ON THE VARIATION OF GRAIN DENSITY WITH SPECIFIC ENERGY LOSS IN NUCLEAR EMULSIONS

A. P. SHARMA and R. K. GAUR
Department of Piysics, Kurugsietra University, Kuruksietra, India

(Received May 26, 1968; Resubmitted October 19, 1968)

Abstract

An attempt has been made to explain tho experimental curves showing the relation betweon grain density (ionisation parameter) and specific onergy loss in Nucloar Emulsions. A model based on the rocombination of positive holes and eloctrons during the procoss of latont image formation has beon suggestod. The theoretical results agree satis. factorily with the experimental onos.

INTRODUCTION

The analysis of nuclear tracks in photographic emulsions caused by the passage of charged particles mainly depends on the ionization (density or longth) parameters. Experimental observations show that for low values of energy losses grain density is directly proportional to the rate of loss of energy of the charged particle producing the track but at higher values of energy loss it deviates from linearity (Fowler, 1950; Fowler and Perkins, 1951; Powell et al, 1959; and Sharma and Gill, 1962).

Beriman (1951) tried to explain this variation by considering a simplified model of track formation assuming grains of constant size and sensitivity and is uniform rate of loss of energy of the parent particle but his theoretical curves do not agree with the experimental ones.

A linearity between grain density and energy loss can be expected only if the ontire encrgy loss in various grains is used in creating positive holes which are used up in latent image formation. The deviation at high energy losses from linearity clearly indicates that only a part of the positive holes created due to the passage of the charger particle is used up in latent image formation and the rest may be lost somewhere without making any contribution to the development of the grain.

In this paper, we have tried to explain theoretically the experimental variation of grain donsity with enorgy loss assuming the presence of the recombination of positive holes with electrons during latent image formation as suggested quantitatively by many workers (Demers, 1947; Webb, 1948; Dell-Corte et al, 1953; Mitchell, 1957; Mitchell and Mott, 1957; Hamilton et al, 1965). Considering the positive hole theory of Mitchell and Mott (1957) for latent image formation a simple model is presented for evaluating the effectivo number of positive holes
(effective ionization) available for latent image formation (Sharma and Gaur, 1969). This model helps in formulating the mechanism of track formation in nuclear emulsions and in calculating primarily the probability that a silver halido grain in the path of the particle may be impressioned so as to render it developable and finally the grain density at any spocific energy loss.

THEORY

a) Effective Ionization in a Grain.

It is well known fact that a charged partiole traversing the nuclear emulsion loses its energy in releasing electrons from the normal state of halide ion. As a result of this equal number of positively charged vicinities are created in the lattice of the crystal which are referred as "positive holes". The number of positive holes $\left(n_{0}\right)$ depends on the rate of energy loss $(d E / d R)$ and the path length (d) through an cmulsion grain. It is probable that olectron and positive hole may recombine immediately after their production to form a halide ion from which they were originated.

The recombination being a phenomenon involving two ions whose concentrations are cqual to ' n ', will be governed by the following relation

$$
\begin{equation*}
-\frac{d n}{d t}=\lambda n^{2} \tag{1}
\end{equation*}
$$

where $d n / d t$ represents the rate of change of ion concentration and n is the number of electrons or positive holes present at any instant t and λ, the cocfficient of recombination which depends on the nature of the medium through which the charged particle traverses. The nature of the medium depends on the number of sensitivity centres (sensitivity specks, clumps of silver or impurity atoms, kink sites or odge dislocations) which act as trapping centres for the ions (| ve holes and the interstitial Ag^{+}ions). The greater the number of sensitivty centres the smaller will be the probability that positive holes are left behind to recombine i.e., less will be the recombination and viee-versa. Hence the constant λ can be defined as $\lambda=C / S, S$ being the number of sensitivity centres and C a different constant of proportionality. On substituting the value of λ in equation (1) we hæve

$$
\begin{equation*}
-d n / n^{2}=(C / S) d t \tag{2}
\end{equation*}
$$

On integrating it we get

$$
\begin{equation*}
1 / n=(C / S) t+C^{\prime} \tag{3}
\end{equation*}
$$

where C^{\prime} is a constant of integration. By applying the boundary condition when $t=0$ (the instant when holes are created), $n=n_{0}$ (the maxm. number of holes present at that moment), from the above relation we get $C^{\prime}=1 / n_{\mathbf{0}}$ Therofore,

$$
\begin{equation*}
n=\frac{n_{0} S}{S+n_{0} C t} \tag{4}
\end{equation*}
$$

This shows a relation between n_{0}, the total number of holes produced at some specific energy loss in a grain and n, the number of effective holes at any instant t left after recombination. The number of positive holes (n_{0}) dopends on the rate of energy loss and the diameter (d) according to the following relation

$$
n_{0}=\frac{(d E / d R \text { ev } / \text { micron })}{5 \cdot 8 \mathrm{ev}} \times(d \text { microns })
$$

In case of G-5 emulsions the diameter ' d ' of a grain is $\simeq 0.27$ micron. Hence expressing n_{0} as function of energy loss, we have

$$
\begin{equation*}
n_{0}=46.55 d E / d R \tag{5}
\end{equation*}
$$

where $d E / d R$ is in $\mathrm{Kev} / \mu \mathrm{m}$.
Substituting the value of n_{0} in eqn. (4) we get

$$
\begin{equation*}
n-\frac{46 \cdot 55(d E / d R)}{1+46.55(d E / d R)(C t / S)} \tag{6}
\end{equation*}
$$

The constant of proportionality C can be calculated with the help of equation (2) and comes out to be 1.3356×10^{6} (Appendix 1).

At any instant t, the number of positive holes left after possible recombination and available for latent image formation is given by relation (6). [nitially at $t=0$, the number of holes available for latent image formation is n_{0}, but as the time elapsses some of the holes recombine and only the rest at that instint are used for latent image formation. To what extent doos this proeess continue? The recombination will continue till the holes survive.

The minimum value of the survival time or life time of positive holes as shown by Malinowski (1967) is 2.5×10^{-6} sec. This can easily be taken as the limiting value of time t used in relation (6).

We take $S=2000$, the number of sensitive centres or trapping centres (Sharma and Gill, 1962; Mess, 1948). Substituting the values of $(,, t$ and S (estimated as above) in equation. (6), we get,

$$
\begin{equation*}
=\frac{46.55(d E / d R)}{1+0 \cdot 0777(d E / d R)} \tag{7}
\end{equation*}
$$

The offective number of positive holes or effective ionization for different $d E / d R$ values can be calculated from equation (7) and the values of total number of positive holes, n_{0}, from equation (5).
b) Theoretical Grain Density.

The passage of a charged particle through a grain is followed by an excess of positive charge at the surface of the crystal in the form of positive silver ions

Variation of Grain Density

and a corresponding negative charge in the form of electrons in the conduction band (Powell et al, 1959). The positive silver ions are distributed in the sensitivity centres where they are neutralized with olectrons resulting in the formation of latent image.

Figure 1. (A) Variation of η with $d E / d R$.
Δ Points indicate the work of Della, Corte et al., (1953).
\times Points indicate the work of Sharma and Gill (1962)
0 Points indicate the present work.
(B) Variation of n_{0} and n with $d E / d R$

Curve (a) indicates the variation of $n_{0}-d E / d R$
Curve (b) indicates the variation of $n-d E / d R$.

For calculating the probability of development of a grain we have considered a model similar to that of Sharma and Gill (1962) with a slight modification. We consider the distribution of Ag^{+}ions in the sonsitivity centres as a primary process. Moreover, we have made emphasis on the probability of development of active centres within individual grains rather than concentrating on the active centres of all the grains simultaneously lying along a certain path length. On these considerations (Appendix 2) the number of active centres S^{\prime} in a grain which may bocome developable due to the passage of charged particle through it can be expressed as

$$
\begin{align*}
S^{\prime}= & 1 \cdot 327 n e^{-0.0005 n}\left[1+6.635 \times 10^{-4}(n-B)+2.2013 \times 10^{-7}(n-B)\right. \\
& (n-2 B)+4.83 \times 10^{-11}(n-B)(n-2 B)(n-3 B)+8.075 \times 10^{-15} \\
& (n-B)(n-2 B)(n-3 B)(n-4 B)+\text { negligible terms } .] \tag{X}
\end{align*}
$$

For the first approximation

$$
\begin{equation*}
S^{\prime}=1.327 n e^{-0.0005 n}\left[1+6.635 \times 10^{-4}(n-B)\right] \tag{9}
\end{equation*}
$$

Where n is the effective number of positive holes produced in a grain at sone specific energy loss and B is the limiting number of positive holes $(B=493)$ as suggested by one of the authors (Sharma and Gill ,1962) oarlior.

Further the probability of development (π) of a grain can be estimated by considering the number of undeveloped grains along a certain path length of the charged particle and imposing a condition that a grain will become developable if it acquires at least one active development centre in it so as to render the whole of the grain developablo during the process of development. Thus by theoretical considerations the value of probability of development can be given by the following relation.

$$
\begin{equation*}
\pi=1-e^{-S^{\prime}} \tag{10}
\end{equation*}
$$

where S^{\prime} can be estimated from equation (9). The value of S^{\prime} (hence π) involvos the theoretical parameters which depend on the characteristics of unprocessed emulsion. Relation (10) can be used to estimate the expected number of grains/ $100 \mu \mathrm{~m}$ i.e., grain density by multiplying π with N (the number of grains $/ 100 \mu \mathrm{~m}$. in an unprocessed emulsion).

$$
\begin{equation*}
\text { Grain density, } \quad g=\pi \times N\left(1-e^{-s^{\prime}}\right) \tag{11}
\end{equation*}
$$

As number of grains $/ 100 \mu \mathrm{~m}$. for unprocessed G-5 emuslion is around 275-300 (Sharma and Gill, 1962), we can estimate the theoretical grain density from equation (11). The calculated values of grain density for various energy losses are shown in figure 2.

Specific energy loss $d E / d R$ in KoV por Micron \rightarrow
Figuro 2. Variation of grain density with specific energy loss.
Curve (a) indicates tho experimental work of Fowlor and Porkins (1951).
Curve (b) indicates the present theoretical work. The upper limit of ϕ denotos the grain density for $S=2000$ and the lower limit indicatos grain donsity for $S=1500$ and the centre points (O) indicate grain density for the average number of sensitivity centers between 1500 and 2000.
Curve (c) indicates the throretical work of Beriman (1951).

RESULTAND DISCUSSION

The values of number of positive holes produced/grain (n_{0}) and number of effective holos (n) left after the recombination process for various values of energy loss ($\dot{\alpha} E / d R$), calculated from relation 5 and 7 are shown in the table (column 2 and 3). The variation of n_{0} and n with $d E / d R$ is also shown in figure 1 . This shows that the number of effective positive holes at .low $d E / d R$ is almost equal to the number of positive holes produced (i.e., the recombination being negligible in this region) while it is considerably reduced at high energy losses.

The grain density depending on the probability of development of a grain must depend on the number of positive holes produced in the grain. If it would have depended on the number of positive holes produced in a grain, there would have been no deviation from the straight line curve (a) of figure 1 . The experimental relation between the specific ionization and the grain density for G-5 emulsion (figure $2 a$) also remains linear up to an specific ionization of $3 \mathrm{Kev} / \mu \mathrm{m}$. after which the deviations start rapidly and at very high energy losses the curve tends to becomo saturated.

The theoretical curve (b) of figure 1 showing relation of effective number of positive holes with $d E / d R$ has exactly the same nature as that of experimental
curve (a) of figure 2 due to Fowler and Perkins (1951) and Fowler (1950) between the grain density (g) and $(d E / d R)$. The similar nature of these curves indicates a close relation botween the grain density and tho number of effective holes available for latent image formation.

Experimental curve (a) of figure 2 between grain density and specific energy loss has boen explained by Beiser (1952) and Blau (1949) only qualitatively with the idea of space charge due to large number of electrons around the sensitivity centres. The quantitative picture of recombination considered by us on the basis of the +ve hole theory of Mitchell and Mott (1957) clearly explains the experimental curve between the grain density and $d E / d R$ in the same way as that of Sharma and Gill (1962) based on the olectron theory of Gurney and Mott (1938). Thus it does not make much difference whether one considers the distribution of electrons or of positive holes in the sensitivity centres of the grains to render them developable. It is true that the grain density depends on the number of effective positive holes left after recombination.

The variation of efficiency $\eta\left(=n / n_{0}\right)$ of utilizing the positive loles for latent image formation with $d E / d R$ is shown in figure 1. It is clear from the curves that our theoretical values of the efficiency η for different $d E / d R$ values are in better agreoment with the scmiempirical values of Della Corto et al., The maximum efficiency η is observed when $d E / d R$ is very small.

The values of the probability of development of a grain calculated from relation (10) for different energy losses are shown in the table (column 5). Our theoretical values complete well with the exporimental values of Della Corte et al. (1953) and Sharma and Gill (1962) (Column 6 of the table).

The average theoretical value of π between successive intervals of $d E / d R$ perfectly agree with the experimental values of column 6 for small specific energy losses. The small discrepancy in the throretical and experimental values of π at large energy loss intervals can be attributed to the production of a large number of positive holes.

Figure 2 clearly indicates that our theoretical curvo (b) of figure 2 showing a variation of grain density with $d E / d R$ is exactly of the same nature as the experimental curve (a) of figure 2 due to Fowler and Perkins. The theoretical curve (c) of figure 2 based on Beriman model does not agree at all with these two curves. Thus the present model of grain density vs. $d E / d R$ after taking into account the process of recombination of positive holes and electrons seems quite satisfactory.

The discrepancy in the values of calculated grain density at various $d E / d R$ values indicates that actually more grains $/ 100 \mu \mathrm{~m}$. are developed in comparison to what we expect theoretically. This discrepancy in grain density values may be attributed to the fact that some grains lying around the passage of a charged
particle are also developed by induction process, through they are not traverwed and affected by the incident particle.

Table 1. Values of n_{0}, n, η and π at various energy losses

$d E / d R$		No. of positive holes produced/ grain ' n_{0} '	No. of effectivo positive holes (calculated)/ grain ' n '	Efficiency η	Theoretical values of π (calculated)	6 Exporimental values of π between successive intorvals of $d E / d R$	
$\begin{gathered} \mathrm{mev} / g \\ \mathrm{~cm}^{-2} \end{gathered}$	in Kev/ $\mu \mathrm{m}$.					Values duo to Sharma and Gill (1962)	values due to Dell Corte et al., (1953)
2.0	0.76	35.38	33.36	0.9429	0.0861	0.085	0.087
3.0	1.14	53.07	48.69	0.9175	0.1219	0.133	0.133
4.0	1.52	70.76	63.22	0.8934	0.1563	0.147	0.148
5.0	1.90	88.45	77.07	0.8712	0.1894	0.190	0.189
6.0	2.28	106.14	90.16	0.8495	0.2134	0.221	0.220
7.0	2.66	123.83	102.60	0.8986	0.2442	0.250	0.253
8.0	3.04	141.52	114.47	0.8089	0.2666	0.268	0.264
9.0	3.42	159.21	125.77	0.7899	0.2882	0.301	0.302
10.0	3.80	176.89	136.57	0.7720	0.3161	0.305	0.308
11.0	4.18	194.59	146.88	0.7548	0.3297	0.318	0.320
12.0	4.56	212.28	156.73	0.7384	0.3495	0.340	0.346
13.0	4.94	229.97	166.17	0.7226	0.3624	0.359	0.367
14.0	5.32	247.66	175.22	0.7075	0.3812	0.383	0.401
15.0	5.70	265.34	183.89	0.6930	0.3935	0.309	0.406
17.0	6.46	300.72	200.21	0.6658	0.4230	0.420	0.423
19.0	7.22	336.10	215.30	0.6406	0.4457	0.425	. 430
21.0	7.98	371.48	229.39	0.6175	0.4674	0.439	0.449
23.0	8.74	406.86	242.04	0.5949	0.4883	0.459	0.479
25.0	9.60	442.24	254.14	0.5747	0.5083	0.468	0.48

APPENDIX 1

For calculating the constant of the proportionality C, we take the help of the equation (2). Considering the boundary conditions $d t \rightarrow 1$ second, $S \rightarrow 1$ and $n \rightarrow 1$, we get $d n \rightarrow C$. As $d n$ is the number of holes attenuated or recombined during time $d t$., C can be defined numerically equivalent to the number of holes recombined in unit time in the grain having ono trapping centre and
with the condition that one hole is left behind after recombination. If the assumptions involved in defining the contant C are justifiable, the above definition of constant C is considered correct. Hence wo have to see the validity of these conditions. As $t \rightarrow 1$ soc., is a very large value of time as compared to the time of rocombination which is of the order of micro seconds, from relation (4), if $t \rightarrow \alpha, \alpha \rightarrow 0 \propto$ Also $S=1$ is a very small number of the trapping centres as compared to their number of the order of 2000 or more for G-5 emulsion grains (Sharma and Gill, 1962). Thus S may bo considered tending to zero and according to this condition $n \rightarrow 0$ from equation (4). Moroover considering the third condition for defining C, that $n \rightarrow 1$ is almost the same as $n \rightarrow 0$. All these conditions lead to the same conclusion. When t is maximum (infinitely large) all the holes may recombine during this time and the effective number of holes left behind may tend to minimum or zero. When S is minimum (infinitely small) the positive holes will not be trapped but may recombine. Thus the constant C can be taken equal to the maximum number of positive holes recombined during roasonable interval of time and when the condition $n \rightarrow 0$ is satisfied. Sinco $n \rightarrow 0$, the number of recombined holes $\left(n_{0}-n\right)$ will tend to n_{0}. As C is defined the maximum possible number of positive holes which may recombine during time t,
or

$$
C \rightarrow d n\left(=n_{0}-n\right)
$$

$$
C \rightarrow n_{0}
$$

The maximum distance which a positive hole can move till it survives is defined as the diffusion length or range of diffusion. For calculating the maximum possible number of holes n_{0}, we imagine a cylinder having a maximum length in the grain and of radius equal to the diffusion length of the holes. This will describe a volume within which the recombination will be possible, otherwise outside the boundary of this imaginary cylindor, the holes will not be able to diffuse due to the fact that they can survive only for few micro soconds. For considering a state of maximum possible recombination in this volume of the grain we assume a maximum number of holes responsible for recombination. This maximum number will be the same as the number of Br ions in this volume. Thus finally the magnitude of constant C will be equal to the maximum number of Br ions in this assumed volume. The effective range of diffusion (diffusion length), l, of positive holes with a life time τ and a diffusion constant D can be calculated from $l=\sqrt{\overline{D r}}$, a relation given by Malinowski (1967) who has recently given the value of diffusion constant (D) equal to $3 \times 10^{-7} \mathrm{~cm}^{2} / \mathrm{sec}$. and the minimum value of $\tau \cong 2-3$ microseconds while considering the properties of the photo excited holes in silver bromide crystals. The value of diffusion length, l, calculated from the above relation comes out equal to $8.66 \times 10^{-7} \mathrm{~cm}$. (or $\cdot 0086 \mu \mathrm{~m}$). It clearly shows that the holes while diffusing in the grain perpendicular to the direction of the passage of a charged particle will diffuse to a maximum distance
of $\cdot 0086 \mu \mathrm{~m}$ during their life time. We are now interested in calculating the maximum number of holes within the eylinderical volume of radius ' l ' and a height ' d ' oqual to the diameter of the grain. The maximum number of Br ions in this cylinder or the numbor of Ag Br molecules can be calculated from their crystal structure. Silvor bromide grain is a cubic crystal of NaCl type and has a cell size 5.755 A. One cell contains four molecules. Hence the number of Br ions within this volume can be given by the following expression,

Volume of the cylinder \times number of Br ions in one cell
 Volume of one cell

which comes out to bo 1.3356×10^{6} for G-5 emulsion grains of $0 \cdot 27 \mu \mathrm{~m}$ diamoter. Thus the magnitude of constant C will also be equal to 1.3356×10^{6}.

APPENDIX 2

For calculating the probability of development of a grain, consider the most genoral model of the grains having a random distribution in the gelation of the emulsions and also having varying sensitivitios and sizes. In a grain n positive ions are to be distributed over its S sensitivity contres having different sensitivities from minimum to maximum. Suppose n_{i} ions (out of n ions) are distributed over S_{i} sensivivity centres (out of S sensitivity centres) each requiring i ions to render it developable, the number of sensitivity centres $\left(S_{i}^{\prime}\right)$ which may become developable from this group will be given by the fullowing relation

$$
\begin{equation*}
S_{i}^{\prime}=S_{i} \sum_{i}^{n_{1}} p(x) \tag{1}
\end{equation*}
$$

where $p(x)$ is the probability that one of the S_{i} sensitivity centres gets x of those n ions. $p(x)$ can mathematically be defined as

$$
\begin{equation*}
p(x)=C_{x}^{n_{i}} \frac{\left(S_{i}-1\right)^{n_{i}-x}}{S_{i}^{n_{i}}} \tag{2}
\end{equation*}
$$

Sharma and Gill (1962) in earlier work have considered a similar distribution of electrons in various sensitivity centres. They have considered the distribution of number of electrons over the sensitivity centres of grain groups present in a certain path length which does not seem to be much feasible in comparison to the present distribution of positive ions in individual grains. The reason is that positive ions produced in one grain remain confined to that grain and cannot
migrate to other neighbouring grains. Thus the present model has more fundamental assumptions in comparison to tho previous one and is based on prevelent Mitchell and Motts' positive hole theory of latent image formation in nuclear emulsions.

In this random distribution various groups will be possible depending on the various values of i i.e., $i=1$ to $i=B$, a limiting value of positive ions to be utilized for latent image formation. As a result of this grouping, let S^{\prime} be the mumber of sensitivity centros becoming developable per grain, then S^{\prime} can mathematically be represented as

$$
\begin{align*}
& S^{\prime}=\sum_{i=1}^{B} S_{i}^{\prime} \\
& S^{\prime}=\sum_{i=1}^{R} S_{i} \sum_{x=i}^{n_{i}} C_{x}^{n_{i}} \frac{\left(S_{i}-1\right)^{n_{i}-x}}{S_{i} n_{i}} \tag{3}
\end{align*}
$$

The solution of the above equation is as

$$
\begin{gather*}
S^{\prime}=\gamma e^{-\alpha}(1-\beta)^{-1}\left[1+(\alpha-\beta)(1-\beta)^{-1}+\frac{1}{2}(\alpha-\beta)(\alpha-2 \beta)(1-\beta)^{-2}+\right. \\
+\frac{1}{8}(\alpha-\beta)(\alpha-2 \beta)(\alpha-3 \beta)(1-\beta)^{-3}+\frac{1}{2} \frac{1}{4}(\alpha-\beta)(\alpha-2 \beta)(\alpha-3 \beta) \\
\left.(\alpha-4 \beta)(1-\beta)^{-4}+\ldots+\ldots \text { negligible terms }\right] \tag{4}
\end{gather*}
$$

where $\alpha=\frac{n}{S}$, ratio of effective number of positive holes and total number of sensitivity centres in a grain.
$\beta=\frac{B}{S}$, ratio of limiting number of positive holes and total number of sensitivity centres.
and $\quad \gamma=\frac{\alpha}{\beta}=\stackrel{n}{\dot{B}}$

REFERENCES

Boiser, A., 1952, Rev. Mod. Phys., 24, 273.
Beriman, R. W., 1951, Sci. Industr. Photo., 23A, 321.
Blau, M., 1949, Phys. Rev., 75, 279.
Della Corte, M., Ramat, M. and Ronchi, L., 1953, N. Cimento, 10, 958.
Domors, P., 1947, Sci. Industr. Phot., 18, 321 and 353.
Fowler, P. H., 1950, Phil. Mag., 41, 168, 184.
Fowler, P. H. and Perkins, D. H., 1951. Fundamental Mechanism of Photographic Sensitivity. Butterworths Scientific Puble., London, 340-345.

Variation of Grain Density

Gurney, R. W. and Mott, N. F., 1938, Phil. Mag., A164, 151.
Hamilton, J. F. and Bayer, B. E., 1965, J. Opt. Soc. Am., 55, 528 and 439.
Malinowski, J., 1967, Contemporary Physics, 8, 285.
Mess, C. E. K., 1948. Theory of Photographic Process, Tho Macmillan Co., Now York, 162.

Mitcholl, J. W., 1957, Rep. Prog. Phys., 20, 433.
Mitcholl, J. W. and Mott, N. F., 1957, I'hil. Mag., 2, 1149.
Powell, C. F., Fowler, P. H. and Porkins, 1. H., 1959, The Study of Elementary Particles by the Photographic Method, Pergamon Proas, London, 43.
Sharma, A. P. and (G aur, R. K., 1969, Indian J. Pure and Appl. Phys (in press).
Sharma, A. P., and Gill, P. S., 1962, Proc. N.I.S.I., 28, 166.
Webb, J. H., 1948, Phys. Rev., 74, 511.

