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ABSTRACT. In this paper we havo studied the offoct of finite conductivity and vari-
ablo density on the radial oscillations of an infinite ¢ ylinder in the presence of a magnetic field.
We find that the offect of variablo density is to inerease the frequency of pulsations and the offect
of finto but large conductivity is to damp the mechanical and tho magnetic oscillations.
Besides damping the pulsations, the effoct of finito conductivity is to produce variations in
the phaso of both mochanical and magnetic oscillations.

INTRODUCTION

The problem of radial pulsations of an infinite cylinder in the presence of
magnetic field has been extensively investigated due to its importance in many
astrophysical phenomena. Chandrasekhar and Fermi (1953) first considered the
problem in the presence of a constant magnetic field assuming the cylinder to be
infinitely conducting. Lyttekens (1954) reconsidered the problem in the presence of
a magnetic field varying as the square root of the pressure. Chopra and Talwar
(1955) studied the problem in the presence of a more general magnetic field of
which the field considered by Lytekens (1954) is a particular case. Gurm (1961)
discussed the problem with variable density in the presence of a non-uniform
magnetic field parallel to the axis of the cylinder. Hans (1966) has considered
the problem of radial pulsations in the presence of helical currents assuming the
density to be uniform. Recently Srivastava and Kushwaha (1966) have studied
the pulsations of an infinite cylinder with variable density in the presence of a heli-
agnetic field. However, the magnetic field assumed there gives rise to a volume
current which vanishes at the axis but tends to infinity at the surface.

All the above mentioned authors have taken the conductivity to be infinite.
The offoct, of finite conductivity was first taken into account by Bhatnagar and
Nagpaul (1957). They have shown that large but finite conductivity does not
change the period of pulsation but damps the mechanical and magnetic pulsations
%d also produces a variation in phase in both of them.
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In the present paper we have studied the combined effects of finite conducti.
vity and variable density on the radial pulsations. In part A we have first solved
the problem assuming infinite conductivity for a general magnetic ficld and in
Part B we have considered the effect of large but finite conductivity for two parti-
cular magnetic field configurations.

PART A

THR CASE OF INFINITIE CODUCTIVITY

2. Description of Steady State

We consider the radial pulsations of a self-gravitating infinite cylinder of in-
finite conductivity in the presence of the following magnetic field configuration :

QW%mm4mwm&ﬂmp—%Hvu<m 20
Hy© = (0, Kff ,H, ) r > R), 2.2)

where the superscripts (¢) and (0) denote inside and outside of the cylinder whose
radius is taken to be R and K, H, and H, are constants. We note that this form
of magnetic field gives rise to a volume current, which however, remains finite
on the surface of the cylinder unlike in Srivastava and Kustwaha (1966).

We assume that the density of the cylinder varies according to the density
law given by

2
po=pe(1-T) T <R . @23
where p, is the value of the density at the axis. We assume that outside the cy-
linder there is vacuum.

With the above magnetio field and density law given by (2.1) and (2.3) res-

pectively, the total equilibrium pressure inside is given by

Pﬂ“) = pl)“)+p0“,Mg'

o (1) (- 5)

_ M gs_pga_ _n G
= —L Hp—H; 21{%2)(1 R,) + TG

+ teprap @y (1= 5)) . @4
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3. Linearized Equations

The linearized equations governing the variations in the physical quantities,
in Lagrangian description of the motion, are

& 1 0
W= or, (70 €) o 3.1

o To

8p = 7Po §p (assuming adiabatic pulsations)
o

d
=—1Po or: (rof) . (32)

To

pod* _ 0 [ P 0 (I'of)] t 4”‘7’:(20)/’0{:

ot? org L vy dry

- o - -
& churl H,x 8I+curl 8H % Ho] (39

rmi.

where £ is the Eulerian displacement; 8p, dp and 5}; are the variationsin pressure,
density and magnetic ficld respectively; 7, is the equilibrium value of the Lagran-
gian coordinato r; m(r,) is mass of the cylinder of radius 7, and unit thickness
and vy is the ratio of the specific heats.

The change in the magnetic field following the motion of the fluid is given by

—) - — - —
8H = curl (¢ X Ho)+(&. V)H, e (34)

while m(r,) is given by

miry) = mpure (1= 3% ) - B8

From (3.4) we get
7 — _pg 9% _H. 0
SH = (0, H, c‘Tr: St = (rof))

where H, and H, are given by (2.1).

We assume that the physical quantities vary with time like exp(fet) so that
the frequency of the pulsations is given by w.
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Then, on using (3.6) in (3.3), we get

d [(vpo , pHS?\ d pHGE df 1, pHp? df
dr, [( 7o +4m'o) dr, (rof) + 41r dry ]+ 2ar, drg

- —pe <w3+ 4Gm(fo)) ¢, .. (3.7)

where ¢ has now the meaning of an amplitude.

Denoting by ¢ the relative displacement £/r, and transforming the indepen.
dent variable to x, where x = ry/R, eqn. (3.7) rcduces after substituting the

—
values of p,, H,, p, and m(r,), to

#(A-+ B+ Cat+ Da) & & V’ (B4 Fe* 4Gt Hat) “%’:

+a(I4Jx+Lat)yr —= 0, (3.8)
where

A=2 — L (V2—Vg—2Vs)+ i Vo?

i@

B=—1— (;’ — g)(voz— V,,z)—(l— .1) Vi

y
C =3/4

D= -1/8

E=34 .. (3.9
F = 5B+ TV tly

G =21/4

H= —-3/2

I = 1jy[«?*/nGp,+4]+4B
J = ~1[y[«*[nGp,+4]—2[y+6
L =2y—2

Vo = uHldnp [nQp,RY; Vig = uH2s/4np,/nGp,R?;

Vs? = pK*R%/4nmp [nGp R2.

The above equation is to he solved nnder the following boundary conditions :
£=0 when 7r,=0
and 0P = §P9 at ry=R
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which reduce to
Y is finite at £ =0
and
(Veis+V2a)yr' +(V3s4-2V2p)p = 0 ab 2 = 1, (3.10)

where dash denotes differentiation with respect to x.

In passing we mention that the differential cquation governing ¢, the ampli-
tude of pulsation, given in Srivastava and Kushwaha (1966) differs from our equa-

pH2 dé

tion (3.7) in as much as that instead of the term /=2 d in (3.7) therc occurs
<Try o
2
term 4”;0_"2 (-g— (ro¢). Further we note that the boundary condition given
T °
there, namely, 'Z'g = 1y (iy = €/R) seems to be incorreet as can be seon by

putting Vg —= 0 in our boundary condition.

4. Integration of (3.8)
On substituting

ao
=2 ap’, a, 70
n=0

in (3.8) and cquating the coefficients of various powers of  to zero, we find that
v satisfies the indicial equation

Yv+2) =0
which gives v = 0 or v= —2. In view of the b.c. that jr must remain finite at
x = 0, the solution corresponding to v = —2 is inadmissable. Hence, we have
y=% aan e (4.1)
n=0

From the other equations we find that

Qgryy = O for all 7
and that the coefficionts a,, are given by the recurrence relation
4r(r+1)Aay+{I+(2r—2)F+(2r—2)(2r—3)Blasr_,
+{J+(2r—4)G+(2r—4)(2r—3)Clazr_,

+{L+(2r—6)H-+(2r—8)(2r—7)D}ayr_s = O. .. (4.2)
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The series (4.1) is convergent for O L & < 1. The h.C (8.10) gives

VS'Z_*_ VBz

41 T VBHE op = O e (4.
at 2 (1 h2r s )ﬂ_r (4.3)

The equation (4.3) together with the recurrence relation (4.2) determines the
frequencies when V2, g% and Vg? are given.

We have caleulated the frequencies in the following manner.  After fixing the
values of V2, Vp?and Vs?, we first obtain an approximation to the correct value
of W = 1]y (0?*n@p.+4) from (4.3) by taking a first few terms. Using this value
of W as a trial value, we integrate the equation (3.8) numerically from 0 to 1
using Milne’s method. This gives us the values of ¥’ and ¥ at z = 1, which in
general will not satisfy (3.10). Let the error be A,, say. We then choose another
value of W and again integrate (3.8) as above. Let the error now be A,.  Guided
by the magnitudes of A, and A, we proceed in this manner till we get two values
of W for which the corresponding A’s are of opposite signs. We then interpolate
between these two values of W to get approximately the value of W for which the
boundary condition (3.10) is satisfied. This value was further sharpened by fur-
ther interpolation and numerical integration.

The starting values of ¢ and ¥’ for the numerical integration were obtained
from the series (4.1) while the corresponding values of " were calculated from the
equation (3.8) itself.

In table 1 we have given the frequencies for various values of V2, V2p and
V3s. We have calculated only the first modes in each case.

Table 1
v=5(3; a,=1

V2o vig Vg W= 1/7(1‘_3%: +4 )
0.2 0.1 0.1 6.7356
2.0 1.5 1.0 26.8207
0.417 0 0 7.1229
1.667 0 0 16.5845
3.75 0 0 32.00
15.0 0 0 116.5933

0 0 1.0 18.12

0 0 9.0 86.3312
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From table 1 we find that as V.2, V?and V¢ increase, W increases and thus
the frequency increases.

To find the effeet of variable density, we compare our results with those given
in Bhatnagar and Nagpaul (1957). We first note that, when H, = I, the para-
meters f and 4 given there arc related to the corresponding parameters in our
casc through
Y+

Y

P

Vo2 = Zf and W =

where we have replaced p by the mean density p,/2. A comparison now shows
that the frequencics in our cases are larger than the corresponding cases in Bhat-
nagar and Nagpaul (1957). Thus we conclude that the effect of variable density
is Lo inecreasc the frequency of pulsation.

PART B

5. In this part we consider the radial pulsations of a self-gravitating
eylinder whose conductivity is now taken to be finite. We discuss the oscillations
in the presence of two types of magnetic fields. First we consider the case of a
uniform magnetic field parallel to the axis and then we consider a purely azimuthal
field. In both cases we have taken the density of the eylinder to vary according
to the law given by (2.3).

6. Case (¢): Uniform axial magnetic field

e 3
The initial magnetic field in this case is given by H, = (0, 0, H,) both inside
and outside the cylinder. This is a particular case of the general magnetic field
given by (2.1) when H, == H, and K = 0.

The total equilibrium pressure in this ocase is

nGp2R? r2 \? 272 pH? .
P = _,15_ (j-_ R_z) (5_ P + _8_""_. ... (6.1)

Linearized Equations

The linearized cquations governing the variations in the physical quantities
are

op = 7% 3p (assuming adiabatic pulsations) ... (6.2)
o

o1 9 4o . (8.3)

Po 7y Oro
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2 0 | Ypy ]_A 4Gm(ro)py
o ope or, l. 7o (ref) |4 7o2 ¢
P - - =
+ e {eurl 11, x éHL-curl 6H X Hylraa ... (6.4)
) _ _H, 0 ( a¢ 1 1 0 ( i}
o = 7:55’%ﬁ+ﬁﬁaa%”wmam) e (69)

We assume, as before, that all the physical quantities vary with time like
exp(iwt) and introduce the following non-dimensional uantities :

_-;:r.o_ Y, = [/ pO‘ M H = 8_}!2
S R R Ry R A

1 1

r o JUHG .. 8 .
Vo= 4”/)‘: | 7Gp R o o Inpak (6.6)

Equations (6.4) and (6.5) then become

—ay (W22}~ - ¢ [P Vo? d

wi—a) (W= )y = - B @ypjt CLoH . (6)
= 1d . iS1 df d
o, = — 1 @)— = (v o) . (68)

where

We shall assume that o is large but finite so that the squares and higher powers
of 1/o can be neglocted. Expanding the physical quantities involved in terms of

_8 v 1
T = o._.‘! , where 8, = i;rﬁ?%;
we have
‘q = So"I’TSl w = ¢‘0+1¢.l see (6.9

w = wy+Tw,
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so that

= 1 2wow
S S,W_ ( Do 4 = “%o%
1= 0 [} Gc ) 1 ;c.

Substituting (6.9) in (6.7) and (6.8) and separating the various order terms, we
have, after dropping the bars

3]
x(l—w”)(W —5® ) Yo ==— d%[ ,“;x (2%9r,) }+ _;2. ;x 8H;, ... (6.10)

m(l—x“){ ( Wo——jz; z’) Uit Wib, }

= -2 3P0 & Vi 4
dz { x dx( #) } v dz (6.11)
=1 4 ..
8Hyy = : o= (x2,) ... (6.12)
1 s y_:1 @ d
oMo =—1 & @il (= & o ) .. (8.13)
Eliminating 0H,, between (6.10) and (6.12), we get
(Az+ B34 C28+ Dz )" o+ (E+ Fa2+ Gx -+ Had)yr 'y
+ (I} Jad+ Lad)yfy, == O ... (6.14)
where
=V b - 1. 0=.9. — 1. p_34
A_*—);—+i'2’ B— 1’ C—_4s D GQL 3
F—=5B; G—= il s H=— —3/2; I=W,—1 ... (6.15)
J= —Wot6—2; L=2 2
Y Y
Now equation (6.13) can be rewritten with the help of (6.12) as
- ay. i (290 5@ V0 30 .. (618
o= (= Wrtoyy )41 (2 QLB ) (6.16)

2
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Eliminating 6H,, from (6.11) using (6.16), we find
(Az+ Ba®+Ca5 4 Do)y "+ (B4 Fat 4 GaA+ Had)y',
+(lx+ J2¥ - Lad)y, = —a(1—2 )Wy,

pg i3 3
-1 —‘)-;0- { TPt 6i! . Wo“"‘;a 'ﬁo‘}- (6.17)

The equations (6.14) and (6.17) arc to be solved under the following boundary
conditions respectively :

i) a) y,0) is finite
b) ¥'(1)+2¢4(1) =0 . (6.18)
i) &) yy(0)is finite e (6.19)
b) Y/ (H)+2¢(1) = (o " (1)+5¢,"(1)+3¢'(1)).

From part A, the solution for (6.14) is

®
Vo= X a,2® where
n=0

g, = 0 for all 7, and a,,’s are given by the recurrence relation (4.2) in which
the constants A, B, C, ... are now given by (6.15).

The presence of ¢ in equation (6.17) leads to conclude that ¢, and W, are com-
plex. Accordingly we set

Y=+
W, = a+tip.
Substituting in (6.17) and separating the real and imaginary parts, we have
(Az+ B+ C2+ D) -+ (E+ Fa*+ Gt + Ha®)'
+(Iz+J28+Lat) = —z(l—a?)ayf, .. (6.20)

and
(Az+ B3+ 028+ De?)y" +(B+ Fa?+ G2t Had)y'

+(Iz+ Jo?+ Lty = —z(1—2*)B8y,

+_I;.f_{ x¢‘o"+6’ﬁo“‘+g Vo' — 3 Wo} .. (6.21)
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The boundary conditions (6.18) now yield
a) ¢ and 9 should be finite at x = 0
b) &1)4+-2¢1) =0 and .. (6.22)
7(1)4-29(1) = " o(1) -5 (1) 43y o(1).

We shall first solve equation (6.20). In view of the boundary conditions on
tat x =0, we set

=23 b2 .. (6.23)

n=0
Substituting in (6.20) and equating the cocfficients of the various powers
of  to zero, we get

byrq = 0 for all »
and
4r(r 1) Abgr +{I4-(2r —2) F +(2r — 2) 4 (2r—2)(2r —3) B}byy_,
H{J+(2r—4)G+(2r—4)(2r—5)Cbyr_,
+{L+(2r—6)H+(2,—6)(2r—T)D}byr 4
+ L{gr_g—agr_q) = 0. (6.24)
Using the recurrence relation (4.2). we obtain from (6.24)
bor = Parbytaptertty (6.25)
where f3,, are given by
Ar(r+1) A By +{I+(2r —2) F+(2r—2)(2r—3) B} fyr s
{T+(2r—4)G+(2r —4)2r—B5)C)far_y
+{L+(2r—6)H+(2r—6)(2r—7)D}far_4 = 0 (6.26)

while u,, are given by
4r(r+1)Apgr+{I+(2r—2)F +(2r—2)(2r—3)B}ttyr—»
I+ (@r— )G+ (2r—4)(2r—5) Yo
H{L+(2r—8)H-(2r—8)(2r —T)D}igr-s
+Bars—Bar—e = 0. (6.27)
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Thus £ can be written as

= Zﬁ Yo+ ow(x) .. (6.28)
0

where

v(x) = a, Eol‘nxa"-

Applying the boundary condition (6.22) we see that, in view of (6.10)
a=0

which implies that W, = i8. Hence we conclude, as in Bhatnagar and Nagpaul
(1957) that to our approximation the period of oscillation is unaffected by the
assumption of finite conductivity.

We shall now solve equation (6.21) so that the parameter £ may be doter-
mined.

Let 9= § C,xn.
n=0

Substituting in (6.21) and proceeding as before, we get

Cory3 =0 for all
and

4r(r+1)ACy+{I+(2r—2)F+(2r—2)(2r—3)B}Car _,
+{J +(2r—4)G+(2r—4)(2r—5)C}Clr_,
+{L4-(2r—6)H+(2r—6)(2r—7)D}Cyr_

=16 70" (r 1) +-2)agr 1y —Blagy_g— gy ). (6.29)

from which we obtain, after using (4.2),
Cyr = Cyflpr+aghor+PBaypior .. (6.30)
where f,, and g,y arc given by (6.26) and (8.27) respectively while A,, is given by
4r(r4+-1) A2y +{I4-(2r—2) F 4 (2r —2)(2r—3)B}A,,_,
(T +@r— 4G+ (2r—4)(2r—B)CY Ay _,
+H{L+(2r—6)H+(2r—6)(2r—7)D}Ayr_q

=16 I’;g_’. P+ 1)2(r4-2)Bar.e e (6.31)



Radial Pulsations of an Infinite Cylinder 6585

Thus
1=2otay ¥ Apa™+fag X pyeat™. . (6.32)
0 n=0 7n=0

Applying the boundary condition (6.22), we obtain, after taking into consideration
(6.18),

4% KRR A T (n+1)A,,
n= n=0
= (6.33)

Z (e,
n=0

On putting » = 0 in (6.30) we find that

o = CoflotaeAo-t-Payp,
%o that
Bo=1, Ag=p,=0.

7. From the relation

w = wy+Tw;

wo 172"590 8,
(1]

we find that the contribution to the frequency due to the finiteness of the conducti-
vity is purely imaginary. Thus there is no change in the period of oscillation but
the mechanical and magnetic pulsations are damped. The damping time is given
by

1 4
=8 Rza[ ﬁ(W—-—)]. . (11
7’:” 3 [} v ( )

Besides damping the pulsations, the effect of finite conductivity is also to
produce variations in the phase of both mcchanical and magnetic pulsations.
The variation in phase of ¥, for example is given by

tan y = ’%" e (1.2)

0

while the variation of phase in magnctic field is given by

-3 (e santesatin) o = em)

tan Xg= ———- -— - —_— —

( d![fo +2!/’o)
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8. Case (¢3) : In this case we have taken the initial magnetic fields as

H,® = (0, K, 0) r< R ]
fime(1520) ran |

which is a particular casc of (2.1) and (2.2) with H, = H, = ().

With the density law given by (2.3), the total equilibrium pressure is

p”(i)z'"‘_%@i( l——R—z)‘i""!%zj}"(l P") (5_ %’:)
+”K8j'rR2(kr— )2. .. (82

9. Linearized Equations :

The linearized equations relevant to this case are

x(l-—-x“‘)( W— .;“’,xz Jo = —é_’x {29 % () }

x
Ve d
+ 2 { 4 (z8H0)+28H9} . (@)
and
8H9=—z.-(x»,0) S d‘i[; ; oH, | -2 o () b .. (92)

Proceeding exactly as in case (i) by setting
¥ = Yot1Y, ete

the equations determining the zeroth and first order quantities are
2 _d 2
z(1—at) (W., -3 x") =g { - (@ )}
Vi[ d . (03
+ T{ a;(”"ﬂao)‘i'z&Hoo} (9.3)

8Hyy = —xd.g (zro) . (9.4)
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and
3’(1—32){ (Wo_f; x’) i+ Wi, }= “(%{ g—q 3—3; (ngl,-l)}
ng d
+ Y {;ﬁ (x51191)+23H91}; .. (9.5)
. _..d fd 41 d o dz
0Hy = —zf (x#rl)—z{ = (x“ 75 Pl —2-3 5 (@) ] . (9.6)

Eliminating 817y from (9.3) using (9.4), we get
(Az+ Bx®+-Cax®+ D)y " +-(E+ Fx*+ Gat+ Hab)y'

+(Iz4JaLadyp, = 0 .. (9.7)
where
A=Vet E=34 I = W,+4B
V2 Ve 2
=Y a4vy F—sBy Y J=—Wetb—2 ... (98
=1+ , ot (08)
_3 ,_ 21 2
c=3 ¢=2 L=2—2
=L o3
D=-1 He-3

Similarly eliminating dHg, from (9.5) using (9.6) we obtain
(Az+Ba®+ Cab+ D2y "+ (E+ Fa* 4 G+ Hab)y',

+{Iz+J2¥+ Lat)yry = —a(l—2? )Wy,

V

o
Y

i {a:’z/ro“’-l-131:21/r,,“‘+42a:¢°“+30¢0 } . (99)

Equations (9.7) and (9.9) are to be solved under the following boundary
conditions :

Vo and ¥, should remain finite at = 0
and Yo+yYo=0at z=1, . (9.10)
i) +1) = i('/’om(l)‘l's'/’o"(l)+10'/"o(1))
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From part A4, the solution of equation (9.7) satisfying the boundary condition
is given by

'ﬁ-o —_— i aznxgﬂ ey (9.11)

n=0

where the coefficients a, are rclated by the recurrence relation (4.2)
To solve (9.9) we set, as before

Yy =+
Wl = a+iﬂ.
Proceeding as in case (i) we find that
a=0
and that g is given by
43 n(n+1)(2n+1)fp— T (2n4-1)Az,
n=0 n=0

§ = _ _ (9.12)
)3 @nt1)

where f,, and s,, are given by (6.26) and (6.27) respectively, while A,, are given by
the relation

4(r+1) Ay + {1+ (2 —2)F-+ (2 —2)(2r—3)B} Agr_y
+{J +(2r—4)G+(2r —4)(2r —5)C}Agr_,
+{L+(2r—6)H+(2r—6)(2r—T7)D}Agr_¢

=8 £ 1)r4-2)2r+1)Byr (9.13)

Thus in the case of a purely azimuthal magnetic field also there is no change
in the period of oscillation due to the finiteness of conductivity but the mechanical
and magnetic pulsations are damped thus indicating the generality of the results
obtained here and in Bhatnagar and Nagpaul (1957). The damping is given
as before, by

1 4
to=8muR%o | =, | Wy—— .. (9.14
o muRio [ﬂ ( =5 )], (9.14)
where, of course, £ is now given by (9.12).

In table 2 we have given the values of # and the damping time £,/8mul’"
for some of the values of V2 and V,2 discussed in part A.
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Table 2
1.667 — 16.584h  80.7124 176
3.75 —_ 32.00 185.8800 L1567
—_ 1.0 13.12 1.2807 ) 8.;314
-— Q:; N _8;;3;1; 146. 28-13 -‘0—. 5738

From table 2 we find that as the strength of the magnetic ficld increases the
damping time decreases. We also find that by comparing the first two valucs of
damping times in table 2 with the corresponding values in Bhatnagar and Nagpaul
(1957) that due to variable density the damping time decreases.

In passing we mention that the present problem may be also regarded as the
mvestigation of the stability of the eylindrical stratified system with Helical
magnetic field under radial disturbances. That is, the disturbances in the direc-
tion in which thete is inhomogeneity in density and magnetic field. The role of
finite conduetivity is to increase the stability hy damping the disturbances.

ACKNOWLEDGEMENT

We arc extremely grateful to Prof. P. L. Bhatnagar for suggesting the pro-
blem and for his invaluable guidance and encouragement during the preparation
of the manuscript.

REFERENCES

Bhutnagar, P. L. and Nagpaul 8. R., 1957, Zeit. fur Astrophys., 43, 273.
Chandrasckhar, 8. and Yermi, E., 1953, Ap. J. 118, 116.

Chopra, K. P. and Talwar, 8. P., 1955, Proc. Nat. Inst. Sei. India, A21, 302.

Gurm, H. 8., 1061, Proc. Nat. Insi. Sci. India, A21, 349.

Hans, H. K., 1966, Proc. Nat. Inst. Sci. India, A32, 251.

Lyttekens, E., 1954, Ap J. 119, 413.

Srivastava, K. M. and Kushwaha, R. §., 1966, Proc. Nat. Acad. Sci. India, A36, 33.



