RELAXATION EFFECTS AND THE HEAT TRANSFER IN A CHEMICALLY REACTING GAS MIXTURE WITH INERT DILUENTS

A. K. BARUA AND T. K. RAI DASTIDAR

DEPARTMENT OF GENERAL PHYSICS AND X-RAYS, INDIAN ASSOCIATION FOR THE CULTIVATION OF SCIPACE, CALCUTTA-32, INDIA.

(Received November 25, 1967)

ABSTRACT. The authors' recent analysis of thermal conductivity of reacting gas mixtures, for detecting the effect of chemical reaction upon the binary diffusion coefficients between the unlike components of the mixture, has been extended to reacting gases diluted with inert gases. Existing thermal conductivity data of the reacting $N_2O_4 \rightleftharpoons 2NO_2$ system diluted with helium and argon have been analysed. The results show that the theory of heat transport in reacting gases is still inadequate to account for the relaxation of chemical energy in diluted reacting gas systems.

INTRODUCTION

It has long been known that the heat transport in a reacting gas mixture may be augmented by the flow of molecular enthalpies along a diffusion current across the system. The composition of the gas mixture, which is determined by the equilibrium relationships at the ambient temperature, varies across the system due to the temperature gradient and thus mass-gradients are set up which cause the diffusional flow of the reacting species. If the system is in local chemical equilibrium, these mass gradients can be determined directly from the boundary conditions.

It is, however, only for very fast reactions that the condition of local chemical equilibrium is satisfied. At low reaction rates, effects of relaxation of chemical energy come into play and the simple relation between the temperature gradient and the mass gradients breaks down, with a consequent decrease in the mass gradients from the equilibrium value. Hence the analytic expression for the reactive thermal conductivity (Butler *et al*, 1957, Brokaw, 1960) which applies for the condition of local equilibrium has to be corrected for relaxation effects for systems with low or intermediate reaction rates. The most comprehensive treatment of the thermal conductivity of reacting mixtures with intermediate reaction rates has been given by Brokaw (1961), who introduced the relaxation correction in terms of the boundary conditions of the system and showed that the effective thermal conductivity may depend on the apparatus geometry and scale. The reacting system which has been most widely studied is the dissociating nitrogen tetroxide gas :

$$N_2O_4 \rightleftharpoons 2NO_2$$

For a reaction of this type, the 'chemical' thermal conductivity is given by

$$\lambda_R = -\frac{pD_{12}}{RT} \left(\frac{\Delta H^2}{RT^2}\right) \frac{x_1 x_2}{(1+x_1)^2} \qquad \dots \quad (1)$$

where the indices 1 and 2 refer to the components N_2O_4 and NO_2 respectively, D_{12} is the binary diffusion coefficient, ΔH is the heat of reaction and x_1 and x_2 are the respective mole-fractions. It was shown by the authors in two recent publications (Rai Dastidar *et al.*, 1966, 1967) henceforth referred to as I and II that, as an effect of the chemical reaction, the binary diffusion coefficient D_{12} was somewhat lowered from the value obtained from the classical Chapman-Enskog theory. As a result, the chemical thermal conductivity defined in eqn. (1) should be revised to the form

$$(\lambda_R)_{eff} = \frac{(pD_{12})_{eff}}{RT} \left(\frac{\Delta H^2}{RT^2}\right) \frac{x_1 x_1}{(1+x_1)}$$
(2)

where $(D_{12})_{eff}$ is the "effective" diffusion coefficient between components 1 and 2 in the reaction. As $(D_{12})_{eff} < D_{12}$, $(\lambda_R)_{eff}$ must be smaller than λ_R , which corresponds to the local chemical equilibrium condition in the system. It was shown in ref. II that, when the thermal conductivity values were (i) free of, or (ii) corrected for, relaxation effects,

$$(\lambda_R)_{eff} = \lambda_{expt1} - \lambda_f \tag{2'}$$

where λ_f is the "frozen" conductivity of the mixture in the absence of the reaction. Also, it follows that the experimental thermal conductivity should necessarily be smaller than the equilibrium value $\lambda_s = (\lambda_f + \lambda_R)$.

In a series of measurements, Coffin(1959) has determined the thermal conductivity of the reacting system $N_2O_4 \rightleftharpoons 2NO_2$ diluted with inert gases. It has been shown by Mark Cher (1962) that the probability of a collision of an N_2O_4 molecule with another molecule reacting in the dissociation or activation of the N_2O_4 molecule is governed by a "collision efficiency" of the other molecule, the efficiency of an N_2O_4 molecule being unity. Consequently, in a reacting gas diluted with some inert gas the speed of reaction may considerably go down, and it would be of interest to observe the effect of this lowering of reaction rate upon the influence of the chemical reaction upon the diffusion coefficient.

THEORETICAL

In his paper Coffin published the thermal conductivity measurements of diluted $N_2O_4 \rightleftharpoons 2NO_2$ system at three temperatures, with three different concentrations of the diluent for each temperature. The diluents used were Helium and Argon. The strength of the diluent was given in terms of the "atom fraction" a, defined as

$$a = \frac{p_3}{2p_1 + p_2 + p_3} \tag{3}$$

where the p's are partial pressures and the indices 1, 2 and 3 refer to N_2O_4 , NO_2 and the diluent respectively. The molefraction x_3 of the diluent is of course given by

$$p_1 + p_2 + p_3 = P_3$$
(4)

For such a ternary mixture with one inert component, the reactive conductivity is given by

$$\lambda_R = \frac{1}{RT} \begin{pmatrix} \Delta H^2 \\ RT^2 \end{pmatrix} \left[\begin{pmatrix} (x_2 + 2x_1)^2 \\ PD_{12}x_1x_2 \end{pmatrix} + \frac{x_3}{PD_{13}x_1} + \frac{4x_3}{PD_{23}x_2} \right]^{-1}$$
(5)

where x's are the molefractions. The "frozen" conductivity λ_f can be calculated according to Hirschfelder-Eucken formula (Hirschfelder *et al*, 1954; Hirschfelder, 1957) for thermal conductivity of mixtures of polyatomic gases.

The molefractions x_1, x_2 and x_3 can be calculated from the experimental "atom fraction" a as follows. Eqn. (3) can be re-written as

$$a = \frac{P - p_1 - p_2}{P + p_1} \tag{6}$$

Again, the equilibrium constant $K_p = \frac{p_2^2}{p_1}$; substituting this expression for K_p in eqn. (6) it can be shown that

 $p_{0} = \frac{1}{[\{K_{1}^{2} + 4PK_{1}(1-a^{2})\}^{\frac{1}{2}} - K_{1}]}$

$$p_{2} = \frac{1}{2(1+a)} \left[\{K_{p}^{*} + 4PK_{p}(1-a^{*})\}^{*} - K_{p} \right]$$

$$p_{1} = p_{2}^{2}/K_{p}$$

$$p_{3} = P - p_{1} - p_{2}$$
(7)

The mole fractions are now directly obtained by dividing the partial pressures by the total pressure P. The equilibrium constant K_p for the dissociation $N_2O_4 \rightleftharpoons 2NO_2$ has been given (Bodenstein *et al*, 1922).

A. K. Barua and T. K. Rai Dastidar

Values of the mole fractions thus calculated are given in table 1. The theoretical values of λ_f , λ_R and $\lambda_{e}(=\lambda_f+\lambda_R)$ along with the experimental conductivity values are given in Table II. For the calculation the Lennard-Jones (12:6) potential was used, the force constants for N₂O₄ and NO₂ being previously given by the authors (Barua *et al*, 1965). The usual combination rules (Hirschfelder *et al*, 1954) were used. The λ_{s} -values originally calculated by Coffin who used an older set of force constants given by Brokaw (1958), are also included in Table 2.

In order to analyse the effect of chemical reaction upon the diffusion coefficient, it was necessary to ensure that the experimental values were free from relaxation effects. For the nitrogen tetroxide dissociation, these effects are negligible towards pressures .5 atm and higher (Rai Dastidar *et al*, 1967), but for lower pressures the relaxation effects are quite significant and have to be taken account of . Since, however, the present theory (Brokaw, 1961) of heat transport in reacting gases is not immediately applicable here owing to the presence of diluents we confine ourselves to the analysis of data at the three highest pressures for each diluent concentration at each temperature : namely, 1 atm, 0.7 atm and 0.5 atm, where the relaxation effects should be minimum. For a ternary mixture eqn. (5) can be rewritten, in analogy with eqn. (2), as

$$(\lambda_R)_{eff} = \frac{1}{RT} \left(\begin{array}{c} \Delta H^2 \\ RT^2 \end{array} \right) \left[\frac{(x_2 + 2x_1)^2}{P(D_{12})_{eff} x_1 x_2} + \frac{x_3}{P(D_{13})_{eff} x_1} + \frac{4x_3}{P(D_{23})_{eff} x_2} \right]$$
(8)

At each pressure, we have three experimental quantities $(\lambda_R)_{eff}$ corresponding to the three atom fractions of the diluent, and hence the three effective diffusion coefficients $(D_{12})_{eff}$, $(D_{13})_{eff}$ and $(D_{23})_{eff}$ can be obtained by solving three simultaneous equations. Calculated values of the ratio D/D_{eff} thus obtained are given in table 3.

DISCUSSION OF RESULTS

At present no theory is available which takes into account the effects of relaxation in a chemically reacting gas mixture when an inert diluent is present. However, to make the analysis possible we have confined our analysis to comparatively higher ranges of pressure where relaxation effects are likely to be small or absent. On this assumption the system can now be treated as in local chemical equilibrium.

From table 2 it may be seen that λ_{e} -values obtained by using the new set of force constants for N₂O₄ and NO₂ are always higher than λ_{expt} -values whereas those obtained by using the old set of force constants are sometimes lower than λ_{expt} -values. The results obtained with the new set of force constants are more reasonable as, due to the relaxation effects the experimental thermal conductivity should be lower than the calculated value for local chemical equilibrium.

14

The computed D/D_{eff} values for the N₂O₄-NO₂ pair, N₂O₄- diluent pair and the NO₂- diluent pair of molecules are shown in columns 4, 5 and 6 of table 3 respectively. It was shown in ref. II that in order to assess the retarding influence of chemical reaction on diffusion from thermal conductivity measurements it is essential to eliminate completely the relaxation effects. The trend of rise in $D_{12}/D_{12})_{eff}$ with the fall of pressure and with increase of diluent concentration indicates that the relaxation effects are still present at the pressures for which calculations have been made. However, at such pressures analysis of undiluted N₂O₄ \rightleftharpoons 2NO₂ system had not shown any relaxation effect in ref. 11. This most probably points to a retardation of the reaction rate caused by the presence of the diluents. Since the analysis shows clearly the presence of relaxation effects the actual values of the ratios of the diffusion coefficients are without any physical significance. A part of the apparently irregular values of D/D_{eff} ratio may also be due to experimental uncertainties.

Diluent Gas	Т (°К)	u	1² (atm)	<i>x</i> ₁	<i>x</i> 2	x_3
		· · · · · · · · · · · · · · · · · · ·	1.00	. 47373	.27839	.24788
Hohum	300	. 1682	.70	.43812	.31999	24189
			.50	.40170	.36254	.23577
			1.00	.29364	.21918	.48718
,,	300	.3766	. 70	.27028	.25133	.47839
			.50	.24654	.28402	.46945
			1.00	.13734	.14989	.71277
**	300	. 6267	.70	. 12458	.17064	.70478
			.50	. 11187	. 19132	.69681
			1.00	.31226	.46702	.22072
**	320	.1682	.70	.26875	.51785	.21340
			.50	.22845	.56493	.20662
			1.00	.18895	.36329	.44776
**	320	.3766	.70	.16136	.40127	.43737
			.50	.13610	.43604	.42786
			1.00	.08219	.23960	.67821
••	320	.6267	.70	.06862	.26167	.66970
			.50	.05661	.28122	.66218
			1.00	.11177	.70123	.18700
**	350	.1682	.70	.08529	.73216	.18255
			.50	.06494	. 75593	.17912

TABLE 1 Molefractions of N_2O_4 , NO_2 and diluents in the diluted N_2O_4 - NO_2 system

A. K. Barua and T. K. Rai Dastidar

Values of the mole fractions thus calculated are given in table 1. The theoretical values of λ_f , λ_R and $\lambda_e (=\lambda_f + \lambda_R)$ along with the experimental conductivity values are given in Table II. For the calculation the Lennard-Jones (12:6) potential was used, the force constants for N₂O₄ and NO₂ being previously given by the authors (Barua *et al.*, 1965). The usual combination rules (Hirschfelder *et al.*, 1954) were used. The λ_e -values originally calculated by Coffin who used an older set of force constants given by Brokaw (1958), are also included in Table 2.

In order to analyse the effect of chemical reaction upon the diffusion coefficient, it was necessary to ensure that the experimental values were free from relaxation effects. For the nitrogen tetroxide dissociation, these effects are negligible towards pressures .5 atm and higher (Rai Dastidar *et al*, 1967), but for lower pressures the relaxation effects are quite significant and have to be taken account of . Since, however, the present theory (Brokaw, 1961) of heat transport in reacting gases is not immediately applicable here owing to the presence of diluents we confine ourselves to the analysis of data at the three highest pressures for each diluent concentration at each temperature : namely, 1 atm, 0.7 atm and 0.5 atm, where the relaxation effects should be minimum. For a ternary mixture eqn. (5) can be rewritten, in analogy with eqn. (2), as

$$(\lambda_R)_{eff} = \frac{1}{RT} \left(\frac{\Delta H^2}{RT^2} \right) \left[\frac{(x_2 + 2x_1)^2}{P(D_{12})_{eff} x_1 x_2} + \frac{x_3}{P(D_{13})_{eff} x_1} + \frac{4x_3}{P(D_{23})_{eff} x_2} \right]^{-1} \dots (8)$$

At each pressure, we have three experimental quantities $(\lambda_R)_{eff}$ corresponding to the three atom fractions of the diluent, and hence the three effective diffusion coefficients $(D_{12})_{eff}$, $(D_{13})_{eff}$ and $(D_{23})_{eff}$ can be obtained by solving three simultaneous equations. Calculated values of the ratio D/D_{eff} thus obtained are given in table 3.

DISCUSSION OF RESULTS

At present no theory is available which takes into account the effects of relaxation in a chemically reacting gas mixture when an inert diluent is present. However, to make the analysis possible we have confined our analysis to comparatively higher ranges of pressure where relaxation effects are likely to be small or absent. On this assumption the system can now be treated as in local chemical equilibrium.

From table 2 it may be seen that λ_s -values obtained by using the new set of force constants for N_2O_4 and NO_2 are always higher than λ_{expt} -values whereas those obtained by using the old set of force constants are sometimes lower than λ_{expt} -values. The results obtained with the new set of force constants are more reasonable as, due to the relaxation effects the experimental thermal conductivity should be lower than the calculated value for local chemical equilibrium. The computed D/D_{eff} values for the N₂O₄-NO₂ pair, N₂O₄- diluent pair and the NO₂- diluent pair of molecules are shown in columns 4, 5 and 6 of table 3 respectively. It was shown in ref. II that in order to assess the retarding influence of chemical reaction on diffusion from thermal conductivity measurements it is essential to eliminate completely the relaxation effects. The trend of rise in $D_{12}/D_{12})_{eff}$ with the fall of pressure and with increase of diluent concentration indicates that the relaxation effects are still present at the pressures for which calculations have been made. However, at such pressures analysis of undiluted $N_2O_4 \rightleftharpoons 2NO_2$ system had not shown any relaxation effect in ref. II. This most probably points to a retardation of the reaction rate caused by the presence of the diluents. Since the analysis shows clearly the presence of relaxation effects the actual values of the ratios of the diffusion coefficients are without any physical significance. A part of the apparently irregular values of D/D_{eff} ratio may also be due to experimental uncertainties.

Diluent Gas	T' (°K)	a	P (atm)	<i>x</i> ₁	<i>x</i> ₂	x_3
			1.00	. 47373	.27839	.24788
Holium	300	. 1682	. 70	.43812	.31999	24189
			.50	.40170	. 36254	.23577
			1.00	.29364	.21918	.48718
.,	300	.3766	.70	.27028	.25133	.47839
			.50	.24654	.28402	.46945
			1.00	.13734	.14989	.71277
	300	. 6267	.70	. 12458	.17064	.70478
,,			.50	.11187	.19132	. 69681
			1.00	.31226	.46702	.22072
	320	.1682	.70	.26875	.51785	.21340
			.50	.22845	.56493	.20662
			1.00	. 18895	.36329	.44776
	320	.3766	.70	.16136	.40127	.43737
.,			.50	. 13610	.43604	.42786
			1.00	.08219	.23960	.67821
	320	.6267	.70	.06862	.26167	.66970
,,	•=•		.50	.05661	.28122	.66218
			سير 1.00	.11177	.70123	.18700
	350	.1682	.70	.08529	.73216	.18255
,,	000	11000	.50	.06494	.75593	.17912

				T	ABLE 1						
Molefractions	of	N.O.	NO.	and	diluents	in 1	the	diluted	N _o O.	-NO.	system

Helium 350 .3766 1.00 .06485 .53113 .40102	Diluent Gas	T (^c K)	a	P (atm)	<i>x</i> 1	<i>x</i> 2	<i>x</i> 3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1.00	.06485	.53113	.40102
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Helium	350	.3766	.70	.04914	.55575	. 39511
				. 50	.03721	.57218	. 3906 I
., 350 $.6267$ $.70$ $.01871$ $.34287$ $.63842$ Argon 300 $.1820$ $.50$ $.01397$ $.35058$ $.63545$ Argon 300 $.1820$ $.70$ $.42531$ $.31528$ $.25941$, and $.300$ $.3768$ $.70$ $.42531$ $.31528$ $.25941$, and $.300$ $.3768$ $.70$ $.27144$ $.25127$ $.47859$, and $.300$ $.3768$ $.70$ $.27014$ $.25127$ $.47859$, and $.300$ $.6152$ $.70$ $.13023$ $.17446$ $.69532$, and $.300$ $.6152$ $.70$ $.13023$ $.17476$ $.68722$, and $.320$ $.820$ $.100$ $.30290$ $.45997$ $.23713$, and $.320$ $.820$ $.100$ $.30290$ $.45997$ $.22147$ $.55623$ $.22231$, and $.320$ $.3768$ $.100$ $.8885$ $.36319$ $.11796$ $.3592$ $.42805$ </td <td></td> <td></td> <td></td> <td>1.00</td> <td>.02512</td> <td>.33244</td> <td>64244</td>				1.00	.02512	.33244	64244
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•,	350	.6267	. 70	.01871	.34287	.63842
Argon 300 .1820				.50	.01397	.35058	$\cdot 63545$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				1.00	.45997	.27432	.26571
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Argon	300	.1820	70	.42531	.31528	. 25941
				50	.38988	.35717	.25296
300 $.3768$ $.70$ $.27014$ $.25127$ $.47859$ $.50$ 24641 $.28395$ $.46965$ $ $				1.00	. 29349	.21912	. 48739
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,,	300	.3768	.70	.27014	.25127	. 47859
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.50	24641	.28395	.46965
" 300 .6152 .70 .13023 .17446 .69532 .50 .11707 .19571 .68722 " 320 1820 1.00 .30290 .45997 .23713 " 320 1820 70 .26061 .50996 .22943 .50 .22147 .55623 .22231 " 320 .3768 70 .16127 .40116 .43757 " 320 .3768 70 .13602 .43592 .42805 " 320 .6152 70 .13602 .43592 .42805 " 320 .6152 70 .08626 .24547 .66827 " 320 .6152 70 .07212 .26829 .65958 .50 .05060 .28854 .65186 " 350 .1820 70 .06286 .74370 .19344 " 350 .3768 1.00 .06481 .53397 .40122 " 350 .3768 70 .049				1.00	.14341	. 15317	70342
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	79	300	.6152	. 70	.13023	.17446	.69532
320 1820 1.00 $.30290$ $.45997$ $.23713$ 1.00 $.26061$ $.50996$ $.22943$ $$. 50	.11707	.19571	.68722
" 320 1820 .70 .26061 .50996 .22943 .50 .22147 .55623 .22231 " 320 .3768 1.00 .18885 .36319 .14796 " 320 .3768 .70 .16127 .40116 .43757 .50 .13602 .43592 .42805 " 320 .6152 .70 .07212 .26829 .65958 .50 .03960 .28854 .65186 " 350 .1820 .70 .10824 .69006 .20170 " 350 .3768 1.00 .068257 .72010 .19703 .50 .06286 .74370 .19344 " 350 .3768 1.00 .06481 .53397 .40122 " 350 .3768 1.00 .06481 .53397 .40122 " 350 .3768 70 .04911 .55558 .39631 .50 .03718 .57200 .39081 .50 .63154				1.00	. 30290	.45997	.23713
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	>7	320	1820	. 70	.26061	.50996	.22943
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 50	.22147	.55623	.22231
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1.00	. 18885	.36319	. 14796
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,,	320	.3768	.70	.16127	.40116	.43757
** 320 $.6152$ $\stackrel{1.00}{.0}$ $.08626$ $.24547$ $.66827$ ** 320 $.6152$ $.70$ $.07212$ $.26829$ $.65958$.50 $.05960$ $.28854$ $.65186$ ** 350 $.1820$ $\stackrel{1.00}{.70}$ $.08257$ $.72040$ $.19703$ ** 350 $.3768$ $\stackrel{1.00}{.50}$ $.06481$ $.53397$ $.40122$ ** 350 $.3768$ $\stackrel{1.00}{.70}$ $.04911$ $.55558$ $.39531$ ** 350 $.3768$ $\stackrel{1.00}{.70}$ $.02657$ $.34189$ $.63154$ ** 350 $.6152$ $.70$ $.01981$ $.35281$ $.62738$. 50	. 13602	.43592	.42805
320 .6152 .70 .07212 .26829 .65958 .50 .05960 .28854 .65186 ., 350 .1820 .70 .10824 .69006 .20170 ., 350 .1820 .70 .08257 .72010 .19703 .50 .06286 .74370 .19344 .50 .06481 .53397 .40122 .50 .03718 .57200 .39081 .50 .03718 .57200 .39081 .50 .02657 .34189 .63154 .50 .01981 .35281 .62738				1.00	.08626	.24547	66827
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	**	320	.6152	. 70	.07212	.26829	.65958
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$. 50	.05960	.28854	.65186
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1.00	.10824	. 69006	90170
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	٠,	3 50	.1820	.70	.08257	.72010	10709
** 350 .3768 1.00 .06481 .53397 .40122 ** 350 .3768 .70 .04911 .55558 .39531 .50 .03718 .57200 .39081 ** 350 .6152 .70 .01981 .35281 .62738 .50 .01480 36080 .5154				.50	.06286	.74370	.19703
350 .3768 .70 .04911 .55558 .39531 .50 .03718 .57200 .39081 1.00 .02657 .34189 .63154 .50 .01981 .35281 .62738 .50 .01480 .36080 .5111				1.00	.06481	.53397	46100
.50 .03718 .57200 .39081 1.00 .02657 .34189 .63154 .50 .01981 .35281 .62738 .50 .01480 .36080 .50101	82 	350	.3768	.70	.04911	.55558	- 40122 20521
1.00 .02657 .34189 .63154 350 .6152 .70 .01981 .35281 .62738 .50 .01480 .36080 .50101				.50	.03718	. 57200	. 39081
350 .6152 .70 .01981 .35281 .62738 .50 .01480 .36080				1.00	.02657	84180	
	37	350	.6152	.70	.01981	35981	.03154
				.50	.01480	360201	. 62738

Table 1 (Contd.)

TABLE 2

Thermal conductivities (experimental and theoretical) of the diluted N_2O_4 -NO₂ system in cal .cm⁻¹ sec⁻¹ dcg⁻¹ units

Diluent	Т	а	Р	λŗ	λ_R	λε	λ_{expt} .	$\lambda_{e}(\text{old})$	$(\lambda_R)_{eff}$
Gas	(°K)		(atm)	× 105	× 105	× 105	× 10 ⁵	×105	× 10 ⁸
			1.00	5.56	26.01	31.57	31.2	29.56	25.64
Holium	300	.1682	.70	5.41	29.05	34.47	33.6	32.39	28.19
			.50	5.26	31.79	37.05	35.5	34.94	30.24
			1.00	9.89	27.14	37.02	36.4	34.65	26.51
,,	300	.3766	. 70	9.68	29.76	39.44	38.2	37.06	28.52
			.50	9.47	31.92	41.39	39.1	39.05	29.63
	•••		1.00	17.00	26.27	43.27	39.9	40.82	22.90
• •	300	.6267	.70	16.74	27.89	44.63	41.8	42.24	25.06
		•	. 90	10.48	20.80	40.30	41.2	43.08	24.72
			1.00	7.21	34.03	41.24	38.1	37.55	30.89
,,	320	.1682	.70	7.21	34.77	41.98	38.8	38.33	31.59
			.50	7.21	34.43	41.64	37.8	38.12	30.59
			1.00	11.42	32.30	43.72	40.4	39.93	28.98
,,	320	.3766	.70	11.35	32.02	43.36	39.4	39.69	28.05
			. 50	11.28	30.74	42.02	37.4	38.54	26.12
			1.00	18.43	26.48	44.90	40.2	41.42	21.77
**	320	.6267	.70	18.28	24.91	43.19	38.0	39.88	19.72
			.50	18.15	22.72	40.87	35.6	37.76	17.45
	•		1.00	7.89	23.31	31.20	28.6	28.57	20.71
,,	3 50	. 1682	.70	7.89	19.51	27.39	24.8	25.10	16.91
			.50	1.00	10.04	شە. ەن	ند. 1 ند	21.82	13.32
			1.00	11.97	18.72	30.69	27.8	$28 \ 02$	15.83
,,	350	.3766	. 70	11.92	15.23	27.15	24.3	24.76	12.38
			. 50	11.88	12.17	24.05	21.6	21.89	9.72
			1.00	19.10	11.66	3 0. 76	27 7	28.15	8.60
**	3 50	.6267	.70	19.02	9.10	28.12	25.4	25.68	6.38
			.00	10.91	1.05	20.00	43.1	43.09	4.73
			1.00	4.01	22.62	26.63	25.0	24.30	20.99
Argon	300	. 1820	.70	4.05	25.26	29.31	26.4	26.80	22.35
			. 80	4.00	27.04	31.72	29.0	49.01	24.92
			1.00	4.17	19.57	23.74	22.4	21.89	18.23
,,	300	.3768	50	4.18	21.01	25.70	23.0	23.70	90 49
				1.22	ن <i>4</i> 1.رن ⊶حيا	10.14	47. <i>1</i>	10.00	
	900	a150	1.00	4.27	14.25	18.52	16.0	17.36	11.73
,,	300	.0102	.70	4.28	15.20	10.49	16.7	18.31	12.32
			1 00	4 00	90 F7	04 17	01 0	91 65	00 40
	800	1890	1.00	4.00	29.07	34.17	30.9	32.08	20.40
"	000	. 1040	.50	4.69	29.91	34.60	30.2	31.93	25.51

Diluont	T	a	P	λf	λ_R	λ.	λexpt.	$\lambda_e(\text{old})$	$(\lambda_R)_{eff}$
Gas	(°K)		(atm)	× 10°	× 100	× 10•	× 105	× 109	× 10ª
			1.00	4.67	23.54	28.21	24.6	26.16	19 93
Argon	320	.3768	.70	4.70	23.41	28.11	24.2	26.13	19.50
			.50	4.73	22.55	27.28	23.1	25.42	18.37
			1.00	4.67	14.73	19.40	15.9	18.27	11.23
••	320	.6152	.70	4.69	13.95	18.64	15.2	17.60	10.51
			.50	4.70	12.81	17.51	14.0	16.56	9.30
			1.00	5.32	20.23	25.55	22.0	23.75	16.68
,,	350	.1820	.70	5.35	16.93	22.28	18.8	20.62	13.45
			. 50	5.37	13.83	19.20	15.9	17.78	10.53
			1.00	5.28	13.86	19.14	17 1	17 09	11 99
••	350	.3768	.70	5.29	11.31	16 60	14 4	15 48	0 11
			. 50	5.31	9.05	14.36	12.3	13.38	6.99
			1.00	5.17	6.71	11.89	9.7	11.24	4.53
,,	350	.6152	.70	5.18	5.26	10.44	8.6	9.84	3.42
			.50	5.18	4.08	9.26	7.7	8.72	2.52

TABLE 2 (Contd.)

TABLE 3 Effective diffusion coefficient (D_{eff})

Diluent Gas	T(°K)	P (atm)	D ₁₂	D ₁₃	D ₂₃
			(D ₁₂)eff	(D ₁₃)eff	(D23)eff
		1.00	1.0513	.5581	6501
	300	.70	1.1264	.5883	7291
		.50	1.4151	.0295	1.5083
		1.00	1.1329	3175	0100
Helium	320	. 70	1.2024	6817	9189
		.50	1.3108	2.0299	. 1930 9878
					. 2010
	950	1.00	1.1515	.8162	1 0744
	300	.70	1.2758	.9399	.5929
		. 50	1.6366	1.2079	. 8953
		1.00	1 2960	1000	
	300	.70	1.6402	.1033	.0068
		.50	2.7712	1400	. 1033
				•1333	. 2331
Argon	000	1.00	1.3277	.1470	1440
argon	320	.70	1.7482	1329	19440
		.50	2.8214	.3938	3407
		1 00			. 0407
	350	1.00	1.4160	.2044	.2559
		. 70	1.7095	.2704	.1839
		.00	3.1007	.3040	.4805

.

This analysis brings out the inadequacy of the theory for heat conductivity chemically reacting gas mixtures when a diluent is present. In parctical cases in general diluents are present. Consequently this aspect of the problem of heat transfer in chemically reacting gas mixture deserves attention both from the theoretical and the experimental points of view.

ACKNOWLEDGEMENTS

The authors are grateful to Prof. B. N. Srivastava, D.Sc., F.N.I. for his kind interest. They are also grateful to the Director, C.M.E.R.I., Durgapur, West Bengal for permission of the use of the IBM 1620 Computer at the Institute. One of the authors (T.K.R.D.) acknowledges with thanks the award of a senior research fellowship from the C.S.I.R., New Delhi.

REFERENCES

Barua A. K. and Rai Dastidar T. K., 1965, J. Chem. Phys., 48, 4140.

Bodenstein, M. and Lindner, B., 1922, Z. Physik. Chem. 100, 82.

Brokaw R. S., 1958, NACA RM E57K19a, Washington, D.C.

1960, J. Chem. Phys., 82, 1005.

1961, J. Chem. Phys., 35, 1569.

Butler J. N. and Brokaw, R. S., 1957, J. Chem. Phys., 26, 1636.

Cher, Mark, 1962, J. Chem. Phys. 37, 2564.

Coffin K. P., 1959, J. Chem. Phys., 81, 1290.

Hirschfelder J. O., Curtiss C. F. and Bird R. B., 1954, Molecular Theory of Gases and Liquids, John Wiley, New York.

Hirschfelder J. O., 1957, Sixth Symposium on Combustion, Reinhold Publ. Corpn., New York. p. 351.

Rai Dastidar T. K., and Barua A. K., 1966, Trans. Faraday Soc., 62, 3131. 1967, Proc. Phys. Soc. 92, 800