PROPERTIES OF 35-PLET OF ONE BARYON AND TWO-BARYON SYSTEMS

S. T. H. ABIDI
Delahtment of Physics, Indinn Institute of 'lechnology, Kharagrur 1ndia
(Received October 30, 1967, Resubmitted June 17, 1968)

Abstract

The states bolonging to (4, 1) irreducible representations of SU_{3} havo been chassified by their charge and U-spin. This classification has then bean used to derjve mass relations. The probable valuo of spin J of a baryon-baryon system belonging to $(4,1)$ representation has boen shown to bo 1. It has also been found that ($\cdot J^{\prime}=5 / \mathbf{2}^{\prime}, B=1$) baryon states (an only belong to ($4,0,0,0,1$) irroducible ropresontation of SU_{6}. Somo branching ratios in the decays $35 \rightarrow 8(\mathbb{Q} \mathbf{2 7}$ are calculated.

INTRODUCTION

Recently Dashen and Sharp (1965) havo used the static model of Abers' et al (1964) in conjunction with S-matrix perturbation thoory of Dashen and Frautschi (1964) to discuss the masses and decay of 35 -plet of baryons $J^{P}=5 / 2^{+}$ into (i) an octet of baryons and an octet of mosons and (ii) an octet of mesons and a deciment of baryons. Zimerman and Fagundes (1966) have calculated certain sum-rules among the coupling constants in the decay of $35-\mathrm{plot}$ into octet of 0^{-} mesons and deciment of $3 / 2^{+}$baryons. In the present papor the states belonging to $(4,1)$ irrerlucible representations of SU_{3} have heen classified according to their charge and U-spin (introduced by Lipkin, Mesbkov and Levinson 1963). This classification has been found useful in deriving mass relations among the difforent members of the multiplet. The relations obtained are in perfoct agreement with the masses calculated by Dashen and Sharp. The possible irriducible reprosentation of SU_{8} into which this $(4,1)$ multiplet can be accomodated has been shown to $b \in(4,0,0,0,1)$.

The results obtained by this analysis may be utilized with advantage to study the properties of the 35 -plet of dibaryons. Some attempts (Oakes 1963, Gerstein 1964 and Lipkin 1965) have already been made to classify the multi-baryonic states according to irreducible representations of SU_{3} with limited success. Oakes (1963), for example, has shown that deuteron is a member of a $\overline{10}$-multiplet. The other members of this multiplet may, possibly, be produced in baryonbaryon interactions. The possible multiplets that may arise in baryon-baryon interactions are an octet, a decimet, a 27 -plet and a 35 -plet. Some properties of
this 35 -plet have been studied by the method presented in this papar. The possible spin values ane specified and somo interesting branching ratios in the decay of the 35 -plet into an octot and a 27 -plot have been calculated.

U-SPIN EIGEN-STATES OF 35-PLET

In SU_{3} multiplets like $(3 \mu, 0)$ and $(0,3 \mu)$ where μ is any integer, since thero is never more than one state at a given point on the $I_{3}-Y$ diagram the transformation from I-spin classification to U-spin classification of states cbtainod simply by a rotation of $I_{3}-Y$ diagram by an angle of 120°. In the multiplot $(4,1)$, however, one finds that thore are twenty points on $I_{3}-Y$ diagram whero two states occur at the same point. Consequently, in 35-plot the eigenfunctions of I^{2} are not the eigen-functions of U^{2}. The U-spin eigen-states can, howovor, be expressed as linear combinations of isor pin eigen-states. In table 1 the U-spin eigon-states, along with their charges, as linear combinations of isospin states aro listod. The coefficients in theso combinations have been daterminod with tho help of commutation relations betwoon raising and lowering operators U_{+}, I_{+}, U_{-} and I_{-}. For the isospin eigen-states notations of Lipkin and Harari (1964) have beon userl.

Table 1
U-spin eigen-states

Charge Q	U	U_{3}	Notation
3	1/2	+1/2	\boldsymbol{I}^{+4+}
3	1/2	-1/2	Ns^{*+++}
2	1	+1	$\mathbf{I}_{2}{ }^{++}$
2	1	0	$\tilde{N}_{\mathrm{B}}^{*++}=\left(\frac{3}{5}\right)^{\frac{1}{2}} N_{\mathrm{a}^{*++}}+\left(\frac{2}{5}\right)^{\frac{1}{2}} N_{\mathrm{s}}^{*++}$
2	1	-1	$\boldsymbol{Y}_{\mathbf{2}}{ }^{\text {++ }}$
2	0	0	$\tilde{N}_{3}^{*++}=\left(\frac{3}{5}\right)^{\frac{1}{2}} N_{\mathrm{s}^{*++}}-\left(\frac{2}{5}\right)^{\frac{1}{2}} N_{\mathrm{a}^{*++}}$
1	3/2	+3/2	$\mathrm{I}_{2}{ }^{+}$
1	3/2	+1/2	$\dot{N}_{5}^{*+}=\left(\frac{1}{5}\right)^{\frac{1}{2}} N_{0}{ }^{*+}+\left(\frac{4}{5}\right)^{\frac{1}{2}} N_{3}{ }^{*+}$
1	3/2	-1/2	$\tilde{Y}_{2}^{*+}=\left(\frac{1}{2}\right)^{\frac{1}{2}} Y_{2}^{*+}+\left(\frac{1}{2}\right)^{\frac{1}{2}} Y_{1} *+$
1	3/2	$-3 / 2$	$\Xi_{3}{ }^{*+}$

Table 1 (contd.)

Charge Q	U	U_{3}	3 - ${ }_{3}$ Iotation
1	1/2	+1/2	$\tilde{N}_{3}{ }^{*+}=\binom{4}{5}^{\frac{1}{2}} N_{5}{ }^{*+}-\left(\frac{1}{5}\right)^{\frac{1}{2}} N_{3}{ }^{*+}$
1	$1 / 2$	$-1 / 2$	$\tilde{Y}_{1}^{*+1}=\left(\frac{1}{2}\right)^{\frac{1}{2}} Y_{2}^{*+}-\binom{1}{2}^{\frac{1}{2}}{Y_{1} *+}^{*}$
0	2	+2	12°
0	2	$+1$	$\bar{N}_{5} * 0=\left(\frac{1}{10}\right)^{\frac{1}{2}} N_{5} * 0+\left(\frac{9}{10}\right)^{\frac{1}{2}} N_{3} * 0$
0	2	0	$J_{2} * 0=\left(\frac{1}{4}\right)^{\frac{1}{2}} r_{2} * 0+\binom{3}{4}^{\frac{1}{2}} Y_{1} * 0$
0	2	-1	$\bar{\Xi}_{3} * 0=\binom{1}{2}^{\frac{1}{2}} \Xi_{3} * 0+\left(\frac{1}{2}\right)^{\frac{1}{2}} \Xi_{1} * 0$
0	2	-2	$\mathbf{\Omega}_{1}{ }^{*}$
0]	+1	$\tilde{N}_{3} * 0-\binom{9}{111}^{\frac{1}{2}} N_{5} * 10-\binom{1}{10}^{\frac{1}{2}} N_{3}{ }^{*}{ }^{(00}$
0	1	0	$\tilde{\boldsymbol{r}}_{1} * 0=\left(\frac{3}{4}\right)^{\frac{1}{2}} \Gamma_{2} * 0-\left(\frac{1}{4}\right)^{\frac{1}{2}} \mathrm{I}_{1} * 0$
0	1	-1	$\Xi_{1}^{* 0}=\left(\frac{1}{2}\right)^{\frac{1}{2}} \Xi_{3}^{* 0}-\left(\frac{1}{2}\right)^{\frac{1}{2}} \Xi_{1} * 0$
-1	5/2	- $+5 / 2$	$\mathrm{I}^{-}{ }^{-}$
-1	5/2	$+3 / 2$	$\tilde{N}_{6}{ }^{*-}=\left(\frac{1}{25}\right)^{\frac{1}{2}} N_{5} *-+\binom{24}{25}^{\frac{1}{2}} \lambda_{3}{ }^{3}-$
-1	5/2	$+1 / 2$	$Y_{2}{ }^{*-}=\binom{1}{\overline{1} 0}^{\frac{1}{2}} Y_{2}{ }^{*-}+\binom{9}{10}^{\frac{1}{2}} Y_{1}{ }^{*-}$
-1	5/2	$-1 / 2$	$\tilde{\Xi}_{3}^{*-}=\left(\frac{1}{5}\right)^{\frac{1}{2}} \Xi_{3^{*-}}+\left(\frac{4}{5}\right)^{\frac{1}{2}} \Xi_{1}{ }^{*-}$
-1	5/2	$-3 / 2$	$\tilde{\mathbf{\Omega}}_{1} *-=\left(\frac{2}{5}\right)^{\frac{1}{2}} \Omega_{1}{ }^{*-}+\left(\frac{3}{5}\right)^{\frac{1}{2}} \Omega_{0}{ }^{*-}$
-1	5/2	$-5 / 2$	$X_{1}{ }^{-}$
-1	3/2	+3/2	$\tilde{N}_{3}{ }^{*-}=\binom{24}{2 \overline{5}}^{\frac{1}{2}} N_{5}{ }^{*-}-\binom{1}{25}^{\frac{1}{2}} N_{3}{ }^{*-}$

Table 1 (contd.)

Change \mathbf{Q}	U	U_{3}	Notation
-1	3/2	$+1 / 2$	$\tilde{Y}_{1}^{*-}=\binom{9}{10}^{\frac{1}{2}} Y_{2}{ }^{*-}-\binom{1}{10}^{\frac{1}{2}} Y_{1}{ }^{*-}$
-1	3/2	$-1 / 2$	$\underline{\Xi}_{1}^{*-}=\binom{4}{5}^{\frac{1}{2}} \Xi_{3}{ }^{*-}-\left(\frac{1}{5}\right)^{\frac{1}{2}} \Xi_{1}{ }^{*-}$
-1	3/2	$-3 / 2$	$\widetilde{\Omega}_{0}{ }^{*-}=\binom{3}{6}^{\frac{1}{2}} \Omega_{\mathbf{1}^{*-}}-\binom{2}{5}^{\frac{1}{2}} \mathbf{\Omega}_{0}{ }^{*-}$
-2	2	$+2$	$N_{5}{ }^{*--}$
-2	2	+1	$Y_{2}{ }^{*--}$
-2	2	0	$\Xi_{3}{ }^{*--}$
-2	2	-1	$\mathbf{\Omega}^{*}{ }^{*-}$
-2	2	-2	$\mathrm{X}_{1}{ }^{-}$

MASS-RELATIONS

The above U-spin classification may be used to find relations ame ng the masses of $(4,1)$ multiplet. If the strong interactions were fully invariant under SU_{3} all mombors of a given multiplet would have tho same mass provided that the small mass splitting duo to electromagnetic interaction be noglected. Since tho masses of different particles classified in the same multipot are difteront, the strong interaction Hamiltonian operator may bo written as

$$
\begin{equation*}
H=H_{0}+H_{1} \tag{1}
\end{equation*}
$$

where H_{0} is SU_{3} invariant and H_{1} is not. H_{1}, novertheless, being a strong interaction Hamiltonian must not violate hypercharge and isospin conservation. The simplest assum.ption, usually made, is that mass breaking operator H_{1} transforms a. η-meson i.e.,

$$
\begin{equation*}
H_{1}=\frac{\sqrt{3}}{2} U^{1}-\frac{1}{\overline{2}} U^{0} \tag{2}
\end{equation*}
$$

where U^{1} is a U-spin vector operator and U^{0} is scalar operator. From eqs. (1) and (2) one obtains the following matrix clements of mass breaking operator :

$$
\begin{aligned}
& <I_{2}^{+++}\left|H_{1}\right| I_{2}^{+++}>=\frac{\sqrt{3}}{4}<\frac{1}{2}\left\|U^{1}\right\| \frac{1}{2}>-\frac{1}{2}<\frac{1}{2}\left\|U^{0}\right\| \frac{1}{2}> \\
& <N_{5}^{*+++}\left|H_{1}\right| N_{5}^{*+++}>=-\frac{\sqrt{3}}{4}<\frac{1}{2}\left\|U^{1}\right\| \frac{1}{2}>-\frac{1}{2}<\frac{1}{4}\left\|U^{0}\right\| \frac{1}{2}>
\end{aligned}
$$

$$
\begin{aligned}
& \text { 35-Plet of Baryons } \\
& \left.<I_{2}{ }^{++}\left|H_{1}\right| I_{2}{ }^{++}\right\rangle \left.=\frac{\sqrt{3}}{2}<1\left\|U^{1}\right\| 1>-\frac{1}{2}<1\left\|. U^{0}\right\| \right\rvert\,> \\
& \left.\left.<\tilde{N}_{5}{ }^{*++}\left|H_{1}\right| \tilde{N}_{5}{ }^{*++}\right\rangle=-<1\left\|U^{0}\right\| 1\right\rangle \\
& \left.<Y_{2}^{*++}\left|H_{1}\right| Y_{2^{*++}}^{*}\right\rangle=-\underset{2}{\sqrt{3}}<1\left\|U^{1}\right\| l>-\frac{1}{2}<1\left\|U^{0}\right\| l> \\
& \left.<I_{2}+\left|H_{1}\right| I_{2}{ }^{+}\right\rangle=\underset{4}{3 \sqrt{3}}<\frac{3}{2}\left\|U^{1}| | \frac{3}{2}>-\frac{1}{2}<\frac{3}{2}\right\| U^{0} \| \frac{3}{2}> \\
& \left.\left\langle\tilde{N}_{5}{ }^{*+}\right| H_{1}\left|\tilde{N}_{5}{ }^{*+}\right\rangle=\frac{\sqrt{3}}{4}<\frac{3}{2}\left\|U^{1}\right\| \frac{3}{2}>-\frac{1}{2}<\frac{3}{2}\left\|U^{0}\right\| \frac{\frac{3}{2}}{2}\right\rangle \\
& <\tilde{Y}_{2}{ }^{*+}\left|H_{1}\right| \tilde{Y}_{2}{ }^{*+}>=-\frac{\sqrt{ } 3}{4}<\frac{3}{2}\left\|U^{1}| | \frac{3}{2}>-\frac{1}{2}<\frac{3}{\frac{3}{2}}\right\| U^{0} \| \frac{3}{2}> \\
& <\Xi_{3}{ }^{*+}\left|H_{1}\right| \Xi_{3^{*+}}>=-\frac{3 \sqrt{3}}{4}<\frac{3}{2}\left\|U^{1}| | \frac{3}{2}>-\frac{1}{2}<\frac{3}{2}\right\| U^{0}| | \frac{3}{2}> \\
& \left.\left.<I_{2}{ }^{0}\left|H_{1}\right| I_{2}^{0}\right\rangle=\sqrt{3}<2\left\|U^{1}\right\| 2\right\rangle-\frac{1}{2}\left\langle 2\left\|U^{0}\right\| 2\right\rangle \\
& <\tilde{N}_{5}{ }^{* 0}\left|H_{1}\right| \tilde{N}_{5}{ }^{* 0}>\underset{2}{\sqrt{3}}<2\left\|U^{I_{1}}\right\| \geq>-\frac{1}{2}<2\left\|U^{0}\right\| 2> \\
& <\tilde{Y}_{2}{ }^{* 0}\left|H_{1}\right| \tilde{Y}_{2}{ }^{* 0}>=-\frac{1}{2}<2\left\|U^{\prime 0}\right\| \geq> \\
& <\tilde{\Xi}_{3}{ }^{* 0}\left|H_{1}\right| \tilde{\Xi}_{3}{ }^{* 0}>=-\frac{\sqrt{3}}{2}<2\left\|U^{1}\right\| 2>\cdots \frac{1}{2}<2\left\|U^{0}\right\| 2> \\
& <\Omega_{1}{ }^{* 0}\left|H_{1}\right| \Omega_{1}{ }^{* 0}>=-\sqrt{3}<2\| \|^{I^{1}}\left\|2>-\frac{1}{2}<2\right\|\left\|^{0}\right\| 2> \\
& <I_{2}-\left|H_{1}\right| I_{2}^{-}>=\frac{5 \sqrt{3}}{4}<\frac{\delta}{2}\left\|U^{1}\right\| \frac{5}{2}>-\frac{1}{2}<\frac{\frac{5}{2}}{2}\left\|U^{0}\right\| \frac{5}{3}> \\
& <\tilde{N}_{5}{ }^{*-}\left|H_{1}\right| \tilde{N}_{5}{ }^{*-}>=\frac{3 \sqrt{ } 3}{4}<\frac{5}{2}\left\|U^{1}\right\| \underline{y}>-\frac{1}{2}<\frac{5}{8}\left\|U^{0}\right\| \frac{5}{2}> \\
& \left.\left\langle\check{Y}_{2^{*}}\right| H_{1}\left|\tilde{Y}_{2^{*-}}>=\frac{\sqrt{3}}{4}<\frac{5}{2}\left\|U^{1}\right\| \frac{5}{3}\right\rangle-\frac{1}{2}<\frac{5}{2}\left\|U^{0}\right\| \frac{5}{2}\right\rangle \\
& <\tilde{\Xi}_{3}{ }^{*-}\left|H_{1}\right| \tilde{\Xi}_{3}{ }^{*-}>=-\frac{\sqrt{3}}{4}<\frac{5}{8}\left\|U^{1}\right\| \frac{5}{8}>-\frac{1}{2}<\frac{5}{2}\left\|U^{0}\right\| \frac{5}{8}>
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.-\tilde{\Omega}_{1}{ }^{*}\left|I_{1}\right| \tilde{\Omega}_{1}{ }^{*-}\right\rangle-\frac{3 \sqrt{3}}{4} \leqslant \frac{5}{2}\left\|I^{1}\right\| \tilde{5}\right\rangle-\frac{1}{2}\left\langle\frac{5}{\underline{5}}\left\|U^{0}\right\| \frac{5}{2}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left\langle N_{5}{ }^{*--}\right| H_{1}\left|N_{5}{ }^{*-\cdots}\right\rangle=\sqrt{3}<2\left\|U^{1}\right\| 2\right\rangle-\frac{1}{2}\left\langle 2\left\|U^{0}\right\| \mid 2\right\rangle \\
& \left\langle Y_{2^{*}} \cdots\right| H_{1} \left\lvert\, Y_{2^{*}} \gg=\underset{2}{\sqrt{3}}<2\| \|^{1}\left\|2>-\frac{1}{2}<2\right\| U^{0} 2\right. \|> \\
& <\Xi_{3}{ }^{*--\mid}\left|H_{1}\right| \Xi_{3}{ }^{*--}>--\frac{1}{2}<2\left\|I^{10}\right\||2\rangle
\end{aligned}
$$

$$
\begin{align*}
& \left\langle X_{1}-{ }^{-\mid}\right| H_{1}\left|X_{1}^{--}\right\rangle=-\sqrt{3}\left\langle 2\left\|U^{11}\right\| 2\right\rangle-\frac{1}{2}\left\langle 2\left\|U^{0}\right\| \sum\right\rangle \tag{:3}
\end{align*}
$$

where $<a\|U\| a>$ is the reduced matrix element between states with U spin equal to a. These matrix elements lead to the following relations among the masses of different particles :

$$
\begin{align*}
& M\left(I_{2}\right)+M\left(Y_{2}{ }^{*}\right)={ }_{5}^{4} M\left(N_{6}{ }^{*}\right)+\frac{{ }_{8}^{8}}{} M\left(N_{3}{ }^{*}\right) \\
& M\left(I_{2}\right)+M\left(\Xi_{3}{ }^{*}\right)=\frac{1}{8} M\left(N_{5}{ }^{*}\right)+\frac{1}{5} M\left(N_{3}{ }^{*}\right)+\frac{1}{2} M\left(Y_{2}{ }^{*}\right)+\frac{1}{2} M\left(Y_{4}{ }^{*}\right) \\
& M\left(I_{2}\right)+M\left(\Omega_{1}{ }^{*}\right)=\frac{1}{2} M\left(Y_{2}{ }^{*}\right)+\frac{3}{y} M\left(Y_{1}{ }^{*}\right) \\
& M\left(I_{2}\right)+M\left(\Omega_{1}{ }^{*}\right)=\frac{1}{1 \pi} M\left(N_{5}{ }^{*}\right)+\frac{\circ}{\mathrm{T}} M\left(N_{3}{ }^{*}\right)+\frac{1}{2} M\left(\Xi_{3}{ }^{*}\right)+\frac{1}{2} M\left(\Xi_{1}{ }^{*}\right) \\
& M\left(I_{2}\right)+M\left(X_{1}\right)={ }_{\mathrm{r}_{0}^{\prime}}{ }^{\prime} M\left(Y_{2}{ }^{*}\right)+{ }_{\mathrm{I}}^{\mathrm{g}} M\left(Y_{1}{ }^{*}\right)+{ }_{5}^{1} M\left(\Xi_{3}{ }^{*}\right)+\frac{4}{5} M\left(\Xi_{1}{ }^{*}\right) \\
& M\left(I_{2}\right)+M\left(X_{1}\right)=\frac{1}{2} 5 M\left(N_{5}{ }^{*}\right)+\frac{2}{8} \frac{1}{5} M\left(N_{3}{ }^{*}\right)+\frac{2}{5} M\left(\Omega_{1}{ }^{*}\right)+\frac{8}{8} M\left(\Omega_{0}{ }^{*}\right) \\
& M\left(Y_{2}\right)+M\left(\Omega_{1}{ }^{*}\right)=M\left(N_{5}{ }^{*}\right)+M\left(X_{1}\right) \equiv 2 M\left(\Xi_{3}{ }^{*}\right) \tag{4}
\end{align*}
$$

These relations are found to be in perfect agreement with the masses given hy Dashen and Sharp (1965).

VALUES OF SPIN

In this section we find out the irreducible representations of SU_{8} to which the 35 -plet of $\mathrm{SU}_{\mathbf{s}}$ may belong. Let us first consider the baryon states having baryon number $B=1$. These states will appear as resonances in mesonbaryon interactions at high energies. They will, therefore, by contained in one,
or more, of the irreducible representations of SU_{6} that are obtained in the rechuction of tho direct product $56 \mathbb{\otimes} 35$. This reduction is given by Itaykson and Nauenberg (1966)

$$
\begin{equation*}
56 \otimes 35=700 \oplus 1134 \oplus 70 \oplus 56 \tag{5}
\end{equation*}
$$

Now if we examine the $\left(\mathrm{SU}_{3}, \mathrm{SU}_{2}\right)$ contents of all the irreducible representations occuring on the right side of equation (5) we find that there are (i) two 35 -plets of NU_{3} with spins $J=5 / 2$ and $J=3 / 2$ respectively in the 700 -dimensional representation of $S \mathrm{~S}_{6}$ and (ii) two 35-plets with $J=3 / 2$ and $J=1 / 2$ in 1134 dimensional representation of SU_{6}. No 35-plet cecurs in 70 -dimensional and 56 -dimensional representation. We, therefore, find that $J^{P}=5^{+}$baryons can only bo accomodited in 70 -dimensional representation of SU_{6}.

The baryon-haryon 35 -plats ($B=2$) will, similarly, be found in some irredhvible representations of SU_{6} that aro obtained in the redurtion : (Itzykson and Natenberg 1966)

$$
\begin{equation*}
56 \otimes \boxed{56}=1050 \oplus 490 \oplus 1134 \oplus+62 \tag{6}
\end{equation*}
$$

The generalized Pauli principle allows only the two anti-symmetric representations 490 and 1050 to bo realized in nature. The 35 -plets of SU_{3} oceur in both these representations. In 490 -dimonsional irreducible representation only thoso 35 -plet of SU_{3} oceur which have spin $J=1$ whilo in $10: 5$-dimensional ropresentation of SU_{6} there are throe 35 -plets with spin values $J=1,2$ and 3 . Thus the lowlying haryon-baryon states will havo spin $J=1$.

BRANCHING RATIOS IN THE JEOAYOF 35-PLET

The decays of a 35 -plet of single baryons $J^{P}=5 / 2 \cdot$ into (i) a meson oetet and haryon octet and into (ii) a moson octot and a baryon decimeat have been discussexl by Dashen and Sharp (1965) and by Zimmerman and Fagundes (1966). Their results could be used for di-baryon states also if we roplace the moson octot by baryon octet. We want to discuss the decay of 35 di-baryon statos into an octet of meson and a 27 -plet of di-baryons. We assume that for highor dimensional resonances the violation of unitary symmotry primarily affects the phase space and form factors in the decay widths. The branching ratios may thon be predicted from the following wave-functions :

$$
\begin{aligned}
& \left.\left|I_{2}^{+++}>=-\left(\frac{1}{3}\right)^{1 / 2}\right| K^{+}{ }_{3 / 2} X^{1}{ }_{3 / 2}>+\left(\frac{2}{3}\right)^{1 / 2} \right\rvert\, \pi_{1}^{+}{ }_{1} X_{1}{ }^{2}> \\
& \left|I_{2}^{++}>=-\left(\frac{1}{6}\right)^{1 / 2}\right| K^{+}{ }_{3 / 2} X^{1}{ }_{1}>-\left(\frac{1}{12}\right)^{1 / 2}\left|K_{3 / 2}^{0} X_{3 / 2}>+\left(\frac{1}{3}\right)^{1 / 2}\right| \pi_{1}^{+} X_{0}^{2}> \\
& \\
& \left.+\left(\frac{1}{8}\right)^{1 / 2} \right\rvert\, \pi_{1}^{0} X_{1}^{2}>
\end{aligned}
$$

$$
\begin{align*}
\left|I_{2}{ }^{+}>=-\left(\frac{1}{6}\right)^{1 / 2}\right| K^{+}{ }_{3 / 2} X^{1}{ }_{-1 / 2}> & -\left(\frac{1}{6}\right)^{1 / 2}\left|K_{3 / 2}^{0} X_{1 / 2}>+\left(\frac{1}{8}\right)^{1 / 2}\right| \pi^{+}{ }_{1} X_{-1}{ }^{2}> \\
& +\left(\frac{4}{\theta}\right)^{1 / 2}\left|\pi_{1}^{0} X_{0}{ }^{2}>+\left(\frac{1}{8}\right)^{1 / 2}\right| \pi_{1}^{-} X_{1}{ }^{2}> \\
\mid I_{2}{ }^{0}>=-\left(\text { 11 }_{1}\right)^{1 / 2} \mid K^{+}{ }_{3 / 2} X^{1}{ }_{-3 / 2}> & -\left(\frac{1}{4}\right)^{1 / 2}\left|K^{-}{ }_{3 / 2} X^{1}{ }_{-1 / 2}>+\left(\frac{1}{3}\right)^{1 / 2}\right| \pi_{1}^{0}{ }_{1} X^{2}{ }_{-1}> \\
& \left.+\left(\frac{1}{3}\right)^{1 / 2} \right\rvert\, \pi_{1}^{-} X_{0}{ }^{2}> \tag{7}
\end{align*}
$$

whero $\boldsymbol{I} X_{\boldsymbol{I}^{\prime} s}^{\boldsymbol{Y}^{\prime}}$ stand for a member of 27 -plet having quantum numbors $\boldsymbol{Y}=\mathbf{Y}^{\prime \prime}$, $I=I^{\prime}$ and $I_{3}=I_{3}^{\prime}$. The other thirty-one wave-functions can be similarly written down using the Clebsch-Gordon coefficients of SU_{3}. The branching ratios are then given by (Gasjorowies 1964) :

$$
\begin{equation*}
R=\frac{\Gamma\left(I_{2} \rightarrow M_{1+}{ }^{27} B_{1}\right)}{\Gamma\left(I_{2} \rightarrow M_{2}+{ }^{27} B_{2}\right)} \quad\binom{P M_{2}}{P_{M_{1}}}^{2 l+1} / \frac{P^{2} M_{1}+\Lambda^{2} \backslash}{P^{\prime} M_{2}{ }^{2}+\Lambda^{2}} \tag{S}
\end{equation*}
$$

Here M_{1} and M_{2} are the members of moson octet; ${ }^{27} B_{1}$ and ${ }^{27} B_{2}$ are members of 27 -plet of baryon-baryon states; $P_{M_{1}}$ and $P_{M_{2}}$ are the momenta in the respective docays, l is the orbital angular momentum in the decay and Λ reflects the; source size. Thus, using wave-functions (7) we obtain :

$$
\begin{gathered}
R_{1}=\frac{M\left(I_{2}++\rightarrow K^{+}+{ }_{3 / 2} X^{1}{ }_{3 / 2}\right)}{M\left(I_{2}{ }^{+++} \rightarrow \pi^{+}+{ }_{1} X_{1}{ }^{2}\right)}=\frac{1}{2} \\
R_{2}=\frac{M\left(I_{2}++\rightarrow K^{+}+{ }_{3 / 2} X^{1}{ }_{1 / 2}\right)}{M\left(I_{2}{ }^{++} \rightarrow \pi^{+}+{ }_{1} X_{1}{ }^{2}\right)}=\frac{3}{4} \\
R_{3}=\frac{M\left(I_{2}++\rightarrow K^{0}+{ }_{3 / 2} X^{1}{ }_{3 / 2}\right)}{M\left(I_{2}{ }^{++} \rightarrow \pi^{0}+{ }_{1} X^{2}\right)}=\frac{1}{4} \\
R_{4}=\frac{M\left(I_{2}{ }^{+} \rightarrow K^{+}+{ }_{3 / 2} X^{1}{ }_{-1}\right)}{M\left(I_{2}+\rightarrow \pi^{+}+{ }_{1} X^{2}{ }_{-1}\right)}=\frac{3}{2} \\
R_{5}=\frac{M\left(I_{2}{ }^{+} \rightarrow K^{0}+{ }_{3 / 2} X^{1}{ }_{1 / 2}\right)}{M\left(I_{2}{ }^{+} \rightarrow \pi^{0}+{ }_{1} X_{0}{ }^{2}\right)}=\frac{3}{8} \\
R_{6}=\frac{M\left(I_{2}{ }^{0} \rightarrow K^{+}+{ }_{3 / 2} X^{1}-3 / 2\right)}{M\left(I_{2}{ }^{0} \rightarrow \pi^{0}+{ }_{1} X^{2}{ }_{-1}\right)}=\frac{1}{4} \\
R_{7}=\frac{M\left(I_{2}^{0} \rightarrow K^{0}+{ }_{3 / 2} X^{1}{ }_{1 / 2}\right)}{M\left(I_{2}^{0} \rightarrow \pi^{-}+{ }_{1} X^{2}-{ }_{-1}\right)}=\frac{3}{4}
\end{gathered}
$$

The branching ratios in the decays of other particles of this plet can als, be similarly found out.

35-Plet of Baryons
 ACKNOWLEDGMENT

I am greatly indebted to Dr. G Bandopadhyay for his suggestions and encouragement.

REFERENCES

Abers, E. S., Balazs, L. A. P. and Hara, Y., 1964, Phys. Rev., 186B, 1382.
Dashen, R. F. and Sharp, 1). H., 196ï, Phys. Rev., 1888, 223.
Dashen, R. F. and Frautsehi, S. C., 1964, Phys. Rev., 185, B 1190.
Gasiorowez, S., 1963, Phys. Rev., 181, 2808.
Itzykson, C. and Nauenberg, M., 1966. Rev. Mod. Phys., 88, 95.
Lipkin, H. J., Meshkov, S. and Levinson, ('. A., 1963, Plys. Rcv. Lett., 10, 361.
Lipkin, H. J., and Harari, H., 1964, Phys. Rec. Lett., 18, 345.
Zimmerman, A. H. and Fagundes, H. V., 1966, II Nunvo Cimento 48, 233.

