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ABSTRACT. The object of this paper w to make a comparative study of th(» Loronlz 
group, the 4-dimensional rotation group, the Galilei group and the group, which is the other 
extreme limit of the Lorentz group. This is done by representing the olemonts of all these 
groups in b)rms of a spatial vector and a rotation in space.

5»

I N T R O D U C T I O N

It is well known that Galilei group is, in a natural manner, represented by a 
spatial vector (velocity) and a rotation in space. The Galilei group m ay bo spoken 
of as the limit of the Lorontz group when the translational velocity in units of that 
of light tends to zero. It  has been shown by the author (Son Gupta 1966) and Lovy- 
Loblond (1965) that similar to the Galilei group there is a group of space-time 
transformations which is the other extreme lim it of the Lorontz Group, the limit 
in wliioh the translational velocity tends to infinity. This group is also represented, 
in a natural manner, by a spatial velocity and a rotation in sapace. Tire group 
structures, o.g. the laws of composition of both these groups are easily expressed 
when they are represented by a spatial vector and a rotation in space. The main 
object of this short paper is a comparative study of the Lorentz group with respect 
to these two groups, which are the tw'o extreme lim its o f Lorentz group and the 
4-diraensional rotation group. In order to do this, it is quite conviniont to para
meterize tho Lorontz group in a manner similar to the other two groups, i.o. in 
terms of a spatial vector and a rotation in space. This is accomplished by de
composing the 4 x 4  matrix corresponding to any Lorentz transformation into 
a ymmetric matrix and an orthogonal one. Tho distinctive property o f the 
Lorentz transformation makes the latter orthogonal 4 x 4  matrix corresponds to 
a rotation in space with or without time reversal. The former symmetric factor is 
tho characteristic of the Lorentz transformation, in as much as, it is the accelera
ting part (Wigner 1939), i.e. it corresponds to tho uniform velocity motion. This 
is completely determined by a 3-dimensional spatial vector.

This decomposition is carried out in the next section; further, the properties 
of the characteristic symmetric factor are investigated. In  section 3, we discuss 
tho law of composition of the elements o f the Lorentz group and compare it with
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those of the other two limiting groups. In the Iwt section wo endeavour to ojctend 
our studios to the 4-dimensional orthogonal group.

In the expressions for Lorentz transformations we use the space-time vector 
X =  (r, ct). A bar over a matrix indicates its transposed. In the following, 
wo will always use capital Greek letters to represent 4 x 4  matrices and capital 
Latin letters to represent 3 x 3  matrices. In view of the problem wo want to dis
cuss it will bo advantageous to write any 4 x 4  matrix with the help of a 3 x 3  
matrix and two-3-<limensional vectors along wi^i a scalar, e.g.

A I

k' ^

In particular

c =
E 0 

0 -1
..  (1)

whore E is tiro 3 x 3  unit matrix. It may not be irrelevant to mention that all
our discussions are with real numbers. Wo will use the nottion k-l to represent 
the 3 x 3  matrix In this paper wo will confine ourselves only to the homo
genous space-time transformations.

D E C O M P O S I T I O N  O F  A L O B E N T Z  T B A N S P O B M A T I O N  
Let  A bo the 4 x 4  matrix corresponding to a Lorentz transformation. ITcnce,

AcAe =  1 .. (2)

(i) Polar decomposition

It is well known that any real non-singular matrix can bo decomposed into a 
symmetric and an orthogonal factors. So that we can write

A =  (AA)*{(AA)-*A}. • • (»)

(AA)i is symmetric and (AA)“ *A is orthogonal. In order to determine uniquely 
the square root (.AA)*, we first note that AA isaymmetric, hence it can be diagons- 
lised by a real orthogonal matrix A (say); so that

AA =  AA^A, • • ( )̂

where Ad is a diagonal matrix whose elements are the eigen-values of AA. Tliey 
are real positive. Further, AA being a Lorentz transformations the eigen values
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of AA aro e . ,  e *, « “ and c ■* where 0't> are real. (It will bo shown later that 
for AA at least one of the d’s is zero. Thiis

Lot

Ai =  (e®̂ , e ê *, e “̂). . .  (5)

A,» = ..  (6)

and A,-* =  ,0./2  ̂ - 0.12^ ..  (7)

We tlofine (Gantmachor 1959)

(AA)S =■• AAd»A

and (AA)~  ̂— AA^~*A.

•• (H) 

(9)

Witli tliis definition of (AA)* one can easily verify tliat it is also a Lorontz 
transformation.

Next, it can be. easily established that any 4 x 4  orthogonal matrix P, which 
is also a Lorentz transformation, is only a space-rotation with or without reversal 
of time. Tliis is because of the fact that P commutes with e. Hence any A 
is the product (.fa symmetrii! Lorentz transforation S and a rotation in space,

SP. .. (10)

In order to avoid complications we confine our attention to the proper Lorontz 
transformation, i.o. only those transformations which are continuously connected 
to unity. So that

P = P(^) . .  ( 11)
A 0 j

! 0 l i

and det. S =  1 and det. .4 =  1.

(ii) Symmetric Lorentz Transformations

Now we will try to find the most general form of a sjrmmetrio Lorentz trans
formation S. Let

8 k

8 . (12)



On the Lorentz and other Groups
Sinc<i Yi satisfies oq. (2),

S S-k.k -  E 
Sk—sk =  0

iiiifl =  1; ( i  ^  + { k . k ) ^ .

. .  (13)

. .  <I4) 

. .  (ir))
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TIk* above equations may be easily solved for « and the symmetric matrix S in 
terms of k, as a given vector. The solutitm is

S(k) =  E -  k k . .  ( 16)

(17)

ThuH S is imiquoly detorminocl h y  a vec tor fe; 0. Wo will use ilio notation 
'^{k) to loi^rosont siioh a S. This msult can also ho olitaiued dircc*tly by assuming 
tilt* factorization (Sou Gupta 1965). Ft is of interest to note that- tlio eigoii vc‘rtors 

S ( k )  arĉ  /j, 4  and fe. witli oigon valucjs 1, 1 and Sj/, and /o arc Iavo nmtualh' 
(K’diogonal vectoi’s botli orthogonarto fe. The oigen vcictors of S(fe) an;

(/i, 0), (/., 0), ( k .  Jc), ( k ,  - 1 c )

\cith rospoetivo oigon values

(̂fe) corresponds physically to a pure Lorontz transformation with tlie volocuty 
dong tlio direction k  and magnitude ck .

(iii) C o m p o s i t io n  o f  S(fe)\9 a n d  u n iq u e n e s s  o f  the d eco m p o s itio n  

By direct multiplication one can obtain

S(fc)S(/) -= S(p(A, l ) ) V ( A { k ,  /)), ..  m

p ( k .  1) =  S ( k ) l + s i k  ■■ (1«)

^ (fe ,/) =  ^-H pK «(ft)S(/)+6.|}. •• (20)

Tliu.s S(fe)’s forms a sub-group only with ft’s along the same direction, which i.s 
"'cll known and

s-x(fc) =  m - k ) .  ■ ■ (21)

III order to show the imiqueness o f the decomposition, let us assume two distinct 
•Iccompositon of the same A,

A =  S(fti) r (^ j) =  S(fc8)r(^*);
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r ( j2 ) r ( i , )  =  s(-fe ,)2 (fei)
=  S(p(-fti„ fca)r(^(-fes, ki)).

N. D. Sen ChtpUi

. .  (22)

( 22)

This can only happen when p =  0, i.o. ki — k» which will imply further — Â . 
It should be mentioned we would have obtained similar results by writing

A =  r(A')£(fc').

Evidently k' k but they are related by

A'k' =  k.

On the other hand it is of interest to note that

A' ==- A.

These results follow from the fact

r(J5)S(fc)r(B) =  S(Bfc). .. (24)

The relation between this decomposition and usual one (Wigner 1939) is given by 

A =  S(fc) r(A ) =  r(.4') S (k») P(A' A). .. (25)

where A'ka =  k

and ka ^ho vector along third spatial axis with magnitude k.

T H E  L A W S  O F  C O M P O S I T I O N  O F  L O B E N T Z  
A N D  O T H E R  G R O U P S

Lot us consider two Lorentz transformations

£{ki,A^) =  - L ( k i ) W

and JSikt, A,) =  S(&s) r{^,).

Their product is given by

tCikit A-  ̂ A )̂ — S(fci) r (ili  Ag)
=  n p ik v  A M n A (k r ,  A  ̂ka)A^A,)

=  ^{pikv A^ka), A(kt, A^ka)AaA )̂. ..  (26)

The unit element is A(0, E) and the inverse
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Tho elements of the Galilei group can bo also represanted by a spatial vector ft 
and a rotation in space. The law of combination of the elements when expressed 
in this form is given by

M(kv A,) Â ) =

Tlio unit element is ^ (0 , E) and the inverse

A -\k, A) =  A {-A k , A).

(28)

(29)

Similar expression for the law of composition of the elements ^  of tho groiip which 
i.s the other extreera limit of tho Lorents group is given by (Son Gupta 1966)

<Uiki, A )̂ U (ki A )̂ -  <U(A.,ki+k.i. AiA^). .. (30)

I'iie unit element is ^  (0, E) an<l the inverse

^ -1 (6 . A) =  <U{-Ak, A). ..  (31)

The basic difference in tho structure of tlio Lorentz group iuu omes transparent 
in the law of compositions as expressed above.

From oqs. (26), (28) and (30) if follows that

<£(0,A^)^{).A^)=^ ^{0,A ,A^) .. (32)
S{0,A^)^{Q,A2)=-=£i{0,AjA^) .. (33)

•«id ^ (0 , ^ j) ^ (0 , A )̂ =  m h  Ai A.,). .. (34)

Tho elomonts oCtO, A) form a sub-group of tJio Lorentz group. Similarly G(0, A) 
and ^ (0 , A) are respectively sub-group of the Galilei group and tho other limit 
group. This sub-group is nothing but tho 3-dimensional rotation group. In 
none of these casts this is an invariant sub-group.

Again it follows from eq. (28) that

^{hi, E) S{kt, E) =  m k i+ k i, E) -  E)M {kv E), .. (35)

* 0., the elements G{k, E) are a commuting sub-group of tho Galilei group. Simi
larly also for the other group as it follows for eq. (30) that

m k i. E) U {k 2. E) -  U(ki+k^> E) -  E m k ,.  E). ,. (36)

But it is no longer true in case of the Lorentz group because of the factor 
^1 62) in the right hand side o f eq. (26).

It has already been noted that ,fi(fc, E) and ^ (k , E) are commuting sub- 
groups, in fact they are nothing but the Abelian Group of 3-dimensional vector 
space. Further-more since

A^)S(k. E) Â ) -  M(A'k, E) m
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<U~Hk’ , A')<U(k, E) U (k ’, A') =  U{A' k, E),

N. D. Sen Gupta

.. (3(i)

they are ako invariant sub-groups of the respective groups. In the language of 
group theory both those groups A) and A) arc group extensions of tli(i
Abelian group of 3-dimensional vector space by the operator group of 3-dimensional 
rotational group. As a matter of fact, they constitute simple illustrative examines 
of inequivalent extensions as it clear from oqs. (35) and (36).

4 - D l M E N R I O N A L  R O T A T I O N  G R O U P

Finally try to make a comparative study of the Lorontz group and th<‘ 
4-dimensional rotation group. Evidently it will bo much easy if wo roprosont th<‘ 
4-dimensional rotation group in a similar manner, i.ĉ . with the help of a 3-dim( îi- 
sional v(?ctor and a 3-dimensional rotation group. The oloinont 12 of the 4,\ I 
matrices which represents the 4-dirnensional rotation group are orthogonal; honcc. 
tli<̂  (piestion of their polar decomposition in the form of oq. (3) does not arise. But 
one c*an still speak of a decomposition of Q in the form

a  =  er(A) (:n)

where 0  is a symmetric matrix and F is an orthogonal one of the form given by 
oq. (11). Clearly 0 is also an orthogonal matrix,

© 0 and 0  0  =  ©2 =  1. (38)

In order to express the involution and symmetric matrix 0 , we pniceed as befon  ̂
and write

0
k.

So that

and

Hence

S'fif'+fe.fc =  E 

S'k+s'k  -  0 

k^+8  ̂=  L

8 '(k) =  E -  k.k

(39)

(40)

(41)

(42)

(43)

and V  =  + V 1 - * * - (44)
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Thus ©(*:) is uuiquoly detorminecl by a spatial vector k, k rf. (). It should bo 
iiotoJ that det. © =  —1, The oigou-vectons of 0(fe) are

(/„0), (Zj,0). (fe,V+l). (6.
with the rospoetivo eigen values,

1, 1, 1, - 1 .
As before one can obtain by direct multiplication

wlioro

&(k)@(l) --- ©(p'(fe, /))r(A'(fe, /), .. (45)

p'(k, I) -  ‘SUU+Si'k .. (46)

and A'(k, 1) -  S '-H p W (k )S '(l)+ k i}. (47)

The uniquenoHS of the docom]K)sitio2i Juay iie pro\ (̂ d as in the vane, of the Lorentz 
group. Thus any element of the 4-diniensioua] orthogonal group Q can b(̂  rii- 
prosoatod by a spatial vector k and :i-diiuousiunal rotation group, so that

0(k. A) =  0 (fe )ru ).

The law of composition in this roproseutation follows from eq. (45) 

0 ( k i ,  A , )  0 {k2.  A , )  -  0 (6i)r( ,̂)0(fe2)a42)

-  O  (p'(*i. A ,  kz)) A ( k v  A.kM iA^ )^

In deriving tins use has boon made of

r(.4)0(fe) r { A ) ^ e ( A k ) -

Tli(̂  unit clomont is 0(0, E) and the inverses

0 - H k , A )  -- 0 { - A k ,  A).

In this case also,

0(0, Ai) 0(0, A,) =  0(0, A,

(48)

(49)

(50)

(51)

(52)

hence, the elements O (0, ^ ) forms a sub-group, the group of 2-dimonsional rota- 
i'iou. As represented by the expression (48) along with the law of {-ompositioji 
(49), the difference between the 4-dimeiisional rotation grouj) and the Lorentz 
group is only in the expressions for S'(k) and <1*' eqs. (43) aiwl (44). Incidentally 
Oiis introduces the well-known basic difference between thorn as in this case the 
reality condition for =  -y/1 — ifc® restricts 0 ^  ^  1, which makes the 4-dimon-
sinnal rotation group compact; but in the case of th(» Lorentz group, k is not res- 
Wclod which makes it non-compact.
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