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ABSTRACT. The object of this paper is to make a comparative study of the Lorentz
group, the 4-dimensional rotation group, the Galilei group and the group, which is the other
vxtrome limit of the Lorentz group. This is done by representing the clements of all these
groups in terms of a spatial vector aud a rotation in space.

INTRODUCTION

It is well known that Galilei group is, in a natural manner, reprosented by a
spatial vector (velocity) and a rotation in space. The Galilei group may be spoken
of as the limit of the Lorentz group when the translational velocity in units of that
of light tends to zero. It has been shown by the author (Sen Gupta 1966) and Lovy-
Leblond (1965) that similar to the Galilei group there is a group of space-time
transformations which is the other extreme limit of the Lorentz Group, the limit
in which the translational velocity tends to infinity. This group is also ropresented,
in a natural mannor, by a spatial velocity and a rotation in sapace. Tho group
structures, o.g. tho laws of composition of both theso groups are easily oxpressod
when thoy are represented by a spatial voctor and a rotation in space. The main
object of this short paper is a comparative study of the Lorentz group with respect
to these two groups, which are the two extreme limits of Lorentz group and thoe
4-dimensional rotation group. In order to do this, it is quite convinient to para-
moterize tho Lorentz group in a manner similar to the other two groups, i.o. in
terms of a spatial vector and a rotation in space. This is accomplished by de-
composing the 4X4 matrix corresponding to any Lorentz transformation into
a ymmetric matrix and an orthogonal one. The distinctive property of tho
Lorentz transformation makes the latter orthogonal 4 x4 matrix corresponds to
a rotation in space with or without time reversal. The former symmetric factor is
the characteristic of the Lorentz transformation, in as much as, it is the accelera-
ting part (Wigner 1939), i.e. it corresponds to the uniform velocity motion. This
is completely determined by a 3-dimensional spatial vector.

This decomposition is carried out in the next section; further, the propertios
of the characteristic symmetric factor are investigated. In section 3, we discuss
the law of composition of the elements of the Lorentz group and compare it with
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those of the other two limiting groups. In the last section we endeavour to extend
our studies to tho 4-dimensional orthogonal group.

In the expressions for Lorentz transformations we use the space-time vector
Z=(r, cf). A bar over a matrix indicates its transposod. In the following,
wo will always use capital Greek letters to ropresent 4 x4 matrices and capital
Latin letters to represont 3 X 3 matrices. In viow of the problem wo want to dis-
cuss it will bo advantageous to write any 4 X4 matrix with the holp of & 3x3
matrix and two-3-dimensional vectors along with a scalar, o.g.

4 ki
l k 8
In particular
E 0
c= l , .o
0 -1

whero E is tho 33 unit matrix. Tt may not be irrclevant to mention that all

our discussions are with real numbers. We will use tho nottion k.i to reprosent
the 3 x3 matrix {k/;}. In this paper wo will confine ourselves only to the homo-
genous space-time transformations.

DECOMPOSITION OF ALORENTZ TRANSFORMATION
Let A be the 4 X 4 matrix corresponding tv a Lorentz transformation. Hence,
Aehe = 1 G

(i) Polar decomposition

It is woll known that any real non-singular matrix can bo decomposed into a
symmetric and an orthogonal factors. So that we can write

A = (AAM(AA)HA). L(3)

(AA)t is symmetric and (AA)-#A is orthogonal. In order to dotermine uniquely

the square root (AK)’, we first note that AA is symmetric, hence it can be diagons-
lised by a real orthogonal matrix A (say); so that

AA = AAGA, @)

where A, is & diagonal matrix whose elements are the eigon-values of AA. They
are real positive. Further, AA being a Lorentz transformations the eigen values
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of AA are eo‘, epo’, % and e % where 0% are real. (It will be shown later that

for AA at least ono of the 0's is zero. Thus

Ag = (€91, €701, ¢P3, ¢703), .. (B)
Let
Agt = (ee‘/2 ¢ 12 0:12 6—02/2) .. (6)
and Agt = (012 G2 02 6al2) oM
We dofine (Gantmachor 1959)
(AA) = AAGA - (®)
and (AA)=t = AAHA. )

With this definition of (AA)t one can easily vorify that it is also a Lorentz
transformation.

Noxt, it can be oasily cstablished that any 4 X4 orthogonal matrix I*, which
is also a Lorentz transformation, is only a space-rotation with or without roversal
of time. This is because of the fact that I' comimutes with e. Hence any A
is the product of & symmetric Lorentz transforation X and a rotation in space,

A =3I .. (10)

In order to avoid complications we confine our attention to the proper Lorentz
transformation, i.c. only those transformations which are continuously connected
to unity. So that

r= L I4) ..oo(mn
0 [

and det. X =1 and det. 4 = 1.

(ii) Symmetric Lorentz Transformations

Now we will try to find tho most general form of a symmetric Lorentz trans-
formation X%. Let

S &
T=_ .. (12)
k 8
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Since X satisfies eq. (2),

S S—kk—FE .. (13)
Sk—sk = 0 .. (14)
and $2—k*=1; {k = +(k.k)H. .. (15)

The above aquations may be easily solved for s and the symmetric matrix S in
terins of k, as a given vector. The solution is

S(k) = E— l{z’—" k.k .. (18)
8p = ++/1+k2 .. (17

Thus T is uniquoly determined by a vector k; £ # 0. We will use the notation
Y(k) to reprosent such a Z.  This result can also be obtained dircetly by assuming
the factorization (Sen Gupta 1965). Tt is of interest to note that tho eigen vectors
of S(k) are I, I, and k. with oigen values 1, 1 and ¢;; 7, and Z, are two mutually
orthogonal veetors hoth orthogonal to k. The cigen vectors of Z(k) arc

(l]s 0): (l‘_'_’ 0), (k7 k)v (k: "‘k)
with respective eigon values

1,1, (s+k), (8 --k).
Y(k) corresponds physically to a pure Lorentz transformation with the velocity
aong the diroction k and magnitude ck.
(iii)  C'omposition of T(k)’s and uniqueness of the decomposition

By direet multiplication one can obtain

Z(k)E(l) = X(p(k, D)T(A(R, D), .. (18)
where plk, 1) = S(k)l+sik .. (19)
and AR, 1) = 87 (p){S(k) SU)+k.1}. .. (20)

Thus Z(k)’s forms a sub-group only with k’s along the same direction, which is
woll known and

ZYk) = Z(—k)- .. (21)

In order 4o show the uniqueness of the decomposition, let us assume two distinct
decompositon of the same A,

A = Z(ky) T(4,) = Z(ky)T(44);
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8o that D(4,)1(4,) = Z(—kg)Z(ky)
= Z(p(— ks, k1)P(A("knr k).

This can only happen when p = 0, i.c. k; = k, which will imply further 4, = 4,.
It should be mentioned we would have obtained similar results by writing

A = T(AZ(R').
Evidently k&’ # k but they aro related by
A'R' = k. .o (22
On the other hand it is of interest to note that
A = A. .oo(23)
These results follow from the fact
I(B)%(k)[(B) = Z(Bk). . (24)
Tho relation betwoeen this decomposition and usual one (Wigner 1939) is given by
A = Z(k) T(4) = T(4') Z (k) (4" 4), .. (2b)
where A'k; =k

and ks is the vector along third spatial axis with magnitude %.

THE LAWS OF COMPOSITION OF LORENTZ
AND OTHER GROUPS

Lot us consider two Lorentz transformations
Lky, 4,) = Z(k,) I'(4,)
and Llky, A5) = Z(k,) I'(4,).
Their product is given by

Lk;, A;) L(ks A,) = Z(ky) Z(A,k,) (4, 4,)
= Z(P(kl» Alkz))P(A(kv Al kz)AlAn)

= L(plky, Aiks), A(ky, Aikg)A4y). .. (26)

The unit element is A(0, ) and the inverse

LNk, A) = L— Bk, &). o
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The elements of the Galilei group can bo also represented by a spatial vector k
and a rotation in space. 'The law of combination of the elemonts when oxprossed
in this form is given by

Sk, A;) Gk, Ay) = G(A, kyt+ky, 4, 4,). .. (28)
The unit element is G(0, £) and the inverse
Gk, A) = G(— A4k, 4). .. (29)

Similar expression for the law of composition of the elements ¢¢ of the group which
is the other extreem limit of tho Lorents group is given by (Son Gupta 1966)

Uk, A) Eke Ay) = QA R+ ko A Ay). . (30)
The unit element is €¢ (0, £) and the inverso
U Nk, A) = ¢(—Ak, A). .. (31

The basic difforonce in tho structure of the Lorentz group bocomes transparent
in the law of compositions as cxpressed above.

From egs. (26), (28) and (30) if follows that

L0, 4,) L(0. 4,) = L0, A, A,) .. (32)
£(0, Al) G(0, Az == G(0, A1 Ae) .o (33)
and &0, A;) &0, 4,;) = &0, 4, 4,). .. (34)

The elements 20, A) form a sub-group of the Lorentz group. Similarly G(0, A)
and ¢¢(0, A) are respoctively sub-group of the Galilei group and the other limit
group. This sub-group is nothing but the 3-dimonsional rotation group. In
none of these cascs this is an invariant sub-group.

Again it follows from eq. (28) that
G(ky, B) G(ky, E) = Q(ky+ky, E) = Gk, E)G (ky, L), .. (35)

i.0., the elements G(k, E) are a commuting sub-group of tho Galilei group. Simi-
larly also for the other group as it follows for eq. (30) that

@k, E) ¢ ko, B) = e k;s+ ks, E) = ek, E)eUk,, B). .- (36)
But it is no longer true in case of the Lorentz group because of the factor A(k,,
4, k,) in the right hand side of eq. (26).

It has already been noted that Q(k, £) and &((k, E) aro commuting sub-
groups, in fact they are nothing but the Abelian Group of 3-dimensional vector
Space. Further-more since

S-Yk', A9k, E) 8(k', A') = G4k, E) (36)
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and

Yk, AUk, E) 2k, A') = &4 k, E), .. (306)

they are also invariant sub-groups of the respective groups. In the languago of
group theory both these groups &(k, 4) and &{(k, 4) arc group extensions of the
Abolian group of 3-dimensional vector space by tho operator group of 3-dimensional
rotational group. As a mattor of fact, they constitute simple illustrative examples
of inequivalent oxtensions as it clear from egs. (35) and (36).

4-DIMENSIONAL ROTATION GROUP

Finally we try to make a comparative study of the Lorentz group and the
4-dimensional rotation group. Evidently it will be much easy if wo roprosent the
4-dimensional rotation group in a similar manner, i.c. with tho help of a 3-dimen-
sional vector and a 3-dimensional rotation group. The ecloment Q of the 4. 4
matrices which represents tho 4-dimensional rotation group are orthogonal; hence.
the question of their polar decomposition in the form of oq. (3) does not arise. But
one can still speak of a decomposition of Q in the form

Q = eI'(4) .37

where @ is a symmetric matrix and T' is an orthogonal ono of the form given by
oq. (11). Clearly ® is also an orthogonal matrix,
@=0 and @@ = @2 =1. .. (38)

In order to oxpress the involution and symmetric matrix @, we proceed as before
and write

S, k
k, s’
So that
S'S+kk=E .. (40)
S'k+sk =0 .. (41)
and k2482 = 1. .. (42)
Hence S'(k) = E— 1—%?"' k.E .. (43)

and &' = +/I—F. .. (44)
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Thus @(k) is uniquely detormined by a spatial vector k; k £ 0. It should be
notod that det. ® = —1. The ecigen-vectors of O(k) are

(l]) O)l (121 0). (k, Sk'-*-]), (k' sk’.__l)

with the rospective eigen values,
1,1, 1, —1.

As before one can obtain by direct multiplication

o(k)o(l) - o(p'(k, )T(A'(k, 1), .. (45)

where
p'(k, 1) = 8'(k)l+s'k .. (48)
and A'(k, 1) = 8 p' S (R)S'(D+E.D. (47)

The unigueness of the decomposition may be proved as in the case of the Lorentz
group. Thus any clement of the -f-dimensional orthogonal group O can bhe ro-
prosonted by a spatial vector k and 3-dimensional rotation group, so that

O(k, 4) = 0(k)(4). .. (48)
The law of composition in this reprosentation follows from eq. (45)

Ok, Ax) o(kzv Az) =0 (kx)P(Ax)Q(kz)F(Az)
=0 (p'(kv Ay ky)) A(ky. A k2)A1A4,), .- (49)

In deriving this use has been made of

I(4)e(k) I(d) = (4 k). - (h0)

The unit elomont is O(0, E) and the inverse
O-Xk, 4) = O(— Ak, 4). .. (51)
In this case also, i
00, 4;) O(0, 4,) = 0(0, 4, 4,); - (52)

hence, the elements O (0, A) forms a sub-group, the group of 3-dimensional rota-
tion. As reprosented by tho expression (48) along with the law of composition
(49), the difforence botween the 4-dimensional rotation group aud the Loventz
group is only in the expressions for 8'(k) and &’ eqs. (43) and (44). Incidentally
this introduces tho well-known basic differonce botwoen thom as in this case tho
reality condition for s’ = +/1—k2 rostricts 0 < * < 1, which makos the 4-dimen-
Sional rotation group compact; but in the case of the Lorontz group, k is not res-
tricted which makes it non-compact.
4
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