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Abstract. The optical bistable behaviour of homog ly broadened
detuned modium placed inside a Fabry Perot cavity has been investigated.
The steady state behaviour of the mean values of collective operators give &
bistabl tput for the itted i ity. The bistablo behaviour depends

on the detuning of the medi By sufficiently inoreasing the value of para-

meter C = %’!; , (see text), one can keep the system bistable for larger range
Y

of detuning, Linear stebiity analyms is p d. The gative slope
region is unstable, The relaxation behaviour of the detuned medium at the
two stable states is investigated. The dissimilarity b the absorptive

and dispersive bistability 18 disouased by phase shift between the transmitied
and the incident intensities along the two stable branches,

1. Introduction

Recently much attention has been paid [McCall (1974), Bonifagio and Lugiato
(1976), (1978), Agmwal et al (1977), (1978)] to the study of & homogeneously
broadening absorptive medium placed inside & Fabry Perot cavity. The irpor-
tance of these studies Les in the fact that optioal bistabla system gives promise
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of being used as optical memory element, amplifiers, pulse shapers, limitters,
olippers and switches eto. The pure absorptive models discussed in the literature
correspond to the ideal situation where the incident coherent pump is exaotly
in tune with the two level homogenelously broadened medium. The guestion
arise as to what shall happen to the bistable behaviour of the medium if it is
not exactly in tune with the incident coherent pump ? We address ourselves
to the question in the paper. In section 2 we present our model equations.
These equations go over to the Bonifasio-Lugiato (1976) model when dealing
with the resonant medium. Our oquations differ from the B.L. model equations
in the additional terms which depend on the detuning § = wz—w,, wr being
the frequency of incident coherent pump and w, the frequency difference of
two level atoms comprising the medium. Since the detuned medium shows
dispersion we call our model ‘dispersive model’. |

Tho steady state solutions of dispersive bistable system are presented. Tho
relationship betwpen the tranamitted and the incident intensities are plotted
- for f# =2,¢=10. It is found (Tewari and Tewari 1979) that the system remains
bistable, only for a limited range of detunings. The question of stability of
steady states is looked into in seotion 3. Using the Routh-Hurwitz theorem,
the condition for +ve roots of relaxation matrix to oocur is determined. This
condition is satisfied in the negative slope region of the bistablo curve implying
that the stoady states lying in this part of bistability curve are unstablo. The
approach to steady states lying on the cooperative branch and on one atom branch
is examined by studying the roots of the relaxation matrix. Tt is found ‘that
approach to ‘cooperative’ steady states is mon-oscillatory but the approach to
the ‘one atom’ steady states is oscillatory. The oscillation being of the order
of Rabi frequoncy. Turther, one of the roots of the relaxation matrix changes
its sign twico; once at the upper bistability throshold Ez® and second time at
the lower bistability threshold Epm?. As # the detuning parametel, is incroased
to the upper limit S, the points whore the root changes sign, approach one
another till they actually coincide at § = far. These changes of the sign of
the root show that one of the normal modes of the system becomes soft at tho
upper and lowor bistability throsholds. The approach to Zero of the soft mode
with the intensity of coherent pump is discussed.

Finally, we break up, in section 4, the transmitted- light into dispersed and
‘unabsorbed’ parts. We discusa tho variation of relative magnitude of the two
oomponents of transmitted intensity. Wae find a sudden change in phase of
transmitted light relative to the incident light at the two bistability thresholds.
Thae shift of phase can be obsorved as a fringe shift in an interference fringe pattern
obtained by superposition of incident and transmitted light. Secon 5 records
our oonclusions, v
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2. The model

Wo consider a homogenvously broadencd medium consisting of N3 1, two
lovel atoms of frequency difference w, The medium is placed inside a Fabry
Perot cavity with rato constant k = C(1—R)/L; C heing the velocity of light,
R the reflectivity of mirrors and L the longth of cavity. The medium is constantly
oxoited by the external voheront pump fiold of angular frequency wg, 1 tune
with the cavity The atomic medwm however 18 detuned with respect to the
incident coberent pump ie., wr 3 w, The colerent pump generates an inver-
sion R,, and & polarization wave having Doth tho m phaso and out of phase
components, B, and R, respectively. The R,, R,, R, form u throe component
Bloch veetor R, tho dynamics of which is given by the following coupled equa-
tions in the rotating wave approximation

By = —0R,+2g(a+a)R,—R,/T", M)
lés — 8RH-2g(a+ a)nRy— RBy/T", (2)
ty = =2ya-+oty—2gla+ e, — Lot ) ®
1
and
=" (#,—iR)—ka. @

In the above oquations o and @ ave respectively, the suitably normalized,
oxternal field amplitude and the internal field amplitude. The internal field
18 the reaction field generated by the polarization wave of tho Bloch vector.

T, and 7'’ sre the longitudinal and transverse relaxation times which take
into acoount the incohorent interactions of two lovel atomic medium. The
subgeript I and R imply the imaginary and real part of tho field (a+a). g is
the coupling constant between the field and the atom.

The in phase component B, and the mmaginary part of the internal field
in the model equations above arisy due to the non-zero value of the dotuning
8 = wg—w, Itis easily verificd that equations 1,2, 3, 4 go ovor to the Bonifaoio-
Lugiato model equations on making § = 0 and identifying

R =0, By=—8, Ry=—A (6)

and noting also that the ground state of nystom has boen represented by the
— N value of the inversion R, and not, by -+ N/2 aghas been done in the Bonifacio-
Lugiato model.
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We discuss in the following, results obtainod from the steady state solutions
of the equations (1-4), under the assumption of K €T, T'y-1. Wo obtain
the steady state solution for the macroscopio operators givon by

R = +VBNFr—NF; ©)
' T VRAHAETETY :
FVENF1—NFg
Ry, = — 7
= VAUEAETETY _ o
Ry= —N GO (8
= N arar I ®
Here F' and E aro proportional to transmittod and incident light tields! and aro
given by \
F = Fr+iFy = v/ TT,2g.(a+ a), V)
E = /T T",2ga \ (10
LVF =T )

Al
We have also taken 7",/T, = 2 in oxpressions (6-8). The steady state relation-
ship between the incident and transmitted light is

20
N Euy I

. 208 . Y
i 7 (F79) (12)

E:F[
I',g3N

2K
and £ = y is used to demonstrate the bistable vutput of the absorptive mediuwm.
Fo, it is found that if ¢ > 4, x is a multivalued function of incident fiald y for
Ym K ¥ € ymu. One has then for a bigtability curve & low transmission branch
oalled cooperative branch and & high transmission branch ocalled ‘one atom’
branch.

where C = An oquation similar to equation (12) with # =0, F ==z

" 'We noto that by including the detuning of the medium in cquation (12)
our transmitted field becomes complex. Woe shall now onward fix the phaso
of the incident field £ by choosing it to be real. Wo observe hore that tho ratio
(F/E) would bo & measuro of tho phase shift between the transmitted and incident
light. We shall discuss the shift in phase at tho ond and digress here to the
equation relating the transmitted and incident intensities i.e.

_ 4 40U-+4)
B = PP [ g e A 1T ) as)
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which may also be termed as a relationship botween the output and input powers.
Equation (13) also predicts a bistable output hetween | F|? and E2

. That ig [F[? isn & multivalued function of incident intensity lying between
the upper (Ep?) and lower Ey,? bistahility thresholds, if

"> 143/TFH for f =0 (14a)
> 14 377_ Vi for # > o. (14b)

Considering ¢ to bu a constant for an cxperimental et up one can defino &

maximum value gy (given by equation (15)) beyond which the dispersive system
is no longor bistahle (Tewari and Tewari, 1979)

—1)8
148 :_% (001) . (18)

As has been roported oarlier onc finds that the cooperative branch transmitted
intensity depends upon £ in that as # — f the cooperative branch shifta till it
meets continously and monotonically the one atom branch at E? = Ept = Ep?
for p = fu. TFor larger values of 8, | F |2 remains a monotonic function of E2.

We aro interested here in the bistable behaviour of the dispersive medium
and thorefore would confine owrselves to the region covered by g < fu. We
give in Figure 1, the | F |2, E? bistable output curve for € =10 and f =2 < fiy
=98

Tn the next section we look into the stability of the stoady states of such a
bistability curve.

3. A stability analysis

Since wo are working in the condition k € T',, T',! we can adiabatically olimi-
nate the internal field variables from equations (1-8). Linearizing the resulting
equations wo obtain the following matrix equation for the fluctuations of the
INACroscopic operators

AR = MAR, (16)

where AR is a column matrix given by AR,, AR,, AR, (the fluctuations in maoro-
soopio operators) and the matrix M is

C % 20
1+ X R, FvB ) |
M cvF gk yerZR, |

L~-%$-R1 —viR-Sr, -2 J
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To determine the relaxation behaviour we construct the characteristic oquation
by setting .

|AT-m] =0 (18)

where I is the 3 X3 unit matrix. The resulting equation (19) is cubic in A

: Ca+4)
Nt (14 ) @

Al AT 0o )

+h+2 (1|2~ —W"—)} 2

IFAF [T
i __200+p) \® _ _AGp|F|®
+{2 (1 1+ﬂ+|F|2) 2= TIpET
20(14-4) _ 2CIF|
2 (v 1) (11 ) ) an)
= A4-C %0 A+Cy = 0. (20)

The general golution for a cubic oquation can he written do\m.. Such a solution
howevor has a complicated structure and for our purposc we find that & numerical
study of the molutions is better suited. Howevor, tho stability analysis of steady
states can bo done by using the Routh-Hurwitz theorom One constructs from
the equation (19) an array of numbers viz .

(1. ﬂ%;ﬂ’o“) 1)

and. then Jooks for the number of times sign of the terms of the array changes as
this number 15 the number of positive roots of the equation (20). Tn our ocase,
first two terms of the array are always -4 ve, the C'y term can he expressed in terms
of the slopo of the histability curve as

O =20+ | F| gogps. (22)

The third term can also ho simplified to

(%)

24044 1(d+2)+ 3 (441)+5

(A+2)—pA+1) (23)
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with

- 20(1+4)
A=1+ TWF (24)

If owr gystem is bistable we note (Figure 1) that €' has definito regions of positive
and negative value. Along the cooperative and ‘one atom’ branches slope of
| B|® V4| F|?in positive but the intermediate branch has A negative slope region.
By a little tedious algebraic calculation 1t 18 possible to show that the third term
rem6ins positive oven in the region where Oy is most negsative, which gives us

2001

1801 C=10

160} p:2<pn=9.3
on
prod

1o}

120t

E2—

100

80

60

40

20

) I I I L 1 4 L 1 1

o 20 30 40 50 60 70 BO 90 100

Figure 1. The optical bistability curve for f = 2, € = 10 dispersive caso
is plotted. For Fn® < E? & Ep® ono gets three values of transmitted intensity
|F13. As 8 18 increased Hy® and Fp? are little effected but Ep? and Fp?
inorease fast to make Fy? = Fp? and Fp® = Bn? 8t B = pr. The system
then ceases to be bistable. -
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only one change of sign between the 3rd and 4th term. Hence only one root
of equation (20) is positive in the region where C; is negative. Our system is
thus unstablo in tho region with —ve slope. e

B. Relaxation behaviour :

Wo discuss here the rolaxation of the dispersive medium showing optioal
histability by studying the roots of the relaxation matrix*. For simplicity,
instead of giving explicity the complicated structure of tho roots of equation (20)
wo discuss ossential features of them with the help of Figure 2, wherein we hava
plotted the three roots in the different steady state regions of optical bistability
ourve for 0 = 10 and g = 2.

Tn the purc absorptive case one obtains, [
a) throe real roots along tho caoperative branch and the unstable bra h,
b) one roal and a pair of complex conjugate roots along the one atom hranch.

For the dispersivo medium, ono roal root and a pair of complex conjygate
roots along all the branchos of the bistability curve are obtained. In Figure 2
the behaviour of the pair of complex conjugate roots is shown by plotting real
(Ar) and imaginary (Ar) parts for various incident intcensitien. The pure real
root (A, a8 it is customarily called) in also plotted. Tn our diagram curves linked
with arrows indicating to the right imply that they correspond to cooperative
branch and those curves with arrows pointing to the left correspond to onc atom
branch. Only positive root is shown along the unstable bran¢h and has no
arrows agrociated with it.

(a) Cooperative bramch :

Along this branch hecause of the finite value of A7 we may expect orcilla-
tion of the fluctuations of macroscopic operators with frequency Az Noting,
however, thefact that |Ar| > |Az]. we obtein very quick damping of such oscilla-
tions The cooperativo damping is vory large for small incident intensities where
Ar is also small, Ar = 4/f. As E® mncreases and approaches the upper bistability
threshold Ep?, | Ar] increases and Ag decreascs, however |Ag| P |Af| throughout.
At f = fiy, the Ag and A7 become oqual and mect at E? = Ey® = En®.

The A, root along the cooperative branch shows an interesting behaviour.
Noting that |A;] <€ |Ar| the dynamics of the fluctuation will be dominatod by
the A, root. As E* approaches En®, |A;| decreases fast and ultimatoly becomes

* Qur discussion of relaxalion behaviour is spmiclassical and assumes regres-
sion theorem. On the basis of regression th it is ble to

that oscillatory character of approach to steady state is. necessary to have
oscillations of the correlation fluctuations in the stationery state. See e.g.

Agarwal et al (1978) and Bonifacio et al (1976).
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zoro at B* = Hpy®. The dynamics dominated by A, thus slow down; reminisconos

of phase transition showing oritical slowing down. This is also intorpreted as

ono of the ‘normel modes’ of the system becoming long livod. Such & mode is
referred to as soft mode,
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Figure 2. The roots of the relaxation matrix for the bistable curve shown
n Figuro 1 1.0, # = 2, ¢ = 10 are plotted heroe. The pair of complex conjugate
roots is shown in terms of Az and Ar tho real and imaginary parts. A, the pure
real root is also plotted. The arrows pointing to the right correspond to co-

perative branch and those pointing to the left correspond to one atom branch.
Ag and Ay are not plotted for unstable branch but A, is plotted in dotted line.
The two vertical lines correspond. to Eyu?® end Em?. The closed loop in between
these two lines gives the region of positive A, depicting the unstable branch
At B = fu; An(Bn®) = AR(Bn®) = Af(By") = AHn?). For < fu,

An(By®) > 1Ar(Bn?) 1&] Ar(By)) < A1(Bn®):
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b) Unstable branch :

Tho positive real root along the unstable branch is plotted. Wo note that
it is the root 2, that changes sign, at Ep® as one shifts from cooperative to tho
unstable branch. Bocause of the -}-wve nature of the root the fluctuations blow
up and the systom is unstable As we approach tho lower bistability thresholds
along the unstable branch the root again approaches zero and changes sign at
E? = Ep?. For smell values of #(f < fy) wo hava woll dofined regions for
A, to bo positive As f# — fiy the region of positive values of A, docroases, so
also do tho positive values of A;. At # = Bpr the positive value region cluminates
into & point with 2, =0 at E? = Epy® = Ep?.
¢) One atom branch :

On this branch wo note |2,] < |Ar| and |2A7] > |Ar]  Consoquently.
the oscillation of the fluctuation of the macroscopic operators survive fdr somo
time and dominate the dynamics. The damping of the oscillation is goyerned
by Ar. ¥or larger values of E2?, An decreases to satisfy Ap/A, = 1-5.)| Thus
AR and Ay arc of same order of magnitude along the one atom branch. However
as onc approaches E? = Epm?, the lower bistability threshold along the one ‘atom
branch, |A7] decrcuses, |Ar| mcrcases and |A,;| decrcases to zero at B2 = Ep®.
Consequently the dynamics of the medium near Ep? is controlled by A, and thus
onge again the medium shows critical slowing down ete. cte. As f— f,
[Ar| wnd |A;] approach one another near Ep®and for f = fu they actually
meet at E? = Hy* The discontinuity in the plots for Ag and Ay which results
essentially duc to the fact that we avoided plotting the values of unstable branch,
vanishes at f = fy snd E? = Epy® = Eq®. The Agp snd Ap plots therefore
hocome two continuous curves which cross at B2 = Ep? = Ep?

Finally the soft mode root A, approaches zero near upper bistability thresholds
a8 const.(By?—Em?)t and near the lower bistability thresholds it approaches to
zero as Const.(E2—En?)i. The region of validity of the approximate result near
lower bistability is small and thal near upper bistability is larger.

In tho next section we discuss tho phasc shift we had pointed to in section 2,
cquation (12). '

4. Phase shift

Tn contrast to the pure absorptive case ol bistability, where transmitted field is
represented by 1cal value of &, we arc forced to writy the dispersive case trans-
mitted field as complex number. We discuss in this section the relative magnitudo
of the real and imeginary parts of the transmitted light Wo can obtain casily

. |F| 20
fr= " (1+1-|—/i+17ﬁ[2‘) (26)
g IFIY [ £20v/F

Fr= Ao (TT-/T-FW") (26)
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We note immediately that at f# =0, Fy =0 and Fr = with y = E in pure
absorptive model. Since  rofers to transmitted light in that model we call Fg
to be ‘unabgorbed’ part of the transmitted light. Turther we note that in the
dispersive model F is non zero due to finito detuning, also sign of Fy is the sign
of (7"g8). Consequently we call Fy to be tho dispersed part of the transmitted
light. On comparing the dispersed and unabsorbed parts of tranemitted light
Wwe geb

Fr o _ +20v/8 @)
Fr 1+A+]F|*+20°

Confining oursolves to the bistability case we note that | F|?remains small along
the cooperative branch for small g and changes suddenly to one atom branch
values for E? > Ep? Consoquently a discontinuity is encountered in Fr/Fp
at B = Ep? oo cooporative branch and at E? = Hy? on one atom branch.

Since F1/Fg is tan ¢ with ¢ as the phase shift between the transmitted and
incident light, we observe a discontinuous behaviour in ¢ as well. This would
imply & sudden fringe shift in the interference fringe pattern which can be
obtained by the superposition of incident and transmitted light. The bebaviour
of ¢ for f =2 is plotted in Figure 3. As g — fu the cooperative branch lifta
up by almost a constant amount ie., remains almost parallel to small £ curve

C=to; p=2

$(E2)—»
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Figure 3. The phase shift of transmitted light with respect to the incident
coherent pump light is plotted for various values of B2 The discontinuity is
demonstrated for the exsmple chosen. As f is increased ¢(Eu®) and ¢(EBn?)
approach one another 8o a8 to make ¢(Hy?) = $(En?) at f = fu. The above
graph suggesta that for dispersive bistability sudden appearance of dynamical

stark shift is panied by & sudden change in the phese of tranamitted
light. It may be messured by & simple experiment of interft try.
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but the ‘one atom’ ¢ increaseés as # — B %o as to meet the @ of cooperative branch
and at B = fiy the discontinuity vanishes.

5. Conclusion

Woe have disoussod the. possibilities of using detuned homogeneously broadened
medium as a bistable device. It is found that in principlo & detuned medium
can romain bistable only for a limited range of dotunings. The relaxation
behaviour of the detuncd medium is examined. In view of the regression thoorem
and the results of relaxation matrix one would find that along the cooporative
branch spectrum of fluctuations would show a single peak structure and along
the one atom branch it would show tho three poak structure (dynamioal stark
shift) i.0. a central peak with two side bands roughly placed at 4+-Ar It is shown
that in addition to the sudden appearance of dynamical stark shift there mnist
appear & sudden shift in the fringe pattorn obtained by superposition of|incident
and transmitted light as the systern jumps from cooperative branch t(‘)\the one
atom branch. \

. \
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