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ABSTRACT. In this paper wo have studied the ollot t of finite conductivity and vari- 
iible density on the radial oscillations of an infinite cylinder in the presence of a magnetic field. 
We find that the offer, t of vtiriablo density is to increase tlio frfHpiency of pulsations and tJû effec t 
of finite but larger conductivity is to damp the mecliani(‘al and the magnetic oscillations, 
llcsides damping the pulsations, the olToiit of finite (̂ ondmdivity is to produce variations in 
ilie pliaso of both mochanical and magnetic oscillations.
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I N T R O D U C T I O N

The probhim of radial pulsations of an infinite cylinder in the presence of 
magnetic field has been extimsively investigated due to its importance in many 
asirophysical phenomena. Chandrasekhar and Fermi (1953) first considered the 
liroblem in the presence of a constant magnetic field assuming the cylinder to be 
infinitely conducting. Lyttekens (1954) reconsidered the problem in the presence of 
a magnetic field var3ring as the square root of the pressure. Chopra and Talwar 
(1955) studied the problem in the presence of a more general magnetic field of 
vrhich the field considered by Lytekens (1954) is a particular case. Gurm (1961) 
discussed the problem with variable density in the presence of a non-uniform 
niagnetic field parallel to the axis of the cylinder. Hans (1966) has considered 
th(5 problem of radial pulsations in the presence of helical currents assuming the 
density to be uniform. Recently Srivastava and Kushwaha (1966) have studied 
tlie pulsations of an infinite cylinder with variable density in the presence of a heli- 
niagnetic field. However, the magnetic field assumed there gives rise to a volume 
current which vanishes at the axis but tends to infinity at the surface.

All the above mentioned authors have taken the conductivity to be infinite, 
"fhe effect of finite conductivity was first taken into account by Bhatuagar and 
% paul (1957). They have shown that large but finite conductivity docs not 
change the period of pulsation but damps the mechanical and magnetic pulsations 
^̂ d also produces a variation in phase in both of them.
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In the present paper we have studied the combined effects of finite oonducti* 
vity and variable density on the radial pulsations. In part A we have first solved 
the problem assuming infinite conductivity for a general magnetic field and in 
Part B we have considered the effect of large but finite conductivity for two parti­
cular magnetic field configurations.

PART A

T H R  C A S E  OF I N F I Nil TpE C 0|D U C T I V I T V

2. Description of Steady State
We consider the radial pulsations of a self-gravitating infinite cylinder of in­

finite conductivity in the presence of the following magnetic field configuration :

(o, Kr, ( l  -  J i )  }*) {r <  J{), ... (2.1)

/io"” (O, . / / . ) ( ' • >  Ji), ( 2 .2)

where the superscripts (i) and (o) denot(i inside and outside of the cylinder whoso 
radius is taken to be II and Kj Ilg and Hq are constants. We note that this form 
of magnetic field gives rise to a volume current, which however, remains finite 
on the surface o f the cylinder unlike in Srivastava and Kustwaha (1966).

We assume that the density of the cylinder varies according to the density 
law given by

Po =  Pc (^ “ (2.3)

where is the value of the density at the axis. We assume that outside the cy­
linder there is vacuum.

With the above magnetic field and density law given by (2.1) and (2.3) res­
pectively, the total equilibrium pressure inside is given by

-  g  +  ( 1 -  J ) ‘ ( 6 -  % )

+  1 - J ) } (2.4)
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3. Linearized JUqtiaticms

5 7 5

The linearized equations governing th(* variations in the physical quantities, 
in Jjagrangian description of the motion, are

^  _  1 
Po ^0

(3.1)

8p — Sp (assuming adiahatie pulsations) 
Ptt

.1)
'’o ‘''■ft

Pod'̂ S _
dP

1 curl X 8 n + c u r l  S ^ v l l A  
in i J

-= — 7 P o

'•0
(rdr,, ‘

d r 7 P » ‘J ,
dr̂ L V dr„

... (3.2)

rftd
... (3.3)

where | is the Eulerian displacement; Sp, Sp and SH are the valuations in pressure, 
(h'nsity and magnetic field respectively; r<, is the equilibrium value of the Lagran- 
gian coordinate r; M{r„) is mass of the cylinder of radius and unit thickness 
and y is the ratio of the specific heats.

The change in the magnetic field following the motion of the fluid is given by

SH =  curl (f X H „)+{i ■ V)^o

while m(ro) is given by

?»(fo) =  W o * i ' - A )

(3.4)

... (3.5)

From (3.4) we get

where H0 and are given by (2.1).

We assume that the physical quantities vary with time like exp(?wi) so that 
ĥe frequency of the pulsations is given by ai.



Then, on using (3.6) in (3.3), we get
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d
dvt•o U ro' ^ i n r j  W, W, ^  2vr~, W,

(3.7)

where f  lias now the; meaning of an amplitude.

Denoting by ^  the relative displacement and transforming the ind(;p(‘ii. 
dent variable to x, where x — eqn, (3.7) reduces after substituting tlie

—►
values o f / / q, and m{r )̂, to

x(/l+5x2+(7**+Z)x»)
dx̂  (tx

-\-x(I-{-Jx -̂{-Lx*)i/r — 0, (3.8)

where

^ =  I (n*-T^B *-2F ,5n+  - t vy

C=3I4:
D =  -1 /6
E =  3^ ... (3.9)
J’ =  6B+Fo*/y 
G =  21/4 
H  =  - 3/2
I  == l/y[a»*/^rG'Pc+4]+4B 
J — —l/y[<o*/7rG'yt>e+4]-2/y+6 
L =  2 /y -2

Fo* == fiĤ l̂̂ np,l7rOp,m-, V̂ b =  pĤ sl̂ npJnOpJî -,
Fs» = /iK^B^I4npJn0pJt .̂

The above equation is to be solved under the following boundary conditions : 

f  =  0 when rn =  0

and ^P«) «p(o) at r«
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which reduce to

and

\jr is finite at x =  0

-  0 at cr =  1,

where dash denotes differentiation with respect to x.

(3 .10)

In passing wo mention that the differential (*quation governing f , tlie ampli- 
t ude of pulsation, given in >Srivastava and Kushwaha (1966) differs from our equa­

tion (3.7) in as much as that instead of the tĉ rm in (3.7) there occurs2nrQ dr̂II  ̂ d o '»term  ̂  ̂ ^  ( ôf)* Further we note tliat the boundary condition given 477To® dr̂
there, namely, =  ijr [ijr seems to be incorrect as can be soon by(tx
])iitting Fjj — 0 in onr boundary cfmdition.

4. Integration of (3.8)
On substituting

^  S 7"̂ 0
n«o

in (3.8) and equating the coefficients of various pov(TS of x to zero, we find that 
V satisfies the indioial equation

„(v+2) = 0

which gives p =  0 or —2. In view of the b.c. that ijr must remain finite at 
a; =  0, the solution coiTesponding to v =  —2 is inadmissable. Hence, we have

^  == S (4.1)
n»o

From tho other equations we find that
o,r+i =  0 for all r

and that the coefficients are given by the recurrence relation 

4r(r+ l)^ au r+ {/+ (2r-2 )F + (2r-2 )(2r-3 )B }a2r_2  

+{J+(2r-4)G'+(2r—4)(2r-3)CKr_* 

+{i+(2r-6)JEf+(2r-6)(2r-7)Z)}aar_6 =  0. (4.2)



The series (4.1) is convergonl for 0 ^  ,r ^  1. TIm b.C (3.10) gives
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0 ... (4.3)

The equation (4.3) tog('th(T with the recurrenet  ̂ relation (4.2) determines th(‘ 
frequencies when IV* «̂ ^̂d avc given.

We hav(5 caJculatod the frequ<mcies in the follovoiig manner. After fixing the 
values of Vq̂ , Fjrj* and Vŝ , we first obtain an approximation to the correct value 
of W =  1/y (o>^lnOpc+i) from (4.3) by taking a first few terms. Using this value 
of IT as a trial value, we integrate the eejuation (3.8) numerically from 0 to 1 
using Milne’s method. This gives us the values of i/r' and i/r at x — ly which in 
general will not satisfy (3.10). Let the error be say. We then choose another 
value of W and again integrate (3.8) as above. Let the curor now bo A2. Guided 
by the magnitudes of and Ag we proceed in this manner till w(̂  get two valuers 
of W for whicli the corresponding A’s are of opposite signs. We then interpolate* 
bfdween these two values of W to get approximately the value oi' W for which tin* 
boundary condition (3.10) is satisfied. This value was further sharpened by fur­
ther interpolation and numerical integration.

The starting values of i/r and ijr' for the numerical integration were obtained 
from the series (4.1) while the corresponding values of were calculated from the 
equation (3.8) itsedf.

In table 1 we have given the frequencies for various values of F%,
F*9. We have calculated only the first modes in each case.

Table 1 
Y**5/3;

y '-s

0.2 0.1 0.1 6.7350

2.0 1.5 1.0 26.8207

0.417 0 0 7.1229

1.667 0 0 10.5845

3.75 0 0 32.00

15.0 0 0 115.5933

0 0 1.0 13.12

0 0 0.0 86.3312
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From table 1 we find that as Vb' and increase, IT increases and thus 
the frequency increases.

To find the effect of variable density, we compare our results with those given 
in Bhatnagar and Nagpaul (1957). Wo first note that, when Hs //«, the para- 
ine.ters f  and A given there arc' related to the corresponding parameters in our 
case through

V 2  ̂a and IF =  -4 2 y

where we have replaced p  by the moan density p J 2 ,  A comparison now shows 
that the frequencies in our cases are larger than the corresponding cases in Bhai- 
nagar and Nagpaul (1957). Thus w(̂  conclude that the effect of variable density 
is to increasê  the frequency of pulsation.

PART B
5. In this part we consider the radial pulsations of a self-gravitating 

cylinder whose conductivity is now takim to be finite'. We discuss the oscillations 
in the presence of two types of magnetic fields. First we consider the case of a 
uniform magnetic field parallel to the axis and then we consider a purely azimuthal 
field. In both cases we have taken the density of the cylinder to vary according 
to the*, law given by (2.3).

6. Ciise (i) : Uniform axial ynaynetic field
— ►

The initial magnetic field in this case is given by =  (0, 0, Hq) both inside 
and outside the cylinder. This is a particular case of the general magnetic field 
given by (2.1) when Hg -= and K — 0.

Th(? total equilibrium pressure in this case is 

Lineurized Equations
The linearized equations governing the variations in the physical quantities 

arc

Sp (assuming adiabatic pulsations) 
Po

1 Ẑ. M  
Po

... (6.2) 

... (6.3)



680 P. K. Shot and R. Jayakaran Isaac

+  [curl //pX dff4-curl 8H X H„]rad 
4?t

... (6.4)

d
dt S H 2 = - ^  /r  | I )+  (fp /  SH2 ) ... (6.5)*0 / 4ff/«7 rp dr„ \ “ 5r# / '

Wc assume, as before, that all the physical quantities vary with time like 
exp(«o)i!) and introduce the followng non-dimensional uantities :

'0 . ,t,
R

; =  ^/x; Pp ^ iOu_
nGp,m^

SH28Hz= "4,
Ih ’

1
4ttPc ' ^  cr (T 4nfioiIî

Equations (6.4) and (6.6) then become

(6.6)

(x^xlf)- —  ̂ 8H2]‘ xdx^  ̂ <T X dx\ dx I

Y± ^  8H,
y dx ... (6.7)

8H,\ ... (6.8)

where

W =  ? + 4  ) .7 \nOpc I

We shall assume that <r is large but finite so that the squares and higher powers 
of I lor can be neglected. Expanding the physical quantities involved in terms of

we have

T =  '?» , where S„ =  ■--- -A -
O* 7̂T/iÊCJq

s  =  So+ t8i Xjf =

w =  Fo-fTFi 8Bt =

0) — Wp+TWi

... (6.9
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80 that

=  _  ffLi 5-0, =  \ ( - ^ - f  4 ) , .
y \'̂ (̂ Pe ' JTrOpc

Subatituting (6.9) in (6.7) and (6.8) and separating the various order terms, we 
liave, after dropping the bars

-  ( « i o )

* ( ! - * * ) {  ( T f o - |  **) }

= - I  } + -V  -  '*■ "»
. . .  (6. 12)

“ ■ ■ - - J  £<*■ ‘ ^■>-•1 )

Eliminating between (6.10) and (6.12), we get

(Ax+Bsi^+Cx’̂ +Dx’)xlf\+(E+Fx^+Gx*+H3i^)f\

+  ( /* +  ~  ^

where

(6.13)

(6.14)

F =  5B-, G =  ^} ; H =  —3/2; I  =  lT o-4  4
(6.16)

J ^ ^ W o + 6 - ^  ;
r  y

Now equation (6.13) can be rewritten with the helj) of (6,12) as

# 1 + 2 ^ . )  ) + i  ) .  ... <6.16,



Eliminating from (6.11) using (6.16), we find

+{Ix-\-Jx^-\-La^)^i =  —i*̂ (l—

^  ̂ X X J

5 8 2  P. K . Bhat and B. Jayakaran Isaac

(6.17)

The equations (6.14) and (6.17) are to he solved under the following boundary 
conditions respectively :

i) a) v̂ o(̂ ) finite

b) 5ir'(l)+2jiro(l) =  0 ... (6.18)

ii) a) v5f,(0) is finite ... (6.19)

b) i!r,'(l)+2^i(l) =  ^(^„"{l)+5^^r/(l) +  3^ r̂'(l)).

Prom part A, the solution for (6.14) is

i/tq =  ^ o„a;“  where 
« - o

ajr+i =  0 for all r, and ttgr’s are given by the recurrence relation (4.2) in which 
the constants A, B, C, ... are now given by (6.15).

The presence of i in equation (6.17) leads to conclude that and ITj are com­
plex. Accordingly we set

W l~

Substituting in (6.17) and separating the real and imaginary parts, we have 

{Ax-\-B3»-irCx^^Dx'%*+(E+Fiii^+0^+Hx*%'

+(/a;-t-tfx®-fi/*®)^ =  —x(l—x̂ )x\jrQ ... (6.20)

and

-)-( /* + Jar^-fi®*)^ =  —»(1—®*)/?̂ Ĵ o

. .  (6. 2 1)



I’ho boundary conditions (6.18) now yield

a)  ̂ and rf should be finite at ar =  0

b) n i ) + 2 m )  =  0 and ... (6.22)

^ '(l)4 -2 i/(l) =. ji’"'o(l)+5vir'o(l)+3v^'„(l)-

VVe shall first solve equation (6.20). In view of the boundary conditions on 
f  at X — 0, we set
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C =  2
n̂ O (6.23)

Substituting in (6.20) and equating the coefficients of the various powers 
of X to zero, we get

1 1 0 for all r

and

4 r (r + l) /l6 , ,+ {H -(2 r -2 ) / ’ + (2 /--2 )d (2r-2 )(2»-3 )B }l»2 ,_ ,

(.{j+ (2 r -4 )6 (+ (2 r -4 )(2 r -5 )C ?}V -4

+ {L + (2 r -6 ) /7 4 -(2 ,-6 )(2 r -7 )D }V _ «

}-L{(l>2r-2— — 0.

Tsing the recurrence relation (4.2). we obtain from (6.24) 

where /)̂ r are given by

4r(r+l)Afi^r+{I+(2r-2)F+{2r-2)(2r-S)B}fi^r-t 

+ {J + (2 r -4 )«+ (2 r -4 )(2 r -5 )C }//2 r ,4  

+ {Z i+ (2r-6 )^ + (2 r-6 )(2 f-7 )Z )}A *r-«  =  0

while are given by

4 r(r+ l).4 /tjr+ {/+ (2 r—2)J’+ (2r—2)(2r—3)5}yMgr_2 

+ {/+ (2r-4 )(?+ (2r-4 )(2r-6 )< 7}//2 ,_4  

+ { i+ (2 r -6 )J ? + (2 r -6 ) (2 r -7 )D W _ ,

+/^2f-8~'Ar-4 —

(6.24)

(6.25)

(6.26)

(6.27)



Thus f  can be \vritten as

S =  V^o+«»'(*)
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(6.28)

where

v{x) =  flo S  
n«o

Applying the boundary condition (6.22) we see that, in view of (0.10)

a =  0

which implies that == ifi. Hence we conclude, as in Bhatnagar and Nagpaul 
(1957) that to our approximation the period of oscillation is unaffected by the 
assumption of finite conductivity.

We shall now solve equation (6.21) so that the parameter (i may be dot(T-
mined.

Let  ̂ =  S 
n-o

Substituting in (6.21) and proceeding as before, we get

Ojr+i =  0 for all r
and

4r(r+l)AC2r+{/+(2r-~2)i?’+(2r^2)(2r~-3)B}(72,.,

+{J+(2r~4)e+(2r-4)(2r~5)C7}C'.,r>4

+{L+(2r~6)H+(2r^6)(2r~.7)J)}C2r-c

=  16 K'’+l)®(»'+2 )a2r,-2—/9(02r-2—«ar 4)< (6,29)

from which we obtain, after using (4.2),

^2r =  ô/̂ 2i’"t"®ô 2r“hA®o/*2»' (6.30)

where p̂ r /*2r arc given by (6.26) and (6.27) respectively while Aj, is given by 

4r(r+l)4A2r+{/+(2r-2)i!’+(2r-2)(2r-3)B}A2,_2 

+{J+(2r-4)(?+(2r-4)(2r-5)C}A2,_4 

+{£+(2r-6)^r+(2r-6)(2r-7 )D }A 2r_o

=  16 r(r+l)a(r+2)yff,r+* ... (6.31)
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Thus

t! =  v^o+»o ^ S®0 n=0 B-o

6 8 5

... (6.32)

Applying the boimdary condition (6.22), we obtain, after taking into consideration 
(6.18),

4 S w®(m+ 1 )/f2„— S (« +1 )/\2n
(6.33)

S («+l)/t2„
W“ 0

On putting r =  0 in (6.30) we find that 

so that
=  1, Aq =  =  0.

7. From the relation

0> =  6L»Q-i“TCUi

„  1 ^ .
2aio

we find that the contribution to the frequency due to the finiteness of the conducti­
vity is purely imaginary. Thus there is no change in the period of oscillation but 
the mechanical and magnetic pulsations are damped. The damping time is given 
by

(7.1)

Besides damping this pulsations, the effect of finite conductivity is also to 
produce variations in the phase of both mechanical and magnetic pulsations. 
The variation in phase of ijr, for example is given by

tan;\; =  ^ (7.2)

while the variation of phase in magnetic field is given by



8. Case (ii) : In this case we have taken the initial magnetic fields as 

=  (0, Kr,0) r <  i? 'j
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=  (  0, ,0) r p l i  I
. . .  (8 .1 )

which is a particular case of (2.1) and (2.2) with H, — Ho — 0.

With the density law given by (2.3), the t.otal equilibrium pressure is

“ in I 12 \ W l  /?» /

+■ 8n i i ) ‘ -

9. Linearized Equations :

The linearized equations relevant to this case are

and

(8 .2 )

(9.1)

m ,  -  » ) - ! §  [  I  ] - 2  W ) }.  ... (»■»

Proceeding exactly as in case (i) by setting 

the equations determining the zeroth and first order quantities are

... (9.3) 

... (9.4)
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and

+ (9.6)

m ,,  =  4  (I - x m ^  M  ] • ... (9.6)

Illuminating SUĝ  from (9.3) using (9.4), we get 

(Ax-^Bx^+Cx^+Dx'’ )i^f+(E+Fx^+ax^+H!>fi)f'g 

+{Ix+Jx^+iiX^)'^„ =  0

where
(9.7)

A =  F,>+ j| E =  M /  =  W,+<tB

1/2
B -  •; -(i+ t^ ** ) 

y
V *F  =  6 5 + 1 ±
7

J =  -W o + Q -— ..
7

. (9.8)

4 - 2
y

^ - 1

Similarly eliminating SHê  from (9.5) using (9.6) we obtain 
{Ax+Bx»+Cx^+I>x'’)^\+(f-+t'x^+Ox*+Hxfi)i/f\

■i-{ixA-Ji^+Lx^)t^i — —* (i—x®)ŵ iy/-„

+ iIA ^  ifiilrgi*+13x^ f̂ii+i2xfo**+‘iOi/ro]- ... (9.9)

Equations (9.7) and (9.9) are to bo solved under the following botmdary
conditions:

and
^0 ^ 1  should remain finite at x =  U

fo+}fro  =  0 at X =  1,

r i ( i ) A - n i )  =  W "(l)+ 8 l^ o '( l)+ 1 9 l^ o (l) )

... (9.10)
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From part Ay the solution of equation (9.7) satisfying the boundary condition 
is given by

^0 =  S
n-o

.. (9.11)

where the coefficients ag are related by the recurronco relation (4.2) 
To solve (9.9) we set, as before

V̂ i =
Wi =  a+i/?.

Proceeding as in case (i) we find that
a =  0

and that /? is given by

4 S  n(n+l)(2a+l)/?2„- S (2»+l)A2„
n«o n*»o

(9.12)
S (2nH-l)Aa„
B-O

where and /i.„ are given by (6.26) and (6.27) respectively, while Ag, are given by 
the relation

4(r+l)vlAgr+{/+(2r-2)P+(2r-2)(2r-3)B}Agr_a 

+{J+{2r-i)Q +{2r-4){2r-5)C }A ^r-i 

+{£+(2r-6)J?+(2r-6)(2r-7)D}Agr-6 

_ 8 P . -r(r-fl)(r+2)(2r+l)/7gr. (9.13)

Thus in the case of a purely azimuthal magnetic field also there is no change 
in the period of oscillation due to the finiteness o f conductivity but the mechanical 
and magnetic pulsations are damped thus indicating the generality o f the results 
obtained here and in Bhatnagar and Nagpaul (1957). The damping is given 
as before, by

... (9.14)

where, o f course, fi is now given by (9.12).
In table 2 we have given the values o f /3 and the damping time 

for some of the values of Fo* and F,^ discussed in part A.
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Table 2

589

V  2 W o /!  -

1.067 — 10.5815 80.7124 .170

3.75 — 32.00 185.8800 . 157

— 1.0 13.12 1.2807 8.3314

— 9.0 80 3312 140.2818 0..5738

From table 2 we find that as the strength of the magnetic field increases the 

dam])ing time decreases. W o also find Uiat by comparing the first two values of 

(lamping times in table 2 with the corre.sponding value's in Bhatnagar and Nagpaul 

(lOoV) that due to variable density the damping time decreases.

I n passing we mention that the present problem may be also rt'gardcd as the 

investigation of the stability of the cylindrical stratified system with Helical 

inagnctic fiidd under radial disturbances. That is, the disturbances in the direc­

tion in which tlu're is iuhomogeneity in density and magnetic field. The role of 

finite conductivity i.s to increase the stability by damping the disturbances.
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