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  Abstract  
 

The paper investigates the estimation bias of autoregressive 

models for bounded stochastic processes and the performance of 

the standard procedures in the literature that aim to correcting the 

estimation bias. It is shown that, in some cases, the bounded 

nature of the stochastic processes worsen the estimation bias 

effect, which suggests the design of bound-specific bias  

correction methods. The paper focuses on two popular 

autoregressive estimation bias correction procedures which are 

extended to cover bounded stochastic processes. Finite sample 

performance analysis of the new proposal is carried out using 

Monte Carlo simulations which reveal that accounting for the 

bounded nature of the stochastic processes leads to 

improvements in the estimation of autoregressive models. Finally, 

an illustration is given using the current account balance of some 

developed countries, whose shocks persistence measures are 

computed. 
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1 Introduction

Since the seminal paper of Nelson and Plosser (1982), any analysis that considers the use

of time series data always begins with the study of the time properties of the variables.

This usually implies the use of some unit root tests and the statistical inference that is

drawn from their application is relevant for subsequent analyses. For instance, a quite

popular practice is to determine the degree of shocks persistence by means of estimating

autoregressive models.

The latter analysis provides very interesting insights about the evolution of the vari-

able being studied, including the analysis of the persistence in variables such as the real

exchange rates, where some practitioners have studied the number of periods that a shock

takes to vanish �see Balli et al. (2014), among others. Similarly, Watson (2014) studies

the e¤ect of the Great Recession on in�ation persistence. This type of analyses, however,

is not straightforward given that we should take into account that the OLS estimator

is consistent but biased in �nite samples, and this bias must be removed in order to

appropriately measure the degree of persistence. There are various proposals in the lit-

erature which try to correct this �nite sample bias. We can cite here the contributions of

Andrews (1993), Andrews and Chen (1994), Kilian (1998), Hansen (1999), Rossi (2005)

and Perron and Yabu (2009a), among others, which develop di¤erent valid techniques to

remove the mentioned bias.

However, some commonly employed variables in this type of works may be a¤ected

by the presence of bounds. There are some important macroeconomic variables such as

nominal interest rates, unemployment rates, exchange rates and the great ratios, among

others, that are bounded by de�nition, preventing these variables from exhibiting a large

variance. This feature generates tension in the statistical inference associated with stan-

dard unit root tests and, hence, the estimation of the degree of shocks persistence.

The standard order of integration analysis of time series considers that an I(1) non-

stationary stochastic process can vary freely in the limit, that is, they ignore the con-

straints that impose the existence of bounds. This fact is relevant because the behavior of

this type of variables might seem to be stationary when, in fact, they are non-stationary.

In this regard, Cavaliere (2005) and Cavaliere and Xu (2014) show that standard unit

root tests might reach misleading conclusions if the bounded nature of the time series is

not accounted for. Therefore, it is sensible to analyze the in�uence of these bounds on

the determination of the time series properties of the variables.

The goal of this paper is to assess whether the use of bias-corrected autoregressive

parameters allows us to obtain statistics such as shock persistence measures, the long-run

variance (LRV) estimates and unit root tests statistics for bounded time series with good

�nite sample performance. To address this issue, this paper investigates the performance

of some popular bias correction methods mentioned above when they are applied to
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bounded stochastic processes. The �rst stage of the analysis focuses on some of these

standard bias correction procedures, showing that, in general, the amount of estimation

bias that is corrected is small when the bounded nature of the time series is ignored. This

suggests extending the standard bias correction procedures that incorporate the possible

e¤ect of the bounds on the estimation of autoregressive models for (possibly persistent)

time series.

The paper proceeds as follows. Section 2 describes the model for bounded stochastic

processes and investigates the consistence and �nite sample bias of the OLS estimation

procedure. In addition, we assess the performance of some of the most relevant standard

methods proposed in the literature that correct the �nite sample bias. Section 3 proposes

an extension of two bias correction procedures for bounded stochastic processes. Section

4 analyzes the �nite sample performance of the suggested approaches. Section 5 conducts

an empirical illustration focusing on the current account balances of a sample of OECD

countries. Finally, Section 6 concludes.

2 The model

Let xt be a stochastic process with a data generating process (DGP) given by:

xt = �+ yt (1)

yt = �yt�1 + ut; (2)

t = 1; : : : ; T , where xt 2
�
b; b
�
almost surely for all t, y0 = Op (1), and

�
b; b
�
denote the

boundaries that a¤ect the time series. The disturbance term ut is assumed to admit the

following decomposition:

ut = "t + �t � �t; (3)

with "t = C (L) �t, where C (L) =
P1

j=0 cjL
j with

P1
j=0 j jcjj <1, and �t is a martingale

di¤erence sequence adapted to the �ltration Ft = � � field f�t�j; j � 0g. The LRV of
"t is given by �2 = limT!1E[T

�1(
PT

t=1 "t)
2]. The variables �t and �t are non-negative

processes (regulators) such that �t > 0 if and only if �yt�1 + "t < b� � and �t > 0 if and
only if �yt�1+"t > b��. The stochastic processes involved in (3) satisfy the Assumptions
A and B in Cavaliere and Xu (2014), so that (b� �) = c�T 1=2 and

�
b� �

�
= c�T 1=2,

with c � 0 � c, c 6= c. This representation can be particularized to the cases of stochastic

processes that are only limited below � i.e., xt 2 [b;1] �or only limited above � i.e.,
xt 2

�
�1; b

�
�but also covers the case of unbounded processes �i.e., xt 2 [�1;1].

Estimation of autoregressive models is at the heart of popular practices in empirical

economics such as order of integration analysis and the computation of shock persistence

measures. However, it is well known that their estimation provides biased estimates
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in �nite samples, although the bias disappears asymptotically. In this regard, it is of

interest to study whether dealing with bounded stochastic processes de�ned by (1) to

(3) presents any di¤erent features compared to the unbounded situation. The following

theorem shows, for a simple model speci�cation, that the estimation of autoregressive

models for bounded processes is consistent.

Theorem 1 Let fxtgTt=1 be the stochastic process given by (1) and (2) with � = 0, j�j < 1
and "t � iid (0; �2) with E ("4t ) <1. Then, as T !1 the ordinary least-squares (OLS)

estimator:

�̂
p! �:

The proof is given in the appendix. Although the estimation of the autoregres-

sive parameter is consistent, there might be some estimation bias in �nite samples.

To show the extent of the additional estimation bias e¤ect introduced by bounds, we

have conducted a small simulation experiment using a symmetric bounded stochastic

process de�ned by (1) to (3) with � taking values between 0 and 1 in steps of 0.05

size � i.e., � = f0; 0:05; 0:1; : : : ; 0:95; 1g � "t � iid (0; 1), c = f0:1; 0:3; 0:5; 0:7; 1g and
T = f50; 100; 200; 500g �1,000 replications are conducted. Figure 1 reveals that the
estimation bias depends not only on T and �, but also on c. Regardless of T and �, the

bias is bigger the narrower the rank of variation de�ned by the bounds. As expected,

the magnitude of the bias reduces as T increases, but even for large T we observe non-

negligible bias for small c. Finally, note that for large values of c, for which the time

series is near-unbounded, the estimation bias tends to increase as � approaches one.

We make use of di¤erent standard approaches in the literature that try to correct the

estimation bias of autoregressive models. First, we focus on the median-unbiased (MU)

estimation procedure for AR(1) models in Andrews (1993), which requires the computa-

tion of look-up tables to obtain a correspondence between the value of the OLS estimation

of the autoregressive parameter (�̂) and the median of the empirical distribution that is

obtained assuming that � = �̂, which de�nes �̂MU , i.e., the median-unbiased autoregres-

sive estimator of �. Andrews (1993) suggests using �̂MU instead of �̂. Other alternatives

have been proposed in the literature �see, for instance, Kilian (1998), Hansen (1999),

Rossi (2005)) �although initial simulations, not reported here to save space, reveal that

they are beaten by the Andrews (1993) MU estimator.

Figures 2 to 5 compare the mean of the estimation bias of OLS and the Andrews MU

procedures for c = f0:1; 0:3; 0:7; 1g, T = f50; 100; 200; 500g and � = f0; 0:05; 0:1; : : : ;
0:95; 1g. In general, MU estimation gives more accurate estimates of the autoregressive
parameter, regardless of the values of c, � and T . However, the MU estimation bias is

still important for small values of c, although it clearly reduces as c increases. It is worth

noticing that these improvements are obtained using an estimation procedure designed

for unbounded processes, but we have shown that the amount of bias correction depends
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on c. This feature leads us to hypothesize that better results can be expected if bound-

speci�c MU estimates are used, which implies extending the proposal of Andrews (1993)

to bounded time series.

3 Bias correction methods for bounded stochastic

processes

The estimators mentioned above ignore the bounded nature of xt, an important feature

that should be taken into account in order to improve the estimates of the autoregressive

parameters. To address this issue, we have proceeded to modify two bias correction

procedures considering that xt 2
�
b; b
�
.

3.1 The MU estimation procedure of Andrews

Andrews MU estimator requires the computation of look-up tables that establish a corre-

spondence between the OLS and the MU estimate of the autoregressive parameter. This

is an intensive computational problem since these look-up tables have to be obtained for

di¤erent combinations of [c; c] values. As an example, Table 1 presents the asymptotic

look-up table for the AR(1) symmetric bounds case. It provides values of the median of

the distribution of �̂ for a grid of � and c values �a Matlab code is available to compute

look-up tables for any bounds.1 The computation of look-up tables for AR(p) processes

can be done following the proposal in Andrews and Chen (1994), although it would have

a higher computational cost since it requires the use of bootstrapping.

3.2 Weighted symmetric least-squares estimation procedure

Following Roy and Fuller (2001), Roy, Falk and Fuller (2004) and Perron and Yabu

(2009a), we suggest the use of the modi�ed estimator given by:

�̂TW = �̂W + C (�̂W ) �̂W ; (4)

where �̂W denotes the weighted symmetric least-squares (WSLS) estimate of the autore-

gressive parameter for AR(1) models proposed in Fuller (1996):

�̂W =

PT
t=2 ŷtŷt�1PT�1

t=2 ŷ
2
t + T�1

PT
t=1 ŷ

2
t

;

1Note that using c = 1 approaches the unbounded case covered in Andrews (1993), Table 1.
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with ŷt are the OLS estimated residuals in (1),

�̂2W =

PT
t=2 (ŷt � �̂W ŷt�1)

2

(T � 2)
hPT�1

t=2 ŷ
2
t + T�1

PT
t=1 ŷ

2
t

i ;
and �̂W = (�̂W � 1) =�̂W is the pseudo t-ratio statistic to the null hypothesis that � = 1.

The modi�cation in (4) requires the de�nition of C (�̂W ) that, following Roy and Fuller

(2001) and Perron and Yabu (2009a), is given by the following discontinuous function:

C (�̂W ) =

8>>>><>>>>:
��̂W if �̂W > � pct

IpT
�1�̂W � 2 [�̂W +K (�̂W + A)]�1 if � A < �̂W � � pct

IpT
�1�̂W � 2 [�̂W ]�1 if � (2T )1=2 < �̂W � �A

0 if �̂W � � (2T )1=2

; (5)

with K = [(1 + IpT
�1) � pct (� pct + A)]

�1 �
2� IpT

�1� 2pct
�
, Ip = b(p+ 1) =2c , b�c being the

integer part, p denotes the order of the autoregressive model �p = 1 in this case �and

� pct is a percentile of the limiting distribution of �̂W when � = 1. The percentile � pct
is either set at the median (� 50) or at the 85th percentile (� 85) of the distribution of

�̂W . Finally, the function K depends on the deterministic speci�cation that is used in

(1) �i.e., a constant or a linear time trend.2 The value of the constant A is empirically

chosen in Roy and Fuller (2001) after conducting simulation experiments, and they set it

at A = 5 for unbounded stochastic processes.3

Table 2 summarizes selected percentiles of the distribution of �̂W for di¤erent values

of the (symmetric) bound parameters �the last row shows the percentiles for unbounded

stochastic processes. As can be seen, the limiting distribution of �̂W depends on the

bounds, with a limiting distribution shifted more to the left the narrower the rank of

variation de�ned by the bounds.

Let us focus on the median of the distribution as the percentile used in the bias

correction. First, note that the use of A = 5 for the unbounded stochastic process case

does not pose incongruences for the de�nition of the function in (5), since �A < � 0:5.4

However, we can see that the median of the distribution �̂W moves away from -1.21

as the rank of variation de�ned by the bounds decreases, which might produce poor

2See Roy and Fuller (2001) for the function that corresponds to the linear time trend. It is worth
noticing that Perron and Yabu (2009b) use the same function when testing for multiple shifts in the
trend.

3Roy and Fuller (2001) also set A = 5 for the linear time trends, whereas Perron and Yabu (2009b)
specify A = 10.

4This is also valid for the linear time trend case, for which Roy and Fuller (2001) estimated �0:5 =
�1:96 and A = 5, as mentioned above. Note that the consideration of slope trend shifts in Perron and
Yabu (2009b) lead them to specify A = 10 for the one break case � it is well known that the limiting
distribution of �̂W shifts to the left as the number of structural breaks increases.
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performance of the correction when c < 0:5.5 In this regards, an extensive simulation

experiment has been conducted to assess the sensitivity of the modi�ed estimator to the

speci�cation of the constant A = f5; 6; : : : ; 15g. Results available upon request indicate
that the modi�ed estimator shows good performance when A = 5 and c > 0:1, and only

marginal di¤erences are found for the other values of A. Besides, for small values of the

bound parameter (c � 0:1), we �nd that A = 10 gives good results.
This method can be easily extended to AR(p) models for which the autoregressive

parameter � is estimated from:

ŷt = �ŷt�1 +

kX
j=1

 j�ŷt�j + "t; (6)

with ŷt being the OLS estimated residuals in (1). In this case, the WSLS estimate of �

(�̂W ) can be obtained as described in Fuller (1996) and its truncated version (TWSLS)

�̂TW is computed as de�ned in (5).

3.3 Implementation of the estimation procedure

The empirical implementation of the method of bias correction in bounded time series

that we propose needs some additional steps. Given a time series with known theoretical

limits b and b, we can estimate the bounds as:

�
ĉ; ĉ
�
=

"
b� D̂t

�̂T 1=2
;
b� D̂t

�̂T 1=2

#
;

which requires an estimation of the deterministic component (Dt) and the long-run vari-

ance (�2). In our case Dt = � and it can be easily estimated by regressing the series to

a constant. However, the estimation of the long-run variance deserves further attention

because its estimation also su¤ers from bias estimation problems of the autoregressive

parameters. To address this issue we suggest using the following iterative estimation

method:

1. Estimate the LRV ignoring the bounds. In this regard, we can use the parametric

estimation method proposed in Ng and Perron (2001) and Perron and Qu (2007),

which also allows us to select the optimal lag if we have modelled the series as an

autoregressive process.

5Our guess is based on the fact that Roy and Fuller (2001) de�ne A = 5 for the linear time trend
case, for which the median of the distribution of �̂W is �0:5 = �1:96. Consequently, we might expect
that A = 5 is also valid for cases where c � 0:5, although it should be borne in mind that the K function
involved in the correction depends on the deterministic speci�cation.
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2. Compute an initial educated estimation of the bounds:

h
ĉ0; ĉ

0
i
=

24
�
b� D̂t

�
�̂0T 1=2

;

�
b� D̂t

�
�̂0T 1=2

35 :
3. Compute an estimation of � according to one of these procedures:

(a) For the MU-based procedure, compute the look-up tables corresponding to

[ĉ0; ĉ
0
] by simulation and obtain �̂MU

(b) For the truncated WSLS-based procedure, compute the percentiles of the �̂W
distribution corresponding to [ĉ0; ĉ

0
] by simulation and obtain �̂TW as de�ned

in (5).

4. Use �̂ from the previous step to estimate the LRV again as follows,

yt � �̂yt�1 = �+
kX
j=1

 j�yt�j + "t

�̂21 =

PT
t=1 "̂

2
t

(1� �̂)2
:

5. Obtain the new bounds as:

h
ĉ1; ĉ

1
i
=

24
�
b� D̂t

�
�̂1T 1=2

;

�
b� D̂t

�
�̂1T 1=2

35 :
6. Iterate until

���PT
t=1 "̂

2
t;l �

PT
t=1 "̂

2
t;l�1

��� < Tol, where Tol is the desired level of toler-

ance and l the step of iteration.

It is worth noticing that the implementation of the procedure can be done performing

only one iteration (steps 1 to 3) or carrying out multiple iterations (steps 1 to 6). The

potential gain of the multiple iterative estimation method is measured through Monte

Carlo simulation experiments in the next section.

4 Finite sample performance

In this section we analyze the di¤erent bias correction methods discussed above. Simu-

lations are organized according to whether the estimation is conducted without iteration

(one-step estimation procedure) or using the iterative scheme de�ned in the previous

section.
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4.1 One-step estimation procedure

4.1.1 The AR(1) case

The DGP is given by (1) to (3) with � = 0 and "t � iid N (0; 1). The symmetric

bounds are de�ned by [c; c] = [�c; c], with c = f0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9, 1, 1.5g, � = f0, 0.1, 0.2, ..., 1g, T = 100 and 1,000 replications are used. We

consider three di¤erent cases depending on the method that is used to estimate the order

of the autoregressive process. First, we focus on the situation in which p is known,

as required by the procedure of Andrews (1993). Furthermore, for the WSLS method,

we also treat p as an additional unknown parameter which is estimated using both the

MAIC information criterion in Ng and Perron (2001) and the BIC information criterion,

specifying a maximum of pmax =
�
12(T=100)1=4

�
lags.

Tables 3 and 4 present the mean of the empirical distribution of the �̂MU and �̂TW
estimators, respectively, for di¤erent values of c and �, assuming that the order of the

autoregressive correction in (6) is known �i.e., k = p � 1. The modi�ed �̂TW estimator

using either the asymptotic � pct = � 50 or � pct = � 85 percentiles. Let us �rst focus on the

�̂MU estimator. As can be seen in Table 3, for T = 50 and c > 0:1; the �̂MU estimator

tends to under-estimate �, being the distortion more pronounced as � approaches one.

Note that the bias correction does not provide good results for c = 0:1.6 The performance

improves as T increases, showing that the estimation bias is almost fully corrected in most

cases �the exception is found for � > 0:8 and c = 0:1, where the estimated value of the

autoregressive parameter is below the populational one. It is worth noticing that there is

a mild under-estimation distortion when � = 1, something that is not found in the I(0)

stationary cases.

Table 4 reports two versions of the �̂TW estimator, depending on the � pct value that is

used in the truncation. In general, and for a given set of T , � and c values, the estimator

�̂TW that is based on � 50 �in what follows, �̂
�50
TW �outperforms the one based on � 85

�henceforth, �̂�85TW . In most cases, both estimators �̂
�50
TW and �̂�85TW produce the same

result but, when they di¤er, �̂�50TW does better than �̂�85TW . As expected, the bias correction

improves as T increases, regardless of � and c.

When the analysis compares the �̂MU and �̂TW estimators, we notice that for T = 50,

� � 0:2 and c < 0:3, �̂MU outperforms �̂
�50
TW . However, the opposite situation is found

when c � 0:3, where a minimal dominance of �̂�50TW is observed regardless of � �note

that di¤erences are small. The picture is qualitatively similar for T = 200. Considering

these elements, �̂MU o¤ers an overall compromise in terms of bias estimation correction

compared to �̂TW because, although �̂�50TW outperforms �̂MU in some cases, the di¤erence

is small.
6It can be stated that �̂ ! 1 when c approaches to zero with [c; c] = [�c; c], independently of the

value of �, which evidences the di¢ culty of estimating � in these cases.
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So far, the analysis is conditional on the fact that the true order of the autoregressive

model is used, something that is not realistic from an empirical point of view. Tables

5 and 6 summarize the performance of �̂TW when k in (6) is selected using the MAIC

and BIC information criteria, respectively. In general, the use of MAIC leads �̂TW to

over-estimate � compared to the BIC-based results. Consequently, BIC-based estimates

is preferred to MAIC-based ones. The comparison of Tables 4 and 6 reveals that the

estimation of p improves the performance of �̂�50TW in cases in which �̂MU outperformed

�̂�50TW with known p. Further, if the comparison is established between �̂�50TW (BIC) and

�̂MU , we can observe that there are some cases in which �̂MU outperforms �̂
�50
TW (BIC)

�for instance, T = 50 with c < 0:3, and T = 200 with c < 0:3 and � < 0:7 �although

there are many cases in which the opposite situation is found �for instance, for T = 50,

c � 0:3 and � > 0:3.
Taking all these elements together, we can conclude that there is no clear predomi-

nance of one estimator over the other, but considering that p is not known in practice,

the use of �̂�50TW with k in (6) selected using BIC provides a good compromise in terms

of bias estimation correction for empirical applications. Finally, it is worth mentioning

that the computation of �̂�50TW is based on the percentile of the limiting distribution of

�̂W , whereas �̂MU uses look-up tables that have been simulated for the speci�c empir-

ical size. This feature might explain the superiority of �̂MU over �̂
�50
TW in some cases,

so using the percentiles of the �nite sample distribution of �̂W might lead to some im-

provements. Notwithstanding, an important advantage is that the computational cost to

obtain �̂�50TW (BIC) is smaller than getting sample size-speci�c look-up tables that deliver

�̂MU .

4.1.2 The AR(p) case

This section generalizes the analysis considering the DGP de�ned by an AR(2) process:

xt = �+ yt

yt = �yt�1 +  �yt�1 + ut;

with � = 0, � = f0:8; 0:9; 0:95; 1g and  = 0:5. The disturbance term ut is de�ned in

(3) with "t � iid N (0; 1). In this case, we only report simulation results for �̂TW since

the estimator of Andrews (1993) was proposed only for the AR(1) case. As mentioned

above, it would be possible to compute the generalization of the MU estimator for AR(p)

cases suggested in Andrews and Chen (1994), but the high computational cost implied

prevents us from doing so.7 Table 7 presents the mean of the distribution of �̂TW using

either � pct = � 50 and � pct = � 85, when p is known or estimated using the MAIC and BIC

7The procedure of Andrews and Chen (1994) would require the use of bootstrap for each replication
of the Monte Carlo simulation experiment.
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information criteria.

Let us focus on the case where k in (6) is known. First, note that, for a given T; the

results for �̂�50TW and �̂�85TW are almost equivalent when c � 0:3, with the mean of the

estimators around � when T = 200. It is worth noticing that a mild under-estimation

is produced when � = 1, which suggests that the super-e¢ cient estimator of Perron and

Yabu (2009a) could be used in this case. Second, �̂�50TW provides better estimates than �̂
�85
TW

for c = 0:2 although, in both cases, the estimated values are below �. Interestingly, these

estimates collapse around a similar value regardless of �. For instance, when c = 0:2; the

mean of �̂�50TW is estimated around 0.5 for T = 50 and 0.74 for T = 200, regardless of �.

Finally, a strange phenomenon appears for c = 0:1 because the estimation bias correction

worsens as T increases �as before, the mean of the estimators seems to collapse around

the same value for all range of � parameters that have been speci�ed.

Simulations based on the MAIC selection of k in (6) show over-estimation of � when

� = 0:8, but the results are reasonably good for T = 200 with c � 0:5. Similar to

the previous case, �̂�50TW and �̂�85TW tend to collapse around a given value when c � 0:3,

providing useless estimates. For instance, when c = 0:1; the mean of �̂�50TW is around

0.94 (T = 50) and 0.96 (T = 200) regardless of �. Better results are obtained when k

is chosen using the BIC. In this case, the estimates are located around � for T = 200

and c � 0:4, although mild under-estimation is produced when � = 1 �this might be

improved with the super-e¢ cient estimator of Perron and Yabu (2009a). The estimation

procedure does not deliver satisfactory results for c � 0:3 . Thus, a similar picture to the
known k case is obtained for c = 0:2 or c = 0:3, that is, estimates clearly below the true

� which collapse around a given value regardless of �. Finally, we also observe the same

behavior for c = 0:1, although the value to which the estimators tend increases with T .

In all, results based on BIC provide a good compromise from the empirical point of

view considering that, �rst, the order of the autoregressive correction is unknown and,

second, the performance of the estimation bias correction is similar to the known p case.

However, we have noticed that the performance of the estimators is not satisfactory for

small values of c, say c � 0:3.

4.1.3 The ARMA(1,1) case

The third set of DGP that is tried out is given by:

xt = �+ yt

yt = �yt�1 + ut + �ut�1;

with � = 0, � = f0:8; 0:9; 0:95; 1g and � = f�0:8;�0:4; 0:4; 0:8g. The disturbance term
ut is assumed to be decomposed as de�ned in (3) with "t � iid N (0; 1). Given the results

above, we base the simulations on the use of the BIC information criterion to select the
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lag length in (6).

Tables 8 and 9 present the mean of the distribution of �̂�50TW and �̂�85TW , respectively.

For T = 200, the results reported in both tables are virtually equivalent, regardless of

� pct and c while, for T = 50, the results are similar when c � 0:4. For c � 0:4, negative
values of � lead us to under-estimate � �tending to zero when there is a common factor

in the lag polynomials (i.e., � = �� = 0:8) �whereas positive values of � do not have

signi�cant e¤ects on the estimation bias correction, which improves as T increases. In

general, under-estimation e¤ects are observed when c � 0:3, being more pronounced when
� pct = � 85 is used. This suggests that �̂

�50
TW should be preferred to �̂�85TW .

4.2 Iterative estimation procedure

This section focuses on the AR(1) model de�ned in Section 4.1.1, but estimating � in

an iterative fashion using a maximum of 20 iterations. Table 10 reports the simulation

results for di¤erent values of � and c = f0.1, 0.2, 0.3, 0.4, 0.5g �results do not change for
larger values of c. For ease of comparison, results based on the non-iterative estimation

procedure are also shown.

The MU estimator shows similar performance regardless of the estimation method

implementation that is used. There are marginal gains derived from the use of the

iterative estimation procedure for c � 0:3, but the performance worsens for c = 0:1. In
general, the �̂�50TW (MAIC) non-iterative procedure presents over-estimation distortions,

which also prevail for the iterative estimation procedure �in this case, under-estimation

distortions are observed for c < 0:3 for some �. Consequently, the unstable performance

of �̂�50TW (MAIC) leads us to discourage the use of this estimator in practice. Finally,

the non-iterative �̂�50TW (BIC) estimator over-estimates � for c = 0:1 and � � 0:8, and

under-estimates � for c � 0:2 and � � 0:85. Better performance is shown for the iterative
version, although under-estimation is observed for c = 0:1, and for c = 0:2 with � � 0:85.
As can be seen, �̂MU outperforms �̂

�50
TW (BIC), although this superiority bene�ts from

the fact that the former method is based on the correct order of the autoregressive model.

As mentioned above, considering that p is unknown in practice, �̂�50TW (BIC) represents a

good compromise in terms of bias estimation correction for empirical applications.

5 Empirical illustration

The persistence of the current account balance (CAB) disequilibrium is a crucial issue

for assessing the long-term solvency and sustainability of the external debt of a country.

Di¤erent conditions related to the order of integration of the ratio of CAB over GDP

(cabt = CABt=GDPt � 100) have been proposed in the literature to test external sustain-
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ability and, consequently, the unit root approach has been extensively applied.8 Most of

the existing empirical literature considers that the current account is an unbounded vari-

able, being Herwartz and Xu (2008) one exception that considers the presence of bounds

when analysing CAB over GDP sustainability. If this feature is not accounted for when

testing the order of integration of the variables or computing their degree of persistence,

the conclusions drawn from the unit root test statistics or the autoregressive parameter

estimates can be misleading.

The cabt variable is not theoretically bounded, since �ows of goods, services, income

and transfers could exceed the total value of GDP. However, economic prudence does not

advise maintaining large imbalances, which are a re�ection of serious dysfunctions in the

internal macroeconomic fundamentals, in the current account balance. Policy makers can

introduce the control of CAB into their macro-prudential objectives more or less explic-

itly. Recently, and due to the aftermath of the Great Recession in Europe and, especially,

in the European Monetary Union, a special system for monitoring macroeconomic im-

balances was introduced for countries belonging to the euro area. This system called,

Macroeconomic Imbalance Procedure (MIP) was established in 2011 and aims to identify

and prevent potentially harmful macroeconomic imbalances that could adversely a¤ect

economic stability in a particular Member State, the euro area, or the EU as a whole.

It controls a total of fourteen indicators, covering the major sources of macroeconomic

imbalances and setting indicative thresholds for each of them. Among them, we can �nd

several related to the health of the external foreign sector and, most interestingly for

our case, the thresholds for cabt, which are +6% and -4%, with a dynamic of a 3-year

backward moving average. Consequently, we could de�ne a �rst set of bounds to be

cabt 2
�
b; b
�
= [�4; 6].

A second set of bounds can also be settled following the strategy in Herwartz and Xu

(2008), who consider a potential set of bounds arising from the observed country-speci�c

minimum (b = min (cabt)) and maximum (b = max (cabt)) values of cabt �which de�nes�
ĉ; ĉ
�
=
h
(b� D̂t)=(�̂T

1=2); (b� D̂t)=(�̂T
1=2)
i
. In addition, and following the spirit in

Herwartz and Xu (2008), we increase this initial range up to 300 per cent in absolute

value �i.e.,
�
ĉ� �!=2; ĉ+ �!=2

�
, ! = jĉ� ĉj and � = f0; 0:1; 0:2; 0:3; : : : ; 1; 1:5; 2; 2:5; 3g

�so that the robustness of the analysis can be carried out using di¤erent sets of bounds.

The key issue here is how to select among these values of bounds. The suggestion in

Herwartz and Xu (2008) bases on the p-values of the augmented Dickey-Fuller (ADF)

unit root test, so that the bounds are selected such that the p-values of the ADF statistic

8The economic theory underpinning this empirical literature stems from the inter-temporal approach
to the current account, which was initially proposed by Sachs (1981) and Buiter (1981) and later extended
by Obstfeld and Rogo¤ (1995) and by Gourinchas and Rey (2007). This approach considers a country�s
inter-temporal budget constraint that links the net foreign asset position and the future dynamics of
the current account. Recently, Camarero et al. (2015) contribute to the discussion in the context of the
European monetary integration process.
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with and without bounds equalize �the so-called �break-even�bounds, which are denoted

by
�
b; b
�
= [b�; b

�
]. The use of �break-even�bounds warrants a minimum range under

which the standard ADF unit root test does not su¤er from oversizing.

The data set comprises sixteen developed OECD countries for which annual data is

available from 1980 to 2016. The source is the International Monetary Fund, World

Economic Outlook Database, October 2016 and the evolution of the series is displayed

in Figure 6. This �gure includes the horizontal lines de�ned by the upper and lower

thresholds
�
b; b
�
= [�4; 6], although some countries, such as Norway, Sweden, Switzerland

and the United Kingdom, are not monitored by the MIP. As it can be seen, only for

France and Italy the observed cabt time series lay inside the MIP range during the period

of analysis. It should be born in mind that these values de�ne a target range that

would condition policies undertaken by government under MIP surveillance system so

that convergence of cabt towards the target range is pursued. Therefore, although such

values can be acting as attractors, it is manifestly evident that for most of cases the time

series lay outside the target range. In this case the second strategy that de�nes the set of

bounds based on the observed range of values for each country plays an important role

in the analysis.

The model estimated for each country (i) is given by:

cabi;t = �i + �icabi;t�1 +

kiX
j=1

 i;j�cabi;t�j + "i;t;

i = 1; : : : ; 16 and t = 1980; : : : ; 2016. Table 11 shows that the degree of persistence (mea-

sured by �̂i) is relatively low and, on the whole, far from the unit root neighbourhood

when standard OLS or bias-corrected OLS estimates are used.9 Nevertheless, when the

bounded nature of time series is considered, most countries show a unit root, emphasizing

the insu¢ ciency of the market to promote e¤ective adjustments to o¤set external disequi-

libria, and supporting the surveillance measures proposed by the European Commission,

as Camarero et al. (2015) highlight. These results are obtained regardless of whether

the MIP-based or the min/max-based bounds are used since the bias corrected estimates

are almost equivalent in both cases. Finally, when the break-even bounds are speci�ed,

bias corrected estimates show slightly smaller values than the ones obtained with the

use of the MIP-based and the min/max-based bounds. However, this is somewhat to be

expected given the fact that the break-even bounds de�ne a set of bounds that is closer

to the unbounded case.
9For Andrews method an AR(1) model is estimated. For the WSLS the autoregressive order is selected

using BIC, although similar results are obtained when the MAIC is applied.
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6 Conclusions

This paper analyzes the behavior of the �rst order autoregressive estimator when the

stochastic process being studied is in�uenced by the presence of bounds that regulate its

evolution. We consider both the standard OLS estimator as well as some of the techniques

proposed in the literature in order to correct the �nite sample bias of this estimator.

We �rst show that the presence of bounds clearly distorts the performance of both

types of estimators. The more limited the stochastic process � i.e., the narrower the

�uctuation bands � the higher the distortion e¤ect. This is especially harmful when

the autoregressive parameter takes values close to 1, given that the estimated values

tend to take values close to 0. This clearly alters the interpretation of the results, leading

practitioners to observe a scarce level of persistence when the variable is, in fact, extremely

persistent.

In order to remove this e¤ect, we have proposed some modi�cations of the methods

proposed by Andrews (1993) and Perron and Yabu (2009a) that account for the bounded

nature of the time series. Simulation experiments have evidenced that these extensions are

quite helpful in order to appropriately determine shock persistence for bounded stochastic

processes. Notwithstanding, estimation bias persists in those cases for which the rank

variation de�ned by the bounds is very narrow.

Finally, we have applied these new methods to the analysis of the current account

balance of a sample of developed countries. Our results show that the use of the proposed

methods improve our knowledge about the stochastic properties of the variables under

study, allowing us to carry out more adequate shock persistence analysis.
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A Mathematical appendix

Lemma 1 Let fytgTt=1 be the stochastic process given by (2)-(3) with � = 0. Then:
a) E (ytyt�1) = E

�
"�t "

�
t�1
�
+Op(T

1=2):

b) E (ytyt+kyt+k+lyt+k+l+m) = E
�
"�t "

�
t+k"

�
t+k+l"

�
t+k+l+m

�
+Op(T

1=2):

with "�t =
tX
i=1

�i"t�i and r�t =
tX
i=1

�i(�t�i � ��t�i)

Proof. For statement (a), we have:

E (ytyt�1) = E
�
("�t + r�t )

�
"�t�1 + r�t�1

��
= E

�
"�t "

�
t�1
�
+ E

�
"�t r

�
t�1
�
+ E

�
r�t "

�
t�1
�
+ E

�
r�t r

�
t�1
�

= E
�
"�t "

�
t�1
�
+R:

Then, we should prove that R is an Op(T 1=2). To do it, it su¢ ces to note that:�����T�1
TX
t=1

�
"�t r

�
t�1 + r�t "

�
t�1 + r�t r

�
t�1
������ � T�1

TX
t=1

���"�t r�t�1 + r�t "
�
t�1 + r�t r

�
t�1
��� �

� T�1

(
[max (j"�t j) + max (jr�t j)]

TX
t=1

��r�t�1��
)

+ T�1max
���"�t�1��� TX

t=1

jr�t j = op (1) ;

given that max (j"�t j), max (jr�t j) are op
�
T 1=2

�
and

PT
1 jr�t j is Op

�
T 1=2

�
, according to the

results of Cavaliere and Xu (2014).

For statement (b), we write:

E (ytyt+kyt+k+lyt+k+l+m) = E
�
("�t + r�t )

�
"�t+k + r�t+k

��
"�t+k+l + r�t+k+l

� �
"�t+k+l+m + r�t+k+l+m

��
= E

�
"�t "

�
t+k"

�
t+k+l"

�
t+k+l+m

�
+M;

with M containing the covariates between "�t and r
�
t , which can be generarically de�ned

as E [("�t )
s(r�t )

4�s], s = 1; 2; 3, and E [(r�t )
4]. We have to prove that all these elements are
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op (T
�2). To that end, we should note that:�����T�1=2

TX
t=1

"�t "
�
t�i"

�
t�jr

�
t

����� � T�3=2
TX
t=1

��max(j"�t j)3r�t �� � T�1=2max
�
(j"�t j)

3� TX
t=1

r�t = Op (1) ;�����T�1=2
TX
t=1

"�t "
�
t�ir

�
t r
�
t�i

����� � T�1=2
TX
t=1

��max("�t )2max(r�t )r�t ��
� T�1=2max

�
("�t )

2�max [(jr�t j)] TX
t=1

r�t = Op (1) ;�����T�1=2
TX
t=1

"�t r
�
t r
�
t�ir

�
t�j

����� � T�1=2
TX
t=1

��max("�t )max �(jr�t j)2� r�t ��
� T�1=2max ["�t ] max

�
(jr�t j)

2� TX
t=1

r�t = Op (1) :

Lemma 2 Let fytgTt=1 be the stochastic process given by (2)-(3). Further, let us de�ne

N = (T � 1)�1
T�1X
t=1

ytyt�1 and D = T�1
TX
t=1

y2t . Then:

a) E (N) = �
1��2 + op (T

�1) :

b) E (D) = 1
1��2 + op (T

�1) :

c) V ar(D) =
2(1+�2)
T (1��2)3 +Op

�
T�3=2

�
:

d) Cov(N;D) = 4�
T (1��2)3 +Op

�
T�3=2

�
:

Proof. Statements (a) and (b) derive from results in Lemma 1. To prove (c) we should

note that:

E
�
D2
�
=

1

T 2
E

24 TX
t=1

y2t

!235 = 1

T 2
E

24 TX
t=1

("�t + r�t )
2

!235
=

1

T 2
E

24 TX
t=1

("�t )
2

!2
+Op(T

1=2)

35
=

1

T 2

"
3T

(1� �2)2
+ 2

T�1X
i=1

(T � i)
1 + 2�2i

(1� �2)2
+Op(T

1=2)

#

=
1

(1� �2)2
+
2 (1 + �2)

T (1� �2)3
+Op(T

�3==2);

and, subsequently, we have that:

V ar (D) =
2 (1 + �2)

T (1� �2)3
+Op(T

�3=2):
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Similarly, in order to prove (d), we should note that:

E (ND) =
1

T (T � 1)E
" 

TX
t=2

yt�1yt

! 
TX
t=1

y2t

!#

=
1

T (T � 1)

"
2(T � 1)E

�
y3t yt�1

�
+ 2

TX
j=3

(T � 1� j)E(ytyt�1y
2
t�1�j)

#

=
1

T (T � 1)
�
2(T � 1)E

�
("�t + r�t )

3("�t�1 + r�t�1)
�

+2
TX
j=3

(T � 1� j)E(("�t + r�t )("
�
t�1 + r�t�1)("

�
t�1�j + r�t�1�j)

2]:

Rearranging terms,

E (ND) =
1

T (T � 1)
�
2(T � 1)

�
E
�
("�t )

3"�t�1
�
+Op(T

1=2)
	

+2
TX
j=3

(T � 1� j)
�
E
�
("�t "

�
t�1("

�
t�1�j)

2
�
+Op(T

1=2)
	
]

=
�

(1� �2)2
+

4�

T (1� �2)3
+Op(T

�3=2):

Then,

Cov (N;D) =
4�

T (1� �2)3
+Op(T

�3=2):

A.1 Proof of Theorem 1

Let us consider that the variable yt is generated by (2) and (3) with j�j < 1; � =

0 and "t � iid (0; 1). Following Mariott and Pope (1954), let us de�ne the �rst order

autorregresive parameter as r = N=D, where

N =
1

T � 1

T�1X
t=1

ytyt�1; (7)

D =
1

T

TX
t=1

y2t : (8)

Then, the expected value of r is given by:

E(r) =
�

�

�
1� Cov(N;D)

��
+
V ar(D)

�2

�
; (9)
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where E(N) = � and E(D) = �. Using the results of Lemmas 1 and 2 we have that:

E(r) = E(�̂) = �� 2�
T
;

so that

�̂
p! �:
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Table 1: Andrews MU estimates for symmetric bounded stochastic processes

�MU

� �c = 0:1 �c = 0:3 �c = 0:5 �c = 0:7 �c = 1
0 -0.01 -0.01 -0.01 -0.00 -0.00
0.1 0.07 0.09 0.09 0.10 0.10
0.2 0.15 0.19 0.19 0.19 0.19
0.3 0.23 0.29 0.29 0.29 0.29
0.4 0.29 0.39 0.39 0.40 0.39
0.5 0.36 0.49 0.49 0.49 0.49
0.6 0.41 0.58 0.59 0.58 0.59
0.7 0.45 0.69 0.68 0.69 0.69
0.8 0.48 0.79 0.79 0.78 0.79
0.9 0.51 0.87 0.89 0.89 0.88
1 0.53 0.92 0.96 0.96 0.97

Table 2: Percentiles of the limiting distribution of �̂W for di¤erent (symmetric) bounds

(c; c) 1% 2.5% 5% 7% 7.5% 10% 15% 50% 85%
(�0:1; 0:1) -9.16 -9.01 -8.88 -8.82 -8.80 -8.74 -8.64 -8.25 -7.89
(�0:2; 0:2) -5.39 -5.18 -5.02 -4.94 -4.93 -4.86 -4.76 -4.38 -4.07
(�0:3; 0:3) -4.58 -4.21 -3.94 -3.82 -3.79 -3.70 -3.56 -3.11 -2.80
(�0:4; 0:4) -4.17 -3.85 -3.58 -3.44 -3.41 -3.28 -3.09 -2.52 -2.17
(�0:5; 0:5) -3.75 -3.49 -3.27 -3.15 -3.13 -3.02 -2.85 -2.22 -1.79
(�0:6; 0:6) -3.37 -3.14 -2.95 -2.86 -2.84 -2.74 -2.60 -2.04 -1.56
(�0:7; 0:7) -3.15 -2.89 -2.70 -2.61 -2.59 -2.50 -2.38 -1.89 -1.42
(�0:8; 0:8) -3.11 -2.81 -2.56 -2.45 -2.43 -2.33 -2.20 -1.74 -1.32
(�0:9; 0:9) -3.10 -2.79 -2.54 -2.40 -2.38 -2.26 -2.08 -1.59 -1.20
(�1:0; 1:0) -3.14 -2.81 -2.55 -2.40 -2.38 -2.25 -2.06 -1.46 -1.08
(�1:5; 1:5) -3.13 -2.81 -2.53 -2.39 -2.36 -2.23 -2.03 -1.20 -0.49
(�1;1) -3.12 -2.80 -2.53 -2.39 -2.37 -2.24 -2.04 -1.21 -0.24
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Table 3: Bias corrected estimator using Andrews median-unbiased estimator

T �nc 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.5
50 0 0.39 0.08 0.07 0.06 0.07 0.06 0.06 0.06 0.06 0.06 0.06

0.1 0.41 0.15 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13
0.2 0.43 0.23 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21
0.3 0.46 0.32 0.31 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30
0.4 0.49 0.43 0.41 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40
0.5 0.51 0.54 0.51 0.50 0.49 0.49 0.50 0.50 0.49 0.49 0.49
0.6 0.53 0.63 0.61 0.60 0.59 0.59 0.59 0.59 0.59 0.59 0.59
0.7 0.55 0.70 0.72 0.71 0.69 0.69 0.69 0.69 0.69 0.69 0.69
0.8 0.58 0.76 0.80 0.81 0.80 0.80 0.79 0.79 0.79 0.79 0.79
0.85 0.58 0.79 0.82 0.84 0.85 0.85 0.84 0.84 0.84 0.84 0.84
0.9 0.59 0.81 0.84 0.86 0.87 0.89 0.89 0.89 0.89 0.89 0.88
0.95 0.60 0.82 0.86 0.87 0.88 0.90 0.91 0.92 0.92 0.92 0.92
1 0.62 0.83 0.89 0.91 0.91 0.92 0.92 0.93 0.94 0.94 0.96

200 0 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
0.1 0.11 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
0.2 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
0.3 0.30 0.29 0.30 0.30 0.30 0.30 0.30 0.30 0.29 0.30 0.30
0.4 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.39 0.40 0.40
0.5 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.49 0.50 0.50
0.6 0.62 0.59 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.59
0.7 0.73 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69
0.8 0.81 0.80 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79
0.85 0.83 0.87 0.85 0.85 0.84 0.84 0.84 0.84 0.84 0.84 0.84
0.9 0.86 0.92 0.91 0.90 0.90 0.90 0.90 0.89 0.90 0.90 0.90
0.95 0.88 0.94 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
1 0.90 0.96 0.97 0.98 0.98 0.98 0.98 0.98 0.99 0.99 0.99
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Table 7: Mean of the distribution of �̂TW . The AR(2) case

k � pct T �nc 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.5
known � 50 50 0.8 0.94 0.50 0.61 0.71 0.76 0.77 0.78 0.78 0.78 0.78 0.78

0.9 0.95 0.50 0.62 0.74 0.80 0.84 0.86 0.87 0.87 0.87 0.88
0.95 0.93 0.51 0.62 0.74 0.81 0.85 0.87 0.89 0.90 0.91 0.92
1 0.92 0.49 0.60 0.73 0.81 0.86 0.88 0.90 0.91 0.92 0.95

200 0.8 0.45 0.71 0.78 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
0.9 0.45 0.74 0.85 0.88 0.89 0.90 0.90 0.90 0.90 0.90 0.90
0.95 0.45 0.74 0.87 0.91 0.93 0.94 0.94 0.94 0.95 0.95 0.95
1 0.44 0.74 0.87 0.92 0.95 0.96 0.97 0.97 0.98 0.98 0.99

� 85 50 0.8 0.73 0.38 0.60 0.71 0.75 0.77 0.78 0.78 0.78 0.78 0.78
0.9 0.70 0.40 0.60 0.73 0.80 0.83 0.85 0.86 0.87 0.87 0.87
0.95 0.70 0.40 0.60 0.73 0.80 0.84 0.86 0.88 0.89 0.90 0.91
1 0.70 0.39 0.59 0.72 0.80 0.85 0.88 0.90 0.91 0.92 0.94

200 0.8 0.37 0.71 0.78 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
0.9 0.38 0.74 0.85 0.88 0.89 0.90 0.90 0.90 0.90 0.90 0.90
0.95 0.38 0.74 0.87 0.91 0.93 0.94 0.94 0.94 0.94 0.95 0.94
1 0.38 0.74 0.87 0.92 0.95 0.96 0.97 0.97 0.98 0.98 0.99

MAIC � 50 50 0.8 0.94 0.88 0.84 0.86 0.88 0.89 0.88 0.88 0.88 0.87 0.87
0.9 0.96 0.88 0.86 0.89 0.91 0.92 0.92 0.92 0.91 0.91 0.91
0.95 0.94 0.87 0.86 0.89 0.92 0.93 0.93 0.93 0.94 0.94 0.94
1 0.94 0.88 0.86 0.89 0.92 0.94 0.94 0.94 0.94 0.94 0.96

200 0.8 0.96 0.89 0.86 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84
0.9 0.96 0.93 0.91 0.90 0.91 0.91 0.91 0.91 0.91 0.91 0.91
0.95 0.96 0.93 0.93 0.93 0.94 0.95 0.95 0.95 0.95 0.95 0.95
1 0.96 0.93 0.91 0.94 0.96 0.97 0.97 0.98 0.98 0.98 0.99

� 85 50 0.8 0.92 0.84 0.79 0.82 0.85 0.86 0.87 0.87 0.87 0.86 0.85
0.9 0.94 0.84 0.80 0.85 0.88 0.90 0.90 0.90 0.90 0.90 0.90
0.95 0.91 0.83 0.80 0.85 0.88 0.90 0.91 0.92 0.92 0.93 0.93
1 0.92 0.83 0.80 0.85 0.89 0.91 0.92 0.93 0.93 0.93 0.95

200 0.8 0.96 0.87 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84
0.9 0.95 0.90 0.89 0.90 0.91 0.91 0.91 0.91 0.91 0.91 0.91
0.95 0.95 0.90 0.91 0.93 0.94 0.95 0.95 0.95 0.95 0.95 0.95
1 0.95 0.90 0.90 0.93 0.95 0.96 0.97 0.98 0.98 0.98 0.99

BIC � 50 50 0.8 0.49 0.51 0.68 0.75 0.78 0.78 0.79 0.79 0.79 0.79 0.79
0.9 0.50 0.52 0.70 0.78 0.83 0.86 0.87 0.87 0.88 0.88 0.88
0.95 0.51 0.54 0.70 0.78 0.83 0.86 0.89 0.90 0.91 0.92 0.92
1 0.49 0.53 0.68 0.77 0.83 0.87 0.90 0.91 0.92 0.93 0.95

200 0.8 0.59 0.72 0.78 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
0.9 0.60 0.75 0.85 0.88 0.89 0.90 0.90 0.90 0.90 0.90 0.90
0.95 0.61 0.75 0.87 0.91 0.93 0.94 0.94 0.94 0.95 0.95 0.95
1 0.61 0.75 0.87 0.92 0.95 0.96 0.97 0.97 0.98 0.98 0.99

� 85 50 0.8 0.28 0.45 0.64 0.74 0.77 0.78 0.78 0.79 0.79 0.79 0.78
0.9 0.28 0.45 0.66 0.76 0.82 0.84 0.86 0.87 0.87 0.87 0.87
0.95 0.26 0.46 0.66 0.76 0.81 0.85 0.88 0.89 0.90 0.91 0.91
1 0.26 0.45 0.64 0.75 0.82 0.86 0.89 0.90 0.91 0.92 0.94

200 0.8 0.57 0.72 0.78 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
0.9 0.57 0.75 0.85 0.88 0.89 0.90 0.90 0.90 0.90 0.90 0.90
0.95 0.58 0.75 0.87 0.91 0.93 0.94 0.94 0.94 0.95 0.95 0.94
1 0.58 0.75 0.87 0.92 0.95 0.96 0.97 0.97 0.98 0.98 0.99
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Table 8: Mean of the distribution of �̂50TW . The ARMA(1,1) case with BIC

T � � 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.5
50 0.8 -0.8 0.37 -0.05 -0.03 -0.03 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02

-0.4 0.49 0.53 0.49 0.49 0.46 0.49 0.47 0.47 0.47 0.46 0.46
0 0.57 0.68 0.74 0.76 0.75 0.74 0.74 0.73 0.73 0.72 0.72
0.4 0.58 0.76 0.81 0.81 0.84 0.82 0.82 0.82 0.82 0.82 0.82
0.8 0.42 0.57 0.68 0.74 0.81 0.81 0.81 0.80 0.81 0.80 0.80

0.9 -0.8 0.39 0.07 0.15 0.11 0.12 0.12 0.12 0.12 0.12 0.12 0.12
-0.4 0.58 0.58 0.56 0.60 0.58 0.58 0.58 0.58 0.58 0.58 0.57
0 0.62 0.62 0.78 0.81 0.81 0.81 0.81 0.81 0.80 0.80 0.80
0.4 0.46 0.67 0.78 0.86 0.88 0.88 0.87 0.87 0.87 0.86 0.86
0.8 0.35 0.40 0.68 0.77 0.84 0.85 0.87 0.86 0.87 0.86 0.86

0.95 -0.8 0.09 0.26 0.26 0.21 0.27 0.29 0.29 0.27 0.27 0.27 0.27
-0.4 0.50 0.51 0.62 0.63 0.64 0.64 0.64 0.64 0.64 0.63 0.63
0 0.62 0.63 0.77 0.84 0.83 0.83 0.84 0.84 0.84 0.84 0.83
0.4 0.40 0.63 0.72 0.83 0.86 0.89 0.90 0.89 0.89 0.88 0.88
0.8 0.42 0.52 0.68 0.75 0.82 0.84 0.85 0.88 0.88 0.88 0.88

1 -0.8 0.23 0.19 0.19 0.37 0.38 0.38 0.38 0.36 0.36 0.36 0.36
-0.4 0.35 0.56 0.70 0.74 0.75 0.75 0.74 0.76 0.75 0.74 0.74
0 0.70 0.73 0.75 0.87 0.87 0.87 0.88 0.89 0.89 0.89 0.89
0.4 0.39 0.69 0.79 0.84 0.86 0.90 0.93 0.92 0.93 0.93 0.93
0.8 0.42 0.50 0.68 0.74 0.82 0.85 0.87 0.91 0.91 0.93 0.92

200 0.8 -0.8 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
-0.4 0.59 0.65 0.66 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64
0 0.70 0.82 0.81 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82
0.4 0.53 0.83 0.86 0.85 0.86 0.86 0.86 0.86 0.86 0.86 0.86
0.8 0.34 0.75 0.85 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87

0.9 -0.8 0.23 0.28 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
-0.4 0.74 0.84 0.80 0.80 0.80 0.79 0.79 0.79 0.79 0.79 0.79
0 0.64 0.87 0.89 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90
0.4 0.59 0.83 0.89 0.91 0.92 0.92 0.92 0.92 0.92 0.92 0.92
0.8 0.31 0.70 0.86 0.90 0.92 0.93 0.93 0.93 0.93 0.93 0.93

0.95 -0.8 0.35 0.54 0.51 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49
-0.4 0.74 0.93 0.89 0.88 0.88 0.88 0.88 0.88 0.87 0.87 0.87
0 0.69 0.90 0.93 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94
0.4 0.49 0.80 0.89 0.93 0.94 0.95 0.95 0.95 0.95 0.95 0.95
0.8 0.30 0.71 0.85 0.91 0.93 0.95 0.96 0.96 0.96 0.96 0.96

1 -0.8 0.85 0.94 0.85 0.83 0.83 0.82 0.81 0.81 0.81 0.81 0.81
-0.4 0.75 0.98 0.98 0.98 0.98 0.97 0.97 0.97 0.97 0.97 0.97
0 0.74 0.93 0.96 0.96 0.98 0.98 0.98 0.99 0.99 0.99 0.99
0.4 0.51 0.82 0.90 0.93 0.95 0.97 0.98 0.98 0.98 0.98 0.98
0.8 0.33 0.70 0.87 0.92 0.94 0.95 0.97 0.98 0.98 0.98 0.99
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Table 9: Mean of the distribution of �̂85TW . The ARMA(1,1) case with BIC

T � � 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.5
50 0.8 -0.8 0.03 -0.05 -0.03 -0.03 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02

-0.4 0.07 0.45 0.49 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.45
0 0.14 0.60 0.72 0.74 0.74 0.73 0.73 0.72 0.72 0.72 0.71
0.4 0.31 0.57 0.75 0.78 0.81 0.81 0.82 0.82 0.81 0.81 0.80
0.8 0.08 0.44 0.66 0.72 0.79 0.80 0.80 0.80 0.80 0.80 0.79

0.9 -0.8 0.22 0.07 0.11 0.11 0.12 0.12 0.12 0.12 0.12 0.12 0.12
-0.4 0.16 0.50 0.55 0.59 0.58 0.57 0.57 0.57 0.57 0.57 0.56
0 0.34 0.58 0.75 0.78 0.79 0.80 0.80 0.80 0.80 0.80 0.79
0.4 0.30 0.59 0.74 0.81 0.84 0.85 0.86 0.86 0.86 0.86 0.85
0.8 -0.01 0.40 0.64 0.74 0.82 0.83 0.85 0.85 0.86 0.86 0.85

0.95 -0.8 0.00 0.26 0.26 0.20 0.24 0.27 0.27 0.27 0.27 0.27 0.26
-0.4 0.33 0.44 0.62 0.63 0.64 0.64 0.63 0.63 0.63 0.63 0.62
0 0.45 0.59 0.73 0.81 0.82 0.82 0.83 0.83 0.83 0.83 0.82
0.4 0.22 0.59 0.71 0.79 0.83 0.86 0.88 0.88 0.88 0.88 0.87
0.8 0.09 0.45 0.66 0.72 0.79 0.82 0.84 0.86 0.87 0.87 0.87

1 -0.8 0.05 0.19 0.19 0.33 0.36 0.36 0.36 0.36 0.35 0.35 0.34
-0.4 0.27 0.44 0.61 0.73 0.72 0.73 0.72 0.73 0.74 0.74 0.73
0 0.45 0.69 0.67 0.84 0.84 0.86 0.87 0.87 0.87 0.87 0.87
0.4 0.23 0.58 0.73 0.80 0.83 0.89 0.90 0.90 0.91 0.92 0.92
0.8 0.09 0.43 0.66 0.73 0.80 0.83 0.86 0.90 0.91 0.92 0.91

200 0.8 -0.8 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
-0.4 0.59 0.65 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64
0 0.57 0.80 0.81 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82
0.4 0.44 0.80 0.85 0.85 0.86 0.86 0.86 0.86 0.86 0.86 0.86
0.8 0.34 0.75 0.84 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87

0.9 -0.8 0.23 0.24 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
-0.4 0.70 0.82 0.80 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79
0 0.55 0.86 0.89 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90
0.4 0.46 0.81 0.89 0.91 0.92 0.91 0.92 0.92 0.92 0.91 0.91
0.8 0.31 0.70 0.86 0.90 0.92 0.93 0.93 0.93 0.93 0.93 0.93

0.95 -0.8 0.35 0.50 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49
-0.4 0.74 0.89 0.88 0.88 0.88 0.87 0.87 0.87 0.87 0.87 0.87
0 0.51 0.84 0.91 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94
0.4 0.45 0.78 0.89 0.93 0.94 0.95 0.95 0.95 0.95 0.95 0.95
0.8 0.30 0.71 0.85 0.91 0.93 0.95 0.96 0.96 0.96 0.96 0.96

1 -0.8 0.85 0.85 0.83 0.83 0.81 0.81 0.81 0.81 0.81 0.81 0.80
-0.4 0.66 0.98 0.95 0.97 0.96 0.97 0.96 0.96 0.97 0.97 0.96
0 0.61 0.87 0.92 0.95 0.97 0.98 0.98 0.98 0.98 0.98 0.98
0.4 0.46 0.78 0.90 0.93 0.95 0.96 0.97 0.98 0.98 0.98 0.98
0.8 0.33 0.70 0.87 0.92 0.94 0.95 0.96 0.97 0.98 0.98 0.99
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Table 10: Mean of the distribution of �̂50TW based on the iterative estimation procedure.
The AR(1) case, T = 200

Non-iterative Iterative
Method �nc 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
Andrews 0 0.03 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

0.1 0.10 0.10 0.10 0.10 0.10 0.09 0.10 0.10 0.10 0.10
0.2 0.19 0.19 0.19 0.19 0.19 0.16 0.20 0.20 0.20 0.20
0.3 0.29 0.29 0.29 0.29 0.29 0.24 0.29 0.30 0.30 0.30
0.4 0.39 0.39 0.39 0.39 0.39 0.32 0.40 0.40 0.40 0.40
0.5 0.49 0.49 0.49 0.49 0.49 0.40 0.50 0.50 0.50 0.50
0.6 0.60 0.59 0.59 0.59 0.59 0.46 0.59 0.60 0.60 0.60
0.7 0.71 0.69 0.69 0.69 0.69 0.50 0.69 0.69 0.69 0.69
0.8 0.78 0.79 0.79 0.79 0.79 0.53 0.78 0.79 0.79 0.79
0.85 0.81 0.84 0.84 0.84 0.84 0.54 0.83 0.85 0.85 0.84
0.9 0.84 0.88 0.89 0.89 0.89 0.56 0.87 0.90 0.90 0.90
0.95 0.86 0.91 0.93 0.94 0.94 0.56 0.88 0.94 0.95 0.95
1 0.88 0.94 0.95 0.96 0.97 0.57 0.90 0.96 0.98 0.98

TW-MAIC 0 0.97 0.71 0.18 0.12 0.11 0.17 0.17 0.17 0.17 0.17
0.1 0.97 0.74 0.27 0.21 0.20 0.24 0.26 0.26 0.26 0.26
0.2 0.97 0.78 0.36 0.30 0.29 0.31 0.34 0.34 0.34 0.34
0.3 0.97 0.81 0.44 0.39 0.39 0.37 0.42 0.42 0.42 0.42
0.4 0.98 0.84 0.54 0.48 0.48 0.44 0.50 0.50 0.50 0.50
0.5 0.99 0.87 0.62 0.57 0.57 0.50 0.58 0.58 0.58 0.58
0.6 0.99 0.89 0.71 0.66 0.66 0.56 0.66 0.66 0.66 0.66
0.7 1.00 0.91 0.79 0.75 0.75 0.60 0.74 0.74 0.74 0.74
0.8 1.00 0.94 0.86 0.84 0.83 0.63 0.81 0.82 0.82 0.82
0.85 1.00 0.96 0.89 0.87 0.87 0.63 0.84 0.86 0.86 0.86
0.9 0.99 0.98 0.93 0.91 0.91 0.63 0.87 0.90 0.90 0.90
0.95 0.99 0.98 0.96 0.95 0.95 0.62 0.88 0.93 0.94 0.95
1 0.99 0.98 0.98 0.97 0.98 0.61 0.88 0.95 0.97 0.97

TW-BIC 0 0.57 0.07 0.05 0.05 0.05 -0.01 -0.01 -0.01 -0.01 -0.01
0.1 0.58 0.15 0.14 0.14 0.14 0.07 0.09 0.09 0.09 0.09
0.2 0.58 0.24 0.23 0.23 0.23 0.15 0.19 0.19 0.19 0.19
0.3 0.59 0.33 0.32 0.32 0.32 0.23 0.29 0.30 0.30 0.30
0.4 0.62 0.42 0.42 0.42 0.42 0.30 0.39 0.40 0.40 0.40
0.5 0.65 0.51 0.51 0.51 0.51 0.37 0.49 0.50 0.50 0.50
0.6 0.69 0.60 0.60 0.60 0.60 0.43 0.59 0.60 0.60 0.60
0.7 0.73 0.69 0.70 0.70 0.70 0.47 0.68 0.69 0.70 0.70
0.8 0.78 0.77 0.79 0.80 0.80 0.50 0.77 0.79 0.79 0.79
0.85 0.78 0.82 0.84 0.84 0.84 0.51 0.80 0.84 0.84 0.84
0.9 0.79 0.87 0.88 0.89 0.89 0.52 0.83 0.88 0.89 0.89
0.95 0.80 0.89 0.93 0.94 0.94 0.53 0.84 0.92 0.94 0.94
1 0.82 0.92 0.95 0.97 0.97 0.53 0.85 0.94 0.96 0.97

30



T
ab
le
11
:
P
er
si
st
en
ce
of
C
ur
re
nt
A
cc
ou
nt
B
al
an
ce
ov
er
G
D
P
ra
ti
o

B
ou
nd
s
ig
no
re
d

B
ou
nd
s
co
ns
id
er
ed

� b;b�
=
[�
1
;1
]

� b;b�
=
[�
4;
6]

� b;b�
=
[b
m
in
;b
m
a
x
]

� b;b�
=
[b
� ;
b�
]

�̂
O
L
S

�̂
M
U

�̂
�
5
0

T
W

�̂
�
8
5

T
W

k
�̂
M
U

�̂
�
5
0

T
W

�̂
�
8
5

T
W

�̂
M
U

�̂
�
5
0

T
W

�̂
�
8
5

T
W

�̂
M
U

�̂
�
5
0

T
W

�̂
�
8
5

T
W

A
us
tr
ia

0.
78

0.
81

1
0.
92

1
0.
91

1
1

0.
92

1
1

0.
88

1
0.
95

B
el
gi
um

0.
82

0.
93

1
0.
93

1
1

1
1

0.
96

1
1

0.
92

1
0.
95

F
in
la
nd

0.
90

0.
94

0.
94

0.
91

1
1

1
0.
94

1
1

0.
94

1
0.
94

0.
92

Fr
an
ce

0.
88

0.
91

0.
92

0.
89

1
1

1
0.
91

1
1

0.
91

1
0.
92

0.
89

G
er
m
an
y

0.
95

1
1

1
1

1
1

1
1

1
1

1
1

1
G
re
ec
e

0.
91

0.
98

0.
93

0.
90

1
1

1
0.
93

1
1

0.
93

1
0.
93

0.
91

Ir
el
an
d

0.
88

0.
81

1
1

1
1

1
1

1
1

1
1

1
1

It
al
y

0.
79

0.
75

0.
89

0.
85

1
0.
93

1
1

1
1

1
0.
88

0.
89

0.
87

L
ux
em
bo
ur
g

0.
68

0.
97

0.
82

0.
76

1
1

1
0.
83

1
1

0.
83

0.
87

0.
82

0.
77

N
et
he
rl
an
ds

0.
83

1
1

0.
93

1
1

1
1

1
1

1
0.
94

1
0.
94

N
or
w
ay

0.
83

0.
97

0.
87

0.
84

1
1

1
0.
88

1
1

0.
88

0.
93

0.
87

0.
85

P
or
tu
ga
l

0.
82

0.
90

0.
86

0.
83

1
1

0.
86

0.
86

1
0.
86

0.
86

0.
93

0.
86

0.
83

Sp
ai
n

0.
85

0.
94

0.
88

0.
86

2
1

0.
88

0.
88

1
0.
88

0.
88

1
0.
88

0.
86

Sw
ed
en

0.
92

1
1

0.
98

1
1

1
1

1
1

1
1

1
0.
99

Sw
it
ze
rl
an
d

0.
69

1
0.
82

0.
79

1
1

1
0.
83

0.
81

1
0.
83

0.
77

0.
83

0.
81

U
ni
te
d
K
in
gd
om

0.
91

1
1

0.
97

1
1

1
1

1
1

1
1

1
0.
97

N
ot
e:
� b;b�

=
[b
m
in
;b
m
a
x
]
de
no
te
th
e
b
ou
nd
s
de
�n
ed
by
th
e
m
in
im
um

an
d
m
ax
im
um

of
th
e
ob
se
rv
ed
va
lu
es
of
th
e
ca
d
i;
t

ti
m
e
se
ri
es
.
� b;b�

=
[b
� ;
b�
]
de
no
te
th
e
�b
re
ak
-e
ve
n�
b
ou
nd
s.

31



0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

Figure 1: Mean of the OLS � estimate for di¤erent (symmetric) bounded time series
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Figure 2: OLS and Andrews MU estimates for symmetric bounded processes with �c = 0:1
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Figure 3: OLS and Andrews MU estimates for symmetric bounded processes with �c = 0:3

33



0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

OLS
AND

Figure 4: OLS and Andrews MU estimates for symmetric bounded processes with �c = 0:7
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Figure 5: OLS and Andrews MU estimates for symmetric bounded processes with �c = 1
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