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Abstract 

Protein homeostasis, namely the ensemble of cellular mechanisms collectively 

controlling the activity, stability and conformational states of proteins, depends on 

energy-consuming processes. De novo protein synthesis requires ATP hydrolysis for 

peptide bond formation. Controlled degradation by the chaperone-gated proteases 

requires ATP hydrolysis to unfold target proteins and render their peptide bonds 

accessible to hydrolysis. During and following translation, different classes of 

molecular chaperones require ATP hydrolysis to control the conformational state of 

proteins, favor their folding into their active conformation and avoid, under stress, 

their conversion into potentially harmful aggregates. Furthermore, specific ATP-

fueled unfolding chaperones can dynamically revert aggregation itself. Why do 

molecular chaperones need ATP and what are the consequences on protein 

homeostasis of the energy contributed by the ATPase cycle? Here we used various 

biochemical assays and physical modeling and showed that both bacterial chaperones 

GroEL (HSP60) and DnaK (HSP70) can use part of the energy liberated by ATP to 

preserve the native state population of their substrate proteins, even under conditions 

in which the native state is, according to equilibrium thermodynamics, unstable. 
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Expectedly, upon ATP exhaustion the chaperone substrates spontaneously lose their 

activity, reverting to their equilibrium non-native state. In the presence of chaperones, 

proteins are thus open, driven, non-equilibrium systems, whose behavior is only 

partially determined by equilibrium thermodynamics, with intriguing and far-reaching 

consequences for our understanding of protein homeostasis, protein biophysics and, 

more generally, protein evolution.  
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Introduction 

Anfinsen et al.1 demonstrated that artificially unfolded proteins can refold 

spontaneously into their native, active state without assistance from other 

macromolecules, solely guided by their primary amino-acid sequences. These seminal 

in vitro refolding experiments implied that, compared to unfolded nascent 

polypeptides, natively folded proteins are thermodynamically more stable 

conformations positioned at the bottom of the free energy landscape. This can be 

reasonably expected from 3.5 billion years of evolution that strived to produce 

optimally active proteins capable of sustaining long-lasting cellular functions in 

fluctuating stressful environments. Nonetheless, Anfinsen also noticed that, in vitro, 

the spontaneous folding process can be prone to errors as not all artificially unfolded 

proteins could efficiently reach their native state, and formed instead inactive 

insoluble aggregates. Indeed, although the funnel-like structure of the free-energy 

landscape of proteins should in general favour their native folding2,3, local minima, 

corresponding to metastable misfolded conformations, can transiently halt 

polypeptides on their way to the native state. There, the kinetically trapped species 

might pursue further stability by coalescing into stable inactive aggregates, as in the 

case of alpha-synuclein fibrils and beta-amyloids. Aggregates can be stabilised by 

intra- and inter-molecular contacts of otherwise inappropriately exposed hydrophobic 

surfaces and are typically enriched in cross b-sheets4, and at sufficiently high protein 

concentrations their free-energy might be lower than the native state5-7. Moreover, 

mutations and environmental stresses, such as heat-shock, can perturb the free-energy 

landscape and render the native state intrinsically less stable than other partially 

compact, misfolded and aggregated conformations8. Because protein aggregates and 
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their misfolded precursors appear to be the primary cause for various degenerative 

diseases, they have gained great interest in the last decades9,10.  

Molecular chaperones have come to prominence because of their role in 

assisting de novo protein folding and in preventing under stress the formation of toxic 

aggregates, by several complementary mechanisms involving protein binding and 

unfolding5,11,12. Attesting for their foremost function in sustaining cellular life, up to 3-

5 % of the total protein mass of unstressed non-cancerous metazoan cells may be 

constituted from the conserved families of ATPase chaperones, namely the 60 kDa 

Heat Shock Protein, Hsp60 (GroEL, the bacterial chaperones in parenthesis), Hsp70 

(DnaK), Hsp100 (ClpB) and Hsp90 (HtpG)13. This amount may further increase 

following heat stress14, or in immortalized cancer cells, which, owing to their 

abnormal elevated chaperone load, resist apoptosis and protein damage under various 

chemotherapeutic and physical stresses15. Because of their affinity for water-exposed 

hydrophobic amino acids, chaperones preferentially bind non-native proteins 

exposing hydrophobic surfaces, thereby passively preventing protein aggregation16-18. 

The role of the chaperone ATPase cycle has been traditionally, but possibly over-

simplistically, associated with the directional cycling through several different 

molecular conformations, each optimally primed for one of the various steps of the 

chaperone action: binding, “processing” and release of their to-be refolded, or to-be 

prevented from aggregating19, polypeptide substrates.  

 Quite surprisingly, a fundamental consequence of the ATPase activity of 

chaperones, which stems from fundamental laws of physics and remains largely 

under-appreciated, is that the constant contribution of energy from ATP, aside from 

generating heat, could also drive the system into a non-equilibrium steady state, 

where proteins interacting with the chaperones would distribute over their 
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conformational ensemble differently than at equilibrium20-23. A testable prediction in 

such scenario is that, using the energy available from ATP, chaperones should be able 

to favour the native state of their substrates even under adverse denaturing conditions, 

where the native state is thermodynamically less stable than the various unfolded, 

misfolded and aggregated species.  

Here, we primarily focussed on bacterial GroEL, which was the first 

chaperone to be studied in vivo24 and in vitro16 and thereafter thoroughly characterized 

structurally and functionally25,26 and on malate dehydrogenase (MDH), which is an 

extensively studied natural substrate of GroEL in mitochondria and bacteria, as well 

as on citrate synthase, another well-studied model protein. Further, we show that the 

same non-equilibrium principles likely apply both to the network of chaperones, 

composed by GroEL and GroES, the disaggregase ClpB and DnaK, that in cells 

supervises protein homeostasis, and to Hsp70 (DnaK) alone, which is an abundant 

ATPase chaperone representing at least 0.5% of the total protein mass of animal 

cells13,15. We find that similarly to GroEL, these systems can also convert the free 

energy from the ATPase cycle into the non-equilibrium stabilisation of the native 

state of labile protein substrates, by mechanisms that, although very different at the 

molecular level from cage sequestration by GroEL, are likely analogous in their 

overarching principle. 

 

The free-energy landscape of proteins in non-native conditions 

Purified MDH from porcine mitochondria, which is the model protein that we used in 

most of the experiments, is stable at 25°C, while it spontaneously loses its activity at 

more elevated temperatures27, such as 37°C28. These results suggest a picture of the 
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free-energy landscape of MDH at 37°C as represented in Fig.1, where the native, 

active dimer (ND) is in kinetic equilibrium with the compact, native monomer (NM), 

which is in turn in kinetic equilibrium with a less-structured intermediate (I) 

characterized by a higher free-energy.  The intermediate is likely short-lived, and it is 

in kinetic equilibrium also with a collapsed but non-native misfolded state (M)29-31, 

which is more stable (i.e. lower in free-energy) even than the native dimer. 

Aggregation, which is a concentration dependent reaction, further proceeds by 

the binding of non-native monomers to other non-native monomers or to already 

formed aggregates (A). Since it has been noted that non-native MDH remains in 

conformations that, when brought back into native conditions, could refold 

spontaneously in native conditions even after incubation at denaturing temperatures 

for tens of minutes32, the aggregation is very likely a slow process compared to 

denaturation at micro-molar, or lower, concentrations. These findings also agree with 

observations that several non-native proteins can remain soluble for long periods of 

time, even under adverse conditions that do not favour the native state8,33,34. 

 

Under denaturing conditions GroEL and ATP maintain MDH in a non-

equilibrium native state  

 Hartman et al.28 remarkably found that at 37°C the rate of spontaneous 

denaturation of MDH decreased in the presence of substoichiometric amount of 

GroEL and GroES 7-mers and ATP. These intriguing observations did not trigger a 

more fundamental issue: does GroELS use ATP hydrolysis to seemingly “preserve”, 

under a denaturing temperature, a conformational state that is not the most stable one 
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as dictated by thermodynamic equilibrium? We address here this crucial question, 

which has remained to date unanswered.  

At 25°C, as expected, native MDH remained stably active with or without 

GroELS and ATP (Fig.S1A). At 37oC, MDH spontaneously lost its active form at an 

approximate rate of 0.007 min-1 (Fig.2A), compatibly with Hartman et al.28 and with 

the scheme in Fig.1. Addition of a molar excess of GroELS (3.5 𝜇M protomers of 

GroEL and GroES) (but without ATP) over MDH did not affect the rate of 

denaturation (Fig.S1B). In contrast, when GroELS, ATP and a pyruvate 

kinase/phosphoenolpyruvate-based regeneration system were supplemented at t=0’, 

they caused a net reactivation of nearly 75 nM MDH on top of the initial amount of 

active enzyme. This implied that in the initial stock of nominally native MDH there 

was at most 80-85% of truly native, active MDH species, alongside ~15-20% inactive 

yet soluble and GroELS-amenable species, in keeping with the results of Peralta et 

al.32, since no protein aggregate has yet been shown to be solubilized by 

GroELS+ATP12,35. 

Surprisingly, following reactivation MDH remained active and apparently 

stable, despite the denaturing conditions in which the active state should not have 

persisted. When GroELS and ATP were added later after the start of thermal 

denaturation, native state maintenance again followed the net reactivation of some 

MDH (Fig.2B), which had remained chaperone-amenable during 30-60 minutes of the 

heat treatment. The amounts of recovered MDH significantly decreased only when 

GroELS and ATP were added at much later times, once more suggesting that the 

formation of aggregates (Fig.2B, non-recoverable fraction) was much slower than the 

denaturation process in our assay conditions.  
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Our observations highlighted that at 37°C, where the non-native ensemble is 

more stable than the native ensemble (Fig.1), the primary ATP-dependent action of 

GroELS was not limited to the mere prevention of aggregation of the non-native 

MDH. Instead, as represented in Fig.1, GroELS behaved as if it actively rescued the 

recoverable misfolded MDH conformers, pushing them up the free-energy landscape 

towards the native active state, where, despite being only metastable, they were 

maintained for extended periods. These conclusions were further strengthened by a 

similar action of GroELS+ATP during heat denaturation of citrate synthase, another 

classical GroEL substrate (Fig.S2)36. 

 Basic physics principles dictate that the steady maintenance of MDH in its 

otherwise unstable native state must be strictly ATP-dependent. Indeed, if no energy 

could be extracted from the ATPase cycle, equilibrium thermodynamics would 

inescapably govern the system, and GroELS could not oppose the thermodynamically 

inevitable denaturation of the MDH. We thus devised experimental setups where we 

could control whether the system was at, or away from, equilibrium. 

As in Fig.2A, an excess of GroELS over MDH, supplemented with ATP and a 

regeneration system, was expectedly able to maintain the native MDH level when 

added from the start and, when added at a later stage, to recover some activity and 

then maintain it constant despite the denaturing temperature (Fig.2C). In both cases, 

the subsequent addition of apyrase, which readily hydrolysed ATP into AMP, 

deprived GroELS of its energy source, inhibiting its ability to maintain the non-

equilibrium active stabilisation of the metastable native MDH at 37oC. As a 

consequence, the system spontaneously sought the MDH inactive denatured state, 

which is thermodynamically the most stable (by contrast, at 25oC, where native MDH 

is intrinsically stable, addition of apyrase had no effect, see Fig.S1A).  
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Using MDH that was first artificially unfolded by urea, Anfinsen-type in vitro 

refolding experiments showed that, following removal of urea by abrupt dilution, 

there was no spontaneous MDH refolding at 37°C (Fig.2D), consistent with the 

thermodynamic instability of the native state at that temperature. In contrast, we 

found that the presence of GroELS+ATP at the time of the urea dilution resulted in 

the transient major accumulation of native MDH at 37°C, and in its subsequent 

maintenance over time. Apyrase addition readily brought the level of native MDH 

back under the control of equilibrium thermodynamics, and led to its spontaneous 

denaturation despite the presence of the chaperones (Fig.2D).  

The amount of energy that is liberated by the ATPase cycle, DGATP, and that is 

available for GroELS to inject into maintaining the metastable MDH into its native 

state, depends on the concentrations of ATP, ADP and inorganic phosphate Pi 

through the relation: 

𝛥𝐺$%& = 𝑘)𝑇	 ln 𝐴𝑇𝑃 𝐴𝐷𝑃 𝑃𝑖 − ln 𝐴𝑇𝑃 34 𝐴𝐷𝑃 34 𝑃𝑖 34 .  

Here, kB is the Boltzmann constant, T is the absolute temperature and the eq subscript 

marks the concentrations that the different molecules would have if the hydrolysis 

reaction could run to completion (i.e. [ADP]eq/[ATP]eq ≈ 106-108 depending on the 

solution conditions37). To analyse the role of DGATP in more detail, we changed the 

concentrations of ADP in the GroELS-mediated refolding experiments of urea pre-

unfolded MDH at 37°, while keeping ATP constant at a sub-physiological 

concentration (400 µM), which was, however, still in excess over GroELS (3.5 µM). 

Increasing amounts of ADP, from 0 µM to 1600 µM, were added at the start of the 

reaction, with the goal of progressively reducing the value of DGATP, as predicted from 

the above formula. Expectedly, larger ADP concentrations inhibited the initial 
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effectiveness of the chaperone mediated refolding reaction of the MDH (Fig.2E). 

Later, the reaction was further hindered by the decreased concentrations of ATP that 

was consumed, and by the reciprocal increased concentration of ADP. This brought 

the system back towards equilibrium conditions, namely DGATP=0.  

 Together, the results in Figs.2C-E confirmed that the effect of GroELS is 

strictly dependent, and tuneable, by the amount of energy available from ATP, which 

thus drove and maintained the system in a non-equilibrium state. 

 

Non-equilibrium thermodynamics model of chaperone action 

We next rationalized these observations with a model that captured the main 

properties of the free-energy landscape of MDH and of the ATP-fuelled chaperone 

action as represented in Fig.1. We chose to describe the action of chaperones at a 

minimalistic level of detail to focus on the broader and general thermodynamic 

implications of the energy consumed during their cycle. The explicit reactions of 

chaperone-substrate association and dissociation allowed accounting for the 

chaperone concentrations that, when needed, we chose to vary in order to serve our 

experimental demonstration. When bound to chaperones, substrates could further 

convert between more and less structured non-native conformations, based on the 

compelling experimental evidence for Hsp60s (and for Hsp70s and Hsp100s) that 

following binding, misfolded substrates generally undergo a loss of secondary 

structure (unfolding) and an expansion, while still in complex with the chaperones34,38-

46, and as emphasized in other modelling schemes for the action of GroELS 47-49. This 

assumption was further strengthened by observing that the compacting action of a 

crowding agent (15% PEG 6000) 50,51, which inhibited both the misfolded-to-native 
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and native-to-misfolded conversions of MDH at 25°C and at 37°C (Fig.S5A), was 

antagonized by GroELS+ATP at 37°C (Fig.S5B). In other words, the energy of ATP 

was used by GroELS to facilitate the de-compaction and/or unfolding of its substrates. 

 In this model, the native species do not interact with the chaperones, in 

agreement with the generally-accepted view that in order to act efficiently in the 

crowded environment of cells, molecular chaperones must have a high affinity for 

non-native, aggregation-prone de novo synthesized, de novo translocated or stress-

misfolded polypeptides, while keeping an extremely low affinity for the very dense 

population of surrounding proteins that are native52. 

The detailed internal movements of GroEL, as well as GroES binding and 

release, the precise steps of ATP hydrolysis and nucleotide exchange, and their 

cooperative and/or anti-cooperative nature are usually taken into account when 

addressing the precise molecular steps of the cycle of the action of GroEL53-56. Here, 

they needed not to be explicitly represented in the model, as they were not necessary 

to extract the effects of the energy consumed by the chaperones on the behaviour of 

the system. Indeed, according to the laws of non-equilibrium thermodynamics, which 

must be valid at any coarse-grained level of description, the effect of the energy 

DGATP contributed to the system by the ATPase activity could be rigorously integrated 

in the relations between the association and dissociation rates of the chaperone-

substrate complexes (see SI).  

The rates of the transitions between the different MDH states, the rate of 

aggregation and the rates of the chaperone action have been chosen to reasonably 

reproduce the measured spontaneous denaturation of native MDH dimers at 37°C and 

the third reactivation curve (when GroELS and ATP were added at t=30’) observed in 
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Fig.2A (see SI for the full list of rates). All model results presented in this work have 

been obtained with this same set of intrinsic parameters. 

Once the parameters had been set, we found that the model closely reproduced 

the other data in Fig.2A, when the GroELS was added either earlier or later during the 

thermal denaturation (cf. Fig.3A). More importantly, the model gave access to 

estimates of the various populations of MDH species that were not directly detectable 

experimentally (Fig.3B). The chaperone-resistant non-recoverable fraction was 

heterogeneous: it comprised an irreversibly inactive component, likely aggregates, 

which expectedly grew over time at 37oC, and a proportionally diminished soluble 

component, which was mostly composed of near-native inactive monomers.  

In the model, the switch from non-equilibrium to equilibrium conditions 

induced by apyrase could be captured by sharply setting DGATP=0 at the time of 

apyrase addition, and the results agreed with the experiments (compare Fig.3C with 

Fig.2C). Similarly, we could reproduce the results from Anfinsen-type refolding of 

artificially unfolded MDH experiments (Fig.3D). In the model, we could also control 

the amount of energy available to chaperones by changing the [ATP]/[ADP] ratio and 

taking into account its variation in time (see SI for the implementation in the model). 

The same behaviour observed experimentally in Fig.2E. was reproduced by the model 

(Fig.3E), further confirming that the energy of ATP was transduced into the stability 

of the native state of MDH. 

 

GroELS functions through iterative cycles fuelled by the ATPase activity. 

We then investigated whether the observed ATP-dependent ability of GroELS to 

regenerate and transiently maintain native MDH under denaturing conditions (Fig.1A) 
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was possibly due to the stabilisation during long-lived in-cage binding, of a minority 

of denaturing polypeptide substrates by a molar excess of GroELS.  

We thus exposed during 8 hours, an MDH concentration higher than in 

previous experiments (2.5 µM) to decreasing substoichiometric amounts of GroELS 

in the presence of a non-limiting amount of ATP (backed by a long-lasting ATP 

regeneration system) (Fig.4A). Following 8 hours at 25°C, the native MDH 

expectedly remained nearly fully native, independently of the presence or absence of 

GroELS. Without ATP, all GroELS concentrations remained ineffective at preserving 

at 37°C the MDH activity and 85% of the total MDH, i.e. about 2.1 µM, became 

inactive in 8 hours. However, in the presence of ATP, as little as 357 nM of GroEL7 

rings (2.5 µM of GroEL protomers) could actively maintain a 7-fold excess of MDH 

in the native state during the 8 hours at 37°C. At EC50, as little as 56 nM of GroEL7 

rings (392 nM of GroEL protomers) could effectively maintain in the native state as 

many as 923 nM of MDH, implying that on average, each GroEL7 cavity had actively 

and iteratively converted at least 17 molecules of inactive MDH monomers into active 

dimers, more than it could bind at any given time during the 8 hours (Fig.4A, inset). 

This ruled out the possibility that the stabilisation of the native species resulted from 

the lengthy association with the chaperone cage. Without changing parameters, the 

model could closely reproduce these experimental data (Fig.4B), including the 

minimal number of recovered MDH molecules, which was about 20 per GroEL7 ring 

at EC50 (Fig.4B inset, red squares). Moreover, because at any moment of the 8 hours 

reaction each MDH monomer that was released from the chaperone cavity and that 

had natively refolded and possibly transiently reassembled into an active dimer could 

denature again, the model further unravelled that each GroEL7 cavity had to undergo 

at least 400 ATP-fuelled cycles of MDH binding, processing and release in order to 
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yield the measured elevated end-product amounts of native MDH after 8 hours at 

37oC (Fig.4B inset, blue squares).  

These results imply that continuously misfolding polypeptides must have been 

effectively converted into native complexes against thermodynamic equilibrium 

through a highly iterative process which is similar to catalysis, because the conversion 

between the misfolded and the intermediate state is much faster than it would be 

spontaneously, and where the catalyst molecule (here, GroELS) is available for 

multiple turnovers of the reaction. Yet, at variance with catalysis, this process is not 

accelerated in both directions because of energy consumption, leading to the observed 

change of the native state fraction in steady-state. 

 

GroELS uses the energy of ATP to shape the effective free-energy landscape of 

proteins 

The results in Figs.2 and 4 indicate that by readily processing the thermally misfolded 

proteins as they formed and by releasing the processed species to transiently form 

native complexes, GroELS and ATP were in fact maintaining the concentration of the 

aggregation-prone misfolded proteins very low, and consequently dramatically 

reduced the process of aggregation that strongly depends on the concentration of 

misfolded precursors. This justified our further simplification of the model by plainly 

neglecting the contribution of aggregation. It then became possible to formally define 

the steady-state effective free-energy difference between the native and non-native 

ensembles, DGeff
N,nN = -kBT ln([N]/[nN]) (see SI for a discussion) as a function of 

DGATP. Here, [N] was the total concentration of native conformers ([N]=[NM]+[ND]) 

and [nN] the total concentration of non-native conformers 
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([nN]=[I]+[M]+[CI]+[CM]) (see Fig.1). Expectedly, at 37°C, in equilibrium 

conditions (DGATP=0) the non-native ensemble was more stable than the native 

ensemble (DGeff
N,nN=DGeq

N,nN>0), driving the steady spontaneous denaturation of 

native MDH (Fig.5A). As DGATP increased by injecting progressively more energy in 

the reaction, the native ensemble became stabilized. For DGATP> 2.7 kcal/mol, the 

native ensemble became more stable than the non-native ensemble. For DGATP=7.7 

kcal/mol (the value used in the model in Figs.2, 3A-D and 5C), the native-ensemble 

was found to be apparently more stable than the non-native ensemble by about 1.8 

kcal/mol, corresponding to a total energy transfer by the chaperone of about 2 

kcal/mol from the ATPase cycle to the steady-state stability of the native state 

product. Pictorially, the effect of the action of GroELS thus corresponded to a 

remodelling of the free-energy landscape of the substrate, where the misfolded state 

was destabilised and raised above the native state, as it would be expected under 

physiological conditions (Fig.5B).  

The model also rationalized the role that an elevated cellular concentration of 

GroELS (an estimation from quantitative proteomics of a rat liver cells indicates that 

in the mitochondrial stroma there are about 130 µM HSPD1 (GroEL) protomers, as 

many HSPE1 (GroES) protomers, for about ~160 µM of MDH2 protomers13), might 

have for the evolution of proteins carrying cellular functions necessitating high 

flexibility at an unavoidable cost of decreased overall intrinsic stability (Fig. 5C). As 

shown by Anfinsen, intrinsically stable native proteins (DGeq
N,nN<0) may not need 

assistance from other proteins. Here, we found, however, that as the thermodynamic 

stability of labile proteins was progressively challenged by mild stress or mutations 

(corresponding to increasing values of DGeq
N,nN>0), molecular chaperones could 
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recruit the energy of ATP to maintain in their native state, proteins that are 

intrinsically metastable , thereby extending their effective range of activity within 

stressed cells (the orange region in Fig.5C represents the net gain of native proteins 

over the amount that should be present according to equilibrium thermodynamics). 

Noticeably, even under harsh denaturing conditions, where an excess of GroELS is 

unable to maintain MDH in the native state, in the model, it was still able to bind the 

non-native aggregation-prone species (blue region). When GroELS was in excess 

over the substrate, it could reduce the amount of free non-native species (green 

region), thereby impeding their irreversible aggregation and justifying, in part, the 

somewhat overstated characterizing of molecular chaperones as being able to prevent 

the aggregation of other proteins57. 

 

The full power of energy transduction is unleashed by the entire chaperone 

network 

In bacterial cells, protein homeostasis depends on several ATPase chaperones, 

comprising GroELS, DnaK (and its co-chaperones), HtpG and the disaggregase 

ClpB58. We thus tested the effects of a more physiological multi-chaperone 

composition, for various concentrations of DnaK, on MDH at 37°C (Fig.S4). At 

37°C, when urea-unfolded MDH was pre-incubated for 70 minutes with ATP, ClpB, 

limiting amounts of GroELS, and the DnaK co-chaperones DnaJ and GrpE, but 

without DnaK, no significant native MDH refolding was observed. The subsequent 

addition of increasing amounts of DnaK caused the increasing accumulation of native 

MDH, despite the non-native temperature, demonstrating that DnaK, which can act 

both upstream and downstream of ClpB59 and of GroELS60,61, can facilitate the 

conversion of the energy of ATP into increased stability of labile native proteins. 
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As matter of fact, early in vitro experiments with DnaK already indicated that 

also Hsp70 chaperones are able to convert the energy of ATP into a non-equilibrium 

native state stabilisation of the thermolabile luciferase at denaturing temperature62. 

We further demonstrated here that this is an intrinsically non-equilibrium effect, by 

showing that upon the addition of apyrase, spontaneous denaturation of luciferase was 

restored (Fig.S3A). We further tested the ability of DnaK to stabilize native MDH at 

37°C, and observed that the addition of KJE and ATP produced a significant 

reactivation of native MDH, although only short-lived likely because the rate of MDH 

denaturation was faster than the slow pace of DnaK-mediated reactivation (Fig.S3B). 

We conclude thus that the KJE+ATP chaperone system is also able to transduce the 

energy of ATP into the non-equilibrium stabilisation of the native state of both 

Luciferase and MDH at 37°C, even if, in the case of MDH, less efficiently than 

GroELS. 

 Together, these results suggest that distinct ATPase chaperones may act 

individually as well as cooperatively at the effective injection of energy from ATP to 

artificially maintain labile proteins in their native states under stressful conditions 

where they spontaneously tend to misfold and aggregate, likely because aggregates 

represent the true free-energy minimum and are thus thermodynamically most 

stable5,6. In the cell, the conformational landscape could thus be modified even more 

dramatically than by GroELS alone, by raising the apparent free-energy, not only of 

misfolded monomeric conformers, as in Fig.5B, but also of already formed stable 

aggregates, thereby further extending the conditions in which labile proteins can 

remain mostly native. 
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Conclusions 

Our parallel experimental and theoretical findings have revealed that, at its most 

fundamental level, the role of ATPase chaperones such as GroEL, DnaK and ClpB, is 

to transduce the energy liberated by the ATPase cycle into an enhanced non-

equilibrium steady-state stability of otherwise labile native protein substrates, even 

under conditions where their native states are unstable. In this respect, the function of 

chaperones is more deeply rooted in non-equilibrium thermodynamics than in the 

molecular aspects of the ATP-driven conformational transitions in the chaperone 

complexes, that we have neglected here in favour of a simplified model in which we 

considered only the constraints imposed by thermodynamics, that mandatorily apply 

independently of the level of simplification of the chaperone cycle. Thus, at the price 

of missing part of the molecular accuracy characterizing more complex simulation 

schemes63,64, our simpler strategy provided a general rigorous thermodynamic 

perspective that broadly applies to many ATPase chaperones. 

In a cellular perspective, we may thus propose that ATPase chaperones in 

general supply cells with an energy consuming mechanism to withstand prolonged 

destabilizing stresses, such as the diurnal cycle of temperatures, by maintaining the 

most labile members of the proteome in a soluble functional state until the 

environmental stress is over. Chaperones might thus increase the freedom of 

evolution to accumulate functionally favourable but destabilizing mutations65, by 

artificially maintaining mutated proteins active and functional in the cell, against their 

thermodynamic tendency to spontaneously denature. This view is compatible with 

directed evolution experiments that have demonstrated that, when chaperones are 
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over-expressed, enzymes can evolve faster, remain active and soluble even when 

challenged by slightly destabilizing mutations66-69.  

Our observation with labile proteins, together with the emerging evidence that 

ATP-dependent mechanisms can also actively maintain RNA molecules in steady-

state conformations that are different from the ones they seek to adopt at 

equilibrium70-72, lends further support to the general concept of the cytoplasm being an 

“active milieu”73,74. Indeed, when ATP becomes limiting, essential biological 

functions, such as the maintaining of steep ion gradients across membranes, collapse 

and lead to cell death. Thus, energy-consuming nanomachines need to be constantly 

at work to maintain cells in a metabolically active state. In particular, stress-labile 

macromolecules, such as DNA, RNA and proteins damaged by exposures to various 

physical and chemical stresses, need to be constantly proofread by enzymes, such as 

topoisomerases, helicases, RNA chaperones and now, as we show, also by protein 

chaperones, which, at an energy cost, can repair and convert them to their active, 

functional conformations. These ATP-fuelled enzymes can thus remodel the free-

energy landscape of biological macromolecules, which consequently become less 

limited by the dictates of equilibrium thermodynamics. This calls for questioning the 

correlation between the behaviour of marginally stable biological macromolecules 

observed in vitro, as compared to their effective behaviour in the highly crowed, 

chaperone-rich environment of the cell. From the perspective of the landscape theory 

of protein folding, which posits that the native state sits at the bottom of a funnel-

shaped free-energy basin2,3, our results suggest that the presence of other minima, 

possibly lower in energy than the native state, is not going to affect the correct the 

folding as long as the corresponding conformations can be processed by chaperones. 
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The present results are part of a growing recognition that all aspects of life, 

from its origins billions of years ago to its present most intimate workings, depend on 

a constant influx and subsequent dissipation of energy. Only the accounting of this 

energy budget, and of the way it is used to offset very complex biological systems 

away from their natural tendency to reach thermodynamic equilibrium, can lead to a 

correct quantitative description of biological systems. As Erwin Schrödinger stated, 

“Living matter evades the decay to equilibrium”75. Chaperones represent a vivid 

incarnation of Schrödinger’s fundamental insight. 
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Materials and Methods 

Proteins:  

GroEL, GroES were purified according to Torok et al.76. DnaK, DnaJ were purified as 

according to Gur et al.77. GrpE was a gift from H.-J. Schönfeld, F. Hoffmann-La 

Roche, Basel, Switzerland. ClpB was purified according to Woo et al.78. Firefly 

luciferase (Luc) was purified and assayed in as described in Sharma et al.42. 

Mitochondrial malate dehydrogenase (MDH) was from pig heart mitochondria 

(Boehringer Mannheim) and assayed according to Diamant et al.79. Citrate synthase 

(CS) was from Sigma and assayed according to Buchner et al.36.  

Chaperone assays: 

The chaperone-refolding buffer was 100 mM Tris 7.5, 150 mM KCl, 20 mM MgCl2, 

10 mM Dithiothreitol. Unless mentioned otherwise, all chaperone assays used 4 mM 

ATP 5 mM 2-phosphoenolpyruvate and pyruvate kinase (Sigma) to regenerate the 

ATP. 

Concentrations of chaperones, cochaperones and reporter protein: Unless mentioned 

otherwise, all protein concentrations were expressed as protomers. Hence, an assay 

containing 1 µM GroEL and 1 µM GroES, contained 71.4 nM of tetradecameric 

GroEL14 complexes, corresponding to 142.8 nM of active heptameric catalytic sites 

(GroEL7 cavities), which could be transiently covered by as many (142.8 nM) 

functional GroES7 heptamers during the ATP-driven catalytic cycle. 

Chaperone stoichiometries in assays: GroEL and GroES protomers were always 

equimolar, as in bacteria and mitochondria15. For DnaK, DnaJ, GrpE and ClpB molar 

ratios were 5:1:1:2 
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Native reporter enzymes (MDH, CS, Luc) from stocks were diluted to the indicated 

final concentrations (0.25-2.5 µM) and incubated in thin-walled PCR tubes in a 

thermocycler at constant indicated temperatures, in the presence of the chaperones 

and ATP, typically for about two hours, but in the experiment in Fig.4, for up to 8 

hours. At indicated times, aliquots were assayed in a spectrophotometer or a 

luminometer. Linear enzymatic rates were converted into molar concentrations (nM) 

of natively refolded chaperone products as explained below. 

For experiments following the native refolding of pre-unfolded reporter enzymes, a 

40-fold excess of MDH reporter enzyme was preincubated in 7 M urea and 20 mM 

DTT for 5 min at 25oC. Typically, 2 µl were then flush-diluted and mixed into 78 µl 

of pre-warmed refolding buffer containing chaperones and ATP, as indicated, and 

further incubated at the indicated temperatures. In contrast to Guanidium HCl that 

affects GroEL-GroES activity, the 175 mM traces of Urea were inconsequential for 

the chaperonin assay80. 

Calculation of the scale for graphs where enzymatic activity is reported: 

For a given total concentration [E] of the enzyme E in solution, (E being MDH, citrate 

synthase or luciferase), the maximal activity measured throughout the whole set of 

experiments represented in a figure is considered to represent [E], and all other 

activities are thus proportionally scaled when expressed as a concentration.  
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Figure captions 
 
 
Figure 1. Free energy landscape of MDH at 37°C and schematic action of 

chaperones. 

The free-energy landscape of MDH at 37°C is represented by the native (active) 

dimer (ND), the native (inactive) monomer (NM), a less structured intermediate (I) 

which is higher in free energy and a misfolded state (M), which is the lowest in free-

energy. Non-native conformations can further lead to the irreversible formation of 

aggregates (A), although likely at much slower rates. The spontaneous conversion 

reactions between the different states are represented with black arrows (dashed 

arrows for aggregation to highlight the different timescale of this process). 

Chaperones act on the non-native ensemble by associating to and dissociating from 

misfolded (CM) and intermediate (CI) conformations. While bound to chaperones, 

misfolded and intermediate conformations can interconvert into each other. Reactions 

driven by chaperones are represented by red arrows. The energy driving the 

chaperone action is graphically indicated with the yellow-to-red closed-circle arrow. 

 

Figure 2. GroELS recovers and then maintain MDH activity in denaturing 

conditions, in a stringently ATP-dependent, non-equilibrium, reaction. 

A) Time course of the activity of MDH (0.5 µM) at 37°C in the absence (black 

circles) and presence (red circles) of GroEL (3.5 µM) and GroES (3.5 µM) and ATP 

regeneration system (see Methods). In the absence of GroELS MDH spontaneously 

lost activity at an apparent rate of about 0.007 min-1. GroELS was supplemented at 

different t=0’, 15’, 30’, 45’ and 70’ (see Methods for the choice of the scale on the y-
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axis; the same procedure applies to all graphs where activity is expressed as a 

concentration). B) Final MDH fractions (at 130’) for GroELS addition at different 

times from the experiments in Fig.1A. White bars represent the concentration of 

active MDH at the time of GroELS addition, whereas the recovered fractions (blue 

bars) are the differences between the active protein concentrations at 130’ and at the 

time of GroELS addition. The concentration of proteins that cannot be recovered by 

GroELS is represented with red bars. C) GroELS (3.5 µM) and ATP regeneration 

system were added to 0.25 µM MDH at 37°C (denaturing conditions) at t=0’ (red 

filled circles) or at t=60’ (red empty circles). Apyrase was added at t=105’. D) 

Refolding of urea-pre-denatured 0.5 µM MDH at 37°C in the initial presence of 

different GroELS concentrations (as indicated) and ATP regeneration system. 

Apyrase was added at t=60’. E) Refolding of urea-pre-denatured 0.5 µM MDH at 

37°C in the initial presence of GroELS (3.5 µM), 400 µM ATP and various 

concentrations of ADP (as indicated). As predicted by the correct accounting of the 

energy available for the chaperone action (see main text), increasing concentrations of 

ADP progressively inhibit the reaction. 

 

Figure 3. Results from the model. 

The panels here are in one-to-one correspondence to the panels in Fig.2, and have 

been obtained for a single set of intrinsic parameters (the rates of the reactions). 

Concentrations of chaperones and substrates are the same as in the corresponding 

experiments. A) and B) Model results for the same setups as in Figs.2A and 2B 

respectively. C) Results from the model for the same conditions as in Fig.1C. D) 

Results from the model for the same conditions as in Fig.2D. E) Results from the 
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model for the same conditions as in Fig.2E (see SI for details on the modelling of 

ATP consumption).  

 

Figure 4. ATP-driven catalytic action of substoichiometric amounts of GroELS 

on MDH at 37°C. 

A) Activity of 2.5 µM MDH after incubation for 8 hours in the presence of increasing 

amounts of GroEL (and equimolar GroES) at 25°C (black circles) and at 37°C in the 

presence (full red squares) and absence (empty red squares) of ATP and regeneration 

system. The ratio of the concentration of GroEL7 rings (considered as the minimal 

active unit of GroEL) to the concentration of MDH protomers is given. Inset) The 

minimal number of non-native MDH protomers that should be rescued by each 

GroEL7 ring to explain the observed activity after 8h. B) results of the model in the 

same conditions as in panel A. Inset) The minimal number of non-native MDH 

protomers that should be rescued by each GroEL7 ring in order to explain the 

observed activity after 8h (red squares) is similar to the experimental one (~15 

protomers per GroEL7). The model gives also access to the effective number of MDH 

protomers that had to be processed by each ring (blue squares), which is more than 

one order of magnitude larger (~300 per GroEL7 at EC50), highlighting the iterative, 

catalytic action of GroELS on its substrates. 

 
 
Figure 5. GroELS turn the energy of ATP into a non-equilibrium stabilisation of 

the native state of MDH. 

A) The effective free-energy difference between the native and non-native two 

ensembles DGeff
N,nN = -kBT ln{[N]/[nN]} (as defined in the main text) as a function of  
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DGATP, from equilibrium conditions (DGATP=0) to conditions exceeding the ones that, 

in the model, reproduce the experiments. DGeff
N,nN is positive at equilibrium at 37°C, 

attesting for the thermodynamic instability of the native ensemble. The native 

ensemble of MDH is stabilized as progressively more energy is injected into the 

system. B) The action of GroELS on the non-native ensemble in non-equilibrium 

results can be visualized as a modification of the free-energy landscape of non-native 

conformations, whereby misfolded proteins have a much higher free-energy than 

native conformations. C) The relevance of the action of GroELS as a function of the 

equilibrium stability of their substrates (DGeq
N,nN). When DGeq

N,nN<0, substrates benefit 

very little from the help of GroELS because they are already stable. As the 

equilibrium stability of the native state is challenged (increasing DGeq
N,nN), energy 

injection in the system helps maintaining the native state populated against its 

thermodynamic tendency (the orange region represents the net gain of native proteins 

thanks to chaperones). Extreme instability resulting from strong stresses or highly 

deleterious mutations cannot be compensated by chaperones (blue region), which can 

anyway avoid protein aggregation by binding the non-native conformations. Non-

native but unbound, and thus aggregation-prone conformations thus represent a minor 

part of the solution (green region). 

  

  



	 28	

 

 
Figure 1  

NATIVE DIMER 
(ND)

NATIVE
MONOMER

(NM)

INTERMEDIATE
 (I)

MISFOLDED
        (M)

CHAPERONE-BOUND
MISFOLDED  (CM)

CHAPERONE-BOUND
INTERMEDIATE  (CI)

AGGREGATE (A)

N
O

N
-E

Q
U

IL
IB

R
IU

M
 R

EA
C

TI
O

N
S

FR
EE

 E
N

ER
G

Y

kMI
C

k IM
C

k IM

kMI

kI
off

kM
off

kI
on [C]

kM
on [C]

kAggr

kAggr

kNI

k IN kDN

kND

ΔGATP



	 29	

 

 

Figure 2 

 

  

No LS
LS @ t=0‘, 15‘, 30‘, 45‘, 70‘
’

Native
Non-recovarable
Recovered

B

No LS

LS @ t=0’
LS @ t=60’

83.3 nM LS7
41.7 nM LS7
20.8 nM LS7

C

D

No LS

E
no ATP
0 μM ADP 
200 μM ADP 
400 μM ADP 
800 μM ADP 
1600 μM ADP 

A

Apyrase
addition

Apyrase
addition



	 30	

 
 
Figure 3  

No LS
LS at t=0‘, 15‘, 30‘, 45‘, 70‘

Native
Aggregated

Recovered
Native Monomer

N
on

 re
co

ve
ra

bl
e

fra
ct

io
n

No LS

LS @ t=0’
LS @ t=60’

no ATP
M ADP

μM ADP
μM ADP
μM ADP

1600 μM ADP

83.3 nM LS7
41.7 nM LS7
20.8 nM LS7
No LS

Time (min)

Time (min)

Time (min)

Time (min)

Time (min)

Apyrase
addition

Apyrase
addition

μ

800
400
200

0

A

B

C

D

E



	 31	

 

 

Figure 4 
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Figure 5  
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