Indian J. Phys. 54B, 121-131 (1980)

Laser photochemistry of UFs

Jyothi Subbiah, S K. Sarkar

MORS Laboratories

and

K V S Rama Rao, Jai P Mittal

Chemistry Division, Bhabha Atomic Research Centre, Trombay, Bombay-400085

Abstract. The photochemistry of volatile uranium compounds, in particular of UFs, is of great importance. Although conventional photochemistry is related to electronically excited states, it is now possible to investigate the ground state photochemistry with the advent of intense tunable IR lasers. The IR-multiphoton dissociation of UF_6 can be performed using a high power pulsed 16μ laser in the electronic ground state. Results of a theoretical estimate of rate constants Ka(Ev*) for MPD of UF6 using RRKM-unimolecular reaction rate theory will be presented. Calculations made on the basis of known spectroscopic preameters of UF_6 and those generated from group theoretical considerations for the activated complex UFat are presented. It has been shown that an excess of 15 photons above the dissociation threshold is necessary to preserve the isotopic selectivity in 1 torr of \mathbf{UF}_{6} sample. This corresponds to the utilization of about 50 photons of 16μ laser per UF₆ molecule dissociated. This knowledge of the level of excitation is useful in defining the optimum leser fluence requirement in MPD experiments.

In the context of two-step photodissociation of UF₀ via the electronic excited states, photochemistry in the $\widetilde{B}-\widetilde{X}$ band has been studied at two different wave lengths—2537Å line of a low pressure Hg-lamp and the 3371Å line of a pulsed N₀-laser. Decomposition of UF₀ yielded a mixture of solid products, which have been identified as UF₀ and UF₀. The quantum yield ratio for these products has also heen determined. Implication of its photophysical parameters for dissociation efficiency in the $\widetilde{A}-\widetilde{X}$ band will also be considered.

l. Introduction

In view of the promising economic implications of laser isotope separation (LIS) schemes, the photochemistry of volatile uranium compounds, in particular of UF_6 , is of great importance. The chief advantages of UF_6 are its high vapour pressure (Ca. 100 torr at 25°C), known spectroscopy, thermal stability and the monoisotopy of fluorine Although a corrosive gas. UF_6 handling is a known

121

and familiar art. In its 16μ IR absorption band, the ν_0 -mode of UF₀ has a marked isotope shift : ~ 0.6 cm⁻¹ at 625 cm⁻¹.

والإجترار الأحاجر

In the molecular approach schemes of LIS, selective excitation of the desired isotopic molecule can therefore be achieved by a suitable IR laser excitation in the 16μ -region. Of the various alternate methods of collecting the vibrationally excited molecule, two appear to be promising. The first approach is based on massive multiphoton excitation of UF₆ in its ground state so that the molecule absorbs sufficient energy to unimolecularly dissociate In the second approach a limited vibrational excitation is followed by an electronic excitation by the absorption of a suitable UV/visible laser photon The electronically excited molecule then decomposes

The objective of either of these approaches is to maximise selective photodissociation of the desired isotopic species. The parameters which limit the selectivity, in addition to spectroscopic factors, are :

1) The unimolecular decomposition rates which are in competition with collisional energy exchange losses

2) The photodecomposition rates and modes of the electronic excited state.

In this paper we will first consider how the unimolecular decomposition rate varies with the vibrational energy content of the UF₆ molecule. In a subsequent section, we will present some of our experimental data on the UF₆-decomposition in its second, $\tilde{B}-\tilde{X}$ electronic state (cf Figure 1). During the course of this work, multiphoton dissociation (MPD) of UF₆ (Rabinowitz 1978) and its isotopic enrichment (Wittig 1978) have been reported Its photochemistry in the $\tilde{A}-\tilde{X}$ band has also been studied by a few groups (Andreoni 1976, Wampler 1978, Dewitte 1977)

2. Experimental

Computer Calculations \cdot A BESM-6 computer was used to compute the unimolecular reaction rates

 UF_6 Purification: UF₆ was purified from HF and other volatile impurities by a dynamic fractional condensation technique UF₆ condensed in a cold trap at 196 K while the impurities were pumped out.

Irradiations. Photolysis at 2537Å was conducted in a photochemical reactor. The reactor consisted of a cylindrical array of sixteen low pressure Hg lamps, providing flux of 1.6×10^{16} photons cm⁻³ sec⁻¹ at the sample position in the centre. The l cm-diameter, 21 cm long quartz sample ccll was initially baked thoroughly under vacuum before filling with a mixture of 137 torr UF_e and 240 torr H_e

Figure 1. Composite Absorption Spectrum of UF₆ from data taken at different temp. [Depositer 1976]. In the figure $\tilde{A} - \tilde{X}$ and $\tilde{B} - \tilde{X}$ band are indicated.

A Molectron UV 400 pulsed N₂-laser was used for irradiations at 3371Å. The pulse width of the laser was 10 ns and at a repetition rate of 10 Hz, its peak energy is 250 mJ/pulse. The sample cell for the laser irradiation was made of stainless steel, 21 cm long and fitted with CaF₂ end windows. The cell was passivated by BrF₃ at 60°C and thoroughly evacuated before filling with 105 torr UF₆ and 240 torr H₂

Analysis: The green and white solid deposits obtained on photolysis at 2537Å, were dissolved, in an inert atmosphere, in 4N-HCl containing some Boric acid. The resulting solution was then potentiometrically analysed for U(IV) and U(VI)

In the Ng-laser photolysis, UFg-depletion was monitored periodically by its absorption at 3700 Å

3. Results and discussions

Evaluation of Unimolecular decomposition rates.

Extensive work on IR multiphoton dissociation (MPD) of polyatomic molecules, in particular SF₆, has indicated that the process is unimolecular Although a full evaluation of the experimental results in terms of the existing unimolecular rate theories have not yet been done, it appears that RRKM theory generally explains the thermal as well as laser induced dissociation of SF₆. In this paper, we have utilised the RRKM theory to compute the UF₆-dissociation rates.

Following the RRKM theory (Robinson 1972), it is assumed that the multiphoton excitation energy of UF_6 molecule is rapidly randomised between all the vibrational modes of the molecule. The energised molecule, having more than sufficient energy for the dissociation process to occur, will than reorganise its internal degrees of freedom to become an activated complex, having the appropriate critical molecular configuration for the dissociation process to occur readily.

 $\begin{array}{ccc} nh\nu & Ka(Ev^{\bullet}) \\ UF_{\theta} \xrightarrow{} & UF_{\theta}^{*} \xrightarrow{} & UF_{\theta}^{+} \xrightarrow{} & UF_{5}^{-}F \\ (\text{Energised molecule}) & (\text{Activated complex}) \end{array}$

The conversion of the energised to activated complex occurs at a definite rate, $Ka(E_{x}^{*})$, which is a function of the non-uxed energy, available for redistribution, with the molecule. The RRKM-expression for the unimolecular rate constant for the dissociation of the molecules with energy E_{y}^{*} , is given by :

$$Ka(\boldsymbol{B}_{\boldsymbol{\chi}}^{*}) = \boldsymbol{L}^{\ddagger} \quad \frac{\boldsymbol{Q}_{1}^{\dagger}}{\boldsymbol{Q}_{1}} \quad \frac{1}{\hbar N^{*}(\boldsymbol{E}_{\boldsymbol{\chi}}^{*})} \sum_{\boldsymbol{B}_{\boldsymbol{\chi}}^{+} = 0}^{\boldsymbol{B}_{0}^{*}} \boldsymbol{P}(\boldsymbol{E}_{\boldsymbol{\chi}}^{\dagger})$$

Laser photochemistry of UF_6

. The internal energy of the activated complex is defined as ;

$$E_{v}^{\dagger} = E_{v}^{\bullet} - Eo,$$

since an energy E_0 , equivalent to the energy barrier between the reactants and the products, becomes fixed in the formation of the activated complex. For UF₆, E_0 is taken as the U-F bond dissociation energy 68 KCal mole⁻¹ (Hilderbrand 1977). Other parameters in the above expression are as follows:

 L^{\ddagger} the statistical factor, is taken as 6 representing the number of equivalent paths by which the dissociation can occur.

 Q_1^{\dagger} and Q_1 are the rotational partition functions for the activated complex and the undistorted molecule respectively. Assuming one U- t^{\dagger} bond length is doubled in forming the activated complex, $Q_1^{+}/Q_1 = 1.75$.

 $N^{\bullet}(E_{v}^{\bullet})$, the density of the vibrational states at energy E_{v}^{\bullet} , is given by .

$$N^{\ast}(E_{v}^{\ast}) = \frac{(E_{v}^{\ast} + aE_{z})^{S-1}}{(S-1)!} \Big[1 - \beta \frac{dW(E')}{dE'} \Big]$$

where with are the fundamental vibrational frequencies of UF, and $E_{z} = \frac{1}{2} \sum_{i=1}^{N} h_{i}$, the total zero-point vibrational energy for all S = 15 normal modes of UF,

a is an emperical parameter which gives the best approximation to the direct count of the quantum states and is given by:

$$a = 1 - \beta W(E')$$

where $\beta = [(S-1)/S] < \nu^2 > / < \nu >^2$ in which $< \nu >$ and $< \nu^2 >$ are the mean and mean square frequencies of the molecule

Emperical function W(E') is given by :

$$W = [5 \cdot 00E' + 2 \cdot 73E'^{0.5} + 3 \cdot 51]^{-1} \quad \text{for } 0 \cdot 1 < E' < 1.0$$

= exp[-2 \cdot 419]E'^{0.25} [for E' > 1.0.

where $E' = E_r * / E_z$.

The above treatment known as Whitten-Rabinovitch approximation gives the vibrational state density $N^{\bullet}(E_{v}^{\bullet})$ as a function of E_{v}^{\bullet}

 $P(E_v^+)$ is the number of vibrational quantum states in the activated complex

at energy E_{v}^{+} , and the sum $\sum_{E_{v}^{+}=0}^{E_{v}^{+}} P(E_{v}^{+})$ is the total number of vibrational states

in the activated complex up o E_{v}^{+} which is given by

$$\sum_{\substack{B_{0}^{+} \\ B_{0}^{+} = 0}}^{B_{0}^{+}} P(E, +) = \frac{[E_{0}^{+} + aE_{2}^{+}]^{\epsilon}}{S! \prod_{\substack{B \\ A \neq 1}}^{S} hv_{4}^{+}} S = 14 \text{ for } UF_{0}^{+}$$

UF₆ has the highly symmetrical O_b point group. The frequencies corresponding to the six fundamental vibrational modes are given in table 1. The evaluation of $\Sigma P(E_0^+)$ depends on what set of vibrational frequencies can be assigned to the sociated complex, UF_6^+ . For the primery decomposition channel of UF_6 as in $UF_6^{-} \rightarrow UF_6^+ \rightarrow UF_6^+ + F : \Delta H \approx 68$ KCal mole⁻¹; the activated complex UF_6^+ assumed to have the confituration where one U-F bond has been stretched and the bond length is doubled Although other possible decompositional channel like molecular elimination of F_n

Table 1. $UF_{6}(On point group)$ fundamental vibrational frequencies [Classen 1970]

Г	ν _l (cm ⁻¹)	Assignment
A ₁₉	667.1	¥(U-F)
\mathbf{E}_{g}	532.5	$v_{(F-U-F)}$
Fiv	624.0	₽(U _₽)
F ₁₄	186.2	$\delta_{(F-U-F)}$
\mathbf{F}_{2g}	202.0	$\delta_{(F-U-F)}$
Fau	142.0	δ _{(F_U_F} ,
	A ₁₆ E _g F _{1v} F _{1v} F _{2g} F _{2g}	A_{1g} 667.1 E_g 532.5 F_{1v} 624.0 F_{1v} 186.2 F_{2g} 202.0 F_{2u} 142.0

UF₆ UF₄+F₂: $\Delta H \approx 133$ KCal mole

exists; it is much more energetically prohibitive. Hence the decomposition may be expected to proceed through U-F bond dissociation as in the case of SF_6 (Grant 1977). The number of modes in the activated complex is reduced by one since the normal stretching mode of U-F' (which is now different from other F-atom) becomes the reaction co-ordinate. The vibrational frequencies of the activated complex were determined by first dividing the frequencies of UF₆ into two categories :

a) those which are little affected and

b) those most affected by extending the bond.

As one bond is stretched and that particular F atom is different from the rest, the symmetry point group for the activated complex changes from O_{h} to O_{4v} . From the correlation table of O_{h} point group to C_{4v} , it will be possible to assign UF₆+ frequencies (of. Table 2). The frequencies which are least affected were taken to be 0.95 times the corresponding UF₆-frequencies. The most affected mode frequencies are taken as 0.75 and 0.65 times those of UF₆ to allow adequate

Laser photochemistry of UF. 127

range for defining the properties of the activated complex. Figure 2 shows the variation of vibrational state density $N^*(E_0^*)$ with E_0^* . Figure 3 shows the variation of $K_a(E_0^*)$ with energy in terms of excess photon for the above mentioned two cases. The predicted trends are similar and show that the unimolecular

Figure 2. Variation of vibrational state density $N^*(E_v^*)$ with vibrational energy content of the molecules E_v^+ for UF₆ using Whitten-Rabino-Vitch approximation with the parameters in table 1.

rate constant increases rapidly upto about seven photons excess. At higher energies, the dissociation rate increases slowly. It will be possible to define the vibrational frequencies of the activated complex more precisely by comparison

with thermal reaction rate data, if available. In the case of SF_{6^*} such a comparison had enabled Lyman (Lyman 1977) to conclude that the most affected SF_6^* frequencies are 0.75 times those of SF_6 .

Figure 3. The unimolecular rate constant Ka (E_0^{\dagger}) versus internal energy content of activated complex E_0^{\dagger} . Curve (a) is calculated with vibrational frequencies for UF_c[†], 0.95 times (least affected) & 0.65 times (most affected) the corresponding frequencies of UF_c Curve (b) is calculated using the above factors as 0.95 and 0.75. The upper scale is E_0^{\dagger} in terms of excess photons of 16 μ laser [625 cm⁻¹] above the dissociation threshold.

From the point of view of isotopic selectivity, two parameters which are of interest are (1) What should be the optimum level of energisation for UF_6 molecule to dissociate without collisional energy-exchange and (2) What laser fluences are required to achieve this energisation. The mean collisional time for ²³⁵ UF_6 collisions at 1 torr natural UF_6 is 285 ns. The random life time for an energised UF_8 molecule at 15 excess photons is 10-20 ns. Within a typical laser pulse of 200 ns, we can therefore expect ~10% loss of ²³⁵ UF_6 excited at 13-15 excess photons i.e., about 56-16 μ laser photons (cf. Table 3).

Laser photochemistry of UF_6

129

Table 2. Activated complex (UF_a^{\dagger}) fundamental vibrational frequencies

		i		ν4†(cm ⁻¹)		
I UF6	1 UF ₆ T		Assignment	(a) = $0.95 v_{UF_{0}}$ (b) = $0.65 v_{UF_{0}}$	(a) = $0.95 v_{UF6}$ (b) = $0.75 v_{UF6}$	
A ₁ ,	A ₁	2	vsym(UF4)	633.75ª	633.75¢	
E,	Aı	Э	$\delta_{sym}(\mathrm{UF}_{4})$ out of plane	346.135	399.375	
	B ₁	5	veym(UP4)out of phase	505.88ª	505.88*	
Feu	A1	1	$v_{(\overline{U}-\overline{F})}$	405.6*	468.0*	
	E	8	vasym(UF4)	592.8ª	592.8ª	
F ₁₈	A	4	vu_f	Reaction Co-ordinate		
	E	9	δ (FUF ₄) wagging	176.89#	176.89ª	
F ₁₀	B ₂	7	δ _{sym} (UF ₄) in plane scussoring	9 191.9ª	191.9ª	
	E	10	$\delta_{asym}(\mathrm{UF}_4)$ in plan	ne 131.30	151.50	
Fau	B 1	6	δ _{dsym} (UF _s)out of plane	92.35	106.5	
	E	11	δ(FUF ₆)UF ₈ rocking	134.90	134.9*	

<ν↑> 303.38 cm⁻¹ <ν↑> 315.54 cm⁻¹
<ν↑²>³300.9 cm⁻¹ <ν↑²>³371.48 cm
⁻₄↑ 244.59 cm⁻¹ ν₄↑ 257.47 cm⁻¹

Table 3. 0.75 case

Excess energy	N*(Ev*)	$\Sigma P(E_v^{\dagger})$	$K_a(E_v^{*})$ sec-	¹ τ(ns)	%loss of selectivity
5	6.2 × 1014	1.8 × 107	$9.15 imes10^3$	109289	
7	1.1×10^{15}	4.2×10^8	1.18×10^{5}	8774	96.7
9	1.85×10^{15}	4.4×10^{9}	8.56×10^5	1168	80.4
10	$2.54 imes10^{15}$	1.6 × 10 ¹⁰	1.98×10^6	505	64.0
12	4.28×10^{10}	1.13×10^{11}	$8.47 imes10^{6}$	118	29.3
13	$5.56 imes 10^{15}$	$2.82 imes 10^{11}$	1.6×10^{7}	62.5	18.0
14	7.15×10^{16}	6.53×10^{11}	2.87×10^7	35	10.9
15	9.17×10^{15}	$1.44 imes 10^{18}$	$4.94 imes 10^7$	20	6.6

The laser fluence requirements for creating such massive multiphoton excitation are now being evaluated. Experimentally, Kaldor *et al* have found for UF_6 , MPD occurs with a threshold of 1J cm⁻² In general, it has been found that higher laser fluxes will populate higher and higher quantum states in polyatomic molecules within a limited energy spread.

UF_6 -Photolysis in the \tilde{B} - \tilde{X} band

Irradiation of UF_6 alone or with H_2 at 2537 Å produced extensive solid deposits, which on chemical analysis, were shown to be a mixture of UF_8 and UF_4 . The ratio of these two products was determined as 7–3. The fact that the dissociation product is a solid is of tremendous importance. It implies that the separation of enriched products from the feed material will be simple, as it involves only phase separation. Also, isotopic scrambling between enriched product and starting material is likely to be reduced.

Irradiation of UF_6 and H_2 at 3371 Å by N_2 lasor gave rise to fine white deposit on the window The depletion of UF_6 on irradiation, as determined by spectrophotometry, corresponded to a quantum yield of UF_6 dissociation of 0-14.

The existing hterature on UF₆ photolysis is confined to the $\tilde{A}-\tilde{X}$ band, which is also a weakly fluorescent excited state. Much of the reported work monitored the fluorescence to obtain the quenching rate with various additives, including self-quenching by UF₆. At low pressures and in the absence of additives the life time of $\tilde{A}-\tilde{X}$ band excitation is about 400 ns at 30°C (Andreoni 1977), rather large to be useful for isotopic enrichment. The lifetimes also decrease very rapidly in the presence of additives, especially hydrocarbons (Wampler 1978), but it is not yet known whether the high quenching rates definitely involve chemical reactions which can be used as a means of collecting the selectively excited species. The only indication about the UF₆ photo decomposition in the $\tilde{A}-\tilde{X}$ band was that of Kaldor (Kaldor 1978) who reported quantum yields of about 0-1, comparable to what we have now obtained for excitation within the $\tilde{B}-\tilde{X}$ band.

3. Summary

1. We have discussed the various parameters for IR-MPD and two stop photodissociation of UF_6

2. The optimum level of vibrational excitation for isotopically selective MPD has been estimated by applying RRKM theory.

3. We have studied the photo decomposition of UF_e in the \overline{B} - \hat{X} band which can be used as 2nd step of two step dissociation.

Laser photochemistry of UF,

References

Andreoni A and Bucher H 1976 Chem. Phy. Lett. 40 237, 1977 Chem. Phys. Lett. 48 431
Claasen H H, Goodman G L, Holloway J H and Selig H 1970 J. Chem. Phys. 53 341
DePoorter G L and Rofer-De Poorter C K 1975 Spect. Lett. 521
DeWitto O, Dumanchin R, Michon M and Chatelet 1977 Chem. Phys. Lett. 48 505
Grant E R, Schulz P A, Sudbo A S, Coggiola M J, Shen Y R and Lee Y T 1977 in Multiphoton Processes Ed. Ebereloy J. M. and Lambroponlos P (Wiley NY)
Hilderbrand P L 1977 J. Chem. Phys. 66 4785
Kaldor A, Rabinowitz P, Cox D M, Horsley J A and Brickman R 1978 Paper N3 in 10th Int. Quant. Electr. Conf. Atlanta.
Lyman J L 1977 J. Chem. Phys. 67 1868

Rabinowitz P, Stein A and Kalder A 1978 Opt. Commun. 27 381

Robinson P J and Holbrook K A 1972 Unimolecular Reactions (Wiley, London)

Wampler F B, Oldenborg R C and Rice W W 1978 J. Photochem 9 473 also 10th Quant Electr. Conf. Atlanta

Wittig Curt in Industrial Research Dec 1978. p. 42