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MicroRNAs as therapeutic targets for the treatment of diabetes mellitus 

and its complications 
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Abstract 

Introduction: Diabetes mellitus is a very common metabolic disorder affecting more than 

400 million people worldwide. Currently available treatments permit to manage the disease 

but, in the long term, many patients develop severe micro- and macrovascular complications 

that decrease life quality and expectancy. Better therapeutic tools to prevent and treat diabetes 

are therefore urgently needed. 

Areas covered: MicroRNAs are key regulators of gene expression and central players in a 

variety of physiological and pathological processes. This review summarizes the role of 

microRNAs in insulin-secreting cells and in insulin target tissues as well as their involvement 

in the development of diabetes and its long term complications. 

Expert opinion: Because of their physicochemical properties and their capacity to regulate a 

wide range of physiopathological events, microRNAs are attractive therapeutic targets. There 

is accumulating evidence that approaches permitting to correct the level of specific 

microRNAs can successfully prevent or treat diabetes and its complications. Pharmacological 

tools that efficiently modulate the level of microRNAs are already available. However, before 

these tools can be allowed to integrate the arsenal for the treatment of diabetic patients, new 

innovative strategies will be needed to achieve selective delivery of these pharmacological 

principles to the appropriate target cells. 

Keywords: Aptamer, diabetes mellitus, diabetic complications, exosome, microRNA 
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1. Introduction

Diabetes mellitus is a very common metabolic disorder affecting more than 400 million 

people worldwide (https://www.idf.org/). Because of population aging and lifestyle changes, 

the number of individuals affected by this disease is expected to further rise in the next 

decades and is forecasted to exceed 600 million by year 2040. Diabetes mellitus is a chronic 

disease and, even if appropriately treated, people suffering from this metabolic disorder are at 

increased risk for developing serious micro- and macrovascular complications potentially 

leading to heart and kidney failure, stroke, blindness or lower limb amputations
1, 2

. Thus, the

management of this chronic disease and of its associated long-term complications constitutes 

a major public health challenge and a very heavy socioeconomic burden. Despite 

improvements in recent years, the therapeutic arsenal currently available for the treatment of 

diabetic patients remains insufficient. For this reason, new therapeutic strategies to prevent 

and treat this very common metabolic disorder are urgently needed. 

Diabetes mellitus is characterized by chronically elevated blood glucose levels and 

occurs when pancreatic β-cells, located within the islets of Langerhans, become unable to 

secrete enough insulin to cover the organism needs. The disease can have different etiologies 

but is most often associated with loss and/or dysfunction of insulin-secreting cells. Type 1 

diabetes develops when all (or near all) the β-cells are eliminated by an autoimmune reaction 

directed against the insulin-secreting cells
1
. This form of the disease usually manifests during

childhood or in young adults and represents about 10% of all diabetes cases. Multiple daily 

injections of insulin are necessary for the treatment of these patients. Type 2 diabetes is the 

most frequent form of the disease and is often associated with obesity and with a diminished 

insulin sensitivity of peripheral tissues
2
. It is usually diagnosed in older individuals compared

to type 1 diabetes and its incidence increases with aging. In type 2 diabetic patients, β-cells 

are still present but are unable to expand and raise sufficiently their secretory activity to 
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compensate for the insulin resistant state. This form of diabetes is initially treated with drugs 

that increase the sensitivity of insulin target tissues and/or stimulate the secretory activities of 

β-cells. However, in the long term the patients become often refractory to oral 

pharmacological treatments and may also require insulin injections. Gestational diabetes is a 

metabolic disorder occurring in about 5% of the pregnancies that is associated with 

complications to both mother and newborn
3
. It usually resolves after delivery, but women

suffering from gestational diabetes as well as their offspring have a higher propensity to 

develop type 2 diabetes later in life. 

Predisposition to diabetes mellitus is usually determined by multiple genes, but in some 

cases the disease can also result from mutations in single genes that are essential for the 

differentiation and/or function of the insulin-secreting cells. According to the functional 

impact of the mutation, the disease manifests at birth (neonatal diabetes)
4
 or may become

apparent only later in life (Maturity Onset Diabetes of the Young)
5
.

2. Alterations in gene expression associated with diabetes mellitus

Under pre-diabetic and diabetic conditions, many tissues in the body are chronically exposed 

to elevated concentrations of nutrients (glucose, fatty acids), inflammatory mediators 

(cytokines, adipokines) and hormones (insulin). This leads to the activation of signaling 

cascades culminating in major changes in gene expression in a variety of cells, including β-

cells, hepatocytes, adipocytes, skeletal muscle cells and endothelial cells. In the last decades, 

substantial efforts have been made to determine the contribution of these alterations in gene 

expression in the development of diabetes and its long-term complications
6
. Most of these

studies focused on genes coding for proteins. However, protein-coding genes account for less 

than 2% of the 3.2 billion base pairs constituting the human genome and recent technological 

advances revealed that most genome sequences can be transcribed to RNA. In fact, human 
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cells contain a very large number of transcripts that are not coding for proteins but play 

nonetheless essential regulatory roles in most physiological and pathological processes
7, 8

.

These non-coding RNAs have been subdivided in different categories according to their 

length, physico-chemical properties and functions. 

Long non-coding RNAs (lncRNAs) form a heterogeneous class of transcripts that 

contain more than 200 nucleotides
9
. They can modulate gene expression by affecting a variety

of processes, including chromatin remodeling, gene transcription as well as mRNA splicing 

and translation. LncRNAs accomplish these tasks by binding to other RNAs, to DNA or to 

proteins. This allows them to act as signals for the initiation of the transcriptional activity, as 

decoy molecules sequestering RNAs or proteins, as guides for the localization of 

ribonucleoprotein complexes or as scaffolds for the assembly of proteins or RNAs
10

.

Although the study of the role of lncRNAs has just started, there is already evidence 

indicating that lncRNAs play an important role in a variety of physiological and pathological 

processes, including diabetes mellitus
11-13

.

Small non-coding RNAs are shorter than 200 nucleotides and include, among others, 

microRNAs (miRNAs), piRNAs and tRNA-derived fragments
14-16

. MiRNAs are central

regulators of gene expression
14

 and important players in the development of different forms of

diabetes mellitus. Indeed, as outlined below, miRNAs control the expression of several key 

genes in β-cells and in insulin target tissues. Moreover, changes in the level of these small 

non-coding RNAs are important determinants of long-term diabetes complications such as 

renal fibrosis, visual loss and lower limb ischemia
17-19

.

3. General properties of miRNAs

The properties of miRNAs make them attractive targets for the treatment of several human 

diseases, including diabetes mellitus. In fact, these molecules are small (typically 21 to 24 
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nucleotides) and can be easily synthesized and modified to improve their stability, their 

efficacy or their delivery to the cells. Moreover, different approaches permitting to 

specifically block the activity of the miRNAs are already available. 

Today, more than 2500 different miRNAs have been identified in humans 

(http://www.mirbase.org/). These small RNAs are usually produced from intergenic or 

intronic sequences. In the latter case, they are often co-regulated with their hosting genes but 

their expression may also be controlled independently
20

. Many miRNAs are ubiquitously

expressed but some of them are restricted to a subset of cells. They are usually generated in 

the nucleus from long precursor molecules (pri-miRNAs) transcribed by RNA polymerase 

II
21

. Once produced, pri-miRNAs are processed by an enzymatic complex including the

RNase III enzyme Drosha, releasing a ~70 nucleotide hairpin-shaped precursor called pre-

miRNA. Pre-miRNA hairpins are translocated by the Exportin-5/Ran GTPase complex from 

the nucleus to the cytoplasm where they are further cleaved by Dicer, another RNase III-type 

endonuclease. This generates a short RNA duplex (21-24bp), including the mature miRNA 

(guide strand) and a partially complementary sequence called the passenger strand (or 

miRNA*) which is usually rapidly degraded. The biogenesis of some miRNAs does not occur 

via the canonical pathway described above but are produced via alternative routes that bypass 

Drosha or Dicer cleavage
22

.

After completing the maturation process, miRNAs are delivered to an Argonaute protein 

and are included in a RNA/protein complex (RISC) capable of recognizing specific sequences 

(seed sequences) in the 3’ untranslated regions of target mRNAs. This results in translational 

repression and/or in a decrease in target mRNA stability. The interaction between the 

miRNAs and their targets follows complex rules but does not require a perfect sequence 

complementarity, enabling each miRNA to simultaneously regulate the expression of 

hundreds of transcripts, often encoding multiple components of the same signaling network
23

.
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4. Role of miRNAs in pancreatic β-cells

Pancreatic β-cells are central players in the control of blood glucose homeostasis. MiRNAs 

are involved both in the differentiation of insulin-secreting cells and in the control of the 

activities of fully mature β-cells. At birth, β-cells display an elevated proliferation rate and are 

still functionally immature
24

. Indeed, the capacity to secrete insulin in response to glucose, a

unique feature of fully functional β-cells, is only acquired after a major gene reprogramming 

occurring in newborns or in young children
24, 25

. There is evidence indicating that changes in

miRNA expression driven by the nutritional shift occurring at weaning may be instrumental in 

this maturation process
24

. MiRNAs play central roles also in fully mature β-cells. Indeed,

numerous miRNAs contribute to the regulation of insulin biosynthesis and modulate the level 

of protein components guiding the transport and the fusion of secretory granules to the plasma 

membrane
26, 27

.

Modifications in the miRNA expression profile appear to contribute to compensatory 

β-cell mass expansion occurring under insulin resistance conditions. Indeed, adaptations in 

the level of a set miRNAs, including miR-184, miR-338-3p and miR-375, favor β-cell mass 

expansion in obese and pregnant mice
28-30

. Conversely, progressive changes in the miRNA

expression profile may contribute to the decline in β-cell proliferation in response to 

mitogenic signals that is observed during aging
31

.

The miRNA expression profile is altered in the islets of different diabetes animal 

models and in the islets of diabetic patients, promoting β-cell dysfunction and failure. Indeed, 

inappropriate levels of several miRNAs have been observed in the islets of mice fed a high fat 

diet or in mice lacking leptin or its receptor
28, 29, 32-34

. Some of these miRNAs and many others

were also differentially expressed in the islets of type 2 diabetic patients compared to the 

islets of healthy donors
29, 33-36

. Moreover, the expression of a number of miRNAs was found
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to be affected by chronic exposure to pro-inflammatory cytokines and to be modified in the 

islets of pre-diabetic NOD mice, a well characterized model of type 1 diabetes
37

.

5. Role of miRNAs in insulin target tissues

Besides β-cells, obesity and type 2 diabetes are also associated with changes in miRNA levels 

in insulin target tissues, contributing to insulin resistance and impaired glucose homeostasis. 

Different laboratories reported an up-regulation of miR-143 in the liver of obese and diabetic 

mice
38, 39

. Transgenic mice overexpressing this miRNA, display defective insulin-stimulated

AKT activation and impaired glucose homeostasis. These effects were attributed to the down-

regulation of oxysterol-binding-protein-related protein ORP8, a direct target of miR-143
39

.

Consistent with these observations, mice deficient for miR-143 were found to be protected 

from obesity-associated insulin resistance
39

.

The liver of obese mice contains also elevated levels of miR-103 and miR-107, two 

closely related miRNAs differing by just one nucleotide
40, 41

. The expression of these 

miRNAs in liver biopsies was found to be positively correlated with insulin resistance also in 

human subjects
40

. Up-regulation of these miRNAs in either hepatocytes or adipocytes caused

a reduction in the level of caveolin-1, a critical regulator of insulin receptor activation, leading 

to impaired glucose homeostasis
40

. Another miRNA which is induced under insulin resistant

conditions is miR-802
42

. Transgenic mice overexpressing this miRNA display glucose

intolerance and diminished insulin sensitivity resulting from silencing of Hnf1b expression, a 

key transcription factor which is direct target of miR-802
42

. In contrast to the previous

miRNAs, miR-26a was found to be down-regulated in the liver of obese mice and in 

overweight subjects and to be negatively correlated to insulin resistance
43

. This miRNA

regulates the expression of several key genes involved in insulin signaling and in the 

metabolism of glucose and lipids. Indeed, transgenic mice overexpressing miR-26a in the 
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liver displayed increased insulin sensitivity and decreased hepatic glucose production and 

fatty acid synthesis
43

.

Detailed analysis of the miRNA profile of skeletal muscle biopsies of type 2 diabetic 

patients revealed changes in more than sixty different miRNAs
44

. The differentially expressed

miRNAs included a rise of miR-143 and a reduction of two muscle-specific miRNAs, miR-

206 and miR-133a
44

. Many of these changes in miRNA expression were found to occur prior

to the onset of clinical diabetes, suggesting an involvement in the early phases of the disease. 

A large number of miRNAs have been found to positively or negatively affect the 

differentiation of white and brown adipocytes by controlling the expression of key 

transcription factors (for review see
45-47

). A subset of these miRNAs, including miR-196a
48

,

has also been shown to prevent or ameliorate obesity by promoting adipocyte browning. 

However, therapeutic approaches specifically designed to diminish the fat mass are not yet 

available. 

Let-7 isoforms constitute a large family of miRNAs with complex effects on glucose 

metabolism. Indeed, Let-7 overexpressing mice display impaired glucose tolerance, reduced 

glucose-induced insulin secretion and a decrease in fat mass
49

. In agreement with these

findings, overexpression of Lin28a/b, two RNA-binding proteins that inhibit Let-7 biogenesis, 

led to improvement in insulin sensitivity
50

. These metabolic effects may be linked to the

capacity of Let-7 to control the level of key components of the insulin/PI3K/mTOR pathway, 

including Insulin and IGF1 receptors and the insulin-receptor substrate IRS2
50

.

6. Contribution of miRNAs to diabetic complications

Exposure to chronically elevated blood glucose levels causes vascular damage promoting 

dysfunction and failure of heart, kidney, retina, peripheral nerves as well as impaired wound 

healing. A growing number of studies points to an important contribution of miRNAs in the 

Page 9 of 26

URL: http://mc.manuscriptcentral.com/eott  Email: Adam.Hall@informa.com

Expert Opinion On Therapeutic Targets

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



10 

development of these diabetic complications
17, 19, 51

. Several miRNAs, including miR-21,

miR-29, miR-192, miR-200b/c, miR-216/217, miR-377, were shown to be part of a signaling 

network participating in the development of diabetic nephropathy
52-56

. This degenerative

process involves  a progressive decline in glomerular filtration and is triggered by the 

activation of the TGFβ1 signaling pathway and the accumulation of extracellular matrix 

proteins
57

. Moreover, exposure of glomeruli to high glucose or to TGFβ1 was found to induce

an endoplasmic reticulum stress response resulting in increased expression of a megacluster 

of nearly 40 miRNAs hosted in a long non-coding RNA transcript
58

.

Sustained hyperglycemia can also lead to metabolic alterations in retinal endothelial cells 

resulting in capillary leakage, macular edema and blurred vision. The lack of oxygen, 

promotes the formation of new fragile capillaries that can bleed perturbing the vision and 

destroying the retina. Streptozotocin-induced diabetes in rats was found to be associated with 

major alterations in the miRNA profile in retinal endothelial cells. These expression changes 

included the down-regulation of miR-200b, a miRNA targeting the mRNA of VEGF and 

mimicking the increase in endothelial permeability and angiogenesis elicited by chronic 

hyperglycemia
59

 and the up-regulation of miRNAs that are controlled by VEGF, p53 and

NFκB
18

.

Diabetic skin ulcers caused by defective wound healing can often lead to lower limb 

amputations and constitute a major clinical problem. A number of miRNAs have been 

proposed to contribute to impaired angiogenesis and revascularization under diabetic 

conditions. These include an up-regulation of miR-503 triggered by the activation of the 

NFκB pathway under prolonged hyperglycemia and ischemia conditions
60

. Moreover, reduced

activity of the Inositol-Requiring Enzyme 1 (IRE1α), a key transducer of the unfolded protein 

response, under diabetic conditions was recently reported to improve the stability of the 
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precursors of several members of the miR-466 and miR-200 family, causing a rise in the level 

of the mature forms of these miRNAs
61

.

7. miRNAs as potential therapeutic targets

As presented above, the development of different forms of diabetes mellitus is associated with 

alterations in the level of specific miRNAs. There is mounting evidence indicating that 

strategies permitting to correct the level of these non-coding RNAs can restore insulin 

secretion and/or insulin action and can prevent or treat the disease. In a recent study, the 

expression of several members of the miR-141/miR-200 family, a group of abundant miRNAs 

recognizing the same target sequences, was found to be increased in the islets of mice lacking 

the leptin receptor and to correlate with diabetes development
33

. Changes in the level of these

miRNAs have a direct impact on β-cell survival. In fact, transgenic mice overexpressing two 

of these miRNAs display a progressive rise in blood glucose levels and become overtly 

diabetic after few weeks of life
33

. The authors generated mice in which the members of the

miR-200/miR-141 family are not expressed in β-cells and assessed whether they were 

resistant to diabetes. Indeed, when treated streptozotocin, a toxic compound that specifically 

kills the β-cells and promotes the appearance of diabetes, these mice were less prone to 

develop the disease
33

. Akita mice bear a point mutation in the sequence coding for insulin.

This triggers an endoplasmic reticulum stress causing severe β-cell dysfunction and loss. The 

knockout of all miR-200/miR-141 family members was also able to prevent diabetes 

manifestation in Akita mice
33

.

Transgenic mice in which the level of selected miRNAs was manipulated in insulin 

target tissues were also reported to be less prone to develop insulin resistance and type 2 

diabetes. For instance, the absence of miR-143 and miR-802, two miRNAs which are induced 
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under obesity conditions, was found to protect high-fat-diet fed mice against insulin resistance 

and to improve glucose tolerance
39, 42

.

8. Conclusion

Taken together, these studies provide strong evidence for a direct involvement of miRNAs in 

β-cell dysfunction and insulin resistance and point at these small non-coding RNAs as 

interesting potential targets for the treatment of obesity associated diabetes. 

9. Expert opinion

Genetic gain- or loss-of-function of miRNAs in animal models have evidenced a strong 

potential for therapeutics based on the modulation of the level of these small regulatory 

RNAs. As mentioned above, each miRNA controls the expression of multiple targets, often 

involved in the same signaling pathways or participating in the same functional processes. 

Thus, in contrast to siRNA-based strategies that target a single gene, therapeutic approaches 

modulating the level of selected miRNAs would allow a global control of gene networks. This 

represents a significant advantage for therapeutic interventions aiming at the treatment of 

complex diseases such as diabetes mellitus. 

We already dispose of approaches permitting to modulate the level of miRNAs in vivo. 

MiRNAs are short RNA sequences with well-defined physico-chemical properties that can be 

easily synthesized to overexpress the miRNAs (miRNA mimics). These synthetic 

oligonucleotides can be used to raise the level of cellular miRNAs exerting a beneficial effect 

in disease settings. MiRNAs can also be specifically and very efficiently inactivated using 

short antisense oligonucleotides (anti-miRs) that block their activity and promote their 

degradation
62-64

. The delivery of anti-miRs permits to attenuate the impact of miRNAs

contributing to diabetes development or progression. RNAs are usually very sensitive to 
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endogenous RNases present in the blood or in the cells. However, miRNA mimics and anti-

miRs can be chemically modified to increase their stability and avoid premature nuclease 

degradation
62

. Moreover, the inclusion of chemically modified nucleotides permits to enhance

target affinity, to reduce glomerular filtration and to facilitate cellular uptake. MiRNA mimics 

and anti-miRs usually contain phosphorothioate backbone linkages to escape nuclease 

degradation and to favor binding to plasma proteins
62, 63

. Anti-miRs most often contain also 2’

sugar modifications that contribute to nuclease resistance and strongly improve the affinity for 

complementary RNAs
62, 63

. In some cases, anti-miRs have also been conjugated to cholesterol

via a 2’-O-methyl linkage to enhance hepatic uptake and to lower delivery to other tissues
64

.

An increasing number of studies have demonstrated the efficacy of these 

oligonucleotide derivatives in modulating the level of miRNAs in different diabetes models 

(Table 1). Several groups have succeeded in ameliorating insulin sensitivity under diabetic 

conditions by blocking the activity of specific miRNAs. Indeed, silencing of miR-103/107 

using antisense oligonucleotides in either liver or adipocytes led to enhanced insulin 

sensitivity and improved glucose homeostasis
40

. Moreover, blockade of Let-7 family

members with anti-miRNAs ameliorated insulin sensitivity in liver and muscle and prevented 

impaired glucose tolerance in mice with diet-induced obesity
49

. Similar results were obtained

by down-regulating miR-181a and consequently up-regulating the expression of its target 

sirtuin-1
65

.

Intraperitoneal injection of antisense oligonucleotides reducing the level of miR-21 

were recently found to ameliorate diabetic nephropathy
66

. Indeed, blockade of this miRNA in

diabetic mice attenuated a number of pathological hallmarks of diabetic kidney disease, 

including mesangial cell hypertrophy, interstitial fibrosis, podocyte loss and inflammation. 

Similar effects were observed upon silencing of miR-192, a miRNA induced by TGFβ 

signaling
67

.
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The use of miRNA mimics or of anti-miRs was also successful in modulating the 

activity of specific miRNAs in the eye. Indeed, introduction of miR-200b mimics in the 

vitreous cavity of the eye of diabetic rats decreased VEGF expression and prevented the 

diabetes-induced increase in retinal vascular permeability
59

. Moreover, intravitreal anti-miR

injection permitted to decrease the level of miR-195 in retinal cells and to reduce tissue 

damage and retinopathy in diabetic rats
68

.

Anti-miRs have also been used to stimulate wound healing in diabetic mice. In fact, 

local administration of anti-miR-26 or of a miR-27b mimic were found to promote 

angiogenesis and to accelerate wound healing in diabetic db/db mice
69, 70

.

Recently, oligonucleotides (including anti-miRs) conjugated to triantennary N-

acetylgalactosamine have been shown to be exceptionally stable and to be very efficiently 

targeted to the liver
71-74

. In fact, these oligonucleotide conjugates bind to the

asialoglycoprotein receptor which is very abundant in hepatocytes and enter the cells by 

endocytosis. Clinical trials involving the use of N-acetylgalactosamine conjugates for the 

delivery of anti-miRs are already ongoing
71, 73, 74

 and this approach will most probably

become the dominant strategy for RNA-based therapeutics targeting the hepatocytes. 

Conjugate-mediated delivery of therapeutic oligonucleotides to other metabolically relevant 

tissues such as fat, skeletal muscle or pancreatic islets will require further investigations to 

identify mechanisms allowing cell-specific uptake. 

While oligonucleotide derivatives have proven successful in modulating the level of 

selected miRNAs and in treating diabetes or its associated long-term complications, the use of 

these compounds presents some limitations that have so far prevented their general usage for 

therapeutic purposes. 

Long-term treatments with these compounds may potentially lead to unacceptable side 

effects for the patients. In fact, most if not all the miRNAs that have been targeted so far for 
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the treatment of diabetes or its associated complications are not restricted to specific cells but 

are ubiquitously expressed. While having a positive impact in the target cells, changes in the 

level of these miRNAs may trigger deleterious effects in other organs. Thus, systemic and 

chronic delivery of miRNA mimics or anti-miRs could potentially lead to malignancies or to 

other severe disorders. Moreover, as mentioned above, these nucleotide-based molecules 

contain phosphorothioate backbone modifications to protect them from plasma and 

intracellular nucleases. The presence of phosphorothioate backbone modifications was 

recently found to trigger the activation of platelets and to promote thrombus formation
75

. If

confirmed, this observation may have relevant implications for future therapeutic utilization 

of these molecules in humans. 

Besides potentially leading to off-target effects, intraperitoneal injections are not 

efficient in delivering miRNA mimics or anti-miRs in some relevant tissues such as for 

instance the pancreatic islets. To circumvent these problems, several studies have taken 

advantage of viral constructs driven by cell-specific promoters (Fig.1A). These constructs can 

be engineered to generate either miRNA precursors or miRNA decoy molecules capable of 

sequestering the small non-coding RNAs and of blocking their interaction with the 

endogenous targets
76

. Adeno-associated viruses (AAV) are popular vectors for the delivery of

miRNA precursors or miRNA decoys
77

. Several AAV serotypes differing for their cellular

tropism are available, facilitating the preferential delivery to specific organs. An AAV-based 

approach has been used to block the activity of miR-503 in ischemic limb muscles of diabetic 

mice and to promote reparative angiogenesis
60

. Another AAV construct driven by the insulin

promoter was employed to express a miR-338-3p decoy molecule in pancreatic β-cells and to 

promote their proliferation
78

. Other viral vectors have also been used to modulate the level of

miRNAs relevant for diabetes treatment. For instance, the level of miR-146a in the retina was 
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increased by intravitreal injection of a lentiviral construct expressing the precursor of this 

miRNA, resulting in a decrease in microvascular leakage and retinal functional defects
79

.

Several alternative strategies enabling cell-specific delivery of molecules capable of 

regulating the level of selected miRNAs are currently scrutinized. An attractive approach 

would be to couple them to aptamers (Fig.1B). Aptamers are DNA or RNA oligonucleotides 

that are selected for their capacity to bind a target molecule thanks to their stable three-

dimensional structure
80, 81

. These short chemically synthesized molecules are obtained by a

selection process named SELEX (Systematic Evolution of Ligands by Experimental 

enrichment) that involves iterative cycles of binding and amplification of a large pool of 

random sequences
82, 83

. Aptamers can be internalized by receptor-mediated endocytosis
84, 85

,

allowing intracellular delivery of their cargo. Selection protocols to identify synthetic 

oligonucleotides binding to whole living cells (cell-SELEX) are already available
86

 and could

permit the design of aptamers for the targeting of miRNA mimics and anti-miRs to specific 

tissues. 

Another interesting approach would be to encapsulate the molecules regulating the 

level of the miRNAs inside liposomes (Fig.1C). These artificial vesicles would protect 

miRNA mimics and anti-miRs from degradation. Moreover, they could be engineered to bear 

at their surface, antibodies, ligands or receptors directing them to the appropriate target cells. 

Alternatively, the oligonucleotides could be introduced in exosomes (Fig.2C), a particular 

type of vesicles released by most cells in the body, which are known to carry an endogenous 

pool of miRNAs
87

. Exosomes have been shown to herald proteins that prevent their clearance

by monocytes and have been proven to be more effective than fully artificial vesicles
88

.

Moreover, there is increasing evidence indicating that exosomes released by the cells are 

endowed with signals capable of directing them to specific target tissues
89

. Thus, careful

selection of the pool of exosomes to be used for the transport of miRNA mimics or anti-miRs 
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may potentially ensure the delivery of the therapeutic molecules to the appropriate target 

cells. 

As outlined above, miRNAs are powerful cellular regulators and attractive therapeutic 

targets. Pharmacological tools that efficiently modulate the level of these small non-coding 

RNAs promise to become precious weapons to fight diabetes and its long term complications. 

However, at present the risk of severe side effects remains unacceptable to envisage the 

treatment of a chronic disease such as diabetes. Before these new powerful tools can integrate 

the arsenal for the treatment of diabetic patients, researcher will need to identify better 

strategies to insure the selective delivery of these pharmacological principles to the 

appropriate cells. 
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Article highlights box 

• microRNAs are important regulators of gene expression and a subset of them controls

the function of insulin-secreting cells and insulin target tissues. 

• Accumulating evidence points to an involvement of microRNAs in the development of

diabetes and its long term complications. 

• Restoration of the level of specific microRNAs can successfully prevent and/or treat

diabetes or its associated complications. 

• We already dispose of molecules permitting to modulate the level or the activity of

selected microRNAs in vivo. 

• Experiments are underway to develop innovative strategies allowing a specific

targeting of these molecules to relevant cells and reducing the potential side effects. 

Page 18 of 26

URL: http://mc.manuscriptcentral.com/eott  Email: Adam.Hall@informa.com

Expert Opinion On Therapeutic Targets

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



19 

Table 1) Examples of successful oligonucleotide-based approaches to treat diabetes and 

its complications 

The indicated miRNA mimics or anti-miRs were injected in vivo to improve insulin resistance 

in type 2 diabetes models or to attenuate common diabetic complications such as 

nephropathy, retinopathy or impaired wound healing. 

Clinical process Treatment Effect Reference 

Insulin resistance anti-miR-103/107 Decrease 
40

anti-Let-7 Decrease 
49

anti-miR-181a Decrease 
65

Diabetic nephropathy anti-miR-21 Decrease 
66

anti-miR-192 Decrease 
67

Diabetic retinopathy anti-miR-195 Decrease 
68

miR-200b mimic Decrease 
59

Wound healing anti-miR-26 Increase 
69

miR-27b mimic Increase 
61
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Figure legend 

Fig.1) Currently explored strategies to modulate the level of miRNAs in selected cells 

A) Commonly used approaches to regulate the activity of miRNAs in selected tissues involve

the use viral vectors (AAV or lentiviruses) engineered to produce either miRNA precursors or 

miRNA decoy molecules. The choice of cell-specific promoters permits to restrict the 

expression of the miRNA regulators to the relevant tissues. 

B) Another strategy to control the level of miRNAs in a tissue-dependent manner is to couple

miRNA mimics or anti-miRs to aptamers capable of binding specifically to the target cells. 

C) Cell-specific delivery of miRNA mimics or anti-miRs could also be achieved by

encapsulating these molecules in liposomes bearing antibodies or receptor ligands that bind to 

proteins present at the surface of the target cells. Alternatively, miRNA mimics or anti-miRs 

could be introduced in exosomes capable of delivering their cargo to the target cells. 
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