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Summary 

 

 
Moving is essential for us to survive, and in countless occasions we 

move in response to visual information. However, this process is 

characterized as uncertain, given the variability present both at the 

sensory and motor stages. A crucial question, then, is how to deal with 

this uncertainty in order for our actions to lead to the best possible 

outcomes.  

 

Statistical decision theory (SDT) is a normative framework that 

establishes how people should make decisions in the presence of 

uncertainty. This theory identifies the optimal action as that which 

maximizes the expected reward (outcome) of the situation. Movement 

planning can be reformulated in terms of SDT, so that the focus is 

placed on the decisional component. Some experimental work making 

use of this theoretical approach has concluded that humans are optimal 

movement planners, while other has identified situations where 

suboptimality arises. However, sensorimotor decision-making within 

SDT has commonly eluded scenarios of interaction with moving objects. 

At the same time, the work devoted to moving objects has not focused 

on the decisional aspect. The present thesis aims at bridging both fields, 

with each of our three studies trying to answer different questions. 

 

Given the spatiotemporal nature of situations with moving objects, we 

can plan our actions by relying on both temporal and spatial cues 

provided by the object. In Study I we investigated whether exploiting 
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more one type of these visual cues led to a better performance, as 

defined by the reward given after each action. In our task we presented 

a target, which could vary in speed and motion time, approaching a line. 

Participants responded to stop the target and were rewarded according 

to its proximity to the line. Responding after the target crossed the line 

was penalized. We discovered that those participants planning their 

responses based on time-based motion cues had a better performance 

than those monitoring the target’s changing spatial position. This was 

due to the former approach circumventing a limitation imposed by the 

resolution of the visual system. We also found that viewing the object for 

longer favored time-based responses, as mediated by longer integration 

time. Finally, we used existing SDT models to obtain a reference of 

optimality, but we defend that these models are limited to interpret our 

data. 

 

Study II built on our previous findings to explore whether the use of 

temporal cues could be learnt. We took our previous paradigm and 

adapted it so that reward was manipulated after each task in order to 

foster exploiting temporal information. There was no evidence for 

learning taking place, since participants using temporal cues did so from 

the start of the experiment. Whether other methods reward can shape 

the use of certain cues, and why some people naturally tend to make 

more use of temporal information, still remain elusive.  

 

Study III deepened our knowledge on which variability people consider 

when planning their responses. We hypothesized that the reason why 

people are suboptimal (as defined by SDT) in many situations is 

because they represent only their measurement variability, roughly 

equivalent to the execution noise, while excluding the variability created 

by sudden changes in their planning. We took previous data and used a 
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Kalman filter to extract each participant’s measurement variability. We 

then used it to compute SDT-derived optimal responses, and discovered 

that they explained well our data, giving support to our hypothesis. We 

also found evidence for participants using the information provided by 

reward both to avoid being penalized and to choose the point at which to 

stabilize their responses. 

 

Taken together, our experimental work presents interaction with moving 

objects as a complex set of situations where different information guides 

our response planning. Firstly, visual cues of different origin. Secondly, 

our variability, coming from many sources, some of which may not be 

considered. Finally, the outcomes related to each action.  
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This introductory chapter intends to provide the reader with the 

necessary context to understand the motivation behind the present 

doctoral thesis. It also tries to give a quick glance at some of the models 

used in the experimental part. With this goal, the background is divided 

in two main parts.  

 

In the first part, we review previous work on sensorimotor decision-

making. We start by evidencing its biological relevance and 

characterizing it as a noisy process that generates uncertainty. We 

continue introducing statistical decision theory, one of the most general 

normative proposals to study decision-making under risk or uncertainty. 

We then present one model stemming from that theory that has  been 

extensively used to test whether human movement planning can be 

considered optimal. After reviewing evidence in favor of optimal 

movement planning, we do the same with evidence for suboptimality, 

grouping it by the hypothesized source of this phenomenon.   

 

The second part of the introduction is devoted to how people interact 

with moving objects. It starts by trying to sketch the foundations of how 

we can perceive motion. This section does not seek exhaustiveness, 

given the vast amount of topics that scientists of this area address. 

Alternatively, it is mainly focused on highlighting some mechanisms and 

phenomena, anticipating its future importance for the contents of the 

thesis later on. Once this has been explained, the next section dwells on 

the interaction between motion and position. The intention is to make 

clear how, although both are highly correlated, there are situations 

where motion can affect the perceived position of a moving object, and 

that this depends on the object’s speed. We conclude with an overview 

of how people estimate the time to contact of an object relative to some 
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reference, and the decisional variables they use to trigger an action to 

this object.   

 

1.1. Making sensorimotor decisions under 

uncertainty 

1.1.1. Perceiving and moving: essential, yet uncertain 

Human beings owe the current state of their nervous systems to a long 

evolutionary history. Evolution is produced so that organisms can adapt 

to their environment, with the ultimate goal of surviving both as 

individuals and as a species. To survive, though, it is necessary to 

interact with the environment and modify it. Basic behavior like feeding, 

hiding or mating shows how the only way to achieve that is by moving 

our body. Moreover, since movement is framed as part of our interaction 

with the world, many times we move based on some sensory stimulus: 

seeing a ripe fruit hanging from a tree, hearing a possible predator, 

smelling the pheromones that indicate us that our partner is in heat. And 

while some movements are just a reflex reaction to a stimulus, most 

actions require some kind of decision: how much to extend our arm to 

pick the fruit, in which direction to start running from the predator, what 

is the best way to approach our mate. Finally, it has to be considered 

that all decisions and actions have a goal. That is, we decide how to 

move according to a desired outcome: being able to feed, not being 

eaten, reproducing. 

 

The last paragraph gives us a gist of the elements we need to basically 

define our field of study: sensorimotor decision-making. This can be 
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defined as the decisional processes related to using sensory information 

to produce a motor output, with the goal of achieving a determinate 

outcome.  

 

Among all the modalities that can be the source of our sensory 

information, we will focus on vision. Constraining our field of study is 

justified if we consider the richness and complexity of visual information. 

In fact, conservative estimates point to around 30% of the human cortex 

being exclusively dedicated to processing vision (Van Essen, 2004; Van 

Essen & Drury, 1997), concentrated in the occipital cortex. The massive 

amount of space reserved in the brain for vision reveals the evolutive 

importance this sense has acquired. However, the storage capacity is 

still limited. This makes our visual system imperfect when trying to 

represent the outside world, especially when also considering the noise 

and system fluctuations generated at the different stages of visual 

processing (Faisal, Selen, & Wolpert, 2008). 

 

At the other end of the perception-action cycle, we also face several 

problems when moving, even if the movements humans can perform are 

much more sophisticated than those available to our phylogenetic 

ancestors some millions of years ago. Noise is present both at the 

planning stage, when we select the motor commands, and at the 

execution stage, when these commands are sent to the muscles (van 

Beers, Haggard, & Wolpert, 2004). Whichever the stage noise is 

generated at, the result is some motor variability being produced. This 

means that the movement we initially wanted to do and the one we will 

end up doing will differ by some extent. 

 

From the previous paragraphs it appears that both our perception and 

our movements have some uncertainty inherent to them. In the face of 



 10 

this problem, then, a crucial aspect is how we cope with this uncertainty 

when planning a movement to achieve an outcome. This will be 

discussed in brief, but first we will introduce a theoretical background 

that has commonly been used to study decisions under uncertainty. 

 

1.1.2. Statistical decision theory as a normative 

decisional framework 

Statistical decision theory (SDT, Blackwell & Girshick, 1954; Ferguson, 

1967) has been developed to give an account of how people should 

make decisions in the face of incomplete information (uncertainty). It is a 

very general framework with many adaptations. However, models 

derived from it share one characteristic: they are normative, because 

they tell us how the best possible decisions should be reached. 

Following the review by Maloney & Zhang (2010), we will briefly outline 

the basic elements of SDT, which consist of three sets and three 

functions. The connections among them can be appreciated in Figure 

1.1. 

 

 
Figure 1.1. The basic elements of SDT. The vertices correspond to the sets of possible 

states of the world (W), possible sensory states (X) and possible actions (A). The sides 

correspond to the likelihood, decision and gain functions. Reproduced from Maloney & 

Zhang (2010). 
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W refers to the set of possible states of the world, while w refers to the 

particular state of the world (unknown to the decision-maker) at a 

particular moment. X is the set of possible sensory states, while x is the 

sensory state the decision-maker has access to at a particular moment. 

Given that instantaneous sensory state, the decision-maker has to 

select, among the set A of possible actions, a particular action a. 

 

The functions that connect the different elements of the sets we just 

described are the following. The first is the likelihood function f(x|w), the 

sensory state given the state of the world. The second is the decision 

function a=d(x), that links the sensory state to a particular action. Finally, 

the gain function G(a,w) determines the outcome for a particular action.  

 

Such a minimal carcass can be used as a starting point to build tools to 

model perceptual, sensorimotor, or even non-perceptual decisions. 

Bayesian decision theory (Berger, 1985) and signal detection theory 

(Green & Swets, 1988), for instance, are two well-known examples of 

what can be considered as adaptations of SDT. Most models derived 

from SDT revolve around the idea that the optimal decision is that which 

maximizes the expected gain or expected utility. Expected utility 

maximization has been long studied, and it is common to refer to the 

core theoretical work around this topic as expected utility theory 

(Bernoulli, 1954; von Neumann & Morgenstern, 1944). With its concepts 

and ideas preceding the formalization of SDT, expected utility theory has 

been central for it. Since some concepts will be very relevant for the 

present work, it is convenient to introduce them.  

 

Choices have an associated outcome. This outcome can be measured 

in terms of gain, as already said before. A specific gain, though, will 
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have a subjective value for a decision-maker. The subjective value of an 

outcome is known as utility, a concept first introduced by Daniel 

Bernoulli in 1738. However,  assuming a context where the value is not 

distorted, we could use utility and gain interchangeably. From now on, 

and for the sake of simplicity, we will mainly use the term reward. This 

word, which is used in fields like reinforcement learning to denote an 

outcome, does not imply value distortion like utility, and avoids confusion 

with the other meanings of the term gain (like neural gain, or the Kalman 

gain we will use later on in this thesis).  

 

It is commonly assumed that the larger the reward, the better an 

outcome. But uncertain situations, where our choices are related to an 

outcome via a probabilistic process, are not so straightforward. In those 

cases, we refer to the expected value of a choice as the average 

outcome if we repeated that choice multiple times. This is simply 

calculated by multiplying the probability of an event by the value of the 

outcome when that event is produced. For instance, imagine we win 1€ 

every time we get tails after tossing a coin. Assuming the coin is not 

rigged, the probability of obtaining tails is 0.5. Thus, the expected value 

associated to obtaining tails is 0.5 x 1€ = 0.5€. To unify the vocabulary, 

here we will also use the term expected reward. Finally, all the different 

rewards could be organized in a reward function, which would map how 

reward evolves as a function of some relevant variable related to the 

outcome of the choice. Some of the terms introduced so far are changed 

when framing reward in a negative way. In this case, we would refer to it 

as loss. More desirable outcomes would have a smaller loss, and losses 

would be arranged in a loss function. Then, we could summarize what 

many instantiations of SDT propose in two ways: we could say that, 

among all the possible choices, people should make the choice that 

maximizes expected reward, or that which minimizes expected loss.  
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For some decades, economic literature depicted humans as deficient 

decision-makers that constantly failed to maximize expected reward. 

These claims were mainly based on results derived from a particular 

kind of tasks. In them, participants chose between two monetary 

outcomes with different associated payoff probabilities, similar to 

lotteries. For example, they could be forced to choose between winning 

5€ with a probability of 0.5, or 3€ with a probability of 0.8. Of course, 

optimal behavior would be revealed by consistently choosing the option 

with the largest expected reward (in our case, the first one). However, 

this was not what was commonly observed. Prospect theory (Kahneman 

& Tversky, 1979) and its update cumulative prospect theory (Tversky & 

Kahneman, 1992) are the most famous examples of those descriptive 

theories that tried to characterize the nature of observed behavior in this 

kind of situations. According to these accounts, one of the particularities 

of human decisions is that people undergo value distortion depending on 

the accumulated wealth, something already implied by the notion of 

utility. Another observed phenomenon is that risk seeking or risk 

aversion is shown depending on the gain or loss framing. One of the 

most famous claims is probability distortion, where people would 

overestimate events with low probability of occurring and underestimate 

those with high probability. Of note is that, strictly speaking, the lottery 

tasks where these behavioral phenomena were observed should not 

labeled as decisions under uncertainty, since probabilities were explicitly 

given to decision-makers. Instead, we should be talking about decisions 

under risk. In any case, they involve an uncertain outcome, and are 

similar to what we could experience in many sensorimotor situations. 

Actually, some researchers had the idea that movement planning could 

be formulated in terms of SDT. This is explained next. 
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1.1.3. Optimal movement planning 

Imagine you are running late for an important meeting. You suddenly 

stop at a red traffic light and see that a car is approaching you, but it is 

still at a considerable distance. You really want to arrive at the meeting 

as fast as possible, so you consider crossing the street by running 

without waiting for the traffic light to turn green. However, it is preferable 

to be late than to be run over by the car, so you estimate your chances 

to make it across before the car reaches you. This estimation is 

uncertain. Will you be able to run as fast as you think? Did you estimate 

the car’s speed right? In these kind of situations, deciding a plan of 

action in order to achieve a situation-defined positive outcome (or avoid 

a negative one) requires estimating our own uncertainty. Are we humans 

able to take into account our uncertainty, so that we can perform as 

good as we possibly can?  

 

In 2003, Julia Trommershäuser and colleagues (Trommershäuser, 

Maloney, & Landy, 2003b) published an article that gave start to a fruitful 

line of research. In it, they formulated movement planning in terms of 

SDT. They also conducted some experiments and, based on their 

results, they presented humans as efficient movement planners that 

were able to choose the motor trajectory that minimized the expected 

loss of the task. This means that participants performed optimally. 

 



 15 

 
Figure 1.2. Figure taken from Trommershäuser et al. (2003b) that shows the target 

configuration of their experiments, with two partially overlapping circles. 500 simulated 

trials are plotted for each condition, where each condition differed in the penalty 

associated to hitting the filled circle. Arrows indicate optimal aimpoints. Response 

distributions were generated from a common standard deviation of 4.2mm. 

 

In the experiments they conducted, participants had to reach a static 

target within a short time limit. The target was composed of two circles 

which partially overlapped, as shown in Figure 1.2. Depending on the 

region the finger finished in, a different number of points was received, 

and participants were instructed to maximize the points across trials. 

Landing into the region of the hollow circle (on the right in the figure) 

was rewarded with 100 points, landing outside any circle was neither 

rewarded nor penalized, and failing to reach any region within the time 

limit was penalized with -500 points. The outcome associated to landing 

inside the filled circle varied across conditions. Finally, landing inside the 
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region where the two circles overlapped brought the outcomes of both 

circles. In one condition, finishing the movement within the filled circle 

had a consequence of 0 points. In that case, given that the hitting 

variability was normally distributed around the aimpoint, the best 

strategy was to always aim at the center of the hollow circle. Adopting 

this strategy would make that the final accumulated points depended 

only on the participant’s variability, with less variable participants 

winning more. In another condition, hitting the filled circle was penalized 

with -100 points, so that landing at the overlapping region made the 

outcomes of both circles cancel each other out, so 0 points were given. 

In this case, the best strategy was to shift the aim point away from the 

filled circle (rightwards in the figure). Although doing this increases the 

probability of landing outside the hollow circle, it minimizes the chances 

of falling into the penalty area. This shift should be more pronounced for 

another condition where landing in the filled circle was penalized with -

500 points. In that case, landing outside the circles was less undesirable 

than hitting the filled circle, so a considerable shift in the aim point 

should be seeked to minimize this. But how big should the shift be in 

each case? This depends on the hitting variability of each participant, 

given the time limit movements had to respect. The more variable a 

participant is, the bigger the shift to avoid being penalized. With the 

observed variability of each participant, experimenters calculated their 

optimal aimpoint for each condition, which is that minimizing the 

expected loss. Surprisingly, this optimal did not differ from the observed 

center of the distribution for the participants’ responses. In other words, 

participants were optimal in their movement planning. According to the 

authors, participants could only achieve this through a knowledge of 

their hitting uncertainty, which was combined with the knowledge about 

the task’s reward and penalty structure. 
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Of course, the idea of assessing optimal performance in perception 

and/or movement was not new. For instance, optimal control theory (see 

Todorov, 2006) had long been trying to explain movements in terms of 

minimizing cost functions, and research in multisensory integration 

showed how we combine visual and haptic information in a maximum-

likelihood fashion when estimating some properties of an object (Ernst & 

Banks, 2002). However, the formalization by Trommershäuser and 

colleagues offered a simple and elegant way to account for how we 

integrate our intrinsic perceptuo-motor uncertainty with the extrinsic task 

constraints, in order to plan for a trajectory or endpoint that maximizes 

expected reward. This is especially useful when the study of movements 

one desires to pursue can overlook biomechanical issues, like those 

related to torque, muscles and joints.  

 

Shortly after the first results were published, these were supported by a 

series of follow-up studies (for a review, see Trommershäuser, Maloney, 

& Landy, 2008). Evidence was found for humans being optimal in 

sensorimotor tasks even when there was a change in target overlap or 

number of penalty regions (Trommershäuser, Maloney, & Landy, 

2003a), or when aiming at targets situated at different eccentricities 

(Gepshtein, Seydell, & Trommershäuser, 2007). Moreover, participants 

could optimally compensate for externally added task-relevant variability 

(Trommershäuser, Gepshtein, Maloney, Landy, & Banks, 2005). If 

needed, they could also take into account their speed-accuracy trade-

offs (Dean, Wu, & Maloney, 2007). Plus, when having to choose 

between two targets, they picked the one with the largest expected 

value (Trommershäuser, Landy, & Maloney, 2006). In addition, Hudson, 

Maloney, & Landy (2008) showed how people also could optimally 

compensate for their temporal uncertainty when adapting movement 

times to different reward functions. However, all this evidence was 
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mixed with the one produced by other studies, where results point to 

suboptimal movement planning. The next section will review that 

literature, grouping it by the argued source of suboptimality. It must be 

noted, though, that we will cover experimental work spanning over 

different types of movement, from simple key press to reaching 

movements. In all cases, observed performance can be compared with 

instantiations of SDT that, although adapted to the task, have very much 

in common with that used by Trommershäuser and colleagues. 

 

1.1.4. Suboptimal movement planning 

1.1.4.1. Not suboptimal, just inexperienced 

Some studies defend that, although participants initially display 

suboptimal behavior in some sensorimotor, with experience they may 

learn how to be optimal. For instance, Neyedli & Welsh (2013a) found 

how, through feedback, their participants could learn the relationship 

between probability and task-defined reward, and progressively shift 

their aimpoint until it matched the optimal one. Somewhat similarly, 

Seydell, McCann, Trommershäuser, & Knill (2008) claimed that people 

can build a generative model to account for arbitrary randomness 

present in the task, and then act optimally. However, evidence has 

shown how, in many other cases, participants are never optimal. 

 

1.1.4.2. Erroneous probability representations: distortions and 

overconfidence 

An essential aspect of an optimal sensorimotor decision-maker is the 

fact that an agent makes decisions after successfully integrating two 
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elements. The first is the agent’s own uncertainty, which after all is 

information about probabilities (i.e. the probability of hitting a target 

given her motor variability). The second is the extrinsically-defined 

reward function of the task, which is a mapping between each possible 

action and its outcome (i.e. positive or negative reward). Although it 

could be that the failure to represent either of the two elements could still 

lead to an apparently optimal behavior (see section 1.1.4.4.), very easily 

that could be a source of suboptimality. Let us see evidence for 

suboptimal behavior when probabilities are not well represented. 

 

Part of the impact of the previous studies was due to the fact that 

optimal behavior there contrasted with clearly suboptimal behavior 

shown in traditional decisional tasks, such as those prospect theory was 

based on. One of the main explanations for that difference revolved 

around the different way information about probabilities was acquired: in 

traditional tasks, it was explicit (i.e. prob. 0.8), while in motor tasks it was 

implicit in the participant’s variability, which the participant was assumed 

to have some knowledge of. To test this, some attempts were made to 

design traditional and motor tasks that were completely equivalent. Wu, 

Delgado, & Maloney (2009) found that, while results of traditional tasks 

were replicated in terms of probability distortion, motor tasks also 

showed a distortion, but in the opposite pattern: underestimation of small 

probabilities and overestimation of large probabilities. Moreover, 

participants were more risk-seeking in motor tasks. The fact that 

probabilities were distorted in the motor task means that they did not act 

in an optimal way. The two task formats were also compared by 

Jarvstad, Hahn, Warren, & Rushton (2013). They found that, although 

their participants were quite good in both classic and sensorimotor 

tasks, they were not optimal, and that individual differences explained 

performance better than the type of task. 



 20 

 

In some cases it could also be that, instead of sometimes being 

overestimated and sometimes being underestimated, probability 

information was distorted always the same way. One of the phenomena 

leading to such a situation is overconfidence. This can be defined as the 

overestimation of one's performance, as measured when comparing 

someone's actual performance with her beliefs about it (Olsson, 2014). 

In our daily lives we face multiple situations where an excess of 

confidence may take its toll. For instance, a baseball batter may 

underestimate his reaction time while waiting for the ball to be closer in 

order to hit it harder. Unfortunately, the batter may not swing the bat fast 

enough and the ball may end up at the catcher’s mitt. 

 

Mamassian (2008) found overconfidence in a synchronization task 

where participants had to press a key when the third visual cue of a 

sequence appeared. A reward was provided if the response was within a 

narrow time interval of the visual event. Nevertheless, depending on the 

trial, a penalty was applied if they responded immediately before or after 

the reward interval. Before each trial, participants were informed about 

the location of the penalty interval. Considering that motor variability is 

present, when the penalty interval was after the reward interval, the 

optimal response time was earlier than the time of the visual event. That 

would maximize the expected reward, since it minimized the probability 

of responding during the penalty region. The larger the motor variability 

of a participant, the earlier this optimal time shift should be. Alternatively, 

when the penalty region was before the visual event, expected reward 

maximization should have required shifting responses forth in time. It 

can be easily seen how this timing task is very similar to 

Trommershäuser and colleagues’ original pointing task. However, here 

observed time shifts were mild compared to optimal ones, which were 
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calculated by convoluting motor variability and temporal reward function, 

as seen in Figure 1.3. To disentangle whether this was due to 

participants not understanding the payoff distribution or to them having a 

misrepresentation of their variability, two more experiments were run. 

When the reward function was altered, participants shifted their 

responses in a coherent direction (although the shift was still 

suboptimal). On the other hand, participants did not update their time 

shifts at all when their variability was artificially increased through the 

addition of external noise to their responses. Thus, suboptimal 

performance was claimed to be mainly a product of participants being 

unaware of their actual motor variability, and especifically 

underestimating it. 

 

 
Figure 1.3. Calculating the optimal response time in Mamassian (2008). The top-left plot 

shows the task’s reward (here utility) function, with the third visual cue appearing when 
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time = 1s, a reward (here gain) region awarding 100 points if the key was pressed during 

a period spanning ± 0.025s of the cue presentation time, and a penalty region 

subtracting 200 points if the key was pressed 0.025s to 0.075s after the cue. The top-

central plot shows how the gaussian hitting variability would be distributed if the 

participant had a standard deviation of 0.025s. The top-right plot shows the result of 

convoluting the reward function and the hitting variability, with the optimal response time 

(in green) being the time that maximizes the expected reward. The middle row shows 

how the optimal response time would change if the participant had a hitting standard 

deviation of 0.05. The third row changes the penalty region with respect to the middle 

row, increasing the penalty up to 500 points.  
 

 Overconfidence has also been observed in similar paradigms. Ota, 

Shinya, & Kudo (2015) found that optimality in a simple timing task 

depended on the reward function. When it was symmetric, participants 

behaved in an optimal way. That happened both when the function was 

continuous, with reward progressively increasing with time until a 

maximum and then decreasing at the same rate, and also with a step 

function where a no reward area became a stable reward area, then a 

no reward area again. However, suboptimality arose when the reward 

function was asymmetric, with a temporal sequence where a 

continuously increasing reward was suddenly followed by a no reward 

area (or the opposite). This suboptimality acquired the form of 

overconfidence (or risk-seeking, as the authors called it), for observed 

responses were too close to the no reward area when compared to an 

optimal prediction. In another study, the authors saw that 

overconfidence persisted even after several days of practice (Ota, 

Shinya, & Kudo, 2016). Considering the difference among conditions, it 

could be argued that participants were simply having a problem with the 

reward function, not with their own uncertainty. However, the direction of 

the suboptimality matched overconfidence. Moreover, in those 

conditions of the experiment where optimality was found, the task simply 
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required synchronizing the response time with the point of maximum 

reward of the reward function, without the need to calculate any 

response shift with respect to that point. In those cases, aiming at the 

maximum reward time was optimal because variability in that task was 

distributed around the aim point in a symmetric, gaussian way, and the 

reward function was symmetric as well. Nevertheless, other empirical 

work does show how suboptimality could be due to people having 

trouble with the task’s reward function, as shown in the next section. 

 

As a final piece of evidence, results coherent with overconfidence have 

also been found in movements more complex than key presses, like arm 

reaching and whole-body movements. O’Brien & Ahmed (2013) set 

participants in a situation where they had to move (either their arm or 

lean their body) forward, and the further away they stopped their 

movement in a trial, the more points they won. However, moving beyond 

a certain point (a “virtual cliff”) was penalized. In a series of conditions 

where the externally-imposed penalty and cliff were manipulated, 

participants’ final movement positions were too close to the cliff when 

compared to an optimal agent that maximized expected reward. This 

was interpreted as risk-seeking. 

 

1.1.4.3. Difficulties representing the reward function 

Even if the decision-maker had a perfect representation of  her 

uncertainty, she could struggle with the task’s reward function. This 

could be rapidly changing, or simply too complex.  

 

Following the logic about the difference between implicit and explicit 

information, some work points to suboptimality arising when rapid 

changes are produced in the structure of the explicit part of the 
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information that has to be used to make the decision. Neyedli & Welsh 

(2013b) made participants point at one of the already familiar 

overlapping circle configurations. In one condition, the overlap (and thus 

the probability of hitting the penalty area) changed from trial to trial. 

Participants immediately shifted their aimpoints to be optimal. However, 

they failed to do so in another condition where the penalty value 

changed across trials. According to the authors, while some time might 

be needed to adapt to the new payoff structure, a change in the visual 

display is straightforward to interpret by the motor system. 

 

Another source of suboptimality could be that the optimal strategy may 

be too difficult to learn. Wu, Trommershäuser, Maloney, & Landy (2006) 

found suboptimal movement planning in a task with two penalty regions 

where the value of one penalty was different from the other. In this 

asymmetric configuration, participants could not adopt the best aimpoint, 

which was located within the milder penalty area. 

 

1.1.4.4. From optimal to suboptimal: model limitations 

A normative model should be able to establish the limit of optimal 

performance independently of task difficulty. However, when comparing 

the results of a pointing task with optimal simulations generated using 

Trommershäuser and colleagues’ model, Jarvstad, Hahn, Warren, & 

Rushton (2014) saw that an increase in task difficulty turned optimal 

participants into suboptimal. This was done by decreasing target size 

and increasing target distance from the position where movements 

began. The authors argue that the model does not capture the fact that 

people may be failing to maximize precision. In their experiments, 

participants moved faster than necessary for close targets and relaxed 

their precision for larger targets. Since the data used to simulate optimal 
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behavior comes from the participants’ observed variability in the 

experiment, this decrease in precision for easier stimuli influenced 

optimal predictions, what made participants look more optimal than they 

really were.  

 

Even some of the authors of the original model express their concern 

about how participants with a wrong representation of their motor 

uncertainty could still be classified as optimal by the model: for instance, 

a participant that assumed that her movement endpoints were uniformly 

distributed around the aim point, while the true distribution was gaussian 

(Zhang, Daw, & Maloney, 2013). 

 

1.2. Perception and action with moving objects  

1.2.1. Relevant topics in motion perception 

As said in the very beginning, this section will only focus on topics of 

special relevance for the thesis. For a complete review of the 

advancements in the study of motion perception from the 60’s until the 

2010’s, the reader is recommended the reviews by Nakayama (1985), 

Burr & Thompson (2011) and Nishida (2011). These have been the main 

secondary sources used to compose this section. 

 

1.2.1.1. Motion detectors 

Changes in luminance are the main physical attribute our visual system 

uses to detect motion. The most popular models originate from 

Reichardt’s model (Reichardt, 1957). This is based on a simple 

mechanism. Imagine two retinal receptors with spatially-contiguous 
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receptive fields: for instance, one on the left and one on the right. These 

would send information to the same mediating neuron, but their timing 

would depend on the motion direction. If the rightmost receptor’s output 

arrives later, the motion is interpreted as rightwards, and vice versa. 

Later proposals evidence the need for motion detectors to also act as 

spatio-temporal filters (Adelson & Bergen, 1985; Morgan, 1992; van 

Santen & Sperling, 1985; Watson & Ahumada, 1985) that perform a 

Fourier-like analysis, with the spatial filtering happening before the 

direction analysis (Morgan, 1992). In essence, motion detectors are 

temporally and spatially tuned, and direction-selective. The way these 

detectors would obtain information about speed is debated: either 

through a normalisation process by comparing detectors tuned to 

leftward, rightward and static energy (Adelson & Bergen, 1986), or by 

creating vector motion sensors after grouping linear filters with similar 

spatial frequency and location but different detection tuning, and then 

analyzing the temporal frequency of their responses (Watson & 

Ahumada, 1985).  

 

1.2.1.2. Second-order motion 

So far we have described luminance-based motion, also called first-

order motion. However, different work with lab-created stimuli (Badcock 

& Derrington, 1985; Chubb & Sperling, 1988; Derrington & Badcock, 

1985; Derrington & Henning, 1987) showed how, even in absence of 

Fourier energy, participants (but not Reichardt-based models) could still 

detect motion. This second-order motion would mainly be based on 

changes in contrast, rather than in luminance, and would have a higher 

detection threshold (A. T. Smith, Snowden, & Milne, 1994), which would 

be based on a minimum displacement rather than a minimum speed 

(Seiffert & Cavanagh, 1998; A. T. Smith et al., 1994). Although evidence 
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exists supporting both the same and different mechanisms subserving 

the processing of both kinds of motion, the latest evidence leans 

towards the latter hypothesis, at least for fronto-parallel motion. More 

complex motion like expansion might be based on displacement 

thresholds (de la Malla & López-Moliner, 2010). 

 

1.2.1.3. Temporal resolution of the visual system 

How fast can our visual system process changes in visual stimuli? The 

figures that have been reported enormously depend on the way stimuli 

are presented. For flashes of light presented at the same location, the 

flicker fusion rate ranges between 30 Hz and 60 Hz (Kelly, 1972), 

corresponding to periods of 33ms and 17ms, respectively. However, this 

limit in the temporal resolution of photoreceptors is lower with moving 

stimuli. When motion cues can be used, temporal order discrimination 

thresholds can be as low as 17 ms (Exner, 1875), and the precision can 

reach 2-5 ms when there is also adaptation (Sweet, 1953). For apparent 

motion experiments, there is evidence of thresholds of 2-4 ms 

(Westheimer & McKee, 1977). The fact is, then, that our temporal 

resolution seems to get better when there is motion. In these cases, an 

interesting question is whether the motion system may be responsible 

for this precision enhancement. 

 

1.2.1.4. Integration time for speed perception 

In order to obtain reliable estimates of an object’s speed, signals are 

integrated over space (Watamaniuk & Duchon, 1992), but also over 

time. As seen in Figure 1.4., Snowden & Braddick (1991) showed how 

the difficulty in discriminating two speeds decreased as the stimulus’ 
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presentation time increased, eventually reaching an asymptote (as 

predicted by Bloch’s law). This asymptote was reached earlier for faster 

speeds. However, the authors defend that this does not mean that 

temporal integration uses the total motion path length, but that faster 

speeds are dealt with by motion detectors with shorter temporal spans 

(see also McKee & Welch, 1985). Using Reichardt’s motion detector 

model, the temporal span could be understood as the difference in 

arrival time between the non-delayed and the delayed signal when being 

stimulated at once (Snowden & Braddick, 1989). Thus, since temporal 

delays in their motion detectors are shorter, faster speeds require 

shorter integration times to obtain a reliable speed estimate.  

 

 
Figure 1.4. Weber fraction of velocity discrimination as a function of stimulus duration, 

reproduced from Snowden & Braddick (1991). Data is shown for one participant, and 

split by target velocity. As can be appreciated, the longer the stimuli are presented, the 

smaller the difference between target velocities that is needed to discriminate them. 

Stabilized Weber fractions can be interpreted as integration times having reached the 

asymptote.  
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Integration times depend on the stimulus type, with longer times for 

more complex motion. For contrast summation, integration time would 

be about 100 ms (Burr, 1981). On the other hand, according to some 

accounts (Burr & Santoro, 2001; Melcher, Crespi, Bruno, & Morrone, 

2004; Melcher & Morrone, 2003; Neri, Luu, & Levi, 2006), two or three 

stages would be produced when analyzing complex stimuli, such as 

optic flow and biological motion: a local motion analysis (time constant of 

200 - 300 ms), an intermediate stage (integration time of 1000 ms) and a 

global motion stage (time constant of 3000 ms). In the case of biological 

motion, integration time could exceed 8 s (Neri, Morrone, & Burr, 1998). 

 

 1.2.2. Interactions between position and motion 

Our experience tells us that objects hardly undergo a sudden jump in 

their position. Slower or faster, a position change is normally mediated 

through motion. This strong correlation between motion and position, 

though, is sometimes dissociated. For instance, motion after-effects 

have been known for centuries (Addams, 1834) and are used to 

exemplify how motion can be experienced without a change in position 

(see Anstis, Verstraten, & Mather, 1998). But because motion and 

changing position normally happen together, sometimes the presence of 

one (motion) induces perceived changes in the other (position). The De 

Valois illusion (De Valois & De Valois, 1991) shows how a position shift 

is created by pattern motion (see below).  

 

The dependencies and dissociations between motion and position 

perception made some investigate the extent to which the visual 

processing of visual movement is subserved by spatial or temporal 
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mechanisms (de la Malla & López-Moliner, 2010; Nakayama & Tyler, 

1981; Seiffert & Cavanagh, 1998). Close to the aim of the previous 

section, the present part will not try to review all the literature connected 

to this discussion. The scope here will rather be presenting issues on 

the interaction between motion and position that will later be relevant for 

the thesis’ findings. We will start by two examples of how biases and 

variability in acknowledging the position of a moving object can be 

influenced by motion signals. First we will introduce motion 

extrapolation, where the perceived position of a moving object is biased 

in the direction of motion. However, it must be noted that we refer to 

experiments where the moving object was visible at all times. 

Considering the design and implications of the work of this thesis, 

motion extrapolation after target occlusion will not be discussed here. In 

case the reader is interested in that topic, the introductory part in Khoei, 

Masson, & Perrinet (2013) acts as a helpful review. The next part will 

present a hypothesis about how we report the position of a moving 

object after a cue. This has implications in terms of spatial variability, 

which depends on the object’s speed. We will finish by presenting a 

Bayesian model that tries to integrate motion and position perception, 

and which accounts for the previous phenomena described in the 

section. 

 

1.2.2.1. Motion extrapolation 

When perceiving an object, information takes some time to be 

transmitted along the visual pathways. If the object is moving, this delay 

means that when a percept about the object’s position is formed, this is 

actually informing us of where the object was some instants ago, not of 

its current position. To compensate for these delays in information 

transmission, it has been suggested that some mechanism may bias an 
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object’s perceived position in the direction of motion (Berry, Brivanlou, 

Jordan, & Meister, 1999; De Valois & De Valois, 1991; Jancke, 

Erlhagen, Schöner, & Dinse, 2004; Nijhawan, 1994; Sundberg, Fallah, & 

Reynolds, 2006).  

 

Motion extrapolation has been shown even with static envelopes (De 

Valois & De Valois, 1991) with pattern motion embedded within the 

carrier. When fixating at these stimuli with the periphery, their position is 

seen as displaced towards the motion direction. However, most 

experiments trying to assess the existence of motion extrapolation come 

from studies based on what is known as the “flash-lag”. In this paradigm, 

an object moves and at some point a flash is suddenly presented, and 

the participant has to report the position of the object at the moment of 

that event. When the flash is presented aligned with the moving object, 

the latter is seen ahead of the former. Initial claims of motion 

extrapolation in this paradigm (Nijhawan, 1994) were later called into 

doubt by alternative explanations. According to Whitney & Murakami 

(1998), the neural delays for moving stimuli would be shorter than for 

flashed stimuli. According to Eagleman & Sejnowski (2000), it is the 

trajectory of the moving object after the flash, not before it, that would 

displace the perceived position. Other contributions have tried to defend 

motion extrapolation in the flash-lag effect describing it as the result of a 

predictive mechanism (Khoei, Masson, & Perrinet, 2017). 

 

Beyond the discussion of whether motion extrapolation causes the flash-

lag effect, other studies have focused on different setups. A particularly 

relevant situation is that where smooth pursuit is allowed: that is, the 

moving object can be followed with the gaze. This is common in most 

real life situations involving interaction with a moving object, in contrast 

with the aforementioned work, which made participants report the 
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perceived position in tasks where they had to fixate a point. Studies 

addressing the localization errors of a flash while pursuing a moving 

target have shown that perceptual localization errors are reduced with 

respect to fixation (Kerzel & Gegenfurtner, 2003; van Beers, Wolpert, & 

Haggard, 2001).  

1.2.2.2. Sampling the position of a moving object 

In section 1.2.1.3. we have mentioned the temporal resolution of the 

visual system as a lower bound to detect changes in stimuli. When 

reporting the position of a moving object, this resolution constrains our 

spatial precision. This affirmation has been defended by some (Brenner 

& Smeets, 2000; Brenner, van Beers, Rotman, & Smeets, 2006) with the 

following reasoning. Reporting the position of the moving object can only 

be done with respect to another event. For instance, a cue that indicates 

that it is time to identify the position of the object. After the cue is 

presented, the position of the object will be sampled, but since this 

process takes time, a bias will be found in the reported position, which 

will be in the direction of the movement. The bias is explained by the 

temporal resolution of the visual system imposing a minimum sampling 

time. From this follows that the spatial variability in a localization task 

should increase for faster speeds. After all, for faster moving objects, the 

fixed temporal delay corresponds to a greater travelled distance. This 

sampling hypothesis was mainly used by the authors as a criticism of 

the motion extrapolation hypothesis in the flash-lag effect, since they 

found that the magnitude of this effect depended on the speed of the 

moving object after the flash, not before it. However, implications for 

spatial variability have been found in different occasions. Brenner et al. 

(2006) found that faster target speeds were related to increased spatial 

variability when having to report the position of a moving target after a 

flash or a tone had been presented. Linares, Holcombe, & White (2009) 



 33 

found similar results, with the distribution of responses matching a 70ms 

delay respective to the presentation of the cue. This held with many 

types of cue and different target trajectories. 

 

1.2.2.3. An integrative framework of motion and position 

In the preceding sections we have mentioned that motion and position 

are highly correlated. Had we evolved to optimize our resources, it 

would be sensible if we were able to exploit that redundancy by 

integrating motion and position in our perceptual estimates. Let us take 

a problem we sometimes experience: disambiguating the source of 

motion within an object. Imagine a moving ball, which is characterized 

by translation motion, but also by rotation. When our visual system 

processes local motion signals, it has to attribute that motion to one or 

the other source. A solution to disambiguate the motion source could be 

using the position information that is integrated over time. This, though, 

would need the aforementioned coupling between position and motion, 

where information about one helps inferring the cause of the other. 

Taking advantage of the correlation of moving stimuli over time is also 

useful for other purposes. Given the noisiness of our sensory signals, 

we could weigh incoming visual input according to its reliability and 

combine it with prior experience (information about the stimulus 

gathered earlier in time) in order to generate estimates regarding the 

current state of a moving object. 

 

Could there be a common computational explanation to account for how 

we track objects over time and infer their generative causes? Kwon, 

Tadin, & Knill (2015) proposed one such model, where motion and 

position perception are integrated into an object tracking system. The 

model is based on a Bayesian process that tracks objects while relying 
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more on past signals if the present sensory information is uncertain. It 

also tries to assign the origin of motion from our sensory measurements. 

To do this, this tracking system would also rely on an internal model of 

the world that incorporates certain priors arising from the phenomena 

that are most likely to happen: for instance, a prior towards objects 

slowing down, and another one where, in the face of uncertain position 

signals, motion is attributed as belonging more to global object motion 

rather than local pattern motion. Because the model tries to infer the 

generative causes of motion, it would be classified as a causal inference 

model. And because the noise corrupting our sensory estimates is 

assumed to be Gaussian, this Bayesian approach can be defined as a 

Kalman filter (Kalman, 1960). 

 

This model provides the mechanistic explanation to a series of visual 

phenomena, such as the curveball illusion (Shapiro, Lu, Huang, Knight, 

& Ennis, 2010), where an oval moving downwards with embedded 

leftward carrier motion is perceived as drifting along a diagonal down 

and leftwards, or the aforementioned DeValois illusion (De Valois & De 

Valois, 1991). But the model can also predict motion extrapolation even 

with stimuli with no pattern motion. This happens when the relative 

reliability of velocity is higher than that from position signals, leading to 

extrapolation due to velocity states being weighted more heavily. 

 

1.2.3. Acting to affect the course of a moving object 

In those daily life situations where we have to interact with moving 

objects, we are seldom given a signal instructing us to start our 

movement. Instead, we have to decide how to set an internal criterion 

for action. The placement of this criterion is normally made with respect 
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to some variables relative to the course of the moving object. A 

straightforward way to do so would be by tracking the position of the 

moving object until it reaches a point in space, and then start the action. 

In most catching and interception tasks, where the object approaches 

and thus there is radial motion (motion in depth), this strategy would be 

translated into acting when the object reaches certain retinal size. 

However, a lot of the literature has tried to explain our actions as based 

on an estimation of the object’s time to contact (TTC). This refers to the 

time that the object will take to reach the point of observation. Of course, 

in sports situations involving balls, this point of observation is the 

person’s position. But in other situations with lateral displacement, like 

clay pigeon shooting, the TTC can be calculated taking another 

reference. The following lines introduce the TTC literature, discussing 

some of the variables that could be used to estimate it. Then we discuss 

some ways people can use to signal the start of their actions. 

 

1.2.3.1. Estimating time to contact 

Many proposals of TTC estimation have been formulated up to date. 

Some of the most successful ones are those derived from the gibsonian, 

or ecological, approach. According to this, rather than relying on 

complex computations, human beings employ variables immediately 

available from the environment. In line with this claim, some evidence 

(Lee, 1976; Regan & Hamstra, 1992; Regan & Vincent, 1995) supported 

TTC estimation to be based on tau (τ). This is simply the ratio between 

the object’s size (θ) and its rate of expansion (𝜃). These are monocular 

variables that are available from the retinal image. However, estimation 

is not perfect when angular size is large, or when speed is not constant. 

Further studies have shown that, when other cues are available, these 
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may be used as well: for instance, size knowledge would be important in 

grasping (Savelsbergh, Whiting, & Bootsma, 1991). Some of these cues 

can also be binocular, and they are more important when monocular 

information is not reliable (Gray & Regan, 1998; López-Moliner, Supèr, 

& Keil, 2013; Regan, 2002). Other work has tried to demonstrate that θ 

and 𝜃 need not be combined as in τ (Keil & López-Moliner, 2012; López-

Moliner & Bonnet, 2002; M. R. Smith, Flach, Dittman, & Stanard, 2001). 

The predominance we give to one or another cue could also change 

along the trajectory of the object (López-Moliner et al., 2013). In any 

case, some of the latest work assumes we can use many cues, and 

focuses instead on how we integrate them (de la Malla & López-Moliner, 

2015). 

 

TTC estimation variables have also been studied for lateral 

displacement. Tresilian (1990) suggested three variables that could be 

used: angular distance between the moving object and the reference, 

angular velocity of the object, and the local τ. Tresilian (1994) affirmed 

that angular position would be used to calculate TTC. Bootsma & 

Oudejans (1993) claimed that the main cue for TTC estimation in lateral 

displacement is the relative rate of constriction of the optical gap that 

separates a moving object from the reference position. However, 

Smeets, Brenner, Trébuchet, & Mestre (1996) deny the use of gibsonian 

cues and defend that τ is not used with lateral displacement. 

Alternatively, they point towards the ratio between perceived distance 

and perceived velocity. This means that TTC is estimated from the ratio 

of two perceived variables, where both have to be transformed to spatial 

coordinates. Thus, contrary to the τ hypothesis, errors in perceived 

position or velocity will lead to errors in TTC estimation, which is what 

this study finds. 
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1.2.3.2. Decisional variables with moving objects 

One of the critiques addressed to τ accounts is the fact that they are 

purely phenomenological. Even at the neural level, they are just limited 

to fit a model that describes the firing pattern of the neurons, but fail to 

explain why neurons are activated. At the behavioral level, this would 

mean that they cannot account for the moment that would trigger an 

action in response to the visual information: for instance, hitting a ball or 

dodging something that is approaching. Hatsopoulos, Gabbiani, & 

Laurent (1995) found some neurons in the locusts’ nervous system that 

fired as a function of what they called eta (η): the object’s velocity 

multiplied with an exponential function of the object’s retinal size. As 

opposed to τ not reaching a minimum while decreasing, the value of η 

peaks before the retinal image is the maximum, thus allowing for 

collision-avoidance mechanisms. For equal speeds, bigger objects 

would make the peak be reached earlier. Sun & Frost (1998) also found 

these type of neurons in the nucleus rotundus of pigeons, along with 

others that fired as a function of τ, and others that fired as a function of 

rho (ρ), the absolute rate of expansion. Keil & López-Moliner (2012) 

implemented a neurophysiologically plausible model to estimate TTC 

and implement collision-avoidance reactions. The model, that could 

account for both τ and η sensitive neurons, allowed for collision-

avoidance reactions to be initiated if some parameter reached a certain 

value. Thus, it seems that we could have evolved to use some sort of 

internal threshold in order to initiate some actions relative to moving 

objects.  
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Imagine a competition racer trying to decide when to steer the wheel to 

save time at a curve, a clay pigeon shooter waiting to pull the trigger, or 

a football goalkeeper trying to capture an approaching ball. All these 

situations share some common features. Firstly, there is an action to be 

made relative to the course of a moving object. Secondly, acting at one 

moment will not lead to the same outcome as acting at another moment. 

Finally, the action will previously require a decision on when to act. This 

decision is assumed to be based on different information: our visual 

sensory stimulation, a knowledge of how each action is related to an 

outcome, and a knowledge of our uncertainty when performing the 

planned action.  

 

The study of human motor interaction with moving objects has so far not 

focused on the decisional process we have just sketched. From the 

opposite point of view, it can also be said that the field of sensorimotor 

decision-making has eluded situations involving interaction with moving 

objects. This can be exemplified by the introductory chapter of this 

thesis, composed by two big sections. One presented the study of 

sensorimotor decision-making, especially within a SDT framework. The 

other reviewed how we interact with moving objects. Despite both 

sections referring to literature about perception and action, there are 

very few obvious connections between the two. The present thesis aims 

at establishing a bridge between them. But why should we be interested 

in that? By formulating the main objectives of this thesis we will try to 

answer this question, and make clear how these two fields can benefit 

from each other. 

 

The field of sensorimotor decision-making tries to understand how we 

combine different sources of information to make a decision. One of 

these sources, as already mentioned, is our sensory information. Yet 
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sensorimotor situations involving moving objects are interesting in the 

sense that, given the spatiotemporal nature of the object’s trajectory, our 

decision can be based on the use of different types of visual information. 

On one side, spatial information, that would derive from the retinal 

position the moving object has at each moment. On the other side, 

temporal information, coming from motion and velocity cues. Maybe 

exploiting more one type of information can lead to a better 

performance. Thus, objective #1 is finding whether basing our 

decisions more on temporal or spatial information can improve 

performance in sensorimotor situations with moving objects.  

 

The study of our interactions with moving objects can use the 

formulations of SDT that the field of sensorimotor decision-making has 

been using for years. By framing performance in terms of the reward 

related to the outcome of our actions, we can use SDT to provide an 

assessment of optimal behavior. At the same time, extending previous 

SDT models to the study of moving objects will let us see its 

generalizability and formulate caveats regarding their limitations. We 

can formulate objective #2 as testing how current SDT models used 

to study sensorimotor decision-making can provide a valid 

normative account of interaction with moving objects.  

 

The first objective dwells on how exploiting certain information can 

improve performance, where improvement is understood as achieving 

actions with a better outcome. The second objective has the definition of 

optimality at its core. Optimality can be loosely defined as obtaining the 

best possible outcome given some existing constraints. Deciding based 

on the outcome, then, plays a central role in both previous objectives. In 

our experiments, we implemented the outcome by giving explicit reward 

after each trial. Objective #3 is to study how people use reward 
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information to plan their future actions. This is investigated both on 

a short timescale scale, where a certain reward can influence the 

decision on the next trial, and on a longer timescale, where reward 

shapes decisional criteria and the visual cues that are exploited.  

 

In the following lines we will articulate the specific questions that each of 

the studies of the thesis seeked to answer, and the way they relate to 

the global objectives. Since some studies were designed as follow-ups 

or to answer some questions previous studies had left unanswered, a 

brief outline of the results is also given. 

 

Study I 

● Does exploiting more temporal or spatial information improve 

performance when interacting with moving objects? This, that we 

tested in a coincidence anticipation sensorimotor task, directly 

tackles objective #1. We found improved performance, as 

measured through average reward per trial, for an increased use 

of temporal information. 

● Is the type of information used influenced by the total time the 

object moves? We found that targets with longer motion times 

facilitated the use of temporal cues.   

● Do SDT-derived optimal motor planning models offer a good 

measure of optimality in our task? This is exactly what objective 

#2 aimed at. Although current models determined general 

suboptimal performance, some inconsistencies revealed their 

limitations to interpret our data. 

 

Study II 

● Given the advantage of exploiting temporal information when 

interacting with moving objects, can people learn how to use 
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temporal cues to plan their responses? This is an extension of 

objective #1. 

● Can this learning take place through the manipulation of each 

trial’s outcome, so that exploiting the wrong cues leads to less 

reward? This implementation concerns objective #3, since we 

expect manipulated reward to influence future behavior, and 

specifically the decision variable. We found that our manipulation 

did not produce evidence of learning taking place, and that those 

people exploiting temporal cues did it from the very beginning, 

probably caused by individual differences. 

 

Study III 

● Can suboptimal behavior arise from participants planning their 

responses by not taking into account their whole observed 

variability? We found evidence for some participants responding 

at the point that maximized expected reward if only their 

measurement variability was considered. Since optimal 

responses were calculated from SDT models, this relates to 

objective #2. 

● How does reward affect the next responses? We investigate the 

way corrections and aimpoint selection are driven by reward. 

This makes objective #3 more specific and applies it to some 

uninvestigated yet important phenomena from our previous 

studies. We find that participants use reward information to 

trigger corrections in order to avoid penalizations. We also 

hypothesize that they stabilize their aimpoint around specific 

reward regions. 

 

An important element of our tasks must be justified. While we consider 

our work as studying sensorimotor decision-making, our experiments 
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simply require that participants execute a motor response by pressing a 

key. Recent evidence has found how decisions can be influenced by the 

cost to act (Hagura, Haggard, & Diedrichsen, 2017; Marcos, Cos, Girard, 

& Verschure, 2015). To avoid a bias arising from the motor cost of the 

action, we keep this constant and control for it by implementing button 

press as the motor response. By doing this we also make non-applicable 

some of the limitations of SDT models denounced in section 1.1.4.4., 

that would be a concern if our experiments required more complex 

movements, such as reaching.  
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3.1. Summary 

When interacting with moving objects, people can base their actions on 

temporal (motion), spatial (position tracking) information or their 

combination. We aimed at knowing, in such situations, to what extent 

performance depends on the type of information used to respond, and 

whether the information used changes in response to the time the 

stimulus can be seen. In our task, a target which could vary in speed 

and motion time approached a line. Participants stopped the target and 

were rewarded according to its proximity to the line. Responding after 

the target crossed the line was penalized. We identified whether 

responses were based on monitoring the target’s changing spatial 

position or on time-based motion cues, and found that performance 

grew with more time-based responses. We can explain the results with 

two compatible mechanisms. Firstly, the temporal resolution of the visual 

system increasing spatial variability with faster speeds, bringing more 

penalizations when using spatial information. Secondly, increased 

position extrapolation across speeds, consistent with longer motion 

times allowing more motion integration and facilitating the use of 

temporal information. Our study evidences how exploiting motion 

information can help overcome some limitations of position tracking, and 

points out the need to consider the different sources of variability when 

providing a normative measure in situations with moving objects. 

 

3.2. Introduction 

In many daily life situations, such as those involving actions with moving 

objects (e.g. catching a flying ball or dodging an approaching bike), 

successful interaction requires updating the changing position of these 
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objects efficiently. Motion generally concurs with changes in the object’s 

spatial position, and these two types of information are interdependent 

(De Valois & De Valois, 1991; Linares, López-Moliner, & Johnston, 

2007; Maus, Fischer, & Whitney, 2013; Whitney, 2002), although they 

can be processed independently in goal-directed actions (Smeets & 

Brenner, 1995). Given the noise present in sensory signals, it has been 

proposed that visual motion (e.g. through accurate velocity estimates) 

can be used to update the position more efficiently when this source is 

less reliable (Kwon et al., 2015), so humans would have the possibility to 

use either or both kinds of information. Sensorimotor actions could 

benefit from these proposed interactions between motion and position. 

For instance, a baseball batter may decide when to swing her bat based 

on some remaining time margin, be it obtained from optical variables 

(Lee, 1976), or based on an internal speed estimate (Smeets et al., 

1996). Alternatively, she may base her decision to act on a spatial 

tracking of the ball’s position that informs her on how close the ball is. 

We know that space or time-based information can be used as decision 

variables when timing actions with approaching objects (Bootsma & 

Oudejans, 1993; Keil & López-Moliner, 2012; Lee, 1976; López-Moliner 

& Keil, 2012; Smeets et al., 1996; Tresilian, 1990, 1994). An added 

difficulty in many scenarios is, though, that the decision-maker will 

commonly face constant changes in the environment: the speed of the 

moving object will not always be the same, just like the time available to 

accumulate evidence and make the decision.  

 

Up to date, it has not been examined how, in changing situations where 

people have both temporal and spatial information available, the cues 

used to plan the response determine performance. This is what we 

aimed at in the present study. Specifically we wanted to investigate 

whether responses based on one type of information enhance 
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performance when compared to responses based on the other. When 

planning an action involving a moving target, using spatial information to 

track the changing position of the target would compromise 

performance. This would be due to increased spatial variability for faster 

target speeds (schematised in Figure 3.1.A), caused by the limited 

visual temporal resolution (Linares et al., 2009). Furthermore, given that 

extracting motion information from a stimulus requires a minimum 

integration time (Burr & Santoro, 2001; Neri et al., 1998), responses 

could be limited to the use of spatial information in situations in which 

the moving object is seen during a short time, and thus reliable velocity 

estimates are hard to obtain. 

 

In line with a common practice in sensorimotor decision-making studies, 

we defined performance as the reward that participants accumulated in 

a series of trials where they received positive or negative feedback as a 

function of their responses. In some previous studies, responses could 

only be planned by using temporal information (Mamassian, 2008; Ota 

et al., 2015). In others, performance depended on correctly hitting a 

series of spatially-defined reward or penalty areas (Gepshtein et al., 

2007; Hudson, Wolfe, & Maloney, 2012; Neyedli & Welsh, 2013b; 

O’Brien & Ahmed, 2013; Trommershäuser et al., 2005, 2006, 2003a, 

2003b, 2008). In contrast, in our experiment participants could plan their 

responses based on temporal or spatial information.  
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Figure 3.1. A. Spatial variability as a function of the temporal resolution for two different 

speeds (denoted by the oriented line in the space-time plot). Speed 2 is faster than 

speed 1 (shallower slope). When sampling the position at a given temporal resolution 

(illustrated by the Gaussian width on the x axis), the spatial variability of the sampled 

position will depend on the speed of the moving target. As a consequence, variability 

increases for faster speeds. B. The top inset depicts a representation of the stimuli. A 

circle appears at a starting position and moves rightward toward a vertical line. The circle 

stops when the participant presses a button. The bottom part shows the difference 

between time-based and space-based responses across target speeds: time-based 

responses are made at a similar time to alignment, while space-based responses are 

made later in time for faster speeds. The depicted location of the blue dots relative to the 

red ones does not obey any prediction, since it depends on the threshold used by every 

participant C. Reward given as a function of the time remaining to alignment in the 

experimental task. 
 

The task we used was similar to those commonly referred to as 

coincidence anticipation (López-Moliner, Field, & Wann, 2007; Tresilian, 

1995). As seen in Figure 3.1.B, at every trial a target underwent 

constant rightward motion toward a vertical line, and participants had to 

press a button to stop the target. A numerical reward was given 

according to how close the target was to the line when the button was 

pressed. Reward increased exponentially as a function of the time left 

for the target to align with the line, with the maximum reward given if the 

participant pressed the button at the moment of alignment. However, 

any response after alignment was penalized. Participants were 
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instructed to accumulate as many points as possible across trials. From 

trial to trial, the target could change its speed. We identify time-based 

responses as those where mean response patterns are at a similar 

remaining time to alignment across all speeds. Alternatively, space-

based responses are those where responses across speeds are at a 

similar spatial distance from the line. This way, we can distinguish the 

type of information participants were using when planning their 

responses, and whether the use of one type of information yielded a 

higher reward than the other. Introducing trial-to-trial changes in initial 

time to alignment enabled us to determine whether the information used 

changed across the different motion times.  

 

Performance was analyzed at the level both of the responses and of the 

reward these responses were translated into. To anticipate, results 

confirmed our hypotheses: we found that performance was enhanced 

through the use of temporal cues. This resulted in more stable 

performance across target speeds. We also confirmed that, within 

participants, the type of information used was modulated by the total 

motion time participants were exposed to. While space-based responses 

were dominant for shorter motion times, longer motion times facilitated 

the use of temporal information, probably by refining speed estimates, 

and led to improved performance. 

 

The present study had another objective. Note that, as just described, in 

our task participants received a numerical reward after each response. 

This way, participants had univocal feedback informing them of their 

response time relative to alignment. Participants had to decide how to 

respond based on the points that they would win given the asymmetric 

reward function, rather than always trying to synchronize their responses 

with an objective event, such as alignment. In our experiment, the 
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maximum reward was produced when responding exactly at alignment. 

Nevertheless, considering that participants inevitably exhibit variability in 

their responses, they should have tried to respond before alignment, so 

that they did not incur into penalizations for responding after the line. Is 

there any response time for which reward in the long term is maximized? 

Previous work (Mamassian, 2008; Ota et al., 2015) has already 

assessed whether responses in coincidence anticipation tasks can be 

optimal. In these studies, observed responses are compared to 

simulations that maximize expected reward, in accordance with some 

frameworks derived from SDT. Choosing the action that maximizes the 

expected reward is achieved through integrating knowledge about the 

reward function (the mapping between each possible state of the world 

and its outcome) with knowledge about the agent’s own variability 

(uncertainty) (Körding & Wolpert, 2006; Wolpert, 2007). We used these 

models to determine whether, when interacting with moving objects, 

performance could reach optimality in some situations. At the same 

time, though, we wanted to assess how idoneous these models were in 

the situation we were studying, and identify their limitations as a 

normative reference for our data. 

 

3.3. Methods 

3.3.1. Participants 

21 participants took part in the experiment after giving informed consent 

(11 women, all right-handed, age range 18-32). All had normal or 

corrected-to-normal vision and were naïve about the aim of the 

experiment. The study complied with the local ethics guidelines, in 
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accordance with the declaration of Helsinki, and was approved by the 

University of Barcelona’s Bioethics Commission. 

 

3.3.2. Apparatus and stimuli 

Participants sat in a dimly lit room, approximately 50 cm in front of a 

Samsung SyncMaster 1100MB CRT monitor (21 inches, 1024x768 

resolution, 120Hz refresh rate). They responded by pressing the button 

of an ancillary input device sampled at 120Hz refresh rate with their 

dominant hand. The experiment was run on a Mac Pro 4.1 Quad-Core 

Intel Xeon at 2.66 GHz.  

 

A trial started with both a white vertical line and a white circular target 

appearing on a black background. The vertical line (10cm tall, 1px width) 

was positioned 15 cm right of the center of the screen and remained 

stable for the whole trial. The target had a radius of 0.3 cm and travelled 

from left to right. In each trial, the target constantly moved at one of 

three possible speeds (19.5 cm/s, 25 cm/s and 32 cm/s). The chosen 

speeds followed a geometric progression in order to compensate for a 

constant Weber fraction, so that the discriminability between the slowest 

and mid speeds was presumably similar to the discriminability between 

the mid and fastest speeds. At every trial, the target also had one of 

three possible motion times (0.8 s, 1 s, 1.2 s), where motion time is 

defined as the time from motion onset until the x-coordinate of the center 

of the target matched that of the vertical line. The moment when the 

center of the target and the line are at the same x position will 

henceforth be referred to as alignment. Motion times were clearly 

discriminable from each other (Regan & Hamstra, 1992), while at the 

same time all were above the 500 ms over which basic temporal 
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recruitment is built up (Krekelberg & Lappe, 1999; Lappe & Krekelberg, 

1998). The combination of speeds and motion times, which was random 

for each trial, resulted in nine different initial distances from the line 

(15.6, 19.5, 23.4, 20, 25, 30, 25.6, 32 and 38.4 cm, in ascending order 

for speeds and motion times). The target disappeared when the 

participant pressed the button or at a random point between 1.3 s and 

1.4 s after movement onset, always when the target had already 

completely crossed the line. Visual feedback was given when required 

(see below). Note that interleaving different initial times to alignment 

prevented participants from basing a time-based response on a specific 

stimulus duration (e.g. 0.85 s) from motion onset rather than estimating 

some temporal (or other type of) threshold with respect to the time of 

alignment. The 9 different initial target positions would additionally 

require participants to link each initial position to its motion time. In 

addition, in comparison to traditional temporal interval reproduction tasks 

with multiple interleaved times (Block & Grondin, 2014; Grondin, 2010, 

2012), participants in our experiment showed a much lower variable 

error (see results). 

 

3.3.3. Procedure 

 Participants completed two blocks of practice trials (90 trials per block 

including all speeds and motion times). In these practice trials, if their 

response time was within a temporal window of 200 ms centered on the 

line, visual feedback was provided. The aim of the baseline session was 

to familiarize participants with the experimental paradigm, especially 

with the timing until alignment. 
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 After the practice trials, the main part of the experiment started. 

Everything remained the same except for the feedback after each trial. 

Reward was introduced, so that each trial was rewarded according to 

the response. This reward increased exponentially as a function of time, 

so that the closer the remaining time to alignment when the response 

was made, the higher the reward was. Any response time beyond 

alignment was penalized with -200 points. After a non-penalized trial, the 

reward won in that trial appeared on the screen, as well as the total 

reward won in that block until the moment. After a penalized trial, “-200” 

appeared next to the total reward. As before, blocks had 90 trials. 

Participants completed 12 blocks. They started each block with 5000 

points, and they were instructed to finish each block with as many points 

as possible. They were told that their final payoff would depend on the 

total points they accumulated throughout the experiment. When 

receiving the initial instructions, participants were shown a graphical 

depiction of the reward function, similar to Figure 3.1.C. However, no 

reference was made to reward being related to time or space. 

 

Computing reward 

The reward given after each response was a function of the response 

time t. Reward increased exponentially and the reward function u(t) was 

such that pressing the button at alignment, centered at t = 1, was 

rewarded with 100 points. Responding after that was penalized with the 

subtraction of 200 points (Figure 3.1.C). Thus, for time-defined rewards: 

 

𝑢(𝑡)  = 𝛽 ·  𝑒𝑥𝑝(𝛼 ·  𝑡)      if    𝑡 ≤  1                                                   (3.1) 

𝑢(𝑡)  =  −200      if    𝑡 >  1 
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Where the linear parameter 𝛽 =  0.1008 acted as a scaling parameter 

and the non-linear parameter 𝛼 =  6.90 defined the slope or rate of 

change of the reward as a function of time. Note that, for the motion 

times of 0.8 s and 1.2 s, to make alignment be always at t = 1 we simply 

shifted the reward function so that the same reward was given across 

motion times when the response was made at the same time to 

alignment.  

 

Assessing response optimality 

In our task, the reward function is the mapping between response time 

and reward, which follows an asymmetric progression: ascending 

exponentially until alignment, becoming a constant penalization 

afterwards. Given this reward function, the optimal response that 

maximizes the reward in the long run is dependent on the participant’s 

variability: the more variable a participant is, the earlier her optimal 

response time will be, so that she can avoid being penalized too often. 

Thus, to act optimally, a participant is required to know not only about 

the task’s reward function, but also about her own variability across the 

different conditions of the stimuli (i.e. motion times and target speeds). 

 

 
Figure 3.2. Example of the calculation of the optimal response. A. Response time 

distribution for an imaginary participant with a mean centered at 0 s and a temporal 

variability of 25 ms. B. Reward function of the task, as shown as in Figure 3.1.B, 

displayed here for direct comparison with the other plots of this figure. C. Convolution of 
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the response time variability and the reward function. Each response time is plotted 

against its expected reward. The vertical dashed line shows the optimal response time, 

which in this case would correspond to pressing the button 0.052 s before alignment. 

This mean response time would lead to the maximum expected reward for a variability of 

25ms, which in this case would be 65.177 points. 

 

We wanted to discover whether, in our task, participants could integrate 

the task's reward function and their own motor variability in order to 

respond at the point that maximized the expected reward. Figure 3.2. 

illustrates the process of calculating optimal responses. In this task, the 

temporal variability is normally distributed with mean µt and standard 

deviation σt . Figure 3.2.A shows an arbitrary example of this normally-

distributed variability. Response normality in our experiment was verified 

by comparing the quantiles of the observed and theoretical distributions 

through Q-Q plots (Evans, Hastings, & Peacock, 2000).  

 

Given the reward function described in Equation (3.1), and displayed in 

Figure 3.2.B, the expected reward is the result of the convolution of the 

motor variability density with the task's reward function (e.g. Mamassian, 

2008). Thus , the expected reward 𝑔(𝑡), 

 

𝑔(𝑡)  =  𝑣(𝑡)  ∗  𝑢(𝑡)                                                                             (3.2) 

 

where 𝑣(𝑡) is simply the standard deviation of the response times which 

are not considered outliers (see data analysis). The time value 

corresponding to a maximum reward 𝑔* is considered the optimal time 𝑡* 

(Figure 1C): 

 

𝑡* = arg maxt (𝑔(𝑡))                                                                             (3.3) 

𝑔* = 𝑔(𝑡*)                                                                                            (3.4) 
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We calculated 𝑡* for each participant, split by motion time and target 

speed. To see whether the optimal response was indistinguishable from 

the observed mean response, we checked whether 𝑡* fell within the 95% 

confidence intervals of the response times for each block, calculated 

with non-parametric bootstrap with 1000 resamples. Note that, besides 

of the constant reward function, 𝑡* only depends on the standard 

deviation of the responses. Note also that the standard deviation 

became smaller as the experiment progressed. To reduce the 

complexity of the analyses and be able to collapse across blocks, the 

data used to calculate 𝑡* was that corresponding only to the final 5 

blocks of the experiment, where the standard deviation had already 

become stable. This way, we would also minimize any differences 

caused by initial learning. 

 

3.3.4. Data analysis 

For every participant, block, motion time and target speed we defined as 

outliers those trials whose response times and/or response locations 

were above or below 3 standard deviations. These outliers were 

removed before proceeding with the analyses.  

 

Disclosing the decision variable 

When adopting a response criterion, participants may rely more or less 

on temporal or spatial information, which translates to different extents 

to which either type of information is used as a decision variable (DV). A 

temporal DV would consist in, for all target speeds, aiming at responding 

when the time left to alignment is very similar. On the contrary, a 

participant using a pure spatial DV would aim at responding, for all 
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speeds, when the target is at similar spatial positions. The idea of 

responding when the stimulus reaches a threshold based on a 

remaining time is a long-standing proposal that started with the tau 

hypothesis (Lee, 1976; Tyldesley & Whiting, 1975). Note, however, that 

we want to capture this feature in the overt responses and, therefore, in 

order to define a temporally or spatially consistent DV we will not 

depend on an invariant threshold for action, be it temporal or spatial, but 

rather on the difference across velocities in the response pattern. For 

example, suppose that one participant has a spatial DV by responding at 

a similar spatial distance to alignment across different speeds. We do 

not require this distance to be stable in absolute terms. For instance, this 

same participant may respond when the target is 1 cm away from the 

line, and eventually shift to when it is 2 cm away, without her DV being 

affected as long as this difference remains the same across speeds. Our 

experimental design allowed to determine the extent to which 

participants exploited more temporal or spatial cues. This is described 

below. 

 

A pure temporal DV would require to estimate the time remaining to 

alignment, and set a moment in time acting as a response threshold, 

which would mainly be invariant across speeds. Note that we are less 

concerned about how subjects estimate this time: either by using optical 

variables (Bootsma & Oudejans, 1993) or relying on speed estimates 

(Smeets et al., 1996). When the target reached that temporal threshold 

tth participants would initiate their response (López-Moliner & Bonnet, 

2002). This is exemplified in Figure 3.1.B. The observed response time 

tresp can be defined as  

 

 𝑡!"#$  =  𝑡!!  + 𝑡!                                                                                (3.5) 
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Where the threshold tth is a stimulus-dependent component and tm is an 

additive component independent of the stimulus or target that would 

include motor delays. We can further substitute the threshold tth to 

consider the speed of the target t: 

 

 𝑡!"#$ =  𝑎 𝑣𝑒𝑙!! +  𝑡!                                                                          (3.6) 

 

Where 𝑎 would correspond to the remaining spatial distance to 

alignment when the the evidence reaches tth, and 𝑣𝑒𝑙!! is the speed. 

When the remaining space (𝑎) is divided by the corresponding speed 

(𝑣𝑒𝑙), we obtain the corresponding temporal threshold. If we applied 

Equation (3.6) to a pure temporal data pattern with 𝑎 and  𝑡! as free 

parameters, the fit would estimate a value of 𝑎 very close to zero 

reflecting the invariance of the responses across speeds, but rendering 

the spatial meaning of 𝑎 void. This can be avoided by setting the  𝑡! 

(intercept) to a fixed value which would require further assumptions to 

separate  𝑡!! from  𝑡!. 

 

Therefore, in order to keep our analysis as simple as possible while 

capturing the underlying response strategy, we can use the same linear 

model but interpreting the resulting slope (denoted as 𝑠 rather than 𝑎) as 

an indicator of the use of a temporal threshold. Thus, an 𝑠 value close to 

0 would reflect time-based responses, as this would capture the 

invariance across speeds. On the other hand, a pure spatial DV would 

use a location in space as a threshold. Therefore, the tresp (i.e. remaining 

time) as a function of  𝑣𝑒𝑙!! would have a linear relationship with a slope 

𝑠 significantly different from zero. A negative 𝑠 would correspond to 

earlier response times for slower speeds and later response times for 
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faster speeds, with bigger differences the more negative 𝑠 is. This would 

be congruent with a space-based DV, because aiming at a same spatial 

location corresponds to smaller remaining times for faster speeds 

(Figure 3.1.B). Of note is that, according to Equation (3.6), a constant 

location in space across speeds would correspond to tracking the 

changing position (Brenner et al., 2006) and aiming at responding when 

the target is at some distance before the line. Due to the motor delay to 

produce the action, one could argue that the target would move for a 

longer time in faster speeds. Synchronization mechanisms 

(Aschersleben, 2002; Aschersleben & Prinz, 1998) have been proposed 

to account for these delays so that participants with a spatial criterion 

would initiate the action slightly earlier in time for faster speeds, so as to 

make up for this motor delay. However, this is not captured by Equation 

(3.6), as we wanted it to include only the essential elements for our 

framework to capture the pattern of overt responses. 

 

We calculated 𝑠 for each participant and motion time. And although 

values of 𝑠 closer to 0 informed us of a more time-based DV, we did not 

know which range of 𝑠values could be related to mainly temporal 

information being used to plan responses – and the same for spatial 

information. That is why, for each participant and motion time, and using 

her own data, we simulated the slope corresponding to a pure spatial 

DV, where a spatial threshold was used. For this purpose, we took the 

mean of the responses in space for the whole experiment (which would 

act as a unique spatial threshold), and dividing it by each speed, thus 

obtaining three response times. Those were fitted to Equation (3.6) as a 

function of its associated 𝑣𝑒𝑙!!in order to estimate a slope 𝑠!"#$ that 

would correspond to an entirely spatial DV. This slope 𝑠!"#$ was 

compared to 𝑠, the slope obtained from the observed data. To decide 
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whether the participant exploited more temporal or spatial cues, we had 

to use a cutoff point. Our compromise choice was the value halfway 

between a purely spatial DV (𝑠!"#$) and a purely temporal DV (which, 

given our model, was always a slope with value 0). The midpoint 

between any value and 0 is half that value. Thus, if 𝑠 was closer to 0 to 

half the value of 𝑠!"#$, the participant was considered to favour a time-

based DV. Otherwise, her DV was categorized as space-based. In 

addition, by calculating a ratio between 𝑠 and half 𝑠!"#$, we also 

obtained a value that was used as an indicator of how time or space-

based responses were along a continuum. This value (“DV ratio”) was 

calculated by dividing 𝑠 by half 𝑠!"#$. The cutoff point for the DV ratio 

was at 1, since that value indicated equidistance of slope 𝑠 to the purely 

temporal and spatial slopes. The smaller a DV ratio when compared to 

1, the more time-based responses were, since 𝑠 (the numerator) is 

closer to 0 than the denominator. And the larger the DV ratio, the more 

space-based responses were. Within each participant, we calculated the 

DV ratio for each motion time, in order to check whether different ratios 

were used simultaneously for the different motion times. When 

performing group analyses, we used the cutoff point of DV ratio = 1 to 

classify responses as mainly time or space-based. This participant 

grouping will be referred to as the temporal and spatial DV groups. Note 

the fact that each participant’s responses were split by motion time. 

Thus, a participant’s data could fall within both the temporal and spatial 

DV groups, depending on the main cue used to plan responses for a 

particular motion time. We followed this grouping procedure for every 

group analysis detailed in the results section. 
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3.4. Results 

All values referring to temporal responses reported henceforth are 

scaled so that alignment occurs at 𝑡 =  0. Negative values indicate 

responses before alignment, and positive values indicate responses 

after alignment.  

 

Outliers accounted for 0.348% of trials. These were removed from 

subsequent analyses. We ran an initial series of Linear Mixed Models 

(LMM) to see how response times and their standard deviations evolved 

across blocks. The effect of target speed and motion time on reward and 

responses will be analysed thoroughly in the next sections. We chose 

LMMs because they allow for a better integration of continuous variables 

(e.g. block) and factors in the same design than ANOVA (Baayen, 

Davidson, & Bates, 2008). We used the lmer function implemented in 

the lme4 R package (v.1.0-6) (Bates, Mächler, Bolker, & Walker, 2015).  

 

An LMM was conducted with response time as dependent variable and 

block and motion time as fixed effects. Participants were treated as 

random effects (random intercept and slope). The ANOVA on the LMM 

gave a significant main effect of motion time (F(2,22576) = 79.065, 

p<.001) and block (F(1,22576) = 8.572, p=.003), but no significant 

interaction. Response times were on average before alignment (initial 

block average per motion time, 0.8 s = -0.035 s; 1 s = -0.038 s; 1.2 s = -

0.044 s). Across blocks, they became significantly later (average rate 

0.0002 s/block, t= 2.906, p= 0.04, final block average per motion time, 

0.8 s = -0.033 s; 1 s = -0.037 s; 1.2 s = -0.042 s). Concerning the 

variability, responses became more precise across blocks, with no 

difference among motion times. The SD decreased at a rate of 0.0004 s 
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per block (t= -8.985, p<.001, initial block average = 0.031 s, final block 

average = 0.024).  

 

Reward and loss fraction 

 

 
Figure 3.3. Average reward per trial (in points) as a function of the value of the DV ratio. 

The more towards the left a data point is located, the more time-based the response. 

Each participant is included in the plot with three data points, each corresponding to her 

responses within a certain motion time, as denoted by the color. Bigger points represent 

the centroid of each motion time’s distribution, with associated error bars that show 

standard errors of the mean. The solid, grey line shows a linear fit of all the data. The 

dashed, vertical, black line shows the cutoff point of DV ratio = 1, used to binarily 

categorize a group of responses as time or space-based. 
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An LMM was run with average reward as dependent variable, DV ratio 

and motion time as fixed effects, and participant as random effects. 

Figure 3.3. shows the average reward as a function of the DV ratio 

(smaller being more time-based) for each motion time. As can be seen, 

the reward was clearly modulated by the type of information used to 

control the responses: smaller DV ratios resulted in larger reward (fixed 

effect of DV ratio: F(1,382.1)= 13.055, p<.001). In addition, average 

reward was also larger for longer motion times (fixed effect of motion 

times F(2,15927.1)=13.789, p<.001). Also the interaction between DV 

ratio and motion time reached significance (F(2,14913.8)= 3.092, 

p=.045). With the data collapsed across motion times, a Pearson’s 

correlation between DV ratio and average reward per trial had an r = -

0.453 (p<.001). Using the cutoff point of DV ratio = 1 to binarily divide 

participants into the DV groups, the % of participants classified into the 

temporal DV group was 28.571% when the motion time was 0.8 s, 

61.905% for 1 s, and 76.190% for 1.2 s. 
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Figure 3.4. Average reward per trial (in points) as a function of the sum of the mean 

squared differences of response spatial locations (in cm2) across speeds. Results are 

split by motion time, as denoted by the color, and error bars represent the standard error 

of the mean across participants. The solid, black line represents a linear fit of the data 

points. 
 

One concern with the DV ratio analysis is that we implicitly assumed a 

relatively constant threshold (spatial or temporal) across the different 

blocks. However, as commented before, this is not a requirement for our 

predictions. Space-based overt responses will result in similar response 

spatial locations across speeds, irrespective of the remaining spatial 

distance for alignment used to trigger the response. Conversely, time-

based responses will generate systematic differences of position across 

velocities. We conducted an additional and simple analysis, without the 

need to assume a unique threshold, in order to support our claim 

regarding an enhanced reward correlating with more time-based 

responses, and longer motion times facilitating them. We calculated the 

mean squared difference between the spatial location for each speed 

and the mean location pooled across speeds. We computed this 

quantity for each participant, block and motion time. The mean across 

participants and blocks is plotted against average reward in Figure 3.4. 

As can be seen, lower differences across speeds in response spatial 

locations were related to both lower average reward and to shorter 

motion times, this being consistent with all the previous analysis related 

to space-based responses. The average values were significantly 

different across motion times, as denoted by the non-overlapping error 

bars. 
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Figure 3.5. A. Average loss fractions between DV as a function of target speed. Shaded 

areas represent binomial 95% confidence intervals. B. Average response spatial 

locations between DV as a function of target speed. Shaded areas represent 95% 

confidence intervals. Each panel shows responses for a specific motion time. 
 

To explain why more time-based responses enhanced performance, we 

explored a hypothesis already mentioned in the introduction: that 

participants exploiting more temporal information dealt better with faster 

target speeds. The precision by which we acknowledge the change of 

position of a moving object is limited by the temporal resolution of the 

visual system, with spatial uncertainty being larger for faster speeds. 

Thus, spatial variability increases for faster speeds, as depicted in 

Figure 3.1.A. In our task, for responses closer to the line that rely on a 

spatial position, the amount of penalized trials should thus be larger for 

faster speeds, whereas a temporal DV could allow for more stable 

responses across speeds. To test this, we grouped the whole dataset, 

split by each motion time within each participant, according to the type of 

information participants relied on more. As plotted in Figure 3.5.A, we 

calculated the loss fraction for the different target speeds. For each 

speed, the loss fraction was simply the proportion of trials for which 

responses were made after alignment, and thus were penalized. We 
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conducted a general linear mixed model (binomial responses) with the 

loss fraction as dependent variable, target speed and DV as dependent 

variables (fixed effects) and participants as random effects (we allowed 

both intercept and slope to vary). Time-based responses did not lead to 

a significant increase of losses with increasing speed (slope= .006, 

p=.407), while space-based responses did result in a significant increase 

of losses (slope= .060, p<.001). The difference in percentage was not 

significant for the lowest speed (χ2(1)= 0.042, p=0.419), while it was for 

the two larger speeds (25: χ2(1)= 26.781, p<.001; 32: χ2(1)= 80.634, 

p<.001). 

 

Modulation of DV by motion time  

Figure 3.3. clearly shows how longer motion times (e.g. 1.2 s) were 

related to the use of more temporal information. This can be due to 

longer integration times leading to more reliable velocity estimates. One 

possibility, then, is that, in trials with longer motion times, velocity 

estimates can be used to update the target’s position more rapidly. This, 

in its turn, would increase the presence of phenomena like motion 

extrapolation (De Valois & De Valois, 1991; Linares et al., 2007; 

Nijhawan, 1994; Whitney, 2002). Some evidence for this hypothesis can 

be seen in Figure 3.5.B, which plots the target’s spatial position at 

response as a function of speed, split for the different motion times.  

 

The trend differs is not equally clear in both DV groups. Those in the 

temporal group (in blue) generally respond earlier in space for faster 

speeds, but this seems to increase for longer motion times. For the 

spatial group, the most obvious change seems to be that longer motion 

times lead to overall earlier responses. And although the few number of 

spatial participants for the longest motion time may introduce a lot of 

variability, there seems to be a trend of responses getting earlier for 
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faster speeds as motion time increases. In other words, spatial 

participants become more like temporal participants as motion time gets 

longer, and this would be congruent with the finding of DVs becoming 

more temporal. To explore these results, we ran an ANOVA on an LMM 

with position as a dependent variable, DV group (spatial or temporal), 

target speed and motion time as fixed effects, and participant as random 

effects. The analysis produced a significant interaction between DV 

group and target speed (F(2,22563)=104.398, p<.001), between DV 

group and motion time (F(2,22573)= 3.546, p=.029), and between target 

speed and motion time (F(4,22563)= 7.110, p<.001) consistent with the 

presence of motion extrapolation.  

 

Response optimality 
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Figure 3.6. A. Response times, split and colored by motion time, as a function of target 

speed. The dots connected by lines represent average observed data for the last 5 

blocks, with the shaded area around them representing 95% confidence intervals 

calculated by non-parametric bootstrap. The solid lines with no points attached represent 

optimal responses. Each panel contains the data of one participant. The horizontal, 

dashed line marks alignment. B. Percentage of participants whose optimal response 

time fell within the confidence intervals of their observed response times, split by target 

speed and motion time. Percentages are both represented as a number and as the color 

of each tile within the gradient specified on the legend. 

 

In order to see whether observed responses were optimal according to 

an expected reward maximization model, we calculated optimal 

responses by feeding the model each participant’s response standard 

deviation, split by target speed and motion time. As Figure 3.6.A depicts, 

average observed responses were almost always too close to alignment 

when compared to optimal ones, in a similar way as what has been 

reported in timing (Mamassian, 2008; Ota et al., 2015) and reaching 

(O’Brien & Ahmed, 2013). According to Mamassian (2008), this could be 

explained by participants underestimating their own motor variability, 

thus producing overconfidence. In some occasions, though, average 

response times were indistinguishable from optimal. Figure 3.6.B shows 

how the number of optimal participants changed across motion time and 

target speed. Even if optimality changed a little with motion time and 

target speed, in the best-case scenario only a third of the participants fell 

into the category of optimal responses. That was a product of 

participants typically responding earlier for longer motion times and 

slower speeds.  
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3.5. Discussion 

Due to the spatiotemporal nature of interacting with moving objects, 

people can plan their actions by basing responses on temporal and/or 

spatial information. We investigated whether relying more on either type 

of information could improve performance, defined in our task as the 

average reward given after a response. We found that the more time-

based responses were, the larger the average reward. We relate this 

result to a temporal DV being a better way to keep performance stable 

across speeds, while a spatial DV increases the number of penalized 

trials as target speed became faster. We suggest that this is a product of 

the mechanisms underlying the acquisition of these cues: space-based 

responses are made by continuously sampling the target’s position in 

space until it reaches a spatial threshold, which then triggers the 

response. This planning is constrained by the temporal resolution of our 

visual system: we simply cannot increase the sampling rate when 

monitoring a position. Since, when compared to objects moving with a 

slower speed, those with a faster speed travel a larger distance in the 

same amount of time, acknowledging the position of an object that 

moves faster will be associated to a larger spatial error (Brenner et al., 

2006). In our task, since participants responded close to the line, this 

meant that those trials with faster target speeds were more prone to 

being penalized. On the other hand, time-based responses are made by 

estimating the remaining time-to-contact (in this case, alignment) and 

establishing a threshold that is set somewhere along the estimated time 

(see López-Moliner & Bonnet, 2002). This would allow to circumvent the 

limitation imposed by the sampling rate of the visual system. Even if 

there is evidence for an integrated object-tracking system (Kwon et al., 

2015), time-based responses would be related to prioritizing pure motion 

signals, in contrast with space-based responses mainly using spatial 
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displacement, as has been shown with other type of visual stimuli (de la 

Malla & López-Moliner, 2010; Nakayama & Tyler, 1981). As stated in the 

Methods section, we were more focused on characterizing the nature of 

the response (from temporal to spatial) than revealing how subjects did 

estime a temporal threshold, which is a different research question in 

itself. Nonetheless, this issue deserves some discussion. One possibility 

is that exploiting temporal information is based on velocity estimates and 

participants combine this information with remaining distance as 

reflected in Equation (3.6). Alternatively, subjects could have used 

optical variables like the rate of contraction of the visual angle between 

the target and the line (Bootsma & Oudejans 1993). Normally, models 

based on optical variables do not make predictions on the uncertainty of 

respective estimates since neural processing, for example, is less 

emphasized. In any case, the present study did not aim at supporting 

one or the other claim by discussing the exact variables participants 

would use. However, the differences across different motion times 

cannot easily be accommodated by using optical variables alone and 

some reformulation of models only combining optical variables, probably 

by including uncertainty measures, would be necessary. This has 

already been proposed in optical models for catching within the context 

of the outfielder problem (Belousov, Neumann, Rothkopf, & Peters, 

2016). 

 

We found that the information used to plan responses could be 

modulated by motion time, understood as the total time the participant 

could see the target moving. Trials with a short motion time mainly 

originated space-based responses, while longer motion times elicited 

more time-based responses. Extracting motion information requires 

integrating evidence over time (Burr & Santoro, 2001; Neri et al., 1998). 

The shorter a motion time, then, the more difficult it is to obtain a reliable 
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velocity estimate to establish the temporal response threshold. For short 

motion times responses are thus likely to be constrained to the use of 

spatial information.  

 

More time-based responses – and larger average reward – may also be 

explained through the presence of position extrapolation. If longer 

motion times favour acquiring reliable velocity estimates, these 

estimates could be used to update position more rapidly. This motion 

information, though, would increase the presence of position 

extrapolation. This is consistent with findings showing that the amount of 

extrapolation depends on motion time (Linares et al., 2007) and 

aforementioned integrative accounts of position and motion (Kwon et al., 

2015). Position extrapolation has been argued to have the adaptive 

advantage of compensating for the visual delays our visual system has 

when transmitting information along the visual pathways (Nijhawan, 

1994). In our task, the advantage behind extrapolating the position (and 

more so for faster speeds) is the same as the advantage behind 

exploiting temporal information: reducing the risk of responding after the 

line and being penalized, thus increasing average reward. Nevertheless, 

this cannot be generalized to all situations involving interaction with 

moving objects, since it is not always the case that the outcome of 

responding a little later than the point of maximum reward (in our case, 

alignment) is much worse than responding a little earlier. Extrapolation 

could also be the reason why the DV ratio of some participants was 

considerably smaller than 0. A negative DV ratio can be interpreted as 

participants responding earlier (both in time and in space) for faster 

speeds. This is congruent with perceived position being more ahead of 

the true position for faster speeds. Plus, as Figure 3.3. shows, most 

negative DV ratios correspond to long motion times, and that supports 
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the aforementioned findings of extrapolation increasing for longer motion 

times. 

 

In our task, reward did not only depend on the participants’ DV. When 

considering the correlation between DV ratio and average reward, the 

amount of variance that remains unexplained points to other contributing 

factors. An obvious one is where exactly the unified criterion for action is 

placed (see the optimality discussion below). Earlier thresholds would 

lead to less reward when the response was before the line, but also to 

reducing the chances of being penalized. An element directly related to 

this is how participants corrected their responses on a trial-to-trial basis. 

For instance, after a response after the line, some participants may 

decide to shift their criterion earlier so as to avoid future penalizations. It 

could also happen that, after a series of non-penalized responses, 

participants may be slowly responding later, in order to win more. These 

different dynamics are not analyzed here, but are important to 

characterize the nature of the responses and could represent an 

interesting future direction. 

 

One important concern with our task could be that reward was given as 

a function of time. Thus, planning responses based on temporal 

information was more likely to improve reward. To address this issue, we 

conducted another experiment, with the only difference being that 

reward was given as a function of the remaining spatial distance to 

alignment (see supplementary experiment 1 in the appendix). Even if the 

manipulation slightly weakened the relationship, the average reward was 

still larger for more time-based responses, with the modulating effect of 

motion time also being replicated.  
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We defend that time-based responses improve performance. A direct 

test to our claim, then, would be to see whether, in situations where 

obtaining motion information is more difficult, performance is reduced. In 

another control experiment (see supplementary experiment 2 in the 

appendix), we hampered the motion system by removing those motion 

cues derived from a change in luminance in the retina (first-order 

motion). The available motion information, then, depended only on 

changes in contrast (second-order motion). As expected  (see Seiffert & 

Cavanagh, 1998), responses under this condition became more space-

based, even for the longest motion times. This reduced performance, as 

measured by the average reward, which speaks to our main claim. 

 

Even if the average reward was larger for more time-based responses 

and longer motion times, in terms of expected reward maximization (von 

Neumann & Morgenstern, 1944) responses were in general suboptimal. 

Even in those cases where observed behavior was indistinguishable 

from optimal estimates, though, it is unlikely that participants met the 

requirements often thought to be needed for optimal performance. In the 

sensorimotor instantiations of SDT we used (Körding & Wolpert, 2006; 

Trommershäuser et al., 2003b; Wolpert, 2007), optimal agents are 

expected to base decisions on knowledge of both their own variability 

and the task’s reward function. Regarding the variability, for our data 

that would have meant that participants were aware of their variability 

only for the conditions of the stimuli where the model determined optimal 

performance (typically longer motion times and slower speeds), and not 

for the others. This unlikely scenario probably reflects the limitations of 

model when to explaining our data. Studies applying this model have 

normally featured pointing tasks where, if the stimulus (target) changed 

across trials, this did not imply a difference in the (always very low) 

sensory uncertainty. On the other hand, in our task both target speed 
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and motion time changed. To better deal with our data, and to data 

involving moving objects in general, the current model should be 

adapted so that it accounts for the changing sensory uncertainty.  

 

Something similar can be concluded if we take a look at the reward 

function. In our case, a temporal DV resulted in larger reward even when 

this reward was given as a function of space. Thus, exploiting temporal 

information was better than acting in accordance to the reward function’s 

domain (i.e. spatial DV for a spatially-defined reward). In line with recent 

evidence (Tsetsos et al., 2016), this shows how enhanced performance 

is sometimes achieved after ignoring some assumptions of economic 

decision theory. In our case, a physical limitation (the resolution of the 

visual system) affecting those displaying a spatial DV was at the root of 

the temporal DV leading to larger scores, and not differences in how 

participants used information about the reward function. Any normative 

model dealing with spatiotemporal situations susceptible to reproduce 

our findings should better decompose and specify the different visual 

information that can be used. It should also consider possible physical 

constraints that lead the use of some of this information to a better 

performance. In this sense, the present study also contributes to the 

body of research on sensorimotor decision-making within the framework 

of SDT by evidencing how such physical constraints should be taken 

into account before defining by which behavioral rules an optimal agent 

should abide. In sum, as others have claimed before (Jarvstad et al., 

2014), the use of normative models that overlook essential aspects of 

the task will be of limited use to derive inferences of optimal 

performance.  
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Study II - Can reward induce the 

use of temporal information when 

interacting with moving objects? 
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4.1. Summary 

Actions relative to the course of a moving object can be planned by 

exploiting temporal or spatial information of the object. Our previous 

work claimed that the use of temporal cues leads to a better 

performance. Learning how to use these cues could allow for 

improvement in those tasks requiring interaction with moving objects. 

Studies of perceptual learning have commonly relied on reward to 

achieve their purposes. Here we designed a reward-based procedure in 

order to foster the use of temporal cues. We took our previous paradigm 

and manipulated reward after each trial, so that the more distant the last 

responses were in time, the more the reward was reduced. We also ran 

another condition where a similar procedure was implemented, but this 

time to foster the use of spatial cues. We found more participants 

exploiting temporal information in the condition where this was 

promoted. However, temporal information was exploited from the start, 

implying that learning did not happen. This made us rule out the 

effectivity of our reward manipulation. Future work should aim both at 

designing more successful methods and at investigating individual 

differences causing some participants to be more prone to exploit 

temporal cues. 

 

4.2. Introduction 

The experimental results described in the previous chapter showed how, 

when planning a movement in response to moving objects, exploiting 

temporal information can be advantageous. There is a certain flexibility 

in which types of proximal (retinal) information (e.g. pure motion versus 

changing of position (Smeets & Brenner, 1994)) could potentially be 
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used to ascertain the real motion of an object in the scene. Thus, it may 

be that those who relied more on temporal information are simply more 

inclined to take advantage of pure motion cues. An interesting question 

would be whether the use of temporal information can also be learnt. 

This is relevant, since it could improve performance in tasks involving 

moving objects, such as ball sports.     

 

The process of improvement in our sensory abilities after training is 

known as perceptual learning (Seitz & Watanabe, 2005; Watanabe & 

Sasaki, 2015). Changes in sensory abilities have been shown for many 

visual features, such as orientation (Schoups, Vogels, & Orban, 1995), 

motion direction (Ball & Sekuler, 1987), Vernier acuity (Fahle & 

Edelman, 1993), texture discrimination (Karni & Sagi, 1991) or speed 

discrimination (Huang, Lu, Zhou, & Liu, 2011; Saffell & Matthews, 2003). 

However, our case goes beyond fine-tuning the discrimination of a 

simple perceptual attribute. We are interested in knowing whether 

people can learn to use a specific visual information to plan an action. 

That would imply firstly sampling that information, and then establishing 

a decisional criterion for action that could be applied to all conditions of 

the moving object. 

 

The aforementioned literature shows how, thanks to brain plasticity, our 

perceptual skills can get sharper after sustained exposure to a task. 

Sometimes, learners know their final goal in terms of behavior and, after 

each trial, they are shown the product of what they have done. Then, in 

the subsequent attempt, they try to correct for their previous error so as 

to be closer to the goal behavior. In some other cases, learners do not 

know what their best possible behavior should be, so they try to 

maximize some sort of reward function. Perceptual learning has been 

argued to be based on a process of reinforcement (Law & Gold, 2009; 
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Roelfsema, van Ooyen, & Watanabe, 2010), and reward can mediate 

this reinforcement (Seitz, Kim, & Watanabe, 2009). Even when sensory 

feedback is not available, explicit reward has proved to be useful in 

processes of sensorimotor learning and adaptation (Darshan, Leblois, & 

Hansel, 2014). In the present study, whose paradigm was very similar to 

Study I, we used explicit reward as reinforcement. Specifically, we 

manipulated reward to induce a change in the information used to plan 

responses. We did so by penalizing the use of a temporal DV when we 

wanted participants to use spatial information, and by penalizing the use 

of a spatial DV when we wanted them to use temporal information. 

 

Our previous study found that the DV became more temporal when the 

trajectory of the target (motion time) was longer. In this study, we 

wanted the DV to change only in response to the penalizations applied 

to the reward function, and not as a consequence of a particular target’s 

motion time. To ensure this, we only presented targets with one motion 

time. However, we did not know whether, in the previous experiments, 

the presence of multiple motion times could have had any influence in 

the different DVs: for instance, the DV becoming more temporal for 

shorter motion times when presented interleaved with longer motion 

times, as compared to a condition where only a short motion time was 

presented. We ran Experiment 1 to assess the DVs in a condition with 

just one motion time, so that later on we could see how these changed 

when introducing a penalization imposed on the reward function. We 

found that most participants exploited more spatial information. In 

Experiment 2, we introduced the penalization, so as to foster the use of 

one or another type of information. Although half of the sample had a 

temporal DV in the condition where this was promoted, the lack of a 

learning trend across blocks casts a doubt about the usefulness of this 

manipulation.  
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4.3. Experiment 1 

Experiment 1 was planned to be compared with Experiment 2. This 

study aimed at introducing reward scaling to foster one or another DV 

variable, but first it was necessary to identify which changes in the DV 

arose from the reward manipulation, as opposed to those arising from 

the fact that, unlike in our previous study, only 1 target motion time was 

presented. To do that distinction, we ran Experiment 1, where targets 

had a single motion time, and reward penalization was not yet 

introduced. Still, it could be argued that the nature of the reward function 

could bias the adopted DV: if reward was defined as a function of 

temporal proximity to alignment, participants could have more time-

based responses, and vice-versa (see Study I). In order to minimize this, 

when compared to the previous study, in this experiment we narrowed 

the differences among presented speeds. Instead of speeds of 19.5, 25 

and 32 cm/s, targets could adopt speeds of 20, 23 and 26 cm/s. This 

made that, independently of the variable reward depended on, time-

based and space-based responses would result into very similar 

rewards. Figure 4.1. shows how, when compared to the old speeds, the 

difference in reward among different DVs shrinks when using the new 

speeds. For instance, Figure 4.1.A depicts how, in a task where the 

reward function gives reward according to the time left for alignment, 

responding at the same point in space (spatial DV, dotted lines) 

translates into a different reward for the different speeds, but this is 

much less pronounced when the difference among speeds is smaller 

(Figure 4.1.C). Similarly, when giving reward as a function of the spatial 

distance to alignment, responding when the same time is left for 

alignment corresponds to a different reward for each speed (Figure 
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4.1.B), but less so when the difference among speeds is smaller (4.1.D). 

With this design, we could be more sure that results in this experiment 

would reflect the default DVs participants would use when dealing with 

moving objects with a single motion time, without the domain of the 

reward function influencing the DV. Results of Experiment 1 were meant 

to be used as a baseline for Experiment 2, so that any differences could 

be attributed to the reward manipulation introduced in the latter. We 

adopted one last measure to know whether, in spite of the minimal 

difference between conditions on how different decision variables would 

translate into rewards, the reward function still influenced the DV. We 

made half of the participants in Experiment 1 complete a condition 

where reward was given as a function of time, and the other half one 

where reward was given as a function of space. These will be referred to 

as the time condition and space condition, respectively. 
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Figure 4.1. A. Non-penalized part of the reward function where reward is given as a 

function of time. 0 indicates alignment. The solid line represents a pure temporal DV: for 

all speeds, the response is executed when the time left for alignment is the same. In this 

case, equal response times translate to the same reward for all speeds. The dotted  lines 

represent a pure spatial DV: for all speeds, the response is executed when the target is 

at the same spatial position. Since reward in this condition is given as a function of time, 

equal response locations would translate into a different reward for each target speed. 

The target speeds the dotted lines correspond to are those used in the experiments of 

Chapter 3: 19.5, 25 and 32 cm/s. The inset zooms in the part of the reward function 

closest to alignment. B. Non-penalized part of the reward function where reward is given 

as a function of space. 0 indicates alignment. The solid line represents a pure spatial 

DV. In this case, equal response locations translate into the same reward for all speeds. 

The dotted lines represent a pure temporal DV. Reward is given as a function of spatial 
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position, so equal response times correspond to a different reward for each target speed. 

As in A, the target speeds the dotted lines correspond to are also those used in Chapter 

3. The inset zooms in the part of the reward function closest to alignment. C. Same as A, 

but now the dotted lines correspond to the target speeds used in Experiment 1 of the 

present chapter: 20, 23 and 26 cm/s. D. Same as B, but with the dotted lines 

corresponding to the target speeds used in Experiment 1 of the present chapter. 

 

4.3.1. Methods 

4.3.1.1. Participants 

27 participants took part in the experiment after giving informed consent 

(17 women, all right-handed, age range 18-40). 14 completed the time 

condition and 13 the space condition. All had normal or corrected-to-

normal vision and were naïve about the aim of the experiment. The 

study complied with the local ethics guidelines, in accordance with the 

declaration of Helsinki. 

 

4.3.1.2. Apparatus and stimuli 

The room conditions and equipment were the same as those described 

in section 3.3.2. 

 

A trial started with both a white vertical line and a white circular target 

appearing on a black background. The vertical line (10cm tall, 1px width) 

was positioned 15 cm right of the center of the screen and remained 

stable for the whole trial. The target had a radius of 0.3 cm and travelled 

from left to right. Three possible speeds (20 cm/s, 23 cm/s and 26 cm/s) 

matched a specific initial position (20 cm, 23 cm and 26 cm away from 

the vertical line, respectively) so that it always took 1 s until alignment. 

The target disappeared when the participant pressed the button or at a 
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random point between 1.1 s and 1.2 sec after movement onset, always 

when the target had already completely crossed the line. Visual 

feedback was given when required (see below). As a clarifying point, the 

single motion time of 1 s was chosen because, out of the motion times 

used in our previous experiments, this was the value for which 

responses were more balanced between those binarily classified as 

time-based and space-based. 

 

4.3.1.3. Procedure 

Participants completed two blocks of practice trials (90 trials per block 

including all speeds). In these practice trials, if their response time was 

within a temporal window of 200 ms centered on the line, visual 

feedback was provided. The aim of the baseline session was to 

familiarize participants with the experimental paradigm, especially with 

the timing until alignment. 

 

 After the practice trials, the main part of the experiment started. 

Everything remained the same except for the feedback after each trial. 

Reward was introduced, so that each trial was rewarded according to 

the response. For those participants in the time condition, this reward 

increased exponentially as a function of time, so that the closer the 

response time to alignment, the higher the reward was. For participants 

in the space condition, reward grew as a function of space and any 

response time beyond alignment was penalized. The reward function of 

the time condition was the same used in the main text of Study I, while 

the reward function of the space condition is that used in Supplementary 

Experiment 1 of the very same study (included in the Appendix). After a 

non-penalized trial, the reward won in that trial appeared on the screen, 

as well as the total reward won in that block until the moment. After a 
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penalized trial, “-200” appeared next to the total reward. Blocks had 90 

trials, composed by 30 randomly ordered trials per speed. Participants 

completed 12 blocks. They started each block with 5000 points, and 

they were instructed to finish each block with as many points as 

possible. When receiving the initial instructions, participants were shown 

a graphical depiction of the reward function. However, no reference was 

made to reward being related to time or space. 

 

4.3.1.4. Data analysis 

Disclosing the DV followed the exact same procedure as Study I. The 

only difference here was that the new target speeds were used. Thus, 

we obtained a DV ratio for each participant, and a binary categorization 

was made such that participants with a DV ratio below 1 were grouped 

into the temporal group, while those with a DV ratio above 1 were in the 

spatial group. 

 

The method to identify and remove outliers was the same as in Study I. 

For every condition, participant, block and target speed, we eliminated 

those trials with response times and/or response locations were above 

or below 3 standard deviations. 

 

4.3.2. Results 

Subsequently reported response times and spatial locations are scaled, 

with alignment being a time value 𝑡 =  0 for the time condition, and a 

space value 𝑠 =  0 for the space condition. Negative values indicate 

responses before alignment, and positive values indicate responses 

after alignment.  
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Upon identifying as outliers 0.298% of the trials in the time condition and 

0.342% of the trials in the space condition, these were removed before 

proceeding to the analyses described below. 

 

 
Figure 4.2. A. Average reward per trial (in points) as a function of the value of the DV 
ratio in Experiment 1. Results are split by condition, as denoted by color and shape. 
Bigger points represent the centroid of each condition’s distribution, with associated error 
bars that show standard errors of the mean. Solid lines show linear fits of the data for 
each condition. The dashed, vertical, black line shows the cutoff point of DV ratio = 1, 
used to binarily categorize a group of responses as time or space-based. B. Average 
reward per trial (in points) as a function of trial block in Experiment 1. Results are split by 
condition. Data points are connected by lines and are surrounded by 95% confidence 
intervals calculated by bootstrapping. 
 

 

Firstly, we focused on characterizing the DV of the participants, and 

whether this related to the average reward in the experiment. Using the 

cutoff point of DV ratio = 1 to categorize participants binarily as more 

time-based or more space-based, only 4 out of 14 participants were 

classified as time-based in the time condition, while the amount was 3 

out of 13 in the space condition. A chi-squared test failed to reach 

significance for any differences between the two groups χ2(1)= 0, p=1). 

The correlation between DV ratio and reward was non-significantly 

different from 0 in any case (time condition: r = -0.214, p = 0.462; space 
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condition: r = -0.197, p = 0.518). The lack of any clear trend can be seen 

in Figure 4.2.A.  

 

We then aimed at exploring how different variables evolved across 

blocks. This was of special relevance here, since the present data were 

meant to be used for comparison with the next experiment, that would 

be testing effects of learning. Given the small number of temporal 

respondents, we did not split each condition according to its DV, 

comparing whole conditions instead. As in Study I, we fitted some LMM, 

performed an ANOVA on them, and explored with more detail any 

significant effects. 

 

We started by focusing on the evolution of average reward across 

blocks. A LMM was fitted to our data, with average reward as the 

dependent variable. Block and condition were set as fixed effects, and 

participant as random effects. As seen in Figure 4.2.B, although 

participants in the time condition won less on the first block, the ANOVA 

on the LMM did not show a main effect of condition if this first block was 

excluded. As for the other main effect, reward increased across blocks 

(F(1,26620.6)= 34.401, p<.001), but at the slow average rate of 0.776 

points / block.  

 

Our focus then shifted to other relevant variables associated to the 

responses. We ran other LMMs, with these variables of interest as the 

dependent variable. Block, target speed and condition were set as fixed 

effects, and participant as random effects. The first of these variables 

was response times. These were not different between conditions, as 

supported by a non-significant main effect (p=.110), although response 

times were different among speeds (F(2,29031.1)= 25.986, p<.001), with 

later response times for faster speeds. Furthermore, response times 
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became earlier across blocks (F(1,29031.1)= 237.695, p<.001) (initial 

response times and decrease per block, 20 cm/s: initial -0.035 s, -

0.0009 s per block; 23 cm/s: initial -0.031 s, -0.0006 s per block; 26 

cm/s: initial -0.029 s, -0.0004 s per block). The same could be said when 

replacing response times with response spatial locations, with significant 

main effects of target speed (F(2,29030.0)= 9.601, p<.001) and block 

(F(1,29030.0)= 220.783, p<.001), but not of condition (p=.108). 

Response locations became earlier across blocks, but they were closer 

to alignment for slower speeds (initial response locations and decrease 

per block, 20 cm/s: initial -0.698 cm, -0.018 cm per block; 23 cm/s: initial 

-0.717 cm, -0.014 cm per block; 26 cm/s: initial -0.769 cm, -0.011 cm per 

block). Finally, the SD of both response times and response locations 

was not different between conditions (p=.590 and p=.588, respectively), 

but it decreased across blocks (response times SDs: F(1,944.42)= 

12.558, p<.001, initial average 0.024 s, -0.0001 per block; response 

locations SDs: F(1,943.00)= 10.818, p=.001, initial average 0.553 cm, 

0.003 cm per block). 

 

4.3.3. Discussion 

Most participants of Experiment 1 planned their responses by mainly 

exploiting spatial information. This contrasts with the data of Study I, 

where more than half of the participants were closer to exploiting 

temporal information for those targets with a motion time of 1 s (as can 

be seen by a simple comparison of the yellow dots left and right of the 

dashed line in Figure 3.3.). The fact that we did not find a relationship 

between more time-based responses and larger reward could be due to 

the few participants with a clear temporal DV making the DV distribution 

across participants too homogeneous for that trend to be visible. 
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Responses and reward were very similar between conditions, with 

similar averages and evolution across blocks. Thus, the domain on 

which the reward was given did not greatly influence responses. 

 

4.4. Experiment 2 

Results from Experiment 1 show how, in both conditions, most 

participants mainly exploited spatial information to plan their actions. 

Considering that we previously showed how exploiting temporal 

information can be more advantageous, it would be particularly 

interesting if participants could somehow learn to use temporal 

information. In Experiment 2 we featured two different conditions, one 

where reward was given as a function of time to alignment and the use 

of temporal information was promoted (time condition), but also one 

where reward was given as a function of spatial distance to alignment 

and the use of spatial information was promoted (space condition). The 

particular mechanism we chose to foster the use of one or another 

information was through a penalization, where reward received after a 

trial was reduced if the past responses were not planned by using the 

relevant information. Specifically, in the time condition, the reward 

function linking responses to reward was scaled down according to how 

different average response times across speeds were so far in the past 

responses. For very similar response times, reward after each trial was 

close to the one received in the previous experiments. For more distant 

responses in time, the reward function was scaled down so that reward 

was reduced. This way, if participants wanted to increase their reward, 

they should respond with a more similar response time across speeds. 

The same happened in the space condition, but with response spatial 

locations. 
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Considering our design, in a condition where reward is given as a 

function of time, using a spatial DV by always responding when the 

target is at the same spatial location will yield different rewards for each 

speed. The same is true when using a temporal DV in a condition 

rewarding according to space (see Figure 4.1.). The wider the range of 

target speeds used, though, the more pronounced these differences in 

reward will be. This is why, in order for participants to realize whether 

they were using the appropriate DV, in parallel to the penalization 

procedure we widened the range of target speeds when compared to 

Experiment 1. In particular, we went back to those used in Study I.  

 

To avoid any learning effect from Experiment 1 affect performance in 

Experiment 2, the new experiment was carried out with different 

participants. 

 

Based on our past results, we expected larger reward for more time-

based responses. If our method allowed people to learn how to exploit 

the appropriate cues, that meant that participants in the time condition 

would achieve larger reward. If learning was gradual, in this condition we 

should also find average reward increasing across trial blocks, at least 

for a while until it stabilized. In addition, the learning process should be 

captured by the DV ratio becoming more temporal. As for the space 

condition, most participants displaying a spatial DV should not be 

surprising, given that it seemed to be the default DV in Experiment 1. 

However, as in the time condition, both reward and DV might evolve 

across time. 
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4.4.1. Methods 

4.4.1.1. Participants 

26 new participants took part in the experiment after giving informed 

consent (21 women, 21 right-handed, age range 18-32). 13 completed 

the time condition and 13 the space condition. All had normal or 

corrected-to-normal vision and were naïve about the aim of the 

experiment. The study complied with the local ethics guidelines, in 

accordance with the declaration of Helsinki. 

 

4.4.1.2. Apparatus and stimuli 

All apparati used in experiment 2 were the same as in Experiment 1. 

The main change in stimuli is the fact that the target speeds in 

Experiment 2 were, as in Study I, 19.5 cm/s, 25 cm/s and 32 cm/s. To 

keep time to alignment at 1 second, targets started moving 19.5 cm, 25 

cm and 32 cm away from the line, respectively. 

 

4.4.1.3. Procedure 

As in experiment 1, participants completed 2 blocks in the baseline 

session, and 12 blocks in the experimental session. However, the main 

change was that the reward given after each trial was modified in each 

condition in order to promote a spatial strategy in the space condition 

and a temporal strategy in the time condition (see below). 

 

Scaling the reward function to foster the use of temporal or spatial 

information 
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In the experimental session of Experiment 2, in the time condition each 

trial’s reward function depended on how close the last response times 

were across speeds. The more distant they were, the more that reward 

was scaled down.  

 

𝑢(𝑡)  = 𝛽 ·  𝑒𝑥𝑝( ! · !
! ! !

)      if    𝑡 ≤  1                                                    (4.1) 

𝑢(𝑡)  =  −200      if    𝑡 >  1 

 

Where 𝛾 is the difference, expressed from 0 to 1, between 𝑡!"#, the 

average response time of the past 5 trials with the maximum target 

speed (32 cm/s), and 𝑡!"#, the average response time of the past 5 trials 

with the minimum target speed (19.5 cm/s), all divided by 𝑡!"#.  

 

𝛾 = !!"#!!!"#
!!"#

                                                                                       (4.2) 

 

Thus, 𝛾 was updated after every trial where either the largest or the 

smallest target speeds had appeared. Consequently, if participants used 

a temporal strategy and responded at similar times for all speeds, 

reward would be close to the undistorted reward function used in Study 

I. Alternatively, using a spatial strategy meant responding at similar 

locations in space but different in time for each speed, and that led to 

reward being significantly scaled down. Likewise, in the space condition 

reward was scaled as a function of the closeness of the last response 

locations in space across speeds. 

 

𝑢(𝑠)  = 𝛽 ·  𝑒𝑥𝑝( ! · !
! ! !

)      if    𝑠 ≤  15                                                  (4.3) 

𝑢(𝑠)  =  −200      if    𝑠 >  15 
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Where 𝛾 is the difference, expressed from 0 to 1, between  𝑠!"#, the 

average response time of the past 5 trials with the maximum target 

speed (32 cm/s), and 𝑠!"#, the average response time of the past 5 trials 

with the minimum target speed (19.5 cm/s), all divided by 𝑠!"#. 

 

  𝛾 =  !!"# !!!"#
!!"#

                                                                                   (4.4) 

 

As can be seen in Figure 4.3.A. and 4.3.B., the larger the value of 𝛾, the 

more reward was scaled down. For both conditions, at the start of each 

block reward did not suffer any distortion. Scaling started when four 

trials of both the largest and smallest speed had been presented, so that 

there were already some past responses to average. With this 

manipulation, we expected participants to respond at a similar point in 

the relevant reward domain across speeds, so that their reward was not 

diminished. 

 

 
 Figure 4.3. A. For the time condition of Experiment 2, reward as a function of the 

remaining time for alignment at response, depending on the value of 𝛾. Larger 𝛾 bring a 

larger penalization, achieved through downscaling the reward function. 3 example values 
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of 𝛾 are shown. B. The same as in A, but for the space condition of Experiment 2, with 3 

example values of 𝛾. 

 

4.4.1.4. Data analysis 

The DV was obtained with the same procedure as in Study I. The 

criterion to identify and remove outliers was the same as the used in 

Study I and Experiment 1 of the present study. 

 

4.4.2. Results 

Upon identifying as outliers 0.298% of the trials in the time condition and 

0.342% of the trials in the space condition, these were removed before 

proceeding to the analyses described below. 

 

 
Figure 4.4. A. Average reward per trial (in points) as a function of the value of the DV 
ratio in Experiment 2. Results are split by condition and DV group, as denoted by color 
and shape. Bigger points / triangles represent the centroid of each distribution, with 
associated error bars that show standard errors of the mean. Solid lines show linear fits 
of the data for each condition. The dashed, vertical, black line shows the cutoff point of 
DV ratio = 1, used to binarily categorize a group of responses as time or space-based. B. 
Average reward per trial (in points) as a function of trial block in Experiment 2. Results 
are split by condition and DV group. Data points are connected by lines and are 
surrounded by 95% confidence intervals calculated by bootstrapping. 
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Binary categorization resulted in the time condition having 6 time-based 

and 7 space-based participants, while the space condition had 2 time-

based and 11 space-based participants. Nevertheless, a chi-squared 

test determined that the number of participants in each DV group was 

non-significantly different between both conditions χ2(1)= 1.625, p=.202). 

In any case, the correlation between DV ratio and reward was 

significantly different from 0 in the time condition (r = -0.737, p = 0.004), 

but not in the space condition (r = -0.225, p = 0.459). As shown in Figure 

4.4.A., in the time condition more time-based responses led to larger 

reward.  

 

In this experiment there was a bigger presence of time-based 

responses. Consequently, we decided to ran group analyses 

subcategorizing each condition into each DV binary group. However, 

given the few number of temporal respondents in the space condition, 

we excluded that group from comparisons, although it will be displayed 

in the different figures. Thus, we compared those participants in the time 

condition with a mostly temporal DV with those in the time condition with 

a mostly spatial DV, and those in the space condition with a mostly 

spatial DV. We will refer to these groups as condition-DV groups. 

 

Reward evolution 

In each condition, more use of the relevant information to plan 

responses translated into less downscaling of the given reward. As a 

result, we could have an initial insight on whether participants adapted to 

the use of the relevant information by taking a look at how reward 

evolved across blocks. We thus ran an LMM where average reward was 

the dependent variable, block and condition-DV group were the fixed 

effects, and participant the random effects. Figure 4.4.B shows how the 

average reward evolved for each condition-DV group, even for the one 
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not included in the analyses. The ANOVA on the LMM showed 

significant main effects of block (F(1,25746.6)= 112.316, p<.001) and 

condition-DV group (F(2,36.6)= 8.278, p=.001), and both main effects 

produced a significant interaction (F(2,25746.6)= 3.007, p<.049). Thus, 

reward was different among condition-DV groups and, although it 

generally increased across blocks, the rate of reward increase per block 

was different (time condition, temporal DV: 1.065 points / block; time 

condition, spatial DV: 1.543 points / block; space condition, spatial DV: 

1.898 points / block). Post-hoc contrasts were run to explore differences 

in final scores among these groups (all subsequent reported p are 

corrected for multiple comparisons with Hochberg’s method). Temporal 

respondents in the time condition won more than both spatial 

respondents in the time condition (p=.003), and spatial respondents in 

the space condition (p<.001). Those with a spatial DV did not have any 

significant difference in reward between both conditions (p=.668). 

Temporal participants in the time condition, then, seemed to win more 

than the other groups. As the figure shows and the similar rates of 

reward increase seem to imply, this difference in reward were already 

present in the early part of the experiment. This was also supported by 

the fact that an ANOVA on the previous LMM but only considering the 

first 2 blocks of the experiment already had a significant main effect of 

condition-DV group (F(2,307.9)= 4.052, p=.018). 

 

DV evolution 
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Figure 4.5. DV ratio across 3-block bins, for each participant of Experiment 2. Each 
panel groups participants with both the same condition and DV group, where the DV 
group is decided by classifying according to the DV of the whole experiment. Grey bigger 
points and thicker lines represent the average across participants. 
  

Temporal participants in the time condition had a larger average reward 

already from the start. This somehow undermined the hypothesis that 

these participants owed their enhanced reward to the reward 

downscaling manipulation making them adapt to a more temporal DV. 

However, the most direct test of whether participants experienced a 

change in the information used to plan responses was taking a look at 

the evolution of their DV. We initially focused on the whole experiment 

by grouping blocks into 4 bins of 3 blocks each and calculating the DV 

ratio for every participant. Then, we saw how they evolved across bins in 

every condition-DV group. To do this, a LMM was fitted to our data with 

DV ratio as the dependent variable, bin and condition-DV group as fixed 

effects, and participant as random effects. The ANOVA on the LMM 

gave a significant main effect of bin (F(1,69.000)= 8.110, p=.006) and 

condition-DV group (F(2,79.683)= 10.480, p<.001), but no interaction 

(p=.174). However, a more detailed exploration of the evolution of the 

DV ratio in each condition-DV group showed that only the spatial 

participants in the space condition showed a significant change in their 

DV across blocks (DV ratio increase of 0.322 per bin, F(69.0)= 3.160, 
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p=.002), while this evolution was marginally significant for those 

temporal participants in the time condition (DV ratio increase of 0.268 

per bin, F(69.0)= 1.939, p=.057) and non-significant for spatial 

participants in the time condition (p=.879). As Figure 4.5. helps seeing, 

though, variability was very present and no condition-DV group 

presented a unified and clear trend across bins. 

 

 
Figure 4.6. DV ratio across the first 3 blocks, for each participant of Experiment 2. Each 
panel groups participants with both the same condition and DV group, where the DV 
group is decided by classifying according to the DV of the whole experiment. Grey bigger 
points and thicker lines represent the average across participants.  
 

As said before, the larger reward showed by participants with a temporal 

DV in the time condition was already present early on in the experiment. 

Thus, studying the DV across the whole experiment may not capture 

possible fast initial adaptations to the relevant DV. Considering this, we 

narrowed down the analysed data to the first three blocks of the 

experiment. A LMM, similar to the one performed before but replacing 

the block bins by individual blocks, gave a significant main effect of 

condition-DV group regarding differences in the DV ratio (F(2,65.999)= 

6.754, p=.002), but neither the main effect of block (p=.146) neither the 

interaction between condition-DV group and block (p=.219) reached 
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significance. Thus, as Figure 4.6. Helps appreciating, no early changes 

in the DV could be identified by this analysis. 

 

Response evolution 

The enhanced reward shown by those temporal participants in the time 

condition could be produced by many factors. Given that temporal 

respondents had displayed larger reward throughout the whole 

experiment, this could be influenced by a tendency to respond at a 

different moment than those with a spatial DV. To investigate this, we 

compared the responses of both condition-DV groups of the time 

condition: those with a predominantly temporal DV, against those with a 

predominantly spatial DV. In the LMM we ran, response times acted as 

the dependent variable, while block and DV group were set as fixed 

effects and participant as random effects. No significant main effect of 

DV group was found (p=.116): thus, there were no differences in the 

average response times for the whole experiment. However, the main 

effect of block (F(1,13955.4)= 7.629, p=.006) and the interaction 

between block and DV group (F(1,13955.4)= 52.286, p<.001) reached 

significance. Further analysis can link these results as temporal 

participants responding earlier in time in the first blocks (initial average: -

0.042 s but then shifting their responses later in time across blocks 

(average 0.0007 s per block), while spatial participants started later 

(initial average: -0.035 s) and responded earlier in time as blocks went 

by (average -0.0003 s per block). Response locations followed the same 

trend, with the main effect of DV group being only marginally significant 

(F(1,11.6)= 4.242, p=.063) but block (F(1,13955.0)= 13.221, p<.001) 

and the interaction between the two (F(1,13955.0)= 60.599, p<.001) 

being significant. Temporal participants also started earlier (initial 

average: -1.145 cm) than spatial participants (initial average: -0.859 cm), 

but their responses evolved to be closer to alignment (average 0.020 cm 
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per block), while spatial participants responded earlier in space as 

blocks went by (average -0.007 cm per block). Thus, although 

participants with a temporal DV and participants with a spatial DV 

followed different response trends, their average responses collapsed 

across blocks were very similar, and could not account for the difference 

in reward found throughout the whole experiment. 

 

Loss fraction evolution 

 

 
Figure 4.7. In Experiment 2, average loss fraction between strategies as a function of 
block. Shaded areas represent binomial 95% confidence intervals. Each panel 
corresponds to one of the three target speeds. Insets on top of each panel show the 
value and 95% confidence interval of A and B for both strategies. 
 

We hypothesized that, regardless of how some participants displayed 

more time-based responses, the mechanisms mediating its enhanced 

reward would be the same as those unraveled in Study I. That is, a more 

stable performance across speeds. Nevertheless, we did not only aim at 

replicating our former results, but also at characterizing them across 

blocks. If those participants exploiting more time-based responses did 

so from the start of the experiment, their rate of penalized trials should 

be lower from the start. We thus compared the loss fraction (proportion 

of penalized trials) of the groups of temporal and spatial participants by 

making use of the cutoff point ot DV ratio = 1, collapsing data across 

conditions. To give more power to our analyses, this time we used the 
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whole sample, so the temporal group included also the condition-DV 

group of temporal respondents in the space condition. We fitted an 

exponential decay model of the probability of losses with block 

(p(losses) = A*exp(-B*block)) for the different speeds. The model was 

fitted by minimizing mean least squares, and consisted of two 

parameters. The scaling parameter A informed about the initial value of 

the loss fraction, and the parameter B corresponded to the decay rate of 

the loss fraction across blocks. For each DV group and speed we 

obtained both parameter values using nonlinear regression (through the 

base R function nls), as well as their 95% confidence intervals. Figure 

4.7. shows the average loss rate across blocks. While parameter A was 

similar between strategies when the speed was 19.5 cm/s, the 

confidence intervals did not overlap, but they did when the speeds were 

25 cm/s (spatial strategy: A value: 0.065, confidence intervals: 0.047 - 

0.086; spatial strategy: A value: 0.148, A confidence intervals: 0.128 - 

0.170) and 32 cm/s (temporal strategy: A value: 0.087, confidence 

intervals: 0.073 - 0.102; spatial strategy: A value: 0.190, confidence 

intervals: 0.158 - 0.225). This shows that, for faster speeds, participants 

with a spatial strategy were penalized in more trials, what replicates our 

previous results. Parameter B was only different when the speed was 25 

cm/s, with those with a temporal strategy (B value: 0.011, confidence 

intervals: -0.032 - 0.055) having a less steeper decay rate than those 

with a spatial strategy (B value: 0.080, confidence intervals: 0.056 - 

0.105). The figure helps visualizing how the average loss rate was 

considerably flat across trials for the temporal group. And although the 

loss rate experiences an initial drop for the slowest speed, in the faster 

speeds the loss rate is flat from the very beginning. This strengthens the 

idea that those with an overall temporal DV displayed it from an early 

stage. 
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4.4.3. Discussion 

In this experiment we introduced a method that introduced a 

penalization on reward. The more the participant deviated from the use 

of the cues we wanted to promote, the more reward was reduced. Had 

participants been able to identify and adapt to this penalization 

mechanism, that should be reflected in their DV. However, we found 

either a non-significant evolution of their DV or a small trend to become 

more spatial. Further analyses could not even find an early adaptation 

over the initial blocks of the experiment. Thus, there was no evidence for 

our manipulation making participants learn how to exploit the promoted 

cues. 

 

Any trend concerning the evolution of the DV is put into doubt when 

taking a look at individual participants. As Figure 4.5. shows, variability 

is very present, so averages may not reflect a common DV trend. This 

lets us conclude something, though. Even in the unlikely case that the 

penalization system in the time condition had produced an initial 

adaptation that could not be captured by our analyses, participants could 

not keep their DV stable across blocks. 

 

As it had happened in the experimental work presented in Study I, 

participants with more time-based responses had a larger average 

reward. Interestingly, most of these participants were part of the time 

condition, although a significantly difference of temporal participants 

between conditions was not statistically backed. The fact participants 

with a temporal DV displayed larger reward from the start of the 

experiment supports the claim that they did not learn how to exploit 

temporal cues after a learning process. As for the enhanced reward 

related to temporal DVs, this could not be explained by a difference in 
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the times or spatial locations at which responses were made. Rather, as 

in the previous study, it was due to participants with more temporal DVs 

being more stable across speeds. This was reflected by the loss fraction 

(rate of penalized trials) not increasing for faster target speeds. Further 

exploration on how the loss fraction evolved across blocks revealed that, 

in general terms, it decayed at the same rate for both DV groups. 

However, temporal participants had a lower loss fraction already from 

the initial blocks, what further supports our previous claim. 

 

4.5. General discussion 

Study I showed that, when making decisions with moving objects, 

exploiting temporal information could be more advantageous. Spurred 

by these past results, we formulated the question of whether people 

could learn to use temporal cues, so that they could enhance their 

performance in this kind of tasks. Particularly, we wanted to explore 

whether reward could be used as the information to learn the 

appropriate DV. Our approach was to penalize reward after each trial 

relative to how much the story of past trials deviated from the use of the 

relevant cues. When compared to a baseline experiment, more 

participants adopted a temporal DV, but the lack of evidence for learning 

points at the reward manipulation not having a clear effect. 

 

Two closely related questions remain regarding how the behavior of 

participants compares in the time condition of the two experiments. The 

first is why, in Experiment 2, more participants had a temporal DV than 

in Experiment 1. The second is why the relationship between more time-

based responses and larger reward appeared in Experiment 2, but not in 

Experiment 1. Trying to speculate about the first question, one possibility 
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is that the wider target speed range helped some participants identify 

the domain according to which the reward was given. Another is that, 

given a considerably faster maximum speed in Experiment 2 (32 cm/s) 

than in Experiment 1 (26 cm/s), participants could have been aware that 

responding at the same spatial location resulted in too many responses 

after the line for the fastest speed. In order to avoid this, people could 

have extracted velocity information and respond earlier in space for 

faster speeds. This would also relate to the second question formulated 

above: for an experiment with faster speeds, using a temporal DV would 

relate to a larger reward.  

 

To act as a comparison for the time condition of Experiment 2, we ran 

the space condition, where we used the same mechanism to promote 

spatial cues. Results for this condition are at odds with the hypotheses 

introduced in the previous paragraph: that a wider range of target 

speeds accounted for more temporal participants. Although the space 

condition of Experiment 2 featured the same speeds as the time 

condition, very few participants had a mainly temporal DV. Despite a 

higher chance of responding after the line for faster speeds, the 

penalization system in the space condition could have made responding 

at the same spatial location to bring more reward in the long run. If this 

was so, the penalization structure may have had an effect after all. The 

contribution of the speeds could be clarified by an experiment where the 

target speeds of Experiment 2 were used, but no penalization was 

applied. The experiments in Study I match these criteria, although the 

multiple motion times interleaved may limit comparison between studies. 

In Study I, for motion times of 1 s, more than half of the participants 

were categorized as having a temporal DV even when reward was given 

as a function of space (see Figure S1 in the appendix). Thus, given the 

scarce number of participants with a temporal DV in Experiment 2 of the 
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present study, we could think that, in the space condition, the 

penalization system could have kept participants spatial. 

 

Going back to the ultimate goal of this study, the fact is that our reward 

manipulation could not make participants use temporal cues. It may 

simply have been too difficult for participants to grasp what reward 

depended on. In past experiments, people ignoring whether reward was 

given as a function of time or space was not translated into a severe 

penalization. Here, though, it was much more important to be aware of 

that, but the way of discovering it was keeping track of how close the 

past responses were in the relevant dimension, and realize reward was 

related to that. In the presence of such complexity, participants could 

have found reward not to be very informative to plan their responses. In 

consequence, they may have relied more on the place where they saw 

the target disappear. This connects our work with the literature that 

compares two learning systems: one based on reward prediction error, 

the other on sensory prediction error (i.e. Herzfeld & Shadmehr, 2014). 

 

It may also be possible that, with much more training, participants could 

have finally extracted these rules and acquired a temporal DV. 

Perceptual learning experiments typically consist of several hours of 

training in order to improve just a basic perceptual attribute. And even 

within those attributes, speed discrimination, which may subserve a 

temporal DV, is learnt at a lower rate than other attributes like motion 

discrimination (Saffell & Matthews, 2003)  

 

Since temporal participants were temporal from the start, individual 

differences may be at the root of some participants displaying a 

temporal DV. Identifying them would then be a good approach to design 

a method for learning how to exploit temporal cues.  
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Some other reward manipulation could make people learn how to use 

temporal cues. Nevertheless, there is the possibility that and easier way 

to induce this learning is by providing more direct feedback on the DV. 

This would imply giving explicit guiding on when to respond for each 

target speed, instead of manipulating the reward function. For instance, 

in a condition promoting the use of temporal information, feedback could 

consist in displaying the time left to alignment at the moment of 

response, so that participants could make this time be the same for all 

speeds. Future work should explore different ways of providing 

feedback.   
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Study III - Which variability do 

people consider when making 

sensorimotor decisions with moving 

objects? 
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5.1. Summary 

In many sensorimotor situations, when planning our actions we must 

take into account our variability so as to obtain the best possible 

outcome. Different work reported people being unable to plan their 

responses so that they maximize the expected reward of the task, as 

defined by normative models derived from statistical decision theory 

(SDT). The origin of this suboptimality, though, remained unclear. In our 

previous studies, participants used reward information to exert sudden 

corrections in their aimpoint so as to minimize penalizations. We 

hypothesized that the variability introduced by these corrections would 

not be considered when planning responses, and this could be the case 

of many other studies reporting suboptimality. To find support for our 

hypothesis, we took previous data and fitted a Kalman filter to it, which 

allowed estimating each participant’s variability discounting that added 

by the corrections. Observed data was well explained by participants 

responding at the point that, according to SDT models, maximized 

expected reward for that reduced variability. There were also hints that 

pointed to participants’ responses being most stable at reward regions 

that were optimal for that variability. 

 

5.2. Introduction 

Models derived from SDT have been extensively used to provide a 

normative account on how perceptual and sensorimotor decisions 

should be made. Different work has been devoted to explore the 

conditions under which optimality is achieved, and also those where it is 

not. Some endeavour has targeted highlighting deficiencies in the 

classic normative framework, as well as its derived models. Some claim 
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that existent models may classify as optimal behavior what may not be 

so. For instance, Jarvstad et al. (2014) point out how commonly used 

optimal movement planning models (Trommershäuser et al., 2003b) 

may not offer a correct measure of optimality if people fail to maximize 

precision. Conversely, other work criticizes normative theories because 

they do not consider certain elements that, once taken into account, 

would turn non-optimal behavior into optimal. As an example, Tsetsos et 

al. (2016) defend that violating transitivity (one of the axioms of classical 

decision theory) can be optimal when the decision process is 

characterized by high neural noise. 

 

In Study I we interpreted our data from the point of view of SDT-derived 

optimal movement planning models. There we already argued how the 

assumptions of these models limited their usefulness to assess 

optimality in our task. However, we also mentioned how our data 

seemed to reproduce a pattern of suboptimality previously identified by 

other authors. In some tasks with asymmetric reward functions, the 

action that maximizes expected reward requires some sort of response 

shift with respect to what, if the task had a symmetric reward function, 

would be the optimal response. For instance, in our task the maximum 

reward was given when responding at alignment, but since responding 

at any later point was penalized, it was better to respond on average 

before alignment, so as to avoid penalizations. According to the 

aforementioned models, the optimal response shift would depend on the 

person’s motor variability. The more variable someone is, the bigger the 

optimal shift has to be to maximize expected reward. In other words, the 

optimal response would be that which maximizes reward in the long 

term by finding the best trade-off between scoring as much as possible 

and minimizing penalizations. In some experiments, participants have 
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been found to shift their responses, but still fall short of the optimal shift. 

Thus, their responses would be suboptimal.  

 

This phenomenon has been interpreted in different ways. According to 

Mamassian (2008) (see 1.1.4.2. For more details), it would be revealing 

overconfidence. Participants in his timing task would underestimate their 

motor variability, and that would make them respond with an insufficient 

shift. Other authors who found similar results, both in timing (Ota et al., 

2015) and reaching (O’Brien & Ahmed, 2013) tasks, labeled this 

behavior as risk-seeking. However, not much more was said to justify 

this interpretation. Interestingly, one finding seems to be recurrent. As in 

other decision-making experiments (i.e. Neyedli & Welsh, 2013a), one 

could expect that, with practice, a participant would eventually discover 

the response that maximizes her expected reward, and stick to it 

thereafter. However, in the past works that does not happen, even after 

days of practice (Ota et al., 2016). The present study tries to shed some 

light on the origin of this persistent suboptimal response shift. Our 

hypothesis points to people not planning their responses by considering 

their overall observed variability. They would rather act based on their 

measurement error, without taking into account the added motor 

variability derived from planned trial-to-trial corrections. Our basic 

rationale can be better understood explaining first the relevant concepts 

related to the tools we will use in this study, and then illustrate these 

concepts with an example involving our previous data.  

 

In the kind of tasks we have been using, the overall observed response 

variability can be decomposed into several sources, following models of 

motor learning that explain how people make corrections (van Beers, 

2009; van Beers et al., 2004). One type of variability would originate 

from planned trial-to-trial corrections. At any one trial, we would have a 
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planned or aimed response time, and the observed response time would 

correspond to this planned time had the motor command not been 

corrupted by noise in the planning. However, different sources of noise 

further add to the observed variability. One clear source of variability is 

the sensory noise in our task. Unlike reaching static targets, moving 

objects generate more sensory uncertainty on the position, and this 

uncertainty scales with the speed of the object (see Study I). Suppose, 

for example, that one participant bases her response on a position 

threshold. Sensory noise will then affect the response variability. Finally, 

another source of variability is caused by what is usually called 

execution noise (Diedrichsen, Hashambhoy, Rane, & Shadmehr, 2005; 

van Beers, 2009). This noise refers to the pure motor noise added in 

motor-neurons.  

 

To disentangle all the previous sources within the observed variability is 

very difficult (van Beers, 2009). Most models that cope with this problem 

are based on state space models or Kalman filters (i.e. Burge, Ernst, & 

Banks, 2008; Wei & Körding, 2010), which can estimate process 

(internal) noise and measurement noise. We will follow this approach, 

including the terminology, and decompose the variability in two, but first 

we will describe what each of the two variability categories most likely 

includes. In our scenario we can clearly assimilate the variability due to 

planned corrections to the process noise, since it is part of the aimpoint 

setting process. However, the process noise might well include other 

sources of variability like sensory noise. This is because sensory 

processes and decision processes about when to start a response are 

intimately related when dealing with moving objects (Eckhoff, Holmes, 

Law, Connolly, & Gold, 2008). The success of a state-space model to 

capture all the process noise accurately and separate it from the 

measurement noise depends on how well the process noise is specified. 
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If there is an incomplete specification, then the unexplained variability 

will add to the measurement noise. As for the measurement noise, in our 

case it clearly includes the pure motor noise, but we cannot discard that 

some sensory noise is somehow contributing to it. However, we take a 

simple approach and aim at discounting at least the variability due to 

corrections from the observed variability and assign it to the process 

variability. This way, we make sure corrections are not affecting the 

measurement variability. In conclusion, we believe our decomposition of 

the variability is good enough for our purposes. We can clearly 

distinguish each of these two variabilities in the next example, that uses 

real data coming from Experiment 1 in Study II. 

 

 
Figure 5.1. Response times relative to alignment as a function of trial number. The data 

reproduces block 12 from participant 12 in Experiment 1 from Study II. Points in red 

correspond to responses after alignment, which were penalized. Alignment is shown by 

a horizontal, dashed line. 

 

Figure 5.1. displays the response times of a typical participant for a 

whole block. As can be seen, each trial’s response is different from the 

previous one. Imagine a participant aim to respond at the same moment 

across different trials. Given all the sources of variability, consecutive 
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responses will inevitably vary to some extent. This is exemplified by the 

small jitters in trial-to-trial responses observed in the figure. We assume 

this captures what we call measurement variability. However, much 

larger differences can also be appreciated between some pairs of trials. 

Most of these differences in responses are product of planned 

corrections, where the participant intentionally aims at changing the 

moment of the response. A quick look at the figure shows that this 

typically happens after penalized trials (colored in red): that is, when the 

response has been made after alignment. In these cases, participants 

are most likely correcting their aimpoint in order not to incur into further 

penalizations. However, planned corrections are also happening after 

non-penalized trials: for instance, after responding just before the line, 

despite being highly rewarded, participants often made corrections. This 

could be probably linked to the near-losses phenomenon (Y. Wu, van 

Dijk, & Clark, 2015) in which the reward is attributed to high perceived 

luck.  Importantly, the block reproduced here corresponds to the late 

part of the experiment, showing that, although responses can get less 

variable over time, corrections keep happening throughout the whole 

experiment. 

 

Those studies reporting the suboptimal response shift (the most clear 

being Mamassian, 2008; O’Brien & Ahmed, 2013; Ota et al., 2015, 

2016) share some common elements with our previous work. As a 

result, these similar aspects in the experimental design may have 

produced the existence of corrections. Firstly, the aimpoint where 

optimal responses should be placed is not explicit, so it is reasonable to 

assume that participants will explore, switching their responses back 

and forth as a consequence of the reward they receive. In addition, 

given the asymmetric reward function, small response differences can 

change the outcome from receiving the maximum reward to being 
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penalized. Could, in all these experiments, suboptimality be related to 

participants not considering the variability generated by these 

corrections? 

 

SDT models assume that ideal agents have a true representation of 

their own variability, and they use this knowledge to plan the optimal 

response, given the reward function of the task. Mamassian (2008) 

suggested that, from an ideal agent’s point of view, participants were 

responding as if their variability was smaller than the one they displayed. 

Thus, suboptimality would be originated from a biased representation of 

their uncertainty. We go one step further and try to identify the variability 

participants have access to when planning their responses. What we 

suggest here is that, in our scenario, suboptimal responses could be 

partly attributed to participants using their measurement variability, 

without incorporating the variability arising from their planned 

corrections. Direct support for this hypothesis would come from 

observed behavior being close to optimal predictions if the latter were 

computed by using the participant’s measurement variability, instead of 

the standard deviation of the observed responses, which is the way they 

are normally obtained. 

 

In order to investigate the previous hypothesis, the different types of 

variability should first be disentangled. The approach we followed was to 

process our previous data by fitting them to a modified version of the 

Kalman filter (Kalman, 1960). This algorithm is commonly used in many 

fields to estimate the unknown true state of a system. To do that, the 

Kalman filter combines two elements in a Bayesian way. On one side, 

the last of a series of noisy measurements. On the other, a prediction 

coming from the previous measurements and prior knowledge about 

how the system behaves. Since the true state of the system is uncertain, 
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both the measurement (or observation) and the prediction of the system 

(or process) are given as probability density functions, with a mean and 

a variance. In our case, the variance of the process would be equivalent 

to that coming from the response planning, including the corrections. 

The variance of the measurement would at least include the execution 

noise. Our use of the Kalman filter was directed at separating the 

process and the measurement variabilities, not at describing how 

participants estimated any uncertain state of the stimulus. Once the 

measurement variability was obtained, it was fed into one of the 

expected reward maximization models, to see whether the optimal 

responses they generated were similar to the observed responses. 

 

5.3. Methods 

5.3.1. Participants, apparatus and stimuli 

This study consisted in a reanalysis from data previously presented in 

this thesis. Specifically, we recovered the whole dataset from 

Experiment 1 in Study II. This consists of 27 participants (14 for the time 

condition, 13 for the space condition), who ran 12 blocks of 90 trials 

each. Targets took 1 s from motion onset to reach alignment (single 

motion time), and they could adopt speeds of 20, 23 and 26 cm/s. To 

see the full information about the participants, apparatus, stimuli and the 

conditions of data collection, see section 4.3.1. We chose to analyze this 

particular dataset for one reason: of all the data we had collected, this 

was the most simple one. Firstly, because targets had a single motion 

time, so we reduced the effect that different integration times could 

produce on trials. Secondly, because the small range of speeds made 

the time and space conditions very similar in terms of reward, 
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independently of the DV the participants were using. Thus, we could 

minimize these differences across participants and focus on trial-to-trial 

responses. 

 

5.3.2. Procedure 

We started by fitting our data to the Kalman filter. However, while the 

original Kalman filter assumes that the variance of the process is stable 

(stationarity assumption), in our task the existence of corrections leads 

us to think that the true state (aimpoint) is not stable but changing and 

therefore introducing changes in the process variance. This is why we 

used a version of a Kalman filter (Narain, van Beers, Smeets, & 

Brenner, 2013) that accounts for nonstationary processes. The 

distinguishing feature of this model is that it estimates process variance 

within a window of trials. 

 

The Kalman filter consists in two basic steps, which are performed in a 

recursive fashion. The first of these steps is the prediction of the state of 

the world,  

 

𝑥! = 𝑥!!!                     (5.1) 

 

At every time step, a prediction (𝑥!) is made based on the state estimate 

of the previous time step (𝑥!!!). 

 

𝜎!! = 𝜎!!!! + 𝜎!!
!         (5.2) 

 

The variance of the prediction (𝜎!!) equals to the variance of the 

previous state (𝜎!!!! ) plus the variance of the process (𝜎!!
! ).  
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The second recursive step is the update of the state estimate. The 

estimate will be generated by combining the variance of the prediction 

with the variance of the measurement (𝜎!! ). The proportion each 

variance contributes to the estimate is formalized by the Kalman gain 

(𝐾). 

 

𝐾! =
!!

!

!!!!!!
!          (5.3) 

 

Such that, the higher the Kalman gain, the more the estimate relies on 

the measurement. When the Kalman filter is used in standard estimation 

contexts, the Kalman gain indicates how much the model relies on 

previous information and how much on the current observation. Also, the 

Kalman gain can be regarded as the amount of correction in the 

planning process (van Beers, 2012), which is very adequate in our 

context. After certain trials, such as those where the response is 

penalized, we can expect the gain to increase, which would reveal giving 

less weight to the previous aimpoint and select a different one. This 

would predict a subsequent correction. On the other hand, a decreasing 

gain would reveal that responses are stabilizing around a common 

aimpoint, although very small corrections could also be present.  

 

The variance of the measurement is assumed to be stable and it is the 

only free parameter of the model we use, and the value we want to 

estimate. Two more equations involved with the update step will be 

introduced. The first describes how the state estimate (𝑥!) is updated 

before the next observation (𝑧!) is made. 

 

𝑥! = (1 − 𝐾!)𝑥! + 𝐾!𝑧!        (5.4) 
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The second describes the variance at a given state (𝜎!!). 

 

𝜎!! =  (1 − 𝐾!)𝜎!!         (5.5) 

 

Finally, in this nonstationary model, the process variance is estimated 

from a fixed window of past observations. The predicted mean (𝜇!) of 

the true process and its variance are updated in the following way: 

 

 

              (5.6) 

 

 

                (5.7)       

 

 

Where T is the window size. We will fix T to 4, following the optimal 

value provided by Narain et al. (2013). Thus, process variance is 

estimated by taking into account the variance of the past 4 observations 

(in our case, trials). This dynamic variance is originally devised to 

capture rapid adaptation to changes in the environment’s statistics. In 

our case, considering only a small amount of past trials allows us to 

capture the change in variance introduced by corrections. A 

consequence of this dynamic process variance is that the Kalman gain 

will also be dynamic. Focusing on our scenario, the Kalman gain will 

increase after a correction, until responses start to stabilize and the gain 

decreases again. Of note is that this model does not capture why the 

correction is made. In an experiment like ours, most corrections are 

probably due to the experienced reward after a trial. However, none of 

𝜇! =  
1
𝑇

𝑧!

!!!

! !!!!

 

𝜎!!
! =  

1
𝑇 −  1

(𝑧!

!!!

!!!!!

− 𝜇!)! 
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the equations incorporate a reward element. As previously said, we 

simply use the Kalman filter as a tool that helps us extract the 

measurement variability. 

 

The method for fitting the model to the data is based on parameter 

optimization with respect to the participant’s responses. We minimized 

the negative log likelihood of the Kalman filter to obtain the 

measurement variability that provided the best account of the data 

according to maximum likelihood estimation (Caines, 1988).  

 

For each participant, we fitted the nonstationary Kalman filter to every 

block, and obtained a measure of the measurement variability in terms 

of variance, henceforth measurement variance. However, we also 

performed a fit with  a stationary Kalman filter (Kalman, 1960) in which 

the process variance was constant and therefore not accounting for 

changes in the planned time. The likelihood of both models was 

compared so as to justify that the nonstationary model provided a better 

fit. 

 

Once the measurement variance was estimated, we took its square root 

to obtain the standard deviation. Then, we proceeded to feed it into the 

expected reward maximization model previously used in Study I, to 

calculate the optimal response. In parallel, we did the same procedure 

but using the standard deviation from the observed responses. Finally, 

we determined whether any of the two optimal responses fell within the 

confidence intervals of the observed responses. 
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5.4. Results 

In previous studies we filtered the data by eliminating those trials 

considered as outliers. However, since the Kalman filter needs the 

whole history of events to operate, we could not follow the same 

procedure here. This is why we chose to replace those outlier responses 

with the median of the responses for that participant. Outliers were 

identified by applying interquartile range differences (McGill, Tukey, & 

Larsen, 1978). Replaced outliers accounted for 1.680% of the trials. In 

all figures of this section, participants of the time and space conditions 

are easy to tell apart. In those figures where a number identifying each 

participant is shown, participants 1 to 14 are those of the time condition, 

while participants 15 to 17 are those of the space condition. However, 

due to non-existent significant differences between conditions (see 

figures in this section, but also section 4.3.2. in Study II), we did not 

engage into condition comparisons. 

 

We started by statistically backing the nature of the corrections we 

suggested in the introduction. The most obvious corrections would 

happen after penalized trials, where participants would switch their 

aimpoints earlier. We ran a LMM with the response time of trial n+1 as 

the dependent variable, and the response time of trial n as fixed effects. 

Individual participants acted as random effects varying both slope and 

intercept. The data used for this LMM included only those cases where 

trial n had a response time after the line. The ANOVA on the LMM gave 

a significant main effect of the response at trial n (F(1,17.354)= 8.634, 

p=.009), with average responses at trial n+1 significantly earlier than 

alignment (average -0.036 s, p<.001). This supports the existence of 

corrections after penalized trials. 
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We hypothesized that corrections may have also happened after 

responses made shortly before the line. Despite the high reward given 

for those responses, participants could have thought their current 

aimpoint was too close to the line to avoid penalizations. This would 

reveal some sort of sensitivity to their variability. We ran a very similar 

LMM, but this time selecting the data where reward in trial n was of 85 

points or more. The main effect of response at trial n+1 also reached 

significance (F(1,278.36)= 17.139, p<.001), with average responses at -

0.036 s, significantly before alignment (p<.001). These results point to 

participants correcting even after non-penalized trials. 

 

 
Figure 5.2. For every participant and block, non-stationary Kalman likelihood as a 

function of its respective stationary Kalman likelihood. Data points corresponding to 

participants from the time condition (reward given as a function of the time to alignment 

at response) are plotted as blue dots, while those corresponding to participants from the 

space condition (reward given as a function of spatial distance to alignment) are plotted 

as red triangles. The black, solid identity line represents the trend data should follow if 

both likelihoods were equal.  
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We proceeded to fit both the stationary and the nonstationary Kalman 

filter to our data, so that we could see whether the former offered a 

better fit. For every participant and block, the likelihood of one and the 

other models was obtained. Both likelihoods are plotted against one 

another in Figure 5.2. In all cases, the nonstationary model fitted the 

data better, as seen by the whole set of data points lying above the 

diagonal identity line. 

 

 
Figure 5.3. A. Response times relative to alignment as a function of trial number. The 

data reproduces block 10 from participant 12 in Experiment 1 from Study II. Points in red 

correspond to responses after alignment, which were penalized. Alignment is shown by 

a horizontal, dashed line. Superimposed orange points connected by orange lines 
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depicts posterior responses for each trial, as calculated by the nonstationary Kalman 

filter. Each posterior is used as the prior in the next trial. B. For the data shown in A, 

Kalman gain for every trial. 
 

Figure 5.3. illustrates how the nonstationary Kalman fit adjusted to the 

data. In particular, we focus on the same participant and block depicted 

in Figure 5.1. In Figure 5.3.A, the posterior for each trial (orange points) 

is superimposed over the response times (black points). Each trial’s 

posterior, which is obtained by combining that trial’s observation with 

that trial’s prior, is used as the prior for the next trial. It can be seen how 

this combination makes posteriors a smoothed version of the actual 

response time. Figure 5.3.B shows, for the data in A, the Kalman gain of 

the model. When comparing both panels of the figure, it can be 

appreciated how an increased gain predicts large corrections, while it 

goes down as responses stabilize. 

 

The main reason for which we used the Kalman filter, though, was to 

obtain an estimate of the measurement variance. Before using it to 

calculate optimal responses, we analyzed possible changes throughout 

the experiment. We ran an LMM with the measurement variance 

estimated with the Kalman filter as dependent variable, block as fixed 

effect, and participant as random effects. The non-significant main effect 

of block (p=.109) produced by an ANOVA on the LMM determined that 

measurement variance did not change as the experiment went by. 

 

We then calculated the optimal responses with the expected reward 

maximization model. However, we computed two versions of them. On 

one hand, the one derived from the measurement variance. On the 

other, the one where we used the standard deviation of the observed 

responses, without the data being processed by the Kalman filter. 
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Figure 5.4. A. For each participant (denoted by a number), response time relative to 

alignment, as a function of trial block. Black dots connected by lines represent average 
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observed response times, surrounded by 95% confidence intervals calculated through 

bootstrap, in grey. Participants from the time condition are denoted by dots, while those 

from the space condition are denoted by triangles. Green and orange lines denote 

optimal responses as calculated by an expected reward model, but each use a different 

standard deviation. Green lines denote using the observed standard deviation, while 

orange lines denote using the standard deviation coming from the measurement 

variance, as obtained with the nonstationary Kalman filter. Black, dotted horizontal lines 

indicate alignment. B. For each participant, proportion of optimal blocks, where optimal 

blocks are defined as those where the optimal response lays within the confidence 

intervals of the observed average response. For each participant, the green point 

indicates the proportion when using observed SDs to calculate optimal responses, while 

the orange point reflects using SDs from measurement variance. 

 

Figure 5.4.A depicts, for every participant, the average observed 

response times per block, surrounded by confidence intervals. The 

optimal responses made from the standard deviation of observed 

responses (in green) and those made from the measurement variance 

(in orange) are also shown. The orange lines are closer to alignment, 

given that the measurement variance is necessarily smaller than the 

overall observed variance. Nevertheless, the interesting question is 

whether they are within the confidence intervals of observed responses. 

A quick look allows to conclude that, although this is not overwhelmingly 

so, in most participants the orange lines are within the confidence 

intervals in more blocks than the green lines are. This can be easily 

seen in Figure 5.4.B, showing, for every participant, the proportion of 

blocks where each optimal response lays within the confidence intervals 

of the observed responses. The proportion of optimal blocks is clearly 

higher when using the measurement variance. This was backed by a 

Chi-square test (χ2(1)= 54.804, p<.001). We then checked whether, 

when obtaining optimal responses from measurement variance, there 

was any improvement as a consequence of practice. We compared the 

number of optimal blocks in the first and second half of the experiment 
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(6 blocks each), but a Chi-square test gave no significant differences 

(χ2(1)= 1.214, p=.271). 

 

We can take a look at the general ways responses evolved across 

blocks (see Figure 5.4.A.).  Many participants behaved as if taking into 

account only their measurement variability, even if most of them 

required some blocks to converge with that optimal, and others finished 

on the right trend but without having converged yet. Only a few seemed 

to be able to adapt their responses to the optimal from their overall 

variability. Interestingly, they got there after starting the experiment by 

responding at the optimal from the measurement variability. 
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Figure 5.5. A. Average Kalman gain as a function of the reward given in that trial. 

Reward is grouped in bins that are chosen so that all contain the most similar number of 

trials. Each participant is plotted in a different shade of orange. B. Same as in A, but 

every participant is displayed on a different panel. Colored dots correspond to the bins 

containing the optimal reward, which is the reward that would be given after responding 

at the optimal response time. The color of the dot reflects how the optimal reward was 

calculated: the orange dot identifies the bin where the optimal reward falls, when this is 

calculated by using the standard deviation from each participant’s measurement 

variance. The green dot denotes using observed standard deviations. 
 

We have previously introduced the Kalman gain, explained how it should 

be interpreted in our context, and shown an example for a participant. 

We would expect an increased gain for those responses that would 
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trigger a correction on the next trial. We have already showed that 

responses immediately before a correction are not only those that have 

been penalized, but also some that were very close to the line. We can 

use the Kalman gain to better map how relying on the current aimpoint 

changes as a function of the reward that has just been given. To do that, 

we took the whole dataset and split it in bins, according to the reward 

that had been given in that trial. Penalized trials formed a single bin, and 

the other bins were made so that they had a similar number of trials as 

the bin of penalized trials. For each participant and bin, we then 

calculated the average Kalman gain. As Figure 5.5.A shows, all 

participants followed the same trend. The Kalman gain was lower after a 

trial where reward was within a certain range of points, and as reward 

became smaller or bigger than that range, gain went up. This could be 

interpreted as responses rewarded with a value more distant from that 

range making a correction more likely. Bins with a low Kalman gain 

would point to more stable responses around that range of rewards, 

which could be due to participants aiming at keeping their responses 

within that area. 

 

We next tried to see whether the previous analysis helped us find more 

support for our previous hypothesis: namely, that participants used their 

measurement error to plan responses. For each participant, we 

computed the optimal response time for the whole experiment. We then 

obtained the reward that would correspond to that optimal response 

time, given the task’s reward function. Finally, we saw within which 

reward bin the optimal reward would fall. We did this calculating the 

optimal reward from each participant’s measurement variance, but also 

from her observed variance, and we compared the average Kalman gain 

of both bins. Figure 5.5.B depicts, for each participant, the Kalman gain 

for every reward bin. The orange dot signals the bin containing the 
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optimal reward calculated with the measurement variance. Its average 

Kalman gain tends to be lower than that of the bin where the observed 

variance optimal reward belongs (green dots). This was supported by a 

paired one-sided t-test (t(1)= -9.017, p<.001). The orange bins are, for 

all participants, among the bins with the lowest Kalman gain. Thus, 

participants kept their responses most stable at a point which brought a 

reward similar to the optimal reward, when this was obtained from the 

measurement variance. Although this descriptive analysis is no 

conclusive proof of participants planning their responses based on an 

estimate of their measurement variability, it is consistent with it. In any 

case, the Kalman gain for the orange bins was lower than that for the 

green bins, so, in general terms, the former hypothesis is more plausible 

than participants planning based on their overall variability.  

 

In the introduction we made reference to most sensory noise probably 

contributing to the planning variability, at least in the particular version of 

the Kalman filter we used. We performed one analysis to know whether 

a significant part of it did also go to the estimated measurement 

variability. We know that sensory uncertainty scaled with target speed, 

with larger spatial variabilities for faster speeds. For each participant, 

block and speed, we calculated the standard deviation of the spatial 

location of the responses. We then fitted a linear model of the standard 

deviation as a function of each target speed, for each participant and 

block. The slopes of these linear models were a measure of how much 

sensory variability grew with speed. If we found that this slope was 

correlated with its respective measurement variance (per participant and 

block), we would have evidence for sensory variability to have gone both 

to planning and to measurement variability. Although significant 

(p=.048), the correlation had an r of 0.110. This weak relationship made 
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us conclude that the measurement variability did not include a relevant 

portion of the sensory noise.  

 

5.5. General discussion 

In some timing and sensorimotor experiments (Mamassian, 2008; 

O’Brien & Ahmed, 2013; Ota et al., 2015, 2016), the literature classifies 

participants’ behavior as suboptimal. According to a line of normative 

accounts of movement planning (Körding & Wolpert, 2006; 

Trommershäuser et al., 2003b), optimal behavior would require 

participants to shift their responses away from the moment that would 

hold maximum reward at a single trial, and choose the moment that 

maximizes expected reward. At its turn, this would require participants 

have a good representation of their own motor variability, since the 

optimal shift would need to be bigger for more variable participants. 

However, participants’ observed responses normally fall short of this 

optimal shift.  

 

Despite the different modalities of the tasks reporting this suboptimal 

shift, we defend this apparent suboptimality to be subserved by a 

common cause. We tried to find support for participants planning their 

responses by using the knowledge of their measurement variability, 

without taking into account the variability added by trial-to-trial response 

corrections. We found that average observed responses were much 

closer to optimal responses when the latter were obtained from the 

participants’ measurement variability, estimated by the Kalman filter, 

than when their whole observed variability was used. And although for 

some participants responses were optimal from the start, for many more 

repeated practice was necessary so that observed responses reached 
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the optimality from measurement variability, and for some others some 

more practice would have been needed. These results provide evidence 

for an important amount of our participants slowly forming a 

representation of their measurement variability, which would be used to 

plan responses. Eventually, they would shift their responses enough so 

that they were made on average at the point that, if observed variability 

was reduced to that coming from measurement variability, would 

maximize expected reward. 

 

Participants could have scored more if they had integrated the variability 

coming from trial-to-trial corrections. However, a few seem to have been 

able to successfully do so. They behaved as if they started responding 

by only considering their measurement variability, but then started taking 

the rest of their variability into account. Consequently, they ended up 

responding at a point that matched optimal responses calculated from 

their whole observed variability. In order to shed some light into why 

some subjects did account for their whole variability we can resort to 

standard models of motor learning (Pearce & Hall, 1980; Thoroughman 

& Shadmehr, 2000). These models postulate corrections based on a 

learning rate or fraction of the committed error, but do not keep track of 

previously made errors and, therefore, the corresponding corrections. 

Interestingly, a more recent model (Herzfeld, Vaswani, Marko, & 

Shadmehr, 2014) does indeed postulate a memory of past errors 

depending on the task environmental conditions. Although speculative, 

some participants could have been able to keep a memory of errors and 

consider the previous corrections. More dedicated experimental designs 

in future works should address this important question.  

 

From the point of view of reward processing, the present work offers an 

insight on how people use reward as an information that, when 
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combined with the representation of our sensorimotor variability, can 

signal risk. We have shown how not only penalized trials triggered 

changes in the planned aimpoint. Corrections were also made after trials 

with a high reward, simply because the response was a few milliseconds 

away from being penalized. Participants, then, could have used the 

received reward to assess the risk that, given their variability (whichever 

they were using), aiming there would suppose.  Of course, it could be 

argued that participants did not use reward, but the point at which the 

target disappeared. However, this last strategy is less useful. Izawa & 

Shadmehr (2011) studied to what extent people base their motor 

adaptation on sensory feedback and to what extent on reward prediction 

errors. They found that, as the quality of the sensory feedback 

decreases, they would make more use of reward information. In our 

task, which involved moving objects, there was a gap between the time 

the participant committed to pressing the button and the time she 

pressed it. For faster speeds, this gap was translated into the target 

travelling a longer distance (Brenner et al., 2006). If we consider that the 

target did not appear again to unequivocally show the place where it had 

been stopped, it is reasonable to think that reward was a more accurate 

information.  

 

Related to the previous point, here we show how the Kalman filter can 

be a useful tool to analyze corrections from reward. In particular, the 

Kalman gain revealed how likely was a correction after being given 

reward within a particular range. Interestingly, if we calculated the 

optimal response time by using only the measurement variability, and 

obtained its corresponding reward, this tended to be in a range after 

which corrections were least likely. Although we recognize that our 

analyses in this respect are not enough to make a strong claim, it could 
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be that participants stabilized their aimpoint to obtain on average this 

optimal reward. 

 

Despite many participants showing a progressive evolution towards 

some sort of optimality, and even a mild support for participants 

preferentially keeping their responses around a certain reward range, 

corrections never ceased to happen. However, if a participant believed 

she had identified the point that maximized expected reward, she should 

have kept her aimpoint stable, even after an occasional penalization. 

Corrections after penalized or nearly penalized trials could be 

interpreted as sudden aimpoint changes made in order to avoid the risk 

of penalizations, even if it was at the cost of winning very little for the 

next trials. Since the aim of the task was to maximize reward, though, 

responses would soon have been brought closer to the line. This 

behavior could be described in terms of risk aversion or seeking, as 

others do in sensorimotor tasks (Grau-Moya, Ortega, & Braun, 2012; 

Nagengast, Braun, & Wolpert, 2011; S.-W. Wu et al., 2009). Our study 

did not aim at fully characterizing the nature of these corrections, but 

future work could investigate whether risk aversion is linked to 

corrections. This could be done by altering the number of points 

subtracted when applying a penalization and see how that affected the 

magnitude of the corrections. In any case, it must be pointed out that 

labeling behavior as risk-seeking or risk-averse is just descriptive, and it 

does not imply any mechanism. The discovery of the computational 

processes underlying corrections would be a greater contribution to our 

understanding of this phenomenon.  



 140 

  



 141 

 

 

 
General discussion  

 

 

  



 142 

 

  



 143 

An essential part of every scientific work is to relate its results to its 

original objectives. That is reserved to the next chapter. Before doing 

that, here we will discuss our findings in different ways. First we will 

make clear what our main contributions are to the fields we tried to 

bridge: sensorimotor decision-making and interaction with moving 

objects. We next present some limitations of our work. Future directions 

are then introduced. We finish with possible applications of our results. 

 

6.1. Main contributions 

Every scientific work intends to bring an advancement to its field of 

research. When describing the aims of this thesis we stated that we 

mainly planned on contributing to two fields: sensorimotor decision-

making, and the study of interactions with moving objects. Some of our 

contributions mainly apply to one of those fields. The particularity of our 

work is that, in some cases, contributions to one field are made by 

borrowing elements from the other. And in others, since both fields have 

a common perception-action denominator, results can help advance the 

two. The following lines try to identify the most important contributions of 

this doctoral thesis. 

 

We will first discuss a contribution that concerns the field of sensorimotor 

decision-making, especifically with regard to how optimality has been 

investigated. Decades of literature have repeatedly described the many 

ways in which human choices deviate from the axioms that, according to 

normative theories, should guide an optimal decision-maker. That work, 

often compiled into the so-called descriptive theories, often missed why 

people fail to reach optimality. When sensorimotor tasks were reframed 

within the principles of SDT, the emphasis was put in challenging 
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previous work and presenting humans as optimal decision-makers. Yet 

the same lack of explanation was carried over. At the most, the limits of 

optimality were traced, leaving those situations outside it with little 

research. Luckily, recent accounts have started to go beyond the simple 

classification between optimal and suboptimal. For instance, the efficient 

coding hypothesis (Summerfield & Tsetsos, 2015) has been proposed 

as a way to give a normative explanation to why people fail to adhere to 

classic optimal behavior. This view defends that, given its limited 

capacity, our brain may have evolved to avoid redundancy and 

represent information with the minimum number of resources. A way it 

could do this is by coding information about value in a relative rather 

than in an absolute way, and this would explain why the firing rate of 

neurons is dynamically adjusted to the most informative stimuli at each 

moment. However, in rapidly changing environments, our system would 

take time to adjust its dynamic range, and this could create behavior that 

looks suboptimal from the normative point of view. But actually, violating 

normative axioms would sometimes be the only way our 

computationally-limited systems could enhance performance (Tsetsos et 

al., 2016). Another line of research is that investigating the role of 

suboptimal inference (Beck, Ma, Pitkow, Latham, & Pouget, 2012; 

Drugowitsch, Wyart, Devauchelle, & Koechlin, 2016). This account 

points to internal noise (single-cell variability, noise in motoneurons, ...) 

and external noise (variability in the stimuli) not being enough to explain 

the behavorial variability often shown in perception. An important part of 

the variability, even the most important one in complex problems, would 

mainly being caused by the low precision of the computations carried 

out by the nervous system. Following the analogy of the optics, an 

image recognition system may perform badly not because of the bad 

quality of the optics of the lens, but to the algorithm that processes the 

picture taken. Similarly, in perceptual decision-making tasks we may 
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have really fast integrators, but we may perform some computations in a 

flawed way: for instance, by giving the incorrect weight to different 

pieces of information. Without aiming at being so influential, we believe 

that part of our work shares the motivation of both the efficient coding 

and the suboptimal inference hypotheses. In this sense, our work 

contributes to the field of sensorimotor decision-making by digging into 

the causes of suboptimality. We do so in Study III, by showing evidence 

of an apparent suboptimality being caused by the variability participants 

use to plan their responses. Similarly, in Study I, instead of simply 

classifying behavior as optimal or suboptimal, we challenge classic 

normative assumptions and investigate what causes an improvement in 

performance. As a criticism to our work, it is also true that we left some 

phenomena at the descriptive level. For instance, a satisfactory 

conclusion for Study II would have involved unraveling why some people 

naturally exploit temporal information. 

 

Studies I and III can also make another contribution on the theoretical 

side within perceptual and sensorimotor decision-making, but also 

formulate a caveat for anybody within the field of moving objects who 

wants to study it from the decision-making point of view. Namely, these 

studies teach us a similar lesson on how to implement normative 

models: obtaining optimal estimates should be preceded by identifying 

the relevant sources of variability for the task. In Study I we evidence the 

need for tasks with moving objects to consider two sensory elements: 

the sources of visual information that can be used to plan the response, 

and the different states of the stimulus. On the other hand, Study III 

focuses on the motor variability: the use of the models is only useful 

once whe have discounted the planning from the measurement 

variability. And while Study III does not decompose the sensory 

variability, we chose the data for which this was more reduced. An 
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integrated normative account of movement planning with moving objects 

should, though, explicitly consider both the sensory and the motor 

uncertainty, as other frameworks already do. For instance, Hoppe & 

Rothkopf  (2016) present a computational model that tries to account for 

how humans adjust the timing ratio between saccades and fixations so 

that their eye movements are optimal in order to detect important events 

in the environment according to the statistical structure of these events. 

This model is decomposed into the ideal observer model, that considers 

the relevant sources of sensory variability and the ideal actor model, that 

does the same with motor variability. By learning the temporal 

regularities of the stimuli, the agent is able to decide how to trade-off the 

sensory and the motor uncertainties: for instance, a by establishing a 

relationship between the probability of detecting a change if eye 

movements are switched at a faster rate, and the motor cost of this 

increase in speed. 

 

A way to expand the knowledge of how we interact with moving objects 

is by placing the weight on the decisional component, and this is how we 

tried to contribute to the field. An obvious advantage of this approach the 

possibility to borrow all the models and experimental paradigms that 

perceptual, sensorimotor and general decision-making has long used. 

To study the decisional aspect, some situations may be better than 

others. The title of our thesis implies no particular focus within 

sensorimotor decisions with moving objects. However, in practice all our 

work focuses on one particular set of situations. Let us think about 

sensorimotor decisions in the broader sense. When throwing a dart at a 

target composed of concentric circles, the best choice is to aim at the 

center. However, a golfer may have a bigger trouble selecting his 

aimpoint when the hole is partially surrounded by a sand bunker. As in 

the last example, in many situations the optimal policy is not always 
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explicitly clear, and the best outcome can be very close to the worst one. 

The literature on sensorimotor decision-making has long dealt with such 

situations (for a review of some of it, see Trommershäuser et al., 2008). 

However, the study of sensorimotor interaction with moving objects has 

normally had the focus on other aspects: mainly, the mechanisms 

subserving interception. These tasks involve some uncertainty on how to 

trade-off sensory and motor phases (Battaglia & Schrater, 2007): for 

example, when to start the movement, and deciding where along the 

object’s trajectory should the catch be in order to move by minimizing 

jerk and effort (Todorov, 2004). Nevertheless, the task’s objective is 

always very clear, and although some intrinsic reward may be present 

(for instance, the amount of effort minimized), it does not place the focus 

on making participants try to look for the action that maximizes expected 

reward. We believe that, by creating the paradigm and adapting the 

normative framework, our work sets the ground to study interaction with 

moving objects from that perspective. 

 

Finally, the field of sensorimotor decision-making can benefit from 

exploring situations with moving objects. As we illustrate, this new 

terrain can contribute to the notion of performance in sensorimotor 

decision-making tasks. Within this field, different approaches have 

different meanings for the term performance. For instance, for signal 

detection theory (Green & Swets, 1988) performance is a synonymous 

of accuracy. In our experiments, since participants were instructed to 

win as much as possible, performance was assessed as the 

accumulated reward. However, performance was affected by many 

variables, and these variables interacted with each other. To give a full 

perspective, we next identify how the different factors affecting 

performance depended on each other. The first one is variability. Even if 

practice could make participants less variable, some were still more 
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variable than others. More variable participants deviated more from their 

aimpoint, and were more likely to be penalized. Thus, we see how 

variability was linked to the selected aimpoint. However, Study III 

showed how aimpoint changes also affect the observed variability, so 

the relationship goes both ways. The link between variability and 

endpoint is obvious, to the extent that normative accounts expect the 

aimpoint to be selected according to how variable the decision-maker is. 

Given the unavoidable variability and the structure of the task, setting 

the aimpoint closer to the line increased the average reward of non-

penalized trials, but also increased the probability of being penalized. 

The opposite happened when setting the aimpoint earlier. The third 

factor, and our main contribution here, is how participants use different 

visual cues to plan their responses: that is, what we call DV. Somebody 

with a temporal DV will look very variable if we analyze the spatial 

dimension of her responses, and it could look as if a different aimpoint 

was being used for each speed. However, if we we analyze the temporal 

dimension, the precision will increase, and the unique aimpoint will be 

revealed. The opposite will happen for somebody with a spatial DV. Of 

course, this was a product of our design, and these differences 

increased for a broader range of speeds. Nevertheless, it illustrates how 

important is, in situations where responses can be planned by using 

more than one variable, to identify which one (or to what degree each of 

them) participants are using. This insight is a valuable contribution that 

the case of interaction with moving objects can make within the field of 

sensorimotor decision-making.  
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6.2. Limitations 

Our experiments consisted in laboratory situations that reduced much of 

the complexity that involves daily interactions with moving objects. 

Although this may have made our tasks look less like real world 

problems, our way of proceeding was motivated by the need to control 

some undesired effects. Although our reasons were justified, any 

attempt to extrapolate our results to real life must be cautious. Particular 

situations should be studied in order to see to what extent the 

complexity we reduced could affect our claims holding. Some of the 

elements our experimental paradigm disregarded are commented next. 

 

It has already been said that the motor action our tasks required was a 

simple button press. This was so because previous studies (Hagura et 

al., 2017; Marcos et al., 2015) have shown that the motor cost of an 

action may bias choices. However, interception nearly always requires 

to move our arm, and often locomotion is required to catch the target. 

The presence of a sophisticated motor process can complicate the 

continuous collection of sensory information. 

 

The fact that our experimental paradigm required the line made us work 

with fronto-parallel motion. This made us overlook motion in depth, 

which is the type of motion we experience in catching situations when an 

object approaches us. Temporal and spatial cues are also present in this 

kind of motion (e.g. López-Moliner & Keil, 2012). Nevertheless, they are 

different from those present in lateral displacements. 

 

Our tasks constrained target motion to one dimension. This made the 

reward function easier, as it depended only on the distance from 

alignment along the x axis. Furthermore, for the sake of simplicity we 
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worked only with constant speeds. But if we imagine a baseball player 

trying to catch the ball hit by a batter, we can see how objects usually 

move in three dimensions, and accelerate or decelerate, in many cases 

due to gravity.  

 

Perception and action sometimes have to be traded off. In the example 

of the last paragraph, when the baseball player starts to run, she will 

probably lose track of the moving object at some point. Our stimuli did 

not disappear until the participant responded with a simple keypress, 

thus reducing the need for trading off sensory and motor phases.  

 

Finally, instead of reducing complexity, it could seem that one of our 

manipulations increased it. Indeed, our experimental design interleaved 

different target speeds and motion times. It could be reasoned that 

suboptimality in our tasks could partly be due the stimuli varying too 

much across trials, and that more stable situations could lead to clear 

optimality. Our manipulation had some practical uses, such as revealing 

the DV used, or preventing strategies based on interval estimation from 

motion onset. However, we also want to highlight the reason of 

ecological validity. As much as it could be interesting to see whether we 

are undubiously optimal in very restricted situations, it is also important 

to think about the minimum level of complexity that happens in plausible 

scenarios. In real life moving objects are rarely presented always with 

the same speed, and their trajectory seldom lasts the same amount of 

time.  
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6.3. Future directions 

Our studies have many possible continuations. Some of them could 

simply introduce elements present in real-life situations that were left out 

by our experimental design, as noted in the previous section. The 

following lines aim at introducing more types of possible future work. 

The first is a follow-up that could clarify some of our results. The others 

are modifications of our tasks that could tap into other relevant topics in 

perception, action and decision-making.  

 

This thesis leaves unexplained why some people tend to exploit 

temporal information. While we mention possible individual differences, 

this does not provide any answer. Individual differences can be of many 

origins. For instance, let us consider the possibility that motion 

perception may be different in those participants with temporal DVs. 

They could possibly range from different neurotransmitter concentrations 

in the brain (Takeuchi, Yoshimoto, Shimada, Kochiyama, & Kondo, 

2017) to specific sports training (Nakamoto, Mori, Ikudome, Unenaka, & 

Imanaka, 2014). If we were to stick to the behavioral level of study that 

has characterized this thesis, some psychophysical experiments could 

be conducted. For instance, there may be differences in the velocity 

discrimination threshold. Alternatively, the asymptote for integrating 

motion information may be lower. As a last example, motion 

extrapolation could be assessed in tasks where a moving object 

disappears and the participant has to report the position where that 

happened. 

 

In Study III we showed that many participants ended up converging with 

those optimal responses calculated by only considering their 

measurement variability. However, most participants needed extensive 
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practice with the task, and some others would have needed more of it to 

finally converge. Consequently, even if participants were only 

considering part of their observed variability, representing it accurately 

took time. This finding is not new, since previous movement planning 

tasks have already required experience before optimality was reached 

(Neyedli & Welsh, 2013a). Yet this opens the door to asking whether the 

time spent acquiring these representations could be reduced in future 

occasions. This relates to savings, a common topic in the sensorimotor 

literature (Ebbinghaus, Ruger, & Bussenius, 1913; Krakauer, 2005; 

Zarahn, Weston, Liang, Mazzoni, & Krakauer, 2008), understood as a 

faster rate of readaptation compared to the initial rate of adaptation. 

However, in real life no two situations are identical. Thus, an interesting 

focus would be to what extent this already formed representation could 

transfer to different tasks. After getting used to one experimental setting, 

participants in pointing tasks quickly adapted to other configurations 

(Neyedli & Welsh, 2013b; Trommershäuser et al., 2003a). Interestingly, 

also in pointing, when variability was artificially added, participants 

adapted in less than 120 trials (Trommershäuser et al., 2005), but this 

could not be replicated in a coincidence timing task (Mamassian, 2008). 

In our case, where participants could be representing only part of their 

variability, it would be worth studying whether this same representation 

rapidly transfers to other tasks, and if it remains unchanged.  

 

Another future study could come from manipulating the statistics of the 

presented stimuli. In Experiment 1 of Study II we found how most 

participants adopted a spatial DV. A reason we proposed for that was 

the limited range of target speeds. The extra computational cost of using 

temporal cues could not be worth it if using a spatial DV barely 

supposed any difference in terms of penalized trials for the fastest 

speeds. On the other hand, adopting a temporal DV could be promoted 
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by including speeds for which using a spatial DV supposed a serious 

risk of incurring into penalizations. Now let us suppose we ran a 

condition where a wide range of speeds was featured, but very fast 

speeds were seldom presented. In the case of an unequal presentation 

probability, the brain could build internal models representing the 

environmental statistics, and adapt behavior so as to expect more some 

speeds than others (Kwon & Knill, 2013). If that was so, we could expect 

most participants to still use an overall spatial DV, due to the low 

probability of fast speeds making them unimportant for the internal 

model, in a similar fashion of what is known as robust averaging (de 

Gardelle & Summerfield, 2011). In any case, predictions could be tested 

with Bayesian Decision Theory (Berger, 1985), giving the opportunity to 

study how likely would be for participants to acquire different DVs. 

 

We will describe a final possible next study. TTC estimation has been 

proved to benefit from integrating speed with visual timing cues (Chang 

& Jazayeri, 2017). Precision can also be improved from multisensory 

cue combination, with the visual cue being integrated with an auditory 

cue (Mendonça, Santos, & López-Moliner, 2011; Wuerger, Meyer, 

Hofbauer, Zetzsche, & Schill, 2010). This research opens the way to test 

whether, when interacting with moving objects, planning responses by 

using temporal visual information could be enhanced by other cues. 

 

6.4. Practical applications 

We believe our findings can have helpful practical applications, 

particularly how exploiting temporal information could help improve 

performance when interacting with moving objects. However, in order for 

this to be applied, a previous step would be needed. Namely, achieving 
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what we could not in Study II: a method to successfully learn how to 

base sensorimotor responses on the use of specific visual cues. Once 

designed, the method could be easily implemented. Virtual reality or 

augmented reality are idoneous platforms, with some other sort of 

videogame also being a possibility. And once with the general 

implementation, some adaptations could be made to induce learning in 

different scenarios. 

 

The perfect candidate is ball sports: for instance, training a goalkeeper 

or a baseball batter to time her actions. But also other sports could 

benefit from exploiting temporal cues. We have previously mentioned 

clay pigeon shooting. This situation features lateral motion, so it is very 

similar to our experiments. Finally, navigation offers an interesting 

context. Whether it is training drivers or jet pilots, the agent can be 

considered the moving object. This would probably require to explore 

how responses are planned by exploiting temporal information extracted 

from optic flow, and how our movement can be discounted from that of 

the other moving objects (i.e. other cars). 
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Conclusions  
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Individual studies of this thesis contain a discussion section where we 

expose how well our experiments or modelling can answer the specific 

questions we formulated in that particular study. In this section we take 

the results from all our studies in order to conclude to what extent we 

can fulfill the thesis’ main objectives. 

 

Exploiting temporal information vs exploiting spatial information 

Our first objective was to study how, when interacting with moving 

objects, our performance depends on the visual information we exploit to 

plan our responses.  

 

We found evidence for an advantage of using temporal cues over spatial 

cues. This advantage manifested in our results as a more stable 

performance across the different speeds the moving object could adopt. 

We claim that this was subserved by using temporal estimates 

circumventing the constraint imposed by the limited resolution of the 

visual system. When exploiting spatial information, based on tracking 

the position of the moving object, this constraint would be seen as 

increased spatial variability when dealing with faster speeds.  

 

We also showed that the extent to which each type of information was 

used depended on the time that the object could be seen moving: longer 

motion times were related to a greater use of temporal cues. We 

suggest that this is produced by an increased integration time allowing 

better velocity estimates. 

  

Finally, our results point to some participants being more prone to 

exploiting temporal information, as revealed by the fact that they did not 

require practice to adopt this decision variable. As for those who exploit 

spatial information by default, we could not design a method that made 
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them rely more on time. The fact that in some situations most of our 

participants exploited spatial information can be related to this approach 

being a more straightforward method of planning responses, whereas 

using temporal cues requires the extra step of making reliable velocity 

estimates to compute the time that the object will take to reach a certain 

point.  

 

Statistical decision theory as a normative reference for interaction with 

moving objects 

Our second objective was assessing to what extent existing SDT-

derived optimal movement planning models could be applied to 

situations of interaction with moving objects. The importance behind this 

endeavor lays in the usefulness of being able to define an optimal 

behavior: by having an upper bound on performance, we could know if 

participants were doing as good as they possibly could. 

 

The main limitation of the current models was that, in our situations, they 

did not decompose the relevant sources of uncertainty. These models 

assume that optimal decision-makers integrate an accurate 

representation of their variability with knowledge about the reward 

function of the task. However, they do not specify how different 

variabilities affect performance. This made that, when trying to interpret 

our results, these were at odds with some of the assumptions of the 

models. 

 

We found that some participants were classified as optimal for some 

conditions of the stimuli, while for others they were not. Recovering the 

assumptions of these models, for our data this would have meant that 

participants could successfully represent and integrate their variability 

with the reward function for only for some conditions of the stimuli. This 
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unlikely scenario has a cause. Unlike pointing tasks with static targets, 

interaction with moving objects includes a relevant component of 

sensory variability. This variability increases for shorter motion times and 

faster speeds. Without the model capturing this uncertainty, it will fail to 

provide a valid measure of optimality. 

 

Our participants did better when exploiting temporal information, even if 

the reward function was linked to space. Thus, we see how improved 

performance was found even if violating the domain of the reward 

function. This evidences how, when different sources of information can 

be used to plan the responses, they should be taken into account by the 

model. This is the case for interaction with moving objects. 

 

Once we separated the variabilities, SDT models proved useful for our 

purposes. This happened when investigating which variability 

participants were using when planning their responses. Specifically, we 

computed the optimal responses in two different ways: on one hand, 

with the whole observed variability of each participant; on the other, 

discounting that variability originated from large corrections and leaving 

only measurement variability, which was roughly equivalent to execution 

variability. We concluded that our data was more congruent with 

participants using a representation of their measurement variability to 

plan their responses.  

 

Using reward to plan future actions 

The last main objective of this thesis consisted in investigating the way 

reward information was used in order to plan subsequent responses. 

 

In one study, we deliberately tried to make participants use reward to 

exploit a specific type of visual cue (temporal or spatial). While we do 
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not have evidence for our penalization system to work for our purposes, 

that does not mean that other methods cannot successfully make 

reward shape the decision variable in tasks with moving objects. 

 

Our data leads us to conclude that participants use reward information 

to control the aimpoint of their responses. This was evidenced by the 

finding that penalized responses triggered corrections in order to prevent 

from further penalizations. However, and more interestingly, these 

corrections were also present after nearly penalized trials. This points 

towards participants using their reward not only as a reinforcer, but also 

to assess the risk of being penalized if they maintained their current 

aimpoint. Further analyses allow us to hypothesize that participants may 

be stabilizing their aimpoint around reward areas that are optimal when 

only considering their measurement variability.  
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Resum en català 

 

 

Introducció i objectius 

El moviment és una part essencial de la nostra existència. És a la base 

de les conductes més elementals de qualsevol ésser viu, com ara 

l’alimentació, l’autoconservació o la reproducció. En moltes ocasions, 

aquest moviment es produeix com a resposta a certa informació 

recollida pels nostres sentits. Entre aquests sentits, la visió té un paper 

preponderant, fins al punt que com a mínim un 30% del nostre cervell 

està destinat a processar informació visual. Ara bé, la manera com 

representem el món que ens envolta no és perfecta: la nostra capacitat 

per representar informació visual és limitada, i a això se li ha de sumar 

el soroll que es produeix als diversos nivells del processament visual. 

Els nostres moviments també inclouen variabilitat, tant en la planificació 

com en l’execució, i en conseqüència hi haurà una diferència entre el 

moviment que inicialment volem fer i el que finalment acabem fent. Així 

doncs, sembla que tant percepció com moviment tenen un grau 

d’incertesa inherent. Davant d’aquest escenari convé preguntar-nos de 

quina manera gestionem aquesta incertesa quan planegem un 

moviment a partir d’informació visual. 

 

Quina és la millor manera de prendre les decisions? Les anomenades 

teories normatives s’han centrat a respondre aquesta pregunta. Una de 

les més famoses és la statistical decision theory (Teoria de Decisió 

Estadística, SDT, Blackwell & Girshick, 1954), que tracta d’explicar com 

hauríem de decidir en presència d’informació incompleta (incertesa). 
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Aquesta teoria resumeix els elements que intervenen en les decisions 

de la següent manera: hi ha una sèrie d’estats del món i, donat cert 

estat, la la nostra percepció el correspondrà amb un estat sensorial. En 

base a cert estat sensorial, nosaltres podem dur a terme una acció, i 

aquesta acció donarà lloc a una conseqüència, que es pot definir com 

un altre estat del món. L’element més rellevant és el fet que nosaltres 

duem a terme accions pensant en les conseqüències. Assumint que 

volem una conseqüència el més favorable possible, la SDT s’aboca a 

estudiar com podem prendre la decisió òptima. Aquesta sovint es 

defineix com aquella que ens porta a maximitzar el guany o recompensa 

esperats, que no és més que la recompensa promig que obtindríem a 

llarg termini si la situació es presentés repetidament i sempre 

prenguéssim la mateixa decisió. Per exemple, si la situació requerís 

decidir entre guanyar 5€ amb una probabilitat de 0.5, o 3€ amb una 

probabilitat de 0.8, tot el que caldria fer per obtenir la recompensa 

esperada d’una d’aquestes “loteries” és multiplicar la recompensa per la 

seva probabilitat, i després senzillament caldria escollir la loteria amb el 

valor esperat més alt (en el nostre cas, la primera). 

 

En clar contrast amb les teories normatives, l’objectiu de les quals és 

establir com hauria de ser el comportament òptim, les teories 

descriptives s’han dedicat a observar com els humans prenem 

decisions. La conclusió general a la que s’ha arribat és que el 

comportament observat difereix substancialment de l’òptim normatiu. 

Ara bé, les teories descriptives, la més famosa de les quals és la 

Prospect Theory (Kahneman & Tversky, 1979; Tversky & Kahneman, 

1992), es basen en situacions decisionals similars a l’exemple de les 

loteries de l’anterior paràgraf. Diverses investigacions en tasques de 

naturalesa sensoriomotora semblen arribar a conclusions totalment 

diferents. 
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L’any 2003, Julia Trommershäuser i col·legues (Trommershäuser et al., 

2003b) reformularen la planificació de moviment en termes de SDT. 

D’acord als seus resultats, els humans som capaços de seleccionar el 

moviment que maximitza la recompensa esperada de la situació. Aquest 

plantejament teòric inaugurà una influent línia de recerca amb resultats 

diversos. Malgrat molts estudis trobessin evidència d’optimalitat, d’altres 

conclogueren que el comportament era subòptim. En les situacions 

sensoriomotors estudiades, múltiples causes s’han donat com a causa 

de la suboptimalitat. Per exemple, falta d’experiència amb la tasca. 

També una incorrecta representació de la variabilitat motora (que 

equivaldria a la incertesa), de la funció de recompensa (que descriu la 

relació entre cada possible acció amb la seva conseqüència en termes 

de recompensa), o de les dues. Part dels esforços en aquest camp 

també han estat dedicats a adreçar crítiques als models, ja que en 

ocasions aquests classifiquen com a òptim comportament que és 

realment subòptim. 

 

La línia de recerca acabada d’esmentar s’ha limitat sobretot a situacions 

consistents en fer moviments simples envers objectius estàtics. Hi ha un 

camp interessant dins del terreny sensoriomotor que aquest punt de 

vista ha ignorat. Aquest camp és la interacció amb objectes en 

moviment. Els estudis en percepció visual i en tasques sensoriomotores 

(sobretot d’intercepció) ens han proveït de valuós coneixement respecte 

a com percebem els objectes en moviment, com realitzem accions per 

afectar la seva trajectòria, quina és la relació entre el moviment i la 

posició percebuda, … Malgrat tot, el focus principal d’aquestes 

investigacions no ha sigut el component decisional en termes de les 

conseqüències de les nostres accions. Si es fa un esforç, però, resulta 

senzill esboçar una situació amb objectes en moviment en termes de 
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teories decisionals com la SDT. Imaginem-nos un pilot de curses 

intentant decidir quan girar el volant per estalviar temps en un revolt, un 

competidor de tir al plat aguaitant per prémer el gallet, o un porter de 

futbol intentant capturar una pilota que s’aproxima. En totes aquestes 

situacions hi ha certs elements en comú. Primerament, hi ha una acció 

que cal fer relativa a l’objecte en moviment. A més, actuar en un 

moment no portarà a les mateixes conseqüències que actuar en un altre 

moment. Finalment, l’acció requerirà una decisió prèvia sobre quan 

actuar. Aquesta decisió estarà basada en diferent informació: 

l’estimulació visual que ens arriba, el coneixement de com cada acció 

està lligada a una conseqüència, i el coneixement de la nostra incertesa 

quan duem a terme l’acció planificada. Mitjançant un plantejament 

similar al que s’acaba de fer, aquesta tesi es proposa unir els camps de 

la presa de decisions sensoriomotora i el de l’estudi de la interacció amb 

objectes en moviment. Els objectius generals de la mateixa es 

presenten a continuació. 

 

● Quan planegem una acció amb un objecte en moviment, podem 

fer-ho basant-nos en diverses fonts d’informació visual que 

l’objecte ens proporciona. Per una banda, informació espacial. 

Per altra, informació temporal. El primer objectiu de la tesi 

consisteix en saber si fer servir més un d’aquests tipus 

d’informació pot fer augmentar el nostre rendiment en aquest 

tipus de situacions. 

● Els models de planificació de moviment òptima que s’han 

generat a partir de la SDT han sigut d’utilitat, ja que han permès 

establir un comportament òptim amb el que comparar el 

comportament observat en diverses tasques. El segon objectiu 

de la tesi és estendre aquests models a les situacions 

d’interacció amb objectes en moviment. A la vegada, s’intenten 
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identificar limitacions a l’hora d’aplicar els models en aquest tipus 

de situacions. 

● El tercer objectiu de la tesi se centra en estudiar com les 

persones fan servir informació sobre la recompensa després de 

cada acció per a guiar accions futures. Això s’investiga tant a 

curt termini, per veure com una recompensa influeix la següent 

acció, com a llarg termini, influint la informació que s’explota en 

general per prendre decisions. 

 

Estudis experimentals 

Els objectius de la tesi es van abordar a través de tres estudis diferents. 

El que segueix és un resum dels mateixos. 

 

Estudi 1 - Explotar informació  temporal millora el rendiment en la presa 

de decisions sensoriomotora amb objectes en moviment 

Quan interactuem amb objectes en moviment podem basar les nostres 

accions en diversa informació visual. Per exemple, en informació 

espacial: podem seguir la posició de l’estímul fins que arriba a cert punt 

en l’espai, i llavors iniciar l’acció. Per altra banda, es pot emprar 

informació sobre moviment i velocitat per realitzar una estimació del 

temps que l’objecte trigarà a arribar a cert punt, i basar la decisió en 

aquesta informació temporal. També hi ha la possibilitat de combinar 

ambdós tipus d’informació. L’objectiu que es va fixar per aquest estudi 

va ser conèixer, en aquestes situacions, fins a quin punt el rendiment 

depèn del tipus d’informació emprada per planificar la resposta. També 

es pretenia saber si el temps de visualització de l’objecte en moviment 

pot afectar l’ús del tipus d’informació. Finalment, ens proposàrem 

implementar models provinents d’SDT per esbrinar fins a quin punt són 

una bona eina per interpretar el comportament en aquest tipus de 

tasques. 
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El paradigma experimental que es va dissenyar consistí en un target, 

que podia diferir en velocitat a cada assaig, desplaçant-se lateralment 

cap a una línia vertical. Els participants premien un botó per aturar 

l’objecte, i eren recompensats en funció de la proximitat de l’objecte a la 

línia en el moment de resposta. La recompensa augmentava 

exponencialment a mesura que el temps de contacte entre target i línia 

disminuïa, amb un màxim en el moment d’alineament entre ambdós. 

Qualsevol resposta després de l’alineament era fortament penalizada. 

El rendiment de la tasca es va quantificar a partir de la recompensa 

promig aconseguida en els múltiples assaigs de l’experiment. A partir 

d’analitzar les respostes a través de les velocitats, vam identificar la 

variable decisional (DV) dels participants: és a dir, si la resposta estava 

basada més en claus temporals o espacials.  

 

Vam descobrir que fer més ús de claus temporals portà a un major 

rendiment, i que temps de visualització més grans afavoriren fer més ús 

d’informació temporal, augmentant el guany. Podem explicar aquests 

resultats amb dos mecanismes compatibles. En primer lloc, la resolució 

del sistema visual és limitada, de tal manera que basar la nostra decisió 

en un seguiment de la posició portarà a major variabilitat espacial com 

més gran sigui la velocitat de l’objecte. En canvi, fer servir informació 

temporal elimina aquest problema, pel que el rendiment és més estable 

en totes les velocitats, la qual cosa en la nostra tasca significà no 

incrementar les penalitzacions per les velocitats altes. En segon lloc, un 

major temps de visualització del target es tradueix en més integració 

d’informació de la velocitat, la qual cosa pot afavorir l’ús d’informació 

temporal. Cal dir que això es va poder veure afectat per una possible 

presència d’extrapolació de moviment, consistent en percebre la posició 

d’un objecte per davant de la seva posició real. Aquesta extrapolació 
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creix per velocitats més altes i més temps d’integració, pel que podria 

haver influït en els nostres resultats. Un parell d’experiments reforçaren 

les nostres conclusions: en primer lloc, els resultats de l’experiment 

principal foren replicats en una tasca on la recompensa es donà en 

funció de la distància espacial. Així, no es pot dir que el major rendiment 

fos causat perquè el nostre experiment principal donés la recompensa 

en funció del temps. En segon lloc, realitzàrem un experiment on obtenir 

informació temporal era més difícil, doncs l’única informació de 

moviment de l’estímul era de segon ordre (a partir de contrast, i no de 

luminància). En coherència amb les nostres hipòtesis, aquest escenari 

va portar a DV menys temporals, i això va portar a un descens del 

rendiment. 

 

Pel que fa a l’aplicació dels models d’SDT, segons aquests les 

respostes de la mostra foren clarament subòptimes. Malgrat això, es 

van posar de relleu clares limitacions d’aquests models a l’hora 

d’explicar les nostres dades. Aquests models assumeixen que les 

decisions òptimes es prenen integrant una representació acurada de la 

variabilitat motora amb el coneixement de la funció de recompensa de la 

tasca. Tanmateix, els models actuals no especifiquen les diverses fonts 

de variabilitat. En tasques amb objectes en moviment, l’incertesa 

sensorial és rellevant, pel que aquesta cal que sigui tinguda en compte. 

També cal considerar com varia aquesta incertesa, per exemple quan 

l’objecte pot adoptar diferents velocitats o temps de visualització. 

Finalment, els models han d’incorporar el fet que, en tasques com la 

nostra, les respostes es poden planificar fent servir diverses fonts 

d’informació. 

 

Estudi 2 - Pot la recompensa induir l’ús d’informació temporal en la 

interacció amb objectes en moviment? 
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L’estudi anterior demostra que, quan s’nteractua amb objectes en 

moviment, fer servir informació temporal per planificar les accions pot 

ser avantatjós. Així doncs, aprendre a fer servir aquestes claus 

temporals podria portar a una millora en aquest tipus de situacions.  

 

Els estudis que han intentat aconseguir aprenentatge perceptual sovint 

han implementat sistemes de recompensa per a que, a més de ser un 

reforç, aquesta es fes servir com a informació. En aquest estudi es va 

agafar aquesta idea per crear un procediment basat en la recompensa, 

amb l’objectiu que els participants poguessin aprendre a fer servir claus 

temporals. En concret, es va modificar el paradigma de l’estudi anterior 

manipulant la recompensa després de cada assaig. La recompensa 

sofrí un escalament de tal manera que aquesta era més reduïda com 

més distància temporal hi havia entre les respostes anteriors. Per tal 

d’exercir de comparació, es va crear una altra condició amb un 

procediment similar, però aquest cop per promoure l’ús de claus 

espacials. Els resultats obtinguts foren una major presència de 

participants que van explotar informació temporal en la condició on 

aquesta es va promoure. Tanmateix, aquests participants feren servir 

les claus temporals des d’un principi. Això implica absència 

d’aprenentatge,  pel que possiblement les diferències individuals van 

determinar qui va explotar informació temporal. Això fa concloure la 

poca eficància de la nostra manipulació de la recompensa. Malgrat tot, 

no es pot descartar que altres maneres de manipular la recompensa 

puguin portar a un aprenentatge de com fer servir claus temporals.  

 

Estudi 3 - Quina variabilitat considerem quan fem decisions amb 

objectes en moviment? 

En moltes situacions sensoriomotores, si volem que les nostres accions 

es tradueixin en el millor resultat possible, aquestes han de ser 
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planificades tenint en compte la nostra variabilitat. Com ja s’ha apuntat 

abans, l’SDT és una teoria normativa que estableix que la decisió 

òptima és aquella que produeix l’acció que maximitza la recompensa 

esperada de la situació. En moltes situacions s’ha conclòs que les 

persones són subòptimes. En multitud de casos, però l’origen d’aquesta 

suboptimalitat roman sense ser esclarida. La hipòtesi de partida 

d’aquest estudi és que, en algunes d’aquestes situacions, els 

participants podrien haver planificat les respostes considerant només 

part de la seva variabilitat observada. En els nostres estudis previs (i 

probablement també en diversos experiments fets per altres 

investigadors) els participants feren servir informació sobre la 

recompensa per realitzar correccions sobtades en la seva resposta 

planificada, per tal de minimitzar les penalitzacions. Nosaltres 

apuntàrem a que la variabilitat introduïda per aquestes correccions és la 

que no hauria sigut tinguda en compte. 

 

Per tal de trobar suport per la nostra hipòtesi, vam utilitzar dades 

recollides anteriorment i vam ajustar-hi un Kalman filter. Això ens 

permeté estimar, per a cada participant, la variabilitat de mesura, que 

correspondria a la variabilitat resultant un cop descomptada aquella 

afegida per les correccions. Aquesta variabilitat de mesura equival 

aproximadament a la variabilitat d’execució motora. A partir dels models 

de SDT vam agafar aquesta variabilitat i vam generar les respostes 

òptimes per cada participant. Això vol dir que aquestes respostes 

correspondrien al punt òptim que maximitzaria la recompensa esperada 

si només s’hagués tingut en compte la variabilitat de mesura. Tal i com 

havíem hipotetitzat, aquestes respostes òptimes coincidiren bastant bé 

amb les respostes observades. Malgrat tot, la majoria de participants 

necessità temps per convergir amb aquestes respostes òptimes. Això 

reflecteix que es necessità experiència perquè els participants 
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poguessin adquirir una representació de la seva variabilitat, encara que 

aquesta representació no correspongués a tota la variabilitat observada.  

 

Per altra banda, es va obtenir informació rellevant sobre l’ús que els 

participants van fer de la informació donada per la recompensa. Com ja 

s’havia apuntat anteriorment, els participants feren servir la recompensa 

després d’una resposta per tal d’estimar el risc de penalització derivat 

de mantenir la planificació en aquell punt. A més, també es trobà 

evidència preliminar que apunta a que els participants podrien haver 

estabilitzat les seves respostes en punts que, tenint en compte 

únicament la variabilitat de mesura, portarien a la recompensa òptima. 

 

Conclusions 

Els resultats dels estudis individuals ens porten a poder dir fins a quin 

punt s’ha acomplert cadascun dels objectius de la tesi. 

 

En primer lloc, les nostres dades demostren que, en situacions 

d’interacció amb objectes en moviment, planificar les accions en base a 

informació temporal pot portar a una millora del rendiment. Això es 

deuria a que aquest tipus de planificació pot eludir una limitació que ve 

donada per la resolució del sistema visual. També es conclou com 

aquest ús d’informació temporal és facilitat quan l’objecte en moviment 

es pot veure durant més temps, segurament gràcies a una major 

integració de la informació de velocitat. Tanmateix, la informació usada 

també depèn de diferències individuals. 

 

Els models actuals de planificació de moviment òptima derivats de SDT 

han demostrat una utilitat limitada per ser aplicades a tasques 

d’interacció amb objectes en moviment. Les limitacions provenen de no 

considerar les diferents variabilitats rellevants per la tasca, així com de 
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no tenir en compte el fet que més d’una variable pot ser emprada per 

planificar les accions. Un cop separades les variabilitats, aquests 

models van resultar útils. En concret, per tal d’investigar la variabilitat 

que els participants consideren per respondre. La comparació de les 

estimacions òptimes amb les respostes observades donaren més suport 

a una representació de la variabilitat de mesura, que difereix de la 

variabilitat total observada en no incorporar aquella variabilitat afegida 

per les correccions en la planificació. 

 

Finalment, tot i que el mètode dissenyat perquè els participants 

aprenguessin a explotar claus temporals no va complir el seu propòsit, 

resultats d’altres experiments mostren l’ús que la informació 

proporcionada per la recompensa va tenir per tal de planificar futures 

accions. Aquesta informació permeté programar canvis en la 

planificació, tant en forma de correccions sobtades per evitar 

penalitzacions, com per delimitar regions on estabilitzar les respostes. 
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Appendix 

 

 

SUPPLEMENTARY EXPERIMENT 1: SPACE-BASED REWARD 

 

The present study mainly claims that, in sensorimotor decision-making 

with moving objects, responses based on temporal information enhance 

performance. In the experiment in the main text, we assessed 

performance by looking at the reward won after each trial. And this 

reward was given as a function of the time remaining to alignment when 

the response was made. Finding a better performance for using 

temporal information in a task that defined reward in a temporal fashion, 

then, could be thought to arise entirely from our specific task design. 

Since this could undermine our claim, we decided to conduct a control 

experiment. The task remained the same except for the way reward was 

given. Instead of depending on the temporal proximity to alignment, 

reward depended on the spatial proximity to alignment. If we found that, 

in a task rewarding as a function of the spatial location of the responses, 

we still replicated enhanced performance for time-based responses. 

These results support our previous findings. 

 

 Participants 

21 participants of a completely new sample took part in the experiment 

after giving informed consent (9 women, all right-handed, age range 18-

40). All had normal or corrected-to-normal vision and were naïve about 

the aim of the experiment. The study complied with the local ethics 
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guidelines, in accordance with the declaration of Helsinki, and was 

approved by the University of Barcelona’s Bioethics Commission. 

 

 Apparatus and stimuli 

All apparati used here were the same used in the main experiment. 

However, the reward given after each trial was based on the remaining 

spatial distance to alignment. The reward function was: 

 

𝑢(𝑠)  = 𝛽 ·  𝑒𝑥𝑝(𝛼 ·  𝑠)      if    𝑠 ≤  15                                                 (S1) 

𝑢(𝑠)  =  −200      if    𝑠 >  15 

 

And the corresponding parameters were 𝛽 =  1.1109 and 𝛼 =  0.3, so 

that the reward was also 100 points at alignment that was centered at 

position s = 15 (for the line was positioned 15 cm right of the center of 

the screen). Later responses were penalized with -200 points. The value 

of these parameters was selected so that, for the medium speed, both 

the time and space condition had the same mapping between time / 

space and reward. 

 

Procedure 

 As in the main experiment, participants completed two blocks of 

practice trials and twelve blocks of the experimental task. However, in 

the practice trials, feedback was provided if their response time was 

within a spatial window of 0.25 cm centered on the line. 

 

RESULTS 

0.401% of trials were identified as outliers. Since reward was given as a 

function of space, we analyzed response spatial locations. An ANOVA 

on the LMM gave a significant main effect of motion time (F(2,22563)= 

71.926, p<.001) and block (F(1,22563)= 85.578, p<.001), but no 
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interaction. For all motion times, response locations started before 

alignment (initial average per motion time, 0.8 s= -0.900 cm; 1 s= -1.059 

cm; 1.2 s= -1.197 cm) but got closer to it across blocks (average rate 

.013 cm/block, t= 9.154, p<.001) . As for variability, SDs evolved across 

blocks (F(1,730)= 110.366, p<.001) and differed among motion times 

(initial average per motion time, 0.8 s= .734 s; 1 s= .775 s; 1.2 s= .798 s, 

F(2,730)= 3.769, p=.024), but no interaction was produced. On average, 

SDs decreased at a rate of -.014 cm / block (t= -10.45, p<.001).  

 

 
Figure S1. Average reward per trial (in points) as a function of the value of the DV ratio. 

Each participant is included on the plot with three data points, each corresponding to her 

responses within a certain motion time, as denoted by the color. Bigger points represent 

the centroid of each motion time’s distribution, with associated error bars that show 
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standard errors of the mean. Strongly colored triangles correspond to the control 

experiment, pale points correspond to the main experiment. The grey lines show linear 

fits of the data, with the dark line for the control experiment and the light line for the main 

experiment . The dashed, vertical, black line shows the cutoff point of DV ratio = 1, used 

to binarily categorize a group of responses as time or space-based. 

 

As in the main experiment, we ran LMM with the average reward won 

per trial as a dependent variable, DV ratio and motion time as main 

effects, and participant as a random effect. Although the ANOVA on the 

LMM did not show a significant main effect of DV ratio, motion time 

(F(2,19544.7)= 22.947, p<.001), and the interaction between DV ratio 

and motion time (F(2,10581.0)= 5.882, p=.003) reached significance. 

This means that, as seen in Figure S1., in this condition a larger average 

reward was still produced for more time-based responses and longer 

motion times. Taking all the data together, the correlation between DV 

ratio and average reward per trial gave an r= -0.369 (p=.003). When 

classifying participants into the DV groups, the % in the temporal DV 

group was 19.048% for a motion time of 0.8 s, 57.143% for 1 s, and 

76.190% for 1.2 s. 
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Figure S2. For the control experiment where reward was given as a function of space, 

average reward per trial (in points) as a function of the sum of the mean squared 

differences of response spatial locations (in cm2) across speeds. Results are split by 

motion time, as denoted by the color, and error bars represent the standard error of the 

mean across participants. The solid, black line represents a linear fit of the data points. 

 

As an additional analysis to the previous one, and following the same 

procedure from the main experiment, we calculated the mean squared 

difference between the spatial location for each speed and the mean 

location pooled across speeds. Figure S2. shows this against average 

reward. Again, the lower the difference across speeds in response 

spatial locations, the lower average reward. And lower values were 

associated to shorter motion times. Non-overlapping error bars show 

significantly different average values across motion times. 
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Figure S3. A. For the control experiment where reward was given as a function of space, 

average loss fractions between DV as a function of target speed. Shaded areas 

represent binomial 95% confidence intervals. B. For the control experiment where 

reward was given as a function of space, average response spatial locations between 

DV as a function of target speed. Shaded areas represent 95% confidence intervals. 

Each panel shows responses for a specific motion time. 

 

To check how the loss fraction evolved across target speeds, we ran a 

GLM with loss fraction as the dependent variable, DV and target speed 

as fixed effects, and participant as random effect. As a quick glance at 

Figure S3.A can help to see, results from the main experiment were 

replicated. The increase in the loss fraction across speeds was 

significant for space-based responses (slope= .056, p<.001) but not for 

time-based responses (slope= .005, p=.514). Plus, the difference in 

percentage was not significant for the lowest speed (χ2(1)= 1.759, 

p=.908), but was significant for the two larger speeds (25: χ2(1)= 16.803, 

p<.001; 32: χ2(1)= 45.847, p<.001).  

 

Finally, we compared spatial locations between DVs. We explored the 

ANOVA on the output of an LMM with the spatial location of the target at 

response as the dependent variable, DV group, motion time and target 

speed as fixed effects, and participant as random effect. As Figure S3.B 
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depicts, space-based responses were still closer in space across 

speeds than time-based responses, that had earlier responses in space 

for faster speeds. Moreover, the difference in responses across speeds 

became more evident for longer motion times, thus replicating the 

results of the main experiment (interaction between DV group and target 

speed, F(2,22551)= 88.236, p<.001)). However, in contrast with the 

main experiment, space-based responses were on average earlier in 

space than time-based responses, with the exception of the longest 

motion time, where this trend reversed (interaction between DV group 

and motion time not significant; triple interaction among DV group, target 

speed and motion time marginally significant (F(4,22551)= 2.016, 

p=.089)). 
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SUPPLEMENTARY EXPERIMENT 2: SECOND-ORDER MOTION 

 

 
Figure S4. Depiction of the stimuli shown in the second-order motion control experiment. 

The target moved rightwards towards a line, with the displacement being produced over 

a horizontal stripe made of constantly changing random dots. The target had the same 

texture as the stripe, and is shown here beyond the line. 

 

In this control experiment, 9 completely new participants went through 

the same procedure as in the main experiment. The only difference 

concerned the visual stimuli presented to the participant, shown in 

Figure S4. The target’s lateral displacement was produced over a 

horizontal stripe (30 cm width and 3 cm height) consisting of a contrast-

defined random dot texture (black and white dots). The size of the 

texture elements was 0.12x0.12 cm2 and the dots were updated every 

80 msec. The moving target (circle of 1 cm diameter) was also 

composed of the same texture elements and updated at the same rate. 

With such stimuli, participants had to obtain motion information from a 

change in contrast, not in luminance. Figure S5. shows the average 

reward per trial as a function of the DV ratio. Colored dots, 

corresponding to the second-order motion control, are shifted towards 

the right with respect to the black dots, which reproduce the data from 

the main experiment. This shift means that responses were more space-

based, which is congruent with the enhanced difficulty to obtain motion 
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cues from second-order motion stimuli. Interestingly, more space-based 

responses were also translated into a lower average reward. 

 

 
Figure S5. Average reward per trial (in points) as a function of the value of the DV ratio. 

Each participant is included on the plot with three data points, each corresponding to her 

responses within a certain motion time, as denoted by the color. Bigger points represent 

the centroid of each motion time’s distribution, with associated error bars that show 

standard errors of the mean. Strongly colored squares correspond to the SO control 

experiment, pale points correspond to the main experiment. The grey lines show linear 

fits of the data, with the dark line for the control experiment and the light line for the main 

experiment . The dashed, vertical, black line shows the cutoff point of DV ratio = 1, used 

to binarily categorize a group of responses as time or space-based. 
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