c-axis and tho nearost Cl atom of tho upper one is 3.48 A and therefore there is possibility of formation of a weak bond between these two atoms. A similar hond may exist also botween the Sb atom of the upper molecule and the Cl atom of the lower molecule. In fact the crystal consists of such vertical rods of molecules passing through the corners and the centres of faces of the unit eell.

The four new lines given in table I are due to intormolecular oscillations in such 'rods', the line $102.0 \mathrm{~cm}^{-1}$ being probably due to torsional oveillation about the c-axis in which both the bonds mentioned above aro involved. Tho lino $76 \mathrm{~cm}^{-1}$ may be due to an angular cacillation of the molecule about the horizontal $\mathrm{Sb}-\mathrm{Cl}$ hond and the other two lines may be duce respectively to such oscillations about a horizontal axis bisecting tho angle between the other two Sb - Cl bonds and the three-fold axis of the molecule.

The liquid state probably consists of dimers formod in the same way as in the erystal. In that case in ω_{2} the bending of one of the Sb . Cl honds is less than that of the ther two freo bonds and tharefore the modo becomes asymmetric to tho three-fold axis and the Raman line betomes totally depolarisord. In ω_{1} no such influence of tho intermolecular bonds is expocterd.

The work was done under a scheme financed by the Council of Seiontific and Industrial Research, Govornment of India. The authors are thankful to the Coum(il of the financial help and also to the Indian Association for the Gultivaion of Science for providing facilitios for the work.

REFERENCES

Braune, H. and Engelbracht, G., 1932, Z. f. Phys. Chem., B., 19, 303.
Howard, J. B. and Wilson, E. B. Jr, 1934. Jour. Ohem. Phys., 2, 636.
Lindqvist, I. and Niggli, A., 1956, J. Inor. Nucl. Chem., 2, 345.

22

ON THE METHOD OF MEAN VALUES AND CENTRAL LIMIT THEOREMS

M. DUTTA and S. KRISHNAMOORTHY
Mathematics Department, Indian Institute of Trohnology, Bombay, INDIA

(Received December 11, 1067; Resubmitted June 24, 1968)
In the usual method* of mean values (Darwin and Fowler 1922), as in the theory of singular sories of Hardy and Littlewood (Bellman 1961) for Waring problems

[^0]of Number Theory, the calculus of residue is used in the formulation of the problem and then, it is evaluated by the method of steopest descent. In the modified method* (Khinchin 1949); from samo basic idoas, samo results are obtainod by the application of a central limit theorem. Apart fion the approximation techniques, the difforence betwon these two methods lises in the use of the eharacteristic function (i.e., the Fourier transform) in the latter in place of the partition (generating) function in the former. Koppe (1949) showerl that tho same results can also be obtained directly lyy use of Fourior transforms with a suitable mothod of approximation. Thus, these two methods appear to be related by a sort of mathematical (formal) equivalence which should be aralysed. This noto shows clearly the close mathematical similarities of those two mothods.

In statistical mochanics, to earh energy state ϵ_{k} of a comstituent of an assembly known from mechanics (classical or quantum), a prohability (weight), p_{k}, is assoriatorl. The energy of the j th constituent of an assombly of N particles at a comploxion is a random variable X_{j}. The main problom is to find out the distribution wo that $E-\underset{j}{\sum} X_{j}$ corroponds to the ohsorver valuo, E_{0}, and thon to find out average values of physical quantitios.

In ustab mothod, from partition functions (gonerating functions of distributons) of constituents, the partition function of the entire assembly is obtained in a convenient form. In a contial limit theorem, from characteristic function of X_{j} 's, the characteristic function (and so the distribution) of the standardisod sum of X 's is determinol in conveniont form. Now, the characteristic function, $C(t)$ is obtained from the generating function $G(z)$ by reptacing z by $e^{i t}$. At this step, thus, the two metheds are essentially similar.

After this, calculations of averagas aro rotino works and samo in the both. In the usual mothod, the starting point is writton by the reridue theorem as

$$
\begin{equation*}
P(n)=\frac{1}{2 \pi i} \oint_{C} \frac{G(z) d z}{z^{n+1}} \tag{1}
\end{equation*}
$$

where C is a contour within the circle of convergence of the power sories of $G(z)$, the generating function of the assembly, and $P(n)$ is tho probability of getting $\Sigma X_{j}=n$. In central limit theorem, it is written by the inverse Fourier transform as

$$
\begin{equation*}
P(n)=\frac{1}{2 \pi} \int^{\infty} e^{s n^{t}} G\left(e^{i t}\right) d t \tag{2}
\end{equation*}
$$

The integrand of (2) can be written from that of (1) by direct substitution of $e^{i t}$ by z. Within the circle of convergence of the power selios of $\theta(z)$, it has nonsingularity, and so the integrand of (1) has only one pole at the origin. Now, in caees, occurred in physics, the radius r, of convergence is 1 or ∞ (Schrödinger 1947).

Now, in the region, $|z|<r$, the contour C can bo deformed continuonsly. In the case $r>1$, by doformation of C to $|z|=1$, the integral (1) can easily be expressed in the form (2); only the limit of integral is from $-\pi$ to π in place of $(-\infty, \infty)$. But, in Khinchin proof (1949) fo a central limit theorom, it is seon that the actial comes from the interval,

$$
\left.\begin{array}{cc}
\log N & \frac{\log N}{B_{N}{ }^{\dagger}} \\
\overline{B_{N}}{ }^{\mathbf{4}}
\end{array}\right)
$$

where B_{N} is the variance of the joint distribution. If $X_{j}{ }^{\prime}, \mathrm{s}$ are independent random variables with the same variance σ^{2}, thon $B_{N}=N \sigma^{2}$ ancl $\log N / B_{N}{ }^{1}=\frac{\log N}{\bar{N} \boldsymbol{i} \sigma}$ $=$ a small quantity for large N, and thus, the above interval is containad in the interval, ($-\pi, \pi$)

In case, $r=1$, some special considerations are necessary.
But in the usual method, in astual evaluation, C is taken as a circle with the centre at origin and passing the col, $z=\xi$ of the integrand of (1). Then. from considerations of stoopest descent of the integrand, C is roplacod by a line through the rol., $z=\xi$ and parallel to the imaginary axis from $\xi-1 \infty 0$ to $\xi+\infty 0$. In (2), the intogration is to be taken along the line from $-\infty$ to $+\infty$. Of course, actual actual contribution in (l) comes from a very close neighbourhood of the point $z=\xi$ and that in (2), of the point $t=0$. Thus, the only difforonce hotween these two methods under considerations is only in the choice of contours.

The problom of the deformation of the contour is purely mathematical. The above clisenssion also suggests an interesting convorse problem: 'What will be tho form of the partition function for which the above doformations of contour are pormissiblo and what is its physiral significanee?' These investigations will be taken later (Dutta 1968).

REFERENCES

Bellmann, R., 1961, A Oollection of Modern Mathematical Classics, Dover Publications Inc., New York.
Darwin, C. G. and Fowler, R. H., 1922, Phil. Mag., 82, 450, 823.
Dutta, M., 1968, Statistical Physics (Foundations), World Press, Caloutta (in Press).
Khinchin, A. I., 1949, Mathematical Foundation of Statistical Mechanics, Dover Publieations, New York.
Koope, A. H., 1949, Statische Thermodynamik, S. Hirzel Verlag, Leipzig.
Schrödinger, E., 1947, Statiatical Thermodynamics, Cambridge University Press, Cambridge.

[^0]: *In the text of the note, these will be referred to as the usual method and the modified method

