EQUATIONS OF ELECTRON TRAJECTORIES UNDER THE INFLUENCE OF ORTHOGONAL ELECTRIC AND MAGNETIC FIELDS IN A SEMICIRCULAR SPECTROMETER

M. ANTONY
Instittter of Geology, 1, Rue Blessig, Strabbourg University Strasboturg-Franote

(Receiver December 26, 1967 ; Resubmitted April 27 and July 22, 1968)

Abstract

Wquations of electron trajectories under the influence of orthogonal electric and magnetic fields in a somi-circular spectromoter are derived. The influence of preacceleration on the resolving power and the transmission of the spectrometer are discussed.

INTRODUCTION

Resolution less than 1 in 1000 can be set in a semi-circular spectrometer. Using radiographic films, and nuclear emulsion plates, a large part of the conversion electron spectrum can be surveyed and important informations about nuclear structure can be obtained. However, photographic detecters have lower energy limit of detection around 7 keV . By using preacceleration technics, electrons down to zero energy can be recorded. In the present article, we derive equations of electron trajectories under the influence of orthogonal electric and magnetic fields, and show that preaceleration does not seriously affect the resolving power and transmission of the spectrometer.

EQUATION OF ELECTRON TRAJECTORIES

Figure 1_{1} is a trihedral $0 x y z$ showing the magnetic. electric and velocity vectors

Figure 1. Trihedral Oxyz showing $\dot{B}_{\perp} \mathrm{E}_{\perp} \dot{\mathrm{v}}$
\vec{B}, \vec{E}, and \vec{v} respectively with 0 as the centre of the radioactive source emitting
electrons. The Lorentz force for an electron under such conditions is given by $e[\vec{E}+\vec{v} \boldsymbol{\Lambda} \vec{B}]$ with

$$
\begin{array}{ll|lll}
v & \Lambda \mathrm{~B} & \begin{array}{ccc}
i & j & k \\
\dot{x} & \dot{y} & \dot{z} \\
& 0 & 0
\end{array}-B
\end{array}
$$

The equations of motion are :

$$
\begin{align*}
& m \ddot{x}=e E-e \dot{y} B \tag{1}\\
& m \ddot{y}=e \dot{x} \mathbf{B} \tag{2}\\
& m \ddot{z}=0 \tag{3}
\end{align*}
$$

where m is the electron mass.
For the initial conditions

$$
x_{0}=y_{0}=z_{0} . \quad v_{0}=\quad v_{0 y}
$$

From equations (3),

$$
z=v_{02} t \text { at time } t .
$$

From equations (1) and (2), we get

$$
\begin{gather*}
d \dot{d t}(\dot{x}+i \dot{y})-\frac{i e B}{m}(\dot{x}+i \dot{y})=\frac{e}{m} E, \\
\dot{x}+i \dot{y}=A e^{i \omega t}+i \frac{E}{\bar{B}}\left(\text { where } A=a e^{i a}, \text { and } \omega \text { is the angular velocity }\right) \\
=a(\cos \alpha+i \sin \alpha)(\cos w t+i \sin w t)+i E / B \tag{4}
\end{gather*}
$$

a and α are defined by the initial conditions :

$$
v_{0 x}+i v_{0 y}=a \cos \alpha+i a \sin \alpha+i E / B
$$

Hence, we have

$$
v_{0 \alpha}=a \cos \alpha, \quad \text { and } \quad v_{0 y}=a \sin \alpha+E / B
$$

From equation (4), we get :

$$
\begin{equation*}
\dot{x}(t)=v_{0 x} \cos w t-\left(v_{0 y}-\frac{E}{B}\right) \sin w t \tag{5}
\end{equation*}
$$

$$
\begin{align*}
& \dot{y}(t)=\left(v_{0 y}-\frac{E}{B}\right) \cos w t+v_{0 x} \sin w t+\begin{array}{l}
E \\
B
\end{array} \tag{6}\\
& x(t)=\frac{v_{0 x}}{w} \sin w t+\frac{1}{w}\left(v_{0 y}-\frac{E}{B}\right)(\cos w t-1) \tag{7}\\
& y(t)=\underset{\sim}{v},\left(v_{0 y}-\frac{E^{\prime}}{B}\right) \sin w t-\frac{v_{0 x}}{w}(\cos w t-1)+\frac{E}{B} t \tag{8}\\
& z(t)=v_{0 z} t \tag{9}
\end{align*}
$$

Equations 5 to 9 define completely the trajectories of the electrons with \vec{E} and \vec{B}.

PARTICULAR CASE OF PLANETRAJEMTOR1ES, ORTHOGONALTOTHEMAGNETICINDTVTIONS
B. WITHOUT PREACUELERATION

For $v_{02}=0, z(t)=0$, the trajectory lies in the $x y$ plane, and with $E=0$, we have :

$$
\begin{gathered}
x=\frac{v_{0 x}}{w} \sin w t+\frac{v_{0 y}}{w}(\cos w t-1) \\
y=\frac{v_{0 y}}{w}, \sin w t-\frac{v_{0 x}}{w}(\cos w t-1) \\
\left\{x-\left(-\frac{v_{0 y}}{w}\right)\right\}^{2}+\left\{\left(y-\left(+\frac{v_{0 x}}{w}\right)\right\}^{2}=\frac{v_{02}^{2}+v_{0 y^{2}}^{2}=}{w^{2}}=\frac{v_{0}^{2}}{w^{2}}\right.
\end{gathered}
$$

The trajectory is a circle with the centre :

$$
\left(x_{0}, y_{c}\right)=\left(-\frac{v_{0 v}}{w}, \frac{v_{0 x}}{w}\right)
$$

and radius

$$
\rho=\left|\begin{array}{c}
v_{0} \\
w
\end{array}\right|=\left|\frac{m v_{0}}{e B}\right| .
$$

In figure 2, the origin is displaced by a distance $2 D$ from the plane of the detector, thus limiting the angle of emission in the $x y$ plane.

Suppose that
and

$$
\begin{aligned}
X & =-2 D+x \\
Y & =y
\end{aligned}
$$

M. Antony

The trajectory is still a circle given by the equation :

$$
\left\{X+\left(2 D+\frac{v_{0 y}}{w}\right)\right\}^{2}+\left\{Y-\frac{v_{0 x}}{w}\right\}^{2}=\begin{gathered}
v_{0}^{2} \\
w^{2}
\end{gathered}
$$

a) Suppose that the electron trajectory makes an angle α_{0} with the X-axis, and passes through the centre of the diaphragm as shown in figure 2. Let us precise the initial conditions :

Figure 2. Showing the central trajectory, with initial velocity v_{n} making an angle α_{0} with $\cap X$; the origin is displaced to $X=\mathbf{x}-\vartheta D$.
and

$$
v_{0 x}=v_{0} \cos \alpha_{0}
$$

For $X=0$, the trajectory will cut the Y axis at two points Y_{1}, and Y_{2} defined by :

$$
\left(2 D+\frac{v_{0}}{\omega} \sin \alpha_{0}\right)^{2}+\left(Y-\frac{v_{0}}{\omega} \cos \alpha_{0}\right)^{2}=\frac{v_{0}^{2}}{\omega^{2}}
$$

i.e.,

$$
\left.\begin{array}{l}
Y_{1} \\
Y_{2}
\end{array}\right\}=\frac{v_{0} \cos \alpha_{0}}{\omega} \mp \sqrt{v_{0}^{2}} \begin{gathered}
\omega^{2} \\
\cos \alpha_{0}-4 D\left(D+{ }_{\omega}^{v_{0}} \sin \alpha_{0}\right)
\end{gathered}
$$

The central trajectory is given by $Y_{1}=0$, thus defining the angle of emission by the condition $\left(\frac{v_{0}}{\omega}\right) \sin \alpha_{0}=-D$.

The point of impact on the plate is $Y_{2}=Y_{0}=2 \frac{v_{0}}{\omega} \cos \alpha_{0}=\frac{2(B \rho)}{\omega} \cos \alpha_{0}$, where $B \rho$ is the magnetic rigidity of the electron.
b) Let us consider the case of a trajectory situated in a plane parellel to the median plane, but whose initial velocity makes an angle $\alpha=\alpha_{0} \pm \phi$ with $O X$.

Figure 3. Showing the initial volocity maling an angle $\alpha=\alpha_{0}+\phi$ with the X axis.
The trajectory will cut $O Y$ at two points :

$$
\begin{aligned}
& Y_{1} \\
& Y_{2}
\end{aligned}={ }_{\omega}^{v_{0}} \cos \alpha\left\{1 \mp \sqrt{1}-\frac{4 D \omega\left(D \omega+v_{0} \sin \alpha\right)}{v_{0}{ }^{2} \cos ^{2} \alpha}\right\}
$$

Using the relation $v_{0} \sin \alpha_{0}=-D$, we get the point of impact on the plate :

$$
\begin{aligned}
Y_{2} & \approx \frac{2 v_{0} \cos \alpha}{\omega}\left[1-\frac{\sin \alpha_{0}\left(\sin \alpha_{0}-\sin \alpha\right)}{\cos ^{2} \alpha}\right] \\
& =Y_{0} \frac{\cos \alpha}{\cos \alpha_{0}}\left[1-\frac{\sin \alpha_{0}\left(\sin \alpha_{0}-\sin \alpha\right)}{\cos ^{2} \alpha}\right] .
\end{aligned}
$$

Let us recall that Y_{0} is the point of impact for the central trajectory. From the above discussions, we conclude that a point source emitting monoenergetic electrons produces a ray of a finite width on the detector. The resolving power of the spectrometer is defined by the quantity $R_{0}=\frac{Y_{0}-Y_{2}}{\boldsymbol{Y}_{0}}=$

$$
1-\frac{\cos \alpha}{\cos \alpha_{0}}\left[1-\frac{\sin \alpha_{0}\left(\sin \alpha_{0}-\sin \alpha\right)}{\cos ^{2} \alpha}\right]
$$

The source has a finite width s, being placed in the plane parallel to that of the detecter. The total resolution is given by the expression :

$$
R=\frac{s}{\bar{Y}_{0}}+\frac{\phi_{0}^{2}}{2}, \text { where } \phi_{0} \text { is half of the solid angle of emission: }
$$

INFLUEN(EG OF PREACGELERATION ON THE RESOLUTION AND TRANSMISSION OF THE SPECTROMETER

Figure 4 shows the case of a homogeneous accelerating space between the source fixed to a plane electrode, and a grid parallely situated at a distance d

Figure 4. Preacceloration, showing the grid.
from the source. At this geometry, the motion of electrons is defined by the equations (5) to (9). To estimate the influence of preacceleration, we consider two cases:

1) an electron emitted an angle α_{0} with the initial velocity V_{0} and energy $W_{\mathbf{n}}$
2) an electron emitted an angle a with initial velocity v_{0}, energy ω_{0}, and accelerated under a potential of V Kilovolts such that on leaving the grid, its energy bears the relation $W_{0}=\left(\omega_{0}+V\right) \mathrm{keV}$.
If T and T_{E} are the respective times of stay of the two electrons in the accelerating medium.

$$
\begin{aligned}
& T=\bar{V}_{0} \frac{d}{\cos \alpha_{0}}, \omega T=\frac{d}{\cos \alpha_{0}}<1, \quad \omega T_{E}=\frac{d}{\cos \alpha} \\
& \sin \omega T=\omega T, \quad \text { and } \quad \cos \omega T=1-\left(\frac{\omega^{2} T^{2}}{2}\right)
\end{aligned}
$$

At the exit of the grid, for an accelerated electron,

$$
\begin{aligned}
& \dot{x}\left(T_{E}\right)=v_{0 x}\left(1-\frac{\omega^{2} T_{E}{ }^{2}}{2}\right)-v_{0} \omega T_{E}+\gamma T_{B}, \\
& \dot{y}\left(T_{E}\right)=v_{0 y}\left(1-\frac{\omega^{2} T_{E^{2}}}{2}\right)+v_{0 x} \omega T_{E}+\frac{\gamma \omega T_{E^{2}}}{2}-
\end{aligned}
$$

Electron Trajectories under Electric \& Magnetic Fields

$$
y\left(T_{E}\right)=v_{0 y} T_{E}-\frac{v_{0 x} x-\omega^{2} T_{E_{E}^{2}}}{\omega}, \text { where } v_{0 x}=v_{0} \cos \alpha, v_{0 y}=v_{0} \sin \alpha,
$$

and $\gamma=\frac{e E}{m}=$ acceleration due to E in the direction $O X$.
For an electron without preacceleration,

$$
Y(T)=V_{0 y} T-V_{0 x} \frac{\omega^{2} T^{2}}{2}, \text { where } V_{0 x}=V_{0} \operatorname{\omega os} \alpha_{0} \text { and } V_{0 y}=V_{0} \sin \alpha_{0}
$$

The relative displacement between the two images is

$$
\Delta y=V_{0 y} T-v_{0 y} T_{E} .
$$

In order to associate the two trajectories, we consider $\Delta y=0$.
Then,

$$
\begin{gathered}
v_{0 y}=V_{0 y} \frac{T}{T_{E}} \cdot \\
T_{E}=T \cdot \frac{2 d V_{0 x}^{2}}{V_{0}^{2}-v_{0}^{2}}\left[\sqrt{1+\frac{V_{0}^{2}-v_{0}^{2}}{V_{0 x}^{2}}-1}\right]
\end{gathered}
$$

The above equations show that we have to diminish the distance d between the source and the grid, subject to discharge conditions. The relative displacement is of the order $\begin{gathered}\omega^{2} T^{2} \\ 2\end{gathered}$.

For a spectrometer, where $d=5 \mathrm{~mm}$, radius of curvature $=125 \mathrm{~mm}$,

$$
\frac{\omega^{2} T^{2}}{2} \approx \frac{1}{2}\left(\frac{d}{r}\right)^{2} \approx 10^{-3}
$$

Thus, the position of a ray with preacceleration is displaced by a quantity equal to the geometrical resolution of the spectrometer in comparison to a ray without preacceleration. However, for electrons of low energy, the resolution depends largely on the dimensions of the source. The above discussion is comparable with experimental observation obtained by studying the $148,08 \mathrm{keV}$ ray F of ThB , using Kodirex films as detecters, and applying a potential of 5 KV .

TRANSNISAION

For optimum conditions, the solid angle is given by the relation $\phi_{0}=\sqrt{\frac{28}{\bar{Y}_{0}}}$ The transmission is a function ϕ_{0}. Δy due to the preacceleration is negligible. Thus ϕ_{0}, and hence transmission remains practically unaffected.

This work is a part of the thesis for the doctorate degree presented by the author at the University of Lyon in May 1967. We thank Professor R. Chery of the Institute of Nuclear Physics, LYON, for his valuable guidance.

