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ABSTRACT. Somn proportios of tho conductivity inutrix of the gnntM'ahwcfl Kirehliotf’s 
laws for (^ontinuoiia media have Ixjon dediiccul. TIr' diagonal elements of tin's matrix aw 
sliown to 1)0 all positive and non-diagonal oleinc.nts all iK^gativc. For th<*. usual ntdwork of 
resistors th(' non-diagonal ehjments arc identilied with the hraiu h cf)nducta-iicf*s with negative 
sign. Tho two diatiiiet approacdies for studying tho ainplifjealion of vaemun tubes are i'( - 
(jonciled. The two well-known theorems in network theory are deduced from the generalised 
Kircjhhoff's laws.

I N T R O D U C T I O N

Tlio gciiorcaliHOfl Kirclihoff’H laws for a (*outinnmis ooinluc'ting medium of 
specific conductivity k and having m olectrodos omboddod in it can Ixi expressed 
in the following matrix equations (Mitra and Roy 1966)

J ^ cv-
~ 1 _

1J 1

_ i _

:r= I

where (i) J represents the cross-current matrix, (ii) V the voltage matrix, a diago­
nal matrix, with its elements tho potentials on tho m electrodes, (hi)
G is the conductivity matrix, which is symmetric and depends on the geometry
of tho system, (iv) i ^  (ij, î , . • %) current (column) vector whose elements
are the total current flowing into the electrodes from outside sources. When the 
continuous medium degenerates into a network of lino conductors, the elements 
o f the conductivity matrix can bo easily identified with the reciprocal of the resis­
tances of the elements of the network (but with reversed sign*) by means of the 
macrosoopic Ohm’s law.

*In our earlier paper Indian J . Phys, (1O60)> 50, 38, 2nd para the relation should read C13 

— I/R 13 instead of 0 is-*»l/Ria.
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In this paper wo shall first deduce some properties of the elomouts of tho con­

ductivity matrix C aud then give a proof of th<5 weU-kuown theorems of Tlioveiiia 
and Norton in network theory.

1. Theorem : The diagonal eleinonts of the conductivity matrix C aro 
all positive and (ii) tho nondiagonal elements cy ard all negative.

Tho first part is easy to prove from the quadratic fonn for viz,

J J J I <!> 1 -S  /  J <f>Zf±dS

4t7 .
i 1

where — denotes derivative along the outward drawn normal as usual. dn

Since, / -  C

2̂ viii - ^ v ' ( ^ v  =  J/J I grad (j> | H t  >  0

TJuis the quadratic form v* C v is positive semi-definite, and therefore,
>  0.

Tho second part is not so obvious and the proof is somewhat elaboi-ate. To
n n

0
obtain the first column of V it is to be multijdied by the unit vet-tor

Physically it means that tho first t*oliunn of C represents tho total currents flowing 
into the electrodes when the first electrodod is kept at unit potential and tho rest at 
Lm) potential, that is, == 1, .. =  Vm =  0. By Earnshaw’s theorem
the potential fimction cannot have any maximum or minimum in the region 
outside the surfaces 8 ,̂ 8 ,̂ 8 2 , . . ,  8 ,̂ Since the potential function is a (continu­
ous function in this region, which is a closed region enclosed by 8 q, it must attain 
its upper and lower bounds within it or on tire boundaries of tin*, region. Since 
Earnshaw’s theorem excludes the possibility of the upper and lower bounds oc­
curring within the region, therefore it must bo on tlie bomxdary of tho region. 
The largest value of the potential is 1 and occurs on the first surface and tlie lowest 
is 0 oil the other surfaces. In the immediate neighbourhood of the first surface

the potential ^ must be less than tho potential on 8 1 . Thus must be

throughout negative on 8  ̂and positive on 8 2J 8 ,̂ * •, because an equipotential
7
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surface must exist in the noiglibeurhood of and cannot have common points
06with 8̂  which excludes the i)ossibility of — 0 at any point on aS\.

Thus the current density — — k o and Ag, A3, . Â î are all <  0,
O ft*

'’ll • = /  /6’i

AJ.S - . 0
-'>2

*̂31 — J J Agd/S 0

For other electrodes this property can be similarly established. Hence the theoieiu 
is proved.

This proves also that the current density matrix A(.v) has positive elements 
on the diagonal and negative elements in the rest, excepting the 0th diagonal ele­
ment, which may be of arbitrary sign.

The elements of C are thus analogous to the co-efficients of electrostatic 
capacity. The only difference is that the sum of the elements of a column ((;r 
row) of C is 0.

As has been shown in our earlier v̂ ork, the cross-elomonts for a network of resis­

tors, is the same as the conductance of the resistor  ̂ connecting the iih and jthHij
node, but with a negative sign. Since have boon j^rovod to be negative, 
the identification with the conductance is compitely free from any ambiguity, 
because the resistances must be positive quantities.

Application to Thermionic Tubes: This identification nicely reconciles the 
two distinct approaches for studying the theory of amplification in thermionic* 
valves, viz, in terms of the electrostatic capacities between the electrodes or by 
means of the transconductances. Wo have shown just now that these are identical 
in magnitude but opposite in sign. But, there is one essential difference. The 
elements of the conductivity matrix are not exactly identical with the usual co­
efficients of capacity between the electrodes, unless the medium is infinitely 
extended (Mitra and Roy 1966). For a clearer understanding, let us suppose 
that the conductivity of the medium k be reduced to 0 in the limit, keeping 
potentials undisturbed. The problem then reduces to a purely electrostatic
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problem of finding th(> jK>tontial finiction (f> witli llj© samo boundary oouditions (i)

<j) — • • *’)» ©lectrodes and (ii) — 0 <m the outer boundary of tlio

juodiuin. This problem is identical to tJio current flow j^robloiu discussed in the 
earlier work. Here a capacity matrix say, Q takes the place of the conductivity 
matrix C and these are identical oxcopting for the constant fa(?tor k, whic‘h is 
prest‘nt as a constant multiph  ̂ in each element of C i.e., C kQ (note : this Q 
should not be confused witli the (^-matrix immtionod in the earlier work). The 
(elements of Q are the co-effiedemtf̂  of cdecdrostatic capacity for this particular

boundary value problem with  ̂ O’ mirfaeo iS!g enclosing tbo condnetors

S2, . . aSq* when this enclosing surface is extended to infinity, that the
olemorits of Q will become identical with tlic usual co-efficiouts of electrostatics 
( apacities. The diagonal elements of Q will bo larger than the co-effioient-s of self­
capacity. In fact, the effect of the enclosure is neglected when the theory of the 
amidification of thernionic tubes are studied from tln̂  electrostatic view-point 
(Spaugonberg, 1948,).

3. The Form (5) Kirchhoffs Lawfi for a Network : For a network containing 
resistors, the generalised Kirchhoff’s laws ha\'e to be mcxlifiod a littk?, as in this 
case the elements of the condiKdance matrix are to be identified with the branch 
(‘onductances with negative sign. Donotitig by gij the (conductance of the resistor 
(onnecting the tth and jth node (that is the reciprocal of tbo ncsistaTicf̂  Rtj). the 
Kirchhoff’s laws become

J  =  V G ~ a V

r  I
1

L  1...

( 1)

(2)

wliero O is the conductivity matrix liaving its cross ekmieuts, <7 3̂, . . all positive 
and the diagonal elements, ga all negative and arc equal to tire, row sum (or column 
iium) of the ith row, with reversed, sign, that is

gu == * ‘

When two nodes (say the ith and jth) arc not connected by any resistor, gij == 9. 
Since,

a

r  1 
1 =  0 (4)

1
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L_1

(v a -G V )

... j

L  1 J
- O i > («)

It ia obvious tliat both the Loop and Nodal lawa of Kirchhoff aro implicit 
in the two equations (1) and (2) and ecpiation (5) is the result of combining the two 
laws. The conductivity matrix G is symmetric and singular, the diagonal ele­
ments being the negative sum of the conductivities of the elements of the corres­
ponding row or column (that i.̂ , the negative sum of all the conductivities of the 
branches connecting the particular node). A node, say, the kth which is connected 
to a source, we call it 'live', is distinguished from the 'floating' node  ̂by having the 
current flowing into it from outside, viz, î  by iĵ  ^  0.

Proof of Thevenin Theorem : Now we proceed to prove tlie Thovonin Theorem 
from equation (5). Let us suppose that the first k— \ nodes are connected to sources 
that is, ij, 7̂  0- The remaining nodes from k onwards aie floating,
viz, iĵ  ~  . . z=z i^ =z 0 , The equation (5) takes the form in this case,

-~h r/n^i+^i2^'2+-
-  ?2 .</2î i+ST22̂ ’2d-.

V i  --  (/k-v - l (6)

0 =  *

Tlio voltages on the ‘floating’ nodes k, A?+l, .. m are linearly dependent on 
the voltages on the ‘live’ nodes v̂ , v̂ , . . ,  and can bo determined in terms of 
these from the ith  to the mth equations. Let the matrix 0  be partitioned at the 
(fc—l)th row and (ifc—l)th column

O
/<?! d a

U i '
..  .(7)

where the partitioned matrices and are square matrices, having k—l 
rows and (?a having m—i+ 1  rows; is a rectangular matrix of A;—-1 rows and 

columns and is its transpose because G' ^  G,
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Tims,
-Vk - r  n

=  - G fW i ' .. («)

T he branch current botw oou tw o ‘floating' nodes, say, tlu? rth  and «tli 
T h e  T hoven in  theorem  ^ives a m otliod o f  detorm ining this b y  

solving a sim pler circu it prob lem .

B ut com p u ta tion  o f  the reciproc^al m atrix is necessary for determ inng 
only tw o  elem ents o f  the vector , a labour n ot worth doing. Som e artifi(;e can be 
1‘ound for sim plying tlie  com putation . L et Fg b(̂  the m atrix form ed from  0^, b y  
rem oving the (rc^)th elem ent grs- Thus,

G2—Fg ~  • • (A)

v\'h(iro E r r  is the m atrix  having I in the diagonal position r  and Ers is the m atrix 
having 1 in the (r«)th  position . T lic rth  diagonal clem ent o f  F 2 is different from  
tliat o f  O 2, being the sum o f  the (dements o f  the rth row  from  whicli (jrs has been 
remo\ ed.

Now,

»So,

=  gr.Gi-HErr-mr.-En+^s,)r2-^

( 10)

Further

-V t  —
I’kil

~  G2

-  —
P2
•

— Vm „

.. (11)

- •  U t  —  

« * + l

-  V l  -

V z

_ _  « t - l  -

..  (11')

"'hero Uf,, . . w-„ are the new floating voltages 'vvhen the element grt h®*’
removed from the network.
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r  n

—Mm _ _  *̂ *-1

(̂ r̂r — ̂ rt—^sr^^ss)^^2

J

. .  (12)

9rt 2̂ H r̂r ^r» ^#r+-^w)

If we can, know all the elements of tlie rth and «tli rows, then the original floating 
voltages t>, tJjtn. * written in terms of the new floating voltages

• • ^m- Thevenin’a Theorem we require to calculate only Vj,—v̂ .
Let denote the olenients of As Fĝ  ̂ must be symmetric since Fg i«
symmetric yV*— y\r- Multiplying both si<los of the equation (12) by the row 
vector (ef—ê Y fl̂ ^̂  I'ke row vector having 1 in the rth position and —1 in 
the 5th position W(̂  get,

V jr ? /f { V g  V g )  =  f f r s i V  r i  T  t n  7  f2  7  » 2 ‘> • • • • ) i ^ r r  ^ r s  ^ 9 r ' \ ^ ^ S 9 )

X
VAr

^  9Tr,(0, 0, . . — —yV« +  r'i«» • •

-yVr+yV+rVf—r',(r, o, o , .. o)

=  9^r#(yVr+y'#if-2yV,)(Vr-V,)

'f’k

Therefore,

l+9r$(^Yr$-yrr-Yi8)
. .  (13)
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Or,

Jt» =  gr,{Vr-V,) =-
1

gr,

«r- «,

-i-2y'r,-7rr'-r't.
.. (14)

Now tho denominator in tho right hand side of tlie equation (14) roprosouts 
a resistance which is tho sum of the resistance l/f/n and (2yVf— that 
ih to say, the two resistances l/.y„ and (2y'„— y'r,— y'„) are conneetwl in series, 
of vv'liicl) tho former represents the resistance of tlio (rs)th braneli. Kiijqtoso tho 
nodes r and » are connected to voltage sounes and w, and all otlior voltage 
sources are grounded. Let fr and I, ropre.sent the total currents flowing through 
those nodes (I, — —Ir), then from equations (6) and (7)

—  —

f('k 0 0 0
0 0 {)

iVr _  r  -1 - 1 2 h -  Irl\ > 1

IV, is 1

0 0 0

mmmi • i i . —

Multiplying by (ê —e,)' both sides we get,

=  M 2y'r,-y 'fr-y '.s)

Thus 2y'f*—yVr—y’»» represents the equivalent resistance of the network 
I’a between the rth and sth nodes, which is tho same as tlie oquivalont rc.sistance 
of the circuit with the source voltages reduced to 0. So

M r - -

-  + 2 y '„ -y 'f f -y 'M
0rs

(‘liu be interpreted as the total currents flowing into tho rth and 6*tii nodes in tho 
network Fg, whon they are connected with a voltage source Ur—Ug in series with 
the resistance l/(7r«- This is tho well-known Thovenin s Theorem.

Norton Theorem : The Norton’s Theorem comes as a simple consequence of 
equation (14) when defferently interpreted.

jr =  gniVrt-Vg)
Ur—tig

^ -\-2y\s-~y*ff—y $s 
0TB
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When tho sorios rosistauco 1/gr, is put equal to 0, then the total current flowing 
into tho not work is

■ly r=
'̂ y'r$ -y'rr ' 7

Lot US now iniagino that tho rth and sth nodes are connected to a current 
source of strength ijv *^nd tho branch element I’ostored to its original position. 
Thou the total current ijfi» split into two parallel portions, one tlxrough the elenxent 
grs and the other through tho network I f  jjr bo tho total current flowing into 

Fj, and lif be tho current across ĝ g then

As these are paraflol, tho voltage condition gives

Ik
j d i y ' r s - y ' r r - y ' s , )  ^

Thus,

In

1+  , , \
!/r*(2y rs - y  rr-y«s)

Vr— lt,

1
(ft,

+2yV«~*y^r“7V

— ir*’ (U)

This is Norton's Tliooreni.
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