ON HEAT TRANSFER IN MHD CHANNEL FLOW UNDER CROSSED-FIELDS

V. M. SOUNDALGEKAR

DEPARTMENT OF MATHEMATICS, INDIAN INSTITUTE OF TECHNOLOGY, BOMBAY-76, INDIA

(Received April 29, 1968; Resubmitted November 25, 1968)

ABSTRACT. An investigation of the combined influence of a magnetic field and an electric field on convective heat transfer in the fully developed laminar flow of an incompressible conducting fluid between parallel plates has been carried out, thus extending an earlier analysis of Siegal.

An analysis of heat transfer in a mhd channel flow under uniform magnetic field and heat flux at the non-conducting walls was presented by Siegel (1958) and that at the conducting walls was presented by Alpher (1961) and Yen (1963). In engineering applications, the mhd channel flows have been characterised by Sutton and Sherman (1965) with the help of loading parameter $K \ (= E_y | B \bar{u}_0)$, where E_y is the applied electric field. It is a generator, accelerator or flowmeter according as K >, < or = 0 respectively. Recently Soundalgekar (1968) discussed the heat transfer aspect of fully developed mhd channel flow between conducting walls under crossed-fields. In this note an analysis of the effects of K, M and the uniform heat flux on the heat transfer aspect of the mhd channel flow between non-conducting walls is presented.

The expressions for the velocity profile and the current density in non-dimensional form as derived by Sherman and Sutton (1965) are

and

The energy equation neglecting viscous dissipation is

where $\alpha = \lambda / \rho c_p$ is the thermal diffusivity.

For linearly varying temperature along the plates, one can assume

where A is the mean temperature gradient. In view of (2) and (4), equation (3) reduces to

where P, \bar{u} , c, L are the Prandtl number, mean velocity, specific heat and half channel width respectively.

The boundary conditions are (Siegel 1958)

$$G = 0$$
 at $Z = \pm 1$ and $\frac{dG}{dZ} = 0$ at $Z = 0$. (6)

The solution of (5) subject to (6) is

$$G = C_{1} + \frac{\bar{u}AL^{2}M}{\alpha B} \left[\frac{Z^{2} \cosh M}{2} - \frac{\cosh MZ}{M^{2}} \right] - \frac{P_{r}M^{2}\bar{u}^{2}}{c_{p}} \left[\frac{K^{2}Z^{2}}{2} - \frac{2KM}{B} \left(\frac{Z^{2} \cosh M}{2} - \frac{\cosh MZ}{M^{2}} \right) + \frac{M^{2}}{B^{2}} \left\{ \frac{Z^{2}(2 + \cosh 2M)}{4} - \frac{2\cosh M \cosh MZ}{M^{2}} + \frac{\cosh 2MZ}{8M^{2}} \right\} \right], \quad .. \quad (7)$$

where

$$\begin{split} C_1 &= \frac{P_r M^2 \overline{u}^2}{c_p} \Big[\frac{K^2}{2} - \frac{K(M^2 - 2) \cosh M}{BM} + \\ &+ \frac{4(M^2 - 2) + (2M^2 - 7) \cosh 2M}{8B^2} \Big] - \frac{\overline{u}^2 A L^2}{\alpha B} \frac{(M^2 - 2) \cosh M}{2M} , \\ &B = M \cosh M - \sinh M. \end{split}$$

The mean temperature gradient A is found by considering the overall heat balance for a differential length of the channel, which gives

From (1), (2) and (8), we get after integration

$$A = (L\bar{u}\rho C_p)^{-1} \left[q + \frac{M^2\bar{u}\mu}{L} \left\{ \frac{M^2}{2B^2} - K + \frac{M\cosh M(2M\cosh M - 3\sinh M)}{B^2} \right\} \right] \qquad (9)$$

640

Heat Transfer in MHD Channel Flow 641

When the mean temperature of the fluid is known, it is of practical importance to determine the wall temperature. Hence we form the difference between wall and mean fluid temperature as

$$T_{w} - T_{m} = AX - \frac{1}{2L\bar{u}} \int_{-L}^{L} T(x, z) u(z) dz$$

= $-\frac{1}{2} \int_{-1}^{1} G(Z) u(Z) dZ.$... (10)

Substituting for G, A and u from (7), (9) and (1) respectively in (10), integrating and rearranging, we have

$$T_{w} - T_{m} = \frac{qL}{\lambda} \Phi(M) + \frac{P_{r}^{2}R^{2}\nu\alpha}{L^{2}c_{p}} \psi(M, K), \qquad (11)$$

where

$$\Phi(M) = \frac{(M^2 - 2)\cosh M}{2BM} - \frac{3M^2 - 9\cosh M \sinh M + M(M^2 + 1)\cosh^2 M}{6MB^2} \dots (12)$$

$$\psi(M,K) = \frac{M}{B} \left(\frac{M^2}{2B^2} - K + \frac{2M\cosh^2 M (M - \tanh M)}{B^2} \right).$$

$$\cdot \left(\frac{(M^2 - 2)\cosh M}{2} - \frac{3M^2 - 9\cosh M \sinh M + M(M^2 + 6)\cosh^2 M}{6B} \right) + \frac{K^2 \cosh M}{6B} (M^3 - 3 \tanh M.(M^2 + 2) + 6M) - \frac{-\frac{KM^2}{3B^2} (3M^2 - 9\cosh M \sinh M + M(M^2 + 6)\cosh^2 M) + \frac{M^3 \cosh M}{3B^2} \left(\frac{M^2 + 2}{3} - \frac{(33 + 8M^2)\tanh M}{8M} + \frac{M^2 + 6}{6}\cosh 2M - \frac{M^2 + 6}{2M} \tanh M \cosh 2M - \frac{-\frac{9\sinh 2M}{8M} - \frac{\sinh 3M}{24M\cosh M}}{24M\cosh M} \right).$$

$$(12)$$

To obtain the mean temperature at a particular x-position, measured from the channel entrance, we integrate equation (10) and obtain

$$T_{m}-T_{0} = \frac{x}{P_{r}R} \left\{ \frac{q}{\lambda} + \frac{(P_{r}R)^{2}\nu\alpha}{L^{3}} \left[\frac{M^{2}}{2B^{2}} - K + \frac{M\cosh^{2}M(2M-3\tanh M)}{B^{2}} \right] \right\}, \qquad \dots (14)$$

where T_0 is the mean temperature of the fluid entering the channel.

Figure 1. $\phi(M)$ vs Hartmann number M.

In order to know the variation of $T_w - T_m$, the functions $\Phi(M)$ and $\psi(M, K)$ are calculated for M = 2, 4, 6, 8, 10, 12 and K = 0, 0.2, 0.4, 0.6, 0.8, 1. $\Phi(M)$ is shown in figure 1, whereas the numerical values of $\psi(M,K)$ are entered in table I.

Table 1 V	Val	lues	of	ψ	(M)	, K	1
-----------	-----	------	----	--------	-----	-----	---

М				
K	2	4	6	
0	-25	92	3861	
0.2	-28	82	3835	
0.4	-31	72	3810	
0.6	34	62	3785	
0.8	-37	52	3761	
1.0	41	42	3737	

CONCLUSIONS

An increase in K leads to a decrease in $\psi(M, K)$ whereas it increases with M.

REFERENCES

Alpher, R. A., 1961, Int. J. Heat Mass Transfer, 3, 108.

Siegel, R., 1958, Tr. ASME, J, Appl. Mech., 25, 415.

Soundalgekar, V. M., 1968, Proc. Nat. Inst. of Sci. India (in press).

Sutton, G. W., and Sherman, A., 1965, Engineering Magnetohydrodynamics, McGraw Hill Book Co., New York, 345.

Yen, J. T., 1963, Tr. ASME, J. Heat Transfer, 85C, 371,