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A bstract : An algebraic approach is developed to dciive space groups using 
4 x 4  Seitz matrices for the crystal classes mni2, 222 and mmm in the oitho- 
rhombic system. The advantage of the present method is that it is relatively 
sim ple and can be adapted to inliodnce space groups to beginners. One of the 
advantages of the present method is that it admits a geom etrical visualization of 
the symmetry elements of space grouir. The method can easily be extended to 
other crystal classes in a straight forward way.
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1. Introduction
Space groups characterize the symmetry of the structure of crystals. By means of 
the symmetry operations determined by the space group, the region is multiplied 
infinitely and fill space completely. The idea behind the derivation of space group 
is based on the connection between space and point group or crystal class. For 
any crystal class, one considers in succession the set of symmetry elements in that 
class with translational subgroup (one of the Bravais lattices) which are possible 
in the system to which the given crystal class is related. As a result, one obtains 
the space groups related to that symmetry class.

Space groups are differentiated into two types. In the first type, an operation 
of point group is combined with the translation of the Bravais lattice. The 
resulting space group is called the symmorphic space group. The second type of 
space group arises by replacing some or all rotation axes and reflection planes of 
symmetry by screw axes and glide reflection planes, respectively. A screw 
rotation operation is composed of an operation which consists of rotation about 
an axis of order 2, 3, 4 or 6 with a suitable movement along the direction of
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that axis. Similarly, a glide reflection operation consists of reflection in a plane 
together with a suitable movement in the plane (for details see International Tables 
for X-ray Crystallography Vol. A, 1983). A space group of this type is said to 
be non-symmorphic space group ; there are 73 syramorphic space groups and 157 
non-symmorphic space groups, making a total of 230 space groups.

A space group is composed of a set of symmetry operations in a three 
dimensional space. They are expressed by 4 x 4  Seitz matrices or augmented 
matrices (Seitz 1936, Bradley and Cracknell 1972, Wondratschek 1983) as

(5..v) =

5ia a •5̂1

S 21 ‘S'aa 5a

Ssi iaa ■S-aa ■''a

0 0 0 1

(I)

where s is the 3 x 3 matrix representing the rotation part and the column matrix 
s the translation part. The form of the matrix depends on the choice of basis 
vectors and j  also depends on the choice of the origin. The Seitz matrix or the 
space group operator transforms a point r to another point r'. The product of 
two space group operators {.S' I and \Q 1 g\ is another space group operator

\S \s \ . \Q \g \  = \SQ\ Sq+s]. (2)^ ^ r-'

The operator inverse to a space group {5' | is

{A’ l (3)

and the product of the operators {i" | s} and |5 1 s}“  ̂ is equal to {/ | 0} which is 
the identity element of the space group. The Seitz matrices form a group in 
mathematical .sense, and the collection of all operators of the type {/| r} form a 
subgroup, called the translation subgroup of the space group (Wondratschek 1983).

2. The 14 Bravais lattices and 32 point groups

A lattice may be considered as a three-dimensional repetition of a paralleiopiped, 
called the unit cell, formed by the three basis vectors. It is possible without 
violating lattice condition, to centre faces or body of the unit cell. These lattices 
with centred unit cells are called multiply-primitive lattices, whereas lattices with 
unit cells having eight lattice points on the eight corners are called primitive. 
Bravais showed that there are fourteen possible lattice types called the Bravais 
lattices.
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A point group is a group of symmetry operations which act at a point 0 (origin) 

and therefore keep 0 fixed and leave invariant all distances and angles in 3-dimen­
sional Euclidean space. The symmetry operations are rotations and rotations-inver> 
sion about axes through 0 or their products. Such products also include reflection 
planes through 0. There are 32 different crystallographic point groups ; these 32 
point groups or alternatively 32 crystal classes can be classified into seven crystal 
systems or syngonies according to the order of the principal axis. There are five 
crystal systems for point groups with single principal axis of order 1, 2, 3, 4 or 6

Table 1. The 32 crystal classes and 14 B ravais la ttices.

C rystal classes 
or p o in t 
groups

Bravais
la ttice

Sym m etry 
of Bravais 

la ttice
Crystal
system

Axes and 
u n it cell

l . I P 1 T ric lin ic

2, m, 2/m P . C 2/m MonocHnic

222. mm2 
mmm

P .C  (A .B ) 
l . F

mmm O rthorhom bic ai4hj4c

4 ,1. 4/ni 
422, 4mni, 
42m, 4/ninini

P . / 4/in mm T etragonal a — h ^ c

3. 3
32, 3m. 3m

R 3m Trigonal a ^ h ^ c

6, 6, 6/m 
622. 6mm 
62m. 6/mmra

P 6/m mm Hexagonal a ^ b ^ c
•C-P«=90’
7«120^

23, m3 
432, i3ni 
m3m

P,  1, F m3m Cubic a

namely the triclinic, monoclinic, trigonal, tetragonal and hexagonal, respectively. 
There are two more systems, the orthorhombic system which has three mutually 
perpendicular axes of order 2, and the cubic system which has four triad axes 
directed towards the vertices of a regular tetrahedron. The 14 Bravais lattices, 
32 crystal classes and 7 crystal systems have been listed in Table 1.

In the following, three theorems are presented which are useful in the deriva­
tion of space groups.

Theorem 1:
A two-fold rotation about an axis A followed by a translation perpendicular to the 
axis, is equivalent to a two-fold rotation in the same sense at half the translation.
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Let the two-fold rotation be at A, parallel to c axis

2  ̂=

47

0 0 0 ^

0 T 0 0

0 0 1 0

0 0 0 1 _

and lattice translation be chosen along a axis

1 0 0 tl

0 1 0 0

0 0 1 0

<.0 0 0 1
Then

^  1 0 0 tl

0 1 0 0

0 0 1 0

0 0 0 1 ^
It is a two-fold rotation at (Figure 1) which is located at half the lattice 
translation from A. In a similar way, two-fold axes of symmetry are obtained at 
A^ and A^ as a result of translations t ,  and t i+ ta . respectively.

Figure 1. The com bination of diad and perpendicular translation .

Theorem 2 :
The combination of two perpendicular glides results in a two-fold rotation (or two 
fold screw). The position and its being a pure rotation or screw depend on the 
column matrix associated with the glides.
7



Let the two glides be
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■" I 0 0 r 1 0 0

0 1 0 0 0 I 0 i
c =

0 0 1 1
and =

0 0 1 0

_ o 0 0 1 - „ 0 0 0 1 ^
The combination of two glides gives

c.a —

^ I 0 0 0 ^

0 1 0 i

0 0 1 i

0 0 0 1 ^

which is a screw diad parallel to c axis, passing through a point x= 0 , ĵ  = i. 

Theorem 3 s
A combination of C centred lattice and a diad axis along [001] results in a diad 
axis parallel to [001] direction, whilst diad axis parallel to [100] and [010] result 
in screw diad.

Let the Seitz matrix for Ccentring be

^ 1 0 0

0 1 0

0 0 1 0

0 0 0 1 _
and that for diads along [001], [010] and [100] directions be

2 ,=

2. =

0 0 o “

0 I 0 0

0 0 1 0

Lo 0 0 1 -

^ 1 0 0 0 '

0 I 0 0

0 0 I 0

2„ =

I 0 0 0

0 1 0 0

0 0 I 0

0 0 0 1
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then

C 2 ,=

■" I 0 0
•N

J

0 i 0 i

0 0 1 0

^ 0 0 0 1^

=2, parallel to [001J passing through
=̂=1 , y=̂ i

C2,

‘ 1

0

0

0 0 

1 0 

0 1

1 "v

1

C.2* =

• I 

0 

0

0

0 0 

0 0 

T 0 

0 I

0 0

0

1

15i
1T

= 2 i, parallel to [010] passing through
x^i, r=0

1

=2i, parallel to [100] passing through 
z=o

The space groups have been considered by many authors at different levels of 
complexity (Belov 1957, Buerger 1956, Federov 1891, Schonflies 1923, Sohncke 
1879, Seitz 1935a, 1935b. Jensen 1973, Phillips 1971, Weyl 1952, Shubnikov and 
Koptsik 1974 and Zachariasen 1967). In this paper, an algebraic approach is 
employed using 4 x 4  augmented matrices, which describe the symmetry of space 
group in three dimensions. One advantage of this treatment is that one can 
visualize the effect of two or more successive applications of symmetry operations. 
The method is relatively simple to apply in the derivation of space groups.

3. Derivation of space groups in crystal class mm2 
Space groups based on P-lattice :
The first symbol W  in the crystal class mm2 is the reflection plane 100 and may 
be represented in space group by any one of the symbols wj«, Cx or /;«. Simi­
larly second ‘wi’ 010 plane may be any one of the symbols Oy, Cy or /;*. 
According to Theorem 2, the combination of any of the two symmetry elements, 
taken one from the set 1 and the other from the set 2, gives rise to a diad axis or 
a diad screw axis depending on if there is a resultant one lattice translation or half 
lattice translation in the direction of c axis. Therefore, there are sixteen space 
group symbols based on primitive lattice. They are Pmm2, Pma2, Pmc2i, Pmn2i,



Pbm2, Pba2, Pbc2i, P b n 2 i,  P cm 2 i ,  Pca2i, Pcc2, Pcn2, Pnm2i, Pna2i, Pnc2 and 
Pnn2> Interchange of a and b axes (equivalent ones) will show the equivalence of 
the symbols, Pmc2i=Pcm2i, Pmn2i=Pnm2i, Pbc2i=Pca2i, Pma2=Pbm2, Pbn2x 
=Pna2i and Pcn2=Pnc2. Hence the unique space groups are ten as Pmm2, 
Pma2, Pmc2i, Pmn2x, Pca2x, Pcc2, Pcn2, Pba2, Pbn2i and Pnn2.

Space groups based on C- and A-centred lattices :
The effect of centring on mirrors and glider has been studied in Table 2. Using 
the results, we can show the equivalence of the following space groups :

Table 2. Effect of centring in reflection and glide planes.
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mx b x Cx fix my ay Cy f l y fflg at b.

A ^bg = tHx Cy my ay bz fit t f t g ag

B ng t r t x bx = n y = Cy ^ay »m y a. m. bt

C n%x nx Cx ay my f l y Cy - b y -fW,

I bx f t t x fly S ay my b . az VI,

Extra planes of Bynimetry created due to centring are given inside the table. sign tneana 
that the planes of symmetry created are coincident wiih the oiiginal plane. Others are 
shifted from the original one-s.

Pmm2 ' Pmc2j
Pba2
Pbm2 . =Cmm2 Pbn2i

Pbc2i
Pma2 , Pmn2j
Pcm2i Pcc2 ’
Pca2x \ 
Pnm2x 1̂ =Ccm2i Pnc2

Pcn2
Pna2i J Pnn2,

=Cmc2i

► =Ccc2

Interchange of a and b axes shows that Cmc2i=Ccm2i. Thus there are three 
space groups Cmm2, Cmc2i and Ccc2 in C-centred lattice.

Referring to Table 2, we have for A-centring

=Ama2

5Abm2

Four space groups Amm2, Ama2, Aba2 and Abro2 are possible ones based on 
An^ntred lattice.

Pmm2 'I Pma2
Pnn2
Pna2x

Pnm2x J Pmn2x
Pba2 \ Pbm2

Pcc2
Pcm2x

Pca2x Pbc2x
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Space groups based on I-centred lattice : 
Referring to Table 2, we have

Pmm2 Pcc2
Pba2 ^ = iba2 
Pca2i ^

Pmn2i Pbc2i
Pma2 Pcm2i'l
Pnc2 —imoo Pmc2i -*™a2
Pna2i Pbn2x,

Interchange between a and b makes the symbols Ima2 and Ibm2 as equivalent. 
Thus distinct space groups in this case are Imm2 Ima2 and Iba2.

Space groups based on F-centred lattice :
Referring to Table 2, in this case, we conclude that only those arrangements where 
100 planes and 010 planes are of the same kind are possible. Fmm2 have glide 
planes, which are at the same time c and a (or b) planes, parallel to the reflection 
planes. These reflection planes are also n planes. Thus one distinct space group 
namely Fram2 is possible in this way. Also in the F-centred lattice if the plane 
100 had glide of ith  of the diagonal, then reflection in the second plane 010 would 
turn the gliding onto the other diagonal. Thus in F-lattice there exists a new space 
group as Fdd2.

4. Oerivation of space groups in crystal class 222

We study the general behaviour of two screw diads. Let the two screw diads 
along X and y  directions be

2a, Sx

^ 1 0 0

0 I 0 L x

0 0 i L'x

0 0 0 1 J

2y, 5 ,=

' I 0 0 L x

0 1 0 Sx

0 0 I L'x

0 0 1

where Sx and s . are zero for rotation and |  for screw. The combination of 2a, Sx 

and 2a, is
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I  0 0

0 1 0  

0 0 1

JEfg

x 'x - i ;
12„

_ 0  0 0 : 1 _ 
which is a screw or pure diad depending on L'% and £g

Space groups based on primitive lattice.
We may classify the possible combinations as there may be rotation diad axes
(i) in all three directions, (ii) in two directions, (iii) in one or (iv) in none ; 
screw axes being present parallel to any of the directions x, y  and z not parallelled 
by the rotation axes. Since x, y  and z axes have the same environments, 
interchange among the axes represents only ditferent orientation of the space group. 
We thus get the four distinct space groups in this class, viz. P222, P222i, P2x2i2 
and P2x2x2x*

Space groups based on C-centred lattice :
Referring to Theorem 3, C-centred lattice generates screw diad axes parallel to 
any rotation diad axes postulated in the [100] and [010] directions but only 
rotation diad axes in the [001] direction. It follows that C222=C2i2x2 and 
C222i=C2x2x2i. Thus distinct space groups based on C-centred lattice are C222 
and C222x.

Space groups based on f-centred lattice i
The transformations of I  space lattice result in the space group 1222 possessing 
screw diad axes, parallel to rotation diad axes. These are mutually intersecting 
diad and screw diad axes. There is a possibility of another space group based on 
/-centred lattice in which diad axes and screw diad axes are of non-intersecting 
type. It is denoted by a space group symbol I2x2x2x. Thus, there are two unique 
space groups viz. 1222 and I2x2x2x>

Space groups based on F-centred lattice:
As a result of simultaneous centring A-, B- and C-faces, diad axes result in 
screw diad axes present in all three directions. Hence F222, F222x, F2x2i2 and 
F2x2x2x are equivalent. Thus F222 is the only possible space group.

5. Derivatimi of space groups in crystal class mmm

In the space groups isomorphous with the crystal class mmm and based on 
primitive lattice, planes parallel to 100 may be m planes, b planes, c planes



or n planes ; those parallel to OlQ may be m, a, c or n and those parallel to 001 
may be m, a, bo i n planes. Thus in total sixty-four combinations can be derived.

Derivation o f space groups based on primitive lattice :
The environment of a ,b  and c axes are equivalent. By interchange of a, b and c 
axes, we can see equivalence of few symbols. For example, in the space group 
Pmma, when x and z are interchanged, Pnima ~  Panm. Thus a total of sixteen 
unique space groups are Pmmm, Pmma, Pmmn, Pmna, Pbam, Pban, Pbcm, Pbca, 
Pbcn, Pccm, Pcca Pccn, Pnma, Pnnm, Pnna and Pnnn. The space groups Pmmm 
and Pnnn have the same symbol in six orientation of axes.

6. Derivation of space groups  ̂based on C-centred, I-centred and F-centred 
lattices

Referring to Table 2, we note that for C-lattice, m planes parallel to 100 plane 
are interleaved by b planes or c planes in this direction are interleaved by « planes. 
The m planes parallel to 010 plane results in a planes whereas c planes are 
accompanied by n planes. The m planes parallel to 001 are n planes at the same 
time or a planes will also be b planes. With these considerations in view, there 
are six new space groups—Cmmm, Cmma, Cmcm (=Ccmm), Cmca (=Ccma), Ceem 
and Ccca.

For /-centred lattice, m planes parallel to any of the pinacoids result in 
n planes. Glide planes a ,b o x c  repeats in sets of two kinds. The eight symbols 
which we can derive will further reduce in number with /  space lattice. The new 
space groups are —Immm, Imma, Imaa and ibea.

For / ’-centred lattice we note that all possible combinations in any direction 
.show a mirror and n glide plane. The distribution of symmetry elements has 
similar pattern parallel to any of the pinacoids. Thus we have only one distinct 
space group-Fmmm. Also if the plane 100 had a glide, then a reflection in the 
plane 010 and 001 would turn glide onto the other diagonals. The space group 
has a symbol Fddd. Thus there are two distinct space groups -  Fmmm and Fddd.

7. Conclusions
All space groups in orthorhombic system have been derived. There are 22 space 
groups in mm2, 9 in 222 and 28 in mmm. There are 59 groups in orthorhombic 
system. Using the same procedure, space groups in remaining crystal classes can 
also be derived.
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