Indian J. Phya, 54B, 151-162 (1980)

Relaxation behaviour of dispersive bistability of homogeneously broadened medium

Surya P Tewari
Department of Physics, Sri Venkateswara College, Dhaula, Kuan
New Delhi-110021 and
Department of Physias and Astrophysics, University of Delhi, Delhi-110007
and
S P Tewari
Department of Physics and Astrophysics, University of Delhi, Delhi-110007 and

Centre of Advanced Resoarch in Physics and Astrophysios,
University of Delhi, Delhi-110007
and
MK Das
Department of Physics, Sri Venkateswara Colloge, Dhaula Kuan
New Delhi-110021 and
Department of Physics and Astrophysics, University of Delhi, Delhi-110007

Abstract. The optical bistable behaviour of homogeneously broadened detuned moduum placed inside a Febry Perot cavity has been investigated. The steady state behaviour of the mean values of collective operators give a bistable output for the transmitted intensity. The bistable behaviour depends on the detuning of the medium. By sufficiently inoreasing the value of pars-
meter $C=\frac{\gamma_{R}}{2 \gamma_{\perp}}$, (see text), one can keep the system bistable for larger range of detuning. Linear stability analysis is presented. The negative slope region is unstable. The relexation behaviour of the detuned medium at the two stable states is investigated. The dissimilarity between the absorptive and dispersive bistability is disoussed by phase shift between the transmitied and the incident intensities along the two stable branches.

1. Introduction

Recently much attention has been paid [McCall (1974), Bonifacio and Lugiato (1976), (1978), Agaz wal et al (1977), (1978)] to the study of a homogeneously broadening absorptive medium placed inside a Fabry Perot cavity. The importance of these studies lies in the fact that optioal bistable system gives promise
of being used as optical memory element, amplifiers, pulse shapers, limitters, olippers and switches etc. The pure absorptive models discussed in the literature correspond to the ideal situation where the incident coherent pump is exeotly in tune with the two level homogenelously broadened medium. The question arises as to what shall happon to the bistable behaviour of the medium if it is not exantly in tune with the incident coherent pump? We address ourselves to the question in the paper. In section 2 we prasent' our model equations. These equations go over to the Bonifocio-Lugiato (1976) model when dealing with the resonant medium. Our oquations differ from the B.L. model equations in the additional terms which depond on the detuning $\delta=\omega_{L}-\omega_{0}$, ω_{L} being the frequency of incidant coherent pump and ω_{0} the frequency difference of two level atoms comprising the medium. Sinee the detuned medium shows dispersion we call our model 'dispersive model'.

Tho steady state solutions of dispersive bistable syatem are presented. The relationship between the transmitted and the incident intensities are plotted for $\beta=2, c=10$. It is found (Tewari and Tewari 1979) that the system remains bistable, only for a limited range of detunings. The question of stability of steady states is lookod into in seotion 3. Using the Routh-Hurwitz theorem, the condition for $+v e$ roots of relaxation matrix to occur is determined. This condition is satisfied in the negative slope region of the bistabla curve implying that the stoady states lying in this part of bistability curve are unstablo. The approach to steady states lying on the cooperative branch and on one atom branch is examined by studying the roots of the relaxation matrix. It is found that approach to 'cooporative' steady states is non-oscillatory but the approach to the 'one atom' steady states is osoillatory. The oscillation being of the order of Rabi frequoncy. Further, one of the roots of the relaxation matrix changes its sign twioc; once at the upper bistability throshold $E_{M}{ }^{2}$ and second time at the lower bistability threshold $E_{m}{ }^{2}$. As β the detuning parameter, is incroased to the upper limit β_{M}, the points whore the root changes sign, approach one another till they actually coinoide at $\beta=\beta_{M}$. These changes of the sign of the root show that one of the normal modes of the system becomos soft at the upper and lower bistability throsholds. The approach to Zero of the soft mode with the intensity of coherent pump is discussed.

Finally, we break up, in section 4, the transmitted-light into dispersed and 'unabsorbed' parts. We discuss the variation of relative magnitude of the two oomponents of transmitted intensity. We find a suddon ohange in phase of transmitted light relative to the incident light at the two bistability thresholds. The shift of phase oan be obsorved as a fringe shift in an interference fringe pattern obtained by superposition of incident and transmitted light. Seoon 5 reoords our oonclusions.

2. The model

We consider a homogenuously broadened medium consisting of $N \gg 1$, two lovel atoms of frequoney differenoo ω_{0}. The medium is placod inside a Fabry Perot cavity with rato constant $k=C(1-R) / L ; C$ being tha volocity of light, R the reflectivity of mirrors and L tha longth of cavity. Tha medium is constantly oxoited by the external voheront pump fiold of angular frequenoy ω_{L}, in tune with the cavity The atomic medum however is detuved with respect to the incident cohercut pump i.e., $\omega_{L} \neq \omega_{0}$ The colterent pump generates an inversion R_{3}, and a polarization wave havmg loth the m phaso and out of phase components, R_{1} and R_{2} respectively. The R_{1}, R_{2}, R_{3} form a three component Bloch vector \boldsymbol{R}, the dynamics of which is given by the following couplod equations in the rotating wave approximation

$$
\begin{align*}
& \dot{R_{1}}=-\delta R_{2}+2 g(a+\alpha)_{I} R_{3}-R_{1} / T_{2}^{\prime} \tag{1}\\
& \dot{R_{2}}-\delta R_{1}+2 g(a+\alpha)_{R} R_{3}-R_{R} / T_{2}^{\prime \prime} \tag{2}\\
& \dot{R_{3}}=-2 g(a+\alpha)_{I} R_{1}-2 g(a+\alpha)_{R} R_{2}-\frac{\left(R_{3}+N\right)}{T_{1}} \tag{3}
\end{align*}
$$

and

$$
\begin{equation*}
\dot{a}=\frac{i g}{2}\left(R_{1}-i R_{2}\right)-k a \tag{4}
\end{equation*}
$$

In the above equations α and a are respectively, the suitably normalized, external field amplitude and the internal field amplitude. The internal field is the reaction field genorated by the polarization wave of the Bloch vector.
T_{1} and T_{2}^{\prime} are the longitudinal and transverse relaration times whioh take into acoount the incohoront intorantions of two level atomic madium. The subscript I and R imply the imaginary and real part of tho field $(a+\alpha) . g$ is the coupling constant betweon the field and the atom.

The in phase component h_{1} and the imaginary part of the internal field a in the model equations above arise due to the non-zero value of the dotuning $\delta=\omega_{L}-\omega_{0}$. It is easily verificd that equations $1,2,3,4$ go ovor to the BonifaoioLugiato model equations on making $\delta=0$ and identifying

$$
\begin{equation*}
R_{1}=0, \quad R_{2}=-S, \quad R_{3}=-\Delta \tag{5}
\end{equation*}
$$

and noting also that the ground state of Nystom has boen represented by the $-N$ value of the inversion R_{3} and not by $+N / 2$ ashas been done in the BonifaoioLugiato model.

Tewari, Tewari and Das

We discuss in the following, results obtainad from the steady state solutions of the equations (1-4), under the assumption of $K \ll T_{1}{ }^{-1}, T_{a^{\prime}}{ }^{-1}$. We obtain the steady state solution for the macroscopic operators givon by

$$
\begin{align*}
& R_{1}=\frac{ \pm \sqrt{\bar{\beta}} N F_{R}-N F_{I}}{\sqrt{\overline{2}\left(1+\beta+|F|^{2}\right)}} \tag{6}\\
& R_{2}=\frac{\mp \sqrt{\bar{\beta}} N F_{I}-N F_{R}}{\sqrt{2}\left(1+\beta+|\bar{F}|^{2}\right)} \tag{7}\\
& R_{3}=-N \frac{(1+\beta)}{\left(1+\beta+|F|^{2}\right)} \tag{8}
\end{align*}
$$

Here F and E aro proportional to transmittod and incidont light fieldsi and aro given by

$$
\begin{align*}
& F=F_{R}+i F_{I}=\sqrt{T_{1} T_{2}^{\prime}} \cdot 2 g \cdot(a+\alpha) \tag{8}\\
& E=\sqrt{T_{1} T_{2}^{\prime}}{ }_{2} \cdot 2 g \alpha \tag{10}\\
& \pm \sqrt{\beta}=T_{2}^{\prime} \delta \tag{11}
\end{align*}
$$

We have also taken $T_{2}^{\prime} / T_{1}=2$ in expressions (6-8). The steady state relationship between the incident and transmittod light is

$$
\begin{equation*}
E=F\left[1+\frac{2 C}{\left(\overline{1}+\beta+|F|^{2}\right)} \mp i \frac{2 C \sqrt{ } \beta}{\left(1+\beta+|F|^{2}\right)}\right] \tag{12}
\end{equation*}
$$

where $C=\frac{T^{\prime}{ }_{2} g^{2} N}{2 K}$. An equation similar to equation (12) with $\beta=0, F \equiv x$ and $E \equiv y$ is used to demonstrate the bistable output of the absorptive medium. Foo, it is found that if $C>4, x$ is a multivalued function of incident fiald y for $y_{m} \leqslant y^{\prime} \leqslant y_{M}$. One has then for a bistability curve a low transmission branch called cooperative branch and a high transmission branch called 'one atom' branch.

We noto that by including the detuning of the medium in oquation (12) our transmitted field bocomes complex. We shall now onward fix the phaso of the incident field E by choosing it to be real. Wo observe hore that the ratio (F / E) would bo a measure of the phase shift between the transmitted and inoident light. We shall discuss the shift in phase at tho ond and digress hore to the equation relating the transmitted and incident intensities i.e.

$$
\begin{equation*}
E^{2}=|F|^{2}\left[1+\frac{4 C}{\left(1+\beta+|F|^{2}\right.}+\frac{4 C(1+\beta)}{\left(1+\beta+|F|^{2}\right)^{2}}\right] \tag{13}
\end{equation*}
$$

which may also be termed as a relationship between the output and input powers. Fquation (13) also predicts a bistahle output between $|F|^{2}$ and E^{2}.

That is $\left|F^{\prime}\right|^{2}$ is a multivalued function of incident intensity lying between the upper ($E_{M^{2}}$) and lower $E_{m}{ }^{2}$ bistability thresholds, if

$$
\begin{array}{ll}
>1+3 \sqrt{(1+\beta)} & \text { for } \beta \rightarrow 0 \\
>1+\sqrt{\frac{27}{4} \beta} & \text { for } \beta \rightarrow \infty . \tag{14b}
\end{array}
$$

Considering C to ba a constant for an experimental set up one oan define a maximum value $\boldsymbol{\beta}_{\boldsymbol{M}}$ (given by equation (15)) beyond which the dispersive system is no longer bistahle (Tewari and Tewari, 1979)

$$
\begin{equation*}
1+\beta_{M}=\frac{4}{27} \frac{(C-1)^{3}}{C} \tag{15}
\end{equation*}
$$

As has been roported oarlier ono finds that the cooperative branch transmitted intensity depends upon β in that as $\beta \rightarrow \beta_{M}$ the cooperative branch shifts till it meets continously and monotonically the one atom branch at $E^{2}=E_{M^{2}}=E_{m}{ }^{2}$ for $\beta=\beta_{M}$. For larger values of $\beta,|F|^{2}$ remains a monotonic function of E^{2}.

We aro interested here in the bistahle behaviour of the dispersive medium and therofore would confino ourselves to the region oovered by $\beta \leqslant \beta_{M}$. We give in Figure 1, the $|F|^{2}, E^{2}$ bistable output curve for $C=10$ and $\beta=2<\beta_{M}$ $=9.8$

In the next section we look into the stability of the stoady states of such a bistability curve.

3. A stability analysis

Since wo are working in the condition $k \gtrless T_{1}{ }^{-1}, T_{2}^{\prime-1}$ we can adiabatically oliminate the internal field variables from equations (1-3). Linearizing the resulting equations wo obtain the following matrix equation for the fluctuations of the macroscopic operators

$$
\begin{equation*}
\Delta \dot{R}=M \Delta R, \tag{16}
\end{equation*}
$$

where ΔR is a column matrix given by $\Delta R_{1}, \Delta R_{2}, \Delta R_{3}$ (the fluctuations in maorosoopic operators) and the matrix M is

$$
M\left[\begin{array}{lll}
-1+\frac{2 C}{N} R_{3} & \mp \sqrt{\beta} & \frac{2 C}{\bar{N}} R_{1} \tag{17}\\
\pm \sqrt{\beta} & -1+\frac{2 C}{N} R_{3} & \sqrt{2} A+\frac{2 C}{N} R_{2} \\
-\frac{4 C}{N} R_{1} & -\sqrt{2} k-\frac{4 C}{N} R_{2} & -2
\end{array}\right]
$$

To determine the relaxation behaviour we construct the characteristic equation by setting

$$
\begin{equation*}
|\lambda I-M|=0 \tag{18}
\end{equation*}
$$

where I is the 3×3 unit matrix. The resulting equation (19) is oubic in λ

$$
\begin{align*}
& \lambda^{3}+4\left(1+\frac{C(1+\beta)}{1+\beta-|F|^{2}}\right) \lambda^{2} \\
& \quad+\left\{\left(1+\frac{2 C(1+\beta)}{1+\beta+|F|^{2}}\right)^{2}+4\left(1-\left\lvert\, \frac{2 C(1+\beta)}{1+\beta+|F|^{2}}\right.\right)\right. \\
& \left.\quad+\beta+2\left(|F|^{2}-\frac{2 C|F|^{2}}{1+\beta+|F|^{2}}\right)\right\} \lambda \\
& \quad+\left\{2\left(1+\frac{2 C(1+\beta)}{1+\beta+|F|^{2}}\right)^{2}+2 \beta-\frac{4 C \beta|F|^{2}}{1+\beta+|F|^{2}}\right. \\
& \left.\quad+2\left(1+\frac{2 C(1+\beta)}{1+\beta+|F|^{2}}\right)\left(|F|^{2}-\frac{2 C|F|^{2}}{\left(1+\beta+|\bar{F}|^{2}\right.}\right)\right\} \tag{19}\\
& \equiv=\lambda^{3}+C_{1} \lambda^{2}+C_{2} \lambda+C_{3}=0 . \tag{20}
\end{align*}
$$

The general solution for a cubic oquation can be written down. Such a solution however has a complicated structure and for our purpose we find that a numorical study of the solutions is better suited. Howevor, tho stability analysis of steady states can bo done by using the Routh-Hurwitz theorom One constructs from the equation (19) an array of numbers viz .

$$
\begin{equation*}
\left(\text { 1. } C_{1}, \frac{C_{1} C_{2}-C_{8}}{C_{1}}, C_{3}\right) \tag{21}
\end{equation*}
$$

and then looks for the number of times sign of the terms of tho array changes as this number is the number of positive roots of the oquation (20). In our case, first two terms of the array are always $+v e$, the C_{3} term can be expressed in terms of the slope of the bistability curve as

$$
\begin{equation*}
C_{3}=2\left(1+\beta+|F|^{2}\right) \frac{d E^{2}}{d|F|^{2}} . \tag{22}
\end{equation*}
$$

The third term can also bo simplified to

$$
\begin{equation*}
2 A(A+1)(A+2)+\frac{8 C \beta}{A}(A+1)+\frac{C_{3}}{A}(A+2)-\beta(A+1) \tag{23}
\end{equation*}
$$

with

$$
\begin{equation*}
A=1+\frac{2 C(1+\beta)}{1+\beta+|F|^{2}} \tag{24}
\end{equation*}
$$

If our system is bistable we note (Figure 1) that C_{3} has definite regions of positive and negative value. Along the cooperative and 'one atom' branches slope of $|\boldsymbol{E}|^{\mathbb{a}} \mathrm{V}_{\mathbf{a}}|\boldsymbol{F}|^{2}$ is positive but the intermediate branoh has an negative slope region. By a little tedious algebraic calculation it is possible to show that the third term remains positive even in the region where C_{3} is most negative, which gives us

Figure 1. The optical bistability curve for $\beta=2, C=10$ disporsive case is plotted. For $\sum_{m^{3}}{ }^{3}<E^{2}<E_{M}{ }^{2}$ one gets three values of transmitted intensity $|F|^{2}$. As β is increased $E_{M^{2}}{ }^{2}$ and $F_{m}{ }^{2}$ are little effected but $E_{m}{ }^{2}$ and $F_{M}{ }^{2}$ inorease fast to make $F_{M^{2}}=F_{m}{ }^{2}$ and $F_{M}{ }^{2}=B_{m}{ }^{2}$ at $\beta=\beta_{M}$. The system then ceases to be bistable.
only one change of sign between the 3rd and 4th term. Hence only one root of equation (20) is positive in the region where C_{8} is negative. Our system is thus unstable in tha region with -ve slope.

B. Relaxation behaviour :

We discuss here the rolaxation of the dispersive medium showing optionl bistability by studying the roots of the relaxation matrix*. For simplicity, instead of giving explicity the complicated structure of the roots of equation (20) we discuss essential features of them with the help of Figure 2, wherein we have plotted the three roots in the different steady state regions of optical bistability ourve for $0=10$ and $\beta=2$.

In the pure absorptive case one obtains,
a) throe real roots along the cooperative branch and the unstable branch,
b) one roal and a pair of complex conjugate roots along the one atom btanch.

For the dispersive medium, ono roal root and a pair of complex conjugate roots along all the branches of the bistability crurve are obtained. In Figure 2 the behaviour of the pair of complex conjugate roots is shown by plotting real $\left(\lambda_{R}\right)$ and imaginary $\left(\lambda_{I}\right)$ parts for various incident intensities. The pure real root (λ_{2} as it is customarily oalled) is also plotted. In our diagram curves linked with arrows indicating to the right imply that they correspond to cooperative branch and those curves with arrows pointing to the left correspond to one atom. branch. Only positive root is shown along the unstable brandi and has no arrows associated with it.

(a) Cooperative branch:

Along this branch because of the finite value of λ_{I} we may expect oscillation of the fluctuations of masroscopic operators with frequency λ_{I}. Noting, however, the fact that $\left|\lambda_{R}\right| \gg\left|\lambda_{I}\right|$, we obtain ver'y quick damping of such oscillations The cooperative damping is vory largo for small incident intensities where λ_{I} is also small, $\lambda_{I} \simeq \sqrt{\beta}$. As E^{2} ncreases and approaches the upper bistability threshold $E_{M^{2}},\left|\lambda_{I}\right|$ increases and λ_{R} decreases, howevor $\left|\lambda_{R}\right|>\left|\lambda_{I}\right|$ throughout. At $\beta=\beta_{M}$, the λ_{R} and λ_{I} become equal and mect at $\boldsymbol{E}^{2}=\boldsymbol{E}_{\boldsymbol{M}}{ }^{2}=\boldsymbol{E}_{\mathbf{m}}{ }^{2}$.

The λ_{2} root along the cooperative branch ahows an interesting behaviour. Noting that $\left|\lambda_{2}\right| \ll\left|\lambda_{R}\right|$ the dynamios of the fluctuation will be dominatod by the λ_{2} root. As E^{2} approaches $E_{M^{2}},\left|\lambda_{2}\right|$ decreases fast and ultimately beoomes

* Our discussion of relaxation behsviour is semiclassical and assumes regression theorem. On the basis of regression theorem it is ressonable to assume that oscillatory character of approach to steady state is necessary to have oscillations of the correlation fiuctuations in the stationery state. See e.g. Agarwal et al (1978) and Bonifacio et al (1976).
zero at $E^{2}=L_{M^{2}}$. The dynamics dominated by λ_{2} thus slow down; reminisconoe of phase transition showing oritical slowing down. This is also interpreted as ono of the 'normal modes' of the system becoming long livod. Such a mode is referred to as soft mode.

Figure 2. Tho roots of the relaxation matrix for the bistable curve shown in Figure 1 1.0., $\beta=2, C=10$ are plotted here. The parr of omplex conjugate roots is shown in terms of λ_{R} and λ_{I} tho real and imaginary parts. λ_{2} the pure real root is also plotted. The arrows pointing to the right correspond to 00 operative branch and those pointing to the left correspond to one atom branch. λ_{R} and λ_{I} are not plotted for unstable branch but λ_{2} is plotted in dotted line. The two vertical lines correspond to $E_{M^{2}}$ and $E_{m}{ }^{2}$. The olosed loop in between these two lines gives the region of positive λ_{2} depicting the unstable branch. At $\left.\beta=\beta_{M} ; \quad \lambda_{R}\left(D_{m}{ }^{2}\right)=\lambda_{R}\left(E_{m}^{2}\right)=\lambda_{I}\left(E_{M^{2}}\right)=\lambda_{I}\left(H_{m}\right)^{2}\right)$. For $\beta<\beta_{M}$, $\left.\lambda_{R}\left(B_{M^{2}}\right)^{2}\right)>\left|\lambda_{B}\left(E_{m}^{2}\right)\right| \&\left|\quad \lambda_{I}\left(E_{M^{2}}\right)\right|<\lambda_{I}\left(F_{m}^{2}\right)$.
b) Urstable branch :

Tho positive real root along the unstable branuh is plotted. Wo note that it is the root λ_{2} that changes sign, at $E_{M^{2}}$ as ono shifts from cooperative to tho uustable branch. Bocause of the + ve nature of the root the fluctuations blow up and the system is unstable As we approach the lower bistability thresholds along the unstable branch the root again approaches zero and changes sign at $E^{2}=\dot{E}_{m^{2}}$. For small values of $\beta\left(\beta<\beta_{M}\right)$ wo hava well dofined regions for λ_{2} to be positive $A s \beta \rightarrow \beta_{M}$ the region of positive values of λ_{2} decroases, so also do tho positive values of λ_{2}. At $\beta=\beta_{M}$ the positive value region cluminates into a point with $\lambda_{2}=0$ at $E^{2}=E_{M}{ }^{2}=E_{m}{ }^{2}$.
c) One atom branch:

On this branch wo note $\left|\lambda_{2}\right| \lesssim\left|\lambda_{R}\right|$ and $\left|\lambda_{I}\right| \geqslant\left|\lambda_{R}\right|$ Consuquently. the oscillation of the fluotuation of the macroscopic operators survive for sume time and dominate the dynamies. The damping of the oscillation is governed by λ_{R}. For larger values of E^{2}, λ_{R} decreases to satisfy $\lambda_{R} / \lambda_{2}=1 \cdot 5$. Thus λ_{R} and λ_{2} are of same order of magnitude along the one atom branch. Hopvever as one approaches $E^{2}=E_{m}{ }^{2}$, the lower bistability threshold along the one atom branch, $\left|\lambda_{I}\right|$ decreuses, $\left|\lambda_{R}\right|$ macreuses and $\left|\lambda_{2}\right|$ decrcases to zero at $E^{2}=E_{m}{ }^{2}$. Consequently the dynames of the modium near $E_{m}{ }^{2}$ is controlled by λ_{2} and thus once again the medium shows critical slowing down ete. etc. As $\beta \rightarrow \beta_{M}$, $\left|\lambda_{R}\right|$ and $\left|\lambda_{I}\right|$ approash one another wear $E_{m}{ }^{2}$ and for $\beta=\beta_{M}$ they actually meet at $E^{2}=E_{m^{2}}$. The discontinuity in the plots for λ_{R} and λ_{I} which results essentially due to the fact that we avoided plotting the values of unstable branch, vanishes at $\beta=\beta_{M}$ and $E^{2}=E_{M}{ }^{2}=E_{m^{2}}{ }^{2}$. The λ_{R} and λ_{I} plots therefore become two continuous curves which cross at $E^{2}=E_{M}{ }^{2}=E_{m}{ }^{2}$

Finally the soft mode root λ_{2} approaches zero near upper bistability thresholds as const. ($E_{M^{2}}-E_{m}{ }^{2}$) ${ }^{\text {d }}$ and near the lower bistability thresholds it approaches to zero as Const. $\left(E^{2}-E_{m}{ }^{2}\right)^{\frac{1}{2}}$. The region of validity of the approximate rewult near lower bistability is small and thai near upper bistability is larger.

In the noxt section we discuss the phase shift we had pointed to in section 2, equation (12).

4. Phase shift

In contrast to the pure absorptive case of bistabulity, where transmitted field is represented by acal value of x, we are forced to write the dispersive case transmitted field as complex number. We discuss in this section the relative magnitude of the real and imaginary parts of the transmitted light We can obtain casily

$$
\begin{align*}
& H_{R}=\frac{|F|^{2}}{E}\left(1+\frac{2 C}{1+\beta+|F|^{2}}\right) \tag{25}\\
& F_{I}=\frac{\left|F^{\prime}\right|^{2}}{E}\left(\frac{ \pm 2 C \sqrt{\beta}}{1+\beta+|\vec{F}|^{2}}\right) \tag{26}
\end{align*}
$$

We note immediately that ait $\beta=0, F_{I}=0$ and $F_{R}=x$ with $y \equiv E$ in pure absorptive model. Since x rofers to transmitted light in that model we call $F_{\boldsymbol{A}}$ to be 'unabsorbed' part of the transmitted light. Further we note that in the dispersive model F_{I} is non zero due to finito detuning, also sign of F_{I} is the sign of ($T^{\prime}{ }_{9} \delta$). Consequently we call F_{I} to be tho dispersed part of the transmitted light. On comparing the dispersed and unabsorbed parts of transmitted light we get

$$
\begin{equation*}
\frac{F_{I}}{F_{R}}=\frac{ \pm 2 O \sqrt{\beta}}{1+\beta+|F|^{2}+2 C} \tag{27}
\end{equation*}
$$

Confining oursolves to the bistability case we note that $|F|^{2}$ remains small along the cooperative branch for small β and changes suddenly to one atom branch values for $E^{2}>E_{M^{2}}$. Consoquently a discontinuity is encountered in $F_{I} \mid F_{R}$ at $E^{2}=E_{M^{2}}$ on cooporative branch and at $E^{2}=E_{M^{2}}$ on one atom branoh.

Since F_{I} / F_{R} is $\tan \phi$ with ϕ as the phase shift between the transmitted and incidont light, we observe a discontinuous behaviour in ϕ as well. This would imply a sudden fringe shift in the interference fringe pattern which oan be obtained by the superposition of incident and transmitted light. The bebaviour of ϕ for $\beta=2$ is plotted in Figure 3. As $\beta \rightarrow \beta_{M}$ the cooperative branch lifts up by almost a constant amount i.e., remains almost parallel to small β curve

Figure 3. The phase shift of transmitted light with respeot to the incident coherent pump light is plotted for various values of \boldsymbol{H}^{2}. The discontinuity is demonstrated for the example ohosen. As β is increased $\phi\left(K_{M^{2}}\right)$ and $\phi\left(E_{m}{ }^{2}\right)$ approach one another so as to make $\phi\left(E_{M}{ }^{2}\right)=\phi\left(H_{m}{ }^{2}\right)$ at $\beta=\beta_{M}$. The above graph auggesta that for dispersive bistability sudden appearanoe of dynamioal stark shift is acoompanied by a sudden change in the phase of trensmitted light. It may be measured by a simple experiment of interferometry.
but the 'one atom' ϕ increasès as $\beta \rightarrow \beta_{\boldsymbol{M}}$ so as to meet the ϕ of cooperative branoh and at $\beta=\beta_{M}$ the discontinuity vanishes.

5. Conclusion

We have discussod the possibilities of using detuned homogeneously broadened medium as a bistable devioe. It is found that in principlo a detuned medium can romain bistablo only for a limited range of dotunings. The relaxation behaviour of the detuned medium is examined. In view of the regression theorem and the results of relaxation matrix one would find that along the cooporative branch spectrum of fluctuations would show a single peak structure and along the ono atom branch it would ahow the three poak structure (dynamical stark shift) i.o. a oentral poak with two side bands roughly placed at $\pm \lambda_{I}$ It is shown that in addition to the sudden appearance of dynamical stark shift thore must appear a suddon shift in the fringe pattorn obtained by superposition of incident and transmitted light as the syster jumps from cooperative branch to the one atom branch.

Acknowledgment

Ono of us Sruya P. Tewaii gratefully acknowledgos helpful discussions on the subject with Prof. G. S. Agarwal.

References

Agarwal G S, Narducci L M, Gilmore R and Ferg D H 1977 Proceedings of IV Rochester conference on coherence and quantum optics ed by L Mandel and E Wolf (1978) Phys. Rev. A(18) 620
Bonifacio R and Lugiato L A 1976 Opt. Oommun. 191972 Phys. Rev. 1978
MoCall S L 1974 Phys. Rev. A9 1515
Tewari S P and Tewarı S P 1979 Optica Acta 26145

