X-ray diffraction study on carnauba wax thermoelectrets prepared with different cooling rates

Samita De, N R. Pan and P e Bhattacilaryia
Department of 1'hysics, Unuerssity (onllege of Sotence, ('alcutha-700009

(Received 19 April 1977)

Abstract

Ormentation paramotess of carmabla wax fhermoelectocts propaned with $3.3 \mathrm{kv} / \mathrm{cm}$ fiold strenglh with t,wo ditterent eooling mides hity been determined by Xeray diffiaction tochnaque. It has been concluded that the orentabions ano not solely nesponsible for the dipolefiold interactions

1 InTRODUCYUON

X-ray diftaction studios on electrets show prefored oriontation in them (bwots

 a thermoedectret with different coolng ronditions.

- Lixpthimental Det'ald

Thermoedecheds fom molten purfied peme yedlow can hatuba wax have beron

 brask fing of 2.4 em diameter is sumbaly phaced upon the ebonite ting 'The
 1.Wet they forms a condersor with a guard ring The condensor with was is placed inside an oven whose temperature can be controlled. 'The wen temperature is rased to $82-10 \cdot 5^{\circ} \mathrm{C}$ and kept at that temperature for about Juall an hous when a field of $3.3 \mathrm{kv} / \mathrm{em}$ is applied At this stage the oven temperature is allowed to fall at a desmed rate. The efectere fied is suiteded off when the wax

 is mounted on a carrier in fiont of the collimator of a flat plate camena so that the
forming electere field diredton lying along the vertical is perpendicular to the meident X-rays. Diffraction photographs for different sample regions along a how contrally situated and porpendocular to the fiedd drectuon bas been taken by shing the carrier horizontally.

3. Results and Interpheytations

An exammation of the diffraction photographs fom samples reveals the lollowing chanactorstic features.
(a) The number of maxma on (110) ring is four while that for (200) the number is 1 wo (figure 1).

 ;3:3 KV/('m and walh eooling rutos $0 \cdot 8^{\circ} \mathrm{C} / 1 \mathrm{~mm}$ (Lhotos mankad a) and $0 \cdot 27^{\circ} \mathrm{C} / \mathrm{mm}$
 Intogers donoto distances in man from one edgo of the sample undir mentogation,
 of maxima on (110) and (200) and (200) rings,
(b) Two (200) maxima always lio diametrically opposite to each other. Howover the anglo between the external field direction on the photographe plate with the diameter of the (200) ring joming the two maxmm are differont, for difforent regions of the samples under mrestigations.
(c) With reasonable accuracy a single axis of symmetry can always bo drawn (through the common centre of the rings) about which each pair of (110) maxima. and (200) maxima aro symmotrically sthated. However m gencral the angle between the axis of symmotry and one pair of (110) maxima shightly differ from that for the other pair. This indicutes that it is a fibre pattern orientation about a single axis tilted by an angle not equal to 90 degrees with the incident X-ray beam.
(d) Assuming tho orionting eaystallites to bo orthorhombere (Muller 1928, Pan 1976) whose axial length c is much larger than the other two axial lengths a and b, the normal to the (200) planes (a axis) makes an angle $\lambda \sim \tan ^{-1} a / b$ with the normal to (110) planes The value of χ can easily be computed from Bragg angles and it has been found that x is nemrly equal to the angle between (110) and (200) maxma subtended at the centre of the rimgs (table $1 a \mathbb{N}$ b, column $2,3 \& 9$) The differonce betwoen the Biagg angles for (110) and (200) planes is about one degree for $\mathrm{Cu} \boldsymbol{K}_{\boldsymbol{\alpha}}$
(c) The angle betwoon the symmotry axis and the observed (200) maxima is $\pi / 2$ in all the cases and oach maxima is associated with apprectable angular dispersion. Therofore we conclude that each maxma observed on (200) ring is a superimposition of two very close maxima.

The incident, X-ray beam derection is ulways normal to the thickness of the sample i.e. X-rays aro normal to the diruction of the appled olectre field Let us choose a coordmate system in which the pomet at which the meident X-ray beam impongos upon the samplo as the orgin, the uegative doreetion of the medent X-rays is the X-axis, a lme passing through the origm and parallel to the axis of symmotry on the duffraction patiorn is the E-axis (the plate being normal to the incmdent X-rays) Therefore for obvious reasons the orientation axis lees in the $X Z$ plano and let us suppose the it makos an angle ψ with the Z axis lying towards positive X-axis The normals to (110) and (200) planes of the orienting crystallites will be the gonerating lmes of two right crecular coaxial cones about the orentation axis These comes have their semiappex angle ρ_{110} and ρ_{200} respectively The normals to (110) and (200) planes which are responsible for producing (110) and (200) rings will also constitute two coaxial right circular conos about, X-axis with somiapex angle $\pi / 2-\theta_{110}$ and $\pi / 2-\theta_{200}$ respectivoly where θ_{110} and θ_{200} aro their respoctive Bragg angles.. If δ_{1} and δ_{1}^{\prime} be the angular positions of each pair of (110) maxima on the plate with respect to the line of symmetry and δ_{2} be the same for (200) maxima, the normals to the

330 Samita De, N. R. Pan and P. C. Bhattacharyya

(110) planos producing maxima in the upper half of the plate will have direction cosines

$$
\begin{align*}
l_{1} & =\operatorname{Sin} \theta_{110} \\
m_{1} & = \pm \operatorname{Cos} \theta_{110} \operatorname{Sin} \delta_{1} \tag{1}\\
n_{1} & =\operatorname{Cos} \theta_{110} \operatorname{Cos} \delta_{1}
\end{align*}
$$

where - 1 and - sign indicates for the maxima lying in the first or second quadrant of the photographic plate For two (110) maxima lying in the lower half we have the direction cosines

$$
l_{1}^{\prime}=\operatorname{Sin} \theta_{110}, m_{1}^{\prime}= \pm \operatorname{Cos} \theta_{110} \operatorname{Sin} \delta_{1}^{\prime}, n_{1}^{\prime}=-\operatorname{Cos} \theta_{110} \operatorname{Cos} \delta_{1}^{\prime}
$$

If l_{0}, m_{0}, n_{0} be the direction cosines of the orientation axis wo have

$$
\begin{equation*}
l_{0}=\operatorname{Sin} \psi, \quad m_{0}=0, \quad n_{0}=\operatorname{Cos} \psi \tag{2}
\end{equation*}
$$

And following Glocker (1936) ono obtains

$$
\begin{align*}
\operatorname{Cos} \rho_{110} & =\operatorname{Sin} \theta \operatorname{Sin} \psi \cdot+\operatorname{Cos} \theta_{110} \operatorname{Cos} \psi \operatorname{Cos} \delta_{1} \\
& =-\operatorname{Sin} \theta_{110} \operatorname{Sin} \psi r+\operatorname{Cos} \theta_{110} \operatorname{Cos} \psi \operatorname{Cos} \delta_{1}^{\prime} . \tag{3}
\end{align*}
$$

Hence

$$
\begin{equation*}
\tan y=\frac{\operatorname{Cos} \delta_{1}^{\prime}-\operatorname{Cos} \delta_{1}}{2 \tan \theta_{110}} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Cos} \rho_{200}=\operatorname{Sin} \theta_{200} \operatorname{Sin} y r \cdot+\operatorname{Cos} \theta_{200} \operatorname{Cos} \psi r \operatorname{Cos} \delta_{2} . \tag{5}
\end{equation*}
$$

To corelate the orientation paramotors with the erystal axes and the cexternal olectric field cirroction an analytical method has been developed as described hore. If l_{E}, m_{E} and n_{E} be the direction cosmes of the clectric field we have

$$
\begin{equation*}
l_{L^{\prime}}=0, \quad m_{E}=\operatorname{Sin} \epsilon \quad \text { and } \quad n_{E}=\operatorname{Cos} \epsilon \tag{6}
\end{equation*}
$$

which c is the anglo betwoon the symmetry axis and the field direction on photographic plate. The angle between tho orientation axis and the extornal field direction ϕ is obtained from eqs. (2) and (6) as

$$
\begin{equation*}
\operatorname{Cos} \phi=\operatorname{Cos} \psi \operatorname{Cos} \epsilon \tag{7}
\end{equation*}
$$

If the onentation axis lie along the b axis of ihe crystallites and X-rays are incident normal to the same axis, the normals to the (200) planes of the oriented crystallites would produco maxima diagonally opposito to each other while the maxima on (110) ring would be shifted through an angle $\chi=\tan ^{-1} a / b$ provided θ_{110} and θ_{200} are small and same. In this hypothetical case the crystallites whose (110) normals would be responsible for producing maxima are also responsible for (200) maxima. Hence the angle botween (110) and (200) normals producing
maxima is $\chi=\tan ^{-1} a / b \quad$ A departure from tris value is due to (i) the orientation axis being slightly shifted from the l axis, (ii) the orientation axis beng not exactly normal to the incident X-ray beam and (iii) the difference between θ_{110} and θ_{200} which is about one degree If howover these depurtures are small, the (200) normals of the crystallites whose (110) normals produce maxima lie nearly along the (200) normals of the erystallites producing maxima on the (200) ring. Under such condution considering the derection cosmes of maxima produemg normals we have

$$
\begin{align*}
\operatorname{Cos} \chi & =\operatorname{Cos} \tan ^{-1} a / b \\
& \simeq \operatorname{Sin} \theta_{110} \operatorname{Sin} O_{2100}+\operatorname{Cos} \theta_{110} \operatorname{Cos} \theta_{200} \operatorname{Cos}\left(\delta_{2}-\delta_{1}\right) \\
& \simeq \operatorname{Sin} \theta_{110} \operatorname{Sin} \theta_{200}+\operatorname{Cos} \theta_{110} \operatorname{Cos} \theta_{200} \operatorname{Cos}\left(\delta_{2}^{\prime}-\delta_{1}^{\prime}\right) \tag{8}
\end{align*}
$$

where δ_{2} and δ_{2}^{\prime} are the two resolved angular positions of (200) maximn which when superimposed given rise to

$$
\left.\delta_{2} \text { (observed }\right)=\delta_{y}+\delta_{2}^{\prime}
$$

Therefore
Hence

$$
\delta_{2}-\delta_{1}=\delta_{2}^{\prime}-\delta_{1}^{\prime}-2 \Delta \delta(\text { sny })
$$

$$
\begin{aligned}
\delta_{2} & =\delta_{2}(o b s)+\Delta \delta \\
\delta_{2}^{\prime} & =\delta_{2}(o \mathrm{os})-\Delta \delta \\
\delta_{1} & =\delta_{1}(\operatorname{Av})-\Delta \delta, \\
\delta_{1}^{\prime} & -\delta_{1}(\operatorname{Av})-\Delta \delta . \\
\delta_{2}-\delta_{1} & =\delta_{2}(o b s)-\delta_{1}(\Lambda v)
\end{aligned}
$$

Hence

$$
\begin{equation*}
\operatorname{Cos} x=\operatorname{Sin} \theta_{110} \operatorname{Sin} \theta_{2211}+\operatorname{Cos} \theta_{110} \operatorname{Cos} \theta_{2001} \operatorname{Cos}\left[\delta_{2}(\mathrm{Obs})-\delta_{1}(\operatorname{Av} .)\right] \tag{9}
\end{equation*}
$$

Again from the measurement of the Bragg angles we have

$$
\begin{equation*}
\frac{a}{b} \therefore\left\{\left(\frac{2 \operatorname{Sin} \theta_{110}}{\operatorname{Sin} \ddot{\theta}_{200}^{-}}\right)^{2}-1\right\}^{\frac{1}{2}} \tag{10}
\end{equation*}
$$

where

$$
\stackrel{a}{h}=\tan \chi .
$$

We can comparo the two values of χ obtained from oqs. (9) and (10). If they are nearly equal to each other we may conclude that the orientation axis is very near to the plane contaming the a and b axes of the orienting crystallites and . is very close to the b axis of the crystals

Tho experimentally determined values of diffurent parameters mentioned above are given in tables $1 \mathrm{a} \& \mathrm{~b}$.

332 Samita De, N. R. Pan and P. C. Bhattarharyya

Table 1a. Cooling rata $0 \cdot 27^{\circ} \mathrm{C} / \mathrm{min} . \delta_{2}(\mathrm{obs})=90^{\circ}$

Dint. from onc "lge n mm	$\begin{gathered} \rho_{110} \\ \text { indog. } \\ (\mathbf{E}(\underline{1 n} 3) \end{gathered}$	$\begin{gathered} \rho_{200} \\ \text { ind }(9, . \\ (E q n, 5) \end{gathered}$	$\begin{gathered} \psi \\ \text { incleg } \\ (\mathrm{Eqn} 4) \end{gathered}$	in deg.	$\begin{gathered} \phi \\ \text { i1) deg } \\ \binom{\text { (fin }}{\hline} \end{gathered}$	$\begin{gathered} \pi / b \\ (E(j u .10) \end{gathered}$	$\begin{gathered} u / b \\ (\operatorname{siq} 9) \end{gathered}$	$\pi / 2-\chi$ in deg from Col (7)	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(X$)$	(9)	(10)
1	3441	8910	[) 19	246	2512	150	150	33.65	3244
2	$33 \cdot 97$	8979	$1 \cdot 23$	83	8-39	1.60	1.51	3365	3237
3	33.3.4	8991	044	28	$2 \cdot 83$	145	1.54	34.68	3172
4	3469	8967	183	$3 \cdot 1$	350	$1 \cdot 54$	$1 \cdot 47$	3301	33.01
5	3313	89.66	$1 \cdot 66$	$2 \cdot 2$	2.76	1-59	1-56	33-4:3	3145
6	3193	89.23	$3 \cdot 69$	19	415	151	165	3368	3000
7	33.70	8969	$1 \cdot 47$	$6 \cdot 5$	670	148	152	34-12	3207
8	2938	$89 \cdot 15$	110	73	837	151	$1 \cdot 83$	3056	2727
9	3119	8877	597	$4 \cdot 9$	772	$1 \cdot 51$	173	33.48	28.79
10	3204	8871	620	(1.0)	69	150	1.67	3373	2968
12	32.96	885.5	704	41	$8 \cdot 14$	1-50	161	3362	3053
14	2910	$89 \cdot 36$	310	1.9	364	149	183	3:3-85	2735
16	30-98	8980	0.16	$20 \cdot 6$	2062	1-50	170	$33 \cdot 78$	29.21

* It tho unglo betwoon aymmotry avis and fold directio

Table 1b (tooling rate $0.80^{\circ}\left(1 / \mathrm{min}, \delta_{2}(0 \mathrm{bs})-\mathbf{9} 0^{\circ}\right.$

Dist. fiom ont origo in inm.	$\underset{{ }_{\text {in }}}{\substack{\rho_{110} \\ \text { dog. } \\ \hline}}$ ($\mathrm{E} \mathrm{q}^{\mathrm{n}} 3$)	ρ_{200} iII dor. (liqn 5)	$\begin{gathered} \text { \% } \\ \text { in } \\ \text { (lign. } \\ \text { lign } \end{gathered}$	in dlog.	$\begin{gathered} \phi \\ \text { in ding. } \\ \text { (Byn.7) } \end{gathered}$	$\begin{gathered} a / b \\ (\text { Equ 10) } \end{gathered}$	$\begin{gathered} a / b \\ \left(\mathrm{E}_{(\mathrm{p}} \mathrm{P} 9\right) \end{gathered}$	$\pi / 2-x$ in clog. Col (7)	$\begin{gathered} \delta_{1} \\ (\mathrm{AV}) \end{gathered}$ in deg.
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
2	3532	8887	[5.40	278	28.8	148	1.45	3405	\$3 40
4	31.89	89.08	4•38	$0 \cdot 6$	794	1.49	165	32.83	2984
5	3619	88 20	869	107	13.79	1.48	1.44	3397	33.68
6	34.59	8985	074	7.8	799	1-19	153	33×1	32.00
7	33.85	$90 \cdot 00$	000	66	562	1.48	164	3399	30.18
8	$33 \cdot 07$	89-56	211	46	606	1.49	1.56	3387	31-37
9	$34 \cdot 44$	8980	$3 \cdot 76$	4.6	594	1.50	149	33.78	3270
10	3322	8853	708	$4 \cdot 6$	8.44	149	1.00	33.81	$30 \cdot 80$
12	3425	8052	$3 \cdot 89$	$4 \cdot 6$	602	1.48	1. 50	$33 \cdot 99$	32.48
14	3138	8921	379	$9 \cdot 6$	10.31	1.49	1.49	33.88	3262
10	3336	88.6.3	661	$27 \cdot 1$	$27 \cdot 87$	150	150	3378	$32 \cdot 4.5$
17	3418	88.73	$6 \cdot 16$	52.8	5304	1.48	$1 \cdot 52$	$33 \cdot 99$	32.08

[^0]
4 Conclusion

The electret bohaviour of an olectred deponds upon the forming field strength. the formong tempenature, rate of coohnes, the age of the electret and the depoth of the sample along the direcion of the formmg field (Gutman 1948 , Good do Stranathan 1939, Frekin \& Zheludev 1960). In the prosent wots the formmg field, temperature, age of the electred and the depth of the sample along the direction of the external electric field we kept unaltered while two different
 points in the specimon along a lue normal to the thiekness of the clectred

The melination of the orientation axis (ψ) with the Z axis (axis of symmetry) in general decreases from the perphery to tre central regrov of the mample ('Table ta \& b. Column 4) Thas general tered nemains unaltered when the rate of cooling is varied The angle between the axis of symmetry and the electace fiold (along the thickness of the elecheri) also changes athanng smabler vabues
 is howevor small But the angle between ormontation axss and tho external field (Table las \& b, column 6) elanges apprecalbly for different rate of coolang. specmally at the edges. Near the modde regrion it atiains a momimum value but for mo region the orientation axs coincoles with the electse efield diecerion For a cooling 1 ate of $0.80^{\circ} \mathrm{C}$ per mumte it atiains lasger values at the two ends of
 the middle region the angle does not dejend mueh "pons the eooling rate O_{g} In other worts, the queker the ean namba wad is soledifed the departume of the orentation axis with respect to the fied is mork more pronounerd For ther middle segion a longer time is neassimy ho soldefy from the liguid sotate causing the orientation axis to deviate lithe from the fiofd derertion

The angle ρ_{200} remans practically coustant bemg newrly equal to 00 degreces irrespective of the region of investagation and the eooling rate (Thble 1, column 3) Or in words the a axis is always alligited along a dnecion very nearly normal to orientation axis But the oricotation of (110) normals fluctuates reasonalbly with eooling rate as woll as with the region of investigation ('Table 1 , column ${ }^{2}$) Therefore the orentation axis is not a fixed derection with resperet to the crystal axes. Carnauba wax is a polar substance and henee the resultant dijole moment has a fixod diecetion withem the erystal. Hence the orentatson axis is not the dipole axis of the crystaln.

The axial ratio a/b measured foom Bragg angles agrees within 10 per cent with those obtamed from eq (9) for most of the cases (Table 1 , column 7 \& 8) This indscates that the orientation axis is very neas to the b axis and lies close to the plane containing a and b If the conditions of coincidences of the on entation axis with b axis as deseribed before aro satisfied then $\rho_{200}=\pi / 2$ and

334 Samita De, N. R. Pan and P. C. Bhattacharyya

$\rho_{100}=\pi / 2-\chi$. Though in our results the first condition is nearly satisfied, ρ_{110} deviales from $\pi / 2-\chi$ (Tables $1 \mathrm{n} \& \mathrm{~b}$, column $9 \& 10$). Therefore the exact comeidence is never observed.

From the analysis of ous experimental observations we are of opinion that at the forming temperature when the carnauba wax is in the molten state cybotactice groups (Frenkol 1946) are formed They allign themselves in a preferred durection due to dipole-field mteraction caused by the external ficld. However there must be another process responsible for allignment which arises due io preferrential orientation of the long cham molecules (Frenkel 1946). A competition between these two separate processes ultimately shapes the final orientation. The latier strongly depends upon the dimension of the rybotatic groups in the liquid state. The size of the groups in then turn depends upon the forming temporature, the rate of cooling and also upon the external field (lirenke] 1946) The groups orient, themselves in the presence of a liquid environment and the process is slow. Therefore the orientation is far from complete if the motem wax solidifies quackly Thas may explan the large deviation of the axis of orentation with the drection of the forming field at the per pherial region as well as when the rate of cooling is mereased

Rrferences

Chandy K (V. 1973 Pior Intian Natl. Sca. Acad 39A, 85
Ohandy K. (' 1973 rudian I Pure Appl IPhys. 11, 439
Nwing M 1930 Phys Rev. 36, 378.
Frenkel J. 1946 Kinetar Theory of Liquads (()xford Universaty Press), p. 302-7.
Frulkm V. M \& Zholudev I S. 1960 Photoelertrots and Llertrophotoqraphe Process (Consultant
Bureau lnc., N.Y), p 7.
Glocker R 1936 Giterl m Klug F P \& Alovander L. E 1974 X-ray Diffraction Procedures (John Wiley ant Sions), p 717.
(Good W. M \& Stranathnn D D. 1939 I'hys. Rev 56, 810. Gutmann 1r. 1948 Rcvo, Morl Phys. 20, 457.
Muller A J928 Pror Roy. Soo. 120A, 437
Pau N. Re. 1976 Imdian J Pure Appl Phys 14. 711
Р口и! () P 1968 .J. Appl. Phys. 35, 3627.

[^0]: 6 is the anglo botwoen symmetry axis and fiold direction.

