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ABSTRACT. An investigation of the combined influence of & magnetic field and an
cloctric field on convective hoat transfor in tho fully developed laminar flow of an incompressible
conducting fluid betwoen parallel plates has been carried out, thus extending an ecarlier
snalysis of Siegal.

An analysis of heat transfer in & mhd channcl flow under uniform magnetic
field and heat flux at the non-conducting walls was prosented by Siegel (1958)
and that at the conducting walls was presented by Alpher (1961) and Yen (1963).
In engincering applications, the mhd channel flows have beon characterised by
Sutton and Sherman (1965) with the help of loading parameter K (= E,|Bi,),
where E,, is the appliod cloctric ficld. It is & generator, accelerator or flowmeter
according as K >, < or = 0 rospectively. Recently Soundalgekar (1968) dis-
cussod the heat transfer aspect of fully developed mhd channel flow between
conducting walls under crossod-fields. In this notc an analysis of the effects of
K, M and the uniform heat flux on the heat transfor aspoct of the mhd channel
flow betwoen non-conducting walls is presented.

The oxpressions for tho velocity profile and the current density in non-dimen-
sional form as derived by Sherman and Sutton (1965) arc

u = M (Cosh M—Cosh MZ) o)
~ T M Cosh M—Sinh M
and
J = K—u o (2)

The encrgy equation neglecting viscous dissipation is

or _ T, j) .. (3)
u 5 = %o + 00,
where & = A/pc, is the thermal diffusivity.

For linearly varying temperature along the plates, ono can assumo

T(x,2) = Az+G(2) "
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where A4 is tho mean temperature gradiont. In view of (2) and (4), equation (3)
reduces to

@ _ dul MPR g G

iz « Tep
where P, @, ¢, L are the Prandtl number, mean velocity, specific heat and half
channel width respectively.
The boundary conditions are (Siegel 1958)

G=0atZ=:{:land%§=OatZ=O. )

The solution of (5) subject to (8) is

gAI2M [ Z2cosh M cosh MZ
=0+ "L [__._2 — cosn M2 ] _

_ PM? [ K2Z* _ 2KM ( Z*cosh M _ cosh MZ) +

Cp 2 B 2 M2
+ M2 ( Z%2-}-cosh 2M) 2 cosh M cosh MZ + cosh 2MZ }] )
e L R
where
o, Pl [ Kt EQf*—2) cosh 3
1 p [ 2 BM o

. 4013—2)+(2M2—T)cosh 2 ] @2AL? (M?—2) cosh M

8B2 - B T TeomM

aB 2M !
B = M cosh M —sinh M.

The mean temperature gradient 4 is found by considering the overall heat balance
for a differential length of the channel, which gives

L .
Jy
A_aT_a'l',,._q'{‘J - % (8)
T 9z~ o0z Lipey "

From (1), (2) and (8), we get after integration

_ M¥up ¢ M3
4 = (LupCy)—* [T""’”LEE‘{ 5R2 —K+

., M cosh M(2M cosh M—3 sinh M) )
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When the mean temperature of the fluid is known, it is of practical importance
to determine the wall tomperaturo. Hence we form the difference betwoen wall

and mean fluid temperature as
L

1
T\y—Tm = AX—5— [ T(, 2) u(z)dz
-7

Y _f’l A(Z) w(Z)dZ. .. (10)

Substituting for @, 4 and u from (7), (9) and (1) respectively in (10), integrating
and rearranging, we have

L P,2R%q
To—Tm = L ©()+ I, VLK), (11)
where
_ (M%—2)cosh M 3M2—9 cosh M sinh M-+ M(M241) coshz M
OM) =g ~ o oemmpr - (19
M M2 ., 2M cosh? M (M—-tanh M)
WIMLE) =5 ( s — K+ 2 i -—)
(M2—2)cosh M 3M2—9 cosh M sinh M-} M(M2+6) cosh? M)
( 3 - B )+

+ 0 M (3ro_3 tanh M (M2-4-2) +630) -

2
—Ig—Bﬂ% (3M2—9 cosh M sinh M+ M(M2+6) cosh? M) |-

, M3cosh M M24-2 (33+8M2)tanhM+
' 3B2 ( 3 SM

M2-6 M24-6 .
-+ & cosh 2M — S tanh M cosh 2M

__9sinh 2  sinh3M ) .. (13)
8M 24 M cosh M /.

To obtain the mean temperature at a particular z-position, measured from the

channel entrance, we integrate equation (10) and obtain

z (g, (PR)va| M2 K-
st [

M cosh? M(2M —3 tanh M) .. (14
+ 2 ]} (14)

Tm_To =
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where T’y is the mean temperature of the fluid entering the channel.
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Figuro 1. ¢(M) vs Hartmann number M.

In order to know the variation of 7',— Ty, the functions ®(M) and (3, K)
arc calculated for M = 2,4,6,8,10,12 and K = 0,0-2,0-4,0:6,0:8,1. (M)
is shown in figure 1, whercas the numerical values of ¥(M,K) are cntered in
table 1.

Table 1 Values of Y(M, K)

M
K 2 4 6
0 —25 92 3861
0.2 —28 82 3836
0.4 —31 72 3810
0.6 —34 62 3785
0.8 —-37 62 3761
1.0 —41 42 3737

CONCLUSIONS

An increase in K leads to a decrease in YoM, K) whereas it increases with M.
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