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ABSTRACT. Some propertios of tho conductivity matrix of the genoralisod Kirchhoft's
laws for continuous media have been deducod. The diagonal elements of this matrix ave
shown {o be all positive and non-diagonal elomenta all nogative.  For the usual network of
resistors the non-diagonal elements are identified with the branch conductances with nogative
sign. The two distinet approachos for studying the amplification of vacuum tubes are re-
conciled. The two well-known theorems in network theory are deduced from tho generalised
Kirchhoff’s laws.

INTRODUCTION
The generalised Kirchhoff’s laws for a continnous  conducting  moedium of

specific conductivity « and having m olectrodes embeddod in it can be oxpressed
in the following matrix equations (Mitra and Roy 1966)

J = CV—VC
1
1 -
J o1 ]=7
1

where (i) J represents the cross-current matrix, (ii) ¥ the voltage matrix, a diago-
nal matrix, with its clements v, v,, . .v,,, the potentials on tho m olectrodes, (iii)
C is the conductivity matrix, which is symmetric and depends on the geomotry

of tho system, (iv)?:—: (%15 %, - - iy) i8 tho current (column) vector whose elements
are the total current flowing into the electrodes from outside sources. When the
continuous medium degenerates into a network of line conductors, the elements
of the conductivity matrix can be easily identified with the reciprooal of the resis-
tances of the elements of the network (but with reversed sign*) by means of the
macroscopic Ohm’s law.

*In our earlier paper Indian J. Phys, (1866), 50, 38, 2nd para the relation should read Cis
— 1/Ry, instead of Oyg=1/Rys.
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Generalised Kirchhoff’s Laws 569

In this paper wo shall first deduce some properties of the elements of the con-
ductivity matrix ¢’ and then give a proof of the weall-known thoorems of Thovenin
and Norton in network theory.

1. Theorem : The diagonal elomonts ¢y of the conductivity matrix ¢ aro
all positive and (ii) the nondiagonal elements ¢y; areé all negativo.
Tho first part is casy to prove from the quadratic form for viz,

[10 graag)ar — — 5 g1 ¢ %= as

=15,

4n .
= X vy
K 11

7} L
where Em denotos derivative along the outward drawn normal as usual.
n

Since, =

m

2 i =0 (0 = (] | grad g% > 0

— -—
Thus the quadratic form »° € v is positive semi-definite, and therefore,
ty 22 0.
The second part is not so ohvious and the proof is somewhat elaborate. To
1™
0
obtain the first column of (! it is to be multiplied by the unit vector

Physically it means that the first column of €' represents thoe total currents flowing
into the electrodes when the first electroded is kept at unit potential and the rest at
zoro potential, that is, v, = 1, v, = v3= .. = v, = 0. By Earnshaw’s theorem
the potential function ¢ cannot have any maximum or minimum in the rogion
outside the surfaces S,, 8;, S, .., S, Since the potential function is a contimi-
ous function in this region, which is a closed rogion enclosod by Sy, it must attain
its upper and lower bounds within it or on the boundaries of the region. Sinco
Earnshaw’s theorem excludes the possibility of the upper and lower bounds oc-
curring within the region, therefore it must be on the boundary of the region.
The largest; value of the potential is 1 and occurs on the first surface and the lowest
i8 0 on the other surfaces. In the immediate noighbourhood of the first surface

a
8. the potential ¢ must be less than the potontial on S;. Thus g; * must be

throughout negative on S, and positive on Sy, Sy, . ., Sm; because an equipotential
7
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surfaco must oxist in the neighbourhood of 8, and cannot have common points

with §; which excludes the possibility of 0(%: = 0 at any point on 8.

Thus the current donsity A; == — « (Z;f: = 0 and Ag, A, .., Ay are all -0,

Cy o= AdS -0

&

Coy - - ff /\._,(lb' -0

N,

Cy — _]'j AgldN < 0

N3

For othor electrodes this property can be similarly established. Hence the theorem
is proved.

This proves also that tho current density matrix A(s) has positive elements
on the diagonal and nogative elements in the rest, cxcepting the Oth diagonal ele-
ment, which may be of arbitrary sign.

The elements of ' are thus analogous to the co-officients of electrostatic
capacity. The only differenco is that the sum of the clements of a column (ur
row) of C is 0.

As has been shown in our earlier work, the cross-oloments for a network of resis-

. . —1 . . .
tors, 1# the same as the conductance of the resistor R, connocting the sth and jth
ij
node, but with a negative sign. Since c;, have boon proved to be negative,
the identification with the conductance is compltely free from any ambiguity.
hocause the resistances must be positive quantitios.

Application to Thermionic T'ubes: This identification nicely reconciles the
two distinct approaches for studying the theory of amplification in thermionic
valves, viz, in terms of the electrostatic capacities betweon the electrodes or by
means of the transconductances. Wo have shown just now that these are identical
in magnitude but opposite in sign. But, there is one essential difference. The
elements of the conductivity matrix are not exactly identical with the usual co-
efficients of capacity betweon tho electrodes, unless the medium is infinitely
extended (Mitra and Roy 1966). For a clearcr understanding, let us suppose
that the conductivity of the medium x be reduced to 0 in the limit, keeping the
potentials undisturbed. Thoe problem then reduces to a purely electrostatic
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problem of finding the potential fanction ¢ with the samo boundary counditions (i)

)
@ = vy, V3, .. ¥y 0N the electrodes and (ii) (Tf — 0 on the outer houndary S, of the
«

modium. This problem is identical to the current flow problom discussod in the
carlier work. Here a capacity matrix say, Q takes the place of the conductivity
matrix (" and these arc identical oxcopting for the constant factor x, which is
present as a constant multiple in cach clement of (' ie., (! = @ (noto : this Q
should not be confused with the @-matrix mentioned in the earlier work). Tho
clements of @ are tho co-efficients of clectrostatic capacity for this particular

oy O
houndary value problem with 0p _ 0 on a surface 8, enclosing the conductors

y

Sy, 8, .. 85 Only when this enclosing surface is extended to infinity, that tho
olements of @ will become identical with the usual co-efficients of eloctrostatic
capacities. The diagonal eloments of @ will be larger than the co-cfficients of self-
capacity. In fact, the effect of the enclosure is neglected when the theory of the
amplification of thermonic tubes are studied from the electrostatic view-point

(Spangenberg, 1948,).

3. The Form (5) Kirchhoff’s Laws for a Network : For a network containing
resistors, the generalised Kirchhoff's laws have to be modified a little, as in this
caso the elements of the conductance matrix aro to be identifiecd with the branch
conductances with negative sign. Denoting by g¢; the conductance of the resistor
connecting the ith and jth node (that is the reciprocal of the resistance Ry)). the
Kirchhoff’s laws become

J = VG—GV L)
]

J ‘ _= )
1.

where @ is the conductivity matrix having its cross elements, g,9, 93, - - all positive
and the diagonal clements, g;; all negative and are equal to the row sum (or column
sum) of the sth row, with reversed. sign, that is

gii = —(9n+ i+ - +9im) .o (3)

When two nodes (say the ith and jth) arc not connected by any resistor, gy; = 0.
Since,

) l =0 .o 4)
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. .
T=J =va—av) | - | = —Go .. ()
1 1

It is obvious that both the Loop and Nodal laws of Kirchhoff aro implicit
in the two equations (1) and (2) and equation (5) is the result of combining the two
laws. The conductivity matrix @ is symmetric and singular, the diagonal elo-
ments being tho nogative sum of the conductivities of the elements of the corros-
ponding row or column (that is, the negative sum of all the conductivities of tho
branches connecting the particular node). A node, say, the kth which is connected
to a source, we call it ‘live’, is distinguished from the ‘floating’ nodes by having the
current flowing into i from outside, viz, 3, by i; # 0.

Proof of Thevenin Theorem : Now we proceed to prove the Thovenin Theorom
from equation (5). Let us suppose that the first £— 1 nodes are connected to sources
that is, i, %y, .., %_, are = 0. The remaining nodes from k onwards are floating,
viz, # = i, = .. = iy = 0. Tho equation (5) takes the form in this case,

—1 = g+t -+ imt'm

= 1y = g1 +G20V2 4« -+ Jomlm

ey ™ Gee1 101 Gk—ps 2Pt - Fh1s .. (6)
0 = Gp. 1"+ Gksplat - -+ mUn
LR/ IPRRUIE of PTRTCPS SR of /NN

0 = g ¥1+Ima¥st - - +gmmVm

The voltages on the ‘floating’ nodes k, k41, .. m are linearly dependont on
the voltages on the ‘live’ nodes v, v,, . ., ¥;_, and can be determined in terms of
these from the kth to the mth equations. Let the matrix G be partitioned at the
(k—1)th row and (k—1)th column

¢ D
Q= ( ) .. (7)
D' @G,

where the partitioned matrices ¢, and G; are square matrices, G, having k—1
rows and G, having m—k4-1 rows; D, is a rectangular matrix of k—1 rows and
m—k-+1 columns and D’ is its transpose hecause G’ = G.
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Thus,
Vg o,
Vk41 vy
—_— . ’
= =G0y | . .. (8)
Um vk'—]

The branch current j,, botween two ‘fluating’ nodes, say, the rth and sth
is grs(v,—s). The Thovenin theorem givos a method of detormining this by
solving a simpler circuit problem.

But computation of the reciprocal matrix (7,1 is necossary for determinng
only two elemonts of the vector, a labour not worth doing. Some artifice can be
found for simplying the computation. Let I'; he the matrix formed from G, by
removing the (rs)th element gys. Thus,

Gz— I‘z = Gra( Kpp— J,,—~E,,+E,,) - (9

where Ey, is the matrix having 1 in the diagonal position r and F,; is the matrix
having 1 in the (r&)th position. The rth diagonal element of I, is different from
that of @, being tho sum of the elements of the rth row from which gy, has beon
romos ed. )

Now,
(1 =T, = G YT, —G) -~ T (1 —G,)E, !
No,
(1 =Ty = g4, Gy Bpp—Epy— B+ Bs) Ty
= GrsTy (Brr-—Brs — Eyr+Eu)Gy™ .. (10)
Further
— v, — — v, -
g | ()
L ';/’m ] L ;)k—l J
[~ Up T Uy -
| _ _pape| .oary
v L. Vg1 .

where g, uy,,, .. tm are the new floating voltages when the elemont gy, has heen
romoved from the network,
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Thus,
Ve —Ug -y,
Vi1 Uy g
e = —(Gy1—Ty)Dy’
Y ._“m z.umx -
- v,
Ve
= —0rel'y N Epr— Ery— Esr+E\5) Gy 2Dy’ . .o (12)

L

) ’l,'L.
= Dy U By —Bpy—Ey+Ey) | U0

Um

If we can know all the clements of the rth and sth rows, then the original floating
voltages vk, Vk,,, .., v,y can be written in terme of the new floating voltages
Ug, U,y - - Upy. But for Thevenin’s Theorem we require to calculate only v,—7,.
Let y'pq denote the clements of I';~2. As I',™! must be symmetric since I', is
symmetric y'y,= y',,. Multiplying both sides of the equation (12) by the row
vector (e,—e,)’ that is. the row vector having 1 in the rth position and —1 in
the sth position we get,

Op—Ur— (V=) = Grs(V' 1=V 61> V'ra—V's2r - - N EBrr—Epy—E - Es,)
- o
< ")I:+1

Um

=grl 0,0, .. VoY =Y 'rsF+Y s, 0.0, ..

YV

~Y're+Yor+Y're—7'6 0,0, .. 0) ?k“
vﬂ
= gn(‘}"rr +'Y’u - 2'}' 'ro)(”r “”c)
Therefore,
Vp—v, Ur U . .. (13)

S N ——
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Or,

R Uy~ - U

Jre = gralvr—v,) = e
1 ) . .o (14)

F2Y =V Ve

Jrs

Now the denominator in tho right hand side of the oquation (14) reprosonts
a resistance which is the sum of the resistance 1/gy, and (2y'y,—7'1r—7"s), that
is to say, the two resistances 1/g,, and (2y',,—v'y,—7'y) are connected in serios,
of which the former represents the resistance of the (rs)th branch. Suppose tho
nodes r and 8 are connected to voltage sources w, and w, and all other voltage

sources are grounded. Lot /, and [, ropresent the total currents flowing through

these nodes (I}, == —1I,), then from equations (6) and (7)
o 0 0 0
W4 . 0 0 (1]
oy =0, e e |
w, 1y : -1
10m 0 (§] (1]
— —— L J — — | — —

Multiplying by (e,—e,)" both sides we get,
we—w, = {2V ry—Y'rr—Y'ss)

Thus 2y';s—7Y'sr—7'ss Topresents the equivalent resistance of the network
I', between the rth and sth nodes, which is tho same as the oquivalent resistance
of the circuit with the source voltages reduced to 0. So

Up——1Uy

l' ’ ’ ’
— 427 —Y'rr— Vs
Ors

can be interproted as the total currents flowing into the rth and sth nodes in the
notwork I', when they are connected with a voltage source ur—us in series with
the resistance 1/gy,. This is the well-known Thevenin's Theorem.
Norton Theorem : The Norton’s Theorom comes as a simple consequonco of
equation (14) when defferently interpretoed.
Jr = Gra(Vrs—0) = — L

! 42V~ 7 Y8
Jrs
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When the sorios rosistancoe 1/gy, is put equal to 0, then tho total current flowing
into the net work iy is

vyt
“Yre=7rr Vs

Lot us now imagine that the rth and sth nodes are connected to a current
source of strength iy and the branch element gy restored to its original position.
Then tlre total current iy is split into two parallol portions, one through the element
grs and the othor through the network T'y. If jy be the total current flowing into
I'y, and Iy be the current across g, then

v =jy+Iv
As these are parallel, the voltago condition gives

] ’ ’ ’ I'
INCY 55— re=Y'se) = ¥
Ors

Thus,

;
Iy= .  _W_.

1
Irsl2Y'vs - V'er—Vus)

11,--—- ”5

1 , , '
F2Y' s =Y stV 'ss
Grs

— Jreo by cquation (14)

Thie is Norton’s Theorem.
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