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Abstract: Primary liver cancer is the second leading cause of cancer-related death worldwide
and therefore a major public health challenge. We review hypotheses of the cell of
origin of liver tumorigenesis, and clarify the classes of liver cancer, based on molecular
features and how these affect patient prognosis. Primary liver cancer comprises
hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (iCCA), and other
rare tumors, notably fibrolamellar carcinoma and hepatoblastoma. The molecular and
clinical features of HCC vs iCCA are distinct, although they have overlapping risk
factors and pathways of oncogenesis. A better understanding of the cell types
originating liver cancer can aid in exploring molecular mechanisms of carcinogenesis
and therapeutic options. Molecular studies have identified adult hepatocytes as the cell
of origin. These cells have been proposed to transform directly into HCC cells (via a
sequence of genetic alterations), to de-differentiate into hepatocyte precursor cells
(which then become HCC cells that express progenitor cell markers), or to trans-
differentiate into biliary-like cells (which give rise to iCCA). Alternatively, progenitor
cells also give rise to HCCs and iCCAs with markers of progenitor cells. Advances in
genome profiling and next-generation sequencing have led to the classification of
HCCs based on molecular features, and assigned them to categories such as
proliferation-progenitor, proliferation-transforming growth factor beta, and Wnt-catenin
beta 1. iCCAs have been assigned to categories of proliferation and inflammation.
Overall, proliferation subclasses are associated with a more aggressive phenotype and
poor outcome of patients, although more specific signatures have refined our
prognostic abilities. Analyses of genetic alterations have identified those that might be
targeted therapeutically, such as fusions in the FGFR2 gene and mutations in genes
encoding isocitrate dehydrogenases (in approximately 60% of iCCAs) or amplifications
at 11q13 and 6p21 (in approximately 30% of HCCs). Further studies of these
alterations are needed before these can be used as biomarkers in clinical decision
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ABSTRACT  

 
Primary liver cancer is the second leading cause of cancer-related death worldwide and 

therefore a major public health challenge. We review hypotheses of the cell of origin of liver 

tumorigenesis, and clarify the classes of liver cancer, based on molecular features and how 

these affect patient prognosis. Primary liver cancer comprises hepatocellular carcinoma (HCC), 

intrahepatic cholangiocarcinoma (iCCA), and other rare tumors, notably fibrolamellar carcinoma 

and hepatoblastoma. The molecular and clinical features of HCC vs iCCA are distinct, although 

they have overlapping risk factors and pathways of oncogenesis. A better understanding of the 

cell types originating liver cancer can aid in exploring molecular mechanisms of carcinogenesis 

and therapeutic options. Molecular studies have identified adult hepatocytes as the cell of origin. 

These cells have been proposed to transform directly into HCC cells (via a sequence of genetic 

alterations), to de-differentiate into hepatocyte precursor cells (which then become HCC cells 

that express progenitor cell markers), or to trans-differentiate into biliary-like cells (which give 

rise to iCCA). Alternatively, progenitor cells also give rise to HCCs and iCCAs with markers of 

progenitor cells. Advances in genome profiling and next-generation sequencing have led to the 

classification of HCCs based on molecular features, and assigned them to categories such as 

proliferation progenitor, proliferation transforming growth factor beta, and Wnt catenin beta 1. 

iCCAs have been assigned to categories of proliferation and inflammation. Overall, proliferation 

subclasses are associated with a more aggressive phenotype and poor outcome of patients, 

although more specific signatures have refined our prognostic abilities. Analyses of genetic 

alterations have identified those that might be targeted therapeutically, such as fusions in the 

FGFR2 gene and mutations in genes encoding isocitrate dehydrogenases (in approximately 

60% of iCCAs) or amplifications at 11q13 and 6p21 (in approximately 30% of HCCs). Further 

studies of these alterations are needed before these can be used as biomarkers in clinical 

decision making.   
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Liver cancer is the second most common cause of cancer-related death worldwide and one of 

the few neoplasms whose incidence and mortality have been steadily increasing1, 2, with the 

highest increase in mortality in the United States (US) during the last 2 decades (Figure 13). 

Liver cancer comprises a heterogeneous group of malignant tumors with different histologic 

features and unfavorable prognosis that range from hepatocellular carcinoma (HCC) and 

intrahepatic cholangiocarcinoma (iCCA) to mixed hepatocellular-cholangiocarcinoma (HCC-

CCA), fibrolamellar HCC, and the pediatric neoplasm hepatoblastoma4, 5. Among these, HCC 

and iCCA are the most common primary liver cancers, whereas the other neoplasms, including 

mixed HCC-CCA tumors5, account for less than 1% of cases. The burden of liver cancer is 

increasing globally—there could be 1 million cases by 20306. It is not clear how direct-acting 

antiviral (DAA) agents, which can cure hepatitis C virus (HCV) infection, will affect the burden of 

HCC. It has been estimate that curing more than 90% of patients with HCV infection would 

eliminate 15% of HCC cases in the US7. However, there is debate over the effects of DAA 

agents on progression of HCC8-11. 

 

HCC alone accounts for 90% of all primary liver cancer cases with nearly 800,000 new annual 

cases2. Its highest incidence is in Asia and Sub-Saharan Africa due to the high prevalence of 

hepatitis B virus (HBV) infection6. Unlike other cancers, the main risk factors associated with 

HCC are well defined and include viral hepatitis (B and/or C), alcohol abuse and non-alcoholic 

fatty liver disease in patients with metabolic syndrome and diabetes. Other co-factors of HCC 

development, such as aflatoxin B1 and tobacco, increase the incidence of the disease if other 

common risk factors are present12. 

 

iCCA is the second most common liver cancer, with the highest incidence in Southeast Asia 

(30–40 cases/105 inhabitants) and low incidence in Western countries (fewer than 5 cases/105 

inhabitants)13. Nevertheless, steady increases have been reported13, 14. Risk factors for iCCA 

development include primary sclerosing cholangitis (PSC), biliary duct cysts, hepatolithiasis and 

parasitic biliary infestation with flukes—an etiology prevalent in Asia and linked to a specific 

molecular fingerprint13. More recently, shared risk factors with HCC have also been identified, 

such as HBV and HCV—particularly for iCCAs that develop in cirrhotic liver15.  

 

HCC and iCCA have been considered to be independent tumors that originate from distinct cell 

populations. However, more recently, some have been recognized as tumor subtypes of a 

continuum spectrum of diseases. We review the theories behind the cell(s) of origin of liver 
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cancer, describe emerging molecular classes, link these classes with their etiology and 

prognosis, and define pathways for future translation.  

 

CELL(S) OF ORIGIN 

Parenchymal (hepatocytes and cholangiocytes) and non-parenchymal cells (fibroblasts, stellate 

cells, Kupffer cells, and endothelial cells) form the basic hepatic structure (Figure 2); the 

existence of stem cells in adult liver has been heavily debated. Hepatocytes constitute 60%

80% of the total liver mass. Architecturally, these cells are organized in lobules, which can be 

further divided in functional regions or zones16. Liver zonation is particularly relevant for 

hepatocytes, since it affects their function without altering their phenotype. Hepatocytes are 

frequently polyploid (4N, 8N, etc.); polyploid cells make up 50% of human liver and 90% of 

mouse liver17.  

 

Liver tumors are heterogeneous in morphology, within the same and between different tumors. 

Some subtypes of HCCs and iCCAs have stem cell features18-20, such as HCCs with CK19-

positive cells21. The rare, mixed HCC-CCAs have cells with a phenotype that is intermediate 

between hepatocytes and cholangiocytes22. These observations have led to several hypotheses 

about liver . Hepatic progenitor cells might generate primary liver tumors 

because, during liver development, hepatocytes and cholangiocytes each arise from a common 

progenitor (hepatoblasts). Or, HCC and iCCA might be distinct tumors that originate from 

mature hepatocytes and cholangiocytes, respectively.  

 

We review findings from recent studies indicating that adult hepatocytes are the source of 

HCCs, because they can directly degenerate into HCC following sequential genomic insults, de-

differentiate into precursor cells that ultimately can transform into HCC cells with markers of 

progenitor cells, and trans-differentiate into biliary-like cells able to transform into iCCA23-25 

(Figure 3). In parallel, progenitor cells may also give rise to HCCs and iCCA with progenitor-like 

features, whereas adult cholangiocytes, which lack the plasticity and transforming capacity of 

hepatocytes, can only give rise to iCCAs26.  

 

Progenitor cells and hepatocytes in liver regeneration 

Adult stem cells or somatic stem cells are defined as undifferentiated cells with limitless 

replicative potential. They can differentiate into all or some specialized cell types, and their 

primary role is to sustain physiological tissue turnover and to direct tissue repair upon different 
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types of injury27. Stem cell compartments have been successfully identified in several adult 

tissues with fast turnover, including the gastrointestinal tract, skin, and bone marrow. Because 

of their self-renewal potential and long lifespan, these cells are thought to be more prone to 

malignant transformation28, 29 and have been identified as the cell of origin of cancer in several 

organs, for example skin and intestine30-32. Unlike these organs, however, cells of the adult liver 

have relatively slow turnover (a period of several months), with an average hepatocyte life span 

ranging from 200 to 300 days33, 34. In this context, the contribution of stem cells to liver turnover 

is unclear (reviewed in ref. 35).  

 

Hepatocytes are quiescent in normal liver, but their turnover in the liver dramatically accelerates 

upon hepatic injury or after a significant reduction of liver mass such as following partial 

hepatectomy. Under these conditions, adult hepatocytes have enormous proliferative potential 

(capacity to replicate more than 50 times), a feature that has enabled human liver organ donor 

transplantation as a standard procedure to treat end-state liver disease33-35. There is evidence 

that regeneration after partial hepatectomy relies predominantly on the replication of 

hepatocytes, rather than stem cells. However, when the replicative capacity of hepatocytes is 

severely impaired, such as in patients with acute liver failure or chronic hepatitis, epithelial cells 

with intermediate hepatocyte cholangiocyte phenotypes emerge and expand36-38. These cells, 

also known as oval cells, are thought to localize to the peri-portal area in the canals of Hering 

and are considered to be bi-potential progenitors35, 39 (Figure 2). The capacity of these cells to 

repopulate the damaged liver has been demonstrated in mice with massive liver damage, 

restoring more than 80% of hepatocytes40. Other studies from liver injury models have 

supported the liver stem cell hypothesis, showing proliferation of duct-like cells, frequently 

termed the ductular reaction, in the portal zone of the hepatic lobule41-43. However, this feature is 

controversial44, 45.  

 

Other cells have been implicated in regeneration, repair, and eventually carcinogenesis. HCV-

related chronic injury can induce ductular metaplasia and proliferation, with mature hepatocytes 

trans-differentiating to bi-potential oval cells via epigenetic re-programing25. These cells are 

different from the classical oval cells of the canals of Hering, and may have a more relevant role 

in hepatocarcinogenesis. However, other sources of precursors have been identified. These 

include specialized peri-central liver cells, capable of self-renewal in the uninjured liver under 

the influence of endothelial Wnt signaling46. These pericentral cells express the early liver 

progenitor marker TBX347 and are diploid. Hybrid periportal cells express hepatocyte markers, 
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along with low levels of SOX9 and several bile duct genes, are able to repopulate the healthy 

and diseased liver mass48. It is not clear whether these cell populations are bona fide stem or 

progenitor cells, or distinct hepatocyte subpopulations, and whether they contribute to 

tumorigenesis49.  

 

Progenitor cells as precursors  

Extensive experimental studies support the hypothesis that progenitor cells might originate liver 

cancer50-52 (Table 1). For example, mice with genetic alterations that affect the Hippo pathway 

within the liver expand progenitor-like cells and subsequently develop HCC, iCCA, and mixed 

HCC-CCA53-55. Similarly, liver-specific deletion of the neurofibromatosis type 2 (NF2) tumor 

suppressor gene in developing or adult mice leads to expansion of progenitor cells without 

affecting differentiated hepatocytes; these mice develop HCC and iCCA56. Furthermore, any 

mouse hepatic cell, including hepatic progenitors, hepatoblasts, and hepatocytes, that express 

activated oncogenes (such as H-RAS or SV40LT) can undergo transformation to develop into 

iCCAs or HCCs57 (Table 1). There could also be subpopulations of stem or progenitor cells in 

peribiliary glands, located throughout the biliary tree,58 that give rise to iCCAs59 or fibrolamellar 

HCC60. Proteins involved in stem cell renewal and cell fate decisions include MET50, which 

primarily induces hepatocyte differentiation, and EGFR and Notch, which promote cholangiocyte 

specification50, 51. Activation of Notch in mice leads to development of HCC61 and iCCA62. In 

addition, mutations in genes encoding isocitrate dehydrogenases, frequently detected in 

iCCAs14 but rarely in HCCs, inhibit hepatocyte differentiation and promote oval cell proliferation 

and biliary transformation following liver injury, in cooperation with KRAS mutations63 (Table 1). 

Similarly, KRAS mutations and homozygous PTEN deletion in embryonic bi-potential progenitor 

cells cooperate to induce onset of iCCA64. Overall, these experimental studies implicate 

progenitor cells in the development of the two most common primary liver cancers.  

 

Adult hepatocytes as cell of origin 

There is significant experimental evidence implicating adult hepatocytes as the cell of origin in 

liver cancer48, 65-69. Studies using fate-tracing systems have observed that HCC does not 

originate from progenitor cells, but rather from hepatocytes in both hepatotoxin-induced66, 67 and 

carcinogen-free (Mdr2 knock-out) models65, 67 (Table 1). In particular, these data indicate that 

Foxl1+ cells, which express the progenitor markers EPCAM, SOX9, PROM1, do not contribute 

to HCC tumorigenesis66, in agreement with other studies showing that biliary cells do not give 
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 rise to HCC65. In addition, a recent study has demonstrated that hepatocyte-specific p62 

expression promotes c-MYC induction, mTORC1 activation and HCC initiation70.  

Adult hepatocytes, however, have additional properties consistent with a cell that originates 

cancer. These include their remarkable plasticity, which entails their capacity to de-differentiate 

into a progenitor state and then can restore the hepatocyte pool25. Mature hepatocytes can de-

differentiate following loss of the tumor suppressor TP53, which yields nestin-positive 

progenitor-like cells that can expand and generate primary liver cancers after acquiring lineage-

specific oncogenic lesions, such as mutations in WNT (in HCC) or Notch (in iCCA)52 (Table 1). 

In addition, adult hepatocytes can also trans-differentiate into biliary-like cells (Figure 3)24 that 

can degenerate into iCCA. Upon injury, Notch activation leads to reprogramming of mature 

hepatocytes into cells that closely resemble biliary epithelial cells,71 to induce iCCA. Notch can 

do this on its own72 or in cooperation with AKT73 (Table 1).  

There is evidence that different cell types can serve as the cell of origin for primary liver cancers 

(Figure 3, Table 1). Two complementary features of HCC and ICCAs could account for their 

phenotypic complexity, their molecular features (pathways of activation, mutations, etc.), and 

the types of cells that become transformed. For example, development of HCC could involve 

specific molecular alterations in adult hepatocytes (Figure 3), whereas iCCA could originate 

from cholangiocytes, probably as a result of chronic biliary damage due to liver flukes, PSC, or 

other insults.  

 

However, adult hepatocytes have also been implicated in the formation of other tumor types. 

First, tumors with progenitor cell phenotype could derive from progenitor-like cells, either 

because they are bona fide progenitor cells or following de-differentiation of adult hepatocytes. 

Transformation of progenitor cells could occur at any stage of hepatic development from 

progenitor to adult liver cells giving rise to tumors of different morphologies, ranging from HCC 

and iCCA with stem-cell phenotypes to mixed HCC-CCAs (Figure 3). Clinical and pathology 

analyses of mixed HCC-CCAs have indicated an origin from the progenitor cell compartment5, 14, 

74. Finally, mature hepatocytes can trans-differentiate, generally as a results of viral infection, to 

biliary-like cells that give rise to iCCA.  

 

Regardless of their cell of origin (mature hepatocytes vs progenitor cells), liver cancers with 

stem cell features have a more aggressive clinical behavior and worse prognosis than those 

without stem cell features 19, 21. However, these are difficult to study due to discrepancies 
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between mice and humans. Studies are needed to determine under what circumstances adult 

hepatic cells, rather than progenitor cells, give rise to liver tumors and vice versa, and to fill the 

gap between findings from animal models (cell fate tracing studies) and studies patients with  

severe liver injury. It will also be important to determine the dominant reprogramming events 

involved in tumorigenesis in different species. Studies should explore which cells are most 

affected by oncogene mutations associated with HCC, such as those in the TERT promoter or 

CTNNB1. 

 

Immune Response 

Regardless of the cell type that becomes transformed to initiate tumorigenesis, the developing 

tumor also requires a specific microenvironment. This is particularly relevant to liver tumors, 

90% of which develop under conditions of chronic inflammation2. Factors that contribute to 

tumor formation include changes in the extracellular matrix, signaling between 

parenchymal and non-parenchymal cells, and immune dysfunction75. An altered immune 

response is an important factor in carcinogenesis.76 Cancer cells produce growth and 

angiogenic factors that promote tumor growth, invasion, and metastasis. iCCAs develop under 

conditions of chronic inflammation, due to viral infections (in about 20% of cases), chronic fluke 

infestation, PSC, and hepatolithiasis13.  

 

Chronic inflammation contributes to liver carcinogenesis through a cycle of cell death and 

regeneration, leading to production of cell survival and proliferation signals that promote 

formation of regenerative nodules, dysplasia, and cancer75. In this context, the phenotype of 

liver tumors could depend on interactions between oncogenes and the immune 

microenvironment. In a recent animal study, different types of liver tumors, such as HCCs, 

iCCAs, and mixed HCC-iCCA arise via activation of distinct oncogenes, such as AKT1 and 

CTNNB1, in combination with inflammatory microenvironment conditions, such as carbon 

tetrachloride or 3,5-diethoxycarbonyl-1,4-dihydrocollidine77. Tumors that develop via activation 

of the same oncogenes can still have different transcriptomes, depending on level of 

inflammation and features of the microenvironment.  

  

Several mechanisms have linked the immune system with liver cancer development. First, 

secretion of cytokines by immune cells, such as tumor necrosis factor and IL6, can activate 

inflammatory signaling pathways in hepatocytes, via JAK STAT, nuclear factor (NF)-kB, etc., to 

promote cell proliferation and survival 75. A model of HCC tumorigenesis has been proposed in 
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which leukocytes that infiltrate the liver organize into ectopic lymphoid-like structures, providing 

microniches that contain malignant hepatocytic progenitor cells78. The role of the adaptive 

immune system is becoming apparent from studies of animal models of liver cancer 

development with non-alcoholic steatohepatitis. Factors that activate inflammation, such NF- B 

and insulin receptor, contribute to carcinogenesis in patients with non-alcoholic fatty liver 

disease79. CD8+ and CD4+ T cells and natural killer cells 80,81 also promote oncogenesis.  

 

The interaction between inflammation and iCCA development has been demonstrated in mice in 

which biliary epithelial cells that express transgenic AKT and YAP develop only iCCA upon 

promotion of IL33-mediated biliary tract inflammation82. Other inflammatory mediators that 

contribute to oncogenesis include IL6 and iNOS83. IL6 is highly expressed in human CCAs and 

promotes cell survival in a STAT3-dependent manner84. Interestingly, a gene expression 

signature associated with IL6 STAT3 signaling has been observed in a subset of human 

iCCAs85. 

 

Normally, nascent transformed cells are eliminated by both the innate and adaptive immune 

systems in a process called immune surveillance. Cancer cells express antigens that induce 

adaptive responses mediated by T cells86. In the chronically inflamed liver, immune surveillance 

prevents proliferation and expansion of cancer cells. Some, but not all, recent reports have 

warned about an unexpectedly higher incidence of HCC occurrence and recurrence in patients 

treated with DAAs for HCV infection8-11. If confirmed, the potential role of immune system should 

be explored, because rapid clearance of HCV in patients with chronic infection for years might 

affect immune surveillance.  

 

Immune therapies 

The immune microenvironment of HCC is characterized by the co-existence of immune 

responses leading to both immunogenicity and tolerance87. HCCs promote immunotolerance 

through the release of cytokines such as interleukin 10 (IL10) and transforming growth factor 

beta (TGFB). The tumors and tumor-infiltrating immune cells also express immune regulators 

such as programmed cell death protein 1 (PD1), its ligand PDL1, and cytotoxic T-lymphocyte 

protein 4 (CTLA4), which suppress the anti-tumor immune response, allowing tumor growth and 

progression87, 88. Tumors with immune infiltrates have been associated with longer survival 
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times and reduced relapse after resection and transplantation2, 88. In addition, some HCC cases 

of spontaneous regression have been linked to immune-mediated mechanisms2. These 

observations establish the rationale for immunotherapy of HCC. Promising responses have 

been reported with nivolumab, a monoclonal antibody directed against PD1, in a phase 2 trial89. 

It appears that a T-cell response, features of inflammatory cells (PD1, PDL1 expression), 

number of mutations in tumor cells, and gene expression profiles might predict patient 

responses90-93. Using source separation techniques to dissect gene expression patterns of 

tumor cells from those of tumor-infiltrating immune cells, an immune-specific subclass has been 

identified in 25% of HCC patients94. This subgroup is characterized by activation of immune 

cells, expression of PD1 and PDL1, and enrichment in signatures of response to 

immunotherapies. Furthermore, 2 robust microenvironment-based types have been identified, 

with either active or exhausted immune responses; these findings could be used to improve 

design of clinical trials of immunotherapies94. Similarly, a subtype of iCCA characterized by high 

mutation load and increased expression of immune checkpoint genes has been identified that 

may predict response to immunotherapies95.  

 

Classification Based on Molecular Features 

Characterization of molecular subtypes and/or oncogene-addiction loops has generated 

treatment algorithms for several types of cancer, including breast cancer; these have improved 

patient outcomes. High-throughput technologies, including single-nucleotide polymorphism 

arrays, combined with transcriptomic and exome sequencing analyses, have identified 

molecular subtypes of liver cancer, with distinct oncogene signaling pathways and recurrent 

mutations96. Even though molecular classifications have not affected decision making for 

patients with liver cancer, correlations between these subclasses and clinical and pathology 

characteristics (such as risk factors, outcome, etc.) have been proposed.  

 

Reaching a consensus 

The development of a molecular classification of HCC has paralleled the progress in genomic 

profiling technologies, and is extensively reviewed elsewhere97. Initial studies relied on 

differences in gene expression patterns determined by microarrays, whereas more recent, 

sequencing-based studies used mutation signatures to classify HCCs3. Unsupervised clustering 

of gene expression patterns accurately identified 2 major subgroups (reviewed in2, 97). These 2 

classes, broadly termed proliferation and non-proliferation, correlate with clinical and pathology 

features, etiology, and patient outcomes97. Tumors of the proliferation class are highly 
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heterogeneous with significant enrichment in signaling pathways related to proliferation, such as 

insulin like growth factor 1 (IGF1)98 and mechanistic target of rapamycin (MTOR) or stem cell 

features, such as Notch61. This class also contains most gene expression patterns associated 

with tumor recurrence99 and shorter survival time100 (Figure 4). Epigenetic features, such as 

expression patterns of micro RNAs 101 and DNA methylation patterns,102 also associate with 

these subclasses. Chromosomal aberrations are also frequent in HCCs—mostly in 

chromosomes 1 and 8—which correlate with transcriptome-based subclasses. High-level 

amplifications have been reported at Chr. 11q13 (at CCND1 and FGF19) and 6p21 (at VEGFA); 

gains in 11q13 are enriched in tumors from the proliferation subclass (Figure 4). Tumors in the 

non-proliferation subclass tend to retain hepatocyte-like features; a subset has activation of the 

canonical WNT signaling pathway, mostly via mutations in CTNNB197. This class contains many 

less-aggressive, well-differentiated tumors with low levels of alpha fetoprotein, compared to the 

proliferation class. In parallel, molecular analyses of the adjacent non-tumor tissues have 

provided valuable insights into mechanisms that promote hepatocarcinogenesis, including 

aberrant EGF signaling and activation of inflammation pathways (involving NF-kB and IL6)103, 

104. 

 

Next-generation sequencing (NGS) has provided a more detailed picture of molecular 

alterations in HCCs105. This technique can be used to define mutation signatures—recurrent 

patterns of nucleotide substitutions across different samples. These data provide for an 

additional layer of stratification beyond transcriptome-based classes. Interestingly, mutation 

signatures can reflect the exposure history of a tumor. In HCC, specific mutation signatures are 

associated with environmental exposures such as smoking, alcohol, aflatoxin B1 or aristolochic 

acid96 (Figure 4). Data from exome sequencing of large patient cohorts have confirmed the 

most prevalent mutations in HCC pathogenesis106, 107 (such as the TERT promoter, CTNNB1, 

TP53, AXIN1, ARID1A), but also uncovered novel low-frequency events106, 107 and implicated 

mutations in non-coding DNAs108. In addition, NGS has also provided a map of viral integrations 

in HCC, mostly related to HBV109 and more recently for the adeno-associated virus type 2 

(AAV2)110. Recurrent clonal HBV integrations affect TERT, MLL4 and CCNE1, some of which 

may impact patient survival109. AAV2-mediated insertional mutagenesis has been reported in 

5% of HCC, mostly in non-cirrhotic patients without a clear etiological factor, predominantly 

affecting TERT, KMTB2, CCNA2 and CCNE1110.  
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Obstacles to clinical implementation 

Ultimately, molecular classification of both the tumor and its microenvironment will translate into 

more effective clinical decision-making and treatment selection. This means optimizing clinical 

staging systems, both in their ability to predict prognosis and in their capacity to stratify patients 

based on response to therapies. Despite substantial progress, clinicians cannot yet use 

molecular information to guide therapy, primarily because there are not yet biomarkers that 

predict the response to a given therapy, unlike other malignancies. For instance, lung cancer 

patients with ALK rearrangements have a significantly better response to ALK inhibition with 

crizotinib than those without ALK rearrangements111.  

 

There are several reasons that molecular information on tumors is not incorporated into clinical 

practice. Unlike other solid tumors, the most frequent mutations in HCC are un-targetable, 

including those in the TERT promoter (60%–70%), TP53 (25%–50%) and CTNNB1 (25%–30%). 

Furthermore, the few potentially actionable events uncovered have not yet been evaluated in 

clinical trials that include biomarkers. Only recently have some potential biomarkers been tested 

in early clinical trials, such as FGFR4 inhibitors in patients with high level amplifications of 

Chr11q13, locus of FGF19112. Finally, a therapeutic response to blocking an oncogene in a few 

patients will be lost among many patients who lack a responsive phenotype if the trial has not 

been enriched to include those patients whose tumors harbor targetable defects. A recent report 

suggests that TSC2 loss predicts response to the MTOR inhibitor everolimus in different 

experimental models of HCC113, yet there is no clear biomarker of treatment response in the 

phase 3 clinical trial114. Indeed, the two systemic therapies that increase survival in HCC 

patients in first (i.e., sorafenib115) and second line (i.e., regorafenib116) have been tested in ‘all-

comers’, with no patient enrichment strategy. 

 

Options to improve the current trial strategy could include conducting clinical trials with enriched 

populations, based on biomarkers that predict response (FGF19117, MET). Or they could 

investigate non-mutated de-regulated pathways as targets, such as IGF298, or NOTCH61 

signaling. It might also be possible to use alternative anti-tumor approaches, such as immune 

checkpoint inhibitors, or strategies to antagonize the most prevalent genetic defects found in 

HCCs, such as mutations in TERT, TP53 and CTNNB1. 
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Molecular Subclasses of iCCA  

There is no effective treatment for iCCA. Reasons include our poor understanding of its 

pathogenesis and the lack of studies conducted specifically in patients with iCCA, apart from 

patients with all biliary tract cancers13, 14; this is important because iCCAs are characterized by a 

distinct set of mutations14. iCCAs were only recently recognized as a distinct entity with both its 

own unique staging system (see the 7th edition of the American Joint Committee on Cancer 

Staging Manual118) and ad hoc practice guidelines [see guidelines of the International Liver 

Cancer Association (ILCA)13]. The classification of iCCA’s distinct phenotype has led to the first 

studies that characterize its genomic landscape in order to generate an initial molecular 

classification. Other CCA, such as perihiliar (pCCA) and distal (dCCA) are different molecular 

entities14. 

 

Two main molecular subtypes of iCCA, proliferation and inflammation, have been proposed 

based on an integrative analysis of whole-genome expression patterns, chromosomal 

aberrations, mutation, and alterations in signaling pathways in a large cohort from USA and 

Europe85. The inflammation subclass was characterized by activation of inflammatory pathways, 

overexpression of cytokines, and STAT3 activation, whereas the proliferation subclass was 

characterized based on activation of oncogene signaling pathways (KRAS, EGFR, and Notch) 

and HCC gene expression signatures associated with short survival times and earlier 

recurrence85. While neither of the two subclasses displayed specific broad chromosomal gains 

and losses, the proliferation subclass is enriched in focal aberrations including DNA 

amplifications at 11q13.2 (locus of CCND1 and FGF19), and deletions at 14q22 (locus of 

SAV1). The proliferation class also includes a subtype with stem cell–like features119, 

chromosomal instability85 and mutations in isocitrate dehydrogenase genes63 (Figure 5). Clinical 

characteristics such as moderate/poor differentiation, intra-neural invasion and poor outcome 

are significantly more frequent in the proliferation class. Interestingly, there is a genomic 

resemblance observed between the proliferation subclass of iCCA and HCC subtypes with poor 

prognosis (i.e. cluster A19, G3120) and stem cell features (S2)121, 122 (Figure 5). This evidence 

further supports the presence of a common cell of origin in liver cancers. 

 

An independent whole-transcriptomic analysis of a large cohort including iCCA and extrahepatic 

cholangiocarcinomas also confirmed the existence of the two prognostic CCA molecular 

subtypes123. In this study, two main classes were reported: a poor prognosis group 

characterized by enrichment of RAS mutations, MET and EGFR overexpression, and a good 
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prognosis subgroup characterized by signatures of immune response123. Genomic overlap 

between the poor prognosis group123 and the proliferation subclass was observed85. 

Similar to HCC, NGS studies have generated insights into the molecular subtypes of iCCA95, 124-

131. The most common genetic aberrations include FGFR2 gene fusions (~25%) and mutations 

in KRAS (20%), IDH1/2 (~20%) and chromatin remodeling genes [ARID1A, BAP1, PBRM1, 

~30%,] (reviewed elsewhere 14). Besides IDH1 and IDH263, KRAS,85, 123 and EGFR85 mutations, 

which are enriched in the proliferation subclass, no significant distribution of other molecular 

aberrations has been reported in any of the iCCA molecular subtypes.  

The incidence of iCCA varies significantly among geographic regions. Incidence is highest in 

Asian countries, where infections with liver flukes such as Opisthorchis viverrini and Clonorchis 

sinensis are the major risk factor13. In non-endemic regions, other factors, including 

hepatolithiasis and PSC, likely contribute to risk. Associations between different risk factors and 

mutations detected in iCCAs were explored in 209 CCAs from Asia and Europe. Mutations in 

BAP1 and IDH1/2 were found in a higher proportion of non-O viverrini-related iCCAs (22% vs 

3.2%), whereas mutations in TP53 were found in a higher proportion of tumors from patients 

with O viverrini infection (45.2% vs 7.4%)124. Although there have been other studies of large 

cohorts of patients, it has been difficult to draw conclusions from these due to the different types 

of neoplasms included (iCCAs, extrahepatic cholangiocarcinomas, and gallbladder tumors)85, 123. 

 

Importantly, multiple FGFR2 gene fusions have been discovered in approximately 25% of 

iCCAs126, 127, 132-135 (reviewed in ref. 14); these are used to define tumor subtypes. Tumors with 

FGFR2 fusions and KRAS mutations126 or BAP1 mutations95 have been reported. No significant 

differences in patient age or outcome, or tumor differentiation or stage, were found in comparing 

patients with or without the FGFR2 fusion. One study reported a higher frequency of HCV 

infection in patients with FGFR2 fusions132, although this finding has not been confirmed95, 126, 

134. Early-phase clinical trials testing selective FGFR inhibitors in advanced iCCA patients 

carrying alterations in FGFR2 are underway (NCT02150967 and NCT01752920) 136, 137. These 

studies reported an objective response rate of approximately 15% (a signal of efficacy) and 

manageable safety profile136. The discovery that FGFR2 fusions can promote development of 

iCCAs has been quickly translated to clinical trials. Fusions of the FGFR2 gene might be used 

as biomarker to select patients for treatment with these agents.  

 

 

 



 16 

Molecular Features of Uncommon Tumors 

Fibrolamellar HCC (FLC) is a rare primary liver cancer with few treatment options that typically 

affects children and young adults without background liver disease60. FLC is now considered a 

unique molecular entity within primary liver malignancies138. FLC is caused by an approximate 

400 kb deletion in chromosome 19 that incorporates the first exon of DNAJB1 into all but the 

first exon of PRKACA139. This fusion is detected in 70%138 to 100% of FLCs139. In addition, 

exome sequencing and RNA sequencing studies found de-regulation of additional actionable 

candidates such as ERBB2 and AURKA140. Unlike HCC or iCCA, there are no prevalent 

mutations in more than 10% of patients. Unsupervised clustering of gene expression data 

identified FLC molecular subclasses in a cohort of 58 FLCs, 2 of them associated with 

proliferative and inflammatory molecular traits. The same study provided a prognostic 8-gene 

expression signature138. FLC has less chromosomal aberrations compared to HCC or iCCA 

without recurrent high-level amplifications or deletions.  

 

Hepatoblastoma is the most frequent primary liver tumor in children younger than 5 years old. 

Like FLC, background liver disease is rare in these patients. WNT signaling plays a major role, 

with CTNNB1 mutations (70%) as the most frequently reported molecular event. Integrative 

analysis of gene expression and chromosomal aberrations in 24 hepatoblastoma samples 

distinguished 2 classes, with different DNA gains, histological phenotype and clinical 

outcome141. The recent use of patients-derived xenografts (PDX) in hepatoblastoma enabled the 

identification of novel therapeutic targets such as NRAS mutations142, 143.  

 

Mixed HCC-iCCA is a rare neoplasm accounting for less than 1% of all primary liver cancers5. 

Diagnosis is mainly based on histological examination and requires features of HCC and iCCA. 

According to the 2010 World Health Organization classification, there is a classical type, 

characterized by areas of typical HCC and iCCA with a transition area, and a stem cell-feature 

type144. The stem cell-feature type can be further divided into typical, intermediate, and 

cholangiolocellular carcinoma (CLC) subtypes. Gene expression profiling of small series of 

HCC-CCA samples indicated that this tumor type might share common characteristics with 

poorly differentiated HCC and iCCA with stem cell traits119, 122, 145. A comprehensive integrative 

genomic analysis of 18 mixed HCC-CCA subtypes defined 3 molecular types (CLC, stem cell, 

and classical subtype)146. In particular, the CLC subtype, despite being grouped, based on 

histology, within the stem cell-feature subtype, has a unique molecular profile, with biliary traits, 
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low levels of chromosome instability, and activation of TGFB and inflammation-related signaling 

pathtways146. 

 

Challenges in tumor heterogeneity  

Liver tumors have a high degree of molecular heterogeneity, not only among patients with the 

same types of tumors, but also within regions within the same tumor or tissue147. Expert 

recommendations and consensus definitions have been established to better address the extent 

and role of cancer heterogeneity in oncology research148.  

 

From a clinical perspective, molecular heterogeneity should be considered within the concepts 

of trunk and branch, and driver and passenger mutations. Trunk mutations (mutations that occur 

early in tumorigenesis) can be found in every cancer cell of a tumor 148. Branch mutations are 

found in only a subgroup of tumor cells; these are acquired at later stages of tumor 

development, frequently following treatment, and are associated with resistance. Studies of 

other malignancies have indicated that trunk mutations promote tumor progression, and are 

therefore the best targets for therapies. Trunk mutations identified in single-biopsy should be the 

first targets of molecular therapies 2. Finally, passenger mutations account for the most common 

type of mutations, but their relevance to tumor development is marginal. However, they are 

often used to define a tumors’ clonal features and anti-tumor response. 

 

Prognostic Markers 

Molecular biomarkers have many applications in cancer. The can improve clinical decision 

making by helping to predict a patient’s outcome, select the patients most likely to respond to a 

specific treatment, and avoid treatments not likely to be effective. Unlike other cancers such as 

breast149 and colorectal150 cancers, HCC has no molecular markers that have been incorporated 

into clinical management.  

 

As a general rule, clinical practice guidelines include recommendations based on a specified set 

of metrics, which rate the level of evidence and the strength of recommendations for each 

statement; the higher the evidence, the stronger the recommendation. For example, sorafenib is 

recommended for treatment of patients with advanced-stage HCC; a strong recommendation 

was derived from a prospective, double-blind, randomized, placebo-controlled trial (the highest 

level of evidence)151. These metrics are less clear when evaluating biomarkers for HCC. Initial 

recommendations for biomarkers were developed mostly to address technical aspects of the 
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assay such as the Tumor Marker Utility Grading System152. This was later improved upon by the 

REMARK guidelines for reporting prognostic biomarker in oncology153, which also has 

addressed issues related to clinical utility. The PROGRESS initiative was the most recent 

attempt to provide a methodological framework for biomarker research154.  

 

The highest level of evidence in biomarker research (Level A) comes from randomized trials155. 

A large prospective study of 10,253 women demonstrated that a 21-gene expression signature 

could identify patients with early-stage breast cancer at high risk for recurrence156. Level B 

evidence is provided by companion studies of biomarkers in randomized clinical trials, such as 

those reported for HCC in the Sorafenib HCC assessment randomized protocol157 and 

everolimus for liver cancer evaluation114 trials. Neither of these studies identified markers 

associated with response to either sorafenib or everolimus, but they confirmed the prognostic 

role of levels of angiopoietin 2 and vascular endothelial growth factor in plasma of patients with 

advanced-stage HCC157. Level C evidence has been provided most frequently for markers of 

HCC, from studies of archived samples, with extensive validation (reviewed elsewhere)97. Most 

level C studies have evaluated prognostic markers, identifying patients with the proliferation 

subclass of tumor, either S1 (WNT and TGFB expression), or the S2 (progenitor cell) subtype-

97, with or without amplification of FGF19 106. The S2 subtype expresses many makers of 

progenitor cell cells and high levels of alpha fetoprotein. Tumors in the S1–S2 subgroups are 

poorly differentiated and patients have worse outcomes than patients with other HCC 

subtypes97. Level D evidence comes from studies of convenience, in which specimens were 

collected for unknown reasons and happen to be available for assay. 

 

Gene signatures associated with risk of HCC development may have a more direct application 

(Table 2)100, 102, 158-161. For instance, a 186-gene signature in liver tissues was able to predict 

occurrence of HCC158 in patients with hepatitis C-related early-stage cirrhosis, and might be 

used to select patients for trials of chemopreventive agents (Figure 4, Table 2). However, 

chemoprevention studies are a challenge, because it takes a long time to collect data on a low 

number of events. Studies that included populations of patients at high-risk for HCC may 

shorten trial time and identify effective agents more quickly. For predictive biomarkers in 

advanced HCC, ongoing clinical trials include populations selected based on high expression of 

MET in tumor cells (trial of tivantinib, NCT01755767) or high serum level of alpha fetoprotein 

(trial of ramucirumab, NCT02435433), both as second-line therapies. 
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Molecular markers of iCCA 

Even fewer biomarkers of iCCA have been developed than for HCC; there is only level C data 

for the efficacy of a biomarker for this tumor type. iCCA is one of the few solid tumors for which 

no systemic molecular therapy has been approved by the Food and Drug Administration13. 

Surgery is the only potentially curative option, although chemotherapy with gemcitabine plus 

cisplatin is the standard for patients with advanced-stage iCCA162. According to the ILCA 

practice guidelines, no studies have provided level A or B evidence for a marker of this tumor—

some data from low-quality studies have led to weak recommendations13. These studies have 

been retrospective in design, without extensive validation in independent cohorts. Some gene 

expression and microRNA patterns have been associated with features of iCCA85, 119, 123, as well 

as mutations in KRAS and IDH1 or IDH2 and focal deletions at 14q22.185, 128, 129 (Table 2). Gene 

expression patterns have been reported to identify an iCCA proliferation subclass of tumor85, 

patients with a poor prognosis, 85, 123 and tumors with a stem cell–like subtype119, who have 

aggressive disease and worse outcome.  

 

Features of cancer cells in a tumor determine not only the tumor’s growth and progression, but 

also affect the tumor microenvironment (non-cancer cells and supporting stroma)76. Some 

studies associated features of the iCCA microenvironment with patient outcome123, 163-165. Two 

studies identified a stromal signature associated with shorter survival time by combining laser 

capture microdissection with gene expression profile analysis123, 165. Although many studies 

have validated gene expression signatures associated with patient outcomes, the clinical 

significance of microRNA signatures is not yet clear, due to the limited number of large 

comprehensive profiling studies119, 166-168.  

 

Mutations in oncogenes such as KRAS and BRAF can be used to determine prognosis for 

patients with pancreatic or colorectal cancers169-171. However, there is controversy over whether 

these mutations can predict outcomes of patients with iCCA. Some studies have reported 

significant associations between mutations in KRAS128, 129, 131 or chromatin-remodeling genes 

(BAP1, PBMR1, and ARID1A)125, 172 and either shorter disease-free survival or shorter overall 

survival, respectively. It is not clear whether mutations in IDH1 or IDH2 associate with overall 

survival 125, 129, 173.  

 

Most biomarker assays use cells or tissue collected by invasive biopsy procedures or from 

resection specimens, but these specimens are rarely collected from unresectable or metastatic 
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iCCAs—the tumors of most patients in clinical trials for iCCA. Strategies should be developed to 

assess circulating markers (called a liquid biopsy), from tumor cells and cell-free nucleic acids in 

blood174. Detection of molecular signatures or aberrations in the blood could significantly 

facilitate implementation of prognostic markers. Liquid biopsies might also be used to monitor 

response to treatment, especially in clinical trials of selective inhibitors of IDH1 and IDH2 

(NCT02073994, NCT02273739) and FGFR2 (NCT02150967)14, 136.  

 

Future Directions 

In the last decade, there have been tremendous advances in our understanding of the cellular 

and molecular complexity of liver cancers. Sophisticated functional studies and NGS-based 

research studies have provided information about the cells that form liver tumors and the 

proteins and pathways involved in hepatocarcinogenesis. These studies support a model of 

multiple cells of tumor origin. Most of the studies, using in vivo lineage tracing models, revealed 

an unexpected plasticity of mature hepatocytes24, 25, 44, 52, 72 that could be involved in their 

transformation into cancer cells. Hepatic progenitor cells might also become transformed to give 

rise to different subtypes of HCC, iCCA, and mixed HCC-iCCA with progenitor markers.  

 

Studies of humanized mice to mimic the onset of liver cancers in multiple settings may help 

address existing challenges. In addition, cell- and lineage-tracing models should improve so that 

they recapitulate the severity of liver injury observed in humans, and must clarify if hepatic 

progenitor cells can replenish the liver mass after marked liver injury, as demonstrated in 

zebrafish models175. Finally, linking the main genomic hits at pre-neoplastic and early stages of 

human cancer development with the cell of origin is also an area where further studies are 

required.  

 

Identifying the cells that give rise to liver tumors and elucidating the different classes of tumors, 

based on their molecular features, could lead to new approaches to treatment and prognosis. 

Our knowledge of the molecular mechanisms of HCC and iCCA pathogenesis has not yet been 

translated into clinical tools, because few studies have linked specific molecular classes of 

tumors or aberrations to responses to therapy. It is important to incorporate biomarker studies 

into trials, as in the trials of patients with iCCAs with FGFR2 aberrations136. The successes of 

immune therapies in different solid tumors, including HCC,176 indicate the need to focus greater 

attention on the hepatic tumor microenvironment and interactions between the tumor and the 

immune response; we also need to identify markers of response to these therapies. Learning 
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more about the effects of tumor heterogeneity, and the use of liquid biopsies to determine the 

molecular and genetic features of patients’ tumors, could overcome barriers to personalized 

treatment of liver cancer174.  
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FIGURE LEGENDS 
 

Figure 1: Mortality trends of patients with different malignancies in the USA from 

1990through 2009 (reprinted from ref 3). Changes in cancer mortality, among tumor types, in 

the US. Mortality from liver and bile duct cancers is increasing more rapidly than any other 

cancer, in men and women. Data obtained from the 2013 American Association for Cancer 

Research Cancer Progress Report. 

 

Figure 2: Structure of the liver lobule and location of candidate cell of origin of liver 

cancer. Intrahepatic organization of the liver lobule and the localization of hepatic cells that form 

liver tumors. Different types of cancer (i.e. HCC, iCCA, mixed HCC-iCCA) can originate in the 

liver depending on the transformation event and the cell type undergoing neoplastic 

transformation. Hepatic stem or progenitor cells are believed to reside within the most terminal 

branches of the biliary tree (referred to as Canals of Hering). Upon injury hepatocytes can 

undergo reversible ductal metaplasia and de-differentiate into hepatocyte-derived progenitor-like 

cells. 

 

Figure 3: Multiple cells of origin of primary liver cancers. HCC and iCCA can develop via 

transformation of mature hepatocytes and cholangiocytes, respectively. There is evidence that 

hepatic progenitor cells (HPCs), their intermediate states, or de-differentiated hepatocytes can 

form liver tumors with progenitor-like features, including mixed HCC-CCA, such as 

cholangiolocellular carcinoma (CLC). Mature hepatocytes can be also re-programmed into cells 

that closely resemble biliary epithelial cells and contribute to development of iCCA.  

 

Figure 4: Molecular biomarkers of HCC. Genetic features and gene expression of the tumor 

or its surrounding microenvironment correlate with clinical and pathology features, etiology, and 

patient outcomes. The proliferation subclass is characterized by proliferation signaling 

pathways, which involve proteins such as MTOR, Notch, and TGFB and several gene 

expression signatures associated with poor outcomes of patients (such as the G3 and 5-gene 

signatures)97. The non-proliferation subclass is characterized by mutations in CTNNB1, the S3 

gene expression signature, and the classical WNT signaling pathway. Specific mutations 

associated with etiology (smoking and aflatoxin B exposure) have also been described96. An 

expression pattern of 186 genes in the liver tissue surrounding the HCC can identify patients 

HCC at higher risk for tumor recurrence after resection103. 
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Figure 5: Main characteristics of subclasses of iCCA. Analyses of gene expression patterns 

have shown that iCCAs can be assigned to the proliferation or inflammation subclasses. The 

proliferation class is characterized by chromosome instability, activation of pathways related to 

cell cycle progression, mutations in oncogenes and shorter survival times of patients. Tumors of 

the inflammation subclass have gene expression patterns associated with activation of an 

immune response and less aggressive clinical behavior. FGFR2 fusion events are evenly 

distributed between these subclasses.  
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Table 1. Experimental models supporting the different hypotheses regarding the cell of origin in primary liver cancers                                                                                                       

Abbreviations: HPC, Hepatic progenitor cells; GEMM: genetically engineered mouse model; HCC, hepatocellular carcinoma; HPA, hepatocellular adenoma; iCCA, intrahepatic cholangiocarcinoma; 

mixed HCC-iCCA, mixed hepatocellular-cholangiocarcinoma; KO, knock-out; DKO, double knock-out; TKO, triple knock-out; DEN, N-nitrosodiethylamine; TAA, Thioacetamide; BDL, bile duct ligation; 

MDA, methylene dianiline; CDE, choline-deficient ethionine-supplemented; DDC, 3,5-diethoxycarbonyl-1,4-dihydrocollidine. 

 

 

Hypothesis tested Method Animal models 
Altered 

pathway Tumor Type Proposed cell of origin Reference 

HPC/oval cells as cell of 
origin  

Clonal analyses  - BMI1, WNT 
mixed HCC-

iCCA 
HPCs 51 

GEMM  Sav1fl/fl, mst1fl/fl, and mst2fl/fl  HIPPO HCC, iCCA oval cells  54 

GEMM  WW45flox/floxAlbumin-Cre HIPPO 
mixed HCC-

iCCA 
oval cells 55 

Multilineage 
differentiation  

- 
H-Ras, 
SV40LT 

HCC, iCCA 
HPC, hepatoblasts, 

hepatocytes 
57 

GEMM  Alb-Cre;Nf2lox/lox NF2 
HCC, iCCA, 

mixed 
oval cells 56 

GEMM  NotchIC::AlbCre NOTCH iCCA HPCs 62 

GEMM  Alb-Cre;LSL-IDH2R172K;LSL-KrasG12D IDH, KRAS iCCA hepatoblasts 63 

GEMM  LSL-KrasG12D -Ptenflox  KRAS, PTEN iCCA 
hepatoblasts, 

cholangiocytes 
64 

Hepatocytes as cell of 
origin 

GEMM AlfpCre+Trp53Δ2-10/Δ2-10  TP53, WNT HCC hepatocytes-derived HPC  52 

GEMM AlfpCre+Trp53Δ2-10/Δ2-10  
TP53, 

NOTCH 
iCCA hepatocytes-derived HPC  52 

GEMM  
(Mst1/Mst2 DKO, YAP KO, DKO Yap+/−, and 
tTKO 

HIPPO HCC 
hepatocytes-derived 

HPC/oval cells 
53 

Multilineage 
differentiation 

- 
H-Ras, 
SV40LT 

HCC, iCCA 
HPC, hepatoblasts, 

hepatocytes 
57 

lineage-tracing 
system  

liver injury (BDL, DDC, MDA, CDE); GEMM 
(Mdr2–/–) 

MDR HCC  hepatocytes 67 

lineage-tracing 
system  

liver injury (DEN); GEMM (Mdr2–/–;  PTEN-/-) MDR, PTEN HCC  hepatocytes 65 

lineage-tracing 
system   

DEN + TAA - HCC, HPA  hepatocytes 66 

GEMM  Tsc1/Sqstm1Δhep and Sqstm1Δhep/MUP  p62 HCC  hepatocytes 70 

lineage-tracing 
system   

Alb-CreERT2;R26RlacZ/+ and CK19-
CreERT2;R26RlacZ/+ 

NOTCH iCCA  hepatocytes 72 

lineage-tracing 
system 

hydrodinamic tail injection NOTCH, AKT iCCA 
 hepatocytes-derived 

biliary-like cells 
73 

        
 

    

Cholangiocytes as cell of 
origin 

 lineage-tracing 
system   

Liver injury (TAA) and CK19CreERTeYFPp53f/f TP53 iCCA cholangiocytes 26 

GEMM  LSL-KrasG12D -Ptenflox  KRAS, PTEN iCCA 
hepatoblasts, 

cholangiocytes 
64 

Table



Table 2. Prognostic signatures in primary liver cancer 

Signature Cohort (etiology) 
Number of patients 

tested 
Training/Validation set 

Clinical endpoint 
REMARK 

recommendations 

Level of evidence 
(Simon et al. JNCI 

2009) 
Reference 

Hepatocellular Carcinoma  
          

mRNA-based 
 

          

5-gene signature 
HCC (Alcohol, 

HCV, HBV) 
189/434 survival OK C 100 

EpCAM-signature HCC (HBV) 40/238 survival OK C 160 

186-gene signature (adjacent 
tissue) 

HCC (HCV) 82/441 
survival, HCC 
development 

OK C 103, 158 

miRNA based 
 

          

20-miRNA signature HCC (HBV) 131/110 
venous metastasis, 

survival 
OK C 161 

Down-regulation miR-26a HCC (HBV) 241/214 survival OK C 159 

DNA methylation 
 

          

36 CpG DNA methylation 
signature 

HCC (HCV) 221/83 survival OK C 102 

Protein markers (Plasma) 
 

          

Ang2, VEGF HCC (HCV) 491 survival OK B 157 

  
 

          

Cholangiocarcinoma  
          

mRNA-based 
 

          

poor prognosis/proliferation 
class 

iCCA 119/104 survival and recurrence further validation required C 85 

poor prognosis group iCCA and eCCA 52/52 survival and recurrence further validation required C 123 

Stem cell-like subtype 
iCCA and mixed 

HCC-CCA 
23/68 survival further validation required C 119 

              
Abbreviations: HCC, hepatocellular carcinoma; iCCA, intrahepatic cholangiocarcinoma; mixed HCC-iCCA, mixed hepatocellular-cholangiocarcinoma; eCCA, extrahepatic cholangiocarcinoma. 
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