the samples, mixed and centrifuged for 1 

min at maximum speed. Samples were cooled down to 4ºC and stored at the same 

temperature until use. Some undissolved tissue usually remains that does not interfere 

with the PCR reaction (Zheng, 2012). For the PCR reactions, 0.5µl of this extraction was 

used. 

The combination of alkaline lysis reagent and neutralizing yields a buffer consisting of 

20mM Trizma-HCl (pH 8.1) and 0.1 mM EDTA, which is similar to a common DNA 

storage buffer. 
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3.6.1.2 Genotyping PCR 

3.6.1.2.1 Primers 

Gene Forward Primer (5’-3’) Reverse Primer (5’-3’) Amplicon Size 

CRE ACGAGTGATGAGGTTC

GCAAG 

CCCACCGTCAGTACGT

GAGAT 

520 bp 

flox-p38α ATGCTACTGTCTGCGCC

TCTCT 

CAGCTTCTTAACTGCC

ACACGA 

WT: 121 bp;  

flox-p38α: 188 bp 

p38β TGACCGCTTCCTCGTGC

TT 

GGAGACTATCAGTCT

GCCAACCC 

WT: 220 bp;  

KO: 450 bp 

flox-IGF-1 CACACATATACGCGCA

CACA 

CCTGAGCCCATCTTGA

CA 

WT: 170 bp;  

Flox-IGF-1: 270 bp 

Table 9. Primers used for genotyping PCRs. 

 

3.6.1.2.2 PCR conditions 

PCRs were performed using the BIOTAQTM PCR Kit (2x), in a final volume of 20 µl. To 

each reaction, 0.2 µl of the required primer were added together with 0.5 µl of DNA from 

the extracted ear tissues (described above). 

3.6.1.2.3 Thermal cycling programs 

3.6.1.2.3.1 p38α fox 

PCR Program Temperature (ºC) Time (', minutes; '', seconds) 

denaturation 94 5' 

denaturation 94 30'' 

annealing 60 30'' 

extend time  72 30'' 

# cycles 35  

extend time 72 10' 

end 4 ∞ 

Table 10. Thermal cycling program for p38α floxed allele PCR. 
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3.6.1.2.3.2 CRE 

PCR Program Temperature (ºC) Time (', minutes; '', seconds) 

denaturation 94 5' 

denaturation 94 30'' 

annealing 60 30'' 

extend time  72 30'' 

# cycles 35  

extend time 72 10' 

end 4 ∞ 

Table 11. Thermal cycling program for CRE recombinase PCR. 

3.6.1.2.3.3 p38β  

PCR Program Temperature (ºC) Time (', minutes; '', seconds) 

denaturation 94 5' 

denaturation 94 30'' 

annealing 64 30'' 

extend time  72 30'' 

# cycles 35  

extend time 72 10' 

end 4 ∞ 

Table 12. Thermal cycling program for p38β floxed allele PCR. 

3.6.1.2.3.4 IGF-1 flox 

PCR Program Temperature (ºC) Time (', minutes; '', seconds) 

denaturation 94 4' 

denaturation 94 30'' 

annealing 64 1' 

extend time  72 1' 

# cycles 34  

extend time 72 20' 

end 4 ∞ 

Table 13. Thermal cycling program for IGF-1 floxed allele. 

The PCR products were separated on a 2% agarose gel by gel electrophoresis. 
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3.6.2 RNA extraction and gene expression analysis 

3.6.2.1 RNA extraction 

3.6.2.1.1 Colon tissues 

Colon samples were collected as described above (see section 3.3.5). Tissue samples were 

homogenized in Trizol (500 µl) using the Precellys instrument (Bertin technologies 

#03119.200.RD000) and incubated for 5 min at RT. Insoluble material was removed from 

the homogenate by centrifugation (12 000 g, 10 min, 4ºC) and supernatant was transferred 

to a new tube. Samples were either further processed as described below, or stored at this 

point at -80ºC until use. 

When the samples were previously frozen at -80ºC, they were thawed on ice and 

then incubated at RT for 5 min. Then, Chloroform (100 µl) was added and samples were 

vortexed for 10 min. After centrifugation (14 000 g, 15 min, 4ºC), the aqueous phase was 

transferred to a new tube and placed on ice, then the extraction was continued following 

the manufacturer’s instructions using the RNeasy mini kit. Subsequently, DNase I 

treatment was performed following user’s manual instructions. 

3.6.2.1.2 BMDM and CMT-93 cells 

Total RNA from quiescent BMDM or CMT-93 cells (DMEM and 10% FBS for 17 h) 

unstimulated, or stimulated with the indicated treatments was extracted using PureLinkTM 

RNA miniKit following manufacturer’s instructions. DNAse treatment was performed 

using on-column DNase Treatment following manufacturer’s instructions. 

3.6.2.1.3 Intestinal macrophages 

Intestinal macrophages were isolated from the colonic lamina propia as described above 

(see section 3.4.1.3), total RNA was extracted using Trizol and Pellet Paint Co-

Precipitant. Trizol (300 µl) was added to each well containing intestinal macrophages, 

incubated for 5 min at RT and chloroform (60 µl) was added. The samples were shaken 

vigorously for 15 sec and allowed to stand for 5 min at RT prior to centrifugation for 15 

min at 12000 g (4°C). The colorless aqueous upper phase containing the RNA was then 

transferred to a new tube. Pellet Paint (2 µl) and 1 volume of isopropanol were added to 

the samples and incubated on ice for 5 min. Samples were then centrifuged for 30 min at 

12000 g (4°C). Supernatants were removed and the pellets were washed with 300 µl of 

ethanol by vortexing. The tube was put 180° relative to the previous step and centrifuged 
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for 10 min at 12000 g. The supernatant was removed and 15 µl of RNase free water was 

added to the pellet and left for 5 min at RT. Samples were vortexed for 1 min and spun 

down briefly. Samples were pipetted up and down to further homogenize and spun down 

again. DNase I treatment was performed following user’s manual instructions. 

3.6.2.2 cDNA synthesis 

3.6.2.2.1 Colon tissues, BMDM and CMT-93 cells 

Samples were quantified by Nano Drop and reverse transcription was performed using 1 

µg of total RNA using Superscript II reverse transcriptase, RNAsin and random primers 

following Invitrogene user’s instructions for complementary DNA (cDNA) synthesis 

using SuperScript II RT.  

3.6.2.2.2 Intestinal macrophages 

Samples were quantified by Nano Drop and reverse transcribed using 1 µg of total RNA, 

RNAsin, random primers and Superscript IV reverse transcriptase as recommended by 

Invitrogen.  

3.6.2.3 qRT-PCR analysis  

3.6.2.3.1 Colon tissues, BMDM and CMT-93 cells 

qRT-PCR was performed in triplicates using 4 µl of 1/16 diluted cDNA and SYBR green 

in 10 µl final volume. Data were obtained as relative mRNA levels normalized in each 

sample to the GAPDH expression level. 

3.6.2.3.2 Intestinal macrophages 

qRT-PCR was performed in triplicates using 4 µl of 1/32 diluted cDNA and SYBR green 

in 10 µl final volume. Data were obtained as relative mRNA levels normalized in each 

sample to the GAPDH expression level.  

3.6.2.4 Primer sequences 

Gene Forward Primer (5’-3’) Reverse Primer (5’-3’) 

Alp1 CCAACTCTTTTGTGCCAGAGA GGCTACATTGGTGTTGAGCTTTT 

Ascl2 CCGTGAAGGTGCAAACGTC CCCTGCTACGAGTTCTGGTG 

CCL12 ATTTCCACACTTCTATGCCTCCT ATCCAGTATGGTCCTGAAGATCA 

CCL2 TTAAAAACCTGGATCGGAACCAA GCATTAGCTTCAGATTTACGGGT 



90 
 

Gene Forward Primer (5’-3’) Reverse Primer (5’-3’) 

CCL21 GTGATGGAGGGGGTCAGGA GGGATGGGACAGCCTAAACT 

CCL6 TATCCTTGTGGCTGTCCTTGG  TTACATGGGATCTGTGTGGCA  

CCL9 CCCTCTCCTTCCTCATTCTTACA AGTCTTGAAAGCCCATGTGAAA 

Cdx2 CAAGGACGTGAGCATGTATCC GTAACCACCGTAGTCCGGGTA 

CgA CCAAGGTGATGAAGTGCGTC GGTGTCGCAGGATAGAGAGGA 

Chemerin GCTGATCTCCCTAGCCCTATG CCAATCACACCACTAACCACTTC 

CXCL12 TGCATCAGTGACGGTAAACCA TTCTTCAGCCGTGCAACAATC 

GAPDH CTTCACCACCATGGAGGAGGC GGCATGGACTGTGGTCATGAG  

IGF-1 CTGGACCAGAGACCCTTTGC GGACGGGGACTTCTGAGTCTT 

IGF1R GTGGGGGCTCGTGTTTCTC GATCACCGTGCAGTTTTCCA 

IL-16 AAGAGCCGGAAATCCACGAAA GTCTCAAAAGGGTCAGGGTACT 

Lgr5 GGACCAGATGCGATACCGC CAGAGGCGATGTAGGAGACTG 

Lysozyme GGGGCTTGAATTATTTTGAGGGC GAGCCATCTTGTGGGTCCT 

Mucin-2 GCCCGTGGAGTCGTACGTGC TTGGGGCAGAGTGAGGCGGT 

Neurogenin-3 CCAAGAGCGAGTTGGCACT CGGGCCATAGAAGCTGTGG 

p38α (exon 12) GCCCTCCCTCACTTCAGGAG TGTGCTCGGCACTGGAGACC 

p38α (exon 2) GCATCGTGTGGCAGTTAAGA GTCCTTTTGGCGTGAATGAT 

STAT3 CAATACCATTGACCTGCCGAT GAGCGACTCAAACTGCCCT 

Tff3 TGCTCTGGTAGAGGGCGAG CGACGCTAGAGTCAAAGCAG 

Table 14. Primers used for quantification of mRNA expression by qRT-PCR. 

3.6.2.4.1 PCR conditions 

PCRs were performed in 384-well reaction plates (Applied Biosystem; #4309849) with 

SYBR green in 10 µl total volume using the QuantStudioTM 6 Flex Instrument (Life 

Technologies). Each primer was used at a final concentration of 0.2 µM and cDNA used 

in the reactions are added and prepared as described above (see section 3.6.2.3).  
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 PCR thermal cycling program was set as follows: 50ºC for 2 min, 95ºC for 10 

min, 40 cycles of denaturation at 95ºC for 15 s, annealing at 56ºC for 15 s, elongation at 

72ºC for 60 s, and three final steps of 95ºC for 15 s, 60ºC for 2 min and 95ºC for 15 s. 

3.6.3 Protein extraction  

3.6.3.1 BMDMs, peritoneal macrophages and CMT-93 cells 

Cells were cultured and treated as described in section 3.4. For protein extraction, the 

plates were washed using ice-cold PBS and collected with protein lysis buffer on ice 

using a cell scraper (Costar #3008). Cell lysates were left for 15 min on a rotatory mixer 

at 4ºC, prior to centrifugation (20 000 g, 15 min, 4ºC). Supernatants were transferred to a 

new tube, quantified by Bradford assay and either directly used for Western Blotting or 

ELISA analysis or stored at -80ºC until use. Frozen samples were always defrosted on 

ice. 

3.6.3.2 Colon and tumor tissues 

Frozen colon samples were collected as described in section 3.3.5. The samples were 

defrosted at 4ºC and lysed in the protein lysis buffer using the Precellys instrument 

(Bertin technologies #03119.200.RD000). Cell and tissue lysates were left for 15 min on 

a rotatory mixer at 4ºC, prior to centrifugation (20 000 g, 15 min, 4ºC). Supernatants were 

transferred to a new tube, quantified by Bradford assay and either directly used for 

Western Blotting or ELISA analysis or stored at -80ºC until use. Frozen samples were 

always defrosted on ice. 

3.6.4 Protein quantification 
Total protein was quantified using Bradford assay according to manufacturer instructions. 

Protein concentrations were measured with a spectrophotometer (BioTek #FLx800) at an 

absorbance of 570 nm. For the calculation of protein concentrations, a BSA-standard 

curve was used. 

3.6.5 Western blotting 
For Western blotting, 40 µg of lysates were boiled for 5 min at 95ªC and separated by 

SDS-PAGE (see section 3.6.5.1) prior to transfer onto a nitrocellulose membrane using a 

semi-dry transfer system (GE Healthcare) (75 mA, 90 min). After transfer, membranes 

were stained with Ponceau red to confirm the efficiency of transfer. Ponceau red was 

washed with tap water and the nitrocellulose membrane was blocked with 5% non-fat 



92 
 

milk in TBST buffer. After 3 washes with TBST, membranes were incubated with the 

primary antibodies overnight at 4ºC in TBST containing 5 % of BSA and 0.02 % Sodium 

Azide at 4ºC. The primary antibodies used are listed in Table 15. GAPDH and α-Tubulin 

were used as loading control.  

 

Antibody Commercial 

House 

Reference Source Dilution 

Claudin-1 Invitrogen 374900 Mouse 1:500 

Claudin-2 Thermo 

Scientific 

PA5-13334 Rabbit 1:1000 

GAPDH Sigma-Aldrich SAB2100894 Rabbit 1:5000 

p38α Cell Signaling 9218 Rabbit 1:1000 

p38α Santa Cruz sc5356 Goat 1:600 

Phospho-p38 Cell Signaling 9211 Rabbit 1:1000 

ZO-1 Invitrogen 40-2200 Rabbit 1:600 

α-Tubulin Sigma-Aldrich T9026 Mouse 1:5000 

Table 15. Primary antibodies used for Western Blotting. 

 

After 3 washes with PBST, membranes were incubated with Alexa Fluor 680 or 

800-conjugated antibodies (Table 16) for 1 h at RT prior to visualization using Odyssey 

Infrared Imaging System (Li-Cor, Biosciences). 

 

Antibody Commercial House Reference Dilution 

Goat IgG (Alexa Fluor 680) Invitrogen A21084 1:5000 

Mouse IgG (Alexa Fluor 680) Invitrogen A21057 1:5000 

Mouse IgG (Alexa Fluor 800) Rockland 610-731-124 1:5000 

Rabbit IgG (Alexa Fluor 680) Invitrogen A21076 1:5000 

Rabbit IgG (Alexa Fluor 800)  Rockland 611-131-122 1:5000 

Table 16. Secondary antibodies used for Western Blotting. 
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3.6.5.1 SDS-PAGE gels  

3.6.5.1.1 Resolving gels (for 20 ml)  

 

V (ml) 8% 12% 15% 

H2O 9.3 6.6 4.6 

30% Acrylamide 

solution 5.3 8 10 

1.5 M Trizma (pH 8.8) 5 5 5 

10% SDS 0.2 0.2 0.2 

10% APS 0.2 0.2 0.2 

TEMED 0.008 0.008 0.008 

    

Proteins resolved ZO-1  p38α, phospho-p38 Claudin-1, Claudin-2 

Table 17. Composition of resolving gels. 

 

3.6.5.1.2 Stacking gels (for 5 ml)  

V (ml) 4% 

H2O 3.07 

30% Acrylamide solution 0.67 

1.5 M Trizma (pH 8.8) 1.25 

10% SDS 0.05 

10% APS 0.05 

TEMED 0.005 

Table 18. Composition of stacking gels. 

 

3.6.6 ELISA (Enzyme-linked immunosorbent assay) and protein arrays 

3.6.6.1 ELISA  

For analysis of IGF-1 protein at basal conditions, BMDMs were generated (see section 

3.4.1.1) and supernatants and cells were collected at day 7 after bone marrow extraction. 

Supernatants were collected and centrifuged at 7500 g for 5 min at 4ºC to remove dead 

cells and cellular debris, and diluted 1:5 for analysis using the mouse/rat IGF-1 quantikine 
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ELISA kit following the manufacturer’s instructions. The adhered BMDMs were washed 

once with ice-cold PBS and directly lysed on the plates using a cell scraper on ice. Protein 

extracts from BMDMs and colon lysates were analyzed by ELISA using 100 µg per 

sample and well (see section 3.1.3).  

IL-1β and TNFα were analyzed by using 100 µg per sample from whole colon 

protein extracts and the mouse IL-1β/IL-1F2 quantikine Enzyme-linked immunosorbent 

assay (ELISA) kit or mouse TNF-α platinum ELISA kit following manufacturer’s 

instructions (see section 3.1.3). 

3.6.6.2 Cytokine array 

BMDMs were generated and cultured as described in (section 3.4.1.1). Medium was 

changed at day 6 and macrophages were deprived from M-CSF. Cytokine array was 

performed by pooling supernatants at day 7 derived from BMDM of three animals per 

group (WT and p38α-ΔMC) using RayBio C-Series mouse cytokine antibody array C1000 

(see section 3.1.3). 

3.6.6.3 Chemokine array 

For the chemokine array, whole colon extracts were obtained from mice either WT or 

deficient for p38α in myeloid cells (five different mice each), and a total of 400 µg of 

protein was pooled (80 µg protein per mouse) and analyzed following manufacturer’s 

instructions (see section 3.1.3). 

3.6.7 Hematoxylin and eosin staining 
For histological analysis of colon and tumor sections, formalin-fixed and paraffin-

embedded sections of 5 µm thickness were de-waxed in xylol for 10-15 min and then 

rehydrated in descending series of ethanol solutions (100%, 95%, 75%, 50% and then in 

water). The de-wax, rehydrated colon sections were then stained with H&E using the 

CoverStainer (Dako).  

3.6.7.1 Epithelial damage scoring 

H&E stained slides were scanned using the digital scanner Nanozoomer 2.0HT 

(Hamamatsu) with a 40x objective. Epithelial damage and inflammation was determined 

using a scoring system previously described (Gupta et al., 2014). Briefly, first a score (1-

4) was assigned for observed epithelial damage in the colon using following criteria: 1- 

intact crypts, 2- basal one-third damaged, 3-basal two-thirds damaged, 4- damaged 
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surface epithelium. The colon sample was given the score of the highest epithelial 

damage observed in the entire intestinal mucosa. Then, another score (1-4) was assigned 

assessing the extent of involvement in percentage of given epithelial damage: 1- for 1-

25%, 2- for 26-50%, 3- for 51-75%, and 4- for 76-100%. The scores from the two values 

were added up and divided by two, resulting in the final epithelial damage score. 

3.6.8 Immunohistochemistry  
For IHC staining, tissue sections on slides were de-waxed and re-hydrated as described 

above (see section 3.6.7). After washing with tap water for 5 min, endogenous peroxidase 

activity was blocked for 15 min at RT in peroxidase blocking buffer to reduce 

background and unspecific staining. Then, slides were washed in tap water and antigen 

unmasking was performed as indicated in Table 19, depending on the primary antibody 

that will be used for staining (Table 20). 

 

Antigen Retrieval 

Buffer 

Incubation Time 

(min) 

Incubation Temperature 

(ºC) 

Citrate Buffer, pH 6 20 97 

Proteinase K 5 RT 

Tris-EDTA Buffer, pH 9 20 97 

Table 19. Antigen retrieval buffers used for paraffin-embedded colon and tumor 
sections. 
The preparation of the indicated buffers is described above in Table 7, except of Proteinase K solution, 
which was commercially purchased (Table 4). 

 

 

After antigen retrieval, slides were washed with PBS and unspecific staining was 

blocked with IHC blocking buffer. Diluted primary antibodies were then incubated as 

indicated in Table 20.  
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Antigen Commercial 

House 

Reference Antigen 

Retrieval 

Dilution Incubation 

Conditions 

 Time Temper-

ature 

CD45 BD 

Biosciences 

550539 Citrate Buffer 1:100 overnight 4 ºC 

CD3 Dako A0452 A0452 1:10 2 h RT 

MPO Dako A0398 Tris/EDTA 

Buffer 

1:1000 30 min RT 

STAT3 

(p- 

Tyr705) 

Cell 

Signaling 

9145 Tris/EDTA 

Buffer 

1:200 90 min RT 

IGF1R 

(p- 

Y1161) 

Abcam ab39398 Citrate Buffer 1:500 1 h  RT 

Ki67 Novacastra NCL-Ki67 Citrate Buffer 1:500 1 h RT 

CD31     abcam ab28364 Tris/EDTA 

Buffer 

1:500 2 h RT 

F4/80 eBioscience 14-4801 Proteinase-K 1:50 2 h RT 

Table 20. Primary antibodies used for IHC. 

 

After washing the primary antibody with tap water, slides were incubated in HRP-

conjugated secondary antibodies (Table 21).  

 

Antigen Commercial 

House 

Reference Dilution Incubation Conditions 

 Time Temperature 

anti-goat Dako P0449 1:80 30 min RT 

anti-mouse Dako P0447 1:100 30 min RT 

anti-rabbit ImmunoLogic DPVR110HRP 1:100 45 min RT 

anti-rat Dako P0450 1:75 30 min RT 

Table 21. Secondary Antibodies used for IHC (Horseradish Peroxidase (HRP)-
conjugated). 
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Signals were visualized with DAB, using hematoxylin (Mayer’s hematoxylin 

solution) as a counterstaining. Tissue was mounted with DPX mounting medium after 

washing with PBS.  

3.6.8.1 Colon and tumor IHC quantification  

IHC slides were scanned using the digital scanner Nanozoomer 2.0HT (Hamamatsu) with 

a 40x objective. The number of positively stained cells was calculated from several high 

magnification fields per animal. For the analysis of the epithelium of untreated or DSS 

treated mice, almost the whole distal part of the epithelium in the slide of each animal 

was analyzed. For the analysis of the non-tumoral epithelium in AOM/DSS-treated mice, 

almost the whole distal part of the epithelium was analyzed, excluding the tumors. In 

order to compare tumors of the same size, several tumors of 3 mm of size were cut out of 

the distal part of the colons after sacrifice of the animals and embedded in paraffin 

separately. High magnification images were taken for the whole tumor tissue stained per 

slide and animal analyzed. Detection of positive staining and cell number was performed 

with ImageJ software using the colour-deconvolution plug-in that has a built-in vector for 

separating hematoxylin and diaminobenzidine (DAB) staining. After color deconvolution 

DAB images are processed separately. Suitable threshold levels of DAB were determined 

for each staining and kept constant for all analysis. The results were expressed as 

percentage of positively stained cells.  

Described analysis was performed for all IHC stainings, except for the 

quantification of different staining intensities for phospho-IGF1R positive cells. This was 

performed with Tmarker software (Schuffler et al., 2013) using the plugin for “color 

deconvolution” (H&E DAB staining protocol) and “cancer nucleus classification”.  

Several training images were used in order to train the Tmarker classification using its 

active learning algorithm prior to performing the analysis of the samples from several 

high magnification fields. The results were expressed as percentage of positively stained 

cells of the corresponding staining intensities.  

3.6.9 TUNEL assay 
Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) is a commonly 

used method to detect DNA fragmentation resulting from apoptosis by labeling the 

terminal end of nucleic acids. This method was applied to detect apoptosis in paraffin-

embedded colon samples using the Fluorescein In Situ Cell Death Detection Kit 

according to the manufacturer’s instructions. 
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IHC slides were scanned using the digital scanner Nanozoomer 2.0HT 

(Hamamatsu) with a 40x objective. Quantification was performed with Tmarker software 

(Schuffler et al., 2013) using the plugin for “color deconvolution” (CMY staining 

protocol) and “cancer nucleus classification”.  Several training images were used in order 

to train the Tmarker classification using its active learning algorithm prior to performing 

the analysis of the samples from several high magnification fields. The results were 

expressed as percentage of positively stained cells. 

3.6.10  Immunofluorescence  
To confirm the purity of macrophages isolated from lamina propria (see section 3.4.1.3), 

cells were left to adhere to the plastic petri-dishes for 30 min, then were recollected and 

seeded onto 8-well glass chamber slides (Millipore #PEZGS0816), for 

immunofluorescence staining. Cells were left to adhere for further 30 min, the culture 

media was removed and cells were immediately fixed with ice-cold Methanol (100%) for 

5 min at RT. Methanol was removed and cells were washed 3 times with PBS and 

incubated with 100 µl of IF Blocking Buffer with shaking for 30 min. The CD16/32-

containing blocking buffer was removed and replaced with 100 µl of PBSBT containing 

the primary antibody for 1h at RT or overnight at 4ºC with shaking (Table 22). In the case 

of double-staining (γ-H2AX and 53BP1), the slides were washed 3 times with PBSBT 

prior to addition of the other primary antibody. 

 

Antigen Commercial 

House 

Reference Source Dilution 

53BP1 Novus Biologicals NB 100-904 Rabbit 1:200 

CD115 BioLegend 135520 Rat (conjugated) 1:100 

E-Cadherin BD Biosciences 610181 Mouse 1:200 

F4/80 eBioscience 14-4801 

 

Mouse 1:100 

Phospho-p38 Cell Signaling  4631 Rabbit 1:100 

γ-H2AX Millipore 05-636 Mouse 1:200 

Table 22. Primary antibodies used for IF. 
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After incubation with the primary antibodies, the slides were washed three times 

with PBSBT. Then secondary antibodies diluted in PBSBT were added for 1 h with 

shaking (Table 23), except in the case of the conjugated antibody (CD115). 

 

Antibody Commercial House Reference Dilution 

Mouse IgG (Alexa Fluor 555) Invitrogen A-21422 1:400 

Rabbit IgG (Alexa Fluor 488) Invitrogen A21441 1:400 

Table 23. Secondary antibodies used for IF. 

 

Slides were then washed again in three times in PBSBT prior to mounting them on 

coverslips using ProLong Gold antifade reagent with DAPI.  

3.6.11  Fluorescence-activated cell sorting (FACS)  

3.6.11.1 Tissue preparation 

3.6.11.1.1 Bone marrow  

Bone marrow cells were isolated as previously described (Bailon et al., 2010). Cells were 

collected out of the bones, transferred to 15 ml Falcon tubes, centrifuged (200 g, 5 min), 

resuspended in 5 ml RCL buffer and incubated for 5 min at RT. Ice-cold DMEM 

containing 10% FBS was added and cells were centrifuged once more (200 g, 5 min) and 

resuspended in ice-cold FACS buffer prior to staining and analysis (see section 3.6.11.2). 

3.6.11.1.2  Blood 

For analysis of blood leukocytes, blood was collected using heparinized needles by 

cardiac puncture into prepared 15 ml Falcon tubes containing 50 µl of heparin (50 

mg/ml). Tubes were filled up using 5 ml RCL buffer and incubated for 5 min at RT. After 

centrifugation (200 g, 5 min), cells were lysed once more for further 3 min at RT. Ice-

cold DMEM containing 10% FBS was and centrifuged (200 g, 5 min). Cells were 

resuspended in ice-cold FACS buffer prior to staining and analysis (see section 3.6.11.2). 

3.6.11.1.3  Spleen 

For collection of splenic cells, the spleen was removed, excess fat was eliminated and the 

soft mouse spleen was forced through a 40 µm cell strainer. Ice-cold DMEM containing 

10% FBS was added, cells transferred to a 15 ml tube and centrifuged (200 g, 5 min). The 

pellet was resuspended in 5 ml RCL buffer, incubated for 5 min and centrifuged (200 g, 5 
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min). Ice-cold DMEM containing 10% FBS was added prior to centrifugation (200 g, 5 

min) and resuspension in ice-cold FACS buffer for staining and analysis (see section 

3.6.11.2). 

3.6.11.2  Cell staining and flow cytometry 

Cells obtained from bone marrow, blood and spleens from different experiments were 

washed in FACS buffer and counted to treat 4x106 cells per tube. Fc Receptors were 

blocked in FACS buffer containing CD16/CD32 antibody (1:100) for 20 min at 4ºC. Cells 

were washed again in FACS buffer and stained with combinations of fluorescence-

labeled antibodies to cell surface markers (Table 24). 

 

Antigen Channel Commercial 

House 

Reference Dilution 

CCR2 FITC R&D Systems FAB5538F-025 1:100 

CD11b Brilliant Violet 

711 

BioLegend 101241 1:200 

CD127 PE Biolegend 12-1271-81 1:100 

CD34 FITC Biolegend 11-0341-81 1:100 

CD4 PerCP-Cy5.5 BioLegend 100433 1:200 

CD45 APC-eFluor 780 ebioscience 47-0451-80 1:400 

CD45 PE-Cy7 BD Pharmingen 552848 1:300 

CD8 APC Miltenyi biotec 130-091-606 1:200 

c-Kit APC Biolegend 17-1171-81 1:100 

F4/80 PE Biolegend 123109 1:100 

Lineage Cocktail e-Fluor 450 Biolegend 88-77772-72 1:100 

Ly6C APC BD Pharmingen 560595 1:400 

Ly6G PerCP-Cy5.5 BioLegend 127615 1:100 

Sca-1 PE-Cy7 BioLegend 108114 1:100 

Table 24. Antibodies used for FACS analysis. 

 

Cells were stained for viability using the LIVE/DEAD Fixable Yellow Dead Cell 

Stain Kit following the manufacturer’s instructions and analyzed using Gallios (Beckman 

Coulter) or Cytoflex (Beckman coulter), flow cytometers. All experiments were analyzed 
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using FlowJo software (Phoenix Flow Systems, Inc., San Diego) and data were 

represented as % indicated positive cells. 

3.6.12  AnnexinV and propidium iodide (PI) staining 
Apoptosis was measured using a fluorescent AnnexinV kit. As positive control, CMT-93 

cells were stimulated with ActD (5 µg/ml) for 12 h. For sample analysis, the medium was 

collected and CMT-93 cells were washed with PBS, which was then collected as well. 

CMT-93 cells were incubated with trypsin-EDTA solution for 5-10 min at 37ºC, and were 

collected washing the wells once again with PBS to collect the remaining cells. The tubes 

containing medium, cells and PBS were centrifuged (200 g, 5 min), washed with PBS and 

1x105 cells/sample were resuspended in 500 µl annexin-V binding buffer. Annexin-V (25 

µM) was incubated for 20 min at RT (in the dark) and Propidium Iodide (PI) (0.2 µg/ml) 

was added just before measurement. Samples were analyzed by flow cytometry using 

FC500 cytometer (Beckman Coulter, Inc., Pasadena, CA). FlowJo software was used to 

analyze data, which were represented as % of Annexin-V and PI positive cells.  

3.6.13  BrdU labelling 
Analysis of proliferation was performed in treated or untreated sub-confluent CMT-93 

cell cultures, unless otherwise indicated. 10µl of BrdU (10mM) was added 2 h prior to 

sample collection.  

For sample collection, cells were incubated with trypsin-EDTA solution for 5-10 

min at 37ºC and trypsin was inactivated with serum containing medium (DMEM, 10% 

FBS, 1% P/S). CMT-93 cells were collected and the wells washed once again with PBS 

to collect remaining cells. 1x106 cells/sample cells were fixed with 5 ml EtOH (70%) and 

stored at –20°C for at least 2 h, up to 2 weeks.  

For BrdU staining, tubes were centrifuged (150 g, 5 min), resuspended in 1 ml of 

cold PBS and centrifuged again (220 g, 7 min), before carefully removing the supernatant 

and adding 0.5 ml of HCl (0.1M) and Tween 20 (0.5%) in water. Cells were then 

incubated on ice for 10 min, 1 ml of water was added and tubes centrifuged (220 g, 7 

min). The supernatant was discarded and 1 ml of distilled water was added prior to 

incubation of the samples at 95°C for 5 min and transferring them on ice. Then, 500 µl of 

0.5%Tween/1%BSA in PBS was added, samples centrifuged (220 g, 7 min) and 

supernatant was discarded. Afterwards, 750 µl of 0.5%Tween/1%BSA in PBS was added, 

centrifuged (220 g, 7 min) and supernatant was discarded. Finally, cells were resuspended 
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in 90 µl of 0.5%Tween/1%BSA in PBS with 10 µl of anti-BrdU-FITC or anti-isotype-

FITC antibody contained in the kit (see section 3.1.3). Samples were then incubated at RT 

in the dark for 90 min. Then, 750 µl of 0.5%Tween/1%BSA in PBS was added, samples 

were centrifuged (220 g, 7 min) and supernatant was discarded. Finally, the cells were 

resuspended in 300 µl of PI solution and analyzed after 20 minutes by flow cytometry 

using FC500 cytometer (Beckman Coulter, Inc., Pasadena, CA). FlowJo software was 

used to analyze data, which were represented as % of BrdU positive cells. 

3.6.14  β-Galactosidase staining 
To evaluate cellular senescence, CMT-93 cells were seeded on 6-well plates at the 

indicated confluences in the presence of absence of p38 MAPK inhibitors. The 

Senescence β-Galactosidase staining kit was used and all the steps were performed 

following the manufacturer’s indications. After staining, the wells were scanned using the 

CellR/ScanR (Olympus) microscope and the integrated density (ID)/µm2 was quantified 

using ImageJ software. 

3.6.15  In-Vitro paracellular permeability assay 
The paracellular flux in CMT-93 cells was measured as previously described (Inai et al., 

1999). Briefly, CMT-93 cells were seeded at sub-confluence and analyzed at 2 days post-

confluence if not otherwise indicated onto 0.4 µm pore size cell inserts (Corning; 

#353095). Treatment of cells was performed as described in the corresponding sections. 

For analysis, the culture medium was replaced with P-buffer for 30 min for equilibration 

(350 µl in the apical, and 900 µl in the basolateral chamber). Then, the P-buffer was 

removed from both sides, 900 µl of fresh P-buffer was put in the basolateral chamber and 

in the apical chamber 1 mg/ml of 4 kDa FITC-Dextran was added (Figure 9).  
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Figure 9. Schematic representation of the paracellular permeability assay. 

The paracellular flux of 4 kDa FITC-Dextran using 0.4 µm pore size filter from the apical to the basolateral 
chamber was measured using a spectrofluorometer. 

 

The media from the lower compartment were collected each h after the addition of the 

tracer and the cell inserts were moved to fresh 900 µl P-buffer. This was repeated 4 times 

(a total of 4 h). The paracellular flux was determined by spectrofluorometric 

measurement (BioTek #FLx800), with an excitation of 485 nm (20 nm band width) and 

an emission wavelength of 528 nm (20 nm band width), calculating an average of flux per 

hour from technical duplicates in each experiment performed, using serially diluted FITC-

Dextran as standard. 

3.6.16  Wound-healing assay 
To measure wound-healing, CMT-93 cells were seeded in sub-confluence onto 24-well 

tissue culture plates, treated as indicated in the corresponding sections and analyzed at 2 

days post-confluence. The cell monolayer was scraped in a straight line to create a scratch 

using a p10 pipet tip. Cellular debris was removed by carefully washing the cells twice 

with PBS, prior to the addition of the recovery media indicated in the corresponding 

sections. To keep the humidity of the cells, additional PBS was added in the empty space 

between the wells of the plate. The wound-closure was followed up using the 

CellR/ScanR (Olympus) live cell imaging microscope on a 10x objective (phase contrast). 

Sensors located throughout the instrument were set to keep the temperature inside the 

microscope chamber at 37° C and CO2 at 5 %. The software integrated in the microscope 

(Excellence; Olympus), was programmed using the experiment manager to acquire 
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images of the same field every 10 min during the whole acquisition period. Per well, 4 

acquisition points were selected (Figure 10). 

 

 

Figure 10. Schematic representation of the scratch assay. 

CMT-93 cell monolayers were wounded and 4 fixed acquisition fields per well were randomly chosen. 
Images were taken every ten minutes and wound-closure was calculated from 10 positions within each 
acquisition field (image) chosen. 

 

The analysis of wound closure velocity was performed with ImageJ using the plugin 

“ImageJ Kymograph”, following the plugin description. For each acquisition point, 10 

positions within the image were analyzed for the migration velocity of CMT-93 cells and 

results were expressed as the velocity of wound closure (µm/min). 

 Statistical analysis 
Data are expressed as average ± SD. Statistical analysis was performed by using a two-

tailed Student’s t-test (Mann-Whitney) for the comparison of two groups or ANOVA 

using Bonferroni post-hoc correction for multiple groups using GraphPad Prism Software 

6 (GraphPad Software, Inc., La Jolla CA). p-values are expressed as *, p ≤ 0.05; **, p ≤ 

0.01; ***, p ≤ 0.001 and ****, p ≤ 0.0001. 
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4. RESULTS 

 Regulation of IGF-1 production by p38α in myeloid cells 

promotes inflammation-associated colon cancer 

4.1.1 Mice with p38α-deficient myeloid cells show decreased 

susceptibility to colon tumorigenesis  
Myeloid cells are the predominant leukocytes found in solid tumors and are known to 

support primary tumor growth and progression (Schouppe et al., 2012). Since p38α has 

been implicated in several cancers (see section 1.4) and is known to control the 

production of leukocyte chemoattractants and other pro-inflammatory mediators 

(Cuadrado and Nebreda, 2010; Kim et al., 2008), we first investigated the contribution of 

myeloid p38α signaling to CAC.  

The AOM/DSS model in C57/BL6 mice is a well-established model for CAC. A 

single intraperitoneal administration of AOM is followed by three cycles of five-days 

DSS treatment separated by 14-day intervals of regular water (see section 3.3.4). This 

treatment is based on the induction of mutations by AOM and inflammation by DSS, 

resulting in multiple neoplasms in the distal colon that can be visible within a period of 20 

weeks. Mice treated with this protocol are usually sacrificed 100 days after AOM 

injection (Figure 11) and exhibit tumors that resemble human colon tumors both, in 

distribution, and at the molecular level (Kohno et al., 2005; Neufert et al., 2007; Suzuki et 

al., 2004; Tanaka et al., 2003).  

 

 

Figure 11. AOM/DSS-induced tumorigenesis protocol. 

Schematic representation of the AOM/DSS protocol to induce colitis-associated colon cancer. Animals 
were sacrificed at day 100, unless otherwise indicated 

 

To evaluate the role of myeloid p38α in inflammation-associated colon 

tumorigenesis, our group generated mice expressing LysM-Cre and p38α-lox alleles as 

previously described (Clausen et al., 1999; Kang et al., 2008; Otsuka et al., 2010; Ventura 

et al., 2007). Mice deficient in p38α in myeloid cells (p38α-∆MC) have been described to 
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contain monocytes and macrophages, but also neutrophils with significant p38α deletion 

(Abram et al., 2014). The LysM gene is a marker of myeloid differentiation and is 

progressively turned on during differentiation from myeloid precursor cells to mature 

macrophages, in which it is fully active (Cross et al., 1988; Mollers et al., 1992). p38α-

∆MC mice appeared to be healthy and had no obvious physiological phenotype compared 

to their WT littermates (p38αfl/fl).  

The efficiency of p38α downregulation in myeloid cells was confirmed using 

peritoneal macrophages. A representative western blot is shown in Figure 12.  

 

 

Figure 12. p38α downregulation of p38α-∆MC mice. 

Representative western blot of p38α in cell lysates obtained from peritoneal macrophages to confirm p38α 

downregulation in myeloid cells of p38α-ΔMC mice used in the experiments. 

 

Six days after the AOM injection, once the DSS treatment was started, and 

throughout the experiment, several parameters were evaluated to estimate disease 

susceptibility of the mice. We monitored the animal body weight, occurrence of diarrhea, 

and the presence of gross blood in the faeces for each mouse. These factors were 

compiled to calculate the DAI (Table 8). Our results indicated that p38α-ΔMC mice 

treated with AOM and DSS lost less body weight (Figure 13A) and exhibited a lower 

DAI compared to WT mice (Figure 13B).  
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Figure 13. Deficiency of p38α in myeloid cells decreases susceptibility to CAC. 
(A and B) Body weight (A) and DAI (B) were recorded at the indicated days during AOM/DSS induced 
tumorigenesis (n ≥ 11). 
Data are expressed as the average±SD. *, p≤0.05, **; p ≤ 0.01. 
 

Moreover, WT mice often developed rectal prolapse, which was rarely observed 

in the p38α-ΔMC mice (Figure 14A), further indicating reduced disease susceptibility in 

p38α-ΔMC mice. Analysis of animals sacrificed 100 days after the treatment started 

showed that macroscopic tumors were mainly located in the distal to middle colon of both 

WT and p38α-ΔMC mice (Figure 14B). 

 

 

Figure 14. AOM/DSS treated p38α-ΔMC mice develop less tumors and anal 
prolapses. 

(A) Representative anorectal prolapse occurring in WT but very rarely in p38α-ΔMC mice.  
(B) Representative images of colon tumors. Red arrows indicate macroscopically visible and measured 
tumors.  
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The average tumor size was similar, but p38α-ΔMC mice had significantly less 

tumors compared to WT mice (Figure 15A). In particular, p38α-ΔMC mice had fewer 

tumors larger than 4 mm, and no tumors larger than 6 mm (Figure 15B). These results 

demonstrate that deficiency of p38α in myeloid cells reduces the susceptibility and 

severity of clinical and pathological parameters in the AOM/DSS-induced colon 

carcinogenesis model. 

 

 

Figure 15. p38α deficiency in myeloid cells reduces colitis-associated tumorigenesis. 
(C) Average tumor number, size and load (n ≥ 11).  
(D) Number of tumors >4 mm and >6 mm in AOM/DSS-treated mice (n ≥ 11). 
Data are expressed as the average±SD. **, p≤0.01, ***; p ≤ 0.001. 
 

4.1.2 p38α deficiency in myeloid cells reduces the egression of Ly6Chi 

monocytes from the bone marrow during AOM/DSS treatment 
Monocytes are found in the blood and spleen, however, their largest reservoir is the bone 

marrow. The recruitment of these cells to sites of inflammation and their contribution to 

pathogenesis has been demonstrated in various conditions, including cancer (Biswas and 

Mantovani, 2010; Pittet and Swirski, 2011; Richards et al., 2013). Therefore, we analyzed 

if there were differences at the immunological level between p38α-ΔMC and WT mice. 
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The bone marrow is considered a primary hematopoietic organ and besides of giving rise 

to cells of the MPS system (see section 1.2.2), it has also been implicated in function and 

trafficking of several other immune cells, such as T cells (Zhao et al., 2012). 

Interestingly, we found significantly less Ly6ChiCCR2+ inflammatory monocytes in the 

bone marrow of p38α-ΔMC mice compared to WT mice, indicating a weaker 

inflammatory response in tumor-bearing p38α-ΔMC mice (Figure 16A and Figure 16B).  

 

 

Figure 16. Downregulation of p38α in myeloid cells decreases pro-inflammatory 
monocyte recruitment during colitis-associated tumorigenesis. 

(A) Representative FACS analysis of bone marrow cells from untreated mice. Frequency of each gated 
population as a percentage of the displayed cells is shown. 
(B) Percentage of CD45+ CD11b+ cells that were Ly6Chi and CCR2+ in the bone marrow (n ≥ 3).  
Data are expressed as the average±SD. **, p ≤0.01. 
 

However, other immune cell populations of the bone marrow, such as general 

leukocytes (CD45+), myeloid cells (CD45+CD11b+), CD8+ T-cells, CD4+ T-cells or 

CD4+CD8+T-cells were not significantly different between WT and p38α-ΔMC mice 

(Figure 17C).  
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Figure 17. 
Downregulation of 
p38α in myeloid cells 
does not affect the 
general myeloid cell 
population or T-cells in 
the bone marrow. 

Percentage of CD45+, CD45+ 

CD11b+, CD45+CD4+, 
CD45+CD8+ and CD45+ cells 
that were CD4+ CD8+ in bone 
marrow (n ≥ 3). 
Data are expressed as the 
average±SD. 

 

Nevertheless, some WT animals showed spleen enlargement (splenomegaly), an 

indicator of systemic inflammation that has been correlated to tumor burden (Baltgalvis et 

al., 2009), which was rarely observed in p38α-ΔMC mice (Figure 18A). However, we did 

not find significant differences in various immune cell populations, such as general 

leukocytes (CD45+), myeloid cells (CD45+CD11b+), neutrophils (CD11b+Ly6G+), 

inflammatory monocytes (Ly6ChiCCR2+), CD8+ T-cells, CD4+ T-cells or CD4+CD8+T-

cells of the spleen between WT and p38α-ΔMC mice (Figure 18B). The observed 

splenomegaly could be due to increased hematopoiesis to replenish blood lost through 

stools due to tumors or ulcerations in WT mice. Splenic hematopoiesis has been reported 

in several animal models of disease including cancer and colitis, suggesting that spleens 

of sick animals are more skewed toward erythropoiesis and lymphopoiesis (Bronte and 

Pittet, 2013).  

However, although we could not observe changes in the percentages of the 

analyzed immune cells in the spleen, given the observed enlargement of this organ we 

think it is likely that the total immune cell number between WT and p38α-ΔMC mice 

could be affected, although this has not been evaluated so far. Thus, our results suggest 

that p38α-ΔMC mice exhibit a reduced population of Ly6ChiCCR2+ monocytes in the bone 

marrow, which might reflect suppression of systemic and local inflammation and 

tumorigenic processes compared to WT mice.  
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Figure 18. Analysis of spleens from AOM/DSS treated animals. 

(A) Representative images of spleens in AOM/DSS-treated mice at day 100.  
(B) Percentage of CD45+, CD45+ CD11b+, CD45+ CD11b+ cells that were Ly6G+, CD45+ cells that were 
CD4+ CD8+ and CD45+CD11b+ cells that were Ly6Chi CCR2+ in the spleens (n ≥ 3). 
Data are expressed as the average±SD.  
 

4.1.3 Myeloid p38α controls the tumor promoting inflammatory 

microenvironment  
Inflammation affects various aspects of tumorigenesis and immune cells infiltrated in 

tumors are engaged in an extensive and dynamic crosstalk with cancer cells (Grivennikov 

et al., 2010). Therefore, given that immune cells are major contributors to the 

inflammatory microenvironment, we evaluated the immune cell infiltrate in the tumors. In 

agreement with the reduced levels of Ly6ChiCCR2+ inflammatory monocytes detected in 

the bone marrow of p38α-ΔMC mice compared to WT mice, we observed in the tumors of 

mice harboring p38α deficient myeloid cells a reduced macrophage infiltration (F4/80+) 

measured by IHC (Figure 19). 
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Figure 19. p38α deficiency in myeloid cells inhibits macrophage recruitment to 
tumors. 

Representative sections from normal colon epithelia, epithelia after AOM/DSS treatment and colon tumors 

stained for F4/80. Quantifications are shown in the histogram below (n ≥ 3). Scale bars, 100 µm. Data are 
expressed as the average±SD. *, p≤0.05. 
 

We further measured the abundance of general leukocytes (CD45+) and T-cells 

(CD3+) in tumor and epithelial sections of mice treated with AOM/DSS, and observed a 

reduced infiltration in tumors of p38α-ΔMC mice compared to WT mice (Figure 20), 

although differences were not as striking as for macrophages.  
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Figure 20.  Leukocyte recruitment is suppressed in mice with myeloid p38α 
deficiency. 

(A and B) Representative sections of normal colons, AOM/DSS treated epithelia and tumors stained for 
CD45 (A) and CD3 (B).  
(C) Quantifications of normal colons, AOM/DSS treated epithelia and tumors stained for CD45 and CD3 (n 
≥ 3). 
Scale bars, 100 µm. Data are expressed as the average±SD. *, p≤0.05; ***, p ≤0.001. 
 

Moreover, no significant changes in activated neutrophils (MPO+) were observed 

between colon tumors of WT and p38α-ΔMC mice (Figure 21). Taken together we 
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conclude that infiltration of immune cells is suppressed in tumors from p38α-ΔMC 

compared to WT mice. 

 

 

Figure 21. Activated neutrophils in AOM/DSS treated mice. 

Representative sections of normal colons and AOM/DSS treated epithelia and tumors stained for MPO. 
Quantifications are shown in the histograms (n ≥ 3).  
Scale bars, 100 µm. Data are expressed as the average±SD. *, p≤0.05. 
 

The inflammatory TME is also characterized by augmented cellular proliferation 

(Colotta et al., 2009; Whiteside, 2008). We evaluated the phosphorylation status of 

STAT3, a potent activator of inflammatory pathways that contributes to oncogenic 

signaling leading to enhanced cell proliferation and tumor growth (Corvinus et al., 2005; 

Kim and Bae, 2016). As expected, tumors showed enhanced STAT3 phosphorylation 

compared to normal epithelium and, interestingly, STAT3 phosphorylation was reduced 

in tumors from p38α-ΔMC mice compared to tumors from WT mice (Figure 22A and 

Figure 22C). Cell proliferation, measured as Ki67+ cells, was upregulated in the tumors 

from WT mice compared to normal epithelium, whereas differences observed in tumors 

from p38α-ΔMC mice were not significant (Figure 22B and Figure 22C).  
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Figure 22. Deficiency of p38α in myeloid cells reduces inflammation in the tumor. 
(A and B) Representative sections of normal colons, AOM/DSS treated epithelia and tumors stained for 
phospho-STAT3 (A) and Ki67 (B).  
(C) Quantifications of normal colons, AOM/DSS treated epithelia and tumors stained for phospho-STAT3 
and Ki67 (n ≥ 3). 
Scale bars, 100 µm. Data are expressed as the average±SD. *, p≤0.05, **; p ≤ 0.01. 

 

However, although proliferation was higher in the tumors of WT mice compared 

to p38α-ΔMC mice, we could not observe significant differences in apoptosis measured by 

TUNEL in the tumors (Figure 23). These results suggest that p38α in myeloid cells 

affects STAT3 phosphorylation without significantly affecting the proliferation and 

apoptosis ratios in colon tumors. 
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Figure 23. Apoptosis in AOM/DSS treated mice. 

Representative sections of AOM/DSS treated epithelia and tumors stained for TUNEL. Quantifications are 
shown in the histogram (n ≥ 3).  
Scale bars, 100 µm. Data are expressed as the average±SD. 

 

Since macrophages can promote angiogenesis by expressing extracellular factors 

and recruiting other haematopoietic cells (Pollard, 2004), we hypothesized that 

angiogenesis could be affecting the tumor burden in our mouse model. Therefore we 

measured endothelial CD31+ cells as a marker for angiogenesis (Basilio-de-Oliveira and 

Pannain, 2015; Sharma et al., 2013), but could not observe any differences between tumor 

derived from WT and p38α-ΔMC mice (Figure 24).  

 

 

Figure 24. Angiogenesis is not affected by downregulation of p38α in myeloid cells. 
Representative sections of AOM/DSS treated epithelia and tumors stained for CD31. Quantifications are 
shown in the histogram (n ≥ 3).  
Scale bars, 100 µm. Data are expressed as the average±SD. 
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4.1.4 Deficiency of p38α in myeloid cells reduces DSS-induced 

inflammation 
Given that inflammation is an essential component of AOM/DSS-induced tumorigenesis, 

we investigated the contribution of myeloid p38α to the DSS response. The model of 

DSS-induced acute colitis is a widely used experimental model in which DSS acts as an 

irritant to the epithelial mucosa of the colon, resulting in diarrhea and initiation of 

inflammatory processes (Okayasu et al., 1990; Perse and Cerar, 2012; Seril et al., 2003).  

Colon inflammation in this model is induced by providing mice ad libitum with 

DSS, typically in the drinking water. Depending on various factors, such as mouse strain 

and housing conditions, the concentration and duration of the DSS treatment needs to be 

adjusted to the mice used in the experiments (Chassaing et al., 2014; Perse and Cerar, 

2012; Stevceva et al., 1999). In our case, we treated mice for 6 days with DSS (1.5 %) 

and replaced DSS by regular drinking water for 7 more days, until day 13 (Figure 25).  

 

 

Figure 25. Schematic representation of the experimental design for DSS-induced 
acute colitis. 
Pink lines indicate days 7 and 13, the time points at which animals were sacrificed. 

 

The administration of DSS induced the expected colonic inflammatory status, 

exhibiting several characteristics similar to human UC, such as diarrhea, shortening of 

colon, multiple erosions and inflammatory mucosal changes, loss of crypts and 

ulcerations (Clapper et al., 2007; Randhawa et al., 2014). As previously described, the 

colonic inflammation process induced by DSS was associated with a decrease in mouse 

body weight, which was less severe in p38α-ΔMC mice compared to WT mice (Figure 

26A). In concordance with the body weight loss, the DAI score was also increased to a 

higher extent in WT than in p38α-ΔMC mice (Figure 26B).  
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Figure 26. Myeloid deletion of p38α decreases DSS-induced body weight loss and 
DAI. 
(A and B) Body weight (A) and DAI (B) were recorded daily in DSS-treated mice (n ≥ 9).  
Scale bars, 100 µm.  
Data are expressed as the average±SD. *, p≤0.05; **, p ≤0.01; ***, p≤0.001; ****, p≤0.0001. 
  

Another inflammatory indicator of colitis is the colon length (Diaz-Granados et 

al., 2000), which was slightly shorter in DSS-treated WT mice compared to p38α-ΔMC 

mice (Figure 27).  

 

 

 

The epithelial damage was also assessed microscopically in H&E stained colon 

sections using a semi-quantitative scoring system, by evaluating the extent (1-4) and 

percentage (1-4) of epithelial damage observed in the intestinal mucosa (divided by 2), as 

previously described (Gupta et al., 2014). In line with the decreased severity of colitis 

indicators observed, the large areas of complete crypt loss and erosions detected in colons 

from DSS-treated WT mice were strongly reduced in p38α-ΔMC mice. Of note, no 

differences in colon histology were observed between WT and p38α-ΔMC mice prior to 

DSS administration (Figure 28). Therefore, our results indicate that p38α-ΔMC mice are 

Figure 27. Myeloid deletion of 
p38α alleviates DSS-induced colon shorting. 

The total length of each colon dissected from untreated 
or DSS-treated mice was measured under a constant 
weight (2 g; n ≥ 5). 
Data are expressed as the average±SD. *, p≤0.05. 
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less susceptible to DSS-induced colitis, in agreement with a previous report (Otsuka et al., 

2010). 

 

 

Figure 28. Myeloid deletion of p38α decreases DSS-induced colitis susceptibility. 

Representative images of H&E-stained colon sections from animals either untreated or treated with DSS for 
6 days and analyzed at days 7 and 13. The histogram below illustrates the quantification of epithelial 
damage in untreated mice or mice treated with DSS for 6 days and analyzed at days 7 and 13 using H&E-
stained colon sections (n ≥ 5).  
Scale bars, 100 µm. Data are expressed as the average±SD. **, p ≤0.01; ***, p≤0.001. 

 

The analysis of tumors indicated that p38α downregulation in myeloid cells 

affected inflammatory cell recruitment (see section 4.1.3). We therefore extended this 

analysis in the epithelia of DSS treated mice to induce acute colitis. Indeed, IHC analysis 

of different immune cell markers in untreated and DSS treated mice sacrificed at day 7 

and day 13 revealed a prominent inhibition of inflammatory cell recruitment in p38α-ΔMC 

mice during acute colitis, in particular during the pro-inflammatory phase at day 7 of 

treatment. Both, macrophages (F4/80+) and general leukocytes (CD45+) were reduced in 

the immune cell infiltrates of DSS-treated p38α-ΔMC mice compared to WT mice (Figure 

29A and Figure 29B). 
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Figure 29. Myeloid deletion of p38α decreases leukocyte recruitment to the inflamed 
intestine. 

(A and B) Representative colon sections stained for F4/80 (A) and CD45 from untreated mice or mice 
treated with DSS for 6 days and analyzed at days 7 and 13.  
(C) Quantifications of F4/80 and CD45 in the epithelia from the indicated mice (n ≥ 4).  
Scale bars, 100 µm. Data are expressed as the average±SD. *, p≤0.05.  

 

Similarly, activated neutrophils (MPO+) and T-cells (CD3+) were less recruited to 

the epithelia of p38α-ΔMC mice compared to WT mice, 7  days after starting the DSS 

administration (Figure 30A and Figure 30B). 
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Figure 30. Myeloid deletion of p38α decreases neutrophil and T-cell recruitment to 
the inflamed intestine. 

(A and B) Representative colon sections stained for MPO (A) and CD3 (B) from untreated mice or mice 
treated with DSS for 6 days and analyzed at days 7 and 13.  
(C) Quantifications of MPO and CD3 in the epithelia from the indicated mice (n ≥ 4).  
Scale bars, 100 µm. Data are expressed as the average±SD. *, p≤0.05; **, p ≤0.01. 

 

Moreover, infiltrating immune cells produce cytokines that activate STAT3 and its 

target genes contributing to tumor-promoting inflammation (Jarnicki et al., 2010; Yu et 

al., 2009). Accordingly, STAT3 phosphorylation was significantly reduced in the colon 

epithelia of DSS-treated p38α-ΔMC mice compared to WT mice at day 7 after initiation of 

DSS administration (Figure 31A and Figure 31B). However, STAT3 mRNA levels were 
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similar in the colons from WT and p38α-ΔMC mice (Figure 31C). These results indicated 

that STAT3 phosphorylation is induced during active inflammation and this signal 

transduction pathway is dependent on the activation of p38α in myeloid cells. 

 

 

Figure 31. Downregulation of p38α in myeloid cells suppresses expression of 
inflammatory mediators in colons from DSS treated mice. 

(A and B) Representative colon sections from untreated mice and mice treated with DSS for 6 days and 
analyzed at day 7 and day 13 were stained for phospho-STAT3. Quantifications are shown in the histogram 
(n ≥ 4) (B).  
(C) STAT3 mRNA levels in mouse colons from DSS-treated mice analyzed at day 7 and 13 were 
determined by qRT-PCR (n ≥ 5). 
Scale bars, 100 µm. Data are expressed as the average±SD. *, p≤0.05. 

 

Colon inflammation in DSS-treated mice also induces the production of pro-

inflammatory cytokines (e.g. IL-1β and TNFα) and their intestinal expression has been 

correlated to the severity of colitis (Bertevello et al., 2005; Egger et al., 2000; Ghia et al., 

2007). ELISA analysis revealed that inflammatory molecules such as IL-1β were 

downregulated in DSS-treated p38α-ΔMC mice compared to WT mice (Figure 32A), and 

TNF-α was also induced at lower levels upon DSS treatment in p38α-ΔMC mice (Figure 

32B). Taken together, the results indicate that p38α signaling in myeloid cells contributes 

to the colitis severity induced by DSS. 
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Figure 32. Downregulation of p38α in myeloid cells suppresses expression of 
inflammatory mediators in colons from DSS treated mice. 

(A and B) Colon lysates from mice untreated or treated with DSS for 6 days were analyzed at day 7 by 

ELISA for IL-1β (A) and TNF-α (B) expression levels (n ≥ 5).  
Scale bars, 100 µm. Data are expressed as the average±SD. **; p ≤0.01. 
 

4.1.5 p38α regulates IGF-1 expression in macrophages 

Our results clearly implicate p38α signaling in myeloid cells in intestinal inflammation 

and CAC. Therefore, we aimed to identify downstream mediators of p38 MAPK 

signaling in macrophages that might impinge on the disease by affecting the 

inflammatory microenvironment. Supernatants from BMDMs obtained from mice WT or 

with myeloid cells deficient in both p38α and p38β were used to analyze a cytokine 

array. Indeed, we found several cytokines and chemokines, potentially involved in 

intestinal inflammatory pathogenesis, which were differentially expressed in supernatants 

derived from p38α-ΔMC BMDM compared to WT supernatants. Among the 

downregulated ones we found IGF-1, IGFBP-2, Resistin, Lungkine (CXCL15), 

macrophage derived chemokine (MDC) and thymus chemokine-2 (TCK-1; CXCL7). 

Upregulated molecules included IGFBP-5, IGFBP-6, vascular cell adhesion molecule-1 

(VCAM-1), CX3CL1, IL-13 and soluble tumor necrosis factor Receptor II (sTNFRII) 

(Figure 33). 

 



126 
 

 

Figure 33. Cytokine arrays analyzed with supernatants derived from BMDMs. 

A mouse cytokine antibody array was interrogated using a pool of supernatants derived from non-
stimulated mice BMDM (n=3/genotype). Quantifications of the most prominent changes are shown in the 
lower panel. Arbitrary units are referred to the expression level of each chemokine in WT mice, which was 
given the value of 1.   

 

We decided to further evaluate the link with IGF-1, which was the most obvious 

change, and because it has not been previously reported to be regulated by p38α in 
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macrophages. Moreover IGF-1 has been implicated in the regulation of inflammatory 

processes, inflammatory cell recruitment and tumorigenesis (see section 1.3.1.3.1).  

First, we confirmed the results from the cytokine array analyzing IGF-1 protein 

and mRNA expression in BMDMs derived from WT and p38α-ΔMC mice. Indeed, we 

found reduced intracellular and extracellular IGF-1 protein levels in p38α-deficient 

BMDMs compared with WT BMDMs (Figure 34A).  

The IGF-1 mRNA expression level detected under basal conditions in WT 

macrophages was induced by different stimuli. Thus, LPS from bacteria, related to the 

classical macrophage activation phenotype (M1) and inflammation (Ying et al., 2013), as 

well as IL-4, which is related to tissue healing processes (Ferrante and Leibovich, 2012) 

were both able to upregulate IGF-1 mRNA expression. However, our results showed that 

IGF-1 mRNA was more potently induced by IL-4 than by LPS (Figure 34B), in 

agreement with its proposed role as marker for wound-healing macrophages (Roszer, 

2015; Tonkin et al., 2015), which contribute to tumor progression (Murray and Wynn, 

2011). Finally, the implication of p38α signaling in IGF-1 production by macrophages 

was confirmed by using the chemical inhibitors SB-203580, PH-797804 and LY-2228820 

(Figure 34B and Figure 34C).  

The in vitro studies demonstrated that IGF-1 expression is controlled by p38α 

activation in BMDMs. Moreover, IGF-1 expression is potently induced in BMDM 

activated by IL-4, a wound-healing cytokine also involved in tumor progression and a 

major regulator of TAM phenotypes (Novak and Koh, 2013; Paul and Zhu, 2010; Varin 

and Gordon, 2009). 
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Figure 34. p38α regulates IGF-1 production by BMDMs. 

(A) Whole protein lysates (upper panel) or supernatants (lower panel) of BMDMs were used to analyze 
IGF-1 protein levels by ELISA (n = 5).  
(B) BMDMs obtained from WT mice were starved for 17 h prior to stimulation with either LPS (10 ng/ml) 

or IL-4 (10 ng/ml) for the indicated times in the presence or absence of the indicated p38α inhibitors or 
vehicle (DMSO). The inhibitors were added to the medium 1 h prior to stimulation with LPS or IL-4 and 
IGF-1 mRNA expression levels were measured by qRT-PCR (n = 3). Arbitrary units are referred to the 
expression level in DMSO-treated Control at 3 h, which was given the value of 1.  

(C) WT BMDMs were starved for 17 h, then the indicated p38α inhibitors or DMSO were added to the 
medium 1 h prior to stimulation with IL-4 for 6 h. Supernatants were collected and used to measure IGF-1 
mRNA expression levels (left panel) and IGF-1 protein levels by ELISA (right panel) (n = 3). Arbitrary 
units are referred to the expression level in the DMSO-treated Control (about 700 pg/ml), which was given 
the value of 1.  
Data are expressed as the average±SD. *, p≤0.05; **, p≤0.01; ***, p≤0.001; ****, p≤0.0001 

 

To corroborate the in vitro results in BMDMs, we isolated intestinal macrophages 

and confirmed by F4/80, and by CD115 (CSFR-1), another widely used marker for 

macrophages (Sasmono et al., 2003), the identity of the isolated cells (Figure 35). 
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Figure 35. Isolation of intestinal macrophages. 

Representative images of intestinal macrophages isolated from the colonic lamina propria and stained for 
F4/80 and CD115.  

Scale bars, 10 µm (F4/80) and 100 µm (CD115). 

 

This analysis showed decreased IGF-1 mRNA levels in intestinal macrophages 

from p38α-ΔMC mice compared to WT mice (Figure 36A). In response to DSS, intestinal 

macrophages switch from the initial classical activation phenotype (day 7) to a wound-

healing phenotype in the repair phase (day 13) (Enderlin Vaz da Silva et al., 2014; 

Ortega-Gomez et al., 2013; Serhan and Savill, 2005; Sugimoto et al., 2016). Accordingly, 

intestinal macrophages isolated from WT and p38α-ΔMC mice 7 days after the DSS 

treatment, showed stronger differences in IGF-1 expression levels compared to the 

untreated animals (Figure 36A, Day 13). The downregulation of p38α in intestinal 

macrophages from p38α-ΔMC mice was verified by quantifying the deletion of the floxed 

exon 2 of p38α (Figure 36B). Thus, these results suggest that p38α MAPK signaling in 

myeloid cells contributes to IGF-1 expression in macrophages. 
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Figure 36. p38α regulates IGF-1 production in intestinal macrophages. 
(A) Intestinal macrophages were isolated from mice at the indicated days. IGF-1 mRNA levels were 
quantified by qRT-PCR (n ≥ 5).  
(B) Analysis by qRT-PCR of the levels of floxed exon 2 versus exon 12 (as a control) of the p38α gene in 
intestinal macrophages (n ≥ 6). 
Data are expressed as the average±SD. *, p≤0.05; **, p≤0.01. 

 

4.1.6 Downregulation of p38α in myeloid cells reduces IGF-1 signaling 

during intestinal inflammation and tumorigenesis  
To confirm that p38α in myeloid cells regulates IGF-1 signaling during intestinal 

inflammation and tumorigenesis, we evaluated IGF-1 levels and IGF-1 signaling in mice 

treated with DSS to induce colitis or with AOM/DSS to induce CAC. 

In agreement with our findings in intestinal macrophages (see Figure 36), IGF-1 

protein levels were significantly reduced in whole colon extracts from DSS-treated p38α-

ΔMC mice compared to WT mice during the repair phase at day 13 (Figure 37A), when 

macrophages adopt the alternative activation phenotype. Moreover, qRT-PCR analysis 

indicated lower levels of IGF-1 mRNA at day 13 in colon extracts from p38α-ΔMC mice 

compared to WT mice (Figure 37B). However, the differences using whole colon extracts 

were not as clear as in the case of isolated intestinal macrophages, supporting the 

importance of myeloid cells as a source of IGF-1 in the colon.  
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Figure 37. Downregulation of myeloid p38α reduces IGF-1 production during 
intestinal inflammation. 
(A and B) Colon protein lysates obtained from mice either untreated or treated with DSS for 6 days, were 
analyzed at days 7 and 13 to measure IGF-1 levels by ELISA (n ≥ 3) (A) or for IGF-1 mRNA levels by 
qRT-PCR (n ≥ 4) (B).  
Data are expressed as the average±SD. *, p≤0.05. 
 

It is well established that IGF-1 binds to and induces auto-phosphorylation of the 

IGF1R (Laviola et al., 2007; Pessin and Frattali, 1993). Therefore, we performed IHC 

stainings to assess IGF-1 signaling activity during intestinal inflammation and 

tumorigenesis. Since phospho-IGF1R staining was very heterogeneous in the intestines, 

ranging from unstained cells to very strongly stained cells, we decided to analyze this 

staining using the software “TMarker” (Schuffler et al., 2013) to distinguish between the 

different staining intensities observed (Figure 38). 

 

Figure 38. 
Differentiation of 
phospho-IGF1R 
staining intensities 
using TMarker. 
Representative examples of 
cells classified as unstained, 
or stained with low (intensity 
1), moderate (intensity 2) 
and high intensities (intensity 
3) for phospho-IGF1R using 
the software Tmarker.  

Scale bar, 20 µm. 
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Analysis of IGF1R phosphorylation confirmed that the IGF-1 pathway was less 

active in the colon of DSS-treated p38α-ΔMC mice compared to WT mice during DSS-

induced acute colitis (Figure 39).  

 

 

Figure 39. p38α in myeloid cells promotes IGF1R phosphorylation in DSS-treated 
colons. 

Representative colon sections from mice either untreated or treated with DSS for 6 days were analyzed at 
days 7 and 13 for phospho-IGF1R staining.  

Scale bars, 100 µm. 

 

Quantification of the phospho-IGF1R stainings confirmed that the IGF-1 pathway 

was less active in the colon of DSS-treated p38α-ΔMC mice compared to WT mice. 

However, the differences were mainly observed in the number of colon cells with 

stronger staining, indicating high levels of phospho-IGF1R and pathway activity, rather 

than in the total number of stained cells, although the changes were not statistically 

significant between WT and p38α-ΔMC mice at days 7 and 13 (Figure 40A). Of note, 

IGF1R mRNA was also reduced in DSS-treated p38α-ΔMC mice compared to WT mice 

(Figure 40B). We hypothesized that this could be a consequence of the elevated IGF-1 

levels, as in patients with adenomatous polyps a significant positive correlation between 

serum IGF-1 and mucosal IGF1R mRNA has been suggested to play important roles in 

the development of both adenomatous polyps and colorectal carcinoma (Zhang et al., 

2013b). 
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Figure 40. Downregulation of myeloid p38α reduces IGF-1 signaling during colitis. 

(A) Colon sections from mice either untreated or treated with DSS for 6 days were analyzed at days 7 and 
13 by phospho-IGF1R staining and the number of cells with low (1+), moderate (2+) and high (3+) 
intensity was identified and calculated using the software Tmarker as indicated in Figure 38 from several 
high magnification fields per animal (n ≥ 5). 
(B) Relative IGF1R mRNA levels in colons from DSS-treated mice were analyzed at day 7 and day 13 by 
qRT-PCR and are referred to the expression level in the WT, which was given the value of 1 (n ≥ 5).  
Data are expressed as the average±SD. *, p≤0.05; **, p≤0.01; ****, p≤0.0001. 
 

Consistent with the known mitogenic properties of IGF-1, we found significant 

differences in cell proliferation, as determined by Ki67 staining between the colons of 

DSS-treated WT and p38α-ΔMC in the repair phase at day 13 (Figure 41), when IGF-1 

protein levels were significantly different in colon extracts.  

 

 

Figure 41. Deficiency of p38α in myeloid cells reduces DSS-induced proliferation. 

Representative colon sections from mice either untreated or treated with DSS for 6 days were analyzed at 
days 7 and 13 for Ki67 staining (left panel). Quantifications are shown in the histogram (n ≥ 4).  
Scale bars, 100 µm. Data are expressed as the average±SD. *, p≤0.05. 
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We also stained phospho-IGF1R in the colon epithelium of mice to which we 

applied the AOM/DSS-tumorigenesis model (Figure 42).  

 

 

Figure 42. Myeloid p38α promotes AOM/DSS induced IGF1R phosphorylation in 
the tumors. 

Representative colon sections from mice either untreated or treated with AOM/DSS were stained for 
phospho-IGF1R. 

Scale bars, 100 µm. 

 

We observed enhanced IGF1R phosphorylation in the colon epithelium and 

tumors of AOM/DSS-treated mice (100 days after AOM injection) compared to normal 

epithelium (Figure 43A). Quantification of IGF1R phosphorylation revealed no 

significant differences in the epithelium of AOM/DSS-treated WT compared to p38α-

ΔMC mice. However, IGF1R phosphorylation was reduced in colon tumors from p38α-

ΔMC mice compared to WT mice (Figure 43B). 

Finally, ELISA analysis showed increased IGF-1 protein levels in tumors 

compared to non-tumoral colon tissue obtained from AOM/DSS treated animals, and this 

increase tent to be higher in WT mice compared to p38α-ΔMC mice (Figure 43C). Taken 

together these results suggest that p38α signaling in macrophages is involved in the 

production of IGF-1 and this results in enhanced activation of IGF1R.  
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Figure 43. Downregulation of myeloid p38α reduces IGF-1 signaling during intestinal 
tumorigenesis. 

(A) Normal colon epithelium from untreated mice and epithelium or tumor sections from AOM/DSS-treated 
mice were stained for phospho-IGF1R and the number of cells stained with low (1+), moderate (2+) and high 
(3+) intensity was calculated using the software Tmarker from several high magnification fields per animal (n 
= 4).  
(B) Total protein lysates from whole colons of untreated or AOM/DSS-treated mice and from isolated tumors, 
were used to measure IGF-1 protein levels by ELISA (n ≥ 5).  
Data are expressed as the average±SD. *, p≤0.05; **, p≤0.01; ****, p≤0.0001. 
 

4.1.7 IGF-1 promotes intestinal inflammation  
Since we confirmed that IGF-1 signaling was enhanced in WT mice compared to p38α-

ΔMC mice during intestinal inflammation and tumorigenesis, we next questioned the 

implication of this observation. Given that IGF-1 has been implicated in inflammatory 

processes and immune cell recruitment (Mourkioti and Rosenthal, 2005), we evaluated 

the role of myeloid IGF-1 in intestinal inflammation. For this purpose, we used mice 

expressing LysM-Cre and IGF-1-lox alleles (IGF-1-∆MC). The efficiency of IGF-1 

downregulation was confirmed by qRT-PCR in isolated peritoneal macrophages (Figure 

44A). Moreover, we observed reduced IGF1R mRNA levels in colons from IGF-1-ΔMC 

mice compared to WT mice (Figure 44B), in agreement with the DSS-treated p38α-ΔMC 

mice (Figure 40B above). 
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Figure 44. Downregulation of IGF-1 signaling in IGF-1-ΔMC mice. 

(A) Relative IGF-1 mRNA levels were quantified in peritoneal macrophages to confirm IGF-1 
downregulation in myeloid cells of IGF-1-ΔMC mice used in the experiments (n ≥ 8).  
(B) IGF-1R mRNA levels in mouse colons from untreated mice were determined by qRT-PCR (n ≥ 5). 
Data are expressed as the average±SD. ***, p≤0.001. 

 

Colitis was then induced in these mice to evaluate the role of IGF-1 produced by 

myeloid cells in the context of intestinal inflammation. We observed that DSS treatment 

did not result in significant differences in body weight loss between WT and IGF-1-∆MC 

mice (Figure 45A). However, we observed that DSS-treated IGF-1-ΔMC mice had a lower 

DAI compared to WT mice (Figure 45B).  

 

 

Figure 45. IGF-1 deficiency in myeloid cells slightly reduces DSS susceptibility.  

(A and B) Body weight (A) and DAI (B) were recorded daily during DSS treatment (n ≥ 31).  
Data are expressed as the average±SD. *, p≤0.05; **, p ≤0.01. 
 

As expected, the colons of WT and IGF-1-ΔMC mice showed no histological 

differences prior to DSS administration. Moreover, we observed less epithelial damage 

(Figure 46A and Figure 46B) and longer colons (Figure 46C) at day 7 of the DSS-induced 



137 
 

colitis protocol in IGF-1-∆MC mice compared to WT mice. In general, the differences 

between WT and IGF-1-∆MC mice were not as strong as between WT and p38α-ΔMC mice 

(Figure 26 and Figure 28), suggesting that p38α-regulated inflammatory mediators other 

than IGF-1 contribute to the process (Wagner and Nebreda, 2009). 

 

 

Figure 46. Downregulation of myeloid IGF-1 decreases immune cell mobilization 
from the bone marrow. 

(A and B) Representative H&E-stained colon sections from animals untreated or treated with DSS for 6 
days and analyzed at days 7 and 13 (A). Epithelial damage was evaluated in the H&E-stained colon sections 
(n ≥ 13) (B).  
(C) The total length of each colon dissected from DSS-treated mice was measured under a constant weight 
(2 g; n ≥ 13). 
Scale bars, 100 µm. Data are expressed as the average±SD. *, p≤0.05. 

 

Next, we investigated the role of IGF-1 in inflammatory cell recruitment, and 

found significantly more Ly6ChiCCR2+ inflammatory monocytes in the bone marrow of 

DSS-treated WT mice compared to IGF-1-ΔMC mice (Figure 47A, left panel), whereas no 

significant differences were observed in the blood (Figure 47B). However, we confirmed 
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less circulating monocytes (F4/80+) in the blood of IGF-1-ΔMC mice (Figure 47A, right 

panel).  

 

 

Figure 47. Downregulation of myeloid IGF-1 decreases immune cell recruitment. 

(A) WT and IGF-1-ΔMC mice were treated for 6 days with DSS and analyzed at day 7 for bone marrow 
CD45+ CD11b+ cells that were Ly6Chi and CCR2+ (left panel; n ≥ 5), and for blood CD45+ CD11b+ cells 

that were F4/80+ (right panel; n ≥ 5).  
(B) WT and IGF-1-ΔMC mice were treated for 6 days with DSS and analyzed at day 7 for  
blood CD45+ CD11b+ cells that were Ly6Chi CCR2+ (n ≥ 5). 
Data are expressed as the average±SD. *, p≤0.05. 

 

In agreement with this, we observed a reduced number of macrophages (F4/80+) 

in the intestines of DSS-treated IGF-1-ΔMC mice compared to WT mice (Figure 48).  

 

 

Figure 48. IGF-1-∆MC mice recruit less macrophages to the colon upon DSS 
treatment. 

Representative colon sections from mice either untreated or treated with DSS for 6 days were analyzed at 
days 7 and 13 for F4/80 staining. Quantifications are shown in the histogram (n ≥ 5).  
Scale bars, 100 µm. Data are expressed as the average±SD. *, p≤0.05. 
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In addition, infiltration of activated neutrophils (MPO+) and T-cells (CD3+ cells), 

as well as the STAT3 phosphorylation levels tent to be all reduced in colons from IGF-1-

ΔMC mice without reaching statistical significance (Figure 49A - Figure 49C).  

 

 

Figure 49. IGF-1-∆MC mice show decreased immune cell recruitment to the inflamed 
colon. 

(A - C) Representative colon sections from mice either untreated or treated with DSS for 6 days were 
analyzed at days 7 and 13 for MPO (A), CD3 (B) and phospho-STAT3 (C). Quantifications are shown in 
the histograms (n ≥ 4).  
Scale bars, 100 µm. Data are expressed as the average±SD. 
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Importantly, quantification of IGF1R phosphorylation revealed a strong reduction 

in IGF-1 signaling in colons from DSS-treated IGF-1-ΔMC mice compared to WT mice 

(Figure 50A). Of note, IGF-1 mRNA levels were also reduced in colons from untreated 

IGF-1-ΔMC mice compared to WT mice, suggesting an important contribution of IGF-1 

produced by myeloid cells to the activation of this pathway in the intestine (Figure 50B).  

 

 

 
Figure 50. Downregulation of IGF-1 in myeloid cells reduces IGF-1 signaling in the 
colon. 

(A) Representative colon sections from mice either untreated or treated with DSS for 6 days were analyzed 
at days 7 and 13 for phospho-IGF-1R. Quantifications are shown in the histogram (n ≥ 4). 
(D) IGF1R mRNA levels in mouse colons from untreated mice were determined by qRT-PCR (n ≥ 5). 
Scale bars, 100 µm. Data are expressed as the average±SD. **, p≤0.01. 
 

To confirm the implication of IGF-1 signaling in DSS-induced intestinal epithelial 

damage and inflammation, we used PQ401, a chemical inhibitor of IGF1R 

autophosphorylation (Gable et al., 2006; Troib et al., 2011; Zhou et al., 2016). WT mice 

were treated daily with PQ401, starting 1 day before the DSS treatment, and were 

compared with WT and p38α-ΔMC mice treated with vehicle and DSS (Figure 51).  
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Figure 51. Schematic representation of the protocol used to test the effect of the 
phospho-IGF1R inhibitor PQ401 in DSS-induced acute colitis.  

Animals were treated one day prior to the start of DSS-induced colitis treatment by either vehicle or PQ401 
(30mg/kg). Pink lines indicate the time points when animals were sacrificed at days 7 and 13. 

 

In agreement with our results using mice with IGF-1-deficient myeloid cells, 

treatment of WT mice with PQ401 reduced DSS-induced body weight loss (Figure 52A) 

and DAI (Figure 52B).  

 

 

Figure 52. Inhibition of IGF-1 signaling ameliorates DSS-induced colitis. 

(A and B) WT mice treated with the IGF1R inhibitor PQ401 or vehicle, and p38α-ΔMC mice treated with 
vehicle were analyzed daily for body weight (A) and DAI (B) (n ≥ 7).  
Data are expressed as the average±SD. **, p ≤0.01; ***, p≤0.001. 
 

Epithelial damage values in PQ401-treated mice were also closer to those 

observed in p38α-ΔMC mice (Figure 53).  
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Figure 53. Pharmacological inhibition of IGF-1 receptor signaling ameliorates DSS 
induced epithelial damage. 

Representative H&E-stained colon sections from mice untreated or treated with either PQ401 or vehicle, 
and with DSS for 6 days were analyzed at days 7 and 13. Epithelial damage was evaluated and 
quantifications are shown in the histogram (n ≥ 7). 
Scale bars, 100 µm. Data are expressed as the average±SD . *, p≤0.05. 
 

In order to verify that PQ401 treatment inhibited IGF-1 signaling in the intestines 

of DSS-treated animals, we performed IHC staining of phospho-IGF1R at the end of the 

experiment (day 13). As expected, the levels of IGF1R phosphorylation were reduced in 

the colon of mice treated with PQ401 (Figure 54). 
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Figure 54. PQ401 treatment during DSS-induced colitis inhibits phosphorylation of 
IGF-1R. 

Colon sections from mice untreated or treated with DSS for 6 days were analyzed at day 13 by phospho-
IGF1R staining. Cells stained with low (1+) moderate (2+) or high (3+) intensity, as indicated in Figure 38, 
were identified using the software Tmarker and quantified from several high magnification fields per 
animal. Quantifications are shown in the histogram (n = 4).  

Scale bars, 100 µm. Data are expressed as the average±SD . *, p≤0.05. 
 

Interestingly, and in consistence the ameliorated epithelial damage, PQ401 

treatment impaired macrophage recruitment to the colon of DSS-treated WT mice (Figure 

55), indicating a reduction of inflammatory processes resulting from inhibition of IGF1R 

signaling. 
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Figure 55. Pharmacological inhibition of IGF1R signaling reduces DSS-induced 
macrophage recruitment. 

Representative colon sections from mice untreated or treated with DSS for 6 days and with either PQ401 or 
vehicle were analyzed at day 7 and day 13 by staining for F4/80. Quantifications are shown in the 
histogram (n ≥ 3).  
Scale bars, 100 µm. Data are expressed as the average±SD. **, p≤0.01. 
 

Similarly, the inhibition of IGF-1 signaling by PQ401 treatment during DSS-

induced colitis also slightly reduced the STAT3 phosphorylation levels (Figure 56). These 

results support that inhibition of IGF1R signaling suppresses DSS-induced inflammation. 
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Figure 56. Pharmacological inhibition of IGF1R signaling reduces DSS-induced 
STAT3 phosphorylation. 

Representative colon sections from mice untreated or treated with DSS for 6 days and with either PQ401 or 
vehicle were analyzed at day 7 and day 13 by staining for phospho-STAT3. Quantifications are shown in 
the histogram (n ≥ 3).  
Scale bars, 100 µm. Data are expressed as the average±SD. **, p≤0.01. 
 

Consistent with this idea, the numbers of leukocytes (CD45+), myeloid cells 

(CD45+CD11b+), macrophages (F4/80+) and inflammatory monocytes (Ly6ChiCCR2+) 

were significantly reduced in the bone marrow of PQ401 treated WT mice, as for p38α-

ΔMC mice (Figure 57A). These cell populations were also reduced in the blood of WT 

mice treated with PQ401 but to a lesser extent than in the bone marrow (Figure 57B). 
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Figure 57. Pharmacological inhibition of IGF1R signaling suppresses DSS-induced 
inflammatory cell recruitment. 
(A and B) Percentage of CD45+, CD45+CD11b+, CD45+CD11b+ F4/80+ and CD45+CD11b+ Ly6Chi 
CCR2+ cells in the bone marrow (A) and blood (B) from mice treated with DSS for 6 days in the presence 
of either PQ401 or vehicle and sacrificed at day 7 (n ≥ 3).  
Data are expressed as the average±SD . *, p≤0.05; **, p≤0.01; ***, p≤0.001. 
 

4.1.8 IGF-1 signaling stimulates inflammation-associated 

carcinogenesis 
The above results implicate IGF-1 signaling in DSS-induced inflammation. To address 

the importance of IGF1 signaling in inflammation-associated tumorigenesis, we treated 

WT and IGF-1-ΔMC mice with the AOM/DSS protocol. We found that IGF-1-ΔMC mice 

exhibited a decreased colon tumor number compared to WT mice, with fewer tumors 

larger than 4 mm and no tumors larger than 6 mm (Figure 58A and 35B). Of note, 

analysis of colon tumors of IGF-1ΔMC mice revealed reduced macrophage infiltration 

(F4/80+) compared to those of WT mice (Figure 58C), further suggesting the implication 

of IGF-1 in immune cell recruitment.  
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Figure 58. Downregulation of IGF-1 in myeloid cells reduces colitis-associated 
tumorigenesis induced by AOM/DSS and macrophage recruitment to the tumors. 
(A and B) Average tumor number, size and load (A) and number of tumors with size >4 mm or >6 mm (B) 
in AOM/DSS-treated mice at day 100 (n ≥ 22).  
(C) Representative sections from AOM/DSS treated epithelia and colon tumors stained for F4/80. 
Quantifications are shown in the histogram (n ≥ 6).  

Scale bars, 100 µm. Data are expressed as the average±SD. *, p≤0.05; **, p ≤0.01. 

 

To evaluate the potential therapeutic interest of targeting IGF-1 signaling in 

colorectal tumorigenesis, WT mice were treated with the AOM/DSS protocol and then 

were split in two groups, one received PQ401 and the other one vehicle for 20 days 

(Figure 59A). The results indicated that inhibition of IGF1R significantly reduced the 

colon tumor number in WT mice to similar levels as in vehicle treated p38α-ΔMC mice. 

Moreover, the number of tumors larger than 4 and 6 mm was significantly reduced in the 
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PQ401-treated animals compared to WT mice (Figure 59B). To sum up, our results 

indicate that IGF-1 produced by myeloid cells promotes inflammatory cell recruitment 

and inflammation-associated intestinal tumorigenesis. 

 

 

Figure 59. Pharmacological inhibition of IGF-1 signaling reduces colitis-associated 
tumorigenesis induced by AOM/DSS. 

(A) Schematic representation of the protocol used for the combined treatment of mice with AOM/DSS and 
the IGF1R inhibitor PQ401 (30mg/kg) or vehicle. Pink lines indicate when animals were sacrificed at day 
55 and 75.  
(B) Average tumor number, size and load (upper panel) and number of tumors with size >4 mm or >6 mm 

(lower panel) in WT and p38α-ΔMC mice treated with PQ401 or vehicle (n ≥ 3).  
Data are expressed as the average±SD. *, p≤0.05; **, p ≤0.01. 
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4.1.9 Myeloid p38α signaling controls immune cell recruitment to the 

colon through the regulation of chemokines 
Chemokines are important to modulate inflammatory processes, and inappropriate 

chemokine expression can cause a massive and destructive leukocyte infiltration 

(Balkwill and Mantovani, 2001). Mice used in this study were maintained under 

conventional housing conditions resembling a more natural situation than specific 

pathogen-free (SPF) housing. Under natural conditions, the gut is marked by a situation 

of controlled “physiological inflammation”, due to the constant exposure to 

environmental microbiota (Mowat and Bain, 2011). Therefore we next evaluated if 

downregulation of p38α and IGF-1 in myeloid cells affects monocyte recruitment in 

untreated mice. Indeed, resembling a physiological inflammatory state, p38α-ΔMC mice 

showed a decreased amount of Ly6ChiCCR2+ pro-inflammatory monocytes in the bone 

marrow and accordingly fewer circulating monocytes in the blood, compared to WT mice 

under homeostatic conditions (Figure 60A). Besides its role as a growth hormone, IGF-1 

can function as chemoattractant (Roussos et al., 2011). In accordance, monocyte 

recruitment was reduced in the bone marrow of untreated IGF-1-ΔMC mice compared to 

WT mice (Figure 60B), as reported above also for IGF-1-ΔMC mice and PQ401-treated 

WT mice upon DSS induced colitis (Figure 47 and Figure 57). 

 

 

Figure 60. Deficiency of p38α in myeloid cells suppresses inflammatory cell 
recruitment under homeostatic conditions. 
(A) DSS-treated mice were analyzed for bone marrow CD45+ CD11b+ cells that were Ly6Chi and CCR2+ 
(left panel; n=11), and for blood CD45+ CD11b+ cells that were F4/80+ (right panel; n = 11).  
(B) DSS-treated mice were analyzed for bone marrow CD45+ CD11b+ cells that were Ly6Chi and CCR2+ (n 
≥ 5).  
Data are expressed as the average±SD. *, p≤0.05. 
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Next, we evaluated whether changes in intestinal chemokine expression between 

colons from untreated WT and p38α-ΔMC mice accounted for the differences in 

inflammatory cell recruitment observed. Interestingly, analyzing a mouse chemokine 

array, we observed an overall downregulation of chemokines potentially important for 

myeloid cell recruitment in p38α-ΔMC mice compared to WT mice, consistent with the 

reduced recruitment of monocytes/macrophages. The downregulated chemokines 

included Chemerin, CCL6, CCL2, CXCL12, IL-16, CCL21, CCL12 and CCL9 (Figure 

61), which have been all reported to play crucial roles in leukocyte trafficking (Buechler, 

2014; Cao et al., 2016; Shi and Pamer, 2011).  

 

 

Figure 61. Myeloid p38α downregulation reduces chemokine expression in the colon. 
A mouse chemokine antibody array was interrogated using a pool of whole colon extracts derived from 
non-stimulated mice (n=5/genotype). Quantifications are shown in the right panel. Arbitrary units are 
referred to the expression level of each chemokine in WT mice, which was given the value of 1.  

 

We confirmed the downregulation of Chemerin, CCL2 and CCL12 mRNAs in 

intestinal macrophages isolated from p38α-ΔMC mice compared to WT mice, whereas 

only CCL2 was downregulated in IGF-1ΔMC mice (Figure 62A), however without 

reaching statistical significance. In addition, we analyzed the expression of these 

chemokines in whole colons and observed significant downregulation of IL-16 mRNA in 

p38α-ΔMC mice and of CCL-9 in IGF-1ΔMC mice compared to WT mice (Figure 62B). 

These observations suggest that myeloid p38α could engage paracrine mechanisms that 

inhibit chemokine expression by other cell types. We have also identified several 

chemokines that might be regulated by myeloid p38α at the translation or post-
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translational levels, since they are downregulated at the protein level in colons from 

p38α-ΔMC mice (Figure 61) without noticeable changes in mRNA expression (Figure 

62A and Figure 62B). 

 

 

Figure 62. Chemokine expression in isolated intestinal macrophages and whole 
colons. 

(A and B) Relative mRNA levels for the indicated genes in isolated intestinal macrophages (A) and whole 
colons (B) from untreated mice were determined by qRT-PCR (n ≥ 4).  
Data are expressed as the average±SD. *, p≤0.05; ***, p ≤0.001. 
 

p38 MAPK signaling has been linked to the differentiation of several cell types, 

including osteoclasts and lung progenitor cells (Cuadrado and Nebreda, 2010), but we are 

not aware of reports implicating p38α in monocyte/macrophage differentiation. To 

evaluate whether impaired generation or differentiation of monocytes/macrophages in 

p38α-ΔMC mice could contribute to the reduced monocyte recruitment observed, we 

analyzed different stem cell populations in the bone marrow. Our results indicated that 

hematopoietic stem cells (HSCs; Sca1+c-kit+CD34-CD127-), multipotent progenitors 
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(MMPs; Sca1+c-kit+CD34+CD127-), common myeloid progenitors (CMPs; Sca1+c-

kit+CD34+CD127-) or common lymphoid progenitors (CLPs; Sca1-c-kit-CD34-CD127+) 

were not significantly different between p38α-ΔMC and WT mice (Figure 63A). We 

therefore hypothesized that the reduced recruitment of inflammatory cells to the intestine 

is likely due to reduced chemokine expression, directly or indirectly regulated by myeloid 

p38α in the colon due to a “physiological inflammatory state” and potentiated by DSS 

induced inflammation. 

Alterations in the intestinal epithelium barrier function have been associated with 

IBD and colon cancer (Michielan and D'Inca, 2015; Westbrook et al., 2010). Therefore, 

we investigated whether the decreased susceptibility to DSS induced acute colitis 

observed in mice with myeloid p38α downregulation could be due to altered epithelial 

barrier function. This would be consistent with the “physiological inflammatory state” 

observed in these mice under conventional housing conditions without any treatment. 

However, analysis of intestinal permeability in vivo using FITC dextran did not reveal 

significant differences in epithelial barrier function between untreated WT and p38α-ΔMC 

mice (Figure 63B). 

 

 

Figure 63. Myeloid downregulation of p38α affects neither precursor cells in the 
bone marrow nor intestinal permeability. 

(A) The bone marrow of untreated mice were analyzed by first removing differentiated blood cells with the 
so-called lineage cocktail, which contains antibodies against differentiation markers (Lin- selection). 
Percentages of cells positive or negative for the indicated markers are illustrated from the total Lin- cell 
population (n ≥ 5). Data are expressed as the average±SD. 
(B) Intestinal permeability was measured by determining the concentration of FITC-dextran in blood serum 
(n=7).  
Data are expressed as the average±SD. *, p≤0.05. 
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In summary, our results identify IGF-1 as a novel target of p38α signaling in 

macrophages, and provide evidence that IGF-1 facilitates inflammatory cell recruitment 

upon DSS induced colitis and contributes to CAC. 

 

 Study of p38α and IGF-1 signaling in intestinal epithelial cells 
To complement the results obtained in mouse models, we performed studies in vitro to 

characterize how the p38α-IGF-1 axis regulates colon homeostasis and pathological 

disorders such as IBD and CAC. Since the occurrence of colitis-associated tumorigenesis 

is commonly ascribed to the transformation of normal colonic epithelium to adenomatous 

polyps and ultimately invasive tumors (Gryfe et al., 1997; Kriegl, 2013), we first focused 

our efforts in charactering the p38α-IGF-1 axis in the intestinal epithelium.  

 We addressed whether p38α and IGF-1 signaling affect crucial functions of IECs, 

such as proliferation, differentiation, apoptosis and migration. The required criteria for 

studying the role of p38 MAPK in cells that resemble as much as possible normal IECs 

and in murine derived macrophages, as well as the interactions amongst them, left us with 

only a few commercially available cell lines to choose from. Finally, we selected the 

murine colon epithelial cell line CMT-93. Since this cell line was poorly described when 

we started our experiments a few years ago, we decided to characterize it.  

4.2.1 Characterization of the intestinal epithelial cell line CMT-93 
The CMT-93 cell line is a transformed epithelial cell line isolated from a mouse rectal 

carcinoma (Franks and Hemmings, 1978). Firstly, we evaluated E-cadherin by 

immunofluorescence, which is a widely used marker to identify epithelial cells 

(Agiostratidou et al., 2007; Nachtigal et al., 2001). Figure 64 confirms the epithelial 

origin of CMT-93 cells in agreement with other studies (Assi et al., 2013; Bocuk et al., 

2017). 
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Figure 64. CMT-93 cells express E-Cadherin. 

CMT-93 cells were stained by immunofluorescence for E-Cadherin. Scale bars, 20 µm 

 

Next, we evaluated whether CMT-93 cells exhibit characteristics of normal IECs 

in terms of proliferation, differentiation and response to survival signals, and if they can 

mimic a normal epithelial barrier, reducing proliferation when confluence increases, or if 

they exhibit a more tumoral phenotype with loss of contact-inhibition (Puliafito et al., 

2012). As previously described, when human cell lines such as Caco-2 and HT-29 are 

maintained for a long period of time under normal culture conditions in a confluent 

manner, they display a differentiated phenotype and a reduction of the proliferation rate, 

similar to the normal epithelial phenotype in the colon (Comalada et al., 2006). Therefore, 

we analyzed whether the maturation and differentiation of CMT-93 cells depended on the 

cellular confluence. As expected for normal IECs, the proliferative status of CMT-93 

cells decreased significantly once they became confluent and was maintained low in post-

confluent cultures of 5 and 10 days (Figure 65A and Figure 65B). 
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Figure 65. CMT-93 cells exhibit contact inhibition. 

(A and B) CMT-93 cells were maintained in complete medium and analyzed for proliferation by BrdU at 
the indicated confluences. Representative FACS analysis of BrdU incorporation (A). Quantifications are 
shown in the histogram (B). 
Data are expressed as the average±SD. ***, p ≤0.001.  
 

IECs at the crypt base migrate along the so-called crypt-villus axis toward the 

intestinal lumen where their life cycle is terminated (Grossmann et al., 2002). In order to 

analyze if reduced proliferation correlated with apoptosis in CMT-93 cells, we performed 

AnnexinV/PI and Trypan Blue stainings. Our results showed that with increasing 

confluence of the cell culture, the number of apoptotic cells increased (Figure 66). 

 

 

Figure 66. Apoptosis in CMT-93 cells increases with cellular confluence.  
(A and B) CMT-93 cells were cultured for the indicated times and analyzed by AnnexinV/PI (A) and trypan 
blue (B) for cell death. 
Data are expressed as the average±SD. **, p ≤0.01; ***, p ≤0.001. 
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IEC differentiation stages can be measured indirectly by analyzing general 

intestinal differentiation markers, such as caudal type homeobox 2 (CDX-2) and the 

intestinal alkaline phosphatase (ALP1) or by analyzing β−galactosidase as a marker for 

cellular senescence (Debacq-Chainiaux et al., 2009; Severino et al., 2000). Our results 

showed that confluent CMT-93 cells increased the mRNA expression of CDX-2 and 

ALP1 compared to sub-confluent cells (Figure 67).  

 

 

Figure 67. Intestinal differentiation markers increase with CMT-93 cell confluence. 
Relative mRNA levels for the indicated genes were quantified by qRT-PCR at the indicated confluences in 
CMT-93 cells. Arbitrary units are referred to the expression level in the confluent control, which was given 
the value of 1. 
Data are expressed as the average±SD. *, p≤0.05. 

 

Consistently, the number and staining intensity of the senescence marker ß-

galactosidase was also increased with confluency in CMT-93 cells (Figure 68). Of note, 

we observed that the cells in post-confluent cultures were not homogenously stained, and 

we could detect non-stained, slightly stained and strongly stained cells. This 

heterogeneity might resemble the behavior of IECs in the intestine, which progressively 

become senescent until they finally become apoptotic and shed into the lumen (Childs et 

al., 2014; Williams et al., 2015). 
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Figure 68. Cellular senescence increases with CMT-93 cell confluence. 

CMT-93 cells were stained with β-galactosidase at the indicated confluences. Quantifications are shown in 

the histogram. Scale bars, 50 µm. 
Data are expressed as the average±SD. *, p≤0.05; ***, p ≤0.001; ****, p ≤0.0001. 

 

The above results were confirmed by analyzing stem and progenitor cell markers, 

such as leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5), Achaete 

scute-like 2 (Ascl2) and Neurogenin-3 (Hardingham et al., 2015; Schonhoff et al., 2004; 

Stange, 2013; Zhang and Huang, 2013). We observed that LGR5 decreased with 

increasing time of the culture in confluency, but we did not observe statistically 

significant changes in the case of Ascl2 and Neurogenin-3 (Figure 69). 
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Figure 69. Expression of stem and progenitor cell markers in CMT-93 cells. 
Relative mRNA levels for the indicated genes were quantified by qRT-PCR at the indicated confluences in 
CMT-93 cells. Arbitrary units are referred to the expression level in the confluent control, which was given 
the value of 1. 
Data are expressed as the average±SD. *, p≤0.05; **, p ≤0.01; ***, p ≤0.001. 

 

Since apoptosis and cellular senescence might be triggered by the DNA-damage 

response (d'Adda di Fagagna, 2008), we evaluated whether the observed increase in 

apoptosis and senescence, might result from the accumulation of DNA damage in these 

cells. The co-localization of phosphorylated histone H2AX (γ-H2AX) and p53-binding 

protein 1 (53BP1) is a key step in the DNA damage repair (Bekker-Jensen et al., 2005; 

Stewart et al., 2003; van Attikum and Gasser, 2009; Xu and Stern, 2003). By 

immunofluorescence staining, we could only rarely detect the co-localization of these two 

proteins in different CMT-93 cell confluences, and we did also not observe DNA damage 

accumulation with increased confluency (Figure 70).  
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Figure 70. DNA damage foci do not accumulate in post-confluent CMT-93 cell 
cultures. 

CMT-93 cells were stained by immunofluorescence for γ-H2AX and 53BP1 at the indicated confluences to 

visualize DNA damage foci. Scale bars, 20 µm 

 

These results illustrate that CMT-93 cells in long term cultures (2-, 5- and 10 days 

post-confluence) showed a reduced proliferative ratio with differentiated and senescent 

phenotypes, which resemble normal IEC behavior. 

The classical physical barrier functions of IECs include the secretion of mucins 

and trefoil factors (Pitman and Blumberg, 2000; Taupin and Podolsky, 2003). According 

to the colorectal origin of CMT-93 cells, the mRNA levels for mucin-2 and TFF3, two 

well-known markers for goblet cells in the intestine (Kim and Ho, 2010; Taupin and 

Podolsky, 2003), augmented with increased CMT-93 cell confluence (Figure 71). 



160 
 

 

Figure 71. Goblet cell markers increase with CMT-93 cell confluence. 

Relative mRNA levels for the indicated genes were quantified by qRT-PCR at the indicated confluences in 
CMT-93 cells. Arbitrary units are referred to the expression level in the confluent control, which was given 
the value of 1. 
Data are expressed as the average±SD. *, p≤0.05. 

 

In addition, we analyzed the expression of the enteroendocrine cell marker 

chromogranin A, as well as the paneth cell marker lysozyme (Ho et al., 1989; Quinlan et 

al., 2006; Szumilo et al., 2005). Our results showed that mRNA expression of 

chromogranin A and lysozyme tent to increase with confluence, but we could not observe 

statistical significant differences between late confluent and sub-confluent CMT-93 cell 

cultures (Figure 72). 

 

 

Figure 72. Chromogranin A and Lysozme mRNA are not significantly induced 
upon CMT-93 cell confluence. 

Relative mRNA levels for Chromogranin A (CgA) and Lysozyme genes were quantified by qRT-PCR at 
the indicated confluences in CMT-93 cells. Arbitrary units are referred to the expression level in the 
confluence control, which was given the value of 1. 
Data are expressed as the average±SD. *, p≤0.05. 
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Since tight junctional proteins are involved in the maintenance of the intestinal 

epithelial barrier (Turner, 2006), we analyzed the expression of key junctional proteins at 

different cellular confluences. Western blot analysis showed that zona occludens-1 (ZO-

1), claudin-1 and claudin-2 were mainly detected 2 days post-confluence (Figure 73).  

 

 

Figure 73. Expression of junctional proteins in CMT-93 cells. 

Western blot of the indicated proteins in CMT-93 cells collected at the indicated confluences.  

 

Given that tight junctional proteins modulate paracellular permeability through the 

formation of a selectively permeable seal between adjacent epithelial cells (Suzuki, 

2013), we next questioned whether the changes observed in the expression of key 

junctional proteins in different cell confluences affect the paracellular permeability. 

Therefore, we measured paracellular permeability using FITC–dextran (Cong et al., 2017; 

Maher et al., 2007; Markov et al., 2016). Interestingly, CMT-93 cells exhibited the lowest 

paracellular permeability at 2 days post-confluence, correlating with the increased 

expression of ZO-1, claudin-1 and claudin-2 (Figure 74). 
 

 

Figure 74. Paracellular permeability of 
CMT-93 cells in different confluences. 
Paracellular Flux of 4 kDa FITC-dextran from the 
upper to the lower compartment of transwell 
chambers containing CMT-93 cells at the indicated 
confluences was measured by 

spectrophotofluorometry. IL-1β (15 ng/ml) as 
positive control was incubated for 3 days. 
Data are expressed as the average±SD. ***, p 
≤0.001; ****, p ≤0.0001. 
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In summary, we concluded that CMT-93 cells could serve as an adequate model 

for the colon intestinal epithelial barrier due to their ability to form monolayers. 

Moreover, we decided to perform experiments at 2 days post-confluency, since these 

cultures express higher levels of junctional proteins and seem to form a more “intact” 

monolayer at this time point. 

4.2.2  p38 MAPK signaling in CMT-93 cells 
It has been previously shown that intestinal permeability of mice lacking p38α in IECs 

was notably increased (Gupta et al., 2014).  Indeed, we could corroborate this result in 

CMT-93 cells in vitro. For this purpose, CMT-93 cells were incubated with two p38α 

inhibitors (PH-797804 and SB-203580) and then paracellular permeability was measured 

using FITC-dextran. IL-1β stimulation was used as a positive control for the permeability 

assay (Al-Sadi and Ma, 2007). Our results showed a significant increase of paracellular 

permeability in CMT-93 cells incubated with p38α inhibitors compared to vehicle 

(DMSO) incubated control cells (Figure 75). 

 

 

Figure 75. p38α MAPK signaling maintains 
epithelial integrity of CMT-93 cells. 

Paracellular flux of 4 kDa FITC dextran from upper to 
lower compartment of transwell chambers containing 
CMT-93 cells was measured by spectrophotofluorometry. 

IL-1β as positive control and the indicated p38α 
inhibitors or DMSO vehicle were incubated for 3 days.  
Data are expressed as the average±SD. ****, p ≤0.0001. 
 

 

Cellular senescence is considered an important regulator of tumor suppression 

(Ishikawa, 2003). Previous studies have suggested that p38 MAPK signaling plays a 

central role in cellular senescence in various cell types, including epithelial cells and 

fibroblasts (Debacq-Chainiaux et al., 2010; Koul et al., 2013; Xu et al., 2014). It has been 

demonstrated that p38 MAPK is activated during cellular senescence, and expression of 

its upstream kinase MKK6 suffices to induce cellular senescence (Cargnello and Roux, 

2011; Wang et al., 2002). Moreover, pharmacological or genetic inactivation of p38α 



163 
 

inhibited the onset of cellular senescence (Iwasa et al., 2003; Kuilman et al., 2010; Zhou 

et al., 2011). Consistent with these results, we observed that p38α inhibitors significantly 

inhibited the onset of confluence-induced cellular senescence in CMT-93 cells (Figure 

76A and Figure 76B). Of note, we also observed increased p38 MAPK phosphorylation 

in CMT-93 cells with increasing cellular confluence (Figure 76C).  

 

Figure 76. p38α mediates senescence induced upon CMT-93 cellular confluence. 
(A and B) Representative images of CMT-93 cells grown in the presence or absence of the indicated p38 

MAPK inhibitors or DMSO for 3 days at the indicated confluences and stained with β-galactosidase. Scale 

bars, 50 µm. (A) Quantifications are shown in the histogram (B).  
(C) Western blots of the indicated proteins in CMT-93 cells collected at the indicated confluences. 
Data are expressed as the average±SD. **, p ≤0.01; ****, p ≤0.0001. 
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4.2.3 p38α promotes cell migration in CMT-93 cells 
Inflammation and inflammation-associated cancer are linked to excessive wound-healing 

processes, which strongly predispose to the development of neoplasms and tumor 

progression, although these mechanisms are also important for mucosal integrity 

(Balkwill and Mantovani, 2001; Schafer and Werner, 2008; Sussman et al., 2012) (see 

1.3.2.3 Wound-healing in CAC). 

In order to evaluate the role of p38α in this process, we opted for the scratch 

assay, which is a simple and sensitive method to define the wound-healing capacity of 

cells. This assay is one of the earliest developed methods to study directional cell 

migration in vitro, and is used to mimic cell migration during wound-healing in vivo 

(Liang et al., 2007a; Rodriguez et al., 2005). The method is based on the observation that, 

upon induction of a physical wound, by scratching a confluent epithelial cell monolayer, 

the cells on the edge of the newly created gap will move toward the opening to close the 

scratch until new cell–cell contacts are established (Liang et al., 2007b; Rodriguez et al., 

2005; Ueck et al., 2017).  

CMT-93 cells were seeded in clear-bottom well plates at low density and allowed 

to form 2 days-post confluent monolayers. We observed that the wound-healing process 

initiated just shortly after wounding with a pipette tip. CMT-93 cells were also incubated 

in the presence of the p38α inhibitors, PH-797804 and SB-203580, which are added to 

the culture just after the scratch. A significant cell reduction in migration could be 

observed with both p38α inhibitors. Therefore, we concluded that p38α positively 

regulates migration in a scratched monolayer of CMT-93 cells (Figure 77). Indeed, p38α 

activity has been shown to increase cell migration in vivo and in vitro in a variety of cell 

types, including cancer cells, endothelial cells and leukocytes (Chung et al., 2012; Ghosh 

et al., 2014; Lam and Huttenlocher, 2013; Loesch and Chen, 2008; Wagner and Nebreda, 

2009; Yoshizuka et al., 2012). 
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Figure 77. p38α inhibition impairs CMT-93 cell migration. 
(A and B) Representative images of CMT-93 cells that were physically wounded by a scratch in the 
presence of the indicated inhibitors or DMSO (control) (A). Quantification is shown in the histogram (B). 

Scale bars, 50 µm. 
Data are expressed as the average±SD. ****, p ≤0.0001 

 

In order to validate the implication of p38α in this process, we decided to analyze 

its phosphorylation by immunofluorescence at different time points after scratching. 

Interestingly, we detected p38 MAPK phosphorylation shortly after scratching the CMT-

93 cell monolayer. Of note, this phosphorylation was strongest and preferentially detected 

at the edges of the scratch, suggesting the involvement of p38 MAPK signaling at the 

migratory leading front, and further confirming the implication of this signaling pathway 

in the wound-healing process (Figure 78). 
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Figure 78. p38 MAPK is activated upon induction of physically induced damage in 
CMT-93 cells. 

CMT-93 cells were scratched and stained for phospho-p38 MAPK at the indicated times. Scale bars, 50 µm 

 

We next aimed to define the mechanism by which CMT-93 cells close the 

physically induced wound. Mainly, we evaluated three possible mechanisms by which 

this wound closing could occur. One possible mechanism is that the cells close the wound 

by proliferating into the wound bed. However, the gap induced by scratching the CMT-93 

cell monolayer usually closes within 9-10 hours (Figure 77 above), therefore we 

concluded that this mechanism is unlikely to explain the wound-healing. Moreover, the 

experiments were performed at 2 days post-confluence and, at this stage, prior to inducing 

the scratch, proliferation is strongly impaired due to contact inhibition (Figure 65 above). 

Nevertheless, to confirm that proliferation does not contribute to this process, we 

performed the wound-healing assay in the presence of Mitomycin C (MMC), an 

antibiotic, that causes cross-linking of double-stranded DNA and inhibits cell 

proliferation (Glenn et al., 2016; Shikatani et al., 2012). We first evaluated the 

concentration of MMC that would efficiently inhibit proliferation of CMT-93 cells. Since 
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CMT-93 cells stop proliferation upon confluence due to contact inhibition, this analysis 

was performed in sub-confluent cell cultures. We also analyzed apoptosis at 2 days post-

confluency, the time we performed most experiments. We found that MMC inhibited 

BrdU incorporation starting at a concentration of 5 µg/ml in sub-confluent CMT-93 cell 

cultures (Figure 79A), whereas apoptosis measured by AnnexinV/PI staining was not 

significantly affected at this concentration in 2 days post-confluent CMT-93 cell cultures 

Figure 79B). Therefore, we decided that 5µg/mL of MMC was an appropriate 

concentration for our experiments. 

 

 

Figure 79. Effect of Mitomycin C in CMT-93 cell proliferations. 

(A) Sub-confluent proliferating CMT-93 cells were incubated for 24 hours with or without the indicated 
concentrations of MMC and proliferation was analyzed by BrdU incorporation. 
(B) Two days post-confluent CMT-93 cells were incubated for 24 hours in the presence or absence of the 
indicated concentrations of MMC and apoptosis was analyzed by AnnexinV/PI. 

 

When the wound-healing assay was performed in 2 days post-confluent CMT-93 

cell monolayers in the presence of MMC (5 µg/ml) added immediately after induction of 
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the scratch, we did not observe any delay in the velocity of wound closure (Figure 81). 

This confirms that the cell proliferation is not required for the process. 

 

 

 

 

As previously mentioned, experiments were performed in 2 days post-confluent 

CMT-93 cell cultures. At this time point, in contrast to sub-confluent cell cultures, the 

cells in the monolayer were squeezed together, due to space limits and exhibited a 

“smaller appearance” (Figure 81). Therefore, another factor that might contribute to 

wound-closure in CMT-93 cell monolayers is the physical pressure exerted by cells lying 

at both sides of the scratch. 

 

 

Figure 81. Increased cellular density in post-confluent CMT-93 cell cultures. 

Images were taken from sub-confluent and 2d post-confluent CMT-93 cell cultures. Scale bars, 25 µm. 

 

Our results indicated that the wound-closure observed in CMT-93 cell cultures 

probably occur due to active migration into the wound bed. Consistent with this idea, we 

Figure 80. Proliferation is not 
involved in closure of physically 
induced wounds in CMT-93 cells. 

CMT-93 cells were physically wounded by a 
scratch in the presence or absence of MMC. 
Data are expressed as the average±SD.  
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found that the wound-healing process occurred similarly in sub-confluent cell cultures, 

supporting that the process does not occur due to cellular expansion (Figure 82). We 

therefore conclude that CMT-93 cells promote wound closure mainly by migration. 

 

 

Figure 82. Wound-healing in CMT-93 cells is not mediated by cellular expansion. 

Representative images of CMT-93 cells growing as indicated at 2d post-confluence or in sub-confluence 

(80-90%), which were physically wounded by a scratch. Scale bars, 50 µm. 

 

Next, we aimed to identify the mechanism by which p38α regulated migration of 

CMT-93 cells upon scratch of the monolayer. The downstream p38α substrate MAPK- 

activated protein kinase 2 (MAPKAPK-2 or MK2), plays an important role in cell 

migration by remodeling the actin cytoskeleton (Cargnello and Roux, 2011; Koul et al., 

2013). This cytoskeletal remodeling may be mediated by phosphorylation of the 27 kDa 

heat shock protein (Hsp27), inducing its release from F-actin caps (Kobayashi et al., 

2006). To check if MK2 was implicated in the wound-healing process in CMT-93 cells, 

we used the chemical inhibitors, MK2 inhibitor III and PF-3644022. We also used SB-

747651A, an inhibitor of stress-activated protein kinase 1 (MSK1) inhibitor, which is 

another downstream p38α MAPK target (Figure 68). Our results showed a significant 

reduction of migration in CMT-93 cells treated with the p38α or MK2 inhibitors, whereas 

no significant changes could be observed with the MSK1 inhibitor (Figure 83). 
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Figure 83. MK2 activation is 
involved in CMT-93 cell migration. 

CMT-93 cells were physically wounded by a 
scratch and incubated in the presence or 
absence of the indicated chemical inhibitors or 
DMSO vehicle. Data are expressed as the 
average±SD. *, p ≤0.05; ****, p ≤0.0001. 

 

 

 

 

 

4.2.4 Regulation of IGF-1 by p38α in macrophages stimulates the 

migration of CMT-93 cells 
We next investigated, whether p38α signaling in macrophages regulates cytokines and 

growth factors that affect the wound-healing process in CMT-93 cells. We observed that 

conditioned media derived from BMDMs significantly increased the migration velocity of 

CMT-93 cells upon scratch. Interestingly, pre-incubation of BMDMs with p38α 

inhibitors for 24 hours reduced the ability of conditioned media to induce CMT-93 cell 

migration compared with untreated BMDMs (Figure 84A). These results indicated that 

p38α in BMDMs regulates the expression and/or secretion of extracellular factors that are 

able to stimulate migration of CMT-93 cells. This result was confirmed by using 

supernatants derived from BMDMs obtained from p38α, p38β and p38α/p38β knock-out 

(KO) mice (Figure 84B). Of note, the L-cell media used for macrophage differentiation 

was not able by itself to increase the migration velocity of CMT-93 cells (Figure 84B).  
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Figure 84. Extracellular factors regulated by p38α in BMDMs increase the 
migration velocity of CMT-93 cells. 
(A) CMT-93 cells were physically wounded by a scratch and incubated in the presence or absence of 

supernatants derived from WT BMDMs that were previously treated for 24 h with the indicated p38α 
inhibitors or DMSO control. The inhibitors or DMSO control as well as L-cell conditioned medium were 
also added to the assay without BMDM supernatants.  
(B) CMT-93 cells were physically wounded by a scratch and incubated in the presence or absence of 
supernatants derived from the indicated BMDMs.  
Data are expressed as the average±SD. **, p ≤0.01; ****, p ≤0.0001. 

 

Experiments using MMC confirmed that proliferation was not involved in the 

increased migration velocity of CMT-93 cells induced by BMDM supernatants (Figure 

85). 

 

 

Figure 85. Proliferation is not involved 
in the increased of migration velocity of 
CMT-93 cells cultured in the presence 
of BMDM supernatants. 

CMT-93 cells were physically wounded by a 
scratch in the presence or absence of MMC and 
supernatants derived from BMDM. Data are 
expressed as the average±SD. ****, p ≤0.0001. 
 

 

 

 

We had observed that p38α regulates IGF-1 in macrophages (Figure 34 above), 

and this growth factor is known to stimulate migration in several cell types, including 



172 
 

IECs (Chen et al., 1999; Furundzija et al., 2010; Guvakova, 2007; Jeong et al., 2014; 

Nadzir et al., 2013; Pelosi et al., 2007). Therefore, we evaluated whether IGF-1 was able 

to induce migration in CMT-93 cells. We found that, similarly to WT BMDM 

supernatants, incubation of CMT-93 cells in the presence of IGF-1 significantly increased 

their wound-healing velocity compared to both the control and to supernatants derived 

from p38α-∆MC BMDMs (Figure 86). 

In summary, our results strongly suggest the involvement of p38α signaling in 

wound-healing of IECs at two levels. On one hand, p38α regulates migration through 

MK2 in IECs. In addition, p38α regulates the production of IGF-1 and probably other 

cytokines and growth factors by macrophages, which lead to migration of IECs and 

wound closure.  

   

 

Figure 86. IGF-1 induces 
migration in CMT-93 cells. 

CMT-93 cells were physically wounded by 
a scratch and incubated in the presence or 
absence of IGF-1 (100 ng/ml) or 

supernatants derived from WT or p38α-

∆MC BMDM.  
Data are expressed as the average±SD. *, p 
≤0.05; ***, p ≤0.001; ****, p ≤0.0001. 

 

 

4.2.5 IGF-1 induces CMT-93 cell proliferation and protects from DSS 

induced apoptosis 
We were interested in confirming the role of IGF-1 in IECs subjected to inflammatory 

conditions. IGF-1 is known to promote cell proliferation and survival (Clayton et al., 

2011; Shanmugalingam et al., 2016; Wagner et al., 2007; Yu and Rohan, 2000). The 

effect of DSS in IECs has been reported in several studies, including in vitro models 

(Ahmad et al., 2014; Chang and Kuo, 2015; Han et al., 2015; Viennois et al., 2013). We 

observed that IGF-1 induced, in a dose dependent manner, the proliferation of sub-

confluent CMT-93 cells (Figure 87A). DSS treatment also enhanced CMT-93 cell 

proliferation but did not significantly modify proliferation induced by IGF-1 (Figure 

87A). On the other hand, DSS treatment induced the expected increased apoptosis in 
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CMT-93 cells, and treatment with IGF-1 significantly reduced both the DSS-induced 

apoptosis and the basal apoptosis observed at 2 days post-confluence in CMT-93 cells 

(Figure 87B). These results support a pro-survival role of IGF-1 in the IEC cell line 

CMT-93. 

 

 

Figure 87. IGF-1 induces proliferation and inhibits apoptosis in CMT-93 cells. 

(A) Sub-confluent proliferating CMT-93 cells were incubated for 24 hours in the presence or absence of 
DSS (2%) and with or without IGF-1 at the indicated concentrations. Proliferation was analyzed by BrdU 
incorporation. 
(B) Two days post-confluent CMT-93 cells were incubated for 24 hours in the presence or absence of DSS 
and with or without IGF-1 at the indicated concentrations. Apoptosis was analyzed by AnnexinV/PI. 
Data are expressed as the average±SD. *, p ≤0.05; **, p ≤0.01; ****, p ≤0.0001 

 

To sum up, our in vitro studies demonstrate the involvement of the IGF-1-p38α-

MK2 axis in migration of CMT-93 cells. We show that p38α signaling regulates the 

secretion of factors that increase the migration velocity of CMT-93 cells, and identify 

IGF-1 as a novel p38α effector that induces CMT-93 cell migration. These results are in 

concordance with our in vivo results, since migration is not only important for wound-

healing processes but is also a pro-tumorigenic property of cancer cells, and cancer has 

been proposed to be an overt healing wound  (Schafer and Werner, 2008) 
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5. DISCUSSION 

Chronic inflammation is a hallmark of colon cancer and can predispose to carcinogenesis 

as observed in patients with IBD and other inflammatory disorders that are prone to 

developing tumors (Coussens and Werb, 2002; Thorsteinsdottir et al., 2011).  However, 

the molecular and cellular events involved in the pathogenesis of CAC are not fully 

understood (Kaplan and Ng, 2017). Myeloid cells play a key role in the TME, regulating 

tumor growth and therapeutic responses. (Grivennikov et al., 2010; Mantovani et al., 

2017; Tariq et al., 2017; Waldner and Neurath, 2015). One of the pathways that has been 

implicated in a plethora of inflammatory diseases and cancers is controlled by the protein 

kinase p38α (Gupta and Nebreda, 2015; Kim and Choi, 2015; McKinnon et al., 2016; 

Qian et al., 2016). Specifically, p38α is a key regulator of IEC homeostasis protecting 

against inflammation-associated colon tumorigenesis in mice (Gupta et al., 2014; Otsuka 

et al., 2010; Wakeman et al., 2012). However, the contribution of myeloid p38α to 

colitis-associated tumorigenesis has been largely neglected, and this was the main 

objective of this doctoral thesis. 

Our results demonstrate the implication of p38α in myeloid cells in inflammation-

associated colon cancer using well established experimental models in mice, and identify 

IGF-1 as a novel effector downstream of p38α signaling in macrophages. While p38α is 

known to regulate cytokine production, to our knowledge, this is the first report 

describing the regulation of IGF-1 by p38α in macrophages. Previous studies have shown 

that chemical inhibition of p38 MAPK signaling reduces IGF-1 production by TNF-

treated MSCs and adipose progenitor cells in culture (Wang et al., 2006). Our results 

suggest, that myeloid cells are a major source of IGF-1 in the large intestine: Consistent 

with this idea, genetic or pharmacological inhibition of IGF-1 suppresses inflammatory 

cell recruitment and reduces colitis-associated colon tumor burden.  

This work suggests that targeted inhibition of the p38α pathway in myeloid cells 

could be therapeutically useful especially in tumors associated with chronic 

inflammation. Of note, IGF-1 is known to have mitogenic and anti-apoptotic functions, in 

addition to its role in inflammatory cell recruitment (Clayton et al., 2011; Furundzija et 

al., 2010; Musaro et al., 2004; Sanchez-Lopez et al., 2015; Smith, 2010). 
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 p38α signaling in myeloid cells promotes intestinal 

inflammation and tumorigenesis 
We show that suppression of p38α in myeloid cells ameliorates intestinal inflammation 

mainly through repression of inflammatory cell recruitment, resulting in reduced 

AOM/DSS-induced tumor burden in mice.  

In agreement with a previous report (Otsuka et al., 2010), we have found that 

p38α-ΔMC mice are less susceptible to colitis and epithelial damage caused by DSS 

administration. Of note, tumors induced by AOM/DSS are highly dependent on the 

inflammation and linked epithelial damage caused by DSS (Chassaing et al., 2014; 

Neufert et al., 2007; Perse and Cerar, 2012). Moreover, we have observed an increased 

number of Ly6ChiCCR2+ monocytes in the bone marrow and, in accordance, higher 

numbers of infiltrated innate and adaptive immune cells in the intestines of DSS-treated 

animals. It is well known, that persistent activation and recruitment of leukocytes, 

especially innate immune cells, including macrophages and DCs, can cause continuous 

tissue destruction and atrophy through the release of numerous factors, increasing the risk 

of malignant transformation (see section 1.3.1.1 and section 1.3.2) (Balkwill and 

Mantovani, 2001; Colotta et al., 2009; Coussens and Werb, 2002; Macarthur et al., 2004).  

We have demonstrated a stronger induction of two key pro-inflammatory 

cytokines, TNF-α and IL-1β in WT mice compared to p38α-ΔMC mice upon DSS 

treatment. Several human and mouse studies support that these cytokines might play 

important roles in the pathogenesis of IBD due to their immunological up-regulatory and 

pro-inflammatory activities (Dionne et al., 1999; Muzes et al., 2012; Sanchez-Munoz et 

al., 2008). IL-1β belongs to the IL-1 family can be produced by various cell types, 

including monocytes, macrophages, neutrophils, DCs, endothelial cells, and some 

epithelial cells (Fonseca-Camarillo and Yamamoto-Furusho, 2015; Guan and Zhang, 

2017; Hendrikx et al., 2013; Hogmalm et al., 2014; Mladenovic et al., 2014). TNF-α is a 

cytokine mainly produced by macrophages and monocytes, but also adipocytes, 

fibroblasts and differentiated T cells (Atreya et al., 2011; Kamada et al., 2008; Strober, 

2006; Strober et al., 2002), which exerts pleiotropic effects through increased production 

of IL-1β and IL-6, expression of adhesion molecules, proliferation of fibroblasts and pro-

coagulant factors, as well as initiation of cytotoxic, apoptotic and acute-phase responses, 

inhibition of apoptosis and activation of macrophages and effector T cells (Baumann and 

Gauldie, 1994; Begue et al., 2006; Di Sabatino et al., 2007; Gunther et al., 2011; Su et al., 
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2013). It has been suggested that IL-1 plays a role in the initiation rather than in the 

perpetuation of colonic inflammation (Neurath, 2014). On the other hand IL-1β can also 

activate the release of other pro-inflammatory cytokines such as TNFα, IL-23 and IL-6 

(Sahoo et al., 2011; Tsianos and Katsanos, 2009). Indeed, p38α is known to control the 

production of TNF-α and IL-1β (see section 1.4.1.1) (Cuadrado and Nebreda, 2010; Kim 

et al., 2008; Lee et al., 1994; Lee et al., 2000; Zarubin and Han, 2005). However, our 

results indicate that the decrease of these inflammatory mediators observed in DSS-

treated p38α-ΔMC mice correlates with a reduced number of infiltrated immune cells. 

Similarly, mice with p38α deletion in myeloid cells show reduced STAT3 

phosphorylation in the context of both intestinal inflammation and tumorigenesis 

compared to WT mice. Several lines of evidence associate STAT3 with inflammation and 

cancer in humans and mice (Aggarwal and Gehlot, 2009; Aggarwal et al., 2009a; 

Aggarwal et al., 2009b; Corvinus et al., 2005; Grivennikov et al., 2009; Jarnicki et al., 

2010; Sanchez-Lopez et al., 2015). STAT3 plays a crucial role in mediating the biological 

functions of cytokines belonging to the IL-6 family, amongst others (Hirano et al., 2000; 

Yu et al., 2009). Also the other way around, the expression of pro-inflammatory genes 

like IL-6, IL-8 and VEGF, was shown to be dependent on STAT3 activity (Carey et al., 

2008; Fritzenwanger et al., 2006a; Fritzenwanger et al., 2006b; Fritzenwanger et al., 

2007; Sumimoto et al., 2006). Additionally, a number of studies demonstrated the 

activation of STAT3 signaling in IBD pathogenesis, as well as in experimental mouse 

models. Accordingly, the expression of several STAT3 dependent genes, including 

various chemokines, cytokines and growth factors was found to be increased in IBD 

(Atreya et al., 2000; Carey et al., 2008; Mudter et al., 2005; Musso et al., 2005; Nguyen et 

al., 2013; Siegmund et al., 2002; Suzuki et al., 2001). Nevertheless, it is unclear why in 

other studies STAT3 signaling in IECs increased the sensitivity of mice to DSS-induced 

colitis (Bollrath et al., 2009; Grivennikov et al., 2009; Pickert et al., 2009; Tebbutt et al., 

2002). These discrepancies in the cellular outcomes of STAT3 signaling could be linked 

to the experimental settings, such as molecular weight of DSS, DSS dose and length of 

treatment, mouse strains and background, housing conditions and food, microbiota 

(Bramhall et al., 2015; Chassaing et al., 2014; Laukens et al., 2016; Mahler et al., 1998; 

Perse and Cerar, 2012). It should be considered that some properties of STAT3, such as 

suppression of apoptosis, induction of proliferation and induction of cyto-protective 

factors, such as intestinal TFF3 or the chaperone heat-shock protein 70 (Hsp70), might be 
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beneficial in the context of acute colitis, where epithelial damage depends on repair and 

protective mechanisms (Becker et al., 2005; Klampfer, 2008; Madamanchi et al., 2001).  

Nevertheless, although some discrepancies have been reported in the context of 

acute colitis, there is little doubt that STAT3 exhibits a potent tumor promoting role in 

intestinal carcinogenesis, which is probably linked to its crosstalk with NFκB activity 

whose sustained activation promotes tumorigenesis by inducing the expression of 

inflammatory mediators and growth factors (Greten et al., 2004; Greten and Karin, 2004; 

Grivennikov et al., 2009; Grivennikov and Karin, 2010; Karin, 2006; Li et al., 2011; 

Pacifico and Leonardi, 2006; Rakoff-Nahoum et al., 2004; Tebbutt et al., 2002; Yu and 

Kone, 2004).  

We detected a higher tumor burden in WT mice compared to p38α-∆MC mice, but 

the tumors were morphologically and histologically indistinguishable and no significant 

differences in tumor size could be observed between both genotypes. This is in line with 

the fact that apoptosis and proliferation were very similar in tumors of WT and p38α-∆MC 

mice, suggesting that p38α signaling in myeloid cells mainly participates in the tumor 

promotion upon AOM/DSS treatment of mice. The detection of larger tumors in WT mice 

compared to p38α-∆MC mice, could be explained by the earlier initiation of WT tumors, 

which therefore have more time to grow. 

 Taken together, our data suggest that p38α downregulation in myeloid cells 

suppresses the production of key inflammatory mediators and cytokines, ameliorating the 

susceptibility to DSS-induced colitis and resulting in reduced inflammation-associated 

tumor formation, in line with other reports linking inflammation and cancer (Aggarwal 

and Gehlot, 2009; Balkwill and Mantovani, 2001; Coussens and Werb, 2002; Del Reino 

et al., 2014; Macarthur et al., 2004; Ullman and Itzkowitz, 2011). 

 IGF-1 as a novel downstream effector of p38α signaling 
Since mice with p38α downregulation in myeloid cells showed reduced susceptibility to 

intestinal inflammation and tumorigenesis, we investigated macrophage-produced 

cytokines or chemokines regulated by p38 MAPK signaling, which could be involved in 

inflammatory processes and tumor promotion. We identified several cytokines and 

chemokines that seemed to be regulated by p38 MAPK signaling in BMDMs, with IGF-1 

showing the most obvious differential expression. A recent study proposed a role for p38 

MAPK signaling in the IL-4-induced activation of peritoneal macrophages, but IGF-1 
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was not analyzed (Jimenez-Garcia et al., 2015). IGF-1 is a growth factor that has been 

implicated in tumor promotion, as well as in the inflammatory disorders, playing a 

prominent role in the regulation of immunity and inflammation (Baserga, 2009; 

Heemskerk et al., 1999; Sanchez-Lopez et al., 2016). 

To the best of our knowledge, there are no studies reporting the regulation of IGF-

1 by p38 MAPK in macrophages. Our results using genetic models and chemical 

inhibitors confirmed the implication of p38α signaling in IGF-1 expression in both 

BMDMs and intestinal macrophages. In agreement with the proposed role of IGF-1 as a 

marker for wound-healing macrophages (Roszer, 2015; Tonkin et al., 2015), we found 

that it was more potently induced by IL-4 (induction of alternative activation) than by 

LPS (induction of classical activation)(Ying et al., 2013).  

Similarly, it has been established that intestinal macrophages switch in response to 

DSS from the initial classical activation phenotype to a wound-healing phenotype in the 

repair phase (Enderlin Vaz da Silva et al., 2014; Ortega-Gomez et al., 2013; Serhan and 

Savill, 2005; Sugimoto et al., 2016). Accordingly, intestinal macrophages isolated from 

WT and p38α-ΔMC mice 7 days after the end of the DSS treatment (day 13, in the anti-

inflammatory repair phase), showed stronger differences in IGF-1 expression levels 

compared to the untreated animals. Moreover, the differences of IGF-1 protein levels in 

whole colon extracts were also stronger at this time point, than in the acute inflammatory 

phase.  

A point to keep in mind is the induction of IGF-1 expression by LPS, although 

IGF-1 is a marker for alternatively activated macrophages. This apparent controversy 

might be explained by the fact that both IL-4 and LPS can activate p38α in macrophages 

(Jimenez-Garcia et al., 2015; Kang et al., 2008; Meng et al., 2014; Xagorari et al., 2002), 

and is consistent with the current idea of a spectrum of macrophage activation stages, 

which cannot be easily binned into defined groups (Biswas and Mantovani, 2010; 

Edwards et al., 2006; Mantovani et al., 2005; Sica and Mantovani, 2012; Stout et al., 

2005; Stout and Suttles, 2004; Stout and Suttles, 2005). Nevertheless, in accordance to 

our findings, other studies have reported IGF-1 induction by LPS in macrophages and in 

acute models of inflammation (Chand et al., 2012; Pang et al., 2010; Suh et al., 2013).  

Another example of macrophage phenotype marker potentially controversial is 

Arg1, which is considered a marker for alternatively activated macrophages but is also 

expressed in classically activated macrophages of some resident macrophage populations 
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and is highly induced in mycobacteria-infected macrophages (El Kasmi et al., 2008; Raes 

et al., 2002; Wagener et al., 2017). The conclusion is that relying on a single marker can 

be problematic, and a combination of markers should be applied to define the phenotype 

of macrophages (Edwards et al., 2006; Mosser and Edwards, 2008). 

Tissue resident and inflammatory macrophages are actively recruited from 

circulating bone marrow-derived monocytic precursors, which therefore contribute to 

modify the TME (Chanmee et al., 2014; Murray and Wynn, 2011). TAMs facilitate tumor 

initiation, progression and metastasis at various levels (Grivennikov et al., 2010; 

Mantovani et al., 2017). IL-4 is a cytokine produced by various immune cells, which is 

considered a major regulator of TAM phenotypes and determines the balance of pro- and 

anti-inflammatory cytokines produced (Paul and Zhu, 2010). Although we could not 

observe significant differences in IGF-1 protein expression in the colon, quantification of 

IGF1R phosphorylation indicated that the IGF-1 pathway is more active in tumors 

obtained from WT mice than in those from p38α-∆MC mice. This discrepancy is probably 

a result of the complexity of the IGF signaling system. Although further experiments will 

be needed to define the factor(s) responsible for this inconsistency, we can postulate 

several possibilities. One is that tumors produce IGF-2, which is known to bind to the 

IGF1R independently of IGF-1 (Baserga, 2009; Lawrence et al., 2007). However, ligand-

binding affinities vary depending on cell type and experimental conditions, and it is not 

clear whether both ligands bind with identical affinities or IGF-1 exhibits a higher affinity 

for IGF1R than IGF-2 (Danielsen et al., 1990; Forbes et al., 2002). Nevertheless, 

preliminary analysis in colon and tumor samples indicates very low expression levels of 

IGF-2 mRNA, making unlikely the possibility that IGF-2 expression accounts for the 

discrepancy between IGF-1 protein levels and phospho-IGF1R staining in our model. 

Moreover, although IGF-1 and IGF-2 elicit similar biological responses, their pattern of 

expression in vivo is significantly different. IGF-1 is preferentially expressed after birth 

and is produced mostly in the liver through autocrine or paracrine mechanisms, with 

macrophages being its largest extra-hepatic source. On the other hand, IGF-2 is 

preferentially expressed in a variety of somatic tissues during early embryonic and fetal 

development. The adult expression of IGF-2 takes place in the liver and in the epithelial 

cells lining the brain surface (Engstrom et al., 1998; Gow et al., 2010; Pan and Anthony, 

2000; Underwood et al., 1986). Nonetheless, there are studies reporting an implication of 

IGF-2 in various cancers, including colon, which has been proposed to derive from 



183 
 

cancer-associated fibroblasts (CAFs) (Brouwer-Visser and Huang, 2015; Liu et al., 2013; 

Livingstone, 2013; Tian et al., 2017; Unger et al., 2017; Xu et al., 2017).  

 Another factor to consider concerning the above discrepancy is the complex 

regulation of IGF1 activity and sensitivity by six IGFBPs, which have been shown to 

regulate IGF1-mediated IGF1R activation (Brahmkhatri et al., 2015; Yu and Rohan, 

2000; Zhang et al., 2013a). In addition, several IGFBP proteases hydrolyzes IGFBPs, 

resulting in the release of bound IGFs, which then can interact with IGF1R. Thus, IGFBP 

proteases may indirectly regulate the action of IGFs (Ferry et al., 1999; Helle, 2004; 

Moschos and Mantzoros, 2002; Rodriguez et al., 2007; Shim and Cohen, 1999). Indeed, 

our preliminary data suggests that p38α can regulate the expression of IGFBP-5 and 

IGFBP-6 in BMDMs, but these results need to be validated. There is also some evidence 

in the literature suggesting that p38α can regulate IGFBPs (Frost et al., 2000; Kuemmerle 

and Zhou, 2002; Zhang et al., 2014b). An additional potential regulatory mechanism of 

IGF-1 signaling is the modulation of IGF2R expression, which has been postulated to act 

as a tumor suppressor by binding and clearing IGF2, thereby preventing activation of 

IGF1R (Yu and Rohan, 2000). Future studies should analyze the potential implication of 

IGFBPs and/or IGF2R in colitis and CAC, and whether they account for the disagreement 

between the levels of IGF-1 protein and IGF1R phosphorylation observed in AOM/DSS-

induced tumors. 

 Our cytokine array analysis comparing WT and p38α KO BMDMs (see section 

4.1.5) identified a number of other cytokines and chemokines potentially involved in 

intestinal inflammatory pathogenesis, which should be further evaluated in the future. 

Nonetheless, we conclude that p38α regulates IGF-1 expression in macrophages in vitro 

and in vivo, and this correlates with enhanced IGF-1 signaling during DSS induced colitis 

and AOM/DSS induced tumorigenesis. 

 IGF-1 promotes intestinal inflammation and tumorigenesis  
The IGF-1 pathway has been linked to cancer and IBD by modulating the innate and 

adaptive immune systems as well as through its multi-functional involvement in the TME 

(Sanchez-Lopez et al., 2015; Smith, 2010). Aberrant IGF-1 signaling has been associated 

with numerous human cancer types, and a large amount of work has implicated IGF-1 

receptor activity in cancer cell proliferation, migration, and invasion (Clayton et al., 

2011). Consistently, our results show significant downregulation of IGF-1 signaling in the 

colons of IGF-1-∆MC mice during inflammation and colitis-associated tumorigenesis.  



184 
 

Downregulation of IGF-1 in myeloid cells or treatment of WT mice with the 

IGF1R inhibitor PQ401 partially improves disease condition and epithelial damage 

induced by DSS, which correlates with a strong reduction of Ly6ChiCCR2+ monocytes in 

the bone marrow and decreased macrophages in the colon of these mice. However, DSS-

induced colitis susceptibility was not reduced to the same levels as in p38α-ΔMC mice, 

perhaps due to the implication of IGF-1 signaling in mucosal repair mechanisms (Werner 

and Grose, 2003). Nonetheless, although these mechanisms are important for mucosal 

integrity, excessive wound-healing activity strongly predispose to the development of 

neoplasms and tumor progression (see 1.3.1.3.1 section and section 1.3.2.3). In fact, in 

our experimental model, the IGF-1 increase in the intestinal repair phase also associates 

with increased IEC proliferation. This might be explained by a compensatory 

proliferation as previously suggested (Gupta et al., 2014), or be the result of increased 

macrophage-produced IGF-1 in the colonic microenvironment.  

In addition, p38α is known to control the production by myeloid cells of other 

cytokines involved in acute intestinal inflammation, which are not affected by the 

inhibition of IGF-1 signaling (see section 1.4.1.1). There is evidence indicating that IGF-1 

signaling may favor mitogenesis and neoplastic transformation of normal IECs (Vigneri 

et al., 2015; Yao et al., 2016). This is consistent with our observation that differences in 

IGF-1 signaling between WT and p38α-ΔMC mice are stronger during acute colitis than at 

the end of the tumorigenesis experiment.  

The reduced colon tumorigenesis observed in IGF-1-∆MC mice or in PQ401-

treated WT mice is consistent with the importance of this factor in tumor initiation and 

progression (Clayton et al., 2011; Yu and Rohan, 2000). In agreement with our results, a 

chemical compound that inhibits both IGF-1 and STAT3 signaling has been reported to 

reduce intestinal tumorigenesis induced by Apc deletion by affecting several cell types in 

the TME (Sanchez-Lopez et al., 2015). In accordance, mice with p38α deletion in 

myeloid cells show reduced STAT3 phosphorylation in the context of both, intestinal 

inflammation and tumorigenesis (see section 5.1). There is also evidence suggesting that 

IGF-1 is able to induce STAT3 activation (Zong et al., 2000) 

In conclusion, we propose that p38α signaling in myeloid cells supports colon 

inflammation and tumorigenesis through the production of IGF-1. It seems likely that 

IGF-1 acts on various cell types, given that it is secreted to the microenvironment and that 
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the IGF-1 receptor is ubiquitously expressed in normal tissues (Sanchez-Lopez et al., 

2015). 

 p38α signaling in myeloid cells regulates leukocyte recruitment 

to the intestine 
Increased leukocyte infiltration is a hallmark of IBD and experimental colitis, 

contributing to disease initiation and tissue damage (Abraham and Cho, 2009c). 

Accordingly, the decreased inflammation observed in DSS-treated p38α-ΔMC mice 

correlates with reduced colon infiltration of leukocytes. Importantly, Ly6ChiCCR2+ 

monocytes are continuously generated in the bone marrow from HSCs and recruited to 

healthy and injured tissues, where they give rise to intestinal effector cells (Bain and 

Mowat, 2014). Our studies demonstrated that this cell population is reduced in p38α-ΔMC 

mice compared to WT mice, even without any treatment. We believe this is important for 

the observed phenotype, given the key role of inflammatory monocytes in triggering the 

recruitment of other immune cells as well as in the initiation of the adaptive immune 

response.  

The mobilization of Ly6ChiCCR2+ monocytes from the bone marrow depends on 

the CCL2-CCR2 chemokine axis and, as a result, deletion of either of these molecules 

markedly reduces circulating monocytes and ameliorates acute intestinal inflammation 

(Bain and Mowat, 2014; Ginhoux and Jung, 2014; Mowat and Bain, 2011). Although this 

increase of inflammatory monocytes in homeostatic conditions was not observed to affect 

intestinal permeability, we hypothesize that the differences in Ly6ChiCCR2+ monocytes 

observed in untreated p38α-ΔMC mice are probably due to environmental factors 

exposure, such as microbiota (Bain et al., 2014), leading to a state of controlled 

“physiological inflammation”, which is boosted upon DSS induced inflammation and is 

linked to differences in expression of chemokines crucial for immune cell recruitment.  

The intestinal microbiota is well known to play an important role in health 

maintenance. In the last years, it became evident that the results of experimental studies 

may vary from animal facility to animal facility or even over time within the same 

facility, depending on the local microbiota, housing conditions, and diet (Abraham and 

Medzhitov, 2011; Belkaid and Hand, 2014; Chassaing et al., 2014; Ericsson and Franklin, 

2015). The experiments described in this Thesis were performed with mice housed in 

conventional conditions, but could not be reproduced with the same mice in SPF housing 



186 
 

conditions, indicating an important role of myeloid p38α in the response to microbiota 

and thereby the development of inflammatory diseases. Preliminary data from our 

laboratory also suggests that there are no changes between WT and Ly6ChiCCR2+ 

monocytes in the bone marrow of mice under homeostatic conditions when housed in 

SPF conditions. This is striking and, in the future, it should be of great interest to further 

dissect the role of myeloid p38α in the response to changes in the gut microbiome. We 

believe that the experiments performed in conventional housing conditions resemble a 

more natural situation than the animals in SPF housing conditions, given the fact that in 

real life, people and animals are exposed to a myriad of microbiota and external factors.  

It should be noted that especially for intestinal pathologies, the gut microbiota 

plays a crucial role in modulation of the immune system and disease perpetuation. In 

accordance, a number of studies have reported similar differences in their models when 

changing the housing conditions and therefore the microbiota to which the animals are 

exposed. Considering the role of immune cells in the response to microbiota, this seems 

to be of particular importance in studies of the immune system (Frosali et al., 2015; 

Gronbach et al., 2010; Kuhn and Stappenbeck, 2013; Landman and Quevrain, 2016; 

Nunez, 2017; O'Rourke et al., 1988; Reinisch, 2017; Round and Mazmanian, 2009; 

Shono et al., 2015; Stecher, 2015; Yamada et al., 2016; Zhan et al., 2013). Of note, there 

is evidence showing the importance of gram-positive commensal bacteria in inducing 

colitis and recruiting colitogenic monocytes and macrophages, particularly bacteria of the 

Lachnospiraceae family has been shown to specifically downregulate the expression of 

CCR2 ligands in colonic epithelial cells (Nakanishi et al., 2015). 

Besides its function as a growth hormone, IGF-1 can mediate chemotaxis of 

several cell types including tumor cells (Roussos et al., 2011). In fact, IGF-1 can induce 

macrophage migration in transwell chambers, which is impaired by chemical inhibitors of 

integrin and p38 MAPK signaling (Furundzija et al., 2010), and has been reported to 

mediate the recruitment of bone marrow cells to damaged muscle sites (Musaro et al., 

2004). Indeed, intestinal macrophages isolated from untreated p38α-ΔMC mice showed 

reduced IGF-1 expression, which might account for the differences in bone marrow 

inflammatory cells.  

We have observed a general pattern of chemokine downregulation in colons from 

untreated p38α-ΔMC mice. Previous work has implicated p38 MAPK signaling in the 

regulation of chemokines by T helper lymphocytes and myeloid cells (Granata et al., 
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2006; Kim et al., 2008; Sun et al., 2008; Wong et al., 2007). In this study, we show that 

p38α regulates Chemerin, CCL2 (MCP-1) and CCL12 (MCP-5) mRNAs in intestinal 

macrophages. Chemerin is a potent macrophage chemoattractant that potentiates intestinal 

inflammation in DSS-induced colitis (Lin et al., 2014). Interestingly, CCL2 is regulated 

by both p38α and IGF-1 in intestinal macrophages, and p38 MAPK signaling has been 

previously linked to CCL2 regulation in murine macrophages (Sun et al., 2008). How 

IGF-1 might regulate CCL2 production by macrophages is unknown but, consistent with 

our results, CCL2 was also downregulated in tumors from mice treated with an inhibitor 

of IGF-1 and STAT3 signaling (Sanchez-Lopez et al., 2015).  

In summary, taken all our findings into consideration, we propose the following 

model (Figure 88). Commensal microbiota lead to a situation of tightly controlled 

inflammation, implicating constant recruitment of monocytes from HSCs in the bone 

marrow to the intestine. In intestinal macrophages, p38α controls the expression of 

chemokines and IGF-1 important for this process. This is pathologically boosted through 

inflammation and a vicious cycle starts if inflammation gets out of control leading to the 

development of chronic inflammation. In this process, IECs accumulate genetic mutations 

eventually leading to the formation of tumors. 
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Figure 88. p38α-IGF-1 axis in intestinal homeostasis, inflammation and 
tumorigenesis. 

Schematic model representing a summary for the implication of p38a in myeloid cells in the context of 
intestinal inflammation and CAC. 

 

 p38α and IGF-1 as regulators of wound-healing 
In parallel to the in vivo studies, in which we show that p38α in myeloid cells exerts a 

pro-inflammatory role in the epithelial mucosa, and taking into account that p38α in IECs 

plays an important role in the maintenance of intestinal homeostasis (Gupta et al., 2014), 

we have evaluated the role of p38α in both macrophages and IECs using an in vitro 

model of wound-healing. This model could be relevant to understand effects occurring in 

vivo within the intestinal epithelium injured by colitis. Additionally, we have evaluated 

IGF-1 in the in vitro model of wound-healing, as a downstream target of p38α signaling 

in macrophages. 

The use of macrophages derived from WT and p38α-ΔMC mice implicated that the 

interactions with IECs should be better studied using a murine model of IECs. The CMT-

93 cell line was almost unknown to the scientific community four years ago, when this 
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project started. Therefore, due to the limited information available about these cells, we 

performed a series of characterization experiments. We concluded that the CMT-93 cell 

line was a good in vitro model for IECs performing experiments at 2 days post-

confluence, when they show a more intact monolayer.  

We show that the wound-healing process initiated through a physically induced 

scratch in CMT-93 cell monolayers is due to the induction of active migration, rather than 

cell proliferation or expansion. To our knowledge, neither the implication of p38α in 

wound-healing nor the contribution of macrophage-secreted factors to this process has 

been studied in CMT-93 cells. In line with previous reports, we observed that p38α 

regulates migration via its downstream substrate MK2 (Hedges et al., 1999; Kobayashi et 

al., 2006; Rousseau et al., 1997). MK2 is known to phosphorylate Hsp27, which plays a 

pivotal role in cell migration by promoting actin polymerization and remodeling (Manetti, 

2012). Moreover, paxillin, a focal adhesion-associated phospho-tyrosine protein, and 

caldesmon, an important regulator of cell morphology and motility that associates with 

actin filaments, are two other p38α substrates that have been implicated in cell migration 

(Goncharova et al., 2002; Huang et al., 2004). Our results using chemical inhibitors 

indicate that CMT-93 cell migration is mainly regulated via MK2, although it remains to 

be evaluated whether this is mediated by Hsp27 phosphorylation.  

 Wound-healing experiments performed with BMDM supernatants demonstrated 

that p38α is also important for the production of macrophage cytokines that induce 

migration of CMT-93 cells. We observed that treating BMDMs with p38α inhibitors had 

a stronger inhibitory effect than using p38α-∆MC BMDM. This could be explained 

because we used inhibitors that target both p38α and p38β (Cuenda and Rousseau, 2007; 

Selness et al., 2011), and is consistent with the observation that supernatants derived from 

p38α/p38β KO BMDMs induced less migration in CMT-93 cells than supernatants from 

p38α KO, indicating a synergistic effect of p38α and p38β in the production of wound-

healing regulatory molecules. It remains to be analyzed whether p38β cooperates with 

p38α in the regulation of IGF-1 in macrophages. It should be also noted that, since p38α 

inhibitors used to treat the macrophages are not removed from the collected supernatants, 

they are also potentially transferred to the CMT-93 cell scratch assays, where the 

inhibitors can block migration therefore producing an additive effect.  

In conclusion, IGF-1 is downregulated in supernatants derived from p38α-

deficient macrophages, and consistent with previous in vitro and in vivo studies, we 



190 
 

confirmed that IGF-1 contributes to the increased migration observed in CMT-93 cells 

(Chen et al., 1999; Furundzija et al., 2010; Jeong et al., 2014; Nadzir et al., 2013). To 

further verify that macrophage derived IGF-1 contributes to migration of CMT-93 cells, 

we plan to use in the future macrophage supernatants derived from IGF-1-∆MC 

macrophages. Nevertheless, our results do not exclude the possibility that p38α regulates 

other cytokines contributing to the induction of migration observed in CMT-93 cells. In 

addition, supernatants derived from p38α-∆MC BMDM can still induce some migration of 

CMT-93 cells, suggesting that p38α is not the only regulator of factors involved in the 

induction of migration by macrophage supernatants. 

Treatment of CMT-93 cells with DSS produces a cytotoxic effect and increased 

apoptosis, in line with other in vitro studies (Araki et al., 2006) and with what occurs in 

DSS-treated mice in vivo (Siegmund et al., 2002; Zhan et al., 2013). Curiously, DSS 

treatment slightly induces CMT-93 cell proliferation in vitro, as it has been described to 

occur in vivo upon DSS treatment, but DSS treatment in cell lines other than CMT-93 has 

been described to inhibit proliferation (Araki et al., 2010; Araki et al., 2006). Moreover, 

according to previous studies (Badr et al., 2012; Li et al., 2016b; Yan et al., 2016), we 

show that IGF-1 protects from apoptosis and induces proliferation in CMT-93 cells, and 

also helps the cells to survive in response to DSS (Figure 89).  

 

 

Figure 89. IGF-1 is regulated by p38α in macrophages inducing proliferation, 
survival and migration in CMT-93 cells. 

The IGF-1-p38α-MK2 axis was identified to regulate migration in CMT-93 cells. Moreover, IGF-1 induces 
CMT-93 cell proliferation and inhibits cell death, contributing to cell survival upon DSS treatment. 
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 Is this novel p38α-IGF-1 axis a potential therapeutic target for 

intestinal inflammatory disorders and cancer?  
Our results strongly suggest that the p38α-IGF-1 axis promotes inflammatory cell 

recruitment, inflammation and subsequent tumorigenesis in the colon. This depicts 

myeloid p38α as a tumor promoter and is in line with the detection of increased 

phosphorylation of p38α in human tumors (Wagner and Nebreda, 2009). Although it has 

not been analyzed whether p38α in macrophages is hyperactivated in human cancer, we 

think this is very likely, since the TME exhibits a milieu with a myriad of cytokines, 

chemokines, hormones and growth factors secreted by macrophages and CAFs and p38α 

is known to be activated in macrophages and other cells by a variety of these molecules 

(Alonso et al., 2000; Brancho et al., 2003; Buhler and Laufer, 2014; Cuadrado and 

Nebreda, 2010; Cuenda and Rousseau, 2007; Docena et al., 2010; Jimenez-Garcia et al., 

2015; Risco et al., 2012; Ying et al., 2013). Strengthening a potential clinical importance 

is the fact that macrophages are prominently found and recruited to tumors (see section 

1.3.2.1) (Gabrilovich et al., 2012; Murdoch et al., 2008; Parihar et al., 2010; Sanchez-

Lopez et al., 2015) 

Of note, the different functions of p38α in IECs or in myeloid cells in the context 

of inflammation-associated colon tumorigenesis highlights the importance of selectively 

targeting specific cell types and should be taken into consideration for more successful 

therapeutic interventions in this pathway. Perhaps this is why the p38α inhibitors have 

not yielded clear results in clinical trials so far (Gupta et al., 2015; Patterson et al., 2014). 

Given the difficulty inherent to targeting a specific p38 MAPK family member in a 

specific cell type, the alternative of targeting a combination of effector pathways with 

compounds that are already in clinical trials, often as separate medications, should be 

considered. It has been proposed that some IBD patients could benefit from IGF-1 

treatment due to its involvement in growth and repair processes, as well as anti-

inflammatory effects (Zatorski et al., 2016). However, our results suggest that the 

inflammatory features and local IGF-1 levels assessed from colonic biopsies should be 

taken into account.  

Moreover, circulating IGF-1 levels rise during juvenile life and then decline after 

puberty (Sara et al., 1983), which might be linked to the high incidences of pediatric IBD 

(Benchimol et al., 2017). In addition, and further emphasizing a potential clinical 

importance of our findings is the fact that IGF-1 expression is known to positively 
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correlate with caloric intake and the risk of developing colon cancer, also a number of 

other cancers also increase with obesity and several studies in humans indicate that this 

can be reversed by caloric restriction (Baserga, 2009; Bowers et al., 2015; Chen and 

Sharon, 2013; Cohen and LeRoith, 2012; D'Addio et al., 2015; Denduluri et al., 2015; 

Gallagher and LeRoith, 2011; Moschos and Mantzoros, 2002; Renehan et al., 2006). 

Finally, it is generally accepted that IGF-1 contributes to the pathogenesis of CRC 

through a number of features that collectively promote tumorigenesis, such as wound-

healing, inflammatory cell recruitment, sustained alternative macrophage activation, cell 

proliferation and activation of the PI3 kinase and β-catenin pathways and its implication 

in several resistance mechanisms to therapeutic agents (Clayton et al., 2011; Mourkioti 

and Rosenthal, 2005; Spadaro et al., 2017; Vigneri et al., 2015). In summary, we propose 

that IGF-1 signaling might be an attractive target in the context of intestinal diseases with 

prominent inflammatory cell recruitment. 

Taken together the results of this Thesis obtained from in vivo and in vitro models, 

we conclude that the myeloid p38α-IGF-1-axis contributes to tumorigenesis mainly by 

inducing excessive wound-healing Figure 90. In accordance, it has been postulated 

decades ago that tumors are over healing wounds (Dvorak, 1986; Haddow, 1972). We 

hypothesize that this occurs in vivo due to a combination of various factors contributing to 

carcinogenesis, such as cell survival and immune cell recruitment, resulting in further 

release of pro-tumorigenic mediators including IGF-1. IEC cell migration might also 

contribute to the pro-tumorigenic properties of cancer cells in our model, however this 

has not been analyzed in vivo so far. 
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Figure 90. Schematic summary of myeloid p38α signaling in intestinal 
carcinogenesis. 
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6. CONCLUSIONS 

1. Myeloid p38α suppresses DSS-induced colitis and inflammation-associated colon 

tumorigenesis. 

 

2. IGF-1 is a novel target of p38α signaling in macrophages 

 

3. IGF-1 regulated by p38α in myeloid cells contributes to colitis and colon 

tumorigenesis 

 

4. Inhibition of p38α or IGF-1 signaling in myeloid cells suppresses inflammatory 

cell recruitment 

 

5. Myeloid p38α regulates the expression of several chemotactic factors in the 

intestine 

 

6. The myeloid p38α-IGF-1 axis should be considered as a potential therapeutic 

target in inflammation associated intestinal diseases and cancers.  
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RESUMEN EN CASTELLANO 

Introducción y objetivos 
El cáncer colorectal es el tercer tipo  de cáncer más común y el cuarto en mortalidad (Pan 

et al., 2016). El riesgo de desarrollar este tipo de cáncer se encuentra significativamente 

incrementado en individuos diagnosticados con Enfermedad inflamatoria intestinal o IBD 

(inflammatory bowel disease), una enfermedad inflamatoria crónica recurrente (Coussens 

and Werb, 2002; Dyson and Rutter, 2012; Thorsteinsdottir et al., 2011). El termino IBD 

comprende dos patologías muy relacionadas, la colitis ulcerosa y la enfermedad de Crohn, 

que se caracterizan por una inflamación crónica del intestino y por presentar períodos de 

exacerbación de los síntomas, seguidos de intervalos más o menos prolongados de 

remisión de los mismos. La colitis ulcerosa se presenta solamente en el intestino grueso y 

la enfermedad de Crohn puede manifestarse en cualquier parte del tracto digestivo, desde 

la boca hasta el ano (Bouma and Strober, 2003). Estas enfermedades se caracterizan por 

un sistema inmunitario excesivamente activo y asociado a una exagerada producción de 

citoquinas (Sartor, 2006). La relación entre inflamación y carcinogénesis ya fue descrita 

hace más de 150 años, cuando Rudolf Virchow hipotetizó que un estado inflamatorio 

crónico podría llevar a un proceso tumoral (Balkwill and Mantovani, 2001). Aunque se ha 

logrado un progreso considerable en la investigación de la IBD, aún no se ha logrado una 

comprensión completa de los mecanismos y la patogénesis en el cáncer asociado a la 

colitis (CAC: colitis-associated cancer) (Kaplan and Ng, 2017).  

La co-evolución de los mamíferos con su flora intestinal o microbiota permite una 

situación de tolerancia intestinal. El mantenimiento de este fino equilibrio o homeostasis 

se encuentra marcado por una situación controlada de "inflamación fisiológica" basada en 

mecanismos de activación y supresión por parte del sistema inmunitario, dónde distintas 

poblaciones celulares, entre ellas macrófagos residentes e inflamatorios, participan en el 

mantenimiento de este balance y aseguran una inmunidad protectora (Mowat and Bain, 

2011). Un desequilibrio en esta homeostasis, como ocurre con la IBD, implica una 

desregulación de citoquinas pro- y anti-inflamatorias, que impiden la resolución de la 

inflamación conduciendo a su perpetuación y a la destrucción tisular. Por tanto, la 

producción de citoquinas juega un papel clave, tanto en los mecanismos implicados en el 

daño de la mucosa y tejido intestinal, como en las funciones de reparación de la mucosa 

epitelial intestinal, así como en los procesos de angiogénesis, progresión y metástasis 

tumoral (Mattner and Wirtz, 2017; Rakoff-Nahoum and Medzhitov, 2009). 
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 Durante la carcinogénesis colorectal, las células epiteliales colónicas acumulan 

mutaciones genéticas, muchas de las cuales son inducidas por factores ambientales que 

les confieren ventajas como un crecimiento selectivo. Los factores de crecimiento 

secretados por monocitos activados y macrófagos ayudan a la formación de pólipos 

benignos y pueden conducir al desarrollo de tumores colorrectales invasivos (Baylin and 

Ohm, 2006; Schwitalla et al., 2013). Por lo tanto, la búsqueda de nuevas estrategias que 

impidan el reclutamiento de células del sistema inmunitario en los sitios de inflamación 

para impedir la tumorogénesis es un tema de gran interés en la actualidad (Grivennikov et 

al., 2010). Las características del estroma tumoral reactivo incluyen la presencia de 

infiltrado de leucocitos, y las células mieloides (monocitos y macrófagos) son las 

predominantes dentro del microambiente tumoral (Mantovani and Sica, 2010). 

Actualmente está establecido los monocitos con el fenotipo Ly6ChiCCR2+ (también 

llamados monocitos inflamatorios) de la médula ósea entran en la circulación estimulados 

por la quimiocina CCL2 y su receptor CCR2 y, como resultado, la deleción de cualquiera 

de estas moléculas reduce notablemente los monocitos circulantes. Además, se ha 

demostrado que la menor infiltración de monocitos al torrente circulatorio reduce la 

inflamación intestinal aguda (Bain and Mowat, 2014; Ginhoux and Jung, 2014; Mowat 

and Bain, 2011). 

p38α es miembro de una  superfamilia de serina/treonina proteína-quinasas 

llamadas MAPK (mitogen-activated protein kinase), que pueden ser activadas por una 

gran variedad de estímulos. p38α regula principalmente la respuesta celular a estímulos 

de estrés, pero también está involucrada en otros procesos como la inflamación y 

homeostasis tisular. Por ejemplo, p38α controla la producción de quimioatrayentes y 

otros mediadores inflamatorios en los leucocitos, y por tanto se ha considerado una 

potencial diana para la intervención terapéutica de patologías inflamatorias (Corvinus et 

al., 2005; Cuadrado and Nebreda, 2010; Grivennikov et al., 2010). Por otro lado, en 

macrófagos, la vía de señalización de p38α se ha implicado en distintas funciones 

celulares como la activación, la diferenciación a distintos fenotipos (plasticidad 

fenotípica), proliferación y supervivencia celular (Cuenda and Rousseau, 2007).  

La inactivación genética de p38α en células mieloides ha demostrado la 

importancia de esta vía de señalización en la producción de citocinas y respuestas 

inflamatorias nivel in vitro como in vivo (Kim et al., 2008; Otsuka et al., 2010; Wagner 

and Nebreda, 2009). Por ejemplo, en un modelo in vivo de CAC, p38α en las células 
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epiteliales intestinales suprime la iniciación de la tumorogénesis asociada a inflamación, 

pero contribuye a la supervivencia de las células tumorales de colon (Gupta et al., 2015; 

Patterson et al., 2014). También se ha demostrado que existe menos inflamación intestinal 

en un modelo de colitis experimental con ratones en los que p38α se ha eliminado 

específicamente en las células mieloides (Otsuka et al., 2010). Sin embargo, aún no 

existen estudios de cómo la p38α presente en las células mieloides puede afectar a la 

homeostasis intestinal, o a los mecanismos de reparación tisular y tumorogénesis 

intestinal. Por tanto, una mejor comprensión de cómo se regulan las funciones de los 

macrófagos en el cáncer asociado a colitis proporcionaría importantes conocimientos 

sobre su impacto dentro de la inflamación local y sistémica. 

El principal objetivo de esta tesis consistió en investigar cómo la p38α presente en 

las células mieloides regula funciones tan importantes como son la homeostasis e 

inflamación intestinal, y cómo afecta esta proteína al proceso de tumorogénesis colorectal 

asociado a colitis. Dada la importancia demostrada de las citoquinas secretadas por los 

macrófagos durante la IBD, nos propusimos identificar qué citoquinas podían estar 

reguladas por p38α y por tanto, podrían afectar a funciones como la proliferación, 

migración o supervivencia de las células epiteliales intestinales. Los resultados que 

obtuvimos al estudiar distintos modelos in vivo, fueron ampliados en estudios usando 

células en cultivo para intentar descifrar el mecanismo celular y molecular involucrado. 

Resultados 
Para evaluar el papel de p38α de las células mieloides en el proceso tumorogénico 

asociado a la inflamación intestinal, utilizamos ratones modificados genéticamente que 

expresan los alelos LysM-Cre y p38α-lox (p38α-∆MC). Estos ratones presentan una 

deleción especifica del gen que codifica para p38α sólo en las células mieloides 

(monocitos y macrófagos). Para los primeros estudios in vivo, utilizamos un modelo 

experimental de cáncer de colon asociado a inflamación que combina el carcinógeno 

azoximetano (AOM) con el compuesto sulfato sódico de dextrano (DSS) utilizado para 

inducir colitis. Nuestros resultados indicaron que a diferencia de los ratones control o 

wild-type (WT), los ratones p38α-∆MC tratados con AOM/DSS tenían menor pérdida de 

peso y un menor índice de actividad de la enfermedad o DAI (disease activity index) 

(Cooper et al., 1993). Este índice mide diferentes parámetros entre ellos, pérdida de peso, 

consistencia de las heces y presencia de sangre en heces, y proporciona información del 
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estado de la inflamación intestinal del animal. Además, la mayoría de los ratones WT 

desarrollaban prolapso rectal, el cual era raramente observado en los ratones p38α-∆MC. 

Por tanto, los ratones p38α-∆MC presentaban una susceptibilidad reducida a la colitis en 

comparación con los WT. Por otra parte, observamos que los tumores se localizaban 

principalmente en el colon distal y medio de ambos ratones WT y p38α-∆MC. Sin 

embargo, los ratones p38α-∆MC mostraron una carga tumoral significativamente menor en 

comparación con los ratones WT, correlacionándose con el estado de la enfermedad de 

los animales durante el tratamiento. El tamaño medio del tumor fue similar, pero los 

ratones p38α-∆MC tenían significativamente menos tumores en comparación con los WT. 

Curiosamente, observamos que había menos monocitos inflamatorios 

(Ly6ChiCCR2+) en la medula ósea de los ratones p38α-∆MC en comparación con los WT, 

lo cual indicaba que los ratones p38α-∆MC que presentaban tumores tenían una respuesta 

inflamatoria más débil. Cabe mencionar que no se observaron diferencias en otras 

poblaciones celulares del sistema inmunitario en la medula ósea.  En concordancia con 

estos resultados, se detectó menos infiltración de macrófagos en los tumores de los 

ratones p38α-∆MC. Por otro lado, los tumores de colon de los ratones p38α-∆MC también 

mostraron menos infiltración de leucocitos (CD45+) y células T (CD3+). Por tanto, estos 

resultados se correlacionan con la menor inflamación detectada en los ratones p38α-∆MC. 

Ampliamos nuestros estudios evaluando la fosforilación de STAT3, un activador 

de la vía de la inflamación que contribuye a la oncogénesis potenciando las funciones de 

proliferación y crecimiento tumoral (Corvinus et al., 2005; Kim and Bae, 2016). Como 

era de esperar, los tumores presentaban un incremento de la fosforilación de STAT3 

comparado con el epitelio normal y, curiosamente, la fosforilación de STAT3 estaba 

reducida en los tumores de los ratones p38α-∆MC cuando se comparaban con los tumores 

del mismo tamaño de ratones WT. Mediante la técnica de inmunohistoquímica (IHC) en 

el colon se observó que había un incremento de proliferación celular (Ki67+) en los 

tumores de colon en comparación con el epitelio normal de los ratones WT, sin embargo, 

no se detectaron diferencias significativas en los ratones p38α-∆MC. Finalmente, se 

analizaron la apoptosis celular en el colon mediante la técnica TUNEL y el proceso de 

angiogénesis mediante marcaje de células CD31+, pero no se observaron diferencias en 

ambos casos entre los ratones WT y p38α-∆MC. 

Dado que la inflamación es un componente esencial del modelo de AOM/DSS, el 

siguiente paso fue investigar la contribución de p38α de las células mieloides a la 
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inflamación intestinal inducida mediante la administración de DSS en el agua de bebida. 

De acuerdo con otros autores (Otsuka et al., 2010), observamos que los ratones p38α-∆MC 

eran menos susceptible a la colitis inducida por DSS que los ratones WT, ya que 

presentaban menos pérdida de peso y valores de DAI más bajos. Además, la longitud del 

colon, otro parámetro utilizado para medir inflamación intestinal (Diaz-Granados et al., 

2000), era menor en los ratones WT que en los ratones p38α-∆MC, indicándo que p38α en 

las células mieloides juega un papel clave en el proceso inflamatorio intestinal. A nivel 

microscópico, observamos una mayor pérdida de criptas y más erosiones tisulares en los 

tejidos colónicos de los ratones WT tratados con DSS en comparación con los ratones 

p38α-∆MC. La infiltración en el tejido dañado de macrófagos (F4/80+), leucocitos 

(CD45+), neutrófilos activados (MPO+) y células T (CD3+) también estaba reducida en los 

ratones p38α-∆MC tratados con DSS en comparación con los ratones WT. 

Puesto que las células inmunitarias infiltradas en el foco de inflamación producen 

citoquinas que pueden activar la vía de STAT3, la cual está implicada en la progresión 

tumoral dependiente de inflamación (Jarnicki et al., 2010; Yu et al., 2009), analizamos la 

fosforilación de esta proteína en los ratones tratados con DSS. De acuerdo con los 

resultados anteriores, los niveles de fosforilación de STAT3 inducidos por la 

administración del DSS eran más bajos en las células epiteliales intestinales de los ratones 

p38α-∆MC en comparación con los WT. Además, observamos que los niveles de 

citoquinas pro-inflamatorias como IL-1β y TNFα secretadas en el colon durante el 

proceso inflamatorio intestinal producido por el DSS se encontraban disminuidas en los 

ratones p38α-∆MC en comparación con los ratones WT. 

Dada la importancia de las citoquinas secretadas por los macrófagos durante la 

inflamación y los procesos tumorogénicos, analizamos la expresión de varias citoquinas 

en sobrenadantes de macrófagos procedentes de medula ósea de ratones WT y p38α-∆MC. 

Estos experimentos nos permitieron identificar el IGF-1 (insulin-like growth factor-1) 

como un factor extracelular regulado por la señalización de la vía de p38 MAPK. 

Estudios posteriores permitieron confirmar  una menor producción de IGF-1 tanto a nivel 

intracelular como extracelular en distintas preparaciones de macrófagos de medula ósea 

procedentes de ratones p38α-∆MC. Además, observamos que la expresión de mRNA de 

IGF-1 se inducía por IL-4 (citoquina tipo Th2 que participa en reparación tisular) más que 

por LPS (lipopolisacarido procedente de las bacterias y activador de inflamación), 

corroborando el papel de IGF-1 como marcador del proceso cicatrización de herida 
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(Roszer, 2015), el cual también contribuye a la progresión del tumor (Murray and Wynn, 

2011). La implicación de p38 MAPK en la expresión de IGF-1 por parte de los 

macrófagos también fue confirmada utilizando distintos inhibidores químicos de ésta ruta 

de señalización. Además, observamos que el mRNA de IGF-1 se encontraba disminuido 

en macrófagos intestinales de ratones p38α-∆MC comparado con los ratones WT, 

sugiriéndo que el eje p38α-IGF-1 podría jugar un papel importante en la mucosa 

intestinal. Por tanto, el siguiente paso consistió en analizar la implicación  de IGF-1 en la 

inflamación intestinal y la tumorogénesis asociada.  

El IGF-1 puede promover la tumorogénesis regulando distintos procesos incluidos 

la proliferación y supervivencia celular (Clayton et al., 2011; Yu and Rohan, 2000). Por 

tanto, nos planteamos investigar como la falta de p38α en las células mieloides podría 

afectar los niveles de IGF-1 in vivo en respuesta tanto a la inflamación intestinal inducida 

por DSS como al proceso carcinogénico asociado a la inflamación inducido por 

AOM/DSS. Primero observamos que existe menos proteína IGF-1 en los extractos 

colónicos de ratones p38α-∆MC tratados con DSS en comparación con los ratones WT 

durante la fase de reparación tisular a día 13. A continuación analizamos la fosforilación 

del receptor tipo I de IGF (IGF1R), cuya autofosforilación es inducida por IGF-1 

(Foulstone et al., 2005; Furundzija et al., 2010; Kuemmerle and Zhou, 2002). 

Observamos que 7 días después de finalizar el tratamiento con DSS (día 13), la vía de 

señalización de IGF-1 estaba menos activa en el colon de los ratones p38α-∆MC que en 

los WT. Esta menor actividad de IGF-1 en los extractos colónicos se correlacionaba con 

diferencias significativas en la proliferación celular (Ki67+) a día 13 (fase de reparación 

tisular) en el colon de los ratones tratados p38α-∆MC con DSS, de acuerdo con las 

propiedades mitogénicas atribuidas al IGF-1. Además, observamos diferencias en la 

fosforilación de IGF1R en el epitelio colónico de ratones tratados con AOM/DSS en 

comparación con los no tratados, aunque no había diferencias entre ratones WT y p38α-

∆MC. Sin embargo, la fosforilación de IGF1R estaba reducida en los tumores de los 

ratones p38α-∆MC comparados con los tumores de ratones WT. 

El IGF-1 se ha implicado en los procesos de inflamación y reclutamiento de 

células del sistema inmunitario (Mourkioti and Rosenthal, 2005). Para evaluar el papel 

del IGF-1 producido por células mieloides en la inflamación intestinal, utilizamos ratones 

que expresan los alelos LyM-Cre e IGF-1-lox (IGF-1-ΔMC). Nuestros resultados indicaron 

que en respuesta al DSS, los ratones IGF-1-ΔMC presentaban un menor DAI, menos daño 
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epitelial a día 7 y menor longitud de colon en comparación con los ratones WT, mientras 

que no había diferencias significativas en la perdida de peso. El siguiente paso fue 

investigar el papel de IGF-1 en el reclutamiento celular y encontramos que el DSS 

inducía en ratones WT una producción más alta de monocitos inflamatorios 

(Ly6ChiCCR2+) en la medula ósea que en los ratones IGF-1-ΔMC. De acuerdo con estos 

resultados, también observamos una disminución de macrófagos (F4/80+) en el intestino 

de ratones IGF-1-ΔMC tratados con DSS en comparación con los ratones WT. La 

infiltración de neutrófilos activados y células T, así como la fosforilación de STAT3 

estaban reducidas en los ratones IGF-1-ΔMC. Es importante resaltar que la cuantificación 

de la fosforilación del IGF1R en los colones tratados con DSS reveló una reducción muy 

drástica de la señalización en los ratones IGF-1-ΔMC comparado con los WT. La 

expresión de mRNA de IGF-1 también se vio disminuida en los macrófagos intestinales 

de ratones IGF-1-ΔMC no tratados en comparación con los ratones WT, sugiriendo la 

importancia del IGF-1 producido por las células mieloides a la activación de esta vía en el 

intestino. 

Para abordar el efecto de la inhibición de la señalización por IGF-1 en la 

inflamación intestinal, realizamos un tratamiento con el compuesto PQ401 que inhibe la 

autofosforilación de IGFR1 (Gable et al., 2006; Troib et al., 2011; Zhou et al., 2016). De 

acuerdo con los resultados obtenidos en ratones deficientes para IGF-1 en las células 

mieloides, el tratamiento con PQ401 redujo la colitis inducida por el DSS en ratones WT. 

Estos ratones tratados con PQ401 presentaban una pérdida de peso, un DAI y un daño 

epitelial muy similares a los ratones p38α-∆MC. Como era de esperar, los niveles de 

fosforilación de IGF1R estaban disminuidos en el colon de los ratones tratados con 

PQ401. Una observación interesante es que el tratamiento con PQ401 redujo el 

reclutamiento de macrófagos en el colon de los ratones WT tratados con DSS. Estos 

resultados apoyan que la inhibición de la señalización por la vía IGF1R puede reducir la 

inflamación intestinal inducida por DSS. Consistente con esta idea, observamos una 

reducción significativa del número de leucocitos (CD45+), células mieloides 

(CD45+CD11b+), macrófagos (F4/80+) y monocitos inflamatorios (Ly6ChiCCR2+) en la 

medula ósea de ratones WT tratados con DSS y PQ401, con valores similares a los 

obtenidos en los ratones p38α-∆MC tratados con DSS. 

Para confirmar la importancia de la señalización por IGF-1 en el desarrollo del 

CAC, tratamos los ratones WT y IGF-1-ΔMC con el protocolo AOM/DSS. Nuestros 
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resultados indicaron que los ratones IGF-1-ΔMC mostraban una menor carga de tumores 

de colon asociados a colitis en comparación con los ratones WT. Además, los tumores de 

los ratones IGF-1-ΔMC presentaban menos infiltración de macrófagos (F4/80+) 

comparados con los tumores de ratones WT, sugiriéndo la implicación de IGF-1 en el 

reclutamiento de células inmunitarias. Para evaluar el potencial efecto terapéutico que 

podría suponer inhibir la vía de IGF-1 en cáncer colorectal, los ratones WT tratados con 

AOM/DSS se trataron con PQ401 durante 20 días. La evaluación del proceso 

tumorogénico indicó que la inhibición de la señalización por IGFR1 al tratar con PQ401 

redujo significativamente el número de tumores en ratones WT de forma muy similar a lo 

que observado en los ratones p38α-∆MC. 

Es importante mencionar que los ratones utilizados en este estudio se mantuvieron 

en un estabulario convencional, el cual se asemeja más a una situación normal que en los 

estabularios libres de patógenos o SPF (specific pathogen-free). En condiciones normales, 

el intestino se encuentra en una situación de “inflamación fisiológica” debido a la 

exposición constante a la microbiota del individuo (Mowat and Bain, 2011). Dada la 

importancia del continuo reemplazamiento de los macrófagos intestinales por monocitos 

circulantes que se produce en la medula ósea (Bain and Mowat, 2014), decidimos analizar 

las diferencias que podría haber en esta población entre ratones WT y p38α-∆MC en 

condiciones de homeostasis (o no patogénicas). Observamos que los ratones p38α-∆MC 

presentaban menos cantidad de monocitos inflamatorios (Ly6ChiCCR2+) en la médula 

ósea correlacionándose con una menor circulación de estas células en sangre cuando se 

comparaba con los ratones WT. 

Como el reclutamiento de células inmunitarias en ratones a los que se les indujo 

colitis por DSS era más reducido en los ratones WT tratados con PQ401 y en ratones 

IGF-1-ΔMC, nos planteamos analizar el reclutamiento de monocitos inflamatorios en 

condiciones basales de homeostasis en estos ratones. Efectivamente, observamos una 

reducción similar de monocitos Ly6ChiCCR2+ en la medula ósea de ratones IGF-1-ΔMC 

sin tratar en comparación con los ratones WT. A parte de su papel como hormona 

inductora de crecimiento, el IGF-1 puede funcionar como agente quimiotáctico (Tsai et 

al., 2014). Por este motivo, analizamos si la p38α en las células mieloides podría afectar a 

la producción de quimioquinas, comparando los extractos colónicos procedentes de 

ratones WT y p38α-∆MC. Interesantemente, observamos una reducción generalizada de 

quimioquinas importantes para el reclutamiento de células mieloides en ratones p38α-
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∆MC, que correlacionaba con la menor infiltración de monocitos/macrófagos en los tejidos 

inflamados de estos ratones. Las quimioquinas que se encontraban expresadas a menor 

nivel incluyen Chemerin, CCL6, CCL2, CXCL12, IL-16, CCL21, CCL12 y CCL9, todas 

ellas con un importante papel en el reclutamiento de leucocitos (Buechler, 2014; Cao et 

al., 2016; Shi and Pamer, 2011). Mediante RT-PCR, confirmamos la reducción de la 

expresión del mRNA de chemerin, CCL2 y CCL12 en macrófagos intestinales aislados 

del colon de ratones p38α-∆MC comparados con los WT. Además, observamos una 

disminución significativa de IL-16 en los extractos colónicos de los ratones p38α-∆MC y 

de CCL9 en los ratones IGF-1-ΔMC comparados con los ratones WT. Todos estos 

resultados sugieren que p38α regula la expresión de quimioquinas en las células 

mieloides tanto a nivel transcripcional como post-transcripcional. 

La señalización por p38α ha sido implicada en la diferenciación de distintos tipos 

celulares (Cuadrado and Nebreda, 2010) pero hasta la fecha no se ha relacionado p38α 

con la diferenciación de monocitos/macrófagos. Para evaluar si la generación o 

diferenciación de monocitos/macrófagos podría encontrarse alterada en los ratones p38α-

∆MC, analizamos diferentes poblaciones de células madre hematopoyéticas en la médula 

ósea. Sin embargo, no observamos diferencias entre los ratones p38α-∆MC y WT. Por lo 

tanto, hipotetizamos que la reducción del reclutamiento de células inflamatorias en el 

intestino podría ser debida a una expresión reducida de quimioquinas, directa o 

indirectamente reguladas por la p38α presente en las células mieloides del colon debido a 

la exposición de la microbiota intestinal conduciendo a un estado de “inflamación 

fisiológica”, la cual se encontraría potenciada por la inflamación inducida por el DSS. 

Para complementar los estudios en modelos animales, utilizamos la línea celular 

de epitelio intestinal de ratón CMT-93. Esta línea fue caracterizada exhaustivamente antes 

de seleccionarla, puesto que cuando se empezó a trabajar con ella no había mucha 

información en la literatura. Esta caracterización indicó que las células CMT-93 exhiben 

inhibición por contacto al alcanzar la confluencia celular, y que el aumento de la 

confluencia celular conlleva un aumento en la expresión de marcadores típicos de 

diferenciación celular, además de la aparición de células apoptóticas y senescentes. El 

primer objetivo fue realizar ensayos utilizando las células CMT-93 y los macrófagos 

derivados de médula ósea para evaluar el papel de p38α en la interacción entre ambos 

tipos de células. Nuestros resultados demostraron que la inhibición de p38α mediante 

incubación con distintos inhibidores, aumentó la permeabilidad de monocapas de células 
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CMT-93, confirmando resultados previos del grupo que demostraron una mayor 

permeabilidad intestinal en los ratones deficientes en p38α en las células del epitelio 

intestinal (Gupta et al., 2014).  

Por otra parte, realizamos estudios para evaluar el mecanismo de reparación tisular 

o cicatrización implicado en la inflamación intestinal y en los procesos de tumorogénesis. 

Los ensayos de cierre de herida (wound-healing) nos permitieron concluir que el proceso 

de migración celular es el principal mecanismo utilizado por las células CMT-93 para 

cerrar físicamente la herida. Además, observamos que la migración se encontraba 

reducida cuando se utilizaban inhibidores de p38α, y que la activación de p38 MAPK 

principalmente se localizaba en los bordes de la herida que se cerraba. La migración, a 

parte de ser muy importante en la reparación tisular, también es una propiedad pro-

tumorogénica de las células cancerosas (Schafer and Werner, 2008). Las citoquinas 

secretadas por las células tumorales frecuentemente inducen la diferenciación de 

macrófagos a un fenotipo denominado macrófago asociado al tumor o TAM (tumor-

associated macrophage), cuyas características son más parecidas a los macrófagos 

alternativos o M2 que participan en la reparación de tejido dañado (Mosser and Edwards, 

2008; Paul and Zhu, 2010) 

Interesantemente, los sobrenadantes procedentes de macrófagos contienen muchas 

citoquinas, las cuales pueden ser parcialmente reguladas por la vía de p38 MAPK, como 

se ha demostrado ampliamente utilizando tanto modelos genéticos como inhibidores 

químicos. De acuerdo con estos resultados, los sobrenadantes de macrófagos activan p38 

MAPK en las células CMT-93. Ya que identificamos el IGF-1 como una nueva diana 

regulada por p38α en macrófagos, y se ha demostrado que IGF-1 activa p38 MAPK 

(Kuemmerle and Zhou, 2002), decidimos investigar la posible implicación de IGF-1 en 

este proceso. El IGF-1 se ha implicado en la migración de células epiteliales in vitro y es 

considerado un marcador para macrófagos M2 activados por la vía alternativa, por tanto 

se encuentra involucrado en el proceso de reparación tisular y tumorogénesis (Chen et al., 

1999; Wang et al., 2015a). De acuerdo con esta información, observamos que el IGF-1 

era capaz de inducir la migración de las células CMT-93 en los ensayos de cierre de 

herida. 

En resumen, nuestros resultados identifican a IGF-1 como una nueva diana de la vía 

de señalización de p38α en macrófagos, y además, aportan evidencias de que el IGF-1 

facilita el reclutamiento de células inflamatorias en los modelos de colitis inducida por 
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DSS y contribuye al proceso de tumorogénesis asociado a colitis inducido por 

AOM/DSS. 

Discusión  
Las respuestas inflamatorias crónicas pueden predisponer a la carcinogénesis tal como se 

observa en la IBD y otras patologías inflamatorias (Coussens and Werb, 2002; 

Thorsteinsdottir et al., 2011). Nuestros resultados amplían los hallazgos anteriores que 

indicaban que la p38α en las células mieloides es un mediador clave de las respuestas 

inflamatorias, e identificamos el IGF-1 como un nuevo efector de la señalización por 

p38α en los macrófagos. Aunque se conoce el papel de la señalización por p38α en la 

regulación de citoquinas proinflamatorias, no se ha descrito previamente la regulación de 

IGF-1 por parte de p38α en macrófagos. 

Nuestros resultados muestran que la supresión de p38α en las células mieloides 

mejora la inflamación intestinal principalmente a través de la inhibición del reclutamiento 

de células inflamatorias, que a su vez reduce la carga tumoral. Existe una relación 

establecida entre p38α e inflamación. Los macrófagos asociados a tumores o TAM 

promueven el proceso tumorogénico en numerosos aspectos (Grivennikov et al., 2010). 

Varios estudios han identificado la IL-4 como una de las principales citoquinas 

reguladoras del fenotipo de los TAM. La IL-4 se produce en varios tipos celulares del 

sistema inmunitario y es una citoquina clave para determinar el balance entre citoquinas 

pro- y anti-inflamatorias (Paul and Zhu, 2010). Un estudio reciente propone el papel de 

p38 MAPK en la señalización inducida por IL-4 en macrófagos peritoneales, sin embargo 

este estudio no analiza el IGF-1 (Jimenez-Garcia et al., 2015). En esta tesis, demostramos 

que p38α regula la expresión de IGF-1 en macrófagos. Estudios anteriores han implicado 

p38 MAPK en la producción de IGF-1 por parte de otros tipos celulares como células 

mesenquimales, células progenitoras adiposas o células de músculo liso intestinal (Wang 

et al., 2006). Los macrófagos activados por la vía alternativa pueden producir IGF-1, el 

cual puede favorecer la reparación tisular induciendo la migración (Roszer, 2015; Wang 

et al., 2015a). De acuerdo con estos resultados, hemos demostrado que IL-4 es un mejor 

inductor de IGF-1 en macrófagos que LPS, y en ambos casos esta expresión se encuentra 

regulada por p38 MAPK. Además de la implicación atribuida a IGF-1 en el proceso de 

reparación tisular, el IGF-1 también se ha relacionado con procesos de reclutamiento de 

células inflamatorias, proliferación celular y crecimiento así como con el mantenimiento 

de la activación alternativa en macrófagos, funciones que en conjunto llevarían a 
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promover el  proceso de carcinogénesis (Coussens and Werb, 2002; Mourkioti and 

Rosenthal, 2005; Tonkin et al., 2015). En este sentido, una falta de señalización correcta 

de IGF-1 se ha asociado a distintos cánceres, y existen numerosos estudios que implican 

la actividad del receptor IGF-1 en la proliferación, migración e invasión de las células 

cancerosas (Clayton et al., 2011). Los macrófagos han sido propuestos como los 

principales productores de IGF-1 después del hígado (Gow et al., 2010), lo cual es 

coherente con nuestros resultados que muestran una baja señalización por IGF-1 en los 

intestinos de los ratones IGF-1-ΔMC. 

La inhibición de la vía de señalización de IGF-1 en las células mieloides o el 

tratamiento de ratones WT con PQ401 parcialmente mejora las condiciones de la 

inflamación y el daño epitelial inducido por el DSS. Además observamos una fuerte 

reducción de los monocitos Ly6ChiCCR2+ en la medula ósea de estos ratones, lo cual se 

correlaciona con menos macrófagos en el colon de los ratones IGF-1-ΔMC y WT tratados 

con PQ401. Sin embargo, esto no fue suficiente para reducir la colitis inducida por el 

DSS al mismo nivel que en los ratones p38α-∆MC, probablemente debido a la implicación 

de la señalización por IGF-1 en los mecanismos de reparación de la mucosa. Además, 

p38α en las células mieloides puede regular otras citoquinas proinflamatorias 

involucradas en la inflamación intestinal aguda que pueden no ser afectadas por la 

inhibición de la vía IGF-1. La reducción en la carga tumoral detectada en los ratones IGF-

1-ΔMC o en los ratones WT tratados con PQ401 confirman la importancia de este factor en 

el proceso de tumorogénesis (Clayton et al., 2011).  

Hemos observado una reducción en el número de los monocitos Ly6ChiCCR2+  en 

los ratones p38α-∆MC, incluso en condiciones basales o de homeostasis. Creemos que es 

importante analizar exhaustivamente el fenotipo de estas células, puesto que estos 

monocitos inflamatorios participan en el reclutamiento de otras células del sistema 

inmunitario así como participan en la activación de la inmunidad adaptativa (Bain and 

Mowat, 2014). Nuestra hipótesis es que las diferencias observadas en los monocitos 

Ly6ChiCCR2+  en ratones no tratados probablemente sean debidas a un estado controlado 

de "inflamación fisiológica" que se incrementa en condiciones inflamatorias producidas 

por ejemplo por el DSS y se encuentra relacionada con la diferente expresión de 

quimioquinas cruciales para el reclutamiento de las células mieloides. Además, a parte de 

su función como hormona que estimula el crecimiento, el IGF-1 es también conocido 

como una quimioatrayente que media la quimiotaxis en distintos tipos celulares (Roussos 
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et al., 2011). Los macrófagos intestinales aislados de ratones p38α-∆MC no tratados 

muestran menos mRNA de IGF-1 que los ratones WT, sugiriendo que podría estar 

involucrado en las diferencias en las células inflamatorias observadas en la médula ósea. 

El análisis de quimioquinas reveló la reducción de varias quimioquinas en los 

colones de ratones con células mieloides deficientes en p38α, en ausencia de ningún 

tratamiento. La ruta de p38 MAPK se ha involucrado en la regulación de quimioquinas en 

linfocitos T helper, macrófagos de pulmón humano y macrófagos peritoneales así como 

en modelos experimentales de inflamación de la piel en queratinocitos y en células 

mieloides (Granata et al., 2006; Kim et al., 2008; Sun et al., 2008; Wong et al., 2007). En 

esta tesis demostramos que p38α regula los niveles de mRNA de Chemerin, CCL2 

(MCP-1) y CCL12( MCP-5) en macrófagos intestinales, que no se había descrito 

previamente. Es interesante mencionar que CCL2 parece estar regulada tanto por p38α 

como por IGF-1 en macrófagos intestinales, de hecho se ha propuesto que la ruta de p38 

MAPK regula CCL2 en macrófagos murinos (Sun et al., 2008).  

o se sabe cómo IGF-1 puede regular la producción de CCL2 en macrófagos, pero, 

de acuerdo con nuestros resultados, se ha demostrado que CCL2 se encuentra reducida en 

los tumores de colon de ratones tratados con NT157, un inhibidor de IGF-1 y STAT3 

(Sanchez-Lopez et al., 2015). Parece probable que el IGF-1 pueda actuar sobre diversos 

tipos de células, dado que se secreta en el microambiente y que el receptor de IGF-1 se 

expresa de forma ubicua en los tejidos normales. Sobre la base de los resultados 

obtenidos en nuestro estudio, proponemos que la señalización de IGF-1 podría ser un 

blanco potencial en el contexto de la inflamación intestinal y la tumorogénesis. 

Conclusiones 
1. p38α en las células mieloides suprime la colitis inducida por DSS y la 

tumorogénesis de colon asociada a la inflamación. 

2. IGF-1 es una nueva diana de p38α en macrófagos. 

3. IGF-1 regulado por p38α en las células mieloides contribuye a la colitis y a la 

tumorogénesis de colon asociada a la inflamación. 

4. La inhibición de la señalización por p38α o IGF-1 en células mieloides suprime el 

reclutamiento de células inflamatorias al intestino. 

5. p38α en células mieloides regula la expresión de distintos factores quimiotácticos 

en el intestino. 
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6. El eje p38α-IGF-1 en células mieloides debe ser considerado como un potencial 

objetivo terapéutico en la inflamación asociada a enfermedades intestinales y 

cáncer.  
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