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Abstract 

 

Purpose: To study the price of health insurance for individuals aged 65 years and over.  

Methodology: A sample of private health policyholders in Spain is analysed. Joint models are 

estimated for men and women, separately. A log-linear model of the transformed cumulated 

number of claims associated with emergency room occupation, ambulance use and 

hospitalization is estimated, together with a proportional hazard survival model.  

Findings: The association between the longitudinal process of severe medical care and the 

survival time process is positive and highly significant for both men and women. An increase in 

the price of health insurance due to the effect of a larger number of emergency care demand 

events is slightly offset by the decrease in expected longevity.  

Practical implications: The effect of an increase in the number of claims is small compared to 

the reduction in survival, so age still plays a central role in rate making.  

Originality: The proposed methodology allows dynamic rates to be designed, so that the price 

of health insurance can change as new usage information becomes available. 
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1. Introduction 
 

The developed world has experienced a significant growth in its population aged 65 and over, 

which not only means that people are living longer but that they tend to face a greater number of 

years with a range of health problems. This demographic evolution has, in turn, led to a growth 

in demand for medical care and long-term care services, which extends longevity even further 

(see Dao et al., 2014). 

 

Survival is quite clearly related to age, but it is also dependent on health conditions, habits, and 

cohort effects, as well as on subject-specific characteristics, such as early age migration (Solé-

Auró et al., 2012) and environmental factors (Wu et al., 2015). Yet, when survival is threatened 

by disease or chronic pathology, medical care increases. As such, survival and medical care are 

in constant association, in what is an endogenous causal relationship. 

 

The health insurance offered by insurance companies is greatly challenged by insured 

policyholders who reach an age when their annual number of emergency care demand events 

increases substantially. Here, we argue that companies can offset the risk of insuring such 

individuals (i.e., those insureds that make more claims, in particular, for such services as 

emergency room visits, ambulance use and hospitalization) with the simultaneous decrease in 

their survival probabilities, a relationship that has been previously reported by Bird et al. (2002). 

The effect, however, has yet to be examined because studies have traditionally only considered 

past events rather than the simultaneous analysis of claim counts and survival. For example, 

D’Amico et al. (2009) analysed a portfolio of insureds that were covered for disability and 

found that survival could not be separated from impairment conditions. Indeed, standard 

actuarial methods of health insurance (Ericson and Starc, 2015; Pitacco, 2014) ignore the 

longitudinal information about their policyholders that is being constantly gathered. And while 

count data models were analysed by Boucher and Guillen (2009), these authors did not analyse 

a time-to-event process. 

 

Health insurance ratemaking is always based on the analysis of the historical records of the 

insurance company. The expected number of claims and the average cost per claim are the basis 

for calculating the expected cost of health care services for new customers. Risk factors such as 

age or general individual lifestyle indicators (for instance, smoking, exercising, dietary habits, 

…) can be used to produce personalized premiums. Gender can serve in the process of assessing 

risk but, in places like Europe, men and women must pay the same premium if all other 

characteristics are the same. The ban of gender as a risk factor is due to the existence of a 

directive aiming at preserving non-discrimination in services (Guillen, 2012). 

 

Traditionally, insurers assume that all insureds are alive for the duration of the contract, which 

usually one year, except for multi-year products. Therefore no correction is introduced due to 

the fact that some insured could eventually die before the end of the contract. This is precisely 

the novelty of our analysis, because we introduce a model that considers both frequency of 

usage and survival. We argue that in portfolios of elderly individuals, the two effects can be 

contrary. Technical features of health insurance are discussed in Black and Skipper (2000). The 

impact of various risk factors (gender in particular) is addressed by a report from the Groupe 

Consultatif Actuariel Européen (2011) and by Riedel (2006). 

 

The aim of this paper is to examine the use of joint models for predicting survival probabilities 

based on observed demand for emergency/hospital care. Here, we apply the model to 

individuals aged 65 and above, and we analyse emergency room treatment and hospitalization in 

a sample of private insurance policyholders. We conduct our analysis separately for men and 

women and we examine how rates are affected by the observation of claims and their 

corresponding survival probabilities. 

 



2. Literature review 

 

Health insurance refers to a type of coverage that is usually classified as non-life insurance. The 

reason is that this product does not consider survival explicitly and it mainly deals with claims 

aimed to receive a medical assistance whenever needed. Medical support can be provided in 

form of a service or as reimbursement of health care costs. Moreover, this product has different 

names around the world. For instance, the term “medical expense insurance” is used in the 

United States (see, for instance, Browne and Doerpinghaus, 1993), whereas the product is called 

“private medical insurance” in the United Kingdom (see, Foubister et al., 2006). 

 

In addition to the references cited in the previous section, a textbook by Benjamin and Pollard 

(1993) provides a classical general introduction to concepts and statistical tools in the field of 

life and health insurance. Medical expense insurance and related actuarial aspects can be found 

in the paper by Orros and Webber (1988), where the authors overview the methods underlying 

the calculation of health insurance premiums and reserves.  

 

There are many references related to sickness insurance, where the insured receives an 

economic compensation during his/her illness, but this is an extension of health insurance that 

we do not consider in our analysis. In sickness insurance, the duration of the process is crucial, 

because it impacts the overall cost of the claim (see more details in Pitacco, 2014). A 

contribution by Vercruysse et al. (2013) introduces an indexation mechanism in lifelong 

sickness insurance products, which aims at sharing the costs between insurer and policyholders. 

We emphasize this specific paper because it needs to consider the survival of policy holders 

because the coverage is for life. 

 

Generalizations to the classical health insurance mechanisms include the contribution by Pitacco 

(1992), who introduces the a posteriori risk classification in ratemaking. Then, individual past 

experience on claims has an influence on the price paid by a policy holder. For instance, 

someone who has not claimed is likely to pay less at policy renewal, whereas insureds that 

claimed more than the expected frequency, are usually penalized and they pay more at renewal.  

 

A case study on group health insurance has recently been presented by Hammad and Harby 

(2016). They discuss health insurance design for a group of individuals, they also show that 

ratemaking becomes more sophisticated for groups than for individuals due to the fact that, in 

the former case, methods need to accommodate to multilevel data, i.e. they need to adapt to 

information on the individual together with data on the group. 

 

The cost of individual health insurance, if payed on a yearly basis, increases with age. This fact 

makes premiums unaffordable for many people after retirement. A satisfactory solution to this 

problem has not been found yet. Lifelong contracts are expensive because insurers need to 

establish reserves due to the uncertainty of duration. Level premiums, meaning that the price is 

flat and does not increase with age, require pre-funding, as so the price also expensive. Age 

patterns of individual health-related costs are analyzed in Yamamoto (2013) and an extensive 

review of possible health Insurance schemes is presented in Pitacco (2014). 

 

3. A simple calculation of the price of health insurance 

 

In health insurance, the price of a one-year insurance contract is equal to the product of the 

expected number of claims, the average cost of the event and the probability that the 

policyholder survives to the end of the period (see, for instance, Pitacco, 2014). Survival 

probabilities are usually overlooked as they are close to one. However, for people aged 65 years 

and over, the one-year survival probability diminishes gradually. Indeed, the survival 

probability for 65-year-old men and women is higher than 99%, while it is around 80% for 

those aged 95 (INE, 2016). 

 



To ensure that the price of health insurance is stable for elderly policyholders, the increase in 

the expected number of claims needs to be compensated for by the decrease in survival 

probability. Otherwise, a fair premium would increase with age. If the impact on the total 

estimated cost of care attributable to the increase in the expected number of events is greater 

than the cost reduction attributable to the decrease in survival probability, then the price of 

insurance would rise. Using joint modeling techniques we can establish a relationship between 

these two effects. Thus, it can be concluded that the predicted premium is a function of the 

expected number of severe claims given the policyholder’s age and sex and taking into 

consideration also the probability of survival at that age.  

Additionally, the premium should account for the impact of the predicted number of claims on 

the one-year predicted survival probability. Once the size of the joint effects has been estimated, 

recommendations can be given.  

 

 

4. Data and methods 
 

We analyse a dataset provided by a Spanish health insurance company, which covers customers 

aged 65 and over. The data contain historical information on claims reported between 1 January 

2006 and 1 February 2014 by 39,137 policyholders (aged 65+). The data also contain 

information about their survival. Only non-routine care was considered and, so, usage counts 

measure specifically episodes of hospitalization, emergency service visits and the use of 

ambulance services. 

 

 

 
Figure 1. Data collection process for health insurance data, illustrating seven 

specific cases in the observation window. 

 

Figure 1 presents the follow-up design employed, starting in 2006 and ending in 2014. Subjects 

are observed from age 65 onwards until they reach the end of the study (indicated with a circle) 

or until they either die (indicated with a cross) or leave the insurance company (also indicated 

with a circle). If they die, the exact event date is recorded. On 31 December each year, a 

measuring point records the number of times that the policyholder demanded a non-routine 

medical service during that year. For those subjects covered from 2006 to 2014, there are eight 

measuring points; however, for those that die or leave the company during this period, the 

number of measuring points is lower. Likewise, subjects who turned 65 after the beginning of 

the study are only monitored from that point onwards. Profile 5 in Figure 1 corresponds to a 

policyholder who was covered only from the age of 82, given that he did not take out a contract 



until that age. Profile 6 shows that policyholders who died before 2006 are not included in the 

study. 

 

Table 1 presents the number of times the observed subjects requested services, i.e., specific 

types of medical care. Here, we consider the sum of the number of occasions that the subjects 

were admitted to hospital, plus the number of times they requested emergency room services 

plus the number of times they required an ambulance. Note that whenever a subject required all 

three services simultaneously, they are considered as separate requests, and so they count as 

three. 

 

<< Table 1>> 

 

It is clear that subjects insured for the longest periods of time and, hence, observed at more 

measuring points, account for a larger number of all three service requests than those observed 

on fewer occasions. Both the mean and standard deviation of the number of services per year 

are presented by gender and number of measuring points. The annual number of care usage 

units (also called claims) serves as the basis for the definition of the longitudinal process that is 

modelled together with the time-to-death. The means of the variables considered in Table 1 for 

those subjects observed over all eight years are smaller than those for subjects observed on 

fewer occasions. This is not surprising because the former correspond to the group of survivors 

that we expect to present good health. 

 

As a main longitudinal outcome, we define 𝑦𝑖(𝑡) = log(1 + 𝑐𝑖(𝑡)), where 𝑐𝑖(𝑡) is the number 

of claims in the previous 12 months for the 𝑖-th subject, 𝑖 = 1, … , 𝑛, at time point 𝑡. We only 

observe the number of emergency claims during the previous twelve months at a limited 

number of measuring points. A logarithmic scale was applied to allow for a log-linear 

specification. 
 

 

 
Figure 2. Observed subject-specific longitudinal evolutions for the censored and event groups. Randomly 

selected profiles of 25 subjects who did not die during the follow-up period (top) and 25 subjects who 

died before study ending (bottom). 
 

 

The top panel in Figure 2 presents a gender-balanced, random sample of 25 subjects who were 

censored, while the bottom panel depicts 25 similarly selected subjects who died before the 

observation process was concluded. As expected, the latter typically correspond to older 

subjects, and so their requests for health care were also made at more advanced ages. Subjects 

who died during the study window generally present upward profiling trends, which is 



indicative of their worsened health status over the course of time. In contrast, censored profiles 

present more oscillating trends over a longer timescale. Consequently, the two panels show that 

higher usage levels tend to be associated with a shorter time to death-event. 

 

When conducting longitudinal studies with health indicators, the current value of a given 

biomarker is not as relevant as its cumulative effects, although greater weight should be 

attached to measurements from the most recent past. In our analysis, the association between 

these cumulative effects and the risk of death is addressed in a single analysis employing a 

shared random effects structure with a bivariate Gaussian distribution. This means that 

dependence between the two components is assumed via an underlying latent process. In other 

words, two responses are conditionally independent given the associated random effect and the 

observed covariates. Joint models have been extensively used in this context (Andrinopoulou, et 

al, 2008) and also when modeling survival with cancer (Serrat et al., 2015). 

 
We want to characterize time-varying effects by considering the so-called true and unknown 
demand process, )(tmi

, where )()()( ttmty iii  . The instantaneous measure )(tmi
 is not 

affected by measurement error. We specify a linear mixed effects model for )(tmi
, including a 

linear trend, which serves as the basis for defining the real and complete longitudinal history up 
to t (see Verbeke and Molenberghs, 2009). We denote by ))(( tmF i

 a transformation of the 
instantaneous measure. In the basic joint model approach, it is assumed that )(tmi

 is not 
transformed when included in the survival model. However, we allow for this generalization so 
that we may take into account the fact that recent health care usage records are more relevant 
than past records. An exponential decay is assumed here, as in Piulachs et al. (2016) where 
several possibilities were tested. 
 
Let 

iT  be the observed event time and the corresponding event indicator
i , which is equal to 1 

if the death is registered within the study period and 0 otherwise. A standard proportional 
hazards model is assumed, which includes ))(( tmF i

, so that time-varying effects exist.  
 
The joint model is specified both as a longitudinal log-linear model and as a survival process 
simultaneously, where α is the parameter that captures the effect of the longitudinal component 
via the transformation of the instantaneous measure on the survival sub-model. Therefore, the 
joint model is defined as two submodels.  
 
First, the longitudinal model: 

 )()()( 110 tbbty iiioi     (1) 

where vectors ),( 1o  and ),( 1iio bb  i=1,…,n are the components of the mixed effects in the 

longitudinal sub-model. The Gaussian assumption is considered for the error term and the 

individual random effects, which are assumed to have zero-mean and covariance matrix D, 

whereas the error term follows a Gaussian process with mean zero and variance 
2 . The per-

observation noise terms are assumed to be not only mutually independent, but also independent 

with respect to the random effects.  

 
Second, the survival component (Cox, 1972): 
 

 ,))((exp)()),(,|( 0 tmFwthtssmwth ii

T

iii     (2) 
 
which includes a semi-parametric hazard regression model that embeds both the effect of a 
baseline covariate vector and subject-specific information (see also Kalbfleisch and Prentice, 
2002). In our model, the only covariate is Age0, which is the age of entry in the study. 
 
For the baseline hazard )(0 th , a third degree B-spline approximation to the baseline risk 
function was implemented allowing nonlinear time-evolution (for more details, see Piulachs et 
al., 2016). The maximum likelihood estimation (Hsieh et al., 2006) was obtained with R 
software (see Rizopoulos, 2010, 2011 and 2012). 



 

 

5. Results 
 

The results for the joint model estimation in the insurance dataset are presented separately for 

men and women in Table 2. The association parameter α is positive and significantly different 

from zero for both genders, indicating that the larger the cumulative number of emergency 

services and hospitalizations the greater the risk of death. This result is consistent with 

expectations as an aggravated patient has a higher probability of death.  

 

Our findings differ from those presented in Piulachs et al. (2015) for two reasons: (i) we only 

consider demand for certain specific types of medical care, which we believe to be more closely 

associated with emergency or severe conditions; and, (ii) we include a censoring mechanism 

because, clearly, some subjects are still alive at the end of the study period. A joint model for 

men and women, including a parameter for sex, is employed in Piulachs et al. (2016); however, 

the significance of this parameter suggests that a separate analysis is needed. 

 

We note that the association between the longitudinal process and the survival outcome is 

slightly higher for men (1.4819) than it is for women (1.3624), but the difference is not 

statistically significant. These results point to an association between emergency care use and 

hospitalization, on the one hand, and survival, on the other, so that when a subject presents a 

greater demand for this type of care their probability of survival falls. The fact that we model 

the hazard rate explains why the sign is positive, indicating that death is more likely to occur.  

 

The effect of age on survival can also be determined since the parameter for variable age0 is 

positive and significantly different from zero, but this is a well-known fact, as analysed by 

Vidiella-i-Anguera and Guillen (2005) among many others. 

 

<< Table 2>> 

 

The positive and significant coefficient for the age-at-entry covariate indicates that the older the 

subject was at the beginning of the study, the lower their probability of survival. In the log-

linear model of the longitudinal process for claims, we find the expected result. A positive and 

significant population trend 𝛽1 is found and, moreover, it is largely similar for men and women, 

albeit slightly lower for male insureds, while the mean intercept 𝛽0 is higher for their female 

counterparts. This finding is also expected because women make a higher average number of 

medical claims. Note that the effect of each subject’s age is included in the individual effects, 

which are not reported in Table 2. 

 

<< Table 3>> 

The results in Table 3 present the predicted survival probabilities at age 73 for an insured man 

and woman aged 65 at study entry. They both make a number of claims equal to 3, 1, 5 and 15 

in the first four years. If we examine the case of the male insured, it can be seen that when at the 

age of 65 he claims for three emergency care events, he has an estimated probability of 

surviving to the age of 73 equal to 96.95%; however, when he turns 66 and he makes only one 

claim, the probability of his surviving to 73 increases to 97.07%. In contrast, if a man makes 15 

claims at the age of 68, his probability of surviving to 73 falls to 94.63%, given the association 

between poor health and risk of death. 

 

The example in Table 3 shows that when the number of claims rises from 5 to 15, between the 

ages of 67 and 68, there is a fall in the probability of survival of 0.0173 (0.9636-0.9463) for 

men and of 0.036 for women (0.9651-0.9515). A simple extrapolation from Table 3 implies that 

an increase in the number of claims leads to a reduction in the probability of survival of roughly 

0.18% per claim in the case of men and of about 0.15% in the case of women. This result is 



obtained by dividing the reduction in survival probability by the initial survival estimate 

0.0173/0.9636=1.80% and dividing by the difference in claims 10 (15-5). 

 

Similar scenarios have been analysed for insureds aged 80 and 95 (the specific results for the 

latter being reported in Table 4). Here, the reduction in the probability of survival is about 

0.99% per claim for men and 0.93% for women at the age of 80, compared to 3.61% per claim 

for men and 4.03% per claim for women at the age of 95. 

 

<< Table 4>> 

 

The analysis of the interplay between claims and survival reveals an association between the 

two, to the effect that an increase in the number of claims leads to a reduction in the probability 

of survival. However, this decrease in survival is small.  

 

Let us consider that the cost of a claim equals C. In order to analyse the effect of this on the 

price of the premium, we would have the following result. Assume that for a given insured the 

expected number of claims is equal to 𝐸 and the survival probability is 𝑝, then the pure 

premium price (note, we do not consider general additional expenses here) would be equal to 

𝐶 × 𝐸 × 𝑝. When the number of expected claims increases by one, then we need to consider 
(𝐸 + 1), but the probability of survival at a later age decreases by 𝑟, so we have to substitute 𝑝 

by (1 − 𝑟)𝑝, so that the pure premium is 𝐶 × (𝐸 + 1) × 𝑝(1 − 𝑟). Thus, we obtain that the new 

premium is 𝐶 × (𝐸 + 1) × 𝑝(1 − 𝑟) = 𝐶 × 𝐸 × 𝑝 − 𝑟𝐶 × 𝐸 × 𝑝 + 𝐶 × 𝑝(1 − 𝑟). So, the 

premium would be equivalent to the initial premium if 

 

𝐶 × 𝑝(1 − 𝑟) =  𝑟 𝐶 × 𝐸 × 𝑝. 
 

Thus, the reduction in the probability of survival which compensates the cost of additional 

claims is exact if and only if 

 

𝐸 =
1 − 𝑟

𝑟
. 

 

This equality would imply perfect diversification of the two processes. For values of 𝑟 ranging 

from 2.5% to 20% we have calculated the corresponding expected number of claims that would 

imply equilibrium in the premium. The results are presented in Table 5. 

 

<< Table 5>> 

 

 

6. Conclusions 
 

We conclude that the reduction in survival should be much greater than that observed in our 

data in order to compensate for the increase in the demand for emergency care. This could be 

the case for very old age groups, but it does not seem to be feasible for adults around the age of 

70.  

 

Here, it should be noted that we do not consider dependence between the number of events and 

severity in terms of cost (Sarabia and Guillen, 2008). Further, a limitation of our study is that 

we only consider severe medical care events (namely, ambulance and emergency room use and 

hospitalization), while other medical treatments are not analysed and, as such, do not form part 

of the insurance policy under evaluation. 

 

We have shown that the increase of frequency claim, even if we just consider severe assistance, 

is much larger than the reduction in survival, so the inclusion of a survival correction for elderly 

policyholders in the premium calculation, which would reduce insurance price, is not sufficient 



to force a substantial price decrease. The conclusion for practitioners is therefore that health 

insurance for the older group remains a matter of pooling the risk with younger customers or of 

increasing the price of the policy with age. However, we argue that joint modelling of frequency 

and survival is a method that must be considered when developing dynamic pricing techniques, 

which are aimed at policy durations shorter than one year. In that case, knowledge of the 

claiming experience should be combined with an update of the survival prediction. 
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