ON THE LORENTZ AND OTHER GROUPS

N. D. SEN GUPTA
Tata Ingtituts of Fundamental Researoh
Bombay-5, India

(Received Auguat 17, 1968)

Abstract

The object of this paper is to make a comparative study of the Lorentz group, the 4 -dimensional rotation group, the Galilei group and the group, which is the other extrome limit of the Lorentz group. This is done by representing the olements of all these groups in terms of a spatial vector and a rotation in space.

INTRODUCTION

It is well known that Galilei group is, in a natural manner, reprosented by a spatial vector (velocity) and a rotation in space. The Galiloi group may be spoken of as the limit of the Lorentz group when the translational velocity in units of that of light tends to zero. It has been shown by the author (Son Gupta 1966) and LevyLeblond (1965) that similar to the Galilei group there is a group of spaco-time transformations which is the other extreme limit of the Lorentz Group, the limit in which the translational velocity tends to infinity. This group is also ropresentod, in a natural mannor, by a spatial velocity and a rotation in sapace. Tho group structuros, e.g. the laws of composition of both theso groups are easily oxpressod when they are represented by a spatial vector and a rotation in space. The main object of this short paper is a comparative study of the Lorentz group with respert to these two groups, which are the two extreme limits of Lorentz group and the 4 -dimensional rotation group. In order to do this, it is quite convinient to paramoterize the Lorentz group in a mannor similar to the other two groups, i.e. in terms of a spatial vector and a rotation in space. This is accomplished by decomposing the 4×4 matrix corresponding to any Lorentz transformation into a ymmetric matrix and an orthogonal one. The distinctive property of the Lorentz transformation makes the latter orthogonal 4×4 matrix corresponds to a rotation in space with or without time reversel. The former symmetric factor is the characteristic of the Lorentz transformation, in as much as, it is the accelerating part (Wigner 1939), i.e. it corresponds to the uniform velocity motion. This is completely determinod by a 3-dimensional spatial vector.

This decomposition is carriod out in the next section; further, the propertios of the characteristic symmetric factor are investigated. In section 3, we discuss the law of composition of the elements of the Lorentz group and compare it with
those of the other two limiting groups. In the laet section we endeavour to extend our studies to the 4 -dimensional orthogonal group.

In the expressions for Lorentz transformations we use the space-time vector $\bar{x}=(r, c t)$. A bar over a matrix indicates its transposed. In the following, wo will always use cbipital Greek letters to represent 4×4 matrices and capital Latin letters to represont 3×3 matrices. In viow of the problem wo want to discuss it will be advantageous to write any 4×4 matrix with the holp of a 3×3 matrix and two-3-dimensional vectors along with a scalar, o.g.

$$
\left|\begin{array}{cc}
A & k \\
\bar{k}^{\prime} & s
\end{array}\right| .
$$

In particular

$$
c=\left\lvert\, \begin{array}{rr}
E & 0 \tag{1}\\
0 & -1
\end{array}\right.,
$$

where E is the 3×3 unit matrix. It may not be irrclevant to mention that all our discussions are with real numbers. Wo will use tho nottion $k \cdot \bar{l}$ to roprosent the 3×3 matrix $\left\{k_{i} l_{j}\right\}$. In this paper wo will confine ourselves only to tho homogenous space-time transformations.

DECOMPOSITION OFALORENTZTRANSFORMATION

Let Λ be the 4×4 matrix corresponding to a Lorentz transformation. Hence,

$$
\begin{equation*}
\Lambda \epsilon \bar{\Lambda} \varepsilon=1 \tag{2}
\end{equation*}
$$

(i) Polar decomposition

It is woll known that any real non-singular matrix can bo decomposed into a symmetric and an orthogonal factors. So that we can write

$$
\begin{equation*}
\Lambda=(\Lambda \bar{\Lambda})^{*}\left\{(\Lambda \bar{\Lambda})^{-\mathbf{i}} \Lambda\right\} \tag{3}
\end{equation*}
$$

$(\Lambda \bar{\Lambda})^{\mathbf{i}}$ is symmetric and $(\Lambda \bar{\Lambda})^{-\boldsymbol{i}} \boldsymbol{\Lambda}$ is orthogonal. In order to dotermine uniquely the square $\operatorname{root}(\Lambda \bar{\Lambda})^{1}$, we first note that $\Lambda \bar{\Lambda}$ is symmetric, hence it can be diagonelised by a real orthogonal matrix Δ (say); so that

$$
\begin{equation*}
\Lambda \bar{\Lambda}=\Delta \Lambda_{d} \bar{\Delta} \tag{4}
\end{equation*}
$$

where Λ_{d} is a diagonal matrix whose elements are the eigen-values of $\Lambda \bar{\Lambda}$. They are real positive. Further, $\Lambda \bar{\Lambda}$ being a Lorentz transformations the eigen values
of $\Lambda \bar{\Lambda}$ aro $e^{\theta_{1}}, e^{-\theta_{2}}, e^{\theta_{2}}$ and $e^{-\theta_{2}}$ where θ^{\prime} 's are real. (It will be shown later that for $\Lambda \bar{\Lambda}$ at least ono of the θ 's is zero. Thus

$$
\Lambda_{d}=\left(e^{\theta_{1}}, e^{-\theta_{1}}, e^{\theta_{2}}, e^{-\theta_{2}}\right) .
$$

Let

$$
\begin{equation*}
\Lambda_{d}{ }^{\phi}=\left(e^{\theta_{1} / 2}, e^{-\theta_{1} / 2}, e^{0_{2} / 2}, e^{-\theta_{2} / 2}\right) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\Lambda_{d}^{-z}=\left(e^{-\theta_{1} / 2}, e^{\theta_{1} / 2}, e^{-\theta_{2} / 2}, e^{\theta_{2} / 2}\right) \tag{7}
\end{equation*}
$$

We dofine (Gantmacher 1959)

$$
\begin{equation*}
(\Lambda \bar{\Lambda})^{d}=\Delta \Lambda_{d}{ }^{d} \bar{\Delta} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
(\Lambda \bar{\Lambda})^{-\frac{1}{2}}=\Delta \Lambda_{d}{ }^{-\frac{1}{\Delta}} \bar{\Delta} . \tag{9}
\end{equation*}
$$

With this definition of $(\Lambda \bar{\Lambda})^{8}$ one can easily verify that it is also a Lorontz transformation.

Noxt, it can be oasily ostablishod that any 4×4 orthogonal matrix Γ, which is also a Lorentz transformation, is only a space-rotation with or without roversal of time. This is becauso of the fact that I conmutes with ϵ. Hence any Λ is the product of a symmetric Lorentz transforation Σ and a rotation in space,

$$
\begin{equation*}
\Lambda=\Sigma \Gamma . \tag{10}
\end{equation*}
$$

In order to avoid complications we confine our attention to the proper Lorentz transformation, i.e. only those transformations which are continuously connecter to unity. So that

$$
\Gamma=\begin{array}{cc}
A & 0 \tag{11}\\
0 & 1
\end{array} \quad \Gamma(A)
$$

and det. $\Sigma=1$ and det. $A=1$.

(ii) Symmetric Lorentz Transformations

Now we will try to find the most general form of a symmetric Lorentz transformation Σ. Let

$$
\begin{equation*}
\Sigma=\left.\right|_{\bar{k}} ^{S} \quad k \tag{12}
\end{equation*}
$$

Since $\mathbf{\Sigma}$ satisfies eq. (2),
and

$$
\begin{align*}
& S S-k \cdot \bar{k}=E \tag{13}\\
& S k-s k=0 \tag{14}
\end{align*}
$$

$$
\begin{equation*}
s^{2}-k^{2}=1 ;\left\{k \equiv+(\bar{k} \cdot \boldsymbol{k})^{\star}\right\} . \tag{15}
\end{equation*}
$$

The above oquations may lee easily solved for s and the symmetric matrix S in werms of \boldsymbol{k}, as a given vector. The solution is

$$
\begin{gather*}
S(\boldsymbol{k})=E-\frac{1-s_{k}}{\bar{k}^{2}} \boldsymbol{k} \cdot \boldsymbol{k} \tag{16}\\
s_{k}=+\sqrt{1+\bar{k}^{2}} \tag{17}
\end{gather*}
$$

Thus Σ is uniquoly detormined by a vector $k ; k \neq 0$. We will use the notation $\dot{(}(k)$ tor reprosent such a Σ. This result can also be ohtained dircetly by assuming the factorization (Son Gupta 1965). It is of interest to note that tho sigen vertors ,f $N(k)$ are $\boldsymbol{l}_{1}, \boldsymbol{l}_{2}$ and \boldsymbol{k}. with eigen values $\mathbf{1}, 1$ and $s_{k} ; \boldsymbol{l}_{1}$ and \boldsymbol{l}_{2} are two mutually. withogomal vectors looth orthogonal to k. The oigen vectors of $\Sigma(k)$ art:

$$
\left(l_{1}, 0\right),\left(l_{i}, 0\right),(k, k),(k,-k)
$$

with respective eigen values

$$
1,1, \quad\left(s_{k}+k\right), \quad\left(s_{k}-k\right)
$$

$\Sigma(k)$ corresponds physically to a pure Lorentz transformation with the velocity along the direction \boldsymbol{k} and magnitude ck.
(iii) Composition of $\boldsymbol{\Sigma}(\boldsymbol{k})$'s and uniqueness of the decomposition.

By direct multiplication one can obtain

$$
\begin{equation*}
\Sigma(k) \Sigma(l)=\Sigma(p(k, l)) \Gamma(A(k, l)) \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
p(k, l)=S(k) l+s_{l} k \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
A(k, l)=S^{-1}(p)\{S(k) S(l)+k \cdot l\} \tag{20}
\end{equation*}
$$

Thus $\Sigma(\boldsymbol{k})$'s forms a sub-group only with \boldsymbol{k} 's along the same direction, which is woll known and

$$
\begin{equation*}
\Sigma^{-1}(k)=\Sigma(-k) . \tag{21}
\end{equation*}
$$

In order to show the uniqueness of the decomposition, let us assume two distinet decompositon of the same Λ,

$$
\Lambda=\Sigma\left(k_{1}\right) \Gamma\left(A_{1}\right)=\Sigma\left(k_{8}\right) \Gamma\left(A_{2}\right) ;
$$

so that

$$
\begin{aligned}
\Gamma\left(A_{2}\right) \Gamma\left(\bar{A}_{1}\right) & =\Sigma\left(-k_{\mathbf{8}}\right) \Sigma\left(k_{1}\right) \\
& =\Sigma\left(p\left(-k_{8}, k_{1}\right) \Gamma\left(A\left(-k_{8}, k_{1}\right)\right) .\right.
\end{aligned}
$$

This can only happen when $p=0$, i.e. $\boldsymbol{k}_{1}=\boldsymbol{k}_{2}$ which will imply further $\boldsymbol{A}_{1}=A_{2}$. It should be mentioned we would have obtained similar results by writing

$$
\Lambda=\Gamma\left(A^{\prime}\right) \Sigma\left(k^{\prime}\right)
$$

Evidently $\boldsymbol{k}^{\prime} \neq \boldsymbol{k}$ but they are related by

$$
\begin{equation*}
A^{\prime} \boldsymbol{k}^{\prime}=\boldsymbol{k} \tag{22}
\end{equation*}
$$

On the other hand it is of interest to note that

$$
\begin{equation*}
A^{\prime}=A \tag{23}
\end{equation*}
$$

These results follow from the fact

$$
\begin{equation*}
\Gamma(B) \Sigma(\boldsymbol{k}) \Gamma(\bar{B})=\Sigma(B \boldsymbol{k}) \tag{24}
\end{equation*}
$$

The relation betwoen this decomposition and usual one (Wigner 1939) is given by

$$
\begin{equation*}
\Lambda=\Sigma(k) \Gamma(A)=\Gamma\left(A^{\prime}\right) \Sigma\left(k_{3}\right) \Gamma\left(A^{\prime} A\right) \tag{25}
\end{equation*}
$$

where

$$
A^{\prime} \boldsymbol{k}_{3}=k
$$

and \boldsymbol{k}_{3} is the vector along third spatial axis with magnitude k.

> THE LAWS OF COMPOSITION OF LORENTZ ANDOTHERGROUPS

Lot us consider two Lorentz transformations
and

$$
\mathscr{L}\left(k_{1}, A_{1}\right)=\Sigma\left(k_{1}\right) \Gamma\left(A_{1}\right)
$$

$$
\mathcal{L}\left(k_{2}, A_{2}\right)=\Sigma\left(k_{2}\right) \Gamma\left(A_{\mathbf{2}}\right)
$$

Their product is given by

$$
\begin{align*}
\mathscr{L}\left(k_{1}, A_{1}\right) \mathscr{L}\left(k_{2}, A_{2}\right) & =\Sigma\left(k_{1}\right) \Sigma\left(A_{1} k_{2}\right) \Gamma\left(A_{1} A_{2}\right) \\
& =\Sigma\left(p\left(k_{1}, A_{1} k_{2}\right)\right) \Gamma\left(A\left(k_{1}, A_{1} k_{2}\right) A_{1} A_{2}\right) \\
= & \mathcal{L}\left(p\left(k_{1}, A_{1} k_{2}\right), A\left(k_{1}, A_{1} k_{2}\right) A_{1} A_{2}\right) . \tag{26}
\end{align*}
$$

The unit element is $\Lambda(0, E)$ and the inverse

$$
\begin{equation*}
\mathcal{L}^{-1}(k, A)=\mathscr{A}(-\bar{A} k, \bar{A}) . \tag{27}
\end{equation*}
$$

The elements of the Galilei group can bo also represented by a spatial vector \boldsymbol{k} and a rotation in space. The law of combination of the elements when expressed in this form is given by

$$
\begin{equation*}
\mathcal{G}\left(\boldsymbol{k}_{1}, A_{1}\right) \mathcal{G}\left(\boldsymbol{k}_{2}, A_{2}\right)=\mathcal{G}\left(A_{1} \boldsymbol{k}_{2}+\boldsymbol{k}_{1}, \boldsymbol{A}_{1} A_{2}\right) . \tag{28}
\end{equation*}
$$

The unit element is $\mathcal{G}(0, E)$ and the inverse

$$
\begin{equation*}
\mathcal{G}^{-1}(\boldsymbol{k}, A)=\mathcal{G}\left(-A_{k}, \bar{A}\right) . \tag{29}
\end{equation*}
$$

Similar expression for the law of composition of the elemonts \mathcal{U} of the group which is the other extroem limit of tho Lorents group is given by (Son Gupta 1966)

$$
\begin{equation*}
\mathscr{U}\left(k_{1}, A_{1}\right) \mathscr{U}\left(k_{2} A_{2}\right)=\mathscr{U}\left(\bar{A}_{2} k_{1}+k_{2} \cdot A_{1} A_{2}\right) \tag{30}
\end{equation*}
$$

The unit element is $\mathcal{U}(0, E)$ and the inverse

$$
\begin{equation*}
\mathcal{U}^{-1}(\boldsymbol{k}, A)=\boldsymbol{U}(-A k, \bar{A}) . \tag{31}
\end{equation*}
$$

The basic difforonce in tho structure of the Lorentz group becomes transparent in the law of compositions as expressed above.

From eqs. (26), (28) and (30) if follows that
and

$$
\begin{align*}
& \mathscr{L}\left(0, A_{1}\right) \mathscr{L}\left(0, A_{2}\right)=\mathscr{L}\left(0, A_{1} A_{2}\right) \tag{32}\\
& \mathcal{G}\left(0, A_{1}\right) \mathcal{G}\left(0, A_{z}\right)=\mathscr{G}\left(0, A_{1} A_{2}\right) \tag{33}\\
& \mathscr{U}\left(0, A_{1}\right) \mathscr{U}\left(0, A_{2}\right)=\mathscr{U}\left(0, A_{1} A_{2}\right) \tag{34}
\end{align*}
$$

The elements $\mathcal{L}(0, A)$ form a sub-group of the Lorentz group. Similarly $\boldsymbol{G}(0, A)$ and $\mathcal{U L}(0, A)$ are respoctively sub-group of the Galiloi group and the other linit group. This sub-group is nothing but the 3 -dimensional rotation group. In none of these cascs this is an invariant sub-group.

Again it follows from eq. (28) that

$$
\begin{equation*}
\mathcal{G}\left(k_{1}, E\right) \mathcal{G}\left(k_{2}, E\right)=\mathcal{G}\left(k_{1}+k_{2}, E\right)=\mathcal{G}\left(k_{2}, E\right) \mathcal{G}\left(k_{1}, E\right) \tag{35}
\end{equation*}
$$

i.e., the elements $G(\boldsymbol{k}, \boldsymbol{E})$ are a commuting sub-group of the Galilei group. Similarly also for the other group as it follows for eq. (30) that

$$
\begin{equation*}
\mathscr{U}\left(k_{1}, E\right) \mathscr{U}\left(k_{2}, E\right)=\mathscr{U}\left(k_{1}+k_{2}, E\right)=\mathscr{U}\left(k_{2} E\right) \mathscr{U}\left(k_{1}, E\right) . \tag{36}
\end{equation*}
$$

But it is no longer true in case of the Lorentz group because of the factor $A\left(\boldsymbol{k}_{1}\right.$, $A_{1} \boldsymbol{k}_{2}$) in the right hand side of eq. (26).

It has already been noted that $\mathcal{G}(k, E)$ and $\mathcal{E L}(k, E)$ are commuting subgroups, in fact they are nothing but the Abelian Group of 3-dimensional vector space. Further-more since

$$
\begin{equation*}
\mathcal{G}^{-1}\left(k^{\prime}, A^{\prime}\right) \mathcal{G}(k, E) \mathcal{G}\left(k^{\prime}, A^{\prime}\right)=\mathcal{G}\left(\bar{A}^{\prime} k, E\right) \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathscr{U}^{-1}\left(k^{\prime}, A^{\prime}\right) \mathscr{U}(k, E) \mathscr{U}\left(k^{\prime}, A^{\prime}\right)=\mathscr{U}\left(\bar{A}^{\prime} k, E\right), \tag{36}
\end{equation*}
$$

they are also invariant sub-groups of the respective groups. In the languago of group theory both theso groups $\mathcal{G}(\boldsymbol{k}, A)$ and $\mathcal{E}(\boldsymbol{k}, A)$ are group extensions of the Abelian group of 3-dimensional vector space by the operator group of 3-dimensional rotational group. As a mattor of fact, they constitute simple illustrative examples of inequivalont oxtensions as it clear from eqs. (35) and (36).

4-DIMENAIONAL ROTATION (ROUP

Finally we try to make a comparative study of the Lorentz group and the 4 -dimensional rotation group. Evidently it will be much oasy if wo roprosent the 4 -dimensional rotation group in a similar mannor, i.e. with the help of a 3 -dimensional vector and a 3 -dimensional rotation group. The eloment $\Omega 2$ of the $4 \therefore 1$ matrices which represents the 4 -dimensional rotation group are orthogonal; hence. the question of their polar decomposition in the form of eq. (3) does not arise. But one can still speak of a decomposition of Ω in the form

$$
\begin{equation*}
\Omega=\Theta \Gamma(A) \tag{37}
\end{equation*}
$$

where Θ is a symmetric matrix and Γ is an orthogonal ono of the form given ley eq. (11). Clearly Θ is also an orthogonal matrix,

$$
\begin{equation*}
\Theta=\bar{\Theta} \text { and } \Theta \bar{\Theta}=\Theta^{2}=1 . \tag{38}
\end{equation*}
$$

In order to express the involution and symmetric matrix © , we proceed as befor: and write

$$
\Theta=\left|\begin{array}{ll}
S^{\prime}, & k \tag{39}\\
\bar{k}, & s^{\prime}
\end{array}\right| .
$$

So that

$$
\begin{array}{r}
S^{\prime} S^{\prime}+k \cdot \bar{k}=E \\
S^{\prime} k+s^{\prime} k=0 \tag{41}
\end{array}
$$

and

$$
\begin{equation*}
k^{2}+s^{2}=1 \tag{42}
\end{equation*}
$$

Hence

$$
\begin{equation*}
S^{\prime}(k)=E-\frac{1+s^{\prime} k}{k^{2}} k \cdot \bar{k} \tag{43}
\end{equation*}
$$

and

$$
\begin{equation*}
s_{k^{\prime}}=+\sqrt{1-k^{2}} \tag{44}
\end{equation*}
$$

Thus $\Theta(k)$ is uniqualy detormined by a spatial vector $k ; k \neq 0$. It should be noted that det. $\Theta=-1$. The eigen-vectors of $\Theta(k)$ are

$$
\left(l_{1}, 0\right),\left(l_{2}, 0\right),\left(k, s_{k}^{\prime}+1\right),\left(k, s_{k}^{\prime}-1\right)
$$

with the rospective eigen values,

$$
1,1,1,-1
$$

Is before one can obtain by direct multiplication

$$
\begin{equation*}
\Theta(k) \Theta(l)=\Theta\left(p^{\prime}(k, l)\right) \Gamma\left(A^{\prime}(k, l)\right. \tag{45}
\end{equation*}
$$

where

$$
\begin{equation*}
p^{\prime}(k, l)=S^{\prime}(k) l+s_{i}^{\prime} k \tag{46}
\end{equation*}
$$

and

$$
\begin{equation*}
A^{\prime}(\boldsymbol{k}, l)=S^{\prime-1}\left(\boldsymbol{p}^{\prime}\right)\left\{S^{\prime}(\boldsymbol{k}) S^{\prime}(\boldsymbol{l})+\boldsymbol{k} \cdot \overline{l_{3}}\right\} \tag{47}
\end{equation*}
$$

The uniqueness of the decomposition may be proved as in the case of the Lorentz group. Thus any olement of the t-dimensional orthogonal group \mathcal{O} (an be reprosonted by a spatial vector k and 3 -dimensional rotation group, so that

$$
\begin{equation*}
O(k, A)=\Theta(k) \Gamma(A) \tag{48}
\end{equation*}
$$

The law of composition in this reprosentation follows from eq. (45)

$$
\begin{align*}
O\left(k_{1}, A_{1}\right) O\left(k_{2}, A_{2}\right) & =\Theta\left(k_{1}\right) \Gamma\left(A_{1}\right) \Theta\left(k_{2}\right) \Gamma\left(A_{2}\right) \\
& \left.=\mathcal{O}\left(p^{\prime}\left(k_{1}, A_{1} k_{2}\right)\right) A\left(k_{1}, A_{1} k_{2}\right) A_{1} A_{2}\right) \tag{49}
\end{align*}
$$

In doriving this use has been made of

$$
\begin{equation*}
\Gamma(A) \Theta(k) \Gamma(A)=\Theta(A k) \tag{50}
\end{equation*}
$$

The unit element is $\mathcal{O}(0, E)$ and the inverse

$$
\begin{equation*}
\mathcal{O}^{-1}(k, A)=O\left(-A_{k}, A\right) \tag{51}
\end{equation*}
$$

In this case also,

$$
\begin{equation*}
\mathcal{O}\left(0, A_{1}\right) \mathcal{O}\left(0, A_{2}\right)=\mathcal{O}\left(0, A_{1} A_{2}\right) \tag{52}
\end{equation*}
$$

hence, the elements $O(0, A)$ forms a sub-group, the group of 3 -dimensional rotation. As represented by the expression (48) along with the law of composition (49), the difforence betweon the 4 -dimensional rotation group and the Lorentz group is only in the expressions for $S^{\prime}(k)$ and $s_{k}{ }^{\prime}$ eqs. (43) and (44). Incidentally this introducos the well-known basic differonce botwoen thom as in this case tho reality condition for $s_{k}{ }^{\prime}=\sqrt{ } 1-k^{2}$ rostricts $0 \leqslant k \leqslant 1$, which makos the 4-dimensional rotation group compact; but in the case of the Lorontz group, k is not restricted which makes it non-compaet.

N. D. Sen Gupta

RENERENCES
Gantmacher, F. R., 1959, The Theory of Matrices, Chelsea Pub. Co. U.S.A. Levy-Leblond, 1965, Ann. Poincaré Inst. Pnysique Théoriquo, 3, 1. Sen Gupta, N. D., 1965, Nuovo Cimento, 36, 1181.
—— (1966), Nuovo Cimento, 44A, 512.
Wigner E. P., 1939, Aun. Math., 40, 149.

