HYBRIDIZATION OF PARTICLE SWARM OPTIMIZATION WITH BAT ALGORITHM FOR OPTIMAL REACTIVE POWER DISPATCH

by

EMMANUEL EMENIKE AGBUGBA

submitted in accordance with the requirements for the degree of

MAGISTER TECHNOLOGIAE

In the subject

ELECTRICAL ENGINEERING
at the

University of South Africa

Supervisor: Prof. Zenghui Wang

DECLARATION

Name:	EMMANUEL EMENIKE AGBUGBA
Student number:	57441022
Degree:	MAGISTER TECHNOLOGIAE

Exact wording of the title of the dissertation or thesis as appearing on the copies submitted for examination:

HYBRIDIZATION OF PARTICLE SWARM OPTIMIZATION WITH BAT ALGORITHM FOR
OPTIMAL REACTIVE POWER DISPATCH

I declare that the above dissertation/thesis is my own work and that all the sources that I have used or quoted have been indicated and acknowledged by means of complete references.

SIGNATURE

13-06-2017
DATE

This dissertation is dedicated to my loving wife Loveth Mmirmma Agbugba

ACKNOWLEDGEMENT

I would like to thank my supervisor Professor Zenghui Wang, Department of Electrical and Mining Engineering for his constant motivation and support during the course of my dissertation. I am thankful for his valued tutelage and support all through the period of my study. I am highly indebted to him for being patient with me. I was honoured to have him as my supervisor.
I owe all to my wife Loveth and children Emmanuel (Jnr.), Grace and Joshua. Without their unconditional love and support I would not have reached this height and dream.

I owe a debt of gratitude to my mother Comfort Ejindu Agbugba for her love and prayers.
I am eternally grateful to my brothers Francis, Anthony and Michael; and my sisters Mary and Catherine for their support, understanding and constant encouragement.

Abstract

This research presents a Hybrid Particle Swarm Optimization with Bat Algorithm (HPSOBA) based approach to solve Optimal Reactive Power Dispatch (ORPD) problem. The primary objective of this project is minimization of the active power transmission losses by optimally setting the control variables within their limits and at the same time making sure that the equality and inequality constraints are not violated. Particle Swarm Optimization (PSO) and Bat Algorithm (BA) algorithms which are nature-inspired algorithms have become potential options to solving very difficult optimization problems like ORPD. Although PSO requires high computational time, it converges quickly; while BA requires less computational time and has the ability of switching automatically from exploration to exploitation when the optimality is imminent. This research integrated the respective advantages of PSO and BA algorithms to form a hybrid tool denoted as HPSOBA algorithm. HPSOBA combines the fast convergence ability of PSO with the less computation time ability of BA algorithm to get a better optimal solution by incorporating the BA's frequency into the PSO velocity equation in order to control the pace. The HPSOBA, PSO and BA algorithms were implemented using MATLAB programming language and tested on three (3) benchmark test functions (Griewank, Rastrigin and Schwefel) and on IEEE 30- and 118-bus test systems to solve for ORPD without DG unit. A modified IEEE 30-bus test system was further used to validate the proposed hybrid algorithm to solve for optimal placement of DG unit for active power transmission line loss minimization. By comparison, HPSOBA algorithm results proved to be superior to those of the PSO and BA methods.

In order to check if there will be a further improvement on the performance of the HPSOBA, the HPSOBA was further modified by embedding three new modifications to form a modified Hybrid approach denoted as MHPSOBA. This MHPSOBA was validated using IEEE 30-bus test system to solve ORPD problem and the results show that the HPSOBA algorithm outperforms the modified version (MHPSOBA).

Keywords—Hybridization; Hybrid Particle Swarm Optimization (HPSOBA); Modified Hybrid Particle Swarm Optimization (MHPSOBA); Optimal Power Flow (OPF); Optimal Reactive Power Dispatch (ORPD); Particle Swarm Optimization (PSO); Bat Algorithm (BA); Active Power Loss Minimization; Benchmark Functions; Distributed Generation (DG); Conventional Optimization Technique; Evolutionary Optimization Technique; Artificial Intelligence; Equality Constraints; Inequality Constraints; Penalty Function.

TABLE OF CONTENTS

Declaration ii
Dedication iii
Acknowledgement iv
Abstract v
Table of Contents vi
List of Tables ix
List of Figures x
Acronyms and Abbreviations xi
Chapter 1: Introduction 1
1.1 Research Background 1
1.2 Motivation 3
1.3 Objectives 4
1.4 Research Questions 4
1.5 Scope of the Research 5
1.6 Outline of the Disssertation 5
Chapter 2: Literature Review 7
2.1 Optimal Reactive Power Dispatch 7
2.1.1 Conventional Optimization Techniques 8
2.1.2 Evolutionary Optimization Techniques 10
2.2 The ORPD Problem Formulation 13
2.2.1 Equality Constraints 14
2.2.2 Inequality Constraints 14
2.2.3 Penalty Function 15
2.3 Particle Swarm Optimization 16
2.3.1 PSO Algorithm Pseudo Code 19
2.3.2 Basic Fundamentals of The PSO 22
2.4 Bat Algorithm 24
2.4.1 Movements of Virtual Bats 25
2.4.2 Loudness and Pulse Emission 26
2.4.3 Bat Algorithm Pseudo code 27
2.5 Hybridization of Evolutionary Algorithms to solve ORPD 30
2.6 Optimal Placement of DG Unit(s) 33
2.7 Summary 34
Chapter 3: Hybrid PSO-BA Model 35
3.1 Motivation for Hybridization of PSO with BA 35
3.2 Proposed Hybrid PSO-BA (HPSOBA) Methodology 36
3.3 Test Function Optimization using HPSOBA 39
3.3.1 Simulation Results and Analysis of Test Function
Optimization 39
3.4 Solving ORPD Problem Using HPSOBA 41
3.4.1 Case I: Simulation Results and Analylsis of Solving
ORPD Without A DG Unit 41
3.4.1.1 IEEE 30-Bus Test System 42
3.4.1.2 IEEE 118-Bus Test System 46
3.4.2 Case II: Optimal placement of A DG unit Using HPSOBA 51
3.4.2.1 Simulation Results and Analylsis of Solving ORPD With A DG Unit 51
3.5 Summary 57
Chapter 4: Modified HPSOBA 58
4.1 Overview 58
4.2 Modifications of HPSOBA Algorithm 58
4.2.1 $\quad 1^{\text {st }}$ Modification (Pulse Frequency) 58
4.2.2 $2^{\text {nd }}$ Modification (Velocity Vector) 59
4.2.3 $\quad 3^{\text {rd }}$ Modification (Pulse rate and Loudness Update) 59
4.3 Simulation Results and Analysis of Solving ORPD Using
MHPSOBA 60
4.4 Summary 61
Chapter 5: Conclusion and Future Work 62
5.1 Conclusion 62
5.2 Future Work 64
List of Publications 65
References 66
Appendices 77
Appendix A: Standard IEEE 30- and 118-Bus Test Systems Data
Appendix A. 1 Standard IEEE 30-Bus Test System Data 77
Appendix A. 2 Standard IEEE 118-Bus Test System Data 78Appendix B: \quad Sample Codes for Algorithms of ORPD(IEEE 30-Bus Test System)
Appendix B. 1 MATLAB codes for PSO Algorithm for ORPD 85
Appendix B. 2 MATLAB codes For BA Algorithm for ORPD 89
Appendix B. 3 MATLAB codes for HPSOBA Algorithm for ORPD 93Appendix C: \quad Sample Codes for Algorithms of ORPD(IEEE 118-Bus Test System)
Appendix C. 1 MATLAB codes for PSO Algorithm for ORPD 98
Appendix C. 2 MATLAB codes For BA Algorithm for ORPD 108
Appendix C. 3 MATLAB codes for HPSOBA Algorithm for ORPD 118

LIST OF TABLES

Table Page
I. Comparison between different algorithms on 3 standard benchmark functions 40
II. Parameters and data settings for the proposed algorithms 41
III. IEEE 30-bus test system control variables limits for ORPD 43
IV. Comparative results of IEEE 30-bus test system 45
V. Values of control variables before and after optimization for IEEE 30-bus test system 45
VI. IEEE 118-bus test system control variables limits for ORPD 47
VII. Comparative results of IEEE 118-bus test system 49
VIII. Values of control variables before and after optimization for IEEE 118-bus test system 49
IX. Modified IEEE 30-bus test system constraints for DG Unit Optimal Installation 52
X. Comparative results of the DG Unit placement on each bus 52
XI. Comparative results of HPSOBA Algorithm for with and without DG Unit placement 54
XII. Values of control variables before and after optimal placement of DG Unit for modified IEEE 30-bus test system 55
XIII. Comparative results of MHPSOBA algorithm with HPSOBA for solving ORPD problem 60
XIV. Comparative values of control variables after optimization for HPSOBA and MHPSOBA methods for IEEE 30-bus test system 61
XV. Algorithm performance summary for solving ORPD problem 63

LIST OF FIGURES

Figure Page

1. Conventional PSO Flowchart 20
2. Conventional BA Flowchart 29
3. Proposed HPSOBA Flowchart 38
4. Single-line diagram of IEEE 30-bus test system 42
5. Average convergence curve of PSO for IEEE 30-bus test system 43
6. Average convergence curve of BA for IEEE 30-bus test system 44
7. Average convergence curve of HPSOBA for IEEE 30-bus test system 44
8. Single-line diagram of IEEE 118-bus test system 46
9. Average convergence curve of PSO for IEEE 118-bus test system 47
10. Average convergence curve of BA for IEEE 118-bus test system 48
11. Average convergence curve of HPSOBA for IEEE118-bus test system 48
12. Graph of the comparative results of the DG unit placement on each bus 53
13. Average convergence curve of HPSOBA for modified 30-bus test system 54

ACRONYMS AND ABBREVIATIONS

ABC	Artificial Bee Colony
ACO	Ant Colony Optimization
AGA	Adaptive Genetic Algorithm
ALC	Aging Leader and Challengers
BA	Bat Algorithm
BFO	Bacterial Foraging Optimization
BHBO	Black Hole Based Optimization
CA	Coordinated Aggregation
CLPSO	Comprehensive Learning Particle Swarm
	Optimization
CS	Cuckoo Search
CSO	Cat Swarm Optimization
CSO	Competitive Swarm Optimizer
DDE	Double Differential Evolution
DE	Differential Evolution
DG	Distributed Generation
DLP	Dual Linear Programming
DSA	Differential Search Algorithm
EP	Evolutionary Programming
FA	Firefly Algorithm
GA	Genetic Algorithm
GPAC	General Passive Congregation
GPM	Gradient Projection Method
GSA	Gravitational Search Algorithm
GWO	Gray Wolf Optimizer
HAS	Harmony Search Algorithm
HBA	Hybrid BA
HBO	Honey Bees Optimization
HPSOBA	Hybrid Particle Swarm Optimization with Bat
	Algorithm
HPSOM	Hybrid Particle Swarm Optimization with Mutation
IBA	Improved Bat Algorithm
ICA	Imperialist Competitive Algorithm

IEEE	Institute of Electrical and Electronics Engineers
IEP	Improved Evolutionary Programming
IGA	Improved Genetic Algorithm
IHSA	Improved Harmony Search Algorithm
IP	Interior Point
IPM	Interior Point Method
IWO	Invasive Weed Optimization
LP	Linear Programming
LPAC	Local Passive Congregation
MAPSO	Multi-Agent PSO
MAS	Multi-Agent System
MHPSOBA	Modified Hybrid Particle Swarm Optimization with Bat Algorithm
MICA	Modified Imperialist Competitive Algorithm
MTLA	Modified Teaching Learning Algorithm
MW	Mega Watts
NM	Nelder Mead
OGSA	Opposition Based Gravitational Search Algorithm
OPF	Optimal Power Flow
ORPD	Optimal Reactive Power Dispatch
PCSO	Parallel Cat Swarm Optimization Algorithm
P_{L}	Active Power Transmission Loss
PSO	Particle Swarm Optimization
PSO-TVAC	PSO with Time Varying Acceleration Coefficients
QIPM	Quadratic Interior Point Method
QOBL	Quasi-Opposition Based Learning
QP	Quadratic Programming
QPSO	Quantum Behaved PSO
s	Seconds
SOA	Seeker Optimization Algorithm
SQP	Sequential Quadratic Programming
TCSC	Thyristor Controlled Series Capacitor
TLBO	Teaching Learning Based Optimization
TS	Tabu Search
UPFC	Unified Power Flow Controller

VAR	Volt Amperes Reactive
VSL	Voltage Stability Limit

CHAPTER 1

INTRODUCTION

1.1 RESEARCH BACKGROUND

Electric power systems are comprised of large and complex components that produce electrical energy. A modern electric power system has the following components: 1) generating power plants, 2) transmission lines, 3) distribution lines, and 4) loads. The long transmission lines carry the generated electric power from the generating stations to the loads. Every power system has the primary objective of supplying cheap, reliable and optimized power to the consumers. In the bid to optimize the power supplied to the various loads, the system encounters problems which are summarily referred to as Power System Optimization problems.

Optimization problems, which are widely encountered in electric power systems, can be very complex and non-linear depending on the nature of the fitness function. The goal of an optimization problem can be stated thus: finding the amalgamation of control or decision variables that optimize a given objective function to be maximized or minimized, possibly subject to some constraints on the allowed parameter values. Generally, the classifications of the optimization problems are done according to the mathematical features of the fitness function, constraints and control variables. The problem formulation of any optimization problem can be thought of as a sequence of steps [1]. These steps are:

1) Choosing the design variables (control and state variables)
2) Formulating constraints
3) Formulating objective functions
4) Setting up variable limits
5) Choosing an optimization technique to solve the problem
6) Solving the problem in order to obtain the optimal solution.

In recent years, the electric power industry has experienced a major turn-around in the form of deregulation or restructuring. Deregulation is all about of removing or reducing government monopolistic control over prices with the introduction of independent power providers thereby giving consumers the power to choose their utility providers [2]. This led to competitive market in the power industry which results in lowering of electricity prices, innovation and expansion of the power industry. This competitive market reduces cost but unarguably bring uncertainty to generation forecasting as power producers compete to sell electricity. Meanwhile, in most places,
the rate of energy consumption has outpaced infrastructure development, placing pressure on the aging equipment. These factors contribute to the increasing need for fast and reliable optimization methods that can address both security and economic issues simultaneously in support of power system operation and control [3].

One of the most significant optimization problems in electric power systems is Optimal Power Flow (OPF) which was introduced by Carpentier [4] in 1962, and since then there has been a tremendous development and algorithmic improvement. The primary objective of OPF is to obtain the optimal state of the control variables by minimizing an objective function for a particular power system while keeping all constraints (equality and inequality constraints) within limits [5]. Optimal Reactive Power Dispatch (ORPD) is a sub-problem of the OPF problem, which determines all kinds of controllable variables for optimal operation. In an ORPD, the values of some (or all) of the control variables need to be found so as to optimize (maximize or minimize) a predefined objective function. It is also important that the proper problem definition with clearly stated objective be given at the onset. The most common ORPD objective functions are minimization of active power transmission loss, minimization of generation cost, maximization of power quality (often by minimizing voltage deviation) and minimization of capital cost during system planning [6]. The active power transmission line loss leads to power shortages which affects the economic growth of a country. For reliable operation of any power system, the power transmission losses are to be minimized. This objective can be accomplished by optimizing the control variables such as generator bus voltages (continuous variable), transformer tap ratio or position, and reactive power output of shunt compensations (discrete variables) [7].

The ORPD problem is a non-continuous and non-linear objective function optimization problem which requires a more complex formulation, as the set of equations involved may not be linearized. Solving ORPD problems has the advantage of, but not limited to, minimization of active power transmission loss and power factor improvement in the distribution system. The ORPD problem can also be described as a complex and combinatorial optimization problem which contains both continuous and discrete control variables [8]. In this case, non-linear optimization methods/techniques must be employed. There are two optimization methods used in solving ORPD optimization problems namely Conventional and Evolutionary/Artificial Intelligence Optimization Techniques. A number of conventional techniques such as Newton-Raphson Method [9], Quadratic Programming (QP) [10, 11], Interior Point Method (IPM) [12, 13] and Linear Programming (LP) $[14,15]$ have been successfully applied to solving the ORPD problem. Traditional optimization methods which use gradients for the search of the optimum, need a function that is at least twice
differentiable and are inefficient in dealing with discrete variables-based problems which results in their incapability for solving ORPD problems [16]. In the past, some evolutionary methods have been applied to solve the ORPD problems in a bid to surmount the disadvantages imposed by the conventional methods. Such evolutionary methods include Evolutionary Programming (EP) [17], Genetic Algorithm (GA) [18, 19], Bat Algorithm (BA) [20], Seeker Optimization Algorithm (SOA) [21], Differential Evolution (DE) [22-24], Bacterial Foraging Optimization (BFO) [25], Differential Evolution (DE) [26] and Particle Swarm Optimization (PSO) [27]. Thus, evolutionary optimization techniques have become an alternative to traditional optimization techniques for solving ORPD problems since real-world problems are non-convex, non-differentiable and discontinuous.

1.2 MOTIVATION

The electric power system conveys bulk electrical energy from the generating plants to the consumers via power substations, while sustaining tolerable or standardized power and voltage qualities and limits for all consumers. The electrical energy from the generating station is delivered to the consumer terminals through transmission and distribution networks. The generating stations supply both active power and reactive power to the consumers. The consumer terminals need a substantially constant voltage for satisfactory operation, but in practice, electric loads are time variant which means that the consumer loads change over time causing power and current fluctuations. On no-load conditions, the reactive power is required for magnetizing purposes while on load conditions, the reactive power requirement depends on the nature of the load which can be real, reactive or both.

Reactive power requirement changes continuously with load and system configuration. The change in reactive power causes voltage variations in the system. Any change in the system formation or in power demands may results in the change of voltage levels in the system. Injecting reactive power into the power system raises voltages while absorbing the reactive power from the system lowers voltages. The main task of a power system is to sustain the load bus voltages within the nominal range for consumer satisfaction especially in a deregulated or restructured power industry. Despite the importance of deregulation which includes but is not limited to removal or reduction of government control over the power industry and electricity price reduction etc., it leads to expansion and reconfiguration of the power system. This situation, if not properly handled, can lead to huge active power transmission line losses. These power transmission losses lead to power shortage, voltage collapse and electrical blackouts which affects the economic growth of the country. For reliable operation of any power system, the active power transmission losses are to be minimized. This situation can be improved by the operator through reallocation of reactive power
generation in the system by modelling it as an ORPD optimization problem (without and without a DG unit optimally installed) with the active power transmission loss as the objective function.

1.3 OBJECTIVES

The following are some of the objectives of this research:

1) To explore the advantages and disadvantages of PSO and BA optimization techniques.
2) To explore the applications of the PSO and BA optimization techniques in solving the ORPD problems (with and without a DG unit).
3) To design a hybrid method of PSO with BA optimization techniques in order to extend the PSO capabilities and improve its accuracy in solving ORPD problems (with and without a DG unit).
4) To demonstrate the application and implementation of the hybridized PSO-BA algorithm in solving ORPD problems (with and without a DG unit) for active power transmission loss minimization.
5) To investigate the effects of BA's frequency $\left(f_{1}\right)$ or two frequencies $\left(f_{l}\right.$ and $\left.f_{2}\right)$ on the PSO algorithm's velocity update equation.
6) To investigate the effect of optimal placement of a DG unit in solving an ORPD problem using the hybrid approach.
7) To compare the results from the above and draw conclusion.

1.4 RESEARCH QUESTIONS

The major question this project tends to answer is:
"How can a standard PSO be hybridized with a BA algorithm to solve an ORPD problem for an Active Power Transmission Loss Minimization Objective Function?"

In the quest to finding an answer to the above research question, the following sub-questions need to be answered as well:

Q1) What are the advantages and disadvantages of the PSO algorithm and BA algorithm?
Q2) Can the drawbacks of premature convergence of a PSO algorithm be avoided by hybridization with a BA algorithm?

Q3) Is it possible to combine PSO and BA algorithms to solve ORPD problem?
Q4) If Q3 is possible, how then can the combination be achieved?
Q5) What are the effects of the BA's frequency ($f 1$) or two frequencies (f land $f 2$) on the PSO algorithm's velocity update equation?

Q6) What is the effect of removing randomness from the PSO algorithm's velocity and position vectors thereby allowing pbest and gbest to govern the update during iteration in the hybrid approach?

Q7) What are the effects of monotonically increasing and decreasing the pulse rate and loudness respectively during the hybrid approach iterative update?
Q8) How can the equality and inequality constraints of the ORPD problem be restricted without violation?

Q9) Where necessary, what kind of penalty function is imposed?
Q10) What can be done to further reduce the active power transmission line losses?
Q11) How can a distributed generation unit be optimally placed in a distribution network?
Q12) What is the effect of optimal placement of a DG unit in solving an ORPD problem using a PSO-BA hybrid approach?

1.5 SCOPE OF THE RESEARCH

The research is limited to form a hybrid algorithm by combining PSO with BA for solving an ORPD problem (denoted as HPSOBA). The research is also limited to investigating only the active power transmission loss objective function and validation by using standard benchmark test functions (Griewank, Rastrigin and Schwefel) and on IEEE 30- and 118-bus test systems to solve for an ORPD problem without a DG unit on a MATLAB programming platform. A modified IEEE 30-bus test system was further used to validate the proposed algorithm to solve for optimal placement of a DG unit for active power transmission line loss minimization. The equality and inequality constraints are also taken into consideration and where necessary a penalty function is imposed when constraints are violated.

A further modification of the HPSOBA algorithm was also considered to check if there will an improvement of the hybrid approach performance in solving for ORPD problem or not.

1.6 OUTLINE OF THE DISSERTATION

The organization of the thesis is as follows:
Chapter 1, "Introduction" presents the research background, motivation, objectives, research questions, scope and outline of this dissertation.

Chapter 2, "Literature Review" surveys the methods applied in solving the ORPD problem in the past and the current scenario are presented considering the PSO and BA methods. The ORPD is also presented alongside its problem formulation and objective functions. The ORPD problem
formulation consists of equality (power flow) and inequality (control variables) constraints. The restriction of state variables is done by adding them as quadratic penalty terms to the objective function. It also describes the PSO and BA pseudo code and their basic fundamentals.Also presented in this chapter is the review and application of optimal placement of DG unit(s) to solving an ORPD problem.

Chapter 3, "Hybrid PSO-BA Model" describes the hybridization of the PSO with the BA algorithm including its motivations. The approach was carefully designed to achieve a better and quality optimized result. Standard benchmark test functions and IEEE 30- and IEEE 118-bus test systems were used to validate the robustness, accuracy and efficiency of the proposed approach. The simulation results and analysis of the test function optimization and ORPD problem were presented and compared with other results in the literature. A modified IEEE 30-bus test system was further used to validate the proposed algorithm to solve for optimal placement of DG unit for active power transmission line loss minimization.

Chapter 4, "Modified HPSOBA" The hybrid approach (HPSOBA) proposed by this research was further modified to form a modified hybrid approach denoted as MHPSOBA by embedding three new modifications. IEEE 30-bus test system was used to validate this approach to solve for the ORPD problem. The evaluated results were compared with the base case and HPSOBA methods.

Chapter 5, "Conclusion" summarizes the outcomes of the research and outlines the contributions of this research to the development of power systems.

CHAPTER 2

LITERATURE REVIEW

This chapter reviews the ORPD problem as part of optimization problems encountered in electric power systems and some of the optimization techniques applied in solving the ORPD problem. A brief discussion of both conventional and evolutionary techniques is presented. PSO, BA and hybridization of evolutionary techniques to solving ORPD problem are also reviewed as well as the optimal placement of the DG unit(s) in the distribution networks to reduce active power transmission line losses. This chapter also covers the ORPD problem formulation, the constraints (both equality and inequality) to which the objective function is subjected to are also defined here.

2.1 OPTIMAL REACTIVE POWER DISPATCH

The difficulty of solving ORPD problems increases significantly with increasing network size and complexity. Recent industry developments have greatly increased electric power system complexity. In prior decades, utilities had relatively few generators compared to the numbers introduced today by the advent of independent power producers. Meanwhile, demand response programs add variables to the load side of ORPD problems. Unfortunately, these developments have discouraged the use of ORPD in many real-world applications [28, 29]. However, many ORPD solution methods have been developed, each with distinct mathematical characteristics and computational requirements. ORPD solutions methods vary considerably in their adaptability to the modelling and solution requirements of different power system applications.

ORPD optimization problem formulations differ greatly depending on the particular selection of variables, objective(s) and constraints. Because of the specialized nature of ORPD, the formulation selection often has implications for both solution method design and solution accuracy. The two major types are Conventional and Evolutionary optimization techniques.
Traditionally, conventional methods are effectively used to solve ORPD problems. They have been applied to solving ORPD problems to suit the different objective functions and constraints. These techniques are based on mathematical formulations which have to be simplified in order to get an optimal solution. Some of the weakness of the conventional methods include: limited ability in solving real-world large scale optimization problems, weakness in handling constraints, poor convergence and stagnation, slow computational time (especially if the number of variables are large) and expensive in computing large power system solutions [30].

To overcome the shortcomings of conventional techniques, evolutionary methods and their hybridized versions have been developed and applied to ORPD problems in the recent past. The major advantages of the evolutionary methods include: fast convergence rate, appropriate for solving non-linear optimization problems, ability to find global optimum solutions, suitable for solving multi-objective optimization problems, pertinent in finding multiple optimal solutions in a single simulation run and versatile in handling constraints [31].

2.1.1 CONVENTIONAL OPTIMIZATION TECHNIQUES

The development of conventional optimization techniques and their applications to solve ORPD problems are briefed here.

In reference [32], Mamundur and Chenoweth used Dual Linear Programming (DLP) to determine the optimal settings of the ORPD control variables simultaneously satisfying the constraints. The method employs linearized sensitivity relationships of power systems to establish both the objective function for minimizing the active power transmission line losses and the system performance sensitivities relating dependent and control variables. This technique is particularly suitable to minimize system losses under operating conditions.

Reference [33]used $P-Q$ decomposition approach to formulate OPF based upon the decoupling principle well recognized in bulk power transmission load flow. This approach decomposes the OPF formulation into a P-problem (real power model) and Q-problem (reactive power model), thereby showing ORPD as a sub-problem of OPF. The Q-Problem is defined as the minimization of real power transmission line losses by optimally setting the generator voltages, transformer tap settings and shunt reactive power compensations. The problem of enforcing state variables (inequality constraints) is included in the problem formulation by use of penalty functions. This approach simplifies the formulation, improves computation time and permits certain flexibility in the types of calculations desired (i.e. P-Problem, Q-Problem or both).

Burchett et al. [34] in their paper proposed a Quadratic Programming (QP) solution to the OPF problem. This method used the second derivatives of the objective function to find the optimal solution. This method is suitable for optimization problems with infeasible or divergent starting points.

Lee et al. [35] broadly solved the OPF problem by decomposing the problem into P-optimization module and Q-optimization module and solved them using the Gradient Projection Method (GPM)
for the first time in a power system optimization study. This GPM technique allows the use of functional constraints without the need of penalty functions or Lagrange multipliers among other advantages. Mathematical formulations were developed to represent the sensitivity relationships between the state and control variables for both P-optimization and Q-optimization modules.

Mota-Palomino and Quintana [36] presented a Linear Programming based solution for the reactive power dispatch problem. The reactive power model of the fast decoupled load flow algorithm was used to derive linear sensitivities. A suitable criterion was suggested to form a sparse reactive power sensitivity matrix. The sparse sensitivity matrix was modelled as a bipartite graph to define an efficient constraint relaxation strategy to solve linearized reactive power dispatch problems.

In reference [37], Nanda et al. developed Fletcher's Quadratic Programming to solve the OPF problem. The algorithm decoupled the OPF problem into sub-problems with two different objective functions: minimization of generation cost and minimization of active power transmission line losses. These sub-problems were solved to optimally set the control variables while restricting the system constraints without violations. This algorithm showed some potential for online solving of OPF problems.

Transforming discrete control variables such as shunt reactive compensations and transformer tap settings into continuous control variables and rounding these off to the nearest step is not suitable for controls with large step sizes because this transformation brings about optimal solution degradation. Solving discrete variable controls involves a combinatorial search procedure which slows the system in real-time applications. Reference [38] solved this problem by proposing a penalty based discretization technique which eliminated combinatorial search in providing a near optimal discrete solution.

Granville [39] presented an Interior Point Method (IPM) technique based on the primal dual method to solve the ORPD problem in large scale power systems. In the problem formulation, the inequality constraints were eliminated by incorporating them as a logarithmic barrier function. The main feature of the IPM is:

1) Insusceptibility of the size of power system to the number of iterations
2) Numerical robustness
3) Effectiveness in solving ORPD problems in large scale power systems

Reference [40] proposed a new Newton method approach to solve the OPF problem which incorporates an augmented Lagrangian function which has the function of combining all the equality and inequality constraints. The mathematical formulation and computation of the method is exploited using the sparsity of the Hessian matrix of the augmented Lagrangian. Optimal solutions were achieved by this method and can be utilized for an infeasible starting point as its set of constraints does not have to be identified.

Momoh and Zhu [41] proposed an improved Quadratic Interior Point Method (QIPM) to solve the OPF problem. The proposed method has the features of fast convergence and a general starting point, rather than selected good point as in the general IPM.

2.1.2 EVOLUTIONARY OPTIMIZATION TECHNIQUES

There has been tremendous success in the development of evolutionary optimization techniques in recent past. This section explores the development of evolutionary optimization techniques and their applications to solve an ORPD problem or OPF problem in general.

Reference [42] presented the application of Evolutionary Programming (EP) to solve the ORPD problem and also control of the voltage profile in power systems. The method proved to be applicable in solving large scale power system global optimization problems.

Wu et al. [43] presented an Adaptive Genetic Algorithm (AGA) for solving the ORPD problem and control of the voltage profile in power systems. Depending on the objective functions of the solutions and the normalized fitness distances between the solutions in the evolution process, the crossover and mutation probabilities were varied using the proposed AGA method to prevent premature convergence and at the same time improve the convergence performance of genetic algorithms.

Abido [44] presented an efficient and reliable Tabu Search (TS) based method to solve the OPF problem. The method employed TS method to optimally set the control variables of the OPF problem. In order to reduce the computational rate, the method integrated TS as a derivative-free optimization technique. The TS algorithm as presented by Abido has as an advantage its robustness as it can set its own parameters as well as the initial solution. TS has the ability of avoiding entrapment in a local optimum thereby preventing cycling by using a flexible memory of the search history.

Genetic Algorithm (GA) - based technique [45] was proposed for solving the ORPD problem including a Voltage Stability Limit (VSL) in power systems. The monitoring methodology for voltage stability is based on the L-index of load buses. A binary coded GA with tournament selection, two point crossovers and bit-wise mutation was used to solve the ORPD problem.

Optimal location and control of a Unified Power Flow Controller (UPFC) along with transformer taps are tuned with a view to simultaneously optimize the real power losses and the VSL of a mesh power network using the Bacteria Foraging Optimization (BFO) technique [46]. The problem was formulated as a nonlinear equality and inequality constrained optimization problem with an objective function incorporating both the real power loss and the VSL.

Devaraj [47] presented an improved GA approach for solving the multi-objective reactive power dispatch problem. Loss minimization and maximization of the voltage stability margin were taken as the objectives. In the proposed GA, voltage magnitudes are represented as floating point numbers and transformer tap-settings and the reactive power generation of a capacitor bank were represented as integers. This alleviates the problems associated with conventional binary-coded GAs to deal with real variables and integer variables. Crossover and mutation operators which can deal with mixed variables were proposed.

Abbasy and Hosseini [48] applied Ant Colony Optimization (ACO) technique to solve the ORPD problem. The approach consisted of mapping the solution space on a search graph, where artificial ants walk. They proposed four variants of the ant systems: 1) basic ant system, 2) elitist ant system, 3) rank based ant system and 4) max-min ant system. They also portrayed that applying the elitist and ranking strategies to the basic ant system improves the algorithm's performance in every respect.

Liang et al. [49] showed that due to DE's simpler reproduction and selection schemes, it uses less time than other evolutionary methods do to achieve solutions with better quality. They also showed that their method is robust (reproducing close results in different runs) and has a simple parameter setting. They identified one short coming of DE ; that it requires relatively large populations to avoid premature convergence which leads to a long computational time.

Reference [50] presented an Improved Genetic Algorithm (IGA) approach for solving the multiobjective ORPD problem. Minimization of real power loss and total voltage deviation were the objectives of this reactive power optimization problem. They applied some modifications to the
original GA to take into account the discrete nature of transformer tap settings and capacitor banks. For effective genetic operation, the crossover and mutation operators which can directly deal with the floating point numbers and integers were used.

Dai et al. [51] proposed a Seeker Optimization Algorithm (SOA) for solving the reactive power dispatch problem. The SOA is based on the concept of simulating the act of human searching, where the search direction is based on the empirical gradient by evaluating the response to the position changes and the step length is based on uncertainty reasoning by a simple Fuzzy Logic rule. The algorithm directly uses search direction and step length to update the position. A proportional selection rule is implemented for selecting the best position.

Reference [52] proposed an approach which employs the DE algorithm for optimal settings of the ORPD control variables with different objectives that reflect power loss minimization, voltage profile improvement, and voltage stability enhancement. They demonstrated the potential of the proposed method and showed its effectiveness and robustness to solve the ORPD problem.

Ayan and Kilic [53] presented an Artificial Bee Colony (ABC) algorithm based on the intelligent foraging behaviour of a honeybee swarm in solving the ORPD problem. They showed that the advantage of the ABC algorithm is that it does not require cross over and mutation rates as in the case of Genetic Algorithm and Differential Evolution. The other advantage is that the global search ability of the algorithm is implemented by introducing a neighbourhood source production mechanism which is similar to a mutation process.

A newly developed Teaching Learning Based Optimization (TLBO) algorithm [54] was presented to solve a multi-objective ORPD problem by minimizing real power loss, voltage deviation and voltage stability index. To accelerate the convergence speed and to improve the solution quality, a Quasi Opposition Based Learning (QOBL) concept is incorporated in original TLBO algorithm.

Dharmaraj and Ravi [55] presented an Improved Harmony Search Algorithm (IHSA) to solve multi-objective ORPD problem by minimizing active power loss, voltage deviation and voltage stability index. To accelerate the convergence speed and to enhance the solution quality dynamic pitch adjusting rate and variable band width are incorporated in the original HSA.

The TLBO algorithm [56] was based on the influence of a teacher on learners. In their work, the authors used this technique to solve the OPF problem. They proved that the TLBO technique
provided an effective and robust high-quality solution when solving the OPF problem with different complexities.

Another new nature-inspired meta-heuristic algorithm was proposed to solve the OPF problem in a power system. This algorithm was inspired by the black hole phenomenon and called Black-HoleBased Optimization (BHBO) approach [57]. A black hole is a region of space-time whose gravitational field is so strong that nothing which enters it, not even light, can escape.

Reference [58] presented a multi-level methodology based on the optimal reactive power planning problem considering voltage stability as the initial solution of the fuel cost minimization problem. To improve the latter, the load voltage deviation problem is applied to improve the system voltage profile. They also showed that the reactive power planning problem and the load voltage deviation minimization problems are solved using an optimization method namely the Differential Search Algorithm (DSA) and the fuel cost minimization problem is solved using IPM.

In [59], a Gray Wolf Optimizer (GWO) algorithm (which was inspired from gray wolves' leadership and hunting behaviour) is presented to solve the ORPD problem. GWO is utilized to find the best combination of control variables such as generator voltages, tap changing transformers' ratios as well as the amount of reactive compensation devices so that the loss and voltage deviation minimizations can be achieved.

The Honey Bee Optimization (HBO) algorithm [60], which is a nature inspired algorithm that mimics the mating behaviour of the bee in the exploration and exploitation search, is also employed to solve ORPD. There are three kinds of bees in the colony, the queen, the workers and the drones. This technique was realised by sorting of all drones based on their fitness function. Crossover and mutation operators were applied to this technique to solve the ORPD problem.

2.2 THE ORPD PROBLEM FORMULATION

The objective of the ORPD is to minimize the active power loss in the transmission network, which can be described as follows:

Minimize $f(x, u)$
while satisfying

$$
\begin{align*}
& g(x, u)=0 \tag{2}\\
& h(x, u) \leq 0 \tag{3}
\end{align*}
$$

where $f(x, u)$ is the objective function to be optimized, $g(x, u)$ and $h(x, u)$ are the set of equality and inequality constraints respectively. x is a vector of state variables, and u is the vector of control variables. The state variables are the load bus ($P Q$ bus) voltages, phase angles, generator bus voltages and the slack active generation power. The control variables are the generator bus voltages, the shunt capacitors/reactors and the transformers tap settings.

The objective function of the ORPD is to minimize the active power losses in the transmission lines/network, which can be defined as follows:

$$
\begin{equation*}
F=\operatorname{Min} . P_{\text {Loss }}=\sum_{k=1}^{N_{l}} G_{k}\left[V_{i}^{2}+V_{j}^{2}-2 V_{i} V_{j} \cos \left(\delta_{i}-\delta_{j}\right)\right] \tag{4}
\end{equation*}
$$

where k refers to the branch between buses i and $j ; P_{\text {Loss }}$ and G_{k} are the active loss and mutual conductance of branch k respectively; δ_{i} and δ_{j} are the voltage angles at bus i and $j ; N_{L}$ is the total number of transmission lines.

The above minimization objective function is subjected to the both equality and inequality constraints.

2.2.1 EQUALITY CONSTRAINTS

The equality constraints are the load flow equations given as:

$$
\begin{align*}
& P_{G i}-P_{D i}-V_{i} \sum_{k=1}^{N_{B}} V_{j}\left[G_{k} \cos \left(\delta_{i}-\delta_{j}\right)+B_{k} \sin \left(\delta_{i}-\delta_{j}\right)\right]=0 \tag{5}\\
& Q_{G i}-Q_{D i}-V_{i} \sum_{k=1}^{N_{B}} V_{j}\left[G_{k} \sin \left(\delta_{i}-\delta_{j}\right)+B_{k} \cos \left(\delta_{i}-\delta_{j}\right)\right]=0 \tag{6}
\end{align*}
$$

where $P_{G i}$ and $Q_{G i}$ are the active and reactive power generations at bus i respectively; $P_{D i}$ and $Q_{D i}$ are the active and reactive power load demands at bus i respectively; B_{k} is the mutual susceptance of branch $k ; N_{B}$ is the total number of buses.

2.2.2 INEQUALITY CONSTRAINTS

The inequality constraints are:

1) Generator Constraints: The generator voltages V_{G} and reactive power outputs Q_{G} are restricted by their limits as shown below in Eq. (7) and Eq. (8):

$$
\begin{array}{ll}
V_{G i}{ }^{\min } \leq V_{G i} \leq V_{G i}{ }^{\max } & ; i=1, \ldots, N_{G} \\
Q_{G i}^{\min } \leq Q_{G i} \leq Q_{G i}^{\max } & ; i=1, \ldots, N_{G}
\end{array}
$$

where N_{G} is the total number of generators
2) Reactive Compensation Sources: These devices are limited as follows:
$Q_{C i}{ }^{\text {min }} \leq Q_{C i} \leq Q_{C i}{ }^{\text {max }} \quad ; i=1, \ldots, N_{C}$
where N_{C} is the number of reactive compensation devices
3) Transformer Constraints: Tap settings are restricted by the upper and lower bounds on the transformer tap ratios:

$$
\begin{equation*}
T_{i}{ }^{\min } \leq T_{i} \leq T_{i}^{\max } \quad ; i=1, \ldots, N_{T} \tag{10}
\end{equation*}
$$

where N_{T} is the number of transformers

2.2.3 PENALTY FUNCTION

The most efficient and easiest way to handle constraints in optimization problems is by the use of penalty functions. The direction of the search process and thus, the quality of the optimal solution are hugely impacted by these functions. A suitable penalty function has to be chosen in order to solve a particular problem. The main goal of a penalty function is to maintain the systems security. These penalty functions are associated with numerous user defined coefficients which have to be rigorously tuned to suit the given problem. This research used a quadratic penalty function method in which a penalty term is added to the objective function for any violation of constraints. The inequality constraints which include the generator constraints, reactive compensation sources and transformer constraints are combined into the objective function as a penalty term, while the equality constraints and generator reactive power limits are satisfied by the Newton-Raphson load flow method. By adding the inequality constraints to the objective function F in Eq. (4), the augmented objective function F_{T} to be minimized becomes:

$$
\begin{equation*}
\mathrm{F}_{\mathrm{T}}=\mathrm{F}+\lambda_{\mathrm{V}} \sum_{k=1}^{\mathrm{N}_{\mathrm{B}}}\left(V_{i}-V_{i}^{l i m}\right)^{2}+\lambda_{\mathrm{C}} \sum_{k=1}^{\mathrm{N}_{\mathrm{B}}}\left(Q_{c i}-Q_{c i}{ }^{l i m}\right)^{2}+\lambda_{\mathrm{T}} \sum_{k=1}^{\mathrm{N}_{\mathrm{B}}}\left(T_{i}-T_{i}^{l i m}\right)^{2} \tag{11}
\end{equation*}
$$

where $\lambda_{\mathrm{V}}, \lambda_{\mathrm{C}}, \lambda_{\mathrm{T}}$ are the penalty factors; and $V_{i}^{\text {lim }}, Q_{c i}{ }^{\text {lim }}$, and $T_{i}^{\text {lim }}$ are defined as:

$$
\begin{align*}
& V_{i}^{l i m}=\left\{\begin{array}{l}
V_{i}^{l i m} ; \text { if } V_{i}<V_{i}^{\min } \\
V_{i}^{l i m} ; \text { if } V_{i}>V_{i}^{\max }
\end{array}\right. \tag{12}\\
& Q_{c i}^{\text {lim }}=\left\{\begin{array}{l}
Q_{c i}^{\text {lim } ; \text { if } Q_{c i}<Q_{c i}^{\min }} \\
Q_{c i}^{\text {lim }} ; \text { if } Q_{c i}>Q_{c i}^{\max }
\end{array}\right. \tag{13}
\end{align*}
$$

$$
T_{i}^{\text {lim }}=\left\{\begin{array}{l}
T_{i}^{\text {lim }} ; \text { if } T_{i}<T_{i}^{\min } \tag{14}\\
T_{i}^{\text {lim }} ; \text { if } T_{i}>T_{i}^{\text {min }}
\end{array}\right.
$$

By using the concept of the penalty function method [61], the constrained optimization problem is transformed into an unconstrained optimization problem in which the augmented objective function as described above is minimized.

2.3 PARTICLE SWARM OPTIMIZATION

PSO is a population-based stochastic optimization technique introduced by Kennedy and Eberhart [62] in 1995. PSO is inspired by the social foraging behaviour of some animals such as the flocking behaviour of birds and schooling behaviour of fish. PSO exploits a population of individuals to explore promising regions within the search space. This algorithm optimizes a problem by iteratively improving the candidate solution. In PSO, there is a population of candidate solutions (particles) that move around in the search space according to mathematical formulas. In the search procedure, each individual (particle) moves within the decision space over time and changes its position in accordance with its own best experience and the current best particle [63]. The particle is characterised by a d-dimensional vector representing the position of the particle in the search space. The position vector represents a potential solution to an optimization problem. During the evolutionary process, the particles traverse the entire solution space with a certain velocity. Each particle is associated with a fitness value evaluated using the objective function at the particle's current position. Each particle memorizes its individual best position encountered by it during its exploration and the swarm remembers the position of the best performer among the population. At each iterative process, the particles update their position by adding a certain velocity. The velocity of each particle is influenced by its previous velocity, the distance from its individual best position (cognitive) and the distance from the best particle in the swarm (social).

The particle therefore appends its previous flying experiences to control the speed and direction of its journey. Apart from its own performances, the particle also interacts with its neighbours and share information regarding their previous experiences. The particle also utilizes this social information to build their future searching trajectory. During the iterative procedure the particles update their velocity so as to stochastically move towards its local and global best positions. The particle therefore tracks the optimal solution by cooperation and competition among the particles in the swarm.

Compared with other evolutionary optimization methods, PSO has comparable or superior convergence rate and stability for several difficult optimization problems [64]. However, as with many evolutionary approaches, a primary drawback of standard PSO is premature convergence when the parameters are not chosen correctly, especially while handling problems with many local optima [65]. But when compared with other heuristic optimization methods, PSO has comparable or superior convergence rate and stability for several difficult optimization problems. Despite this major drawback, PSO has many advantages over other traditional optimization techniques [66] which can be summarized as follows:

1) PSO is a population-based search algorithm (i.e., PSO has implicit parallelism). This property ensures that PSO is less susceptible to being trapped on local minima.
2) PSO uses payoff (performance index or objective function) information to guide the search in the problem space. Therefore, PSO can easily deal with non-differentiable objective functions. In addition, this property relieves PSO of assumptions and approximations, which are often required by traditional optimization models.
3) PSO uses probabilistic transition rules and not deterministic rules. Hence, PSO is a kind of stochastic optimization algorithm that can search a complicated and uncertain area. This makes PSO more flexible and robust than conventional methods.
4) Unlike the genetic and other heuristic algorithms, PSO has the flexibility to control the balance between global and local exploration of the search space. This unique feature of a PSO overcomes the premature convergence problem and enhances search capability.
5) Unlike traditional methods, the solution quality of the proposed approach does not depend on the initial population. Starting anywhere in the search space, the algorithm ensures convergence to the optimal solution.

Some of the attempts made to develop and apply PSO to solve an ORPD problem are briefed below:

Kennedy and Eberhart [62] proposed a new methodology by simulating the movements of birds and flocks called PSO for optimization of continuous non-linear functions. The population is responding to the quality factors like pbest and gbest. The adjustment toward pbest and gbest is conceptually similar to the crossover operation in genetic algorithms. Much of the success of particle swarms seems to lie in the agents' tendency to hurtle past their target.

Yoshida et al. [67] proposed a PSO technique for the solution of the reactive power and voltage control problem. The control problem was formulated as a mixed-integer non-linear optimization problem. The continuation power flow and contingency analysis methods were used to assess the voltage security.

Abido [30] presented a PSO technique to solve the OPF problem. The problem formulation considered three objectives, such as, minimization of fuel cost, improvement of voltage profile and voltage stability enhancement through the L-index method. PSO is a population based search algorithm which avoids trapping into local optima. PSO can easily deal with non-differentiable and non-convex objective functions. PSO uses probabilistic rules for particle movements rather than deterministic rules.

In [68], Stacey et al. integrated a mutation operator into a PSO. A PSO converges rapidly during the initial stages of a search, but often slows considerably and can get trapped in local optima. This behaviour has been attributed to the loss of diversity in the population. The searched points are tightly clustered and the velocities are close to zero. During the search process, these points are becoming local optimum points and hence there is no further improvement. The mutation operator used speeds up convergence and escapes local minima.

Zhao et al. [69] presented a Multi-Agent PSO (MAPSO) for the solution of the ORPD problem. This method integrated the Multi-Agent System (MAS) and the PSO algorithms. An agent in MAPSO represents a particle in PSO and a candidate solution to the optimization problem. All agents live in a lattice-like environment, with each agent fixed on a lattice point. In order to obtain an optimal solution quickly, each agent competes and cooperates with its neighbours and it can also learn by using its knowledge. Making use of these agent-agent interactions and the evolution mechanism of PSO, MAPSO realizes the purpose of optimizing the value of an objective function.

Vlachogiannis and Lee [70] presented three new versions of PSO for optimal steady-state performance of power systems with respect to reactive power and voltage control. Two of the three introduced (the enhanced GPAC PSO and LPAC PSO) were based on global and localneighbourhood variant PSOs respectively. They are hybridized with the constriction factor approach together with a reflection operator. The third technique is based on CA and simulates how the achievements of particles can be distributed in the swarm affecting its manipulation.

To overcome the drawback of premature convergence in PSO, a learning strategy can be introduced in PSO and this approach is called Comprehensive Learning PSO (CLPSO) [71]. In this CLPSO, for each particle, besides its own pbest, pbest of other particles were also used as exemplars. Each particle learns potentially from the behaviour of all particles in the swarm.

In [72], Lenin presented a Quantum-behaved Particle Swarm Optimization algorithm (QPSO) for solving the multi-objective ORPD problem. QPSO as presented by the authors was designed as a result of stimulations by the traditional PSO method and quantum procedure theories.

Reference [73] presented a PSO based approach for solving the ORPD problem for minimizing power losses without violating the inequality constraints and satisfying the equality constraints. The control variables are bus voltage magnitudes (continuous type), transformer tap settings (discrete type) and reactive power generation of capacitor banks (discrete type).

Ben et al. [74] applied a PSO-Thyristor Controlled Series Capacitor (PSO-TVAC) algorithm to solve the ORPD. The ORPD problem was formulated as a nonlinear, non-convex constrained optimization problem considering both continuous and discrete control variables. It also had both equality constraints and inequality constraints. The acceleration coefficients in the PSO algorithm were varied adaptively during iterations to improve the solution quality of the original PSO and avoided premature convergence.

2.3.1 PSO ALGORITHM PSEUDO CODE

The flowchart in Fig. 1 delineates the steps of the standard PSO algorithm and its pseudo code is presented as thus:

Pseudo code of the Standard PSO algorithm

```
Input: PSO population of particles \(X_{i}=\left(x_{i l}, x_{i 2}, \ldots, x_{i d}\right)^{\mathrm{T}}\) for \(i=1, \ldots, N\), MAX FE.
Output: The best solution Gbest and its corresponding value \(\mathrm{f}_{\text {min }}=\min (f(x))\).
    init_particles;
    eval \(=0\);
    while termination_condition_not_meet do
        for \(i=1\) to N do
            \(f_{i}=\) evaluate_the_new_solution (Xi);
            eval \(=\) eval +1 ;
            if \(f_{i} \leq\) Pbest \(_{i}\) then
                \(\boldsymbol{P}_{i}=X_{i} ;\) Pbest \(_{i}=f_{i} ; \quad / /\) save the local best solution
            end if
            if \(f_{i} \leq f\) min then
                Gbest \(=X i ; f_{\text {min }}=f_{i} ; \quad / /\) save the global best solution
            end if
            \(X i=\) generate_new_solution \((X i)\);
```


end for
 end while

Fig. 1 Conventional PSO Flowchart

In a PSO algorithm, the population has N particles that represent candidate solutions and the coordinates of each particle represent a possible solution associated with two vectors, the position X_{i} and velocity V_{i} vectors. In a d-dimensional search or solution space, $X_{i}=\left[x_{\mathrm{i} 1}, x_{\mathrm{i} 2}, \ldots, x_{\mathrm{id}}\right]$ and $V_{i}=$ $\left[v_{\mathrm{i} 1}, v_{\mathrm{i} 2}, \ldots, v_{\mathrm{id}}\right]$ are the two vectors associated each particle i. The best previous position of $i^{\text {th }}$ particle, based on the evaluation of fitness function is represented by Pbest $_{i}=\left[\right.$ Pbest $_{i l}$, Pbest $_{i 2}, \ldots$, Pbest $\left._{i d}\right]$ and the index of the best particle among all particles in the group is represented by Gbest. The swarm, which consists of a number of particles, flies through the feasible solution space to explore optimal solutions. The steps of the PSO technique can be described as follows:

Step 1: Initialization: Set $k=0$ and generate random N particles $\left\{X_{i}(0) ; i=1,2, \ldots, N\right\}$. Each particle is considered to be a solution for the problem and it can be described as $X_{i}(0)=\left[x_{i 1}(0)\right.$, $\left.x_{i 2}(0), \ldots, x_{i N}(0)\right]$. Each control variable has a range $\left[x_{\min }, x_{\max }\right]$. Each particle in the initial population is evaluated using the objective function f. If the candidate solution is a feasible solution (i.e., all problem constraints have been met), then go to Step 2; else repeat this step.

Step 2: Counter updating: Update the counter $k=k+1$.

Step 3: Compute the objective function.

Step 4: Velocity updating: Using the global best and individual best, the $i^{\text {th }}$ particle velocity in the $j^{t h}$ dimension is updated according to the following equation:

$$
\begin{align*}
& V_{i j}{ }^{k+1}=w^{*} V_{i j}{ }^{k}+c_{1}{ }^{*} r_{1} *\left(\text { Pbest }_{i j}{ }^{k}-X_{i j}{ }^{k}\right)+c_{2}{ }^{*} r_{2} *\left(\text { Gbest }_{j}-X_{i j}{ }^{k}\right) \tag{15}\\
& i=1,2, \ldots, N ; j=1,2, \ldots, d
\end{align*}
$$

where c_{1} and c_{2} are acceleration constants; r_{1} and r_{2} are two random numbers with a range of $[0,1]$; w is the inertia weight and k is the iteration index.

Then, check the velocity limits. If the velocity violates its limit, set it at its proper limit. The second term of the above equation represents the cognitive part of the PSO where the particle changes its velocity based on its own thinking and memory. The third term represents the social part of the PSO where the particle changes its velocity based on the social-psychological adaptation of knowledge.

Step 5: Position updating: Each particle updates its position based on its best exploration, best swarm overall experience, and its previous velocity vector according to Eq. (16):

$$
\begin{align*}
& X_{i j}(k+1)=X_{i j}(k)+V_{i j}(k+1) \tag{16}\\
& i=1,2, \ldots, N ; j=1,2, \ldots, d
\end{align*}
$$

Step 6: Individual best updating: Each particle is evaluated and updated according to the update position.

Step 7: Minimum value search: Search for the minimum value in the individual best for all iterations and consider it as the best solution.

Step 8: Stopping criteria: If one of the stopping criteria is satisfied, then stop; otherwise go to Step 2.

2.3.2 BASIC FUNDAMENTALS OF THE PSO

The basic fundamentals of the PSO technique are stated and defined as follows:

1) Particle $X_{i}(k)$: A candidate solution represented by a d-dimensional real-valued vector, where d is the number of optimized parameters; at iteration k, the $i^{\text {th }}$ particle $X_{i}(k)$ can be described as

$$
X_{i}(k)=\left[x_{i 1}(k), x_{i 2}(k), \ldots, x_{i d}(k)\right]
$$

where the x 's are the optimized parameters and d represents the number of control variables.
2) Population: This is a set of N particles at iteration k.

$$
\operatorname{Pop}(k)=\left[X_{1}(k), X_{2}(k), \ldots, X_{N}(k)\right]
$$

where N represents the number of candidate solutions.
3) Swarm: This is an apparently disorganized population of moving particles that tend to cluster together and each particle seems to be moving in a random direction.
4) Particle velocity $V_{i}(k)$: The velocity of the moving particles represented by a d-dimensional real-valued vector; at iteration k, the $i^{\text {th }}$ particle $V_{i}(k)$ can be described as

$$
V_{i}(k)=\left[v_{i 1}(k), v_{i 2}(k), \ldots, v_{i d}(k)\right]
$$

where $v_{i d}(k)$ is the velocity component of the $i^{t h}$ particle with respect to the $d^{t h}$ dimension.
5) Inertia weight $w(k)$: This is a control parameter, used to control the impact of the previous velocity on the current velocity. In other words, it controls the momentum of the particle by weighing the contribution of the previous velocity. Hence, it influences the trade-off between the global and local exploration abilities of the particles. For initial stages of the search process, a large inertia weight to enhance global exploration is recommended whereas it should be reduced at the last stages for better local exploration. Therefore, the inertia factor decreases linearly from about 0.9 to 0.4 during a run. In general, this factor is set according to Eq. (17):

$$
\begin{equation*}
w=w_{\max }-\frac{\left(w_{\max }-w_{\min }\right)}{\text { iter }_{\max }} * \text { iter } \tag{17}
\end{equation*}
$$

where iter $_{\text {max }}$ is the maximum number of iterations and iter is the current number of iterations.
6) Constriction Factor χ : The constriction coefficient was developed by Clerc [75]. This coefficient is extremely important to control the exploration and exploitation trade-off in order to ensure convergence behaviour. The constriction coefficient guarantees convergence of the particles
over time and also prevents collapse [76]. The velocity update equation with the constriction factor can be expressed as follows:

$$
\begin{equation*}
V_{i j}{ }^{k+1}=\chi\left[w^{*} V_{i j}^{k}+c_{1}{ }^{*} r_{1}{ }^{*}\left(\text { Pbest }_{i j}{ }^{k}-X_{i j}{ }^{k}\right)+c_{2}^{*} r_{2}{ }^{*}\left(\text { Gbest }_{j}^{k}-X_{i j}{ }^{k}\right)\right] \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
\chi=\frac{2}{|2-\emptyset-\sqrt{\emptyset(\emptyset-4)}|} \tag{19}
\end{equation*}
$$

With $\emptyset=\emptyset_{1}+\emptyset_{2} ; \emptyset_{1}=c_{1} r_{1} ; \emptyset_{2}=c_{2} r_{2}$. Eq. (19) is used under the constraint that $\emptyset \geq 4$
If $\emptyset<4$, then all particles would slowly spiral toward and around the best solution in the searching space without convergence guarantee, but if $\emptyset>4$, then all particles are guaranteed to converge quickly [77].
7) Acceleration Constants c_{1} and c_{2} : The acceleration coefficients govern the relative velocity of the particle towards its local and global best position. These parameters have to be tuned based on the complexity of the problem. A suitable constriction factor calculated from these parameters will ensure cyclic behaviour for the particles [78, 79]. The acceleration coefficients together with the random vectors r_{1} and r_{2}, control the stochastic influence of the cognitive and social components on the overall velocity of a particle. The constants c_{1} and c_{2} are also referred to as trust parameters, where c_{1} expresses how much confidence a particle has in itself, while c_{2} expresses how much confidence a particle has in its neighbours.
8) Individual best Pbest $_{i}$: During the movement of a particle through the search space, it compares its fitness value at the current position to the best fitness value it has ever reached at any iteration up to the current iteration. The best position that is associated with the best fitness encountered thus far is called the individual best Pbest $_{i}$. For each particle in the swarm, Pbest $_{i}$ can be determined and updated during the search. For the $i^{\text {th }}$ particle, individual best can be expressed as:

$$
\begin{equation*}
\text { Pbest }_{i}=\left[\text { Pbest }_{i}, \text { Pbest }_{i 2}, \ldots, \text { Pbest }_{i d}\right] \tag{20}
\end{equation*}
$$

9) Global best Gbest: This is the best position among all of the individual best positions achieved thus far.
10) Stopping criteria: The search process will be terminated whenever one of the following criteria is satisfied.

- The number of iterations since the last change of the best solution is greater than a prespecified number.
- The number of iterations reaches the maximum allowable number.

2.4 BAT ALGORITHM

Since the appearance of the original paper on the BA optimization method in 2010 by Xin-She Yang [80], literature abounded with a wide range of applications. The original paper outlined the main formulation of the algorithm and applied the BA to study function optimization with promising results. A BA simulates parts of the echolocation characteristics of the micro-bat in an uncomplicated way. Three major characteristics of the micro-bat are employed to construct the basic structure of BA. Hence, the first characteristic is the echolocation behaviour. The second characteristic is the signal frequency. The signal is sent by the micro-bat with frequency f and with a variable wavelength λ. The third is the loudness A_{0} of the emitted sound, which is used to search for prey.

The approximate or idealized rules in this method as listed by Xin-She Yang are as follows:

1) All bats use echolocation to sense distance and they also 'know' the difference between food/prey and background barriers in some magical way;
2) Bats fly randomly with velocity \mathbf{v}_{i} at position \mathbf{x}_{i} and emit sounds with a fixed frequency $f_{\min }$, varying wavelength λ and loudness A_{0} to search for prey. They can automatically adjust the wavelength (or frequency) of their emitted pulses and adjust the rate of pulse emission $r \in$ [0,1$]$, depending on the proximity of their target;
3) Although the loudness can vary in many ways, an assumption is made that the loudness varies from a large (positive) A_{0} to a minimum constant value $A_{\text {min }}$.

Another obvious simplification is that no ray tracing is used in estimating the time delay and three dimensional topography. The following approximations are also used to simplify matters even further:

1) Speed of sound in air is taken as $v=340 \mathrm{~m} / \mathrm{s}$
2) The range of frequencies $\left[f_{\min }, f_{\max }\right]$ correspond to the range of wavelengths $\left[\lambda_{\min }, \lambda_{\max }\right]$.

$$
\begin{equation*}
\text { Since } \quad \lambda=\frac{v}{f} \tag{21}
\end{equation*}
$$

a frequency range of [$20 \mathrm{kHz}, 500 \mathrm{kHz}$] corresponds to a wavelength range of $[0.7 \mathrm{~mm}, 17 \mathrm{~mm}$].

Nowadays, BA and its variants are applied for solving many optimization and classification problems. BA has been applied to the following classes of optimization problems: continuous, constrained and multi-objective [81, 82]. In addition, it is used for classification problems in:
clustering, neural networks and feature selection. Finally, BAs are also used in many branches of engineering [83, 84]. In this research, the focus is on the ORPD optimization problem.

Biswal et al. [85] solved OPF using a bio-inspired BA with cost as an objective function. They were able to prove that their method has good convergence property and a better quality of solution than some other results reported in their paper. The main advantage of their technique is easy implementation and the capability of finding a feasible near global optimal solution with less computational effort.

Reference [86] presented an Improved BA (IBA) to solve an ORPD problem. The algorithm utilized chaotic behaviour to produce a candidate solution in behaviours analogous to acoustic monophony and was applied to reduce real power loss in a power system.

In [87], a BA was used to solve the OPF problem with the TCSC. The TCSC was used to reduce the transmission line losses and improve the voltage profile of the power system. This method proved to be effective.

A modified version of the meta-heuristic algorithm based on bat behaviour was proposed in [88] to find the best system configuration with a low loss rate. The method presented two different approaches: reduction of search space and introduction of a sigmoid function to fit the algorithm to the problem. The main advantages of the proposed methodology are: easy implementation and less computational efforts to find an optimal solution.

Integration of distributed generation in power systems challenges the operation and management of power distribution networks. Latif et al. [89] presented a Modified BA (MBA) for the OPRD of a distributed generation of voltage support in a distribution network. An objective function with constraints of voltage, DG reactive power and thermal limits of lines was presented. Their results showed that the MBA was quite effective for voltage profile improvement and loss minimization.

2.4.1 MOVEMENTS OF VIRTUAL BATS

In BA, the virtual bats (naturally used for simulations) are defined by their positions $x i$, velocities v_{i}, and frequencies f_{i} in a d-dimensional search space. The new solutions x_{i}^{t} and velocities v_{i}^{t} at time step t are given by

$$
\begin{gather*}
f_{i}=f_{\min }+\left(f_{\max }-f_{\min }\right) \beta \tag{22}\\
v_{i}^{t}=v_{i}^{t-1}+\left(x_{i}^{t}-x^{b e s t}\right) f_{i} \tag{23}
\end{gather*}
$$

$$
\begin{equation*}
x_{i}^{t}=x_{i}^{t-1}+v_{i}^{t} \tag{24}
\end{equation*}
$$

where $\beta \in[0,1]$ is a random vector drawn from a uniform distribution; $x^{\text {best }}$ is the current global best location (solution) which is located after comparing all the solutions among all the n bats.

From Eq. (21), the product $\lambda_{i} f_{i}$ determines the velocity increment. To adjust the velocity change, either $f i$ (or λi) can used while fixing the other factor λi (or $f i$) depending on the type of the problem of interest. In implementation, $f_{\min }=0$ and $f_{\max }=100$ will be used, depending the domain size of the problem of interest. Initially, each bat is randomly assigned a frequency which is drawn uniformly from [$\left.f_{\text {min }}, f_{\max }\right]$.

For the local search part, once a solution is selected among the current best solutions, a new solution for each bat is generated locally using random walk

$$
\begin{equation*}
x_{\text {new }}=x_{\text {old }}+\varepsilon A^{t} \tag{25}
\end{equation*}
$$

where $\varepsilon \in[-1,1]$ is a random number, while A^{t} is the average loudness of all the bats at this time step.

The update of the velocities and positions of bats have some similarity to the procedure in the standard PSO as $f i$ essentially controls the pace and range of the movement of the swarming particles.

2.4.2 LOUDNESS AND PULSE EMISSION

Furthermore, in order to provide an effective mechanism to control the exploration and exploitation and to switch to the exploitation stage when necessary, the loudness A_{i} and the rate r_{i} of pulse emission have to be varied during the iterations. Since the loudness usually decreases once a bat has found its prey, while the rate of pulse emission increases, the loudness can be chosen as any value of convenience, between $A_{\min }$ and $A_{\max }$. Assuming $A_{\min }=0$ means that a bat has just found its prey and temporarily stopped emitting any sound. With these assumptions, the loudness $A_{i}{ }^{t}$ and the emission pulse rate r_{i}^{t} are updated accordingly as the iterations proceed as shown in Eq. (26) and Eq. (27)

$$
\begin{align*}
& A_{i}^{t+1}=\alpha A_{i}^{t} \tag{26}\\
& r_{i}^{t+1}=r_{i}^{O}[1-\exp (-\gamma t)] \tag{27}
\end{align*}
$$

where α and γ are constants; r_{i}^{0} is the initial emission pulse rate. For any $0<\alpha<1$ and $\gamma>0$, we have

$$
\begin{equation*}
A_{i}^{t} \rightarrow 0, \quad r_{i}^{t} \rightarrow r_{i}^{0}, \quad \text { as } t \rightarrow \infty \tag{28}
\end{equation*}
$$

The choice of parameters requires some experimenting. Initially, each bat should have different values of loudness and pulse emission rate, and this can be achieved by randomization.

Loosely speaking, the pulse rate controls the movements of the bats by switching between Eq. (25) (local search) and Eq. (24) (global search). At the beginning of iterations, a BA tends to promote a global search over local random walks so as to explore the search space more effectively. This mechanism is obtained by attributing a low value to the initial emission rate r_{i}^{0}. However, this value should not be too low, thus allowing a small fraction of bats to exploit the solutions of the bat with the good positions. As the iterations approach the end, a large value should be assigned to the pulse rate so that exploitation takes over from exploration. The loudness A_{i} controls the acceptance or rejection of a new generated solution. The importance of this parameter is that by rejecting some solutions, it allows the algorithm to avoid being trapped in local optima (and thus avoid premature convergence as well).

2.4.3 BAT ALGORITHM PSEUDO CODE

The flowchart in Fig. 2 delineates the steps of the standard BA algorithm and its pseudo code given as follows:

Pseudo code of the Standard Bat Algorithm

```
    Objective function \(\boldsymbol{f}(\boldsymbol{x}), \quad \boldsymbol{x}=\left(x_{1}, \ldots, x_{d}\right)^{\boldsymbol{T}}\)
    Initialize the bat population \(\boldsymbol{x}_{i}(i=1,2, \ldots, n)\) and \(\boldsymbol{v}_{i}\)
    Define pulse frequency \(\boldsymbol{f}_{i}\) at \(\mathbf{x}_{i}\)
    Initialize pulse rates \(\boldsymbol{r}_{\boldsymbol{i}}\) and the loudness \(\boldsymbol{A}_{\boldsymbol{i}}\)
    while ( \(\boldsymbol{t}\) <Max number of iterations)
        Generate new solutions by adjusting frequency,
        and updating velocities and locations/solutions [Eqs. (22) to (24)]
            if \(\left(\right.\) rand \(\left.>\boldsymbol{r}_{\boldsymbol{i}}\right)\)
```

 Select a solution among the best solutions
 Generate a local solution around the selected best solution
 end if
 Generate a new solution by flying randomly
 if \(\left(\right.\) rand \(<\boldsymbol{A}_{\boldsymbol{i}} \& \boldsymbol{f}\left(\mathbf{x}_{i}\right)<\boldsymbol{f}\left(\boldsymbol{x}^{\text {Gbest }}\right)\))
 Accept the new solutions
 Increase \(\boldsymbol{r}_{\boldsymbol{i}}\) and reduce \(\boldsymbol{A}_{\boldsymbol{i}}\)
 end if
 Rank the bats and find the current best \(\boldsymbol{x}^{\text {Gbest }}\)
 end while
 Post process results and visualization
 The BA technique steps can be described as follows:
Step 1: Initialization: Set $t=0$ and generate random N bats $\left\{X_{i}(0) ; i=1,2, \ldots, N\right\}$. Each bat is considered to be a solution for the problem and it can be described as $X_{i}(0)=\left[x_{i 1}(0), x_{i 2}(0), \ldots\right.$, $\left.x_{i N}(0)\right]$. Each control variable has a range $\left[x_{\min }, x_{\max }\right]$. Each bat in the initial population is evaluated using the objective function f. If the candidate solution is a feasible solution (i.e., all problem constraints have been met), then go to Step 2; else repeat this step. Velocity v_{i}, Pulse rate r_{i} and Loudness A_{i} are also initialized while Pulse Frequency f_{i} is defined at x_{i}.

Step 2: Counter updating: Update the counter $t=t+1$.

Step 3: Individual best updating: Each particle is evaluated and individual and global best solutions are updated.

Step 4: Frequency Adjustment: The pulse frequencies are adjusted using Eq. (22)

Step 5: Velocity updating: Using the global best position and the bat's pulse frequency, the $i^{\text {th }}$ bat's velocity in the d-dimension is updated according to Eq. (23)

Step 6: Position updating: Each bat updates its position based on its previous velocity vector according to Eq. (24)

Step 7: Check if rand is greater than $\boldsymbol{r}_{\boldsymbol{i}}$: If true select a solution among the best solutions and generate a local solution around the selected best solution, else generate a new solution by flying randomly using a random walk according to Eq. (25).

Step 8: Compute the objective function: Each bat is evaluated and updated according to the update position.

Step 9: Check if rand is less than A_{i} and $f\left(x_{i}\right)$ is less than $f\left(x^{G b e s t}\right)$: If it is, accept the new solutions. Increase r_{i} using Eq. (26) and reduce A_{i} using Eq. (27).

Step 10: Rank the Solutions: Search for the minimum value in the individual best for all iterations and consider it as the best solution.

Step 11: Stopping criteria: If one of the stopping criteria is satisfied, then stop; else go to Step 2.

Fig. 2 Conventional BA Flowchart

2.5 HYBRIDIZATION OF EVOLUTIONARY ALGORITHMS TO SOLVE ORPD

The essence of hybridization is to alleviate the limitations of one algorithm with diversification aspects of the other. Researchers have observed that a combination of one evolutionary algorithm with either another evolutionary or a conventional algorithm may result in a potent algorithm capable of dealing with complex optimization problems [90]. In this section an overview of the attempts made in recent years to hybridize an evolutionary algorithm with either an evolutionary or a conventional algorithm in solving an ORPD problem will be presented.

Das and Patvardhan [91] presented a method for solving the ORPD problem based on Evolutionary Strategy (ES). Some major improvements were added to the traditional ES in order to improve the convergence and to find a better solution. This improved technique is referred to as Hybrid Evolutionary Strategy (HES). A conscious effort was made in the design of HES to reduce the number of load flow executions so that computational requirements were within reasonable limits.

In [92], Yang et al. presented an Improved Evolutionary Programming (IEP) and its hybrid version combined with the nonlinear IP technique to solve ORPD problems. In an IEP method, the common practices in regulating reactive power were followed in adjusting the mutation direction of control variables in order to increase the possibility of keeping the state variables within bounds. The IEP was also hybridized with the IP method to obtain a fast initial solution, which was then used as a highly evolved individual in the initial population of the improved EP method.

Esmin et al. [93] proposed a Hybrid PSO with Mutation (HPSOM) for loss minimization. The study was carried out in two steps. In the first step, using the tangent vector technique, the critical area of the power system was identified under the point of view of voltage instability. In the second step, after identifying the critical area, the PSO technique was used to calculate the amount of shunt reactive power compensation of each bus. The HPSOM algorithm is basically the standard PSO combined with arithmetic mutation. The notion of mutation in the hybrid model was introduced as in any other genetic algorithm.

By integrating GA with a nonlinear IPM, a novel hybrid method for the ORPD problem was proposed in [94]. The method was divided into two parts. The first part was to solve the ORPD with the IPM by relaxing the discrete variables. The second part was to decompose the original ORPD into two sub-problems: continuous optimization and discrete optimization. The GA was used to solve the discrete optimization with the continuous variables being fixed, whereas the IPM solved the continuous optimization with the discrete variables being constant. The optimal solution was
obtained by solving the two sub-problems alternately. A dynamic adjustment strategy was also presented to make the GA and the IPM to complement each other and to enhance the efficiency of the hybrid method.

DE is a promising evolutionary algorithm for solving the ORPD problem, but it requires relatively large population size to avoid premature convergence, which will increase the computational time. On the other hand, EP has been proved to have a good global search ability. Exploiting this complementary feature, a hybrid algorithm of DE and EP, denoted as DEEP, was proposed in [95] to reduce the required population size. The hybridisation was designed as a novel primary-auxiliary model to minimise the additional computational cost.

In [96], Subbaraj et al. presented a two-phase hybrid PSO approach in solving ORPD problem. In their hybrid approach, PSO was used to explore the optimal region and a direct search was used as a local optimization technique for finer convergence.

Fister et al. [97] presented a hybrid tool based on the BA. BA was hybridized with DE strategies. This hybridization showed very promising results on standard benchmark functions and also significantly improved the original BA.

Reference [98] presented a reliable and effective algorithm based on Hybrid Modified Imperialist Competitive Algorithm (MICA) and Invasive Weed Optimization (IWO) for solving the ORPD problem. The original Imperialist Competitive Algorithm (ICA) often converges to local optima. In order to avoid this shortcoming, a new method was proposed that profited from the IWO method to improve local search near the global best and a series of modifications were added to the assimilation policy rule of ICA in order to further enhance the algorithm's rate of convergence for achieving a better solution quality.

Mojtaba et al. [99] introduced a hybrid tool to handle the ORPD problem by combining Modified Teaching Learning Algorithm (MTLA) and Double Differential Evolution (DDE) algorithm. Their hybrid method also proved to be efficient and showed faster convergence.

In [100], Lenin et al. presented Hybridization of a BA with Harmony Search Algorithm (BAHS) for solving an ORPD problem. The approach included the addition of a pitch modification procedure in Harmony Search, serving as a mutation operator during the procedure of the bat updating with the
aim of speeding up convergence, thus making the approach more feasible for a wider range of realworld applications.

Hybridization of a Simulated Annealing and a Nelder-Mead (SANM) algorithm was proposed in [101] to solve an ORPD problem. The proposed algorithm (SANM) started with a primary solution, which was generated arbitrarily and then the solution was alienated into partitions. The neighbourhood zone was generated, an arbitrary number of partitions were selected and a variable updating procedure was started in order to generate a trail neighbour solution. This process helped the SANM algorithm to explore the region around the current iterated solution. The Nelder- Mead (NM) algorithm was used in the final stage in order to progress the best solution found so far and accelerates the convergence in the final stage.

Singh et al. [102] presented a PSO with an Aging Leader and Challengers (ALC) (denoted as ALCPSO) for the solution of an ORPD problem. The ORPD problem was formulated as a nonlinear constrained single-objective optimization problem where the real power loss and the total voltage deviation was to be minimized separately.

Reference [103] presented a novel hybrid algorithm combining a Firefly Algorithm (FA) and the NM simplex method for solving ORPD problems. Like many other general purpose optimization methods, the original FA often traps into local optima and in order to overcome this shortcoming, an efficient local search method called the NM simplex subroutine was introduced in the internal architecture of the original FA algorithm. This method proved to avoid premature convergence of the original FA by exploration with a FA and exploitation with a NM simplex.

A Hybrid BA (HBA) was proposed in [104] to reduce the real power loss in ORPD problem. Swarm Intelligence based BA was hybridized with a DE strategy to solve the problem. The HBA was used to find the optimal settings of generator bus voltage, transformer tap settings and reactive power of a shunt compensator.

Radosavljevic and Jevtiv [105] presented a new hybrid algorithm (Hybrid GSA-SQP) consisting of the Gravitational Search Algorithm (GSA) and the Sequential Quadratic Programming (SQP) for solving the ORPD problem. The performance of this hybrid algorithm for the ORPD problem was formulated for two different objective functions, namely minimization of real power loss and voltage profile improvement.

Reference [106] presented a hybrid approach based on an ICA and a PSO to find the solution of ORPD of power systems. This hybrid method was proved to be and has higher capability in finding better solutions.

2.6 OPTIMAL PLACEMENT OF DG UNIT(S)

Power system generating stations are located either close to the resources (water, coal and gas) or otherwise located far from the load centres. These generating stations are designed to take advantage of available economies of scale in a site specific manner and are built as "one-off" custom projects. Over the years, electric power transmission line losses increase as a result of increasingly age deterioration and capacity constraints upon the transmission networks. This led to the introduction of a new technology called distributed generation (DG) unit or system. DG units refer to the installation of small-scale generating technologies or stations from a few kilowatts up to 50 MW to the existing power networks at the distribution level [107]. These small-scale generating stations, which include but are not limited to photovoltaic (PV) or solar cells (typically rooftop solar PV); small wind power system or wind turbines and combined heat power (CHP), are connected in parallel with the utility power networks. They are located near the consumer loads to reduce transmission line losses and improve voltage profiles. In general, DG units tend to produce some or all of the power required by the consumer loads. However, due to the renewable nature of the DG unit's energy sources, there are times when these energy sources will be insufficient. In such circumstances, the consumer will need to receive power from the utility grid. When the DG units produce more power than the consumer needs at a specific moment, the excess power is available to the utility grid. The integration of DGs in the distribution network has diverse advantages which include reduction of active power losses, improvement of voltage profile, reduction of environmental pollution, less capital intensive, increased efficiency and reliability of the system network [108].

Numerous methods (conventional and evolutionary techniques) have earlier been used to optimally install DG unit(s) in the distribution networks to reduce active power transmission line losses. A number of conventional techniques such as gradient search (GS) [109], linear programming (LP) [110], Newton-Raphson Extended Method [111] have been successfully applied to optimally install DG unit(s). While, some evolutionary methods such as GA [112], BA [113], PSO [114, 115], CS [116], ABC [117], Competitive Swarm Optimizer (CSO) [118], Cat Swarm Optimization (CSO) [119], Parallel Cat Swarm Optimization Algorithms (PCSO) [119] etc, have also been applied in the past to optimally install DG unit(s).

2.7 SUMMARY

This chapter reviews the development and application of conventional and evolutionary optimization techniques to solve the ORPD problem by different authors in the field of electrical power system. It also gives detailed information about ORPD problem formulation and the application of PSO, as well as BA in solving an ORPD problem. It also reviews the development and application of some hybrid methods to solve the ORPD as well as optimal placement of DG unit(s) in the distribution networks to reduce active power transmission line losses. The next chapter presents the hybridization of PSO and BA to form HPSOBA and show in a flow chat how they can be used to solve the ORPD problem as well as the simulation results and analysis of using the proposed hybrid method on the test cases.

CHAPTER 3

HYBRID PSO-BA MODEL

This chapter covers the hybridization tool used in this research and the proposed methodology for the hybridization. There are different methods by which these two optimization techniques can be hybridized so as to come up with a better method to solve the problem at hand. This chapter presents the hybridization of PSO and BA to form HPSOBA and the details of the proposed methodology.

3.1 MOTIVATION FOR HYBRIDIZATION OF PSO WITH BA

The objective function of this research is to minimize the active power loss in a transmission network using a hybrid algorithm which is a combination of PSO and BA methods. The PSO has been applied many times to solve optimization problems but in this research considering the PSO's shortcomings of premature convergence and required computational time in most cases, an attempt is made to improve the PSO algorithm. By finding and analyzing a variety of evolutionary optimization algorithms which were raised in recent years, it was found that the BA is gradually and excellently applied in the field of power systems. Although the BA cannot guarantee a fast convergence because it completely depends on random walk, it is proficient at controlling the exploration and exploitation of the search space and also requires less computational time. Thus exploring their possible hybridization is a step in the right direction to solve power system optimization problems.

The use of hybrid algorithms is a new and successful trend in solving optimization problems. The main aim of this research is to obtain a better performing algorithm that combines the advantages of individual algorithms. Hybrid algorithms benefit from synergy. However, choosing an adequate combination of component algorithms to achieve a better overall performance in a particular situation or problem is important. This research tends to combine the PSO and BA optimization techniques to form a hybrid tool that can out-perform the algorithms when individually applied in solving power system optimization problems.

At the start of every optimization process, a global exploration of the search space is required to probe a wider region for the perspective solution and later on search for a better solution in the vicinity of a given starting solution within a more promising region. PSO can quickly identify
promising areas in the search space while BA can quickly determine the best solution within those areas.

PSO, which is one of the most popular meta-heuristic approaches, is based on information sharing among the particles and is transmitted by the most optimistic, global best particle to other particles. One of the main advantages of PSO, rapid convergence, can also be its main weakness, as premature convergence to a suboptimal solution may stagnate the swarm without any pressure to continue exploration. The PSO algorithm has found it difficult to converge to an optimal solution as the particles arrive in the vicinity of the optimal solution and thus causes slow convergence in the refined search stage.

On the other hand, the BA has a capability of automatically zooming into a region where promising solutions have been found and also a strong local search ability controlled by the loudness and pulse rate. The local search method is applied by using a random walk method in order to refine the bestfound solution at each iteration. Despite its less computational time advantage, it converges very quickly at the early stage and then convergence rate slows down.

In order to alleviate the drawbacks of both PSO and BA optimization techniques a new hybrid algorithm, the HPSOBA, is proposed.

3.2 PROPOSED HYBRID PSO-BA (HPSOBA) METHODOLOGY

The proposed HPSOBA optimization method by this research, integrated the respective advantages of PSO and BA to form a hybrid PSO with a BA denoted as HPSOBA. It combines the fast convergence ability of a PSO with the less computation time ability of a BA to get a better optimal solution. The PSO's Eq. (15) was modified by introducing the BA's frequency f_{i} as shown in Eq. (29) below for the HPSOBA. The frequency f_{i}, which controls the pace and range of the movement of the swarming particles, is generated as shown in Eq. (22). Maximum number of iterations is set as a stopping criterion.

$$
\begin{equation*}
V_{i}{ }^{k+1}=w^{*} V_{i}{ }^{k}+\left(c_{1}{ }^{*} \text { rand }^{*}\left(\text { Pbest }_{i}{ }^{k}-X_{i}{ }^{k}\right)+c_{2}{ }^{*} \text { rand }^{*}\left(\text { Gbest }^{k}-X_{i}{ }^{k}\right)\right) * f_{i} \tag{29}
\end{equation*}
$$

The flowchart in Fig. 3 delineates the steps of the HPSOBA algorithm for solving ORPD and its pseudo code given as follows:
Step1: \quad The bat solutions X_{i} and their velocities V_{i} are initialized
For each bat i, define pulse frequency f_{i} at X_{i}
Initialize emission pulse rates r and the loudness A
The lower and lower boundaries/limits of every control variables are identified.

Step 2: Run Newton-Raphson power flow method on the initialized solutions to calculate the transmission line losses of all the candidate solutions.

Step 3: \quad The minimum transmission line loss is assigned as Pbest. At this juncture the Pbest is also the Gbest.

Step 4: While (iteration < Max number of iterations)
New frequency is generated using adaptive method and randomization thus:
$f_{i}=f_{\text {min }}+\left(f_{\text {max }}-f_{\text {min }}\right) * \beta$
Update velocity using the proposed improved PSO equation as thus:
$V_{i}{ }^{k+1}=w^{*} V_{i}{ }^{k}+\left(c_{1}{ }^{*}\right.$ rand $*\left(\right.$ Pbest $\left._{i}{ }^{k}-X_{i}{ }^{k}\right)+c_{2}{ }^{*}$ rand $*\left(\right.$ Gbest $\left.\left.^{k}-X_{i}{ }^{k}\right)\right) * f_{i}$
Update solution with the improved velocity equation as thus:
$X_{i}{ }^{k+1}=X_{i}{ }^{k}+V_{i}{ }^{k+1}$

Step 5: \quad if $\left(\right.$ rand $\left.>r_{i}\right)$
Select a solution among the best solutions
Perform a random walk (local search) around the selected best solution End if

Step 6: \quad New random solutions are generated around the updated solutions while restricting the limits of the control variables.

Step 7: \quad Run Newton-Raphson power flow method on the initialized solutions to calculate the transmission line losses of all the candidate solutions.

Step 8: \quad If (rand $<A_{i}$ \& $f\left(X_{i}\right)<f\left(X^{\text {Gbest }}\right)$)
Accept the new solutions
Increase r_{i} and reduce A_{i}
End if

Step 9: \quad Rank the solutions and find the overall best solution.

Step 10: End while

Step 11: Post process results and visualization.

Fig. 3 Proposed HPSOBA Algorithm flowchart

3.3 TEST FUNCTION OPTIMIZATION USING HPSOBA

Test functions also known as standard benchmarks play an important role in validating and comparing the general performance, convergence rate, accuracy and robustness of optimization algorithms [120]. The test functions should have some diverse properties, which can be useful in testing of any new algorithm. The efficiency, reliability and validation of optimization algorithms can be done by using a set of standard benchmarks or test functions. For any new optimization technique, it is necessary to validate its performance and compare it with other existing algorithms using a good set of test functions. These test functions whose details such as search range and optima positions were provided, were applied to the proposed HPSOBA method to assess its performance and robustness. PSO and BA methods were also developed in the course of developing the proposed HPSOBA method.

3.3.1 SIMULATION RESULTS AND ANALYLSIS OF TEST FUNCTION OPTIMIZATION

The proposed hybrid approach (HPSOBA) including the other two approaches (PSO and BA) developed by this research were first tested on three standard benchmark/test functions to confirm their accuracy and robustness. The test functions used for this case study include Griewank, Rastrigin and Schwefel. The results of this research's extensive numerical experiments are summarized in Table I. The table shows the results of PSO, BA and HPSOBA optimization methods for solving the test functions with dimensions $d=5,30$ and 100. The maximum number of iterations and number of bats or particles are 2000 and 10 respectively. Each method was performed for 30 trials to solve the given test function problem.

Griewank Function

$$
\begin{align*}
& f(x)=\sum_{i=1}^{d} \frac{x_{i}^{2}}{4000}-\prod_{i=1}^{d} \cos \left(\frac{x_{i}}{\sqrt{ } i}\right)+1 \tag{30}\\
& x_{i} \in[-600,600], \text { for all } i=1, \ldots, d
\end{align*}
$$

Rastrigin Function

$$
\begin{align*}
& f(x)=10 d+\sum_{i=1}^{d}\left[x_{i}^{2}-10 \cos \left(2 \pi x_{i}\right)\right] \tag{31}\\
& x_{i} \in[-5.12,5.12], \text { for all } i=1, \ldots, d
\end{align*}
$$

Schwefel Function

$$
\begin{equation*}
f(x)=418.9829 d-\sum_{i=1}^{d} x_{i} \sin \left(\sqrt{ }\left|x_{i}\right|\right) \tag{32}
\end{equation*}
$$

$x_{i} \in[-500,500]$, for all $i=1, \ldots, d$

TABLE I. COMPARISON BETWEEN DIFFERENT ALGORITHMS ON 3 STANDARD BENCHMARK FUNCTIONS

ALGORITHM	DIMENSIONS	VALUE	PSO	BA	HPSOBA
GRIEWANK	5	BEST	57.8285	1.1711	5.4514
		WORST	328.2437	260.0861	214.7897
		MEAN	157.1529	108.0102	66.7185
		STD. DEV	68.0770	64.1219	47.5775
	30	BEST	522.9148	16.1033	101.3931
		WORST	$1.1506 \mathrm{e}+03$	$1.0745 \mathrm{e}+03$	885.3280
		MEAN	861.0965	629.3576	534.6278
		STD. DEV	149.3709	281.0386	196.5750
	100	BEST	$2.4095 \mathrm{e}+03$	$1.0826 \mathrm{e}+03$	884.6522
		WORST	$3.5618 \mathrm{e}+03$	$3.3493 \mathrm{e}+03$	$3.0002 \mathrm{e}+03$
		MEAN	$2.9961 \mathrm{e}+03$	$2.5574 \mathrm{e}+03$	$2.3906 \mathrm{e}+03$
		STD. DEV	292.2196	532.6977	572.2150
RASTRIGIN	5	BEST	-284.8841	-379.7818	-240.4818
		WORST	98.9437	121.6203	99.3437
		MEAN	23.1221	10.6579	-0.2336
		STD. DEV	92.3501	122.5785	103.1661
	30	BEST	-162.9674	-789.3809	$-1.0689 \mathrm{e}+03$
		WORST	569.9399	655.3263	638.5661
		MEAN	377.1201	353.9556	336.1339
		STD. DEV	158.1019	326.2176	394.9394
	100	BEST	$1.6055 \mathrm{e}+03$	561.5273	$1.1438 \mathrm{e}+03$
		WORST	$1.9659 \mathrm{e}+03$	$2.1029 \mathrm{e}+03$	$1.9657 \mathrm{e}+03$
		MEAN	$1.7608 \mathrm{e}+03$	$1.7002 \mathrm{e}+03$	$1.6662 \mathrm{e}+03$
		STD. DEV	100.1611	292.4334	225.8081
SCHWEFEL	5	BEST	$-2.5234 \mathrm{e}+03$	$-1.2745 \mathrm{e}+04$	$-1.8619 \mathrm{e}+04$
		WORST	$3.1426 \mathrm{e}+03$	$2.7637 \mathrm{e}+03$	$3.0274 \mathrm{e}+03$
		MEAN	$1.8502 \mathrm{e}+03$	$-2.6896 \mathrm{e}+03$	-2.7273e+03
		STD. DEV	$1.4914 \mathrm{e}+03$	$5.0362 \mathrm{e}+03$	$6.6470 \mathrm{e}+03$
	30	BEST	$-2.1333 \mathrm{e}+04$	$-6.8378 \mathrm{e}+04$	$-4.7411 \mathrm{e}+04$
		WORST	$1.6043 \mathrm{e}+04$	$1.4204 \mathrm{e}+04$	$1.4623 \mathrm{e}+04$
		MEAN	$8.9964 \mathrm{e}+03$	$-3.0271 \mathrm{e}+03$	-6.0857e+03
		STD. DEV	$8.8948 \mathrm{e}+03$	$2.2048 \mathrm{e}+04$	$1.9236 \mathrm{e}+04$
	100	BEST	-1.2534e+03	$-5.4329 \mathrm{e}+04$	$-9.1366 \mathrm{e}+04$
		WORST	$4.4911 \mathrm{e}+04$	$4.3968 \mathrm{e}+04$	$4.4159 \mathrm{e}+04$
		MEAN	$3.4320 \mathrm{e}+04$	$2.0747 \mathrm{e}+04$	$1.2664 \mathrm{e}+04$

		STD. DEV	$1.0954 \mathrm{e}+04$	$2.5903 \mathrm{e}+04$	$3.9666 \mathrm{e}+04$

As reflected in Table I, the proposed hybrid algorithm (HPSOBA) when tested on the chosen standard benchmark/test functions (Griewank, Rastrigin and Schwefel) outperformed the other two approaches (PSO and BA) also developed and analyzed by this research for 5, 30 and 100 different dimensions.

3.4 SOLVING ORPD USING HPSOBA

This section presents the simulation results and analysis of using the proposed HPSOBA algorithm to solve an ORPD problem. There are two case studies conducted as part of this resarch in solving an ORPD problem. The first case study deals with solving an ORPD problem (active power transmission line loss minimization objective function) without a DG unit installed using the proposed HPSOBA approach on IEEE 30- and 118-bus systems, while the second case study is about installing a new DG unit in the distribution system (load bus) and using the proposed hybrid approach (HPSOBA) only to optimally place the DG unit on a modified IEEE 30-bus system for active power transmission line loss minimization.

3.4.1 CASE 1: SIMULATION RESULTS AND ANALYSIS OF SOLVING AN ORPD WITHOUT A DG UNIT

The proposed HPSOBA optimization method alongside PSO and BA were tested on the IEEE 30bus and 118-bus test systems with an objective function of minimizing the active power transmission losses in an electric power system. The data for these systems can be found in [100]. The algorithms of the PSO, BA and HPSOBA methods were coded in MATLAB R2012b incorporated with MATPOWER 5.1 and run on an Intel (R) Pentium (R) CPU @ 2.00 GHz with 2 GB of RAM PC. The parameters and data settings of the proposed algorithms for the test systems are summarized in Table II. Due to the randomness in the PSO, BA and HPSOBA techniques, each method was executed for 30 runs to solve the given ORPD problem (without a DG unit installed) objective function when applied to the test systems.

TABLE II. PARAMETERS AND DATA SETTINGS FOR THE PROPOSED ALGORITHMS

PARAMETER	SYMBOL	PSO	BA	HPSOBA
Swarm/Bat size	N	50	20	20
Maximum number of iterations	Iteration/N_gen	200	200	200
Number of variables	$n v a r s / d$	12	12	12
Acceleration constants	$c_{l}=c_{2}$	2.05	-	2.05
Adaptive inertia weight	w	$0.9-0.4$	$0.9-0.4$	$0.9-0.4$

PARAMETER	SYMBOL	PSO	BA	HPSOBA
Minimum frequency	$f_{\min }$	-	0	0
Maximum frequency	$f_{\max }$	-	2	2
Minimum pulse rate	$r_{\min }$	-	0	0
Maximum pulse rate	$r_{\max }$	-	1	1
Minimum loudness	$A_{\min }$	-	1	1
Maximum loudness	$A_{\max }$	-	2	2
Loudness constant	α	-	0.99	0.99
Pulse rate constant	γ	-	0.9	0.9
Constriction factor	χ	0.729	-	-

3.4.1.1 IEEE 30-BUS TEST SYSTEM

In order to validate the proposed hybrid approach (HPSOBA) for ORPD without a DG unit as well as the PSO and BA developed in the course of achieving the hybrid approach, an IEEE 30-bus test system was used. The single-line diagram of the IEEE 30-bus test case is shown in Fig. 4. It consists of six generator buses, 24 load buses and 41 branches in which four branches are tap changing transformers branches at lines 6-9, 6-10, 4-12, and 28-27. In addition, buses 10 and 24 have been selected as shunt VAR compensation buses. Hence, a total of 12 optimized control variables were taken for this ORPD problem. The branch parameters and loads were taken from [121].

Fig. 4 Single-line diagram of IEEE 30-bus test system [122].

The test was carried out by solving the ORPD problem of the active power transmission loss objective in which variable limits (as given in Table III) were used as system constraints. For comparison purposes, Newton-Raphson Method, PSO, BA and HPSOBA optimization methods were applied to solve this test case and compared with other methods in the literature. The initial system loads, total generation and power losses for IEEE 30-bus system from the actual load flow study using Newton-Raphson method (base case) are given as follows:

$$
P_{\text {load }}=283.40 ; \quad Q_{\text {load }}=126.20
$$

The initial total generation and power losses are as follows:

$$
\begin{array}{ll}
P_{G}=301.21 ; & Q_{G}=160.94 \\
P_{\text {loss }}=17.807 ; & Q_{\text {loss }}=69.61
\end{array}
$$

TABLE III. IEEE 30-BUS TEST SYSTEM CONTROL VARIABLE LIMITS FOR ORPD

CONTROL VARIABLES (p.u)	MINIMUM	MAXIMUM
Generator Voltage	0.95	1.10
Transformer Tap Setting	0.90	1.10
Reactive Power Compensation	0.00	0.20

The average convergence curves of the PSO, BA and HPSOBA techniques are shown in Figs. 5-7 respectively for IEEE 30-bus test system. Delving into the figures, it will be observed that the HPSOBA hybrid approach showed better convergence characteristics than the PSO and BA methods. While the PSO in Fig. 5 starts converging at about the $48^{\text {th }}$ iteration, the BA in Fig. 6 starts to converge at about the $110^{\text {th }}$ iteration and the HPSOBA in Fig. 7 starts to converge at about the $30^{\text {th }}$ iteration.

Fig. 5 Average convergence curve of the PSO

Fig. 6 Average convergence curve of the BA

Fig. 7 Average convergence curve of the HPSOBA

The simulation results of this research for solving an ORPD (without a DG unit) on an IEEE 30-bus system were compared with the results of PSO, DE, DE-ABC and ABC algorithms from previous studies as shown in Table IV. The table shows that the other two algorithms (PSO and BA) outperformed the results of the previous studies in the literature and the Newton-Raphson method
(base case), while the proposed hybrid approach (HPSOBA) developed by this research outperformed all.

TABLE IV. COMPARATIVE RESULTS OF IEEE 30-BUS TEST SYSTEM

ALGORITHM	ACTIVE POWER LOSSES (MW)			
	Min. Losses	Max. Losses	Mean Losses	Std. Deviation
BASE CASE	-	-	17.807	-
PSO [123]	-	-	16.1810	-
DE [124]	16.2184	16.6272	16.1376	0.089508
DE-ABC [124]	16.2163	16.2164	16.2163	$2.34 \mathrm{e}-05$
ABC [124]	16.2325	17.693	16.5908	0.034919
PSO	16.163	16.166	16.165	$7.65 \mathrm{e}-04$
BA	16.061	16.185	16.133	$2.79 \mathrm{e}-02$
HPSOBA	16.059	16.169	$\mathbf{1 6 . 1 2 5}$	$2.80 \mathrm{e}-02$

Table V shows values of the various control variables after optimization for the PSO, BA, and HPSOBA algorithms. It can be observed from the table that the control variables are restricted within their respective constraint's limits and inviolate. Further more, Table V also showed that the HPSOBA computation time of 257.01 seconds outperforms that of the PSO and BA. Vg indicates generated voltage, T indicates transformer tap setting and Q_{c} indicates shunt compensation respectively in p.u. These optimal setting of various control variables minimizes the objective function to an optimum solution after a maximum of 200 iterations.

TABLE V. VALUES OF CONTROL VARIABLES BEFORE AND AFTER OPTIMIZATION FOR IEEE 30-BUS TEST SYSTEM

CONTROL VARIABLES (p.u)	BASE CASE	PSO	BA	HPSOBA
$V g_{1}$	1.06	1.10	1.10	1.10
$V g_{2}$	1.04	1.09	1.09	1.09
$V g_{5}$	1.01	1.05	1.05	1.05
$V g_{8}$	1.01	1.06	1.06	1.06
$V g_{11}$	1.08	1.10	1.10	1.10
$V g_{13}$	1.07	1.10	1.10	1.10
T_{9-6}	0.98	1.06	1.02	1.02
T_{10-6}	0.97	0.90	0.98	0.96
T_{12-4}	0.93	1.05	0.99	1.06
T_{28-27}	0.97	0.98	0.99	0.98

CONTROL VARIABLES (p.u)	BASE CASE	PSO	BA	HPSOBA
$Q c_{10}$	0.19	0.15	0.10	0.11
$Q c_{24}$	0.04	0.15	01.0	0.10
POWER LOSS (MW)	17.807	16.165	16.133	$\mathbf{1 6 . 1 2 5}$
CPU TIME (s)	-	744.50	273.20	$\mathbf{2 5 7 . 0 1}$

3.4.1.2 IEEE 118-BUS TEST SYSTEM

To further test the proposed technique in solving an ORPD without a DG unit on a large-scale power system, a standard IEEE 118-bus test system was considered. The single-line diagram of the IEEE 118-bus test case is shown in Fig. 8. The test case system has 77 dimensions/variables, that is 54 generator buses, 64 load buses, 186 transmission lines, 9 transformer taps and 14 reactive power sources. The system line and bus data were taken from [121].

Fig. 8 Single-line diagram of IEEE 118-bus test system [125].

The maximum and minimum limits of reactive power sources, voltage and tap setting limits were given in Table VI, while the initial values of the control variables are in Table VIII. The initial system loads, total generation and power losses for an IEEE 118-bus system from the actual load flow study using Newton-Raphson method are as follows:

$$
P_{\text {load }}=4242.00 ; \quad Q_{\text {load }}=1438.00
$$

The initial total generation and power losses are as follows:

$$
\begin{array}{ll}
P_{G}=4375.35 ; & Q_{G}=881.06 \\
P_{\text {loss }}=133.350 ; & Q_{\text {loss }}=785.09
\end{array}
$$

TABLE VI. IEEE 118-BUS TEST SYSTEM CONTROL VARIABLE LIMITS FOR ORPD

CONTROL VARIABLES (p.u)	MMINMUM	MAXIMUM
Generator Voltage	0.95	1.10
Transformer Tap Setting	0.90	1.10
Reactive Power Compensation	0.00	0.25

Figs. 9-11 below show the average convergence curves of PSO, BA and HPSOBA techniques respectively for an IEEE 118 -bus system. Delving into the figures, it will be observed that the HPSOBA hybrid approach showed better convergence characteristics than the PSO and BA techniques. While the PSO in Fig. 9 showed a little irregular convergence trait, the BA in Fig. 10 starts to converge at about the $175^{\text {th }}$ iteration and the HPSOBA in Fig. 11 starts to converge at about the $65^{\text {th }}$ iteration.

Fig. 9 Average convergence curve of the PSO

Fig. 10 Average convergence curve of the BA

Fig. 11 Average convergence curve of the HPSOBA

The simulation results achieved without a DG unit on an IEEE 118-bus system were compared with the results of the PSO, CLPSO, GSA and OGSA algorithms from previous studies as shown in Table VII. The table shows that the other two algorithms (PSO and BA) outperformed the results of the Newton-Raphson method (base case) and that of the previous studies in the literature, while the main proposed hybrid approach (HPSOBA) developed by this research outperformed all. Further
more, Table VII also showed that the HPSOBA computation time of 424.97 seconds outperforms that of the PSO, BA and the previous studies in the literature.

TABLE VII. COMPARATIVE RESULTS OF IEEE 118-BUS TEST SYSTEM

ALGORITHM	ACTIVE POWER LOSSES (MW)			CPU	
	Min. Losses	Max. Losses	Mean Losses		CIME (s)
BASE CASE	-	-	133.350	-	-
PSO [126]	132.370	134.500	131.990	$3.2 \mathrm{e}-04$	1215.00
CLPSO [126]	131.150	132.740	130.960	$8.5 \mathrm{e}-05$	1472.00
GSA [127]	-	-	127.760	-	1198.66
OGSA [128]	127.140	131.990	126.990	$8.80 \mathrm{e}-05$	1101.26
PSO	123.827	128.841	126.215	1.5239	1013.49
BA	108.852	110.889	109.772	0.7012	495.88
HPSOBA	107.259	109.229	$\mathbf{1 0 8 . 1 5 1}$	0.5747	$\mathbf{4 2 4 . 9 7}$

Table VIII shows the values of various control variables after optimization for the PSO, BA, and HPSOBA methods. It can be observed from the table that the control variables are restricted within their respective constraint's limits and inviolate. These optimal settings of various control variables minimizes the objective function to an optimum solution after 200 iterations.

TABLE VIII. VALUES OF CONTROL VARIABLES BEFORE AND AFTER OPTIMIZATION FOR IEEE 118-BUS TEST SYSTEM

CONTROL VARIABLES (p.u)	BASE CASE	PSO $[\mathbf{1 2 6}]$	CLPSO $[\mathbf{1 2 6}]$	GSA $[\mathbf{1 2 7}]$	OGSA $[\mathbf{1 2 8}]$	PSO	BA	HPSOB \mathbf{A}
$V g_{1}$	0.96	1.09	1.03	0.96	1.03	1.02	1.04	1.05
$V g_{4}$	1.00	1.04	1.05	0.96	1.06	1.03	1.06	1.07
$V g_{6}$	0.99	1.08	0.98	0.97	1.03	1.03	1.05	1.06
$V g_{8}$	1.02	0.97	0.97	1.06	1.02	1.03	1.09	1.10
$V g_{10}$	1.05	1.08	0.98	1.09	1.02	1.03	1.10	1.10
$V g_{12}$	0.99	1.02	1.01	0.96	1.04	1.02	1.05	1.05
$V g_{15}$	0.97	1.08	0.98	1.01	1.00	1.02	1.05	1.05
$V g_{18}$	0.97	1.05	1.08	1.01	1.00	1.03	1.05	1.05
$V g_{19}$	0.96	1.08	1.08	1.00	0.99	1.02	1.05	1.05
$V g_{24}$	0.99	1.08	1.03	1.01	1.03	1.03	1.06	1.07
$V g_{25}$	1.05	0.96	1.03	1.01	1.06	1.04	1.09	1.10
$V g_{26}$	1.02	1.08	0.99	1.04	1.09	1.04	1.10	1.10
$V g_{27}$	0.97	1.09	1.02	0.98	1.01	1.02	1.05	1.06
$V g_{31}$	0.97	0.96	0.96	0.95	0.99	1.01	1.04	1.05

$\begin{gathered} \text { CONTROL } \\ \text { VARIABLES (p.u) } \end{gathered}$	$\begin{aligned} & \text { BASE } \\ & \text { CASE } \end{aligned}$	$\begin{aligned} & \text { PSO } \\ & {[126]} \end{aligned}$	$\begin{gathered} \text { CLPSO } \\ {[126]} \end{gathered}$	$\begin{gathered} \text { GSA } \\ {[127]} \end{gathered}$	$\begin{gathered} \text { OGSA } \\ {[128]} \end{gathered}$	PSO	BA	$\begin{gathered} \text { HPSOB } \\ \text { A } \end{gathered}$
$V g_{32}$	0.96	1.10	0.99	0.96	1.00	1.02	1.05	1.05
$V g_{34}$	0.98	0.96	1.02	0.99	1.00	1.03	1.06	1.07
$V g_{36}$	0.98	1.04	1.08	1.01	0.98	1.03	1.06	1.06
$V g_{40}$	0.97	1.09	0.98	0.95	1.00	1.02	1.04	1.05
$V g_{42}$	0.99	0.97	1.05	0.95	1.01	1.02	1.04	1.05
$V g_{46}$	1.01	1.04	0.98	0.98	1.04	1.02	1.06	1.07
$V g_{49}$	1.03	1.08	0.98	1.04	1.03	1.03	1.07	1.09
$V g_{54}$	0.96	0.98	0.96	1.04	0.99	1.02	1.04	1.06
$V g_{55}$	0.95	1.01	0.97	0.99	0.99	1.02	1.04	1.06
$V g_{56}$	0.95	0.95	1.02	1.03	0.99	1.02	1.04	1.06
$V g_{59}$	0.99	0.97	1.00	1.01	0.99	1.03	1.07	1.08
$V g_{61}$	1.00	1.09	1.08	1.09	1.07	1.02	1.07	1.09
$V g_{62}$	1.00	1.10	1.05	1.04	1.08	1.02	1.07	1.09
$V g_{65}$	1.01	1.09	0.97	1.00	0.98	1.03	1.10	1.10
$V g_{66}$	1.05	1.09	0.96	1.04	1.05	1.03	1.09	1.10
$V g_{69}$	1.04	0.97	0.96	1.10	1.05	1.04	1.09	1.10
$V g_{70}$	0.98	1.08	0.98	1.10	1.04	1.02	1.05	1.06
$V g_{72}$	0.98	0.95	1.02	1.00	0.99	1.03	1.04	1.05
$V g_{73}$	0.99	0.97	0.97	1.01	1.05	1.03	1.04	1.05
$V g_{74}$	0.96	0.97	1.07	1.05	1.02	1.01	1.04	1.06
$V g_{76}$	0.94	0.96	1.03	1.02	1.00	1.02	1.04	1.06
$V g_{77}$	1.01	1.08	1.03	1.02	1.01	1.03	1.07	1.08
$V g_{80}$	1.04	0.99	1.08	1.05	1.01	1.04	1.08	1.09
$V g_{85}$	0.99	0.96	0.98	1.05	0.99	1.03	1.09	1.09
$V g_{87}$	1.02	0.96	1.09	1.04	0.97	1.02	1.07	1.07
$V g_{89}$	1.01	0.97	0.99	1.10	1.05	1.04	1.10	1.10
$V g_{90}$	0.99	1.02	0.99	1.04	1.03	1.03	1.07	1.08
$V g_{91}$	0.98	0.96	1.03	1.00	1.03	1.00	1.08	1.08
$V g_{92}$	0.99	0.96	0.98	1.09	1.04	1.03	1.09	1.09
$V g_{99}$	1.01	0.95	1.09	1.04	1.04	1.03	1.07	1.08
$V g_{100}$	1.02	0.96	0.96	1.08	1.03	1.03	1.08	1.08
$V g_{103}$	1.01	1.02	0.96	1.03	1.02	1.03	1.06	1.07
$V g_{104}$	0.97	1.10	1.01	0.98	1.02	1.03	1.05	1.06
$V g_{105}$	0.97	0.97	1.07	1.02	1.02	1.02	1.04	1.05
$V g_{107}$	0.95	0.97	0.98	1.00	1.04	1.03	1.03	1.04
$V g_{110}$	0.97	1.09	1.04	1.02	1.03	1.02	1.03	1.04
$V g_{111}$	0.98	1.04	0.98	0.99	1.02	1.03	1.03	1.05
$V g_{112}$	0.98	1.09	0.98	0.95	1.01	1.02	1.02	1.02
$V g_{113}$	0.99	1.08	0.97	0.98	1.04	1.03	1.06	1.06

CONTROL VARIABLES (p.u)	$\begin{aligned} & \hline \text { BASE } \\ & \text { CASE } \end{aligned}$	$\begin{gathered} \text { PSO } \\ {[126]} \end{gathered}$	$\begin{gathered} \hline \text { CLPSO } \\ {[126]} \end{gathered}$	$\begin{gathered} \text { GSA } \\ {[127]} \end{gathered}$	$\begin{gathered} \hline \text { OGSA } \\ {[128]} \end{gathered}$	PSO	BA	$\begin{gathered} \text { HPSOB } \\ \text { A } \end{gathered}$
$V g_{116}$	1.01	0.96	1.03	1.04	0.97	1.03	1.09	1.10
T_{8-5}	0.985	1.01	1.00	1.07	0.96	1.00	1.02	1.01
T_{26-25}	0.96	1.09	1.06	0.95	1.04	1.00	0.99	0.99
T_{30-17}	0.96	1.00	1.00	0.93	1.00	1.00	1.01	1.01
T_{38-37}	0.94	1.00	1.01	1.09	0.98	0.99	1.00	1.01
T_{63-59}	0.96	1.01	0.99	1.06	0.96	0.99	1.00	0.99
T_{64-61}	0.99	1.03	1.01	0.95	1.00	1.00	1.03	1.01
T_{65-66}	0.94	0.94	1.06	1.00	0.99	1.00	1.01	1.03
T_{68-69}	0.94	0.91	0.93	0.99	0.93	0.96	1.01	1.00
T_{81-80}	0.94	0.97	0.96	0.98	1.07	0.97	0.99	0.99
$Q c_{5}$	-0.40	0.00	0.00	0.00	-0.33	0.13	0.11	0.12
$Q c_{34}$	0.14	0.09	0.12	0.07	0.05	0.13	0.12	0.10
$Q c_{37}$	-0.25	0.00	0.00	0.00	-0.25	0.11	0.17	0.13
$Q c_{44}$	0.10	0.09	0.10	0.06	0.03	0.13	0.13	0.11
$Q c_{45}$	0.10	0.09	0.09	0.03	0.04	0.12	0.14	0.14
$Q c_{46}$	0.10	0.09	0.03	0.07	0.05	0.13	0.10	0.13
$Q c_{48}$	0.15	0.12	0.03	0.04	0.02	0.14	0.15	0.14
$Q c_{74}$	0.12	0.05	0.01	0.10	0.05	0.12	0.12	0.09
$Q c_{79}$	0.20	0.11	0.15	0.14	0.11	0.13	0.12	0.14
$Q c_{82}$	0.20	0.16	0.19	0.17	0.10	0.13	0.12	0.13
$Q c_{83}$	0.10	0.10	0.07	0.04	0.03	0.12	0.12	0.10
$Q c_{105}$	0.20	0.09	0.09	0.12	0.04	0.11	0.16	0.13
$Q c_{107}$	0.06	0.05	0.05	0.02	0.01	0.12	0.09	0.15
$Q c_{110}$	0.06	0.06	0.02	0.03	0.01	0.12	0.11	0.12
POWER LOSS (MW)	133.350	131.990	130.960	127.760	126.990	126.215	109.772	108.151

3.4.2 CASE II: OPTIMAL PLACEMENT OF A DG UNIT USING HPSOBA

The proposed hybrid approach (HPSOBA) was further validated on a modified IEEE 30-bus test system to minimize the active power transmission line losses. A DG unit was installed on the load buses (except on the slack bus) with the DG unit assumed to operate at its rated power. The DG unit generated 2.05 MW of real power while it delivers as much as 1.2 MVAR or absorbs -1.0 MVAR reactive power.

3.4.2.1 SIMULATION RESULTS AND ANALYLSIS OF SOLVING ORPD WITH A DG UNIT

The DG unit was first installed on a generator bus and then both the real and reactive power capacity of the generator were altered. Secondly, the DG unit was also installed on a load bus. In
addition to modifying the real and reactive power capacity, the voltage magnitude of the newly installed DG unit was treated as a new control variable, thereby increasing the total number of control variables from 12 to 13 . Each of the modified DG units installed on the buses were evaluated for 30 independent runs and the mean value was taken for the real power minimization objective function. The simulation results were compared with that of a HPSOBA method without a DG unit installed. The load bus, generator bus and branch parameters of the test system were taken from [121] while the control variables as well as the installed DG unit's real and reactive power limits used as system constraints are as given in Table IX.

TABLE IX. MODIFIED IEEE 30-BUS TEST SYSTEM CONSTRAINTS FOR DG UNIT OPTIMAL INSTALLATION

CONTROL VARIABLES	MMINMUM	MAXIMUM
Generator Voltage (p.u)	0.95	1.10
Transformer Tap Setting (p.u)	0.90	1.10
Reactive Power Compensation (p.u)	0.00	0.20
DG Reactive Power Output (MVAR)	-1.0	1.2
DG Real Power Output (MW)	0	2.05

The simulation results of the DG unit's placements on each load bus except on the slack bus are shown in Table X and the simulation graph shown in Fig. 12. It is observed that installing the DG unit on bus 24 gave the best result of 15.738 MW as indicated in bold in the table. That is an 11.62% real power transmission line loss reduction, making bus 24 the optimum location. It can also be observed from Table X that installing the DG unit on bus 18 gave the best computation time of 230.92 seconds (also indicated in bold in the table).

TABLE X. COMPARATIVE RESULTS OF THE DG UNIT PLACEMENT ON EACH BUS

Bus No	Loss (MW)	Loss Reduction $(\%)$	CPU Time (\mathbf{s})
1	0	0	-
2	16.026	10.00	243.35
3	15.988	10.22	240.65
4	15.924	10.57	245.12
5	15.861	10.93	272.11
6	15.829	11.11	250.94
7	15.835	11.07	247.25
8	15.883	10.80	238.33
9	15.820	11.16	241.20
10	15.819	11.16	252.44
11	15.910	10.65	261.23
12	15.901	10.70	239.78
13	15.947	10.45	254.09
14	15.891	10.76	243.95

Bus No	Loss (MW)	Loss Reduction $(\boldsymbol{\%})$	CPU Time (\mathbf{s})
15	15.856	10.96	240.28
16	15.894	10.74	232.29
17	15.850	10.99	238.93
18	15.820	11.16	$\mathbf{2 3 0 . 9 2}$
19	15.815	11.19	266.78
20	15.838	11.06	255.63
21	15.759	11.50	231.99
22	15.789	11.33	298.63
23	15.790	11.33	237.45
$\mathbf{2 4}$	$\mathbf{1 5 . 7 3 8}$	$\mathbf{1 1 . 6 2}$	238.26
25	15.831	11.10	237.34
26	15.807	11.23	237.07
27	15.881	10.82	246.02
28	15.882	10.81	245.91
29	15.870	10.88	236.88
30	15.793	11.31	232.02

COMPARATIVE RESULTS OF THE DG UNIT PLACEMENT ON EACH BUS

Fig. 12 Graph of the comparative results of the DG unit placement on each bus

Table XI showed the comparative results of the proposed HPSOBA approach with and without the DG unit placement on each load bus. The table showed that the proposed HPSOBA algorithm developed by this research have better results when the DG unit is installed on bus 24 than without
any form of DG unit installed on any of the load buses. It also showed a further reduction of real power transmission line losses from 9.45% (without a DG unit installed) to 11.62% (with the DG unit installed on bus 24).

TABLE XI. COMPARATIVE RESULTS OF HPSOBA ALGORITHM FOR WITH AND WITHOUT DG UNIT PLACEMENT

ALGORITHM	ACTIVE POWER LOSSES (MW)				LOSSREDUCTION$(\%)$
	Min. Losses	Max. Losses	Mean Losses	Std. Deviation	
BASE CASE	-	-	17.807	-	
$\begin{gathered} \text { HPSOBA } \\ \text { (without DG) } \end{gathered}$	16.059	16.169	16.125	$2.80 \mathrm{e}-02$	9.45
HPSOBA (with DG at Bus 24)	15.639	15.894	15.738	5.13e-02	11.62

Fig. 13 shows the average convergence curve of the HPSOBA method for the optimal placement of a DG unit at bus 24 using a modified IEEE 30-bus test system. From the figure, it is observed that HPSOBA hybrid approach showed a good convergence characteristics and performance.

Fig. 13 Average convergence curve of HPSOBA for modified IEEE 30-bus test system

Table XII shows the values of the various control variables before and after optimal placement of the DG unit in the load buses for the modified IEEE 30-bus test system using the proposed HPSOBA method. It can be observed from the table that the control variables are restricted within their respective constraint's limits and kept inviolate. These optimal setting of various control
variables minimizes the objective function to an optimum solution with a maximum of 200 iterations.

TABLE XII. VALUES OF CONTROL VARIABLES BEFORE AND AFTER OPTIMAL PLACEMENT OF DG UNIT FOR MODIFIED IEEE 30-BUS TEST SYSTEM

Control Variables	Base Case (without DG)	HPSOBA (without DG)	DG at Bus 2	DG at Bus 3	DG at Bus 4	DG at Bus 5	DG at Bus 6
Voltage at bus 1, $V g 1$	1.06	1.10	1.10	1.10	1.10	1.10	1.10
Voltage at bus 2, $V g 2$	1.04	1.09	1.09	1.09	1.09	1.09	1.09
Voltage at bus 3, $V g 3$				1.08			
Voltage at bus 4, $V g 4$		1.05	1.05	1.06	1.06	1.05	1.06
Voltage at bus 5, $V g 5$	1.01	1.06	1.06	1.06	1.06	1.06	1.06
Voltage at bus 6, $V g 6$	1.01	1.10	1.10	1.10	1.10	1.10	1.07
Voltage at bus 8, $V g 8$	1.08	1.10	1.10	1.09	1.06	1.10	1.10
Voltage at bus $11, V g 11$	1.07	1.02	1.01	1.02	1.00	1.02	0.96
Voltage at bus $13, V g 13$	0.98	0.96	0.98	0.98	0.98	0.99	0.95
T_{9-6}	1.06	1.06	1.04	0.97	1.07	1.03	
T_{10-6}	0.97	0.98	0.99	0.98	0.99	0.97	
$T_{l 2-4}$	0.97	0.11	0.09	0.10	0.11	0.12	0.11
T_{28-27}	0.19	0.04	0.13	0.10	0.10	0.11	0.11
$Q c_{l 0}$					1.07		
$Q c_{24}$	0.04						

TABLE XII. VALUES OF CONTROL VARIABLES BEFORE AND AFTER OPTIMAL PLACEMENT OF DG UNIT FOR MODIFIED IEEE 30-BUS TEST SYSTEM (CONT’D)

Control Variables	DG at Bus 7	DG at Bus 8	DG at Bus 9	DG at Bus 10	DG at Bus 11	DG at Bus 12	DG at Bus 13	DG at Bus 14
Voltage at bus 1, Vg 1	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10
Voltage at bus 2, Vg 2	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09
Voltage at bus 5, $\mathrm{Vg5} 5$	1.06	1.05	1.06	1.05	1.05	1.05	1.05	1.05
Voltage at bus 7, $\mathrm{Vg7} 7$	1.06							
Voltage at bus 8, Vg 8	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06
Voltage at bus 9, $\mathrm{Vg9} 9$			1.09					
Voltage at bus $10, \mathrm{Vg} 10$		1.10	1.02	1.03	1.10	1.10	1.10	1.10
Voltage at bus $11, \mathrm{Vg} 11$	1.10	1.07						
Voltage at bus $12, \mathrm{Vg} 12$		1.10	1.10	1.10	1.10	1.03	1.10	1.10
Voltage at bus $13, \mathrm{Vg} 13$	1.10	1.107		1.04				
Voltage at bus								

$14, V g 14$								
T_{9-6}	1.01	1.02	1.03	1.05	1.01	0.99	1.01	1.01
T_{10-6}	0.98	0.97	1.00	1.02	0.98	0.96	0.99	0.99
T_{12-4}	1.05	1.06	1.02	1.01	1.06	1.07	1.06	1.06
T_{28-27}	0.98	0.98	0.97	0.96	0.98	0.97	0.98	0.99
$Q c_{10}$	0.10	0.08	0.09	0.10	0.09	0.08	0.10	0.10
$Q c_{24}$	0.10	0.11	0.09	0.10	0.10	0.11	0.12	0.09

TABLE XII. VALUES OF CONTROL VARIABLES BEFORE AND AFTER OPTIMAL PLACEMENT OF DG UNIT FOR MODIFIED IEEE 30-BUS TEST SYSTEM (CONT’D)

Control Variables	DG at Bus 15	DG at Bus 16	DG at Bus 17	DG at Bus 18	DG at Bus 19	DG at Bus 20	$\begin{aligned} & \text { DG at } \\ & \text { Bus } 21 \end{aligned}$	DG at Bus 22
Voltage at bus 1, Vg1	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10
Voltage at bus 2, $\mathrm{Vg} 2$	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09
Voltage at bus 5, $\operatorname{Vg} 5$	1.06	1.06	1.05	1.05	1.06	1.05	1.05	1.05
Voltage at bus 8, Vg 8	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06
Voltage at bus 11, Vgll	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10
Voltage at bus 13, Vg13	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10
Voltage at bus 15, Vg15	1.05							
Voltage at bus 16, Vg16		1.04						
Voltage at bus 17, Vg17			1.06					
Voltage at bus 18, Vg18				1.04				
Voltage at bus 19, Vg19					1.03			
Voltage at bus 20, $\operatorname{Vg} 20$						1.04		
Voltage at bus 21, Vg21							1.05	
Voltage at bus 22, Vg22								1.05
T_{9-6}	1.00	1.02	1.01	1.01	1.03	1.02	1.02	1.03
T_{10-6}	1.00	0.99	0.98	0.99	0.99	0.99	1.00	0.99
T_{12-4}	1.06	1.06	1.04	1.05	1.06	1.05	1.03	1.04
T_{28-27}	0.99	0.99	0.97	0.98	0.98	0.99	0.97	0.98
$Q c_{10}$	0.10	0.09	0.10	0.15	0.11	0.10	0.10	0.11
$Q c_{24}$	0.13	0.09	0.11	0.09	0.11	0.09	0.08	0.09

TABLE XII. VALUES OF CONTROL VARIABLES BEFORE AND AFTER OPTIMAL PLACEMENT OF DG UNIT FOR MODIFIED IEEE 30-BUS TEST SYSTEM (CONT’D)

Control Variables	DG at Bus 23	DG at Bus 24	DG at Bus 25	DG at Bus 26	DG at Bus 27	DG at Bus 28	DG at Bus 29	DG at Bus 30
Voltage at bus $1, \mathrm{Vg} 1$	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10
Voltage at bus $2, \mathrm{Vg} 2$	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09
Voltage at bus $5, \mathrm{Vg} 5$	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05

Voltage at bus $8, V g 8$	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06
Voltage at bus $11, V g 11$	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10
Voltage at bus $13, V g 13$	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10
Voltage at bus $23, V g 23$	1.04							
Voltage at bus $24, V g 24$		1.03						
Voltage at bus $25, V g 25$			1.04					
Voltage at bus $26, V g 26$				1.03				
Voltage at bus $27, V g 27$					1.05			
Voltage at bus $28, V g 28$						1.06		
Voltage at bus $29, V g 29$						1.03		
Voltage at bus $30, V g 30$								
T_{9-6}	1.02	1.02	1.01	1.02	1.00	0.99	1.00	1.02
T_{10-6}	0.98	1.01	0.98	0.97	0.98	0.99	1.00	0.97
T_{12-4}	1.06	1.06	1.05	1.06	1.05	1.05	1.06	1.07
T_{28-27}	0.99	1.00	1.00	0.99	1.04	0.98	1.00	1.01
$Q c_{10}$	0.09	0.10	0.11	0.11	0.10	0.12	0.12	0.12
$Q c_{24}$	0.10	0.10	0.10	0.13	0.11	0.10	0.12	0.11

3.5 SUMMARY

This chapter dealt with the hybridization of the already chosen optimization techniques and their step implementation. It also discussed the simulation procedures and results obtained using the proposed HPSOBA to solve for test function optimization and ORPD problems. The results obtained from solving the ORPD problem using the HPSOBA considered two case studies of with and with a DG unit installed. The first case study of solving an ORPD problem without a DG unit installed was tested of both IEEE 30-bus and 118-bus test systems, while the second case study of solving an ORPD problem with a DG unit installed was tested on a modified IEEE 30-bus test system. The simulation results were compared with other evolutionary algorithms in the literature. The next chapter presents the modification of the proposed HPSOBA to check if there will be further improvement on its performance or not.

CHAPTER 4

MODIFIED HPSOBA

4.1 OVERVIEW

This chapter presents three new modifications embedded into this research's proposed HPSOBA to check if there will be further improvement on its performance or not. The modified HPSOBA denoted as MHPSOBA also followed the line of the HPSOBA in fulfilling the local search by using the random walk operation mechanism of a BA whereas the global search is accomplished by a PSO operator. Using this combination it maintains a balance between 'exploration' and 'exploitation' and enjoying the best of both the algorithms (BA and PSO). The MHPSOBA has the same pseudo code and flowchart as the proposed HPOSBA. It was also tested on a modified IEEE 30-bus system to solve an ORPD problem (active power transmission line loss minimization objective function) without a DG unit installed.

4.2 MODIFICATIONS OF HPSOBA

The MHPSOBA method emanated from three new modifications embedded into the proposed HPSOBA method and is captured in this subsection:

4.2.1 $\quad 1^{\text {st }}$ MODIFICATION (Pulse Frequency)

Microbats use echolocation as their main navigation system. During their flights, bats emit continuously short pulses that last a few milliseconds. By analyzing the echoes, they can create a 3D mental image of their surroundings. The information of other bats such as their positions can be useful to guide the search process. In addition, pulses can travel in different directions and thus it may be useful to assume that each bat emits two pulses into two different directions before deciding in which direction it will fly and this feature can be used to simulate the time difference or delay between echoes received by two ears. It is also assumed that the two pulses emitted have the same pulse rates but different pulse frequencies f_{1} and f_{2}. To extend further along this line of thinking, it can also be assumed that all the bats emit a pulse in the direction of the best bat (solution) where the food is considered to exist, and the other pulse to the direction of a randomly chosen bat. From the echoes (feedback), the bat can know if food exists around these two bats or not.

The frequencies f_{1} and f_{2} of the two pulses are updated as follows:

$$
\begin{align*}
& f_{i 1}=f_{\text {min }}+\left(f_{\text {max }}-f_{\text {min }}\right) * \text { rand1 } \tag{33}\\
& f_{i 2}=f_{\text {min }}+\left(f_{\text {max }}-f_{\text {min }}\right) * \text { rand } 2 \tag{34}
\end{align*}
$$

Both rand1 and rand 2 are two random vectors between 0 and 1 .

4.2.2 $\quad 2^{\text {nd }}$ MODIFICATION (Velocity Vector)

In a standard PSO algorithm, population and control variables are randomly generated during initialization, while during iterative process gbest and pbest are used to govern the update of the population, but there is no such term in velocity and position vectors which are purely random in nature. In this section, the velocities update of Eq. (29) is modified using the equations below which calculated the distance between the bat position x_{i} and pbest $_{i}$ and also the distance between the bat position x_{i} and gbest ${ }_{i}$ using a Cartesian distance.

The Cartesian distance (denoted as $p p$) between the bat position x_{i} and $p b e s t_{i}$ is given as:

$$
\begin{equation*}
p p=\sqrt{\sum_{k=1}^{\mathrm{d}}\left(\text { pbest }_{i}-x_{i}\right)^{2}} \tag{35}
\end{equation*}
$$

The Cartesian distance (denoted as $p g$) between the bat position x_{i} and $g b e s t_{i}$ is given as:

$$
\begin{equation*}
p g=\sqrt{\sum_{k=1}^{\mathrm{d}}\left(\mathrm{~g} \text { best } t_{i}-x_{i}\right)^{2}} \tag{36}
\end{equation*}
$$

The velocity update equation becomes:
$V_{i}{ }^{k+1}=w^{*} V_{i}{ }^{k}+\left(c_{1} * \exp \left(-p p^{2}\right) *\left(p b \operatorname{est}_{i}{ }^{k}-X_{i}{ }^{k}\right)\right) * f_{i} 1+\left(c_{2} * \exp \left(-p g^{2}\right) *\left(g b e s t^{k}-X_{i}{ }^{k}\right)\right) * f_{i} 2$

The inclusion of Eq. (35) and Eq. (36) in Eq. (37) removes every element of randomness in the velocity update equation thereby giving room for pbest and gbest to govern the update of the velocity and position vectors.

4.2.3 $\quad 3^{\text {rd }}$ MODIFICATION (Pulse rate and Loudness Update)

In standard BA, the pulse rate and loudness update reach their final value during the iterative process very quickly, thus reducing the possibility of the auto-switch from global search to local search due to a higher pulse rate and the acceptance of a new solution (low loudness). This section proposes the use of monotonically increasing pulse rate and decreasing loudness updates as shown is Eq. (38) and Eq. (39):

$$
\begin{gather*}
r_{i}^{t+1}=\left(\left(\frac{r_{0}-r_{\infty}}{1-\text { iteration }_{\text {max }}}\right)\left(t-\text { iteration }_{\max }\right)+r_{\infty}\right) * \alpha \tag{38}\\
A_{i}^{t+1}=\left(\left(\frac{A_{0}-A_{\infty}}{1-\text { iteration }_{\max }}\right)\left(t-\text { iteration }_{\max }\right)+A_{\infty}\right)[1-\exp (-\gamma t)] \tag{39}
\end{gather*}
$$

where the index 0 and ∞ stand for the initial and final values respectively; α denotes alpha; γ denotes gamma; t denotes iterative index; iteration $_{\max }$ denotes maximum number of iterations.

4.3 SIMULATION RESULTS AND ANALYLSIS OF SOLVING ORPD USING MHPSOBA

The MHPSOBA method was tested on the IEEE 30-bus test systems with an objective function of minimizing the active power transmission loss in an electrical power system. The data for these systems can also be found in [121]. The MHPSOBA algorithm was also coded in MATLAB R2012b incorporated with MATPOWER 5.1 and run on an Intel (R) Pentium (R) CPU @ 2.00 GHz with 2 GB of RAM PC. The parameters and data settings of the MHPSOBA algorithm for the test system are the same as that of HPSOBA as summarized in Table II. The control variables limits are also the same as for the HPSOBA shown in Table III. The MHPSOBA method was executed for 30 runs to solve the given ORPD problem objective function when applied to the test system.

The simulation results of the MHPSOBA for solving an ORPD on an IEEE 30-bus system were compared with the results of the HPSOBA algorithm as shown in Table XIII. The table showed that the earlier proposed HPSOBA algorithm developed outperformed the results of the modified hybrid algorithm (MHPSOBA). It can be deduced from the simulation results that the randomness nature of the velocity and position vectors during iteration contributes to a large extent to the good performance of the the HPSOBA algorithm.

TABLE XIII. COMPARATIVE RESULTS OF MHPSOBA ALGORITHM WITH HPSOBA ALGORITHM FOR SOLVING ORPD PROBLEM

ALGORITHM	ACTIVE POWER LOSSES (MW)			LOSS	
	Min. Losses	Max. Losses	Mean Losses	Std. Deviation	LUCTION $(\%)$
BASE CASE	-	-	17.807	-	-
HPSOBA	16.059	16.169	$\mathbf{1 6 . 1 2 5}$	$2.80 \mathrm{e}-02$	9.45
MHPSOBA	16.064	16.254	16.149	$3.84 \mathrm{e}-02$	9.31

Table XIV shows the values of various control variables after optimization for MHPSOBA and its comparison with the base case and HPSOBA methods. It can be observed from the table that the control variables were restricted within their respective constraint's limits and inviolate. These optimal settings of various control variables minimizes the objective function to an optimum solution after 200 iterations.

TABLE XIV. COMPARATIVE VALUES OF CONTROL VARIABLES AFTER OPTIMIZATION FOR HPSOBA AND MHPSOBA METHODS FOR IEEE 30-BUS TEST SYSTEM

CONTROL VARIABLES (p.u)	BASE CASE	HPSOBA	MHPSOBA
$V g_{1}$	1.06	1.10	1.10
$V g_{2}$	1.04	1.09	1.09
$V g_{5}$	1.01	1.05	1.05
$V g_{8}$	1.01	1.06	1.06
$V g_{11}$	1.08	1.10	1.10
$V g_{13}$	1.07	1.10	1.09
T_{9-6}	0.98	1.02	1.01
T_{10-6}	0.97	0.96	0.99
T_{12-4}	0.93	1.06	1.05
T_{28-27}	0.97	0.98	0.98
$Q c_{10}$	0.19	0.11	0.12
$Q c_{24}$	0.04	0.10	0.11
POWER LOSS (MW)	17.807	$\mathbf{1 6 . 1 2 5}$	16.149
CPU TIME (s)	-	$\mathbf{2 5 7 . 0 1}$	276.24

4.4 SUMMARY

This chapter dealt with the modification of the proposed algorithm denoted as MHPSOBA to check if there will be further improvement on the performance of the HPSOBA or not. The MHPSOBA has the same pseudo code and flowchart as the proposed HPOSBA and it was tested on a modified IEEE 30-bus test system to solve an ORPD problem (active power transmission line loss minimization objective function) without a DG unit installed. It also discussed the simulation results obtained from solving the ORPD problem without a DG unit installed using the MHPSOBA. The simulation results were compared with that of HPSOBA. The next chapter presents the modification of the proposed HPSOBA to check if there will be further improvement on its performance or notconclusion and future work.

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 CONCLUSION

The HPSOBA approach was evaluated and tested on IEEE 30-bus and IEEE 118-bus test systems to solve the ORPD (with and without DG unit optimally installed) as well as benchmark test functions. Simulation results confirm the robustness of the proposed HPSOBA algorithm when tested on test functions such as Griewank, Rastrigin and Schwefel. When tested on the IEEE 30-bus and IEEE 118-bus test systems to solve for the ORPD without a DG unit and on modified IEEE 30-bus test system for solving an ORPD with a DG unit optimally installed, it was observed that the proposed HPSOBA algorithm yields optimal settings of the control variables of the test power systems and reduced the active power transmission line losses with less computational time. The results obtained from the simulations demonstrate its effectiveness and superiority over the Newton-Raphson method and other evolutionary algorithms such as PSO, DE, ABC, CLPSO, GSA and OGSA mentioned in this research in solving the ORPD problem of power systems.

In conclusion, the contributions of this research can be divided into three parts designated as Part I : benchmark function optimization; Part II: solving the ORPD problem for active power transmission line loss minimization; and Part III: Modification of the proposed hybrid approach and its test on an IEEE 30-bus system for solving the ORPD problem.

Contributions of Part I: In solving benchmark functions, the results show that HPSOBA outperformed the other two algorithms of PSO and BA for both high and low dimensions in terms of general performance. The proposed method was found to be accurate, robust and efficient.

Contributions of Part II: This can be divided into two case studies namely solving the ORPD without a DG unit installed and solving the ORPD by optimal installation of a DG unit. For solving the ORPD problem without a DG unit (first case study), the proposed HPSOBA method was validated using IEEE 30- and 118- bus test systems. The simulation results show that HPSOBA method reduced the the active power transmission line losses from 17.807 MW (base case) to 16.125 MW (9.45% loss reduction) for the IEEE 30-bus system and from 133.350 MW (base case) to 108.151 MW (18.90% loss reduction) for the IEEE 118-bus system.

For the second case study, optimal placement of a DG unit for real power transmission line loss minimization was successfully solved in this research using the hybrid algorithm (HPSOBA). The
proposed algorithm was validated using a modified IEEE 30-bus test system and compared for with and without a DG unit installed on the load buses. The outcome of the simulation tests proved that the hybrid approach (HPSOBA) further reduced the real power transmission line losses from 16.125 MW (without DG unit installed) to 15.738 MW (with DG unit installed on bus 24), representing 11.62% loss reduction while maintaining the control variables within their respective limits.

Contributions of Part III: The proposed HPSOBA was modified to check if there will be further improvement in its performance. The simulation results of the MHPSOBA showed that the earlier proposed HPSOBA algorithm developed by this research also outperformed the results of this modified hybrid approach (MHPSOBA). The simulation results also show that the random nature of the velocity and position vectors during iteration contributes to a large extent to the good performance of the HPSOBA algorithm.

Summarily, Table XV shows that the hybrid approach (HPSOBA) outperformed the PSO, BA and MHPSOBA methods for both IEEE 30- and 118- bus test systems.

TABLE XV. ALGORITHM PERFORMANCE SUMMARY FOR SOLVING ORPD PROBLEM

ALGORITHM	IEEE 30-BUS		
POWER LOSS (MW)			IEEE 118-BUS
---	---	---	---
POWER LOSS (MW)	$	$	BASE CASE
:---:	:---:	:---:	
PSO	16.165	109.772	
BA	16.133	$\mathbf{1 0 8 . 1 5 1}$	
HPSOBA	16.125	-	
HPSOBA (with DG at Bus 24)	$\mathbf{1 5 . 7 3 8}$	-	
MHPSOBA	16.149		

In general, the contributions of this research, apart from optimally installing a DG unit using a HPSOBA, can be summarized as follows: (1) minimization of active power transmission losses, (2) load bus voltage levels are maintained within their respective limits, (3) reactive power generation is kept within limits and (4) transformer tap settings are maintained within limits.

The simulation test results show that the proposed HPSOBA method not only improves the solution's quality but also reduces the computational time and is suitable for solving an ORPD, optimal placement of a DG unit for real power loss minimization as well as benchmark function optimization problems.

5.2 FUTURE WORK

Three areas are proposed for further research:

1) This research considered only one DG unit, further research needs to be done on adding more DG units in solving an ORPD problem. The computational time must also be considered.
2) Reduction in computational time of the proposed HPSOBA should be investigated.
3) Application of the proposed HPSOBA on real-world ORPD problems should also be investigated.

LIST OF PUBLICATIONS

1. Agbugba, E., \& Wang, Z., "A Hybrid Particle Swarm Optimization with Bat Algorithm for Optimal Reactive Power Dispatch," submitted to IEEE Transaction on Power System with manuscript No: TPWRS-00546-2017, (submitted April 2017).
2. Agbugba, E., \& Wang, Z., "Modified Hybrid Particle Swarm Optimization with Bat Algorithm for Optimal Placement of Distributed Generation," A draft paper to be submitted to a conference.

REFERENCES

[1] Soliman, S.A., \& Mantawy, A.H. (2012). Modern Optimization Techniques with Applications in Electric Power Systems. Florida, Springer Science LLC. 1-430.
[2] Abhyankar, A. R., \& Khaparde, S. A. (2013). Introduction to deregulation in power industry. Report by Indian Institute of Technology, Mumbai.
[3] Tong, X., Zhang, Y. \& Wu, F. (2006) A Decoupled Semi Smooth Newton Method for Optimal Power Flow. in: IEEE Power Engineering Society General Meeting.
[4] Carpentier, J. (1962) Contribution to the Economic Dispatch Problem. Bullentin de la Societe Francoise des Electricien. 3 (8), 431-47.
[5] Dommel, H. W. \& Tinney, W. F. (1968) Optimal Power Flow Solutions. IEEE Transactions on Power Apparatus Systems. PAS-87 (10), 1866 -1876.
[6] Zhang, X. P. (2010) Fundamentals of Electric Power Systems. New York, John Wiley \& Sons, Inc. 1-52.
[7] Mamandur, K. R. C. \& Chenoweth, R. D. (1981) Optimal Control of Reactive Power flow for Improvements in Voltage Profiles and for Real Power Loss Minimization. in IEEE Transactions on Power Apparatus and Systems. PAS-100 (7), 3185-3194.
[8] Biskas, P., Ziogos, N., Tellidou, A., Zoumas, C., Bakirtzis, A., Petridis, V. \& Tsakoumis A. (2005) Comparison of two Metaheuristics with Mathematical Programming Methods for the Solution of OPF. in: Proceedings of the 13th International Conference on Intelligent Systems Application to Power Systems.
[9] Bjelogrlic, M.R., Calovic, M.S., Babic, B.S. \& Ristanovic, P. (1990) Application of Newton's Optimal Power Flow in Voltage/Reactive Power Control. IEEE Trans. on Power Systems. 5, 1447-1454.
[10] Quintana, V.H. \& Nieto, M. S. (1989) Reactive Power Dispatch by Successive Quadratic Programming. IEEE Trans. on Energy Conversion. 4, 425-435.
[11] Grudinin, N. (1998) Reactive Power Optimization Using Successive Quadratic Programming Method. IEEE Trans. on Power Systems. 13, 1219-1225.
[12] Ramos, J.L.M., Expósito, A.G., \& Quintana, V.H. (2005) Transmission power loss reduction by interior-point methods: implementation issues and practical experience. IEE Proc. Gener., Trans. Distrib. 152 (1), 90-98.
[13] Rezania, E. \& Shahidehpour, S.M. (2001) Real power loss minimization using interior point method. Int. J. Electr. Power Energy Syst. 23 (1), 45-56.
[14] Alsac, O., Bright, J., Prais, M., Scott, B. \& Marinho, J.L. (1990) Further Developments in LP Based Optimal Power Flow. IEEE Transactions on Power Systems. 5, 697-711.
[15] Deeb, N. I. \& Shahidehpour, S. M. (1988) An Efficient Technique for Reactive Power Dispatch Using a Revised Linear Programming Approach. Electric Power System Research. 15, 121-134.
[16] AlRashidi, M. R. \& El-Hawary, M. E. (2009) Applications of Computational Intelligence Techniques for Solving the Revived Optimal Power Flow Problem. Electrical Power Systems Res. 79 (4), 694-702.
[17] Wu, Q.H., \& Ma, J.T. (1995) Power System Optimal Reactive Power Dispatch Using Evolutionary Programming. IEEE Trans. Power Syst. 10 (3), 1243-1249.
[18] Durairaj, S., Devaraj, D., \& Kannan, P.S. (1998) Genetic Algorithm Applications to Optimal Reactive Power Dispatch with Voltage Stability Enhancement. Journal of the Institution of Engineers (India): Electrical Engineering Division. (87), 42-47.
[19] Abdullah, W. N. W., Saibon, H., Zain, A. A. M., \& Lo, K. L. (1998) Genetic Algorithm for Optimal Reactive Power Dispatch. in proc. Energy Management and Power Delivery conf. 1, 160-164.
[20] Fister Jr, I., Fong, S., Brest, J. \& Fister, I. (2014) A Novel Hybrid Self-Adaptive Bat Algorithm. The Scientific World Journal. 2014, 1-12.

Dai, C., Chen, W., Zhu, Y. \& Zhang, X. (2009) Seeker Optimization Algorithm for Optimal Reactive Power Dispatch. IEEE Trans. Power Syst. 24 (3), 1218-1231.
[22] Ela, A.A.A.E, Abido, M.A. \& Spea, S.R. (2011) Differential Evolution Algorithm for Optimal Reactive Power Dispatch. Electr. Power Syst. Res. 81, 458-464.
[23] Liang, C.H., Chung, C.Y., Wong, K.P., Duan, X.Z. \& Tse, C.T. (2007) Study of Differential Evolution for Optimal Reactive Power Flow. IEE Proc. Gen. Trans. Distrib. 1 (2), 253-260.
[24] Varadarajan, M. \& Swarup, K.S. (2008) Network Loss Minimization with Voltage Security Using Differential Evolution. Electr. Power Syst. Res. 78, 815-823.
[25] Tripathy, M. \& Mishra, S. (2007) Bacteria Foraging Based Solution to Optimize Both Real Power Loss and Voltage Stability Limit. IEEE Trans. Power Syst. 22 (1), 2408.
[26] Abou El Ela, A. A., Abido, M. A., \& Spea, S. R. (2011) Differential Evolution Algorithm for Optimal Reactive Power Dispatch. Electric Power Systems Research. 81, 458-464.
[27] Yoshida, H., Kawata, K., Fukuyama, Y., Takamura, S., \& Nakanishi, Y. (2000) A Particle Swarm Optimization for Reactive Power and Voltage Control Considering Voltage Security Assessment. IEEE Trans. Power Syst. 15 (4), 1232-1239.
[28] Rau, N. (2003) Issues in the Path toward an RTO and Standard Markets. IEEE Transactions on Power Systems. 2 (18), 435-443.
[29] Azmy, A. (2007) Optimal Power Flow to Manage Voltage Profiles in Interconnected Networks Using Expert Systems. IEEE Transactions on Power Systems. 4 (22), 16221628.
[30] Abido, M. A. (2002) Optimal power flow using particle swarm optimization. International journal of electrical power \& energy systems. 24(7), 563-571.
[31] Fogel, D. B. (1997). The Advantages of Evolutionary Computation. Proceedings of Biocomputing and emergent computation (BCEC). 1-11.
[32] Mamandur, K. R. C. \& Chenoweth, R. D. (1981) Optimal control of reactive power flow for improvements in voltage profiles and for real power loss minimization. in IEEE Transaction on PAS. 100(7), 3185-3194.
[33] Shoults, R. R. \& Sun, D. T.(1982) Optimal Power Flow Based Upon P-Q Decomposition. IEEE Transactions on Power Apparatus and Systems. PAS-101(2), 397-405.
[34] Burchett, R.C., Happ, H.H. \& Vierath, D.R. (1984) Quadratically convergent optimal power flow. IEEE Transactions on Power Apparatus System. 103(11), 3267-3276.
[35] Lee, K. Y., Park, Y. M. \& Ortiz, J. L. (1985) A United Approach to Optimal Real and Reactive Power Dispatch. in IEEE Power Engineering Review. PER-5(5), 42-43.
[36] Mota-Palomino, R. \& Quintana, V. H. (1986) Sparse Reactive Power Scheduling by a Penalty Function-Linear Programming Technique. in IEEE Power Engineering Review. PER-6(8), 21-21.
[37] Nanda, J., Kothari, D. P. \& Srivastava, S. C. (1989) New optimal power-dispatch algorithm using Fletcher's quadratic programming method. in IEE Proceedings C Generation, Transmission and Distribution. 136(3), 153-161.
[38] Liu, W. H. E., Papalexopoulos, A. D. \& Tinney, W. F. (1992) Discrete shunt controls in a Newton optimal power flow. in IEEE Transactions on Power Systems. 7(4), 1509-1518.
[39] Granville, S. (1994) Optimal reactive dispatch through interior point methods. in IEEE Transactions on Power Systems. 9(1), 136-146.
[40] Santos, A. \& da Costa, G. R. M. (1995) Optimal-power-flow solution by Newton's method applied to an augmented Lagrangian function. in IEE Proceedings - Generation, Transmission and Distribution. 142(1), 33-36.
[41] Momoh, J. A. \& Zhu, J. Z. (1999) Improved interior point method for OPF problems. in IEEE Transactions on Power Systems. 14(3), 1114-1120.
[42] Wu, Q. H. \& Ma, J. T. (1995) Power system optimal reactive power dispatch using evolutionary programming. IEEE Transaction on Power Systems. 10(3), 1243-1249.
[43] Wu, Q. H., Cao, Y. J. \& Wen, J. Y. (1998) Optimal reactive power dispatch using an adaptive genetic algorithm. International Journal of Electrical Power Energy Systems. 20(8), 563-569.
[44] Abido, M. A. (2002) Optimal power flow using Tabu search algorithm. Electric Power Components and Systems. 30(5), 469-483.
[45] Durairaj, S., Devaraj, D., \& Kannan, P. S. (2006) Genetic algorithm applications to optimal reactive power dispatch with voltage stability enhancement. Journal of the Institution of Engineers (India): Electrical Engineering Division. 87, 42-47.
[46] Tripathy, M. \& Mishra, S. (2007) Bacteria foraging-based solution to optimize both real power loss and voltage stability limit. IEEE Transactions on Power Systems. 22(1), 240248

Liang, C. H., Chung, C. Y., Wong, K. P., Duan, X. Z. \& Tse, C. T. (2007) Study of differential evolution for optimal reactive power flow. in IET Generation, Transmission \& Distribution. 1(2), 253-260.
[50] Devaraj, D., Durairaj, S. \& Kannan, P. S. (2008) Real parameter genetic algorithm to multi objective reactive power dispatch. Int J Power Energy Syst. 28(1), 1710-2243.
[51] Dai, C., Chen, W., Zhu, Y. \& Zhang, X. (2009) Seeker Optimization Algorithm for Optimal Reactive Power Dispatch. in IEEE Transactions on Power Systems. 24(3), 12181231.

Ela, A. A. A. E., Abido, M. A. \& Spea, S. R (2011) Differential evolution algorithm for optimal reactive power dispatch. Electric Power Systems Research. 81, 458-464.
[53] Ayan, K. \& Kilic, U. (2012) Artificial Bee Colony algorithm solution for optimal reactive power flow. Applied Soft Computing. 12, 1477-1482.
[54] Mandal, B. \& Roy, P. K. (2013) Optimal reactive power dispatch using quasi-oppositional teaching learning based optimization. International Journal of Electrical Power \& Energy Systems. 53, 123-134.

Dharmaraj, K. \& Ravi, G. (2014) Optimal Reactive Power Dispatch of Power System using Improved Harmony Search Algorithm. International review of Electrical Engineering. 9(3), 620-628.
[56] Bouchekara, H. R. E. H., Abido, M. A. \& Boucherma, M. (2014) Optimal power flow using Teaching-Learning-Based Optimization technique. Electric Power Systems Research. 114, 49-59.
[57] Bouchekara, H. R. E. H. (2014) Optimal power flow using black-hole-based optimization approach. Applied Soft Computing. 24, 879-888.
[58] Amrane, Y., Boudour, M., \& Belazzoug, M. (2015) A new optimal reactive power planning based on differential search algorithm. International Journal of Electrical Power \& Energy Systems. 64, 551-561.
[59] Sulaimana, M. H., Mustaffab, Z., Mohameda, M. R. \& Omar Alimana. (2015) Using the gray wolf optimizer for solving optimal reactive power dispatch problem Applied Soft Computing. 32, 286-292.
[60] Lenin, K., Reddy, B. R., \& Kalavathi, M .S. (2016) Honey Bees Optimization Algorithm for Solving Optimal Reactive Power Problem. International Journal Of Research in Electronics and Communication Technology. 3(4).
[61] Dutta, P. \& Sinha, A. K. (2006). Voltage Stability Constrained Multi-objective Optimal Power Flow using Particle Swarm Optimization. $I^{\text {st }}$ International Conference on Industrial and Information Systems. 8(11), 161-166.
[62] Kennedy, J. \& Eberhart, R. (1995) Particle Swarm Optimization. in Proc. IEEE International Conference on Neural Networks. 4, 1942-1948.
[63] Poli, J., Kennedy, Blackwell, T. \& Freitas, A. (ed), (2008) Particle Swarms: The Second Decade. USSR, Hindawi Publishing Corp.

64Mo, N., Zou, Z., Chan, K. \& Pong, T. (2007) Transient Stability Constrained Optimal Power Flow Using Particle Swarm Optimization. IET Generation, Transmission \& Distribution. 3(1) 476-483.
[65] Gaing, Z. L. \& Liu, X. H. (2007) New Constriction Particle Swarm Optimization for Security-Constrained Optimal Power Flow Solution. in: International Conference on Intelligent Systems Applications to Power Systems, ISAP. 1-6.
[66] Mantawy, A. H., \& Al-Ghamdi, M. S. (2003). A new reactive power optimization algorithm. in IEEE Power Tech Conference Proceedings. 4, 6-10.
[67] Yoshida, H., Kawata, K., Fukuyama, Y., Takayama, S. \& Nakanishi, Y. (2000) A particle swarm optimization for reactive power and voltage control considering voltage security assessment. in IEEE Transactions on Power Systems. 15(4), 1232-1239.
[68] Stacey, A., Jancic M. \& Grundy, I. (2003) Particle swarm optimization with mutation," The Congress on Evolutionary Computation. 2, 1425-1430.
[69] Zhao, B., Guo C. X. \& Cao, Y. J. (2005) A multiagent-based particle swarm optimization approach for optimal reactive power dispatch. in IEEE Transactions on Power Systems. 20 (2), 1070-1078.
[70] Vlachogiannis J. G. \& Lee, K. Y. (2006) A Comparative Study on Particle Swarm Optimization for Optimal Steady-State Performance of Power Systems. in IEEE Transactions on Power Systems. 21 (4), 1718-1728.
[71] Mahadevan K. \& Kannan P.S. (2010) Comprehensive learning particle swarm optimization for reactive power dispatch. Applied Soft Computing. 10, 641-652.
[72] Lenin K. \& Reddy, B.R. (2014) Quantum Particle Swarm Optimization Algorithm for Solving Optimal Reactive Power Dispatch Problem. International Journal of Information Engineering and Electronic Business. 6 (4), 32-37.
[73] Kumar, S. \& Goyal, S. K. (2015) A Particle Swarm Optimization for Optimal Reactive Power Dispatch. International Journal of Research in Science \& Technology. 2 (4), 36-44.
[74] Ben, K., Medani, O. \& Sayah, S. (2016) Optimal reactive power dispatch using particle swarm optimization with time varying acceleration coefficients. 8th International Conference on Modelling, Identification and Control (ICMIC). 780-785.
[75] Clerc, M. (1999) The swarm and the queen: towards a deterministic and adaptive particle swarm optimization. Proceedings of the IEEE Congress on Evolutionary Computation. 1951-957.
[76] Eberhart, R.C. \& Shi, Y. (2000) Comparing inertia weights and constriction factors in particle swarm optimization. Proceedings of the IEEE Conference on Evolutionary Computation. 84-88.
[77] Bratton, D. \& Kennedy, J. (2007) Defining a Standard for Particle Swarm Optimization. in IEEE Swarm Intelligence Symposium. 120-127.
[78] Ratnaweera, A., Halgamuge, S. K., \& Watson, H. C. (2004). Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. in IEEE Transactions on Evolutionary Computation, 8(3), 240-255.
[79] Sun, P., Sun, H., Feng, W., Zhao, Q., \& Zhao, H. (2010). A Study of Acceleration Coefficients in Particle Swarm Optimization Algorithm Based on CPSO, 2nd International Conference on Information Engineering and Computer Science, 1-4.
[80] Yang. X. (2010) A new metaheuristic bat-inspired algorithm. In Nature inspired cooperative strategies for optimization. Springer. pages 65-74.
[81] Yang. X. (2011) Bat algorithm for multi-objective optimisation. International Journal of Bio-Inspired Computation. 3(5), 267-274.
[82] Yang X. \& Gandomi, A. H. (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering Computations, 29 (5), 464-483.
[83] Fister, I., (2013) A comprehensive review of bat algorithms and their hybridization, Masters thesis, University of Maribor, Slovenia.
[84] Yang, X. \& He. X. (2013) Bat algorithm: literature review and applications. International Journal of Bio-Inspired Computation. 5 (3), 141-149.
[85] Biswal, S. Barisal, A. K. Behera A. \& Prakash, T. (2013) Optimal power dispatch using Bat Algorithm. International Conference on Energy Efficient Technologies for Sustainability, Nagercoil. 1018-1023.
[86] Lenin, K., Ravindhranath, B. B., Reddy, M. \& Kalavathi, S. (2014) Reduction of Real Power Loss by using Improved Bat Algorithm. International Journal of Research in Electrical and Electronics Technology (IJREET). 1(2).
[87] Rao, B.V., \& Kumar, G.V. N. (2014) Optimal Location of Thyristor Controlled Series Capacitor for reduction of Transmission Line losses using Bat Search Algorithm. WSEAS Transactions on Power Systems. 9, 459-470.
[88] Djossou, A. A., (2015) A Modified Bat Algorithm for Power Loss Reduction in Electrical Distribution System. TELKOMNIKA Indonesian Journal of Electrical Engineering. 14 (1), 55-61.
[89] Latif, A., Ahmad, I., Palensky P., \& Gawlik, W. (2016) Multi-objective reactive power dispatch in distribution networks using modified bat algorithm. IEEE Green Energy and Systems Conference (IGSEC). 1-7.
[90] Thangaraj, R., Pant, M., Abraham, A., \& Bouvry, P. (2011). Particle swarm optimization: hybridization perspectives and experimental illustrations. Applied Mathematics and Computation, 217(12), 5208-5226.
[91] Das, B. \& Patvardhan, C. (2003) A new hybrid evolutionary strategy for reactive power dispatch. Electric Power Systems Research. 65 (2), 83-90.
[92] Yan, W., Lu, S. \& Yu, D. C. (2004) A novel optimal reactive power dispatch method based on an improved hybrid evolutionary programming technique. In: IEEE Transactions on Power Systems, 19 (2), 913-918.
[93] Esmin, A.A.A., Lambert-Torres, G., \& De-Souza A.C.Z. (2005) A hybrid particle swarm optimization applied to loss power minimization. IEEE Transactions on Power Systems. 20 (2), 859-866.
[94] Yan, W., Liu, F., Chung, C. Y. \& Wong, K. P. (2006) A hybrid genetic algorithm-interior point method for optimal reactive power flow. in IEEE Transactions on Power Systems, 21 (3), 1163-1169.
[95] Chung, C. Y., Liang, C. H., Wong K. P. \& Duan, X. Z. (2010) Hybrid algorithm of differential evolution and evolutionary programming for optimal reactive power flow. in IET Generation, Transmission \& Distribution. 4 (1), 84-93.
[96] Subbaraj, P. \& Rajnarayanan, P. N. (2010) Hybrid Particle Swarm Optimization Based Optimal Reactive Power Dispatch. International Journal of Computer Applications. 1 (5), 65-70.
[97] Fister Jr, I., Fister, D. \& Yang, X. S. (2013) A hybrid bat algorithm. Elektrotehniski vestnik. 80 (1-2), 1-7.
[98] Ghasem, M., Ghavidel, S., Ghanbarian, M. M., \& Habibi, A. (2014) A new hybrid algorithm for optimal reactive power dispatch problem with discrete and continuous control variables. Applied Soft Computing. 22, 126-140.
[99] Ghasemi, M., Ghanbarian, M. M., Ghavidel, S., Rahmani, S., \& Moghaddam, E. M. (2014) Modified teaching learning algorithm and double differential evolution algorithm for optimal reactive power dispatch problem: A comparative study. Information Sciences. 278 (10), 231-249.
[100] Lenin, K., Reddy B. R., \& Kalavathic, M. S. (2014) Diminution of Real Power Loss by Using Hybridization of Bat Algorithm with Harmony Search Algorithm. International Journal of Computer. 15(1), 59-78.
[101] Lenin, K., \& Reddy B. R. (2014) Minimization of Active power loss by using Hybridization of Simulated Annealing and Nelder-Mead algorithm. Journal of Energy Management. 3 (4).
[102] Singh, R. P., Mukherjeeb, V., Ghoshal, S. P. (2015) Optimal reactive power dispatch by particle swarm optimization with an aging leader and challengers. Applied Soft Computing. 29, 298-309.
[103] Rajan, A., \& Malakar, T. (2015) Optimal reactive power dispatch using hybrid NelderMead simplex based firefly algorithm. International Journal of Electrical Power \& Energy Systems. 66, 9-24.
[104] Lenin, K., Reddy, B. R. \& Suryakalavathi, M. (2015) Hybrid Bat Algorithm for solving reactive power problem. International Journal of Energy. 9, 7-11.
[105] Radosavljevic, J. \& Jevtic, M. (2016) Solution of Optimal Reactive Power Dispatch by a Hybrid GSA-SQP Algorithm, Elektronika ir Elektrotechnika, 22 (3), 3-6.
[106] Mehdinejad, M., Mohammadi-Ivatloo, B., Dadashzadeh-Bonab, R. \& Zare, K. (2016) Solution of optimal reactive power dispatch of power systems using hybrid particle swarm optimization and imperialist competitive algorithms. International Journal of Electrical Power \& Energy Systems. 83, 104-116.
[107] Electric Power Research Institute web-page (1998): http://www.epri.com/gg/newgen/disgen/index.html
[108] Kazemi, A., \& Sagedhi, M., (2009) A load flow based method for optimal location of dispersed generation units. Power Systems Conference and Exposition. 1-5.
[109] Rau, N. S., \& Wan, Y. H., (1994) Optimum location of resources in distributed planning. IEEE Trans. Power Syst. 9 (4), 2014-2020.
[110] Keane, A., \& O'Malley, M., (2005) Optimal allocation of embedded generation on distribution networks. IEEE Trans. Power Syst. 20 (3), 1640-1646.
[111] Dulău, L. I., Abrudean, M., \& Bică, D., (2016) Optimal Location of a Distributed Generator for Power Losses Improvement. Procedia Technology. 22, 734-739.
[112] Vinothkumar, K., \& Selvan, M. P., (2011) Fuzzy embedded genetic algorithm method for distributed generation planning. Electr. Power Compon. Syst. 39 (4), 346-366.
[113] Prakash, R., \& Sujatha, B. C., (2016) Optimal placement and sizing of DG for power loss minimization and VSI improvement using bat algorithm. 2016 National Power Systems Conference (NPSC). 1-6.
[114] Prommee, W., \& Ongsakul, W., (2011) Optimal multiple distributed generation placement in microgrid system by improved reinitialized social structures particle swarm optimization. Eur. Trans. Electr. Power. 21 (1), 489-504.
[115] Sarfaraz, N., Bansal, A., \& Singh, S. (2016) Optimal allocation and sizing of distributed generation for power loss reduction. International Conference \& Workshop on Electronics \& Telecommunication Engineering (ICWET 2016). 15-20.
[116] Tan, W. S., Hassan, M. Y., Majid M. S., \& Rahman, H. A., (2012) Allocation and sizing of DG using Cuckoo Search algorithm. 2012 IEEE International Conference on Power and Energy (PECon). 133-138.
[117] Abu-Mouti, F. S., \& El-Hawary, M. E., (2011) Optimal Distributed Generation Allocation and Sizing in Distribution Systems via Artificial Bee Colony Algorithm. IEEE Transactions on Power Delivery. 26 (4), 2090-2101.
[118] Kumarappan, N., \& Arulraj, R., (2016) Optimal installation of multiple DG units using competitive swarm optimizer (CSO) algorithm. 2016 IEEE Congress on Evolutionary Computation (CEC). 3955-3960.
[119] El-Ela, A. A. A., El-Sehiemy, R. A., Kinawy, A. M., \& Ali, E. S., (2016) Optimal placement and sizing of distributed generation units using different cat swarm optimization algorithms. 2016 Eighteenth International Middle East Power Systems Conference (MEPCON). 975-981.
[120] Kaur, E. A., \& Kaur, E. M. (2015). A Comprehensive Survey of Test Functions for Evaluating the Performance of Particle Swarm Optimization Algorithm. International Journal of Hybrid Information Technology, 8(5), 97-104.
[121] Power system test case archive; Available at: http://www.ee.washington.edu/research/pstca/
[122] https://www.researchgate.net/figure/233427613_fig1_Figure-2-Single-line-diagram-of-IEEE-30-bus-system
[123] Pandya, S. \& Roy, R. (2015) Particle Swarm Optimization Based Optimal Reactive Power Dispatch. IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT). 1-5.
[124] Li, Y., Wang, Y., \& Li, B. (2013) A hybrid Artificial Bee Colony assisted Differential Evolution algorithm for optimal reactive power flow. Electrical Power System Research. 52, 25-33.
[125] www.al-roomi.org/multimedia/Power_Flow/118BusSystem/IEEE118BusSystemB.jpg
[126] Mahadevan, K. \& Kannan, P. S. (2010) Comprehensive learning particle swarm optimization for reactive power dispatch. Applied Soft Computing. 10, 641-652.
[127] Duman, S., Sönmez, Y., Güvenc, U. \& Yörükeren, N. (2012) Optimal reactive power dispatch using a gravitational search algorithm. IET Generation, Transmission \& Distribution. 6 (6), 563-576.
[128] Shaw, B., Mukherjee, V., \& Ghoshal, S. P., (2014) Solution of reactive power dispatch of power systems by an opposition-based gravitational search algorithm. International Journal of Electrical Power \& Energy Systems. 55, 29-40.

APPENDICES

APPENDIX A STANDARD IEEE 30- (case_ieee30) AND IEEE 118- (case118) BUS TEST SYSTEMS DATA

APPENDIX A. 1 STANDARD IEEE 30-BUS TEST SYSTEM DATA

\% CASE_IEEE30 Power flow data for IEEE 30-bus test case.
\% Power Flow Data
\% system MVA base
baseMVA = 100;

\% bus data											
bus_i	type	Pd	Qd	Gs	Bs	area	Vm	Va	baseKV	Vmax	Vmin
1	3	0	0	0	0	1	1.06	0	132	1.10	0.95
2	2	21.7	12.7	0	0	,	1.043	-5.48	132	1.10	0.95
3	1	2.4	1.2	0	0	1	1.021	-7.96	132	1.05	0.95
4	1	7.6	1.6	0	0	1	1.012	-9.62	132	1.05	0.95
5	2	94.2	19	0	0	1	1.01	-14.37	132	1.10	0.95
6	1	0	0	0	0	1	1.01	-11.34	132	1.05	0.95
7	1	22.8	10.9	0	0	1	1.002	-13.12	132	1.05	0.95
8	2	30	30	0	0	1	1.01	-12.1	132	1.10	0.95
9	1	0	0	0	0	1	1.051	-14.38	1	1.05	0.95
10	1	5.8	2	0	0.19	1	1.045	-15.97	33	1.05	0.95
11	2	0	0	0	0	1	1.082	-14.39	11	1.10	0.95
12	1	11.2	7.5	0	0	1	1.057	-15.24	33	1.05	0.95
13	2	0	0	0	0	1	1.071	-15.24	11	1.10	0.95
14	1	6.2	1.6	0	0	1	1.042	-16.13	33	1.05	0.95
15	1	8.2	2.5	0	0	1	1.038	-16.22	33	1.05	0.95
16	1	3.5	1.8	0	0	1	1.045	-15.83	33	1.05	0.95
17	1	9	5.8	0	0	1	1.04	-16.14	33	1.05	0.95
18	1	3.2	0.9	0	0	1	1.028	-16.82	33	1.05	0.95
19	1	9.5	3.4	0	0	1	1.026	-17.00	33	1.05	0.95
20	1	2.2	0.7	0	0	1	1.03	-16.8	33	1.05	0.95
21	1	17.5	11.2	0	0	1	1.033	-16.42	33	1.05	0.95
22	1	0	0	0	0	1	1.033	-16.41	33	1.05	0.95
23	1	3.2	1.6	0	0	1	1.027	-16.61	33	1.05	0.95
24	1	8.7	6.7	0	. 043	1	1.021	-16.78	33	1.05	0.95
25	1	0	0	0	0	1	1.017	-16.35	33	1.05	0.95
26	1	3.5	2.3	0	0	1	1.000	-16.77	33	1.05	0.95
27	1	0	0	0	0	1	1.023	-15.82	33	1.05	0.95
28	1	0	0	0	0	1	1.007	-11.97	132	1.05	0.95
29	1	2.4	0.9	0	0	1	1.003	-17.06	33	1.05	0.95
30	1	10.6	1.9	0	0	,	0.992	-17.94	33	1.05	0.95

generator data									
bus	Pg	Qg	Qmax	Qmin	Vg	mBase	status	Pmax	Pmin
1	260.2	-16.1	10	0	1.06	100	1	360.2	0
2	40	50	50	-40	1.045	100	1	140	0
5	0	37	40	-40	1.01	100	1	100	0
8	0	37.3	40	-10	1.01	100	1	100	0
11	0	16.2	24	-6	1.082	100	1	100	0
13	0	10.6	24	-6	1.071	100	1	100	0

\% branch data										
Fbus	tbus	r	$x \quad \mathrm{~b}$	rateA	rateB rateC	ratio	angle	status		
1	2	0.0192	0.0575	0.0528	0	0	0	1	0	1
1	3	0.0452	0.1652	0.0408	0	0	0	1	0	1
2	4	0.057	0.1737	0.0368	0	0	0	1	0	1
3	4	0.0132	0.0379	0.0084	0	0	0	1	0	1
2	5	0.0472	0.1983	0.0418	0	0	0	1	0	1
2	6	0.0581	0.1763	0.0374	0	0	0	1	0	1
4	6	0.0119	0.0414	0.009	0	0	0	1	0	1
5	7	0.046	0.116	0.0204	0	0	0	1	0	1
6	7	0.0267	0.082	0.017	0	0	0	1	0	1
6	8	0.012	0.042	0.009	0	0	0	1	0	1
6	9	0	0.208	0	0	0	0	0.978	0	1
6	10	0	0.556	0	0	0	0	0.969	0	1
9	11	0	0.208	0	0	0	0	1	0	1
9	10	0	0.11	0	0	0	0	1	0	1
4	12	0	0.256	0	0	0	0	0.932	0	1
12	13	0	0.14	0	0	0	0	1	0	1
12	14	0.1231	0.2559	0	0	0	0	1	0	1
12	15	0.0662	0.1304	0	0	0	0	1	0	1
12	16	0.0945	0.1987	0	0	0	0	1	0	1
14	15	0.221	0.1997	0	0	0	0	1	0	1
16	17	0.0524	0.1923	0	0	0	0	1	0	1
15	18	0.1073	0.2185	0	0	0	0	1	0	1
18	19	0.0639	0.1292	0	0	0	0	1	0	1
19	20	0.034	0.068	0	0	0	0	1	0	1
10	20	0.0936	0.209	0	0	0	0	1	0	1
10	17	0.0324	0.0845	0	0	0	0	1	0	1
10	21	0.0348	0.0749	0	0	0	0	1	0	1
10	22	0.0727	0.1499	0	0	0	0	1	0	1
21	22	0.0116	0.0236	0	0	0	0	1	0	1
15	23	0.1	0.202	0	0	0	0	1	0	1
22	24	0.115	0.179	0	0	0	0	1	0	1
23	24	0.132	0.27	0	0	0	0	1	0	1
24	25	0.1885	0.3292	0	0	0	0	1	0	1
25	26	0.2544	0.38	0	0	0	0	1	0	1
25	27	0.1093	0.2087	0	0	0	0	1	0	1
28	27	0	0.396	0	0	0	0	0.968	0	1
27	29	0.2198	0.4153	0	0	0	0	1	0	1
27	30	0.3202	0.6027	0	0	0	0	1	0	1
29	30	0.2399	0.4533	0	0	0	0	1	0	1
8	28	0.0636	0.2	0.0428	0	0	0	1	0	1
6	28	0.0169	0.0599	0.013	0	0	0	1	0	1

APPENDIX A. 2 STANDARD IEEE 118-BUS TEST SYSTEM DATA

\%CASE118 Power flow data for IEEE 118-bus test case.
\% system MVA base
baseMVA $=100$

\% bus data											
bus_i	type	Pd	Qd	Gs	Bs	area	Vm	Va	baseKV	Vmax	Vmin
1	2	51	27	0	0	1	0.955	10.67	138	1.06	0.94;
2	1	20	9	0	0	1	0.971	11.22	138	1.06	0.94;
3	1	39	10	0	0	1	0.968	11.56	138	1.06	0.94;
4	2	39	12	0	0	1	0.998	15.28	138	1.06	0.94;
5	1	0	0	0	-0.4	1	1.002	15.73	138	1.06	0.94;

6	2	52	22	0	0	1	0.99	13	138	1.06	0.94 ;
7	1	19	2	0	0	1	0.989	12.56	138	1.06	0.94;
8	2	28	0	0	0	1	1.015	20.77	345	1.06	0.94;
9	1	0	0	0	0	1	1.043	28.02	345	1.06	0.94;
10	2	0	0	0	0	1	1.05	35.61	345	1.06	0.94;
11	1	70	23	0	0	1	0.985	12.72	138	1.06	0.94;
12	2	47	10	0	0	1	0.99	12.2	138	1.06	0.94;
13	1	34	16	0	0	1	0.968	11.35	138	1.06	0.94;
14	1	14	1	0	0	1	0.984	11.5	138	1.06	0.94;
15	2	90	30	0	0	1	0.97	11.23	138	1.06	0.94 ;
16	1	25	10	0	0	1	0.984	11.91	138	1.06	0.94;
17	1	11	3	0	0	1	0.995	13.74	138	1.06	0.94;
18	2	60	34	0	0	1	0.973	11.53	138	1.06	0.94;
19	2	45	25	0	0	1	0.963	11.05	138	1.06	0.94;
20	1	18	3	0	0	1	0.958	11.93	138	1.06	0.94;
21	1	14	8	0	0	1	0.959	13.52	138	1.06	0.94;
22	1	10	5	0	0	1	0.97	16.08	138	1.06	0.94;
23	1	7	3	0	0	1	1	21	138	1.06	0.94;
24	2	13	0	0	0	1	0.992	20.89	138	1.06	0.94;
25	2	0	0	0	0	1	1.05	27.93	138	1.06	0.94;
26	2	0	0	0	0	1	1.015	29.71	345	1.06	0.94;
27	2	71	13	0	0	1	0.968	15.35	138	1.06	0.94;
28	1	17	7	0	0	1	0.962	13.62	138	1.06	0.94;
29	1	24	4	0	0	1	0.963	12.63	138	1.06	0.94;
30	1	0	0	0	0	1	0.968	18.79	345	1.06	0.94;
31	2	43	27	0	0	1	0.967	12.75	138	1.06	0.94;
32	2	59	23	0	0	1	0.964	14.8	138	1.06	0.94;
33	1	23	9	0	0	1	0.972	10.63	138	1.06	0.94;
34	2	59	26	0	0.14	1	0.986	11.3	138	1.06	0.94;
35	1	33	9	0	0	1	0.981	10.87	138	1.06	0.94;
36	2	31	17	0	0	1	0.98	10.87	138	1.06	0.94;
37	1	0	0	0	-0.25	1	0.992	11.77	138	1.06	0.94;
38	1	0	0	0	0	1	0.962	16.91	345	1.06	0.94;
39	1	27	11	0	0	1	0.97	8.41	138	1.06	0.94;
40	2	66	23	0	0	1	0.97	7.35	138	1.06	0.94;
41	1	37	10	0	0	1	0.967	6.92	138	1.06	0.94;
42	2	96	23	0	0	1	0.985	8.53	138	1.06	0.94;
43	1	18	7	0	0	1	0.978	11.28	138	1.06	0.94;
44	1	16	8	0	0.1	1	0.985	13.82	138	1.06	0.94;
45	1	53	22	0	0.1	1	0.987	15.67	138	1.06	0.94;
46	2	28	10	0	0.1	1	1.005	18.49	138	1.06	0.94;
47	1	34	0	0	0	1	1.017	20.73	138	1.06	0.94;
48	1	20	11	0	0.15	1	1.021	19.93	138	1.06	0.94;
49	2	87	30	0	0	1	1.025	20.94	138	1.06	0.94;
50	1	17	4	0	0	1	1.001	18.9	138	1.06	0.94;
51	1	17	8	0	0	1	0.967	16.28	138	1.06	0.94;
52	1	18	5	0	0	1	0.957	15.32	138	1.06	0.94;
53	1	23	11	0	0	1	0.946	14.35	138	1.06	0.94;
54	2	113	32	0	0	1	0.955	15.26	138	1.06	0.94;
55	2	63	22	0	0	1	0.952	14.97	138	1.06	0.94;
56	2	84	18	0	0	1	0.954	15.16	138	1.06	0.94;
57	1	12	3	0	0	1	0.971	16.36	138	1.06	0.94;
58	1	12	3	0	0	1	0.959	15.51	138	1.06	0.94;
59	2	277	113	0	0	1	0.985	19.37	138	1.06	0.94;
60	1	78	3	0	0	1	0.993	23.15	138	1.06	0.94;
61	2	0	0	0	0	1	0.995	24.04	138	1.06	0.94;
62	2	77	14	0	0	1	0.998	23.43	138	1.06	0.94;

63	1	0	0	0	0	1	0.969	22.75	345	1.06	0.94;
64	1	0	0	0	0	1	0.984	24.52	345	1.06	0.94;
65	2	0	0	0	0	1	1.005	27.65	345	1.06	0.94;
66	2	39	18	0	0	1	1.05	27.48	138	1.06	0.94;
67	1	28	7	0	0	1	1.02	24.84	138	1.06	0.94;
68	1	0	0	0	0	1	1.003	27.55	345	1.06	0.94;
69	3	0	0	0	0	1	1.035	30	138	1.06	0.94;
70	2	66	20	0	0	1	0.984	22.58	138	1.06	0.94;
71	1	0	0	0	0	1	0.987	22.15	138	1.06	0.94;
72	2	12	0	0	0	1	0.98	20.98	138	1.06	0.94;
73	2	6	0	0	0	1	0.991	21.94	138	1.06	0.94;
74	2	68	27	0	0.12	1	0.958	21.64	138	1.06	0.94;
75	1	47	11	0	0	1	0.967	22.91	138	1.06	0.94;
76	2	68	36	0	0	1	0.943	21.77	138	1.06	0.94;
77	2	61	28	0	0	1	1.006	26.72	138	1.06	0.94;
78	1	71	26	0	0	1	1.003	26.42	138	1.06	0.94;
79	1	39	32	0	0.2	1	1.009	26.72	138	1.06	0.94;
80	2	130	26	0	0	1	1.04	28.96	138	1.06	0.94;
81	1	0	0	0	0	1	0.997	28.1	345	1.06	0.94;
82	1	54	27	0	0.2	1	0.989	27.24	138	1.06	0.94;
83	1	20	10	0	0.1	1	0.985	28.42	138	1.06	0.94;
84	1	11	7	0	0	1	0.98	30.95	138	1.06	0.94;
85	2	24	15	0	0	1	0.985	32.51	138	1.06	0.94;
86	1	21	10	0	0	1	0.987	31.14	138	1.06	0.94;
87	2	0	0	0	0	1	1.015	31.4	161	1.06	0.94;
88	1	48	10	0	0	1	0.987	35.64	138	1.06	0.94;
89	2	0	0	0	0	1	1.005	39.69	138	1.06	0.94;
90	2	163	42	0	0	1	0.985	33.29	138	1.06	0.94;
91	2	10	0	0	0	1	0.98	33.31	138	1.06	0.94;
92	2	65	10	0	0	1	0.993	33.8	138	1.06	0.94;
93	1	12	7	0	0	1	0.987	30.79	138	1.06	0.94;
94	1	30	16	0	0	1	0.991	28.64	138	1.06	0.94;
95	1	42	31	0	0	1	0.981	27.67	138	1.06	0.94;
96	1	38	15	0	0	1	0.993	27.51	138	1.06	0.94;
97	1	15	9	0	0	1	1.011	27.88	138	1.06	0.94;
98	1	34	8	0	0	1	1.024	27.4	138	1.06	0.94;
99	2	42	0	0	0	1	1.01	27.04	138	1.06	0.94;
100	2	37	18	0	0	1	1.017	28.03	138	1.06	0.94;
101	1	22	15	0	0	1	0.993	29.61	138	1.06	0.94;
102	1	5	3	0	0	1	0.991	32.3	138	1.06	0.94;
103	2	23	16	0	0	1	1.001	24.44	138	1.06	0.94;
104	2	38	25	0	0	1	0.971	21.69	138	1.06	0.94;
105	2	31	26	0	0.2	1	0.965	20.57	138	1.06	0.94;
106	1	43	16	0	0	1	0.962	20.32	138	1.06	0.94;
107	2	50	12	0	0.06	1	0.952	17.53	138	1.06	0.94;
108	1	2	1	0	0	1	0.967	19.38	138	1.06	0.94;
109	1	8	3	0	0	1	0.967	18.93	138	1.06	0.94;
110	2	39	30	0	0.06	1	0.973	18.09	138	1.06	0.94;
111	2	0	0	0	0	1	0.98	19.74	138	1.06	0.94;
112	2	68	13	0	0	1	0.975	14.99	138	1.06	0.94;
113	2	6	0	0	0	1	0.993	13.74	138	1.06	0.94;
114	1	8	3	0	0	1	0.96	14.46	138	1.06	0.94;
115	1	22	7	0	0	1	0.96	14.46	138	1.06	0.94;
116	2	184	0	0	0	1	1.005	27.12	138	1.06	0.94;
117	1	20	8	0	0	1	0.974	10.67	138	1.06	0.94;
118	1	33	15	0	0	1	0.949	21.92	138	1.06	0.94;

\% generator data									
bus	Pg	Qg	Qmax	Qmin	Vg	mBase	status	Pmax	Pmin
1	0	0	15	-5	0.955	100	1	100	0
4	0	0	300	-300	0.998	100	1	100	0
6	0	0	50	-13	0.99	100	1	100	0
8	0	0	300	-300	1.015	100	1	100	0
10	450	0	200	-147	1.05	100	1	550	0
12	85	0	120	-35	0.99	100	1	185	0
15	0	0	30	-10	0.97	100	1	100	0
18	0	0	50	-16	0.973	100	1	100	0
19	0	0	24	-8	0.962	100	1	100	0
24	0	0	300	-300	0.992	100	1	100	0
25	220	0	140	-47	1.05	100	1	320	0
26	314	0	1000	-1000	1.015	100	1	414	0
27	0	0	300	-300	0.968	100	1	100	0
31	7	0	300	-300	0.967	100	1	107	0
32	0	0	42	-14	0.963	100	1	100	0
34	0	0	24	-8	0.984	100	1	100	0
36	0	0	24	-8	0.98	100	1	100	0
40	0	0	300	-300	0.97	100	1	100	0
42	0	0	300	-300	0.985	100	1	100	0
46	19	0	100	-100	1.005	100	1	119	0
49	204	0	210	-85	1.025	100	1	304	0
54	48	0	300	-300	0.955	100	1	148	0
55	0	0	23	-8	0.952	100	1	100	0
56	0	0	15	-8	0.954	100	1	100	0
59	155	0	180	-60	0.985	100	1	255	0
61	160	0	300	-100	0.995	100	1	260	0
62	0	0	20	-20	0.998	100	1	100	0
65	391	0	200	-67	1.005	100	1	491	0
66	392	0	200	-67	1.05	100	1	492	0
69	516.4	0	300	-300	1.035	100	1	805.2	0
70	0	0	32	-10	0.984	100	1	100	0
72	0	0	100	-100	0.98	100	1	100	0
73	0	0	100	-100	0.991	100	1	100	0
74	0	0	9	-6	0.958	100	1	100	0
76	0	0	23	-8	0.943	100	1	100	0
77	0	0	70	-20	1.006	100	1	100	0
80	477	0	280	-165	1.04	100	1	577	0
85	0	0	23	-8	0.985	100	1	100	0
87	4	0	1000	-100	1.015	100	1	104	0
89	607	0	300	-210	1.005	100	1	707	0
90	0	0	300	-300	0.985	100	1	100	0
91	0	0	100	-100	0.98	100	1	100	0
92	0	0	9	-3	0.99	100	1	100	0
99	0	0	100	-100	1.01	100	1	100	0
100	252	0	155	-50	1.017	100	1	352	0
103	40	0	40	-15	1.01	100	1	140	0
104	0	0	23	-8	0.971	100	1	100	0
105	0	0	23	-8	0.965	100	1	100	0
107	0	0	200	-200	0.952	100	1	100	0
110	0	0	23	-8	0.973	100	1	100	0
111	36	0	1000	-100	0.98	100	1	136	0
112	0	0	1000	-100	0.975	100	1	100	0
113	0	0	200	-100	0.993	100	1	100	0
116	0	0	1000	-1000	1.005	100	1	100	0

40	41	0.0145	0.0487	0.01222	0	0	0	0	0	1
40	42	0.0555	0.183	0.0466	0	0	0	0	0	1
41	42	0.041	0.135	0.0344	0	0	0	0	0	1
43	44	0.0608	0.2454	0.06068	0	0	0	0	0	1
34	43	0.0413	0.1681	0.04226	0	0	0	0	0	1
44	45	0.0224	0.0901	0.0224	0	0	0	0	0	1
45	46	0.04	0.1356	0.0332	0	0	0	0	0	1
46	47	0.038	0.127	0.0316	0	0	0	0	0	1
46	48	0.0601	0.189	0.0472	0	0	0	0	0	1
47	49	0.0191	0.0625	0.01604	0	0	0	0	0	1
42	49	0.0715	0.323	0.086	0	0	0	0	0	1
42	49	0.0715	0.323	0.086	0	0	0	0	0	1
45	49	0.0684	0.186	0.0444	0	0	0	0	0	1
48	49	0.0179	0.0505	0.01258	0	0	0	0	0	1
49	50	0.0267	0.0752	0.01874	0	0	0	0	0	1
49	51	0.0486	0.137	0.0342	0	0	0	0	0	1
51	52	0.0203	0.0588	0.01396	0	0	0	0	0	1
52	53	0.0405	0.1635	0.04058	0	0	0	0	0	1
53	54	0.0263	0.122	0.031	0	0	0	0	0	1
49	54	0.073	0.289	0.0738	0	0	0	0	0	1
49	54	0.0869	0.291	0.073	0	0	0	0	0	1
54	55	0.0169	0.0707	0.0202	0	0	0	0	0	1
54	56	0.00275	0.00955	0.00732	0	0	0	0	0	1
55	56	0.00488	0.0151	0.00374	0	0	0	0	0	1
56	57	0.0343	0.0966	0.0242	0	0	0	0	0	1
50	57	0.0474	0.134	0.0332	0	0	0	0	0	1
56	58	0.0343	0.0966	0.0242	0	0	0	0	0	1
51	58	0.0255	0.0719	0.01788	0	0	0	0	0	1
54	59	0.0503	0.2293	0.0598	0	0	0	0	0	1
56	59	0.0825	0.251	0.0569	0	0	0	0	0	1
56	59	0.0803	0.239	0.0536	0	0	0	0	0	1
55	59	0.04739	0.2158	0.05646	0	0	0	0	0	1
59	60	0.0317	0.145	0.0376	0	0	0	0	0	1
59	61	0.0328	0.15	0.0388	0	0	0	0	0	1
60	61	0.00264	0.0135	0.01456	0	0	0	0	0	1
60	62	0.0123	0.0561	0.01468	0	0	0	0	0	1
61	62	0.00824	0.0376	0.0098	0	0	0	0	0	1
63	59	0	0.0386	0	0	0	0	0.96	0	1
63	64	0.00172	0.02	0.216	0	0	0	0	0	1
64	61	0	0.0268	0	0	0	0	0.985	0	1
38	65	0.00901	0.0986	1.046	0	0	0	0	0	1
64	65	0.00269	0.0302	0.38	0	0	0	0	0	1
49	66	0.018	0.0919	0.0248	0	0	0	0	0	1
49	66	0.018	0.0919	0.0248	0	0	0	0	0	1
62	66	0.0482	0.218	0.0578	0	0	0	0	0	1
62	67	0.0258	0.117	0.031	0	0	0	0	0	1
65	66	0	0.037	0	0	0	0	0.935	0	1
66	67	0.0224	0.1015	0.02682	0	0	0	0	0	1
65	68	0.00138	0.016	0.638	0	0	0	0	0	1
47	69	0.0844	0.2778	0.07092	0	0	0	0	0	1
49	69	0.0985	0.324	0.0828	0	0	0	0	0	1
68	69	0	0.037	0	0	0	0	0.935	0	1
69	70	0.03	0.127	0.122	0	0	0	0	0	1
24	70	0.00221	0.4115	0.10198	0	0	0	0	0	1
70	71	0.00882	0.0355	0.00878	0	0	0	0	0	1
24	72	0.0488	0.196	0.0488	0	0	0	0	0	1
71	72	0.0446	0.18	0.04444	0	0	0	0	0	1

71	73	0.00866	0.0454	0.01178	0	0	0	0	0	1
70	74	0.0401	0.1323	0.03368	0	0	0	0	0	1
70	75	0.0428	0.141	0.036	0	0	0	0	0	1
69	75	0.0405	0.122	0.124	0	0	0	0	0	1
74	75	0.0123	0.0406	0.01034	0	0	0	0	0	1
76	77	0.0444	0.148	0.0368	0	0	0	0	0	1
69	77	0.0309	0.101	0.1038	0	0	0	0	0	1
75	77	0.0601	0.1999	0.04978	0	0	0	0	0	1
77	78	0.00376	0.0124	0.01264	0	0	0	0	0	1
78	79	0.00546	0.0244	0.00648	0	0	0	0	0	1
77	80	0.017	0.0485	0.0472	0	0	0	0	0	1
77	80	0.0294	0.105	0.0228	0	0	0	0	0	1
79	80	0.0156	0.0704	0.0187	0	0	0	0	0	1
68	81	0.00175	0.0202	0.808	0	0	0	0	0	1
81	80	0	0.037	0	0	0	0	0.935	0	1
77	82	0.0298	0.0853	0.08174	0	0	0	0	0	1
82	83	0.0112	0.03665	0.03796	0	0	0	0	0	1
83	84	0.0625	0.132	0.0258	0	0	0	0	0	1
83	85	0.043	0.148	0.0348	0	0	0	0	0	1
84	85	0.0302	0.0641	0.01234	0	0	0	0	0	1
85	86	0.035	0.123	0.0276	0	0	0	0	0	1
86	87	0.02828	0.2074	0.0445	0	0	0	0	0	1
85	88	0.02	0.102	0.0276	0	0	0	0	0	1
85	89	0.0239	0.173	0.047	0	0	0	0	0	1
88	89	0.0139	0.0712	0.01934	0	0	0	0	0	1
89	90	0.0518	0.188	0.0528	0	0	0	0	0	1
89	90	0.0238	0.0997	0.106	0	0	0	0	0	1
90	91	0.0254	0.0836	0.0214	0	0	0	0	0	1
89	92	0.0099	. 0505	0.0548	0	0	0	0	0	1
89	92	0.0393	0.1581	0.0414	0	0	0	0	0	1
91	92	0.0387	0.1272	0.03268	0	0	0	0	0	1
92	93	0.0258	0.0848	0.0218	0	0	0	0	0	1
92	94	0.0481	0.158	0.0406	0	0	0	0	0	1
93	94	0.0223	0.0732	0.01876	0	0	0	0	0	1
94	95	0.0132	0.0434	0.0111	0	0	0	0	0	1
80	96	0.0356	0.182	0.0494	0	0	0	0	0	1
82	96	0.0162	0.053	0.0544	0	0	0	0	0	1
94	96	0.0269	0.0869	0.023	0	0	0	0	0	1
80	97	0.0183	0.0934	0.0254	0	0	0	0	0	1
80	98	0.0238	0.108	0.0286	0	0	0	0	0	1
80	99	0.0454	0.206	0.0546	0	0	0	0	0	1
92	100	0.0648	0.295	0.0472	0	0	0	0	0	1
94	100	0.0178	0.058	0.0604	0	0	0	0	0	1
95	96	0.0171	0.0547	0.01474	0	0	0	0	0	1
96	97	0.0173	0.0885	0.024	0	0	0	0	0	1
98	100	0.0397	0.179	0.0476	0	0	0	0	0	1
99	100	0.018	0.0813	0.0216	0	0	0	0	0	1
100	101	0.0277	0.1262	0.0328	0	0	0	0	0	1
92	102	0.0123	0.0559	0.01464	0	0	0	0	0	1
101	102	0.0246	0.112	0.0294	0	0	0	0	0	1
100	103	0.016	0.0525	0.0536	0	0	0	0	0	1
100	104	0.0451	0.204	0.0541	0	0	0	0	0	1
103	104	0.0466	0.1584	0.0407	0	0	0	0	0	1
103	105	0.0535	0.1625	0.0408	0	0	0	0	0	1
100	106	0.0605	0.229	0.062	0	0	0	0	0	1
104	105	0.00994	0.0378	0.00986	0	0	0	0	0	1
105	106	0.014	0.0547	0.01434	0	0	0	0	0	1

105	107	0.053	0.183	0.0472	0	0	0	0	0	1
105	108	0.0261	0.0703	0.01844	0	0	0	0	0	1
106	107	0.053	0.183	0.0472	0	0	0	0	0	1
108	109	0.0105	0.0288	0.0076	0	0	0	0	0	1
103	110	0.03906	0.1813	0.0461	0	0	0	0	0	1
109	110	0.0278	0.0762	0.0202	0	0	0	0	0	1
110	111	0.022	0.0755	0.02	0	0	0	0	0	1
110	112	0.0247	0.064	0.062	0	0	0	0	0	1
17	113	0.00913	0.0301	0.00768	0	0	0	0	0	1
32	113	0.0615	0.203	0.0518	0	0	0	0	0	1
32	114	0.0135	0.0612	0.01628	0	0	0	0	0	1
27	115	0.0164	0.0741	0.01972	0	0	0	0	0	1
114	115	0.0023	0.0104	0.00276	0	0	0	0	0	1
68	116	0.00034	0.00405	0.164	0	0	0	0	0	1
12	117	0.0329	0.14	0.0358	0	0	0	0	0	1
75	118	0.0145	0.0481	0.01198	0	0	0	0	0	1
76	118	0.0164	0.0544	0.01356	0	0	0	0	0	1

APPENDIX B MATALAB CODES FOR PSO, BA AND HPSOBA ALGORITHMS (IEEE 30-BUS TEST SYSTEM)

APPENDIX B. 1 MATALAB CODES FOR PSO ALGORITHM FOR ORPD (without DG Unit)

```
%% PSO algorithm to solve Optimal Reactive Power Dispatch
% Authored by AGBUGBA E.E.
% Student No: 57441022
% Department of Electrical and Mining Engineering
% College of Science, Engineering and Technology
% University Of South Africa
%% Initialization Parameters
clear all
clc
tic
iter=0;
iteration=200;
nvars = 12; %Number of variables
N = 50; %Number of Particles or Swarm size
%Acceleration constants
c1 = 2.05;
c2 = 2.05;
%Inertia Weight
w_max=0.9;
w_min=0.4;
w_temp (1) =w_max;
%Load IEEE 30-bus data
[baseMVA, bus, gen, branch]=loadcase(case_ieee30);
%% Initialization of Swarm & velocity
Swarm=[unifrnd(0.95,1.10,N,6),unifrnd(0.90,1.10,N,4),unifrnd(0.00,0.20,N,2)];
%Initialize velocity
Velocity = [unifrnd(-0.003,0.003,N,6),unifrnd(-0.003,0.003,N,4), unifrnd(-
0.003,0.003,N,2)];
for i=1:N
    v1=Swarm(i,1); %v1
    bus(1,8)=v1; %Vm, column 8 is voltage magnitude (p.u.)
    gen(1,6)=v1; %Vg, column 6 is voltage magnitude setpoint (p.u.)
    v2=Swarm(i,2); %v2
    bus (2,8)=v2;
    gen (2,6)=v2;
    v5=Swarm(i,3); %v5
```

```
    bus(5,8)=v5;
    gen (3,6)=v5;
    v8=Swarm(i,4); %v8
    bus(8,8)=v8;
    gen (4,6)=v8;
    v11=Swarm(i,5); %v11
    bus(11,8)=v11;
    gen (5,6)=v11;
    v13=Swarm(i,6); %v13
    bus (13,8)=v13;
    gen (6,6)=v13;
    t1=Swarm(i,7); %tp1 6-9, column 9 is tap position
    branch (11,9)=t1;
    t2=Swarm(i,8);
    branch (12,9)=t2;
    t3=Swarm(i,9);
    branch (15,9)=t3;
    t4=Swarm(i,10);
    branch (36,9)=t4;
    qc10=Swarm(i,11); %Shunt capacitor 10, column 6 is BS
    bus (10,6)=qc10;
    qc24=Swarm(i,12); %Shunt capacitor 10, column 6 is BS
    bus (24,6)=qc24;
    eval(['savecase (''case_ieee30_test', num2str(i), '.mat'', baseMVA, bus,
gen, branch)']);
    eval(['initial_results_',num2str(i),'=runpf(''case_ieee30_test', num2str(i)
'.mat'')']);
    eval(['initial_losses_',num2str(i),'=sum(real(get_losses(initial_results_',
num2str(i),')))']);
    %Penalty for bus voltage violation
    bus_inf=bus(:,8);
    for bus_num=1:30
        if bus_inf(bus_num)>1.10
            penalty_Vl(bus_num)=10000*(bus_inf(bus_num)-1.10)^2;
        elseif bus_inf(bus_num)<0.95
                penalty_Vl(bus_num)=10000*(bus_inf(bus_num)-0.95)^2;
        else
            penalty_Vl(bus_num)=0;
        end
    end
    penalty_Vl_violation=sum(penalty_Vl);
    %Penalty for shunt violation
    buus_inf=bus(:,6);
    for bus_num=1:30
        if buus_inf(bus_num)>0.20
                penalty_Qc(bus_num)=10000*(buus_inf(bus_num)-0.20)^2;
    elseif buus_inf(bus_num)<0.00
                penalty_Qc(bus_num)=10000*(buus_inf(bus_num)-0.00)^2;
        else
            penalty_Qc(bus_num)=0;
        end
    end
    penalty_Qc_violation=sum(penalty_Qc);
    %Penalty for tap position violation
    brch_inf=[branch(11,9); branch(12,9); branch(15,9); branch(36,9)];
    for brch_num=1:4
        if brch_inf(brch_num)>1.10
            penalty_Tk(brch_num)=10000*(brch_inf(brch_num)-1.10)^2;
    elseif brch_inf(brch_num)<0.90
        penalty_Tk (brch_num)=10000*(brch_inf(brch_num)-0.90)^2;
        else
        penalty_Tk(brch_num)=0;
    end
```

```
    end
    penalty_Tk_violation=sum(penalty_Tk);
    %objective function=sum of active power losses of the transmission lines
    losses(i)=eval(['initial_losses_',num2str(i)]); %sum of real power losses of
all branches
Obj_fun_initial(i)=losses(i)+penalty_Vl_violation+penalty_Qc_violation+penalty_T
k_violation; %augumented objective function with penalty function
end
%% Initialize best position (Pbest) and global best postion (Gbest) matrix
Pbest=Swarm;
Val_Pbest=Obj_fun_initial;
%finding best particle in initial population
[Val_Gbest,m]=min(Val_Pbest);
Gbest=Swarm(m,:); %used to keep track of the best particle ever
Gbest_calc=repmat(Swarm(m,:),N,1);
%% PSO LOOP
figure('NumberTitle', 'off', 'Name', 'PSO Algorithm Based Optimal Reactive Power
Dispatch');
title('ACTIVE POWER LOSS MINIMIZATION');
ylabel('Total Active Power Loss (MW)');
xlabel('Iteration Number');
grid on;
hold on
for iter=1:iteration
    % Update the value of the inertia weight w
    if iter <= iteration
    w_temp(iter)=w_max + (((w_min-w_max)/iteration)*iter); %Change inertia
weight
    end
    %generate random numbers
    R1=rand(N, nvars);
    R2=rand(N,nvars);
    % constriction factor
    %2.05+2.05=4.1;
    %2/abs(2-4.1-sqrt (4.1*4.1-4*4.1))=0.729
    %calculate velocity
    Velocity=(w_temp(iter)*Velocity+c1*R1.*(Pbest-Swarm) +c2*R2.*(Gbest_calc-
Swarm));
    for v_iter=1:nvars
        if v_iter==nvars
            Outstep=Velocity(:,v_iter)>0.003;
            Velocity(find(Outstep),v_iter)=0.003;
                    Outstep=Velocity(:,v_iter)<-0.003;
                    Velocity(find(Outstep),v_iter)=-0.003;
            else
                    Outstep=Velocity(:,v_iter)>0.01;
                    Velocity(find(Outstep),v_iter)=0.01;
                    Outstep=Velocity(:,v_iter)<-0.01;
                    Velocity(find(Outstep),v_iter)=-0.01;
            end
    end
        %update positions of particles
        Swarm=Swarm+0.729*Velocity; %evaluate a new swarm
        for k=1:N
            v1=Swarm(k,1); %v1
            bus(1,8)=v1; %Vm, column 8 is voltage magnitude (p.u.)
            gen(1,6)=v1; \quad%Vg, column 6 is voltage magnitude setpoint (p.u.)
            v2=Swarm(k,2); %v2
            bus(2,8)=v2;
            gen (2,6) =v2;
            v5=Swarm(k,3); %v5
            bus (5,8)=v5;
            gen (3,6)=v5;
```

```
    v8=Swarm(k,4);
        %v8
    bus(8,8)=v8;
    gen (4,6)=v8;
    v11=Swarm(k,5); %v11
    bus(11,8)=v11;
    gen (5,6)=v11;
    v13=Swarm(k,6); %v13
    bus (13,8)=v13;
    gen (6,6) =v13;
    t1=Swarm(k,7); %tp1 6-9, column 9 is tap position
    branch (11,9) =t1;
    t2=Swarm(k,8);
    branch (12,9)=t2;
    t3=Swarm(k,9);
    branch (15,9)=t3;
    t4=Swarm(k,10);
    branch (36,9) =t 4;
    qc10=Swarm(k,11); %Shunt capacitor 10, column 6 is BS
    bus(10,6)=qc10;
    qc24=Swarm(k,12); %Shunt capacitor 10, column 6 is BS
    bus (24,6)=qc24;
    eval(['savecase (''case_ieee30_test', num2str(k), '.mat'', baseMVA, bus,
gen, branch)']);
    eval(['final_results_',num2str(k),'=runpf(''case_ieee30_test',
num2str(k) '.mat'')']);
eval(['final_losses_',num2str(k),'=sum(real(get_losses(final_results_',num2str(k
),')))']);
    %Penalty for bus voltage violation
    bus_inf=bus(:,8);
    for bus_num=1:30
        if bus_inf(bus_num)>1.10
            penalty_Vl(bus_num)=10000*(bus_inf(bus_num)-1.10)^2;
        elseif bus_inf(bus_num)<0.95
            penalty_Vl(bus_num)=10000*(bus_inf(bus_num) -0.95)^2;
        else
            penalty_Vl(bus_num)=0;
        end
    end
    penalty_Vl_violation=sum(penalty_Vl);
    %Penalty for shunt violation
    buus_inf=bus(:,6);
    for bus_num=1:30
        if buus_inf(bus_num)>0.20
            penalty_Qc(bus_num)=10000*(buus_inf(bus_num)-0.20)^2;
        elseif buus_inf(bus_num)<0.00
            penalty_Qc(bus_num)=10000*(buus_inf(bus_num)-0.00)^2;
        else
            penalty_Qc(bus_num)=0;
        end
    end
    penalty_Qc_violation=sum(penalty_Qc);
    %Penalty for tap position violation
    brch_inf=[branch(11,9); branch(12,9); branch(15,9); branch(36,9)];
    for brch_num=1:4
        if brch_inf(brch_num)>1.10
                            penalty_Tk (brch_num)=10000*(brch_inf(brch_num)-1.10)^2;
        elseif brch_inf(brch_num)<0.90
            penalty_Tk (brch_num)=10000*(brch_inf(brch_num)-0.90)^2;
        else
            penalty_Tk(brch_num)=0;
        end
    end
```

```
    penalty_Tk_violation=sum(penalty_Tk);
    %objective function=sum of active power losses of the transmission lines
    losses_temp(k)=eval(['final_losses_',num2str(k)]); %sum of real power
losses of all branches
Obj_fun_temp(k)=losses_temp (k) +penalty_Vl_violation+penalty_Qc_violation+penalty
_Tk_violation; %augumented objective function with penalty function
    % Final Evaluation
    Val_Pbest_temp(k)=Obj_fun_temp(k) ;
    end
            if Val_Pbest_temp<Val_Pbest
                losses=losses_temp;
                Val_Pbest=Val_Pbest_temp;
                Pbest=Swarm;
    end
    [Val_Gbest_temp,n]=min(Val_Pbest);
    if Val_Gbest_temp<Val_Gbest
            Val_Gbest=Val_Gbest_temp;
            Gbest=Swarm(n,:);
            Gbest_calc=repmat(Swarm(n, :) ,N,1);
            end
```

 Val_Gbest_rec (iter) =Val_Gbest;
 plot(Val_Gbest_rec);
 drawnow;
 toc
 end
APPENDIX B. 2 MATALAB CODES FOR BA ALGORITHM FOR ORPD
(without DG Unit)

```
%% Bat algorithm to solve Optimal Reactive Power Dispatch
% Authored by AGBUGBA E.E.
% Student No: 57441022
% Department of Electrical and Mining Engineering
% College of Science, Engineering and Technology
% University Of South Africa
%% Initialization Parameters
clear all
clc
tic
% Default parameters
N=20; % Number of bats (population), typically 10 to 25
N_gen=200; % No of generation (iteration))
Qmin=0; % Frequency minimum
Qmax=2; % Frequency maximum
r0max=1;
r0min=0;
Amax=2;
Amin=1;
%Inertia Weight
w_max=0.9;
w_min=0.4;
w_temp=w_max;
w_step=(w_max-w_min)/N_gen;
% Iteration parameters
N_iter=0; % Total number of function evaluations
% Dimension of the search variables
d=12;
% Constants
alpha=0.99; % Loudness constant
```

```
gamma=0.9; % Pulse rate constant
%Load IEEE 30-bus data
[baseMVA, bus, gen, branch]=loadcase(case_ieee30);
%% Initialization of Population/ Solutions, Frequency & velocity
% Initialize velocity
Velocity = [unifrnd(-0.003,0.003,N,6),unifrnd(-0.003,0.003,N,4), unifrnd(-
0.003,0.003,N,2)];
% Initialize frequency
Freq=zeros(N,1); % Frequency;
% Initialize solutions/locations
Sol=[unifrnd(0.95,1.10,N,6),unifrnd(0.90,1.10,N,4), unifrnd(0,0.20,N,2)];
r=(rand (N,1) .*(r0max-r0min))+r0min;
A= (rand (N, 1) . * (Amax-Amin)) +Amin;
for i=1:N
    v1=Sol(i,1); %v1
    bus(1,8)=v1;
    gen (1,6)=v1;
    v2=Sol(i,2);
    bus (2,8)=v2;
    gen (2,6)=v2;
    v5=Sol(i,3);
    bus(5,8)=v5;
    gen (3,6)=v5;
    v8=Sol(i,4);
    bus(8,8)=v8;
    gen (4,6)=v8;
    v11=Sol(i,5);
    bus (11,8)=v11;
    gen (5,6)=v11;
    v13=Sol(i,6);
    bus (13,8)=v13;
    gen (6,6)=v13;
    t1=Sol(i,7);
    branch (11,9)=t1;
    t2=Sol(i,8);
    branch (12,9)=t2;
    t3=Sol(i,9);
    branch (15,9)=t3;
    t4=Sol(i,10);
    branch (36,9)=t4;
    qc10=Sol(i,11);
    bus (10,6)=qc10;
    qc24=Sol(i,12);
    bus (24,6)=qc24;
    eval(['savecase (''2case_ieee30_test', num2str(i), '.mat'', baseMVA, bus,
gen, branch)']);
    eval(['results_',num2str(i),'=runpf(''2case_ieee30_test', num2str(i)
'.mat'')']);
eval(['losses_',num2str(i),'=sum(real(get_losses(results_',num2str(i),')))']);
    %Penalty for bus voltage violation
    bus_inf=bus(:,8);
    for bus_num=1:30
        if bus_inf(bus_num)>1.10
                            penalty_bus(bus_num)=10000*((bus_inf(bus_num)-1.10)^2);
            elseif bus_inf(bus_num)<0.95
                    penalty_bus(bus_num)=10000*((bus_inf(bus_num)-0.95)^2);
            else
                    penalty_bus(bus_num)=0;
            end
    end
    penalty_bus_violation=sum(penalty_bus);
    %Penalty for shunt violation
```

```
buus_inf=bus(:,6);
for bus_num=1:30
    if buus_inf(bus_num)>0.20
        penalty_sht (bus_num)=10000*(buus_inf(bus_num)-0.20)^2;
    elseif buus_inf(bus_num)<0.00
        penalty_sht (bus_num) =10000*(buus_inf(bus_num)-0.00)^2;
    else
        penalty_sht(bus_num)=0;
    end
end
penalty_sht_violation=sum(penalty_sht);
%Penalty for tap position violation
brch_inf=[branch(11,9); branch(12,9); branch(15,9); branch(36,9)];
for brch_num=1:4
    if brch_inf(brch_num)>1.10
        penalty_brch (brch_num)=10000*(brch_inf(brch_num)-1.10)^2;
    elseif brch_inf(brch_num)<0.90
        penalty_brch(brch_num)=10000*(brch_inf(brch_num)-0.90)^2;
    else
        penalty_brch(brch_num)=0;
    end
end
penalty_brch_violation=sum(penalty_brch);
% objective function=sum of active power losses of the transmission lines
losses(i)=eval(['losses_',num2str(i)]);
Obj_fun_initial(i)=losses(i)+penalty_bus_violation+penalty_sht_violation+penalty
_brch_violation; % augumented objective function with penalty function
end
% Evaluate solution
    Fitness=Obj_fun_initial;
    pbest=Sol;
%% finding the current best solution in the initial population (first
evaluation)
[fmin,m]=min(Fitness);
best=Sol(m,:); % used to keep track of the best current solution ever
%% Bat Algorithm LOOP
figure('NumberTitle', 'off', 'Name', 'Bat Algorithm Based Optimal Reactive Power
Dispatch');
title('ACTIVE POWER LOSS MINIMIZATION');
ylabel('Total Active Power Loss (MW)');
xlabel('Iteration Number');
grid on;
hold on
for N_iter=1:N_gen
    % Loop over all bats/solutions
    meanA=mean(A);
    if (N_iter <= N_gen) & (N_iter > 1)
        w_temp=w_temp-w_step; %Change inertia weight
    end
    for i=1:N
    Freq(i)=Qmin+(Qmax-Qmin) *rand;
    Velocity(i,:)=w_temp*Velocity(i,:) +(Sol(i,:)-best)*Freq(i);
    S(i,:)=Sol(i,:)+Velocity(i,:);
    % Local Search
    if rand>r(i)
        randnValueA=randn(1,d) . * (abs (meanA));
        S(i,:)=best+(0.001*randnValueA); % The factor 0.001 limits the
step sizes of random walks
    end
```

```
    v1=S(i,1); %v1
    bus(1,8)=v1; %Vm, column 8 is voltage magnitude (p.u.)
    gen (1,6)=v1; %Vg, column 6 is voltage magnitude setpoint (p.u.)
    v2=S (i,2); %v2
    bus (2, 8) =v2;
    gen (2,6) =v2;
    v5=S (i, 3);
    bus(5,8)=v5;
    gen (3,6) =v5;
    v8=S(i,4);
    bus (8,8)=v8;
    gen (4,6)=v8;
    v11=S(i,5);
    %v11
    bus(11,8)=v11;
    gen (5,6)=v11;
    v13=S(i,6); %v13
    bus(13,8)=v13;
    gen (6, 6) =v13;
    t1=S(i,7); %tp1 6-9, column 9 is tap position
    branch (11,9)=t1;
    t2=S(i,8); %tp2 6-10
    branch (12,9)=t2;
    t3=S(i,9); %tp3 4-12
    branch (15,9)=t3;
    t4=S(i,10); %tp4 27-28
    branch (36,9)=t4;
    qc10=S(i,11); %Shunt capacitor 10, column 6 is BS
    bus (10, 6)=qc10;
    qc24=S(i,12); %Shunt capacitor 10, column 6 is BS
    bus (24,6) =qc24;
    eval(['savecase (''2case_ieee30_test', num2str(i), '.mat'', baseMVA, bus,
gen, branch)']);
    eval(['results_', num2str(i),'=runpf(''2case_ieee30_test', num2str(i)
'.mat'')']);
eval(['losses_',num2str(i),'=sum(real(get_losses(results_',num2str(i),')))']);
    %Penalty for bus voltage violation
bus_inf=bus(:, 8);
for bus_num=1:30
    if bus_inf(bus_num)>1.10
        penalty_bus(bus_num)=10000*((bus_inf(bus_num)-1.10)^2);
        elseif bus_inf(bus_num)<0.95
        penalty_bus(bus_num)=10000*((bus_inf(bus_num)-0.95)^2);
        else
            penalty_bus(bus_num)=0;
        end
end
penalty_bus_violation=sum(penalty__bus);
%Penalty for shunt violation
buus_inf=bus(:,6);
for bus_num=1:30
    if buus_inf(bus_num)>0.20
        penalty_sht (bus_num)=10000*(buus_inf(bus_num) -0.20)^2;
        elseif buus_inf(bus_num)<0.00
        penalty_sht(bus_num)=10000*(buus_inf(bus_num) -0.00)^2;
        else
            penalty_sht (bus_num)=0;
        end
end
penalty_sht_violation=sum(penalty_sht);
```

```
    %Penalty for tap position violation
    brch_inf=[branch(11,9); branch(12,9); branch(15,9); branch(36,9)];
    for brch_num=1:4
        if brch_inf(brch_num)>1.10
            penalty_brch(brch_num)=10000*(brch_inf(brch_num)-1.10)^2;
    elseif brch_inf(brch_num)<0.90
        penalty_brch(brch_num)=10000*(brch_inf(brch_num)-0.90)^2;
    else
        penalty__brch(brch_num)=0;
    end
    end
    penalty_brch_violation=sum(penalty_brch);
    %sum of real power losses of all branches
    losses_final(i)=eval(['losses_', num2str(i)]);
Obj_fun_final(i)=losses_final(i)+penalty_bus_violation+penalty_sht_violation+pen
alty_brch_violation;
    % Evaluate new solutions
    Fitness_final(i)=Obj_fun_final(i);
%% If the solution improves or not too loud
    if (Fitness_final(i)<=Fitness(i)) & (rand<A(i))
        losses(i)=losses_final(i);
        Sol(i,:)=S(i,:); % replace initial solution with improved
solution
        Fitness(i)=Fitness_final(i); % replace initial FITNESS with improved
fitness
        A(i)=A(i)*alpha; % update loudness of bats
        r(i)=r(i)*(1-exp(-gamma*N_iter)); % update the pitch of bats
    end
    [fnew,n]=min(Fitness_final);
    % Update the current best
    if fnew<=fmin
        best=S (n,:);
        fmin=fnew;
    end
end
    fmin_rec(N_iter)=fmin;
    plot(fmin_rec);
    drawnow;
    toc
end
```


APPENDIX B. 3 MATALAB CODES FOR HPSOBA ALGORITHM FOR ORPD

 (without DG Unit)```
%% Hybrid PSO-BA algorithm to solve Optimal Reactive Power Dispatch
% Authored by AGBUGBA E.E.
% Student No: 57441022
% Department of Electrical and Mining Engineering
% College of Science, Engineering and Technology
% University Of South Africa
%% Initialization Parameters
clear all
clc
tic
% Dimension of the search variables
d=12;
% Bat Algorithm Default parameters
```

```
N=20; % Number of bats (population), typically 10 to 25
N_gen=200; % No of generation (iteration)
Q_max=2; % Frequency maximum
Q_min=0; % Frequency minimum
r_max=1; % Maximum pulse rate
r_min=0; % Minimum pulse rate
A_max=2; % Maximum loudness
A_min=1; % Minimum loudness
% Constants
alpha=0.99; % Loudness constant
gamma=0.9; % Pulse rate constant
 % PSO Algorithm Default parameters
% Inertia Weight
w_max=0.9;
w_min=0.4;
w_temp (1) =w_max;
% Acceleration constants
c1=2.05;
c2=2.05;
% Iteration parameters
N_iter=0;
%Load IEEE 30-bus data
[baseMVA, bus, gen, branch]=loadcase(case_ieee30);
%% Initialization of Population/ Solutions, Frequency & velocity
% Initialize velocity
Velocity = [unifrnd(-0.003,0.003,N,6),unifrnd(-0.003,0.003,N,4), unifrnd(-
0.003,0.003,N,2)];
% Initialize frequency
Freq=zeros(N,1); % Frequency;
% Initialize solutions/locations
Sol=[unifrnd(0.95,1.10,N,6),unifrnd(0.90,1.10,N,4),unifrnd(0,0.20,N,2)];
% Initialize pulse rate
r=(rand (N,1) .* (r_max-r_min))+r_min;
% Initialize loudness
A=(rand (N,1) .* (A_max-A_min)) +A_min;
for i=1:N
 v1=Sol(i,1);
 bus(1,8)=v1;
 %v1
 %Vm, column 8 is voltage magnitude (p.u.)
 %Vg, column 6 is voltage magnitude setpoint (p.u.)
 gen (1,6)=v1;
 v2=Sol(i,2);
 %v2
 bus (2,8)=v2;
 gen (2,6)=v2;
 v5=Sol(i,3);
 bus(5,8)=v5;
 gen (3,6)=v5;
 v8=Sol(i,4); %v8
 bus(8,8)=v8;
 gen (4,6)=v8;
 v11=Sol(i,5); %v11
 bus(11,8)=v11;
 gen (5,6)=v11;
 v13=Sol(i,6); %v13
 bus (13,8)=v13;
 gen (6, 6) =v13;
 t1=Sol(i,7); %tp1 6-9, column 9 is tap position
 branch (11,9)=t1;
 t2=Sol(i,8);
 %tp2 6-10
 branch (12,9)=t2;
 t3=Sol(i,9); %tp3 4-12
```

branch $(15,9)=t 3$;
t $4=$ Sol (i, 10) ;
branch $(36,9)=t 4$;
qc10=Sol(i,11);
bus $(10,6)=q c 10$;
qc24=Sol(i,12);
bus $(24,6)=q c 24$;
\%tp4 27-28
\%Shunt capacitor 10, column 6 is BS
\%Shunt capacitor 10, column 6 is BS
eval(['savecase (''2case_ieee30_test', num2str(i), '.mat'', baseMVA, bus, gen, branch)']);
eval(['results_', num2str(i),'=runpf(''2case_ieee30_test', num2str(i) '.mat'')']);

```
eval(['losses_',num2str(i),'=sum(real(get_losses(results_',num2str(i),')))']);
```

    \%Penalty for bus voltage violation
    bus_inf=bus(:,8);
    for bus_num=1:30
        if bus_inf(bus_num) \(>1.10\)
            penalty_bus (bus_num) \(=10000\) (bus_inf (bus_num) -1.10 ) ^2;
        elseif bus_inf(bus_num) <0.95
            penalty_bus (bus_num) \(=10000\) (bus_inf (bus_num) -0.95\()^{\wedge} 2\);
        else
            penalty_bus (bus_num) \(=0\);
        end
    end
    penalty_bus_violation=sum(penalty_bus);
    \%Penalty for reactive shunt violation
    buus_inf=bus(:,6);
    for bus_num=1:30
        if buus_inf(bus_num)>0.20
            penalty_sht (bus_num) \(=10000\) (buus_inf (bus_num)-0.20) ^2;
        elseif buus_inf(bus_num) 00.00
            penalty_sht (bus_num) \(=10000\) (buus_inf (bus_num)-0.00)^2;
        else
            penalty_sht (bus_num) \(=0\);
        end
    end
    penalty_sht_violation=sum(penalty_sht);
    \%Penalty for tap position violation
    brch_inf=[branch(11,9); branch(12,9); branch(15,9); branch(36,9)];
    for brch_num=1:4
        if brch_inf(brch_num)>1.10
            penalty_brch (brch_num) \(=10000\) (brch_inf \(\left.\left(b r c h \_n u m\right)-1.10\right)^{\wedge} 2\);
        elseif brch_inf (brch_num) <0.90
            penalty_brch (brch_num) \(=10000\) (brch_inf (brch_num)-0.90)^2;
        else
            penalty_brch (brch_num) \(=0\);
        end
    end
    penalty_brch_violation=sum(penalty_brch);
    \% objective function=sum of active power losses of the transmission lines
    losses(i)=eval(['losses_',num2str(i)]);
    Obj_fun_initial(i)=losses(i)+penalty_bus_violation+penalty_sht_violation+penalty
_brch_violation; \% augumented objective function with penalty function
end
\% Evaluate solution
Fitness=Obj_fun_initial;
pbest=Sol;
\%\% finding the current best solution in the initial population (first
evaluation)
[fmin,m]=min(Fitness);

```
best=Sol(m,:); % used to keep track of the best current solution ever
%% Hybrid PSO-BA Algorithm LOOP
figure('NumberTitle', 'off', 'Name', 'Hybrid PSO-BA Algorithm Based Optimal
Reactive Power Dispatch');
title('ACTIVE POWER LOSS MINIMIZATION');
ylabel('Total Active Power Loss (MW)');
xlabel('Iteration Number');
grid on;
hold on
for N_iter=1:N_gen
 % Loop over all bats/particles
 meanA=mean(A);
 % Update the value of the inertia weight w
 if N_iter <= N_gen
 w_temp(N_iter)=w_max + (((w_min-w_max)/N_gen)*N_iter); %Change inertia
weight
 end
 for k=1:N
 Freq(k)=Q_min+(Q_max-Q_min) *rand;
 Velocity(k, :) =w_temp(N_iter).*Velocity(k,:) +(c1*rand*(pbest (k, :) -
Sol(k,:)) +c2*rand* (best-Sol(k,:)))*Freq(k);
 for v_iter=1:d
 if v_iter==d
 Outstep=Velocity(:,v_iter)>0.003;
 Velocity(find(Outstep),v_iter)=0.003;
 Outstep=Velocity(:,v_iter)<-0.003;
 Velocity(find(Outstep),v_iter)=-0.003;
 else
 Outstep=Velocity(:,v_iter)>0.01;
 Velocity(find(Outstep),v_iter)=0.01;
 Outstep=Velocity(:,v_iter)<-0.01;
 Velocity(find(Outstep),v_iter)=-0.01;
 end
 end
 Sol(k,:)=best+Velocity(k, :) ;
 % Local Search
 if rand>r(k)
 randnValueA=randn (1,d) .* (abs (meanA));
 Sol(k,:)=best+(0.001*randnValueA); % The factor 0.001 limits the
step sizes of random walks
 end
 v1=Sol(k,1);
 bus(1,8)=v1;
 gen (1, 6) =v1;
 v2=Sol(k,2);
 bus (2,8)=v2;
 gen (2,6)=v2;
 v5=Sol (k, 3);
 bus(5,8)=v5;
 gen (3,6) =v5;
 v8=Sol(k,4);
 %V1
 %Vm, column 8 is voltage magnitude (p.u.)
 %Vg, column 6 is voltage magnitude setpoint (p.u.)
%v2
%v5
 %v8
 bus (8, 8) =v8;
 gen (4,6) =v8;
 v11=Sol(k,5);
 %v11
 bus(11,8)=v11;
 gen (5,6)=v11;
 v13=Sol(k,6);
 %v13
 bus (13,8)=v13;
 gen (6, 6) =v13;
 t1=Sol(k,7); %tp1 6-9, column 9 is tap position
```

branch (11,9) =t1;
t2=Sol $(k, 8)$;
branch $(12,9)=t 2$;
t3=Sol (k,9);
branch $(15,9)=t 3$;
t $4=\operatorname{Sol}(k, 10)$;
branch $(36,9)=t 4$;
qc10=Sol (k,11);
bus $(10,6)=q c 10$;
qc24=Sol(k,12);
bus $(24,6)=q c 24$;
\%tp2 6-10
\%tp3 4-12
\%tp4 27-28
\%Shunt capacitor 10, column 6 is BS
\%Shunt capacitor 10 , column 6 is BS
eval(['savecase (''2case_ieee30_test', num2str(k), '.mat'', baseMVA, bus, gen, branch)']);
eval(['results_', num2str(k),'=runpf(''2case_ieee30_test', num2str(k)
'.mat'')']);
eval(['losses_', num2str(k),'=sum(real(get_losses(results_',num2str(k),')))']);
\%Penalty for bus voltage violation
bus_inf=bus(:,8);
for bus_num=1:30 if bus_inf(bus_num) $>1.10$
penalty_bus (bus_num) $=10000$ (bus_inf (bus_num) -1.10 ) ^2;
elseif bus_inf (bus_num) <0.95
penalty_bus (bus_num) $=10000$ (bus_inf(bus_num) -0.95$)^{\wedge} 2$;
else
penalty_bus(bus_num) $=0$;
end
end
penalty_bus_violation=sum(penalty_bus);
\%Penalty for reactive shunt violation
buus_inf=bus(:,6);
for bus_num=1:30 if buus_inf (bus_num) $>0.20$
penalty_sht (bus_num) $=10000$ (buus_inf (bus_num) -0.20$)^{\wedge} 2$; elseif buus_inf(bus_num) $<0.00$
penalty_sht (bus_num) $=10000$ (buus_inf (bus_num)-0.00) ^2; else
penalty_sht (bus_num) $=0$;
end
end
penalty_sht_violation=sum(penalty_sht);
\%Penalty for tap position violation
brch_inf=[branch(11,9); branch(12,9); branch(15,9); branch(36,9)];
for brch_num=1:4 if brch_inf (brch_num) $>1.10$
penalty_brch (brch_num) $=10000$ (brch_inf (brch_num) -1.10)^2;
elseif brch_inf (brch_num) $<0.90$ penalty_brch (brch_num) $=10000$ (brch_inf (brch_num) -0.90)^2;
else
penalty_brch (brch_num) $=0$;
end
end
penalty_brch_violation=sum(penalty_brch);
\%sum of real power losses of all branches
losses_final(k) =eval(['losses_', num2str(k)]);
Obj_fun_final(k) =losses_final(k) +penalty_bus_violation+penalty_sht_violation+pen alty_brch_violation;
\% Evaluate new solutions
Fitness_final(k)=Obj_fun_final(k);

```
%% If the solution improves or not too loud
 if Fitness_final(k)<=Fitness(k) & (rand<A(k))
 losses(k)=losses_final(k);
 pbest(k,:)=Sol(k,:); % replace initial solution with
improved solution
 Fitness(k)=Fitness_final(k); % replace initial FITNESS with improved
fitness
 A(k)=A(k)*alpha; % update loudness of bats
 r(k)=r(k)*(1-exp (-gamma*N_iter)); % update the pitch of bats
 end
 [fnew,n]=min(Fitness_final);
 % Update the current best
 if fnew<=fmin
 best=Sol (n,:);
 fmin=fnew;
 end
end
 fmin_rec(N_iter)=fmin;
 plot(fmin_rec);
 drawnow;
 toc
end
```


## APPENDIX C MATALAB CODES FOR PSO, BA AND HPSOBA ALGORITHMS (IEEE 118-BUS TEST SYSTEM)

## APPENDIX C. 1 MATALAB CODES FOR PSO ALGORITHM FOR ORPD (without DG Unit)

```
%% PSO algorithm to solve Optimal Reactive Power Dispatch
% Authored by AGBUGBA E.E.
% Student No: 57441022
% Department of Electrical and Mining Engineering
% College of Science, Engineering and Technology
% University Of South Africa
%% Initialization Parameters
clear all
clc
tic
iter=0;
iteration=200;
nvars = 77; %Number of variables
N = 50; %Number of Particles or Swarm size
%Acceleration constants
c1 = 2.05;
c2 = 2.05;
%Inertia Weight
w_max=0.9;
w_min=0.4;
w_temp (1) =w_max;
%Load IEEE 118-bus data
[baseMVA, bus, gen, branch]=loadcase(case118);
%% Initialization of Swarm & velocity
% Random 50*77 matrix
Swarm=[unifrnd(0.95,1.10,N,54),unifrnd(0.90,1.10,N,9),unifrnd(0.00,0.25,N,14)];
%Initialize velocity
Velocity = [unifrnd(-0.003,0.003,N,54),unifrnd(-0.003,0.003,N,9), unifrnd(-
0.003,0.003,N,14)];
for i=1:N
```

```
v1=Swarm(i,1);
bus (1,8)=v1;
gen (1,6)=v1;
v4=Swarm(i,2);
bus(4,8)=v4;
gen (2,6)=v4;
v6=Swarm(i,3);
bus(6,8)=v6;
gen (3,6)=v6;
v8=Swarm(i,4);
bus(8,8)=v8;
gen (4,6) =v8;
v10=Swarm(i,5);
bus(10,8)=v10;
gen (5,6)=v10;
v12=Swarm(i,6); %v12
bus (12,8)=v12;
gen (6,6)=v12;
v15=Swarm(i,7); %v15
bus (15,8)=v15;
gen (7, 6) =v15;
v18=Swarm(i,8); %v18
bus(18,8)=v18;
gen (8,6)=v18;
v19=Swarm(i,9); %v19
bus (19,8)=v19;
gen (9,6)=v19;
v24=Swarm(i,10); %v24
bus(24,8)=v24;
gen (10,6)=v24;
v25=Swarm(i,11); %v25
bus (25,8)=v25;
gen (11,6)=v25;
v26=Swarm(i,12); %v26
bus (26,8)=v26;
gen (12,6)=v26;
v27=Swarm(i,13); %v27
bus (27,8)=v27;
gen (13,6)=v27;
v31=Swarm(i,14); %v31
bus(31,8)=v31;
gen (14,6)=v31;
v32=Swarm(i,15); %v32
bus (32,8)=v32;
gen (15,6) =v32;
v34=Swarm(i,16); %v34
bus (34,8)=v34;
gen (16,6) =v34;
v36=Swarm(i,17); %v36
bus (36,8)=v36;
gen (17,6)=v36;
v40=Swarm(i,18); %v40
bus (40,8)=v40;
gen (18,6)=v40;
v42=Swarm(i,19); %v42
bus (42,8)=v42;
gen (19,6)=v42;
v46=Swarm(i,20); %v46
bus(46,8)=v46;
gen (20,6)=v46;
v49=Swarm(i,21); %v49
bus(49,8)=v49;
gen (21,6) =v49;
v54=Swarm(i,22); %v54
```

```
bus(54,8)=v54;
gen (22,6)=v54;
v55=Swarm(i,23); %v55
bus(55,8)=v55;
gen (23,6)=v55;
v56=Swarm(i,24); %v56
bus (56,8)=v56;
gen (24,6)=v56;
v59=Swarm(i,25); %v59
bus(59,8)=v59;
gen (25,6)=v59;
v61=Swarm(i,26); %v61
bus (61,8)=v61;
gen (26,6)=v61;
v62=Swarm(i,27); %v62
bus(62,8)=v62;
gen (27,6)=v62;
v65=Swarm(i,28); %v65
bus (65,8)=v65;
gen (28,6) =v65;
v66=Swarm(i,29); %v66
bus(66,8)=v66;
gen (29,6) =v66;
v69=Swarm(i,30); %v69
bus (69,8)=v69;
gen (30,6)=v69;
v70=Swarm(i,31); %v70
bus(70,8)=v70;
gen (31,6)=v70;
v72=Swarm(i,32); %v72
bus (72,8)=v72;
gen (32,6)=v72;
v73=Swarm(i,33); %v73
bus(73,8)=v73;
gen (33,6)=v73;
v74=Swarm(i,34); %v74
bus(74,8)=v74;
gen (34,6) =v74;
v76=Swarm(i,35); %v76
bus(76,8)=v76;
gen (35,6)=v76;
v77=Swarm(i,36); %v77
bus(77,8)=v77;
gen (36,6)=v77;
v80=Swarm(i,37); %v80
bus (80,8)=v80;
gen (37,6)=v80;
v85=Swarm(i,38); %v85
bus (85,8)=v85;
gen (38,6)=v85;
v87=Swarm(i,39); %v87
bus(87,8)=v87;
gen (39,6)=v87;
v89=Swarm(i,40); %v89
bus(89,8)=v89;
gen (40,6)=v89;
v90=Swarm(i,41); %v90
bus(90,8)=v90;
gen (41,6) =v90;
v91=Swarm(i,42); %v91
bus(91,8)=v91;
gen (42,6)=v91;
v92=Swarm(i,43); %v92
bus(92,8)=v92;
```

```
gen (43,6)=v92;
v99=Swarm(i,44); %v99
bus (99,8)=v99;
gen (44,6)=v99;
v100=Swarm(i,45); %v100
bus (100,8)=v100;
gen (45,6)=v100;
v103=Swarm(i,46); %v103
bus (103,8)=v103;
gen (46,6)=v103;
v104=Swarm(i,47); %v104
bus (104,8)=v104;
gen (47,6)=v104;
v105=Swarm(i, 48);
bus (105,8)=v105;
gen (48,6)=v105;
v107=Swarm(i,49);
bus(107,8)=v107;
gen (49,6)=v107;
v110=Swarm(i,50);
bus(110,8)=v110;
gen (50,6)=v110;
v111=Swarm(i,51);
bus(111, 8)=v111;
gen (51,6)=v111;
v112=Swarm(i,52);
bus (112, 8) =v112;
gen (52,6)=v112;
v113=Swarm(i,53); %v113
bus (113,8)=v113;
gen (53,6) =v113;
v116=Swarm(i,54);
bus(116,8)=v116;
gen (54,6)=v116;
t1=Swarm(i,55);
branch (8,9)=t1;
t2=Swarm(i,56);
branch (32,9)=t2;
t3=Swarm(i,57);
branch (36,9)=t3;
t4=Swarm(i,58);
branch (51,9)=t4;
t5=Swarm(i,59);
branch (93,9)=t5;
t6=Swarm(i, 60);
branch (95,9)=t6;
t7=Swarm(i,61);
branch (102,9)=t7;
t8=Swarm(i, 62);
branch (107,9)=t8;
t9=Swarm(i,63);
branch (127,9)=t9;
qc5=Swarm(i,64);
bus (5,6)=qc5;
qc34=Swarm(i,65); %Shunt capacitor 34, column 6 is BS
bus (34,6) =qc34;
qc37=Swarm(i,66);
bus (37,6)=qc37;
qc44=Swarm(i, 67);
bus(44,6)=qc44;
qc45=Swarm(i, 68);
bus(45,6)=qc45;
qc46=Swarm(i,69); %Shunt capacitor 46, column 6 is BS
bus(46,6)=qc46;
```

```
 qc48=Swarm(i,70); %Shunt capacitor 48, column 6 is BS
 bus (48,6)=qc48;
 qc74=Swarm(i,71); %Shunt capacitor 74, column 6 is BS
 bus (74,6)=qc74;
 qc79=Swarm(i,72); %Shunt capacitor 79, column 6 is BS
 bus (79,6)=qc79;
 qc82=Swarm(i,73); %Shunt capacitor 82, column 6 is BS
 bus (82,6)=qc82;
 qc83=Swarm(i,74); %Shunt capacitor 83, column 6 is BS
 bus (83,6)=qc83;
 qc105=Swarm(i,75); %Shunt capacitor 105, column 6 is BS
 bus(105,6)=qc105;
 qc107=Swarm(i,76); %Shunt capacitor 107, column 6 is BS
 bus (107,6)=qc107;
 qc110=Swarm(i,77); %Shunt capacitor 110, column 6 is BS
 bus(110,6)=qc110;
 eval(['savecase (''case118_test', num2str(i), '.mat'', baseMVA, bus, gen,
branch)']);
 eval(['initial_results_',num2str(i),'=runpf(''case118_test', num2str(i)
'.mat'')']);
 eval(['initial_losses_',num2str(i),'=sum(real(get_losses(initial_results_',
num2str(i),')))']);
 %Penalty for bus voltage violation
 bus_inf=bus(:,8);
 for bus_num=1:118
 if bus_inf(bus_num)>1.10
 penalty_Vl(bus_num)=1000*(bus_inf(bus_num)-1.10)^2;
 elseif bus_inf(bus_num)<0.95
 penalty_Vl(bus_num)=1000*(bus_inf(bus_num)-0.95)^2;
 else
 penalty_Vl(bus_num)=0;
 end
 end
 penalty_Vl_violation=sum(penalty_Vl);
 %Penalty for shunt violation
 buus_inf=bus(:,6);
 for bus_num=1:118
 if buus_inf(bus_num)>0.25
 penalty_Qc(bus_num)=1000*(buus_inf(bus_num)-0.25)^2;
 elseif buus_inf(bus_num)<0.00
 penalty_Qc(bus_num)=1000*(buus_inf(bus_num)-0.00)^2;
 else
 penalty_Qc (bus_num)=0;
 end
 end
 penalty_Qc_violation=sum(penalty_Qc);
 %Penalty for tap position violation
 brch_inf=[branch(8,9); branch(32,9); branch(36,9); branch(51,9);
branch(93,9); branch(95,9); branch(102,9); branch(107,9); branch(127,9)];
 for brch_num=1:9
 if brch_inf(brch_num)>1.10
 penalty_Tk (brch_num)=1000*(brch_inf(brch_num)-1.10)^2;
 elseif brch_inf(brch_num)<0.90
 penalty_Tk(brch_num)=1000*(brch_inf(brch_num)-0.90)^2;
 else
 penalty_Tk(brch_num)=0;
 end
 end
 penalty_Tk_violation=sum(penalty_Tk);
 %objective function=sum of active power losses of the transmission lines
```

losses(i)=eval(['initial_losses_', num2str(i)]); \%sum of real power losses of all branches

Obj_fun_initial(i)=losses(i)+penalty_Vl_violation+penalty_Qc_violation+penalty_T k_violation; \%augumented objective function with penalty function end
\%\% Initialize best position (Pbest) and global best postion (Gbest) matrix

## Pbest=Swarm;

Val_Pbest=Obj_fun_initial;
\%finding best particle in initial population
[Val_Gbest,m]=min(Val_Pbest);
Gbest=Swarm(m,:); \%used to keep track of the best particle ever
Gbest_calc=repmat (Swarm (m,:), N, 1);
\% \% PSO LOOP
figure('NumberTitle', 'off', 'Name', 'PSO Algorithm Based Optimal Reactive Power Dispatch');
title('ACTIVE POWER LOSS MINIMIZATION');
ylabel('Total Active Power Loss (MW)');
xlabel('Iteration Number');
grid on;
hold on
for iter=1:iteration

```
 % Update the value of the inertia weight w
```

    if iter <= iteration
        w_temp (iter) =w_max + (((w_min-w_max)/iteration)*iter); \%Change inertia
    weight
end
\%generate random numbers
R1=rand ( N, nvars) ;
$R 2=r a n d(N, n v a r s) ;$
\% constriction factor
\%2.05+2.05=4.1;
$\% 2 / \mathrm{abs}(2-4.1-\operatorname{sqrt}(4.1 * 4.1-4 * 4.1))=0.729$
\%calculate velocity
Velocity=(w_temp(iter).*Velocity+c1*R1.*(Pbest-Swarm) +c2*R2.* (Gbest_calc-
Swarm));
for v_iter=1:nvars
if v_iter==nvars
Outstep=Velocity (:, v_iter) $>0.003$;
Velocity (find (Outstep), v_iter) $=0.003$;
Outstep=Velocity(:,v_iter)<-0.003;
Velocity (find (Outstep), v_iter) $=-0.003$;
else
Outstep=Velocity(:,v_iter)>0.01;
Velocity (find (Outstep), v_iter) $=0.01$;
Outstep=Velocity (:, v_iter) <-0.01;
Velocity (find (Outstep), v_iter) =-0.01;
end
end
\%update positions of particles
Swarm=Swarm+0.729*Velocity; \%evaluate a new swarm
for $k=1: N$
v1=Swarm (k,1); \%v1
bus $(1,8)=v 1 ; \quad$ \%Vm, column 8 is voltage magnitude (p.u.)
gen $(1,6)=v 1 ; \quad$ \%Vg, column 6 is voltage magnitude setpoint (p.u.)
$\mathrm{v} 4=\operatorname{Swarm}(\mathrm{k}, 2)$; $\quad \circ \mathrm{v} 4$
bus $(4,8)=v 4$;
gen $(2,6)=v 4$;
v6=Swarm (k,3); \%v6

```
bus (6,8)=v6;
gen (3,6)=v6;
v8=Swarm(k,4); %v8
bus(8,8)=v8;
gen (4,6) =v8;
v10=Swarm(k,5); %v10
bus (10,8)=v10;
gen (5,6)=v10;
v12=Swarm (k,6); %v12
bus (12,8)=v12;
gen (6,6)=v12;
v15=Swarm(k,7); %v15
bus (15,8)=v15;
gen (7,6)=v15;
v18=Swarm(k,8); %v18
bus (18,8)=v18;
gen (8,6)=v18;
v19=Swarm(k,9); %v19
bus(19,8)=v19;
gen (9,6)=v19;
v24=Swarm(k,10); %v24
bus(24,8)=v24;
gen (10,6) =v24;
v25=Swarm(k,11); %v25
bus (25,8)=v25;
gen (11,6)=v25;
v26=Swarm(k,12); %v26
bus (26,8)=v26;
gen (12,6)=v26;
v27=Swarm(k,13); %v27
bus (27,8)=v27;
gen (13,6)=v27;
v31=Swarm(k,14); %v31
bus (31,8) =v31;
gen (14,6)=v31;
v32=Swarm(k,15); %v32
bus (32,8)=v32;
gen (15,6) =v32;
v34=Swarm(k,16); %v34
bus(34,8)=v34;
gen (16,6) =v34;
v36=Swarm(k,17); %v36
bus (36,8)=v36;
gen (17,6) =v36;
v40=Swarm(k,18); %v40
bus(40,8)=v40;
gen (18,6)=v40;
v42=Swarm(k,19); %v42
bus(42,8)=v42;
gen (19,6)=v42;
v46=Swarm(k,20); %v46
bus (46,8)=v46;
gen (20,6)=v46;
v49=Swarm(k,21); %v49
bus(49,8)=v49;
gen (21,6) =v49;
v54=Swarm(k,22); %v54
bus(54,8)=v54;
gen (22,6) =v54;
v55=Swarm(k,23); %v55
bus(55,8)=v55;
gen (23,6) =v55;
v56=Swarm(k,24); %v56
bus(56,8)=v56;
```

```
gen (24,6)=v56;
v59=Swarm(k,25); %v59
bus(59,8)=v59;
gen (25,6)=v59;
v61=Swarm(k,26); %v61
bus(61,8) =v61;
gen (26,6)=v61;
v62=Swarm(k,27); %v62
bus(62,8)=v62;
gen (27,6)=v62;
v65=Swarm(k,28); %v65
bus (65,8)=v65;
gen (28,6) =v65;
v66=Swarm(k,29)
bus(66,8)=v66;
gen (29,6) =v66;
v69=Swarm(k,30); %v69
bus(69,8)=v69;
gen (30,6) =v69;
v70=Swarm(k,31); %v70
bus (70,8)=v70;
gen (31,6)=v70;
v72=Swarm(k,32); %v72
bus (72,8)=v72;
gen (32,6)=v72;
v73=Swarm(k,33); %v73
bus (73,8) =v73;
gen (33,6)=v73;
v74=Swarm(k,34); %v74
bus (74,8)=v74;
gen (34,6) =v74;
v76=Swarm(k,35); %v76
bus(76,8)=v76;
gen (35,6) =v76;
v77=Swarm(k,36); %v77
bus(77,8)=v77;
gen (36,6)=v77;
v80=Swarm(k,37); %v80
bus (80,8)=v80;
gen (37,6)=v80;
v85=Swarm(k,38); %v85
bus (85,8)=v85;
gen (38,6)=v85;
v87=Swarm(k,39); %v87
bus (87,8)=v87;
gen (39,6)=v87;
v89=Swarm(k,40); %v89
bus(89,8)=v89;
gen (40,6) =v89;
v90=Swarm(k,41); %v90
bus (90,8)=v90;
gen (41,6) =v90;
v91=Swarm(k,42); %v91
bus (91,8)=v91;
gen (42,6)=v91;
v92=Swarm(k,43); %v92
bus (92,8)=v92;
gen (43,6)=v92;
v99=Swarm(k,44); %v99
bus(99,8)=v99;
gen (44,6)=v99;
v100=Swarm(k,45); %v100
bus (100,8)=v100;
gen (45,6)=v100;
```

```
v103=Swarm(k, 46);
bus (103,8)=v103;
gen (46,6)=v103;
v104=Swarm(k,47);
bus(104,8)=v104;
gen (47,6)=v104;
v105=Swarm(k, 48);
bus(105,8)=v105;
gen (48,6)=v105;
v107=Swarm(k,49);
bus(107,8)=v107;
gen(49,6)=v107;
v110=Swarm(k,50);
bus (110, 8)=v110;
gen (50,6) =v110;
v111=Swarm(k,51);
bus(111,8)=v111;
gen (51, 6)=v111;
v112=Swarm(k,52);
bus (112, 8)=v112;
gen (52, 6)=v112;
v113=Swarm(k,53);
bus(113,8)=v113;
gen (53,6)=v113;
v116=Swarm(k,54);
bus(116,8)=v116;
gen (54,6)=v116;
t1=Swarm(k,55);
branch (8,9)=t1;
t2=Swarm(k,56);
branch (32,9) =t 2;
t3=Swarm(k,57);
branch (36,9) =t 3;
t4=Swarm(k,58);
branch (51,9)=t4;
t5=Swarm(k,59);
branch (93,9)=t5;
t6=Swarm(k,60);
branch (95,9)=t6;
t7=Swarm(k,61);
branch (102,9)=t7;
t8=Swarm(k,62);
branch (107,9)=t8;
t9=Swarm(k,63);
branch (127,9)=t9;
qc5=Swarm(k,64);
bus (5,6) =qc5;
qc34=Swarm(k,65);
bus (34,6)=qc34;
qc37=Swarm(k,66);
bus (37,6)=qc37;
qc44=Swarm(k,67);
bus(44,6)=qc44;
qc45=Swarm(k, 68);
bus(45,6)=qc45;
qc46=Swarm(k, 69);
bus (46,6)=qc46;
qc48=Swarm(k,70);
bus(48,6)=qc48;
qc74=Swarm(k,71);
bus (74,6)=qc74;
qc79=Swarm(k,72);
bus (79,6)=qc79;
qc82=Swarm(k, 73);
\%v103
bus \((103,8)=\mathrm{v} 103\);
 %v104
 %v105
 %v107
 %v110
 %v111
 %v112
 %v113
 %v116
%tp1 8-5, column 9 is tap position
%tp2 26-25
%tp3 30-17
%tp4 38-37
%tp5 63-59
%tp6 64-61
%tp7 65-66
%tp8 68-69
%tp9 81-80
%Shunt capacitor 5, column 6 is BS
%Shunt capacitor 34, column 6 is BS
%Shunt capacitor 37, column 6 is BS
%Shunt capacitor 44, column 6 is BS
%Shunt capacitor 45, column 6 is BS
%Shunt capacitor 46, column 6 is BS
%Shunt capacitor 48, column 6 is BS
%Shunt capacitor 74, column 6 is BS
%Shunt capacitor 79, column 6 is BS
%Shunt capacitor 82, column 6 is BS
```

```
 bus (82,6)=qc82;
 qc83=Swarm(k,74); %Shunt capacitor 83, column 6 is BS
 bus (83,6)=qc83;
 qc105=Swarm(k,75); %Shunt capacitor 105, column 6 is BS
 bus(105,6)=qc105;
 qc107=Swarm(k,76); %Shunt capacitor 107, column 6 is BS
 bus(107,6)=qc107;
 qc110=Swarm(k,77); %Shunt capacitor 110, column 6 is BS
 bus (110,6)=qc110;
 eval(['savecase (''case118_test', num2str(k), '.mat'', baseMVA, bus,
gen, branch)']);
 eval(['final_results_',num2str(k),'=runpf(''case118_test', num2str(k)
'.mat'')']);
eval(['final_losses_', num2str(k),'=sum(real(get_losses(final_results_',num2str(k
),')))']);
 %Penalty for bus voltage violation
 bus_inf=bus(:,8);
 for bus_num=1:118
 if bus_inf(bus_num)>1.10
 penalty_Vl(bus_num)=1000*(bus_inf(bus_num)-1.10)^2;
 elseif bus_inf(bus_num)<0.95
 penalty_Vl(bus_num)=1000*(bus_inf(bus_num) -0.95)^2;
 else
 penalty_Vl(bus_num)=0;
 end
 end
 penalty_Vl_violation=sum(penalty_Vl);
 %Penalty for shunt violation
 buus_inf=bus(:,6);
 for bus_num=1:118
 if buus_inf(bus_num)>0.25
 penalty_Qc(bus_num)=1000*(buus_inf(bus_num)-0.25)^2;
 elseif buus_inf(bus_num)<0.00
 penalty_Qc(bus_num)=1000*(buus_inf(bus_num)-0.00)^2;
 else
 penalty_Qc(bus_num)=0;
 end
 end
 penalty_Qc_violation=sum(penalty_Qc);
 %Penalty for tap position violation
 brch_inf=[branch(8,9); branch(32,9); branch(36,9); branch(51,9);
branch(93,9); branch(95,9); branch(102,9); branch(107,9); branch(127,9)];
 for brch_num=1:9
 if brch_inf(brch_num)>1.10
 penalty_Tk (brch_num)=1000*(brch_inf(brch_num)-1.10)^2;
 elseif brch_inf(brch_num)<0.90
 penalty_Tk(brch_num)=1000*(brch_inf(brch_num)-0.90)^2;
 else
 penalty_Tk(brch_num)=0;
 end
 end
 penalty_Tk_violation=sum(penalty_Tk);
 %objective function=sum of active power losses of the transmission lines
 losses_temp(k)=eval(['final_losses_',num2str(k)]); %sum of real power
losses of all branches
Obj_fun_temp (k) =losses_temp(k) +penalty_Vl_violation+penalty_Qc_violation+penalty _Tk_violation; \%augumented objective function with penalty function
- Final Evaluation
Val_Pbest_temp (k) =Obj_fun_temp (k);
```

end

```
if Val_Pbest_temp<Val_Pbest
 losses=losses_temp;
 Val_Pbest=Val_Pbest_temp;
 Pbest=Swarm;
end
```

[Val_Gbest_temp,n]=min(Val_Pbest);
if Val_Gbest_temp<Val_Gbest
Val_Gbest=Val_Gbest_temp;
Gbest=Swarm(n,:);
Gbest_calc=repmat (Swarm (n,:), N, 1);
end
Val_Gbest_rec (iter)=Val_Gbest;
plot(Val_Gbest_rec);
drawnow;
toc
end

## APPENDIX C. 2 MATALAB CODES FOR BA ALGORITHM FOR ORPD

```
%% Bat algorithm to solve Optimal Reactive Power Dispatch
% Authored by AGBUGBA E.E.
% Student No: 57441022
% Department of Electrical and Mining Engineering
% College of Science, Engineering and Technology
% University Of South Africa
%% Initialization Parameters
clear all
clc
tic
% Default parameters
N=20; % Number of bats (population), typically 10 to 25
N_gen=200; % No of generation (iteration)
Qmin=0; % Frequency minimum
Qmax=2; % Frequency maximum
r0max=1;
r0min=0;
Amax=2;
Amin=1;
```

\%Inertia Weight
w_max=0.9;
w_min=0.4;
w_temp=w_max;
w_step $=\left(w \_m a x-w \_m i n\right) / N \_g e n ;$
\% Iteration parameters
N_iter=0; \% Total number of function evaluations
\% Dimension of the search variables
$d=77$;
\% Constants
alpha=0.99; \% Loudness constant
gamma=0.9; \% Pulse rate constant
\%Load IEEE 118-bus data
[baseMVA, bus, gen, branch]=loadcase(case118);
\%\% Initialization of Population/ Solutions, Frequency \& velocity
\% Initialize velocity
Velocity $=$ [unifrnd $(-0.003,0.003, N, 54)$, unifrnd $(-0.003,0.003, N, 9)$, unifrnd(-
0.003, 0.003, N, 14)];
\% Initialize frequency

```
Freq=zeros(N,1); % Frequency;
% Initialize solutions/locations
Sol=[unifrnd(0.95,1.10,N,54),unifrnd(0.90,1.10,N,9), unifrnd(0.00,0.25,N,14)];
r=(rand (N,1).*(r0max-r0min))+r0min;
A=(rand (N,1) .* (Amax-Amin))+Amin;
for i=1:N
 v1=Sol(i,1);
 bus(1,8)=v1;
 gen (1,6) =v1;
 v4=Sol(i,2);
 bus(4,8)=v4;
 gen (2,6) =v4;
 v6=Sol(i,3);
 bus(6,8)=v6;
 gen (3,6)=v6;
 v8=Sol(i,4);
 bus (8,8)=v8;
 gen (4,6)=v8;
 v10=Sol(i,5);
 bus (10,8)=v10;
 gen (5,6)=v10;
 v12=Sol(i,6);
 bus(12,8)=v12;
 gen (6,6)=v12;
 v15=Sol(i,7);
 bus(15,8)=v15;
 gen (7, 6) =v15;
 v18=Sol(i,8);
 bus(18,8)=v18;
 gen (8,6)=v18;
 v19=Sol(i,9);
 bus(19,8)=v19;
 gen (9,6)=v19;
 v24=Sol(i,10);
 bus (24,8)=v24;
 gen (10,6)=v24;
 v25=Sol(i,11);
 bus (25,8)=v25;
 gen (11,6) =v25;
 v26=Sol(i,12);
 bus (26,8)=v26;
 gen (12,6) =v26;
 v27=Sol(i,13);
 bus(27,8)=v27;
 gen (13,6) =v27;
 v31=Sol(i,14);
 bus(31,8)=v31;
 gen (14,6)=v31;
 v32=Sol(i,15);
 bus (32,8)=v32;
 gen (15,6)=v32;
 v34=Sol(i,16);
 bus (34,8)=v34;
 gen (16,6)=v34;
 v36=Sol(i,17);
 bus (36,8)=v36;
 gen (17,6) =v36;
 v40=Sol(i,18);
 bus(40,8)=v40;
 gen (18,6) =v40;
 v42=Sol(i,19);
 bus(42,8)=v42;
 gen (19,6) =v42;
 v46=Sol(i,20);
%v1
 %Vm, column 8 is voltage magnitude (p.u.)
 %Vg, column 6 is voltage magnitude setpoint (p.u.)
%v4
%v6
%v8
%v10
%v12
%v15
%v18
%v19
%v24
%v25
%v26
%v27
%v31
%v32
%v34
%v36
%v40
%v42
%v46
```

```
bus(46,8)=v46;
gen (20,6)=v46;
v49=Sol(i,21);
bus(49,8)=v49;
gen (21,6)=v49;
v54=Sol(i, 22);
bus (54,8)=v54;
gen (22,6)=v54;
v55=Sol(i, 23);
bus (55,8)=v55;
gen (23,6)=v55;
v56=Sol(i,24);
bus(56,8)=v56;
gen (24,6)=v56;
v59=Sol(i,25);
bus(59,8)=v59;
gen (25,6)=v59;
v61=Sol(i,26);
bus (61,8)=v61;
gen (26,6) =v61;
v62=Sol(i,27);
bus (62,8)=v62;
gen (27,6)=v62;
v65=Sol(i, 28);
bus (65,8)=v65;
gen (28,6)=v65;
v66=Sol(i,29);
bus (66,8)=v66;
gen (29,6)=v66;
v69=Sol(i,30);
bus (69,8)=v69;
gen (30,6)=v69;
v70=Sol(i,31);
bus (70,8)=v70;
gen (31, 6) =v70;
v72=Sol(i, 32);
bus(72,8)=v72;
gen (32,6) =v72;
v73=Sol(i,33);
bus (73,8)=v73;
gen (33,6)=v73;
v74=Sol(i,34);
bus(74,8)=v74;
gen (34,6)=v74;
v76=Sol(i,35);
bus (76,8)=v76;
gen (35,6)=v76;
v77=Sol(i,36);
bus(77,8)=v77;
gen (36,6)=v77;
v80=Sol(i, 37);
bus (80,8)=v80;
gen (37, 6)=v80;
v85=Sol(i,38);
bus(85,8)=v85;
gen (38,6) =v85;
v87=Sol(i,39);
bus (87,8)=v87;
gen (39,6)=v87;
v89=Sol(i,40);
bus(89,8)=v89;
gen (40,6)=v89;
v90=Sol(i,41);
```

\%V49
\%V54
\%V55
\%V56
\%V59
\%V61
\%V62
\%V65
\%V66
\%V69
\%V70
\%V72
\%V73
\%V74
\%V76
\%V77
\%V80
\%v85
\%v87
\%V89
\%V90

```
gen (41, 6)=v90;
v91=Sol(i,42);
bus (91,8)=v91;
gen (42,6)=v91;
v92=Sol(i,43);
bus (92,8)=v92;
gen (43,6)=v92;
v99=Sol(i,44);
bus(99,8)=v99;
gen (44,6)=v99;
v100=Sol(i,45);
bus (100, 8)=v100;
gen (45,6)=v100;
v103=Sol(i,46);
bus(103,8)=v103;
gen (46,6)=v103;
v104=Sol(i,47);
bus(104,8)=v104;
gen (47,6)=v104;
v105=Sol(i,48);
bus (105,8)=v105;
gen (48,6)=v105;
v107=Sol(i,49);
bus (107,8)=v107;
gen (49,6)=v107;
v110=Sol(i,50);
bus(110, 8)=v110;
gen (50,6)=v110;
v111=Sol(i,51);
bus(111, 8)=v111;
gen (51,6)=v111;
v112=Sol(i,52);
bus(112, 8)=v112;
gen (52, 6) =v112;
v113=Sol(i,53);
bus(113,8)=v113;
gen (53,6) =v113;
v116=Sol(i,54);
bus (116,8)=v116;
gen (54,6)=v116;
t1=Sol(i,55);
branch (8,9)=t1;
t2=Sol(i,56);
branch (32,9)=t2;
t3=Sol(i,57);
branch (36,9)=t3;
t4=Sol(i,58);
branch (51,9)=t4;
t5=Sol(i,59);
branch (93,9)=t5;
t6=Sol(i,60);
branch (95,9)=t 6;
t7=Sol(i,61);
branch (102,9)=t7;
t8=Sol(i,62); %tp8 68-69
branch (107,9)=t8;
t9=Sol(i,63);
branch (127,9)=t9;
qc5=Sol(i,64);
bus (5,6) =qc5;
qc34=Sol(i,65);
bus(34,6)=qc34;
qc37=Sol(i,66);
bus (37,6)=qc37;
\%V91

\section*{\%V92}
\%V99
\%V100
\%V103
\%V104
\%V105
\%V107
\%V110
\%V111
\%V112
\%v113
\%V116
\%tp1 8-5, column 9 is tap position
\%tp2 26-25
```

%tp3 30-17

```
```

```
%tp3 30-17
```

```
\%tp4 38-37
\%tp5 63-59
\%tp6 64-61
\%tp7 65-66
\%tp8 68-69
\%tp9 81-80
\%Shunt capacitor 5, column 6 is BS
\%Shunt capacitor 34 , column 6 is BS
\%Shunt capacitor 37, column 6 is BS
qc44 \(=\) Sol (i, 67) ;
bus \((44,6)=q c 44\);
qc45=Sol(i, 68);
bus \((45,6)=q c 45\);
qc46=Sol (i, 69) ;
bus \((46,6)=q c 46\);
qc48=Sol(i,70);
bus \((48,6)=q c 48\);
qc74 =Sol(i,71);
bus \((74,6)=q c 74\);
qc79=Sol(i,72);
bus \((79,6)=q c 79\);
qc82=Sol(i,73);
bus \((82,6)=q c 82\);
qc83=Sol(i,74);
bus \((83,6)=q c 83\);
qc105=Sol (i,75) ; bus \((105,6)=q c 105\); qc107=Sol (i, 76); bus \((107,6)=q c 107\); qc110=Sol (i,77); bus \((110,6)=q c 110\);
\%Shunt capacitor 44, column 6 is BS
\%Shunt capacitor 45, column 6 is BS
\%Shunt capacitor 46 , column 6 is BS
\%Shunt capacitor 48, column 6 is BS
\%Shunt capacitor 74, column 6 is BS
\%Shunt capacitor 79, column 6 is BS
\%Shunt capacitor 82, column 6 is BS
\%Shunt capacitor 83, column 6 is BS
\%Shunt capacitor 105, column 6 is BS
\%Shunt capacitor 107, column 6 is BS
\%Shunt capacitor 110 , column 6 is BS
eval(['savecase (''case118_test', num2str(i), '.mat'', baseMVA, bus, gen, branch) ']);
eval(['results_', num2str(i), '=runpf(''case118_test', num2str(i) '.mat'')']);
eval(['losses_', num2str(i),'=sum(real(get_losses (results_',
num2str(i),')))']);
\%Penalty for bus voltage violation
bus_inf=bus (: , 8) ;
for bus_num=1:118
if bus_inf(bus_num) >1. 10
penalty_bus (bus_num) \(=10000\) ((bus_inf (bus_num) -1.10) ^2) ;
elseif bus_inf (bus_num) \(<0.95\) penalty_bus (bus_num) \(=10000\) * ((bus_inf (bus_num)-0.95) ^2) ;
else
penalty_bus (bus_num) \(=0\);
end
end
penalty_bus_violation=sum(penalty_bus);
\%Penalty for shunt violation
buus_inf=bus (: , 6) ;
for bus_num=1:118
if buus_inf(bus_num) \(>0.25\)
penalty_sht (bus_num) \(=10000\) * (buus_inf (bus_num) -0.25) ^2;
elseif buus_inf(bus_num) \(<0.00\) penalty_sht (bus_num) \(=10000\) (buus_inf (bus_num) -0.00\()^{\wedge} 2\);
else
penalty_sht (bus_num) \(=0\);
end
end
penalty_sht_violation=sum(penalty_sht);
\%Penalty for tap position violation
brch_inf=[branch \((8,9) ; \operatorname{branch}(32,9) ; \operatorname{branch}(36,9) ; \operatorname{branch}(51,9)\);
branch \((93,9) ; \operatorname{branch}(95,9) ; \operatorname{branch}(102,9) ; \operatorname{branch}(107,9) ;\) branch \((127,9)]\);
for brch_num=1:9
if brch_inf(brch_num) >1.10
penalty_brch (brch_num) \(=10000 *(\text { brch_inf }(\text { brch_num })-1.10)^{\wedge} 2\);
elseif brch_inf(brch_num) \(<0.90\)
penalty_brch (brch_num) \(=10000 *\left(b r c h _i n f\left(b r c h _n u m\right)-0.90\right) \wedge 2\); else
penalty_brch (brch_num) \(=0\);
end
end
penalty_brch_violation=sum(penalty_brch);
\% objective function=sum of active power losses of the transmission lines losses(i) =eval(['losses_', num2str(i)]);

Obj_fun_initial(i)=losses(i)+penalty_bus_violation+penalty_sht_violation+penalty _brch_violation; \% augumented objective function with penalty function end
\% Evaluate solution
```

        Fitness=Obj_fun_initial;
    ```
 pbest=Sol;
\% finding the current best solution in the initial population (first
evaluation)
[fmin,m]=min(Fitness);
best=Sol(m,:); \% used to keep track of the best current solution ever
\%\% Bat Algorithm LOOP
figure('NumberTitle', 'off', 'Name', 'Bat Algorithm Based Optimal Reactive Power
Dispatch');
title('ACTIVE POWER LOSS MINIMIZATION');
ylabel('Total Active Power Loss (MW)');
xlabel('Iteration Number');
grid on;
hold on
for N_iter=1:N_gen
 \% Loop over all bats/solutions
 \%mean of loudness
 meanA=mean (A);
 if (N_iter <= N_gen) \& (N_iter > 1)
 w_temp=w_temp-w_step; \%Change inertia weight
 end
 for \(i=1: N\)
 Freq (i) \(=\) Qmin \(+(\) Qmax-Qmin) *rand;
 Velocity(i,:)=w_temp*Velocity(i,:) +(Sol(i,:)-best)*Freq(i);
 S(i,:) =Sol(i,:)+Velocity(i,:);
 \% Local Search
 if rand>r(i)
 randnValueA=randn (1,d) . *(abs (meanA));
 S(i,:)=best+(0.001*randnValueA); \% The factor 0.001 limits the
step sizes of random walks
 end
 v1=S(i,1); \%v1
 bus \((1,8)=v 1\);
 gen \((1,6)=v 1\);
 v4=S(i,2);
 bus \((4,8)=v 4\);
 \(\operatorname{gen}(2,6)=\mathrm{v} 4\);
 v6=S (i,3);
 bus \((6,8)=v 6\);
 gen \((3,6)=v 6\);
 \(v 8=S(i, 4)\);
 bus \((8,8)=v 8\);
 gen \((4,6)=v 8\);
 v10=S (i,5);
 bus \((10,8)=v 10\);
 gen \((5,6)=v 10\);
 v12=S (i, 6);
 \%v12
 bus \((12,8)=v 12\);
 gen \((6,6)=v 12\);
```

v15=S(i,7);
%v15
bus (15,8)=v15;
gen (7, 6) =v15;
v18=S(i,8);
%v18
bus(18,8)=v18;
gen (8,6)=v18;
v19=S(i,9);
bus(19,8)=v19;
gen (9,6)=v19;
v24=S(i,10);
bus (24,8)=v24;
gen (10,6)=v24;
v25=S(i,11);
bus (25,8)=v25;
gen (11,6)=v25;
v26=S(i,12);
bus (26,8)=v26;
gen (12,6)=v26;
v27=S(i,13);
bus (27,8)=v27;
gen (13,6)=v27;
v31=S(i,14);
bus (31,8)=v31;
gen (14,6)=v31;
v32=S(i,15);
bus (32,8)=v32;
gen (15,6)=v32;
v34=S(i,16);
bus (34,8)=v34;
gen (16,6)=v34;
v36=S(i,17);
bus (36,8)=v36;
gen (17,6)=v36;
v40=S(i,18);
bus (40,8)=v40;
gen (18,6)=v40;
v42=S(i,19);
bus (42,8)=v42;
gen (19,6)=v42;
v46=S(i,20);
bus(46,8)=v46;
gen (20,6)=v46;
v49=S(i,21);
bus(49,8)=v49;
gen (21,6) =v49;
v54=S(i,22);
bus (54,8)=v54;
gen (22,6)=v54;
v55=S(i,23);
bus(55,8)=v55;
gen (23,6)=v55;
v56=S(i,24);
bus (56,8)=v56;
gen (24,6)=v56;
v59=S(i,25);
bus(59,8)=v59;
gen (25,6)=v59;
v61=S(i,26);
%v61
bus (61,8)=v61;
gen (26,6)=v61;
v62=S(i,27);
%v62
bus(62,8)=v62;
gen (27,6) =v62;
v65=S(i,28);

```
```

bus (65,8)=v65;
gen (28,6) =v65;
v66=S(i,29);
bus(66,8)=v66;
gen (29,6)=v66;
v69=S(i,30);
bus(69,8)=v69;
gen (30,6)=v69;
v70=S(i,31);
bus (70,8)=v70;
gen (31,6)=v70;
v72=S(i,32);
bus (72,8)=v72;
gen (32,6)=v72;
v73=S(i,33);
bus (73,8)=v73;
gen (33,6) =v73;
v74=S(i,34);
bus (74,8)=v74;
gen (34,6) =v74;
v76=S(i,35);
bus(76,8)=v76;
gen (35,6)=v76;
v77=S(i,36);
bus(77,8)=v77;
gen (36,6)=v77;
v80=S(i,37);
bus(80,8)=v80;
gen (37,6)=v80;
v85=S(i,38);
bus (85,8)=v85;
gen (38,6)=v85;
v87=S(i,39);
bus (87,8)=v87;
gen (39,6)=v87;
v89=S(i,40);
bus (89,8)=v89;
gen (40,6) =v89;
v90=S(i,41);
bus (90,8)=v90;
gen (41,6)=v90;
v91=S(i,42);
bus(91,8)=v91;
gen (42,6)=v91;
v92=S(i,43);
bus (92,8)=v92;
gen (43,6)=v92;
v99=S(i,44);
bus(99,8)=v99;
gen (44,6)=v99;
v100=S(i,45);
bus(100,8)=v100;
gen (45,6)=v100;
v103=S(i,46); %v103
bus (103,8)=v103;
gen (46,6)=v103;
v104=S(i,47);
bus(104,8)=v104;
gen (47,6)=v104;
v105=S(i,48);
bus (105,8)=v105;
gen (48,6)=v105;
v107=S(i,49);
%v107
bus(107,8)=v107;

```
```

gen (49,6)=v107;
v110=S(i,50); %v110
bus(110,8)=v110;
gen(50,6)=v110;
v111=S(i,51); %v111
bus(111,8)=v111;
gen (51,6)=v111;
v112=S(i,52); %v112
bus (112,8)=v112;
gen (52,6)=v112;
v113=S(i,53); %v113
bus(113,8)=v113;
gen (53,6)=v113;
v116=S(i,54); %v116
bus (116,8)=v116;
gen (54,6)=v116;
t1=S(i,55);
branch (8,9)=t1;
t2=S(i,56); %tp2 26-25
branch (32,9)=t2;
t3=S(i,57); %tp3 30-17
branch (36,9)=t3;
t4=S(i,58); %tp4 38-37
branch (51,9)=t4;
t5=S(i,59); %tp5 63-59
branch (93,9)=t5;
t6=S(i,60); %tp6 64-61
branch (95,9)=t6;
t7=S(i,61); %tp7 65-66
branch (102,9)=t7;
t8=S(i,62); %tp8 68-69
branch (107,9)=t8;
t9=S(i,63); %tp9 81-80
branch (127,9)=t9;
qc5=S(i,64); %Shunt capacitor 5, column 6 is BS
bus (5,6)=qc5;
qc34=S(i,65); %Shunt capacitor 34, column 6 is BS
bus (34,6)=qc34;
qc37=S(i,66); %Shunt capacitor 37, column 6 is BS
bus(37, 6)=qc37;
qc44=S(i,67); %Shunt capacitor 44, column 6 is BS
bus (44,6)=qc44;
qc45=S(i,68); %Shunt capacitor 45, column 6 is BS
bus(45,6)=qc45;
qc46=S(i,69); %Shunt capacitor 46, column 6 is BS
bus (46,6)=qc46;
qc48=S(i,70); %Shunt capacitor 48, column 6 is BS
bus (48,6)=qc48;
qc74=S(i,71); %Shunt capacitor 74, column 6 is BS
bus (74,6)=qc74;
qc79=S(i,72); %Shunt capacitor 79, column 6 is BS
bus (79,6)=qc79;
qc82=S(i,73); %Shunt capacitor 82, column 6 is BS
bus (82,6)=qc82;
qc83=S(i,74); %Shunt capacitor 83, column 6 is BS
bus (83,6)=qc83;
qc105=S(i,75); %Shunt capacitor 105, column 6 is BS
bus (105,6)=qc105;
qc107=S(i,76); %Shunt capacitor 107, column 6 is BS
bus (107,6)=qc107;
qc110=S(i,77); %Shunt capacitor 110, column 6 is BS
bus(110,6)=qc110;

```
eval(['savecase (''case118_test', num2str(i), '.mat'', baseMVA, bus, gen, branch)']);
eval(['results_', num2str(i),'=runpf(''case118_test', num2str(i) '.mat'')']);
 eval(['losses_', num2str(i),'=sum(real (get_losses (results_',
num2str(i),')))']);
 \%Penalty for bus voltage violation
 bus_inf=bus(:,8);
 for bus_num=1:118
 if bus_inf(bus_num) \(>1.10\)
 penalty_bus (bus_num) \(=10000\) ((bus_inf (bus_num) -1.10\()^{\wedge} 2\));
 elseif bus_inf (bus_num) \(<0.95\)
 penalty_bus (bus_num) \(=10000\) ((bus_inf (bus_num) -0.95\(\left.)^{\wedge} 2\right)\);
 else
 penalty_bus (bus_num) \(=0\);
 end
 end
 penalty_bus_violation=sum(penalty_bus);
 \%Penalty for shunt violation
 buus_inf=bus(:,6);
 for bus_num=1:118
 if buus_inf(bus_num) >0.25
 penalty_sht (bus_num) \(=10000\) (buus_inf (bus_num)-0.25) ^2;
 elseif buus_inf(bus_num) \(<0.00\)
 penalty_sht (bus_num) \(=10000\) (buus_inf(bus_num) -0.00\()^{\wedge} 2\);
 else
 penalty_sht (bus_num) \(=0\);
 end
 end
 penalty_sht_violation=sum(penalty_sht);
 \%Penalty for tap position violation
 brch_inf=[branch (8,9); branch (32,9); branch (36,9); branch (51,9);
branch (93,9); branch (95,9); branch(102,9); branch(107,9); branch(127,9)];
 for brch_num=1:9
 if brech_inf(brch_num) >1. 10
 penalty_brch (brch_num) \(=10000\) (brch_inf \(\left.\left(b r c h _n u m\right)-1.10\right)^{\wedge} 2\);
 elseif brch_inf(brch_num) \(<0.90\)
 penalty_brch (brch_num) \(=10000\) (brch_inf (brch_num)-0.90)^2;
 else
 penalty_brch (brch_num) \(=0\);
 end
 end
 penalty_brch_violation=sum(penalty_brch);
 \%sum of real power losses of all branches
 losses_final(i)=eval(['losses_', num2str(i)]);

Obj_fun_final(i)=losses_final(i)+penalty_bus_violation+penalty_sht_violation+pen alty_brch_violation;
```

    % Evaluate new solutions
    Fitness_final(i)=Obj_fun_final(i);
    %% If the solution improves or not too loud
if (Fitness_final(i)<=Fitness(i)) \& (rand<A(i))
losses(i)=losses_final(i);
Sol(i,:)=S(i,:); % replace initial solution with improved
solution
Fitness(i)=Fitness_final(i); % replace initial FITNESS with improved
fitness
A(i)=A(i)*alpha; % update loudness of bats
r(i)=r(i)*(1-exp(-gamma*N_iter)); % update the pitch of bats
end

```
```

    [fnew,n]=min(Fitness_final);
    % Update the current best
    if fnew<=fmin
        best=S (n,:);
        fmin=fnew;
    end
    end
fmin_rec(N_iter)=fmin;
plot(fmin_rec);
drawnow;
toc
end

```

\section*{APPENDIX C. 3 MATALAB CODES FOR HPSOBA ALGORITHM FOR ORPD}
```

%% Hybrid PSO-BA algorithm to solve Optimal Reactive Power Dispatch
% Authored by AGBUGBA E.E.
% Student No: 57441022
% Department of Electrical and Mining Engineering
% College of Science, Engineering and Technology
% University Of South Africa
%% Initialization Parameters
clear all
clc
tic
% Dimension of the search variables
d=77;
% Bat Algorithm Default parameters
N=20; % Number of bats (population), typically 10 to 25
N_gen=200; % No of generation (iteration)
Q_max=2; % Frequency maximum
Q_min=0; % Frequency minimum
r_max=1; % Maximum pulse rate
r_min=0; % Minimum pulse rate
A_max=2; % Maximum loudness
A_min=1; % Minimum loudness
% Constants
alpha=0.99; % Loudness constant
gamma=0.9; % Pulse rate constant
% PSO Algorithm Default parameters
% Inertia Weight
w_max=0.9;
w_min=0.4;
w_temp (1) =w_max;
% Acceleration constants
c1=2.05;
c2=2.05;
% Iteration parameters
N_iter=0;
%Load IEEE 118-bus data
[baseMVA, bus, gen, branch]=loadcase(case118);
%% Initialization of Population/ Solutions, Frequency \& velocity
% Initialize velocity
%Velocity=zeros(N,d);
Velocity = [unifrnd(-0.003,0.003,N,54),unifrnd(-0.003,0.003,N,9), unifrnd(-
0.003,0.003,N,14)];
% Initialize frequency
Freq=zeros(N,1); % Frequency;
% Initialize solutions/locations
Sol=[unifrnd(0.95,1.10,N,54),unifrnd(0.90,1.10,N,9),unifrnd(0.00,0.25,N,14)];
% Initialize pulse rate
r=(rand (N, 1) .* (r_max-r_min)) +r_min;
% Initialize loudness

```
```

A=(rand(N,1).*(A_max-A_min)) +A_min;

```
```

for i=1:N

```
v1=Sol(i, 1); bus \((1,8)=v 1\); gen \((1,6)=v 1\); \(\mathrm{v} 4=\operatorname{Sol}(\mathrm{i}, 2)\); bus \((4,8)=v 4\); gen \((2,6)=v 4\); v6=Sol (i, 3) ; bus \((6,8)=v 6\); \(\operatorname{gen}(3,6)=v 6\); v8=Sol (i,4); bus \((8,8)=v 8\); gen \((4,6)=v 8\); v10=Sol(i,5); bus \((10,8)=v 10\); gen \((5,6)=\mathrm{v} 10\); v12=Sol(i,6); bus \((12,8)=v 12\); gen \((6,6)=v 12\); v15=Sol(i,7); bus \((15,8)=v 15\); gen \((7,6)=v 15\); v18=Sol(i,8); bus \((18,8)=v 18\); gen \((8,6)=v 18\); v19=Sol (i,9); bus \((19,8)=v 19\); gen \((9,6)=v 19\); v24=Sol(i,10); bus \((24,8)=v 24\); gen \((10,6)=v 24\); v25=Sol(i,11); bus \((25,8)=v 25\); gen \((11,6)=v 25\); v26=Sol(i,12); bus \((26,8)=v 26\); \(\operatorname{gen}(12,6)=\mathrm{v} 26\); v27=Sol(i, 13); bus \((27,8)=v 27\); gen \((13,6)=v 27\); v31=Sol(i,14); bus \((31,8)=v 31\); gen \((14,6)=v 31\); v32=Sol(i, 15); bus \((32,8)=v 32\); gen \((15,6)=v 32\); v34=Sol(i, 16); bus \((34,8)=v 34\); gen \((16,6)=v 34\); v36=Sol(i, 17); bus \((36,8)=v 36\); \(\operatorname{gen}(17,6)=\mathrm{v} 36\); v40=Sol(i, 18); bus \((40,8)=v 40\); gen \((18,6)=v 40\); v42=Sol (i, 19) ; bus \((42,8)=v 42\); gen \((19,6)=v 42\); v46=Sol(i, 20); bus \((46,8)=v 46\);

\section*{\%v1}
\%Vm, column 8 is voltage magnitude (p.u.)
\%Vg, column 6 is voltage magnitude setpoint (p.u.)
\%V4
\% V6
\%V8
\%v10
\%V12
\%V15
\%V18
\%v19
\%v24
\%v25
\% v26
\%v27
\%v31
\%v32
\%v34
\%v36
\%V40
\(\%\) V42
\%V46
```

gen (20,6)=v46;
v49=Sol(i,21);
bus(49,8)=v49;
gen (21,6)=v49;
v54=Sol(i,22);
bus(54,8)=v54;
gen (22,6)=v54;
v55=Sol(i,23);
bus(55,8)=v55;
gen (23,6)=v55;
v56=Sol(i,24);
bus (56,8)=v56;
gen (24,6)=v56;
v59=Sol(i,25);
bus (59,8)=v59;
gen (25,6)=v59;
v61=Sol(i,26);
bus(61,8)=v61;
gen (26,6) =v61;
v62=Sol(i, 27);
bus (62,8)=v62;
gen (27,6)=v62;
v65=Sol(i,28);
bus (65,8)=v65;
gen (28,6)=v65;
v66=Sol(i,29);
bus (66,8)=v66;
gen (29,6)=v66;
v69=Sol(i,30);
bus(69,8)=v69;
gen (30,6) =v69;
v70=Sol(i,31);
bus (70,8)=v70;
gen (31, 6) =v70;
v72=Sol(i,32);
bus (72,8)=v72;
gen (32, 6) =v72;
v73=Sol(i,33);
bus(73,8)=v73;
gen (33,6)=v73;
v74=Sol(i,34);
bus(74,8)=v74;
gen (34,6)=v74;
v76=Sol(i,35);
bus (76,8)=v76;
gen (35,6)=v76;
v77=Sol(i, 36);
bus(77,8)=v77;
gen (36,6)=v77;
v80=Sol(i,37);
bus(80,8)=v80;
gen (37,6)=v80;
v85=Sol(i,38);
bus (85,8)=v85;
gen (38,6)=v85;
v87=Sol(i,39);
bus(87,8)=v87;
gen (39,6)=v87;
v89=Sol(i,40);
bus(89,8)=v89;
gen (40,6)=v89;
v90=Sol(i,41);
bus (90,8)=v90;
gen (41,6)=v90;

```
\%V49
\%V54
\%V55
\%V5 6
\% v59
\%V61
\%V62
\%V65
\%V66
\% V69
\(\%\) v70
\% V72
\%V73
\%V74
\%V76
\%V77
\%V80
\%V85
\%V87

\section*{\%v89}
```

```
v91=Sol(i,42);
```

```
v91=Sol(i,42);
bus (91,8)=v91;
bus (91,8)=v91;
gen (42,6)=v91;
gen (42,6)=v91;
v92=Sol(i,43);
v92=Sol(i,43);
bus(92,8)=v92;
bus(92,8)=v92;
gen (43,6) =v92;
gen (43,6) =v92;
v99=Sol(i,44);
v99=Sol(i,44);
bus(99,8)=v99;
bus(99,8)=v99;
gen (44,6)=v99;
gen (44,6)=v99;
v100=Sol(i,45);
v100=Sol(i,45);
bus (100,8)=v100;
bus (100,8)=v100;
gen (45,6)=v100;
gen (45,6)=v100;
v103=Sol(i,46);
v103=Sol(i,46);
bus(103,8)=v103;
bus(103,8)=v103;
gen (46,6)=v103;
gen (46,6)=v103;
v104=Sol(i,47);
v104=Sol(i,47);
bus(104,8)=v104;
bus(104,8)=v104;
gen(47,6)=v104;
gen(47,6)=v104;
v105=Sol(i,48);
v105=Sol(i,48);
bus (105,8)=v105;
bus (105,8)=v105;
gen (48,6)=v105;
gen (48,6)=v105;
v107=Sol(i,49);
v107=Sol(i,49);
bus(107,8)=v107;
bus(107,8)=v107;
gen(49,6)=v107;
gen(49,6)=v107;
v110=Sol(i,50);
v110=Sol(i,50);
bus (110,8)=v110;
bus (110,8)=v110;
gen(50,6)=v110;
gen(50,6)=v110;
v111=Sol(i,51);
v111=Sol(i,51);
bus(111,8)=v111;
bus(111,8)=v111;
gen (51,6) =v111;
gen (51,6) =v111;
v112=Sol(i,52);
v112=Sol(i,52);
bus(112,8)=v112;
bus(112,8)=v112;
gen (52,6)=v112;
gen (52,6)=v112;
v113=Sol(i,53);
v113=Sol(i,53);
bus (113,8)=v113;
bus (113,8)=v113;
gen (53,6)=v113;
gen (53,6)=v113;
v116=Sol(i,54);
v116=Sol(i,54);
bus (116,8)=v116;
bus (116,8)=v116;
gen (54,6)=v116;
gen (54,6)=v116;
t1=Sol(i,55);
t1=Sol(i,55);
branch (8,9)=t1;
branch (8,9)=t1;
t2=Sol(i,56);
t2=Sol(i,56);
branch (32,9)=t2;
branch (32,9)=t2;
t3=Sol(i,57);
t3=Sol(i,57);
branch (36,9) =t 3;
branch (36,9) =t 3;
t4=Sol(i,58);
t4=Sol(i,58);
branch (51,9) =t 4;
branch (51,9) =t 4;
t5=Sol(i,59);
t5=Sol(i,59);
branch (93,9)=t5;
branch (93,9)=t5;
t6=Sol(i,60);
t6=Sol(i,60);
branch (95,9) =t 6;
branch (95,9) =t 6;
t7=Sol(i,61);
t7=Sol(i,61);
branch (102,9)=t7;
branch (102,9)=t7;
t8=Sol(i,62); %tp8 68-69
t8=Sol(i,62); %tp8 68-69
branch (107,9)=t8;
branch (107,9)=t8;
t9=Sol(i,63);
t9=Sol(i,63);
branch (127,9)=t9;
branch (127,9)=t9;
qc5=Sol(i,64); %Shunt capacitor 5, column 6 is BS
qc5=Sol(i,64); %Shunt capacitor 5, column 6 is BS
bus (5,6)=qc5;
bus (5,6)=qc5;
qc34=Sol(i,65);
qc34=Sol(i,65);
bus (34,6)=qc34;
bus (34,6)=qc34;
qc37=Sol(i,66);
qc37=Sol(i,66);
bus (37,6)=qc37;
bus (37,6)=qc37;
qc44=Sol(i,67);
```

qc44=Sol(i,67);

```
\%V92
\%v99
\%v100
\%v103
\%V104
\%V105
\%v107
\%v110
\% v111
\%v112
\%v113
\%v116
\%tp1 8-5, column 9 is tap position
\%tp2 26-25
\%tp3 30-17
\%tp4 38-37
\%tp5 63-59
\%tp6 64-61
\%tp7 65-66
\%tp8 68-69
\%tp9 81-80
\%Shunt capacitor 5, column 6 is BS
\%Shunt capacitor 34, column 6 is BS
\%Shunt capacitor 37, column 6 is BS
\%Shunt capacitor 44, column 6 is BS
```

    %v91
    ```
```

    %v91
    ```
bus \((44,6)=q c 44\);
qc45=Sol(i,68);
bus \((45,6)=q c 45\);
qc46=Sol (i,69);
bus \((46,6)=q c 46\);
qc48=Sol(i,70);
bus \((48,6)=q c 48\);
qc74=Sol(i,71);
bus \((74,6)=q c 74\);
qc79=Sol(i,72);
bus \((79,6)=q c 79\);
qc82=Sol(i,73);
bus \((82,6)=q c 82\);
qc83=Sol (i, 74);
bus \((83,6)=q c 83 ;\)
qc105=Sol(i,75); \%Shunt capacitor 105, column 6 is BS bus \((105,6)=q c 105\);
qc107=Sol (i,76);
\%Shunt capacitor 45, column 6 is BS
\%Shunt capacitor 46, column 6 is BS
\%Shunt capacitor 48, column 6 is BS
\%Shunt capacitor 74, column 6 is BS
\%Shunt capacitor 79, column 6 is BS
\%Shunt capacitor 82, column 6 is BS
\%Shunt capacitor 83, column 6 is BS
bus \((107,6)=q c 107\);
qc110=Sol(i,77); \%Shunt capacitor 110, column 6 is BS
bus \((110,6)=q c 110\);
eval(['savecase (''case118_test', num2str(i), '.mat'', baseMVA, bus, gen, branch)']);
eval(['results_', num2str(i),'=runpf('case118_test', num2str(i) '.mat'')']);
 eval(['losses_',num2str(i),'=sum(real (get_losses (results_',
num2str(i),')))']);
```

%Penalty for bus voltage violation
bus_inf=bus(:,8);
for bus_num=1:118
if bus_inf(bus_num)>1.10
penalty_bus(bus_num)=10000*(bus_inf(bus_num)-1.10)^2;
elseif bus_inf(bus_num)<0.95
penalty_bus(bus_num)=10000*(bus_inf(bus_num)-0.95)^2;
else
penalty_bus(bus_num)=0;
end
end
penalty_bus_violation=sum(penalty_bus);
%Penalty for reactive shunt violation
buus_inf=bus(:,6);
for bus_num=1:118
if buus_inf(bus_num)>0.25
penalty_sht (bus_num) =10000*(buus_inf (bus_num) -0.25)^2;
elseif buus_inf(bus_num)<0.00
penalty_sht (bus_num)=10000*(buus_inf(bus_num)-0.00)^2;
else
penalty_sht(bus_num)=0;
end
end
penalty_sht_violation=sum(penalty_sht);
%Penalty for tap position violation
brch_inf=[branch(8,9); branch(32,9); branch(36,9); branch(51,9);
branch(93,9); branch(95,9); branch(102,9); branch(107,9); branch(127,9)];
for brch_num=1:9
if brch_inf(brch_num)>1.10
penalty_brch(brch_num)=10000*(brch_inf(brch_num)-1.10)^2;
elseif brch_inf(brch_num)<0.90
penalty_brch(brch_num)=10000*(brch_inf(brch_num)-0.90)^2;
else
penalty_brch(brch_num)=0;
end

```
```

    end
    penalty_brch_violation=sum(penalty_brch);
    % objective function=sum of active power losses of the transmission lines
    losses(i)=eval(['losses_',num2str(i)]);
    Obj_fun_initial(i)=losses(i) +penalty_bus_violation+penalty_sht_violation+penalty
_brch_violation; % augumented objective function with penalty function
End
% Evaluate solution
Fitness=Obj_fun_initial;
pbest=Sol;
%% finding the current best solution in the initial population (first
evaluation)
[fmin,m]=min(Fitness);
best=Sol(m,:); % used to keep track of the best current solution ever
%% Hybrid PSO-BA Algorithm LOOP
figure('NumberTitle', 'off', 'Name', 'Hybrid PSO-BA Algorithm Based Optimal
Reactive Power Dispatch');
title('ACTIVE POWER LOSS MINIMIZATION');
ylabel('Total Active Power Loss (MW)');
xlabel('Iteration Number');
grid on;
hold on
for N_iter=1:N_gen
% Loop over all bats/particles
%mean pf loudness
meanA=mean(A);
% Update the value of the inertia weight w
if N_iter <= N_gen
w_temp(N_iter)=w_max + (((w_min-w_max)/N_gen)*N__iter); %Change inertia
weight
end
for k=1:N
Freq(k)=Q_min+(Q_max-Q_min) *rand;
Velocity(k, :)=w_temp(N_iter).*Velocity(k, :) +(c1*rand*(pbest (k, :) -
Sol(k,:)) +c2*rand*(best-Sol(k,:)))*Freq(k);
for v_iter=1:d
if v_iter==d
Outstep=Velocity(:,v_iter)>0.003;
Velocity(find(Outstep),v_iter)=0.003;
Outstep=Velocity(:,v_iter)<-0.003;
Velocity(find(Outstep),v_iter)=-0.003;
else
Outstep=Velocity(:,v_iter)>0.01;
Velocity(find(Outstep),v_iter)=0.01;
Outstep=Velocity(:,v_iter)<-0.01;
Velocity(find(Outstep),v_iter)=-0.01;
end
end
Sol(k,:)=best+Velocity(k, :) ;
% Local Search
if rand>r(k)
randnValueA=randn (1,d) . * (abs (meanA));
Sol(k,:)=best+(0.001*randnValueA); % The factor 0.001 limits the
step sizes of random walks
end
v1=Sol(k,1);
bus(1, 8)=v1;
%v1
%Vm, column 8 is voltage magnitude (p.u.)
gen (1,6)=v1; %Vg, column 6 is voltage magnitude setpoint (p.u.)

```
```

v4=Sol(k,2);
bus (4,8)=v4;
gen (2,6) =v4;
v6=Sol(k,3);
bus (6,8)=v6;
gen (3,6) =v6;
v8=Sol(k,4);
bus(8,8)=v8;
gen (4,6)=v8;
v10=Sol(k,5);
bus (10,8)=v10;
gen (5,6)=v10;
v12=Sol(k,6);
bus (12,8)=v12;
gen (6, 6)=v12;
v15=Sol(k,7);
bus(15,8)=v15;
gen (7, 6)=v15;
v18=Sol(k,8);
bus (18,8)=v18;
gen (8,6)=v18;
v19=Sol(k,9);
bus(19,8)=v19;
gen (9,6)=v19;
v24=Sol(k,10);
bus(24,8)=v24;
gen (10,6) =v24;
v25=Sol(k,11);
bus(25,8)=v25;
gen (11,6) =v25;
v26=Sol(k,12);
bus (26,8)=v26;
gen (12,6)=v26;
v27=Sol(k,13);
bus (27,8)=v27;
gen (13,6)=v27;
v31=Sol(k,14);
bus (31,8)=v31;
gen (14,6)=v31;
v32=Sol(k,15);
bus(32,8)=v32;
gen (15,6)=v32;
v34=Sol(k,16);
bus(34,8)=v34;
gen (16,6) =v34;
v36=Sol(k,17);
bus(36,8)=v36;
gen (17,6) =v36;
v40=Sol(k,18);
bus(40,8)=v40;
gen (18,6)=v40;
v42=Sol(k,19);
bus (42,8)=v42;
gen (19,6)=v42;
v46=Sol(k,20);
bus(46,8)=v46;
gen (20,6) =v46;
v49=Sol(k,21);
bus(49,8)=v49;
gen (21,6) =v49;
v54=Sol(k,22);
bus (54,8)=v54;
gen (22,6) =v54;
v55=Sol(k,23);

```
\%V4
\% V6
\%v8
\%V10
\%V12
\%V15
\%V18
\%V19
\%v24
\%v25
\%V26
\%v27
\(\%\) v31
\(\%\) v32
\%V34
\%v36
\%V40
\(\%\) V42
\%V4 6
```

bus (55,8)=v55;
gen (23,6)=v55;
v56=Sol(k,24);
bus (56,8)=v56;
gen (24,6)=v56;
v59=Sol(k,25);
bus(59,8)=v59;
gen (25,6)=v59;
v61=Sol(k, 26);
bus (61,8)=v61;
gen (26,6)=v61;
v62=Sol(k,27);
bus (62,8)=v62;
gen (27,6)=v62;
v65=Sol(k,28);
bus (65,8)=v65;
gen (28,6)=v65;
v66=Sol(k,29);
bus(66,8)=v66;
gen (29,6)=v66;
v69=Sol(k,30);
bus (69,8)=v69;
gen (30,6)=v69;
v70=Sol(k,31);
bus (70,8)=v70;
gen (31, 6)=v70;
v72=Sol(k,32);
bus (72,8)=v72;
gen (32,6)=v72;
v73=Sol(k,33);
bus(73,8)=v73;
gen (33,6)=v73;
v74=Sol(k,34);
bus(74,8)=v74;
gen (34,6)=v74;
v76=Sol(k,35);
bus(76,8)=v76;
gen (35,6) =v76;
v77=Sol(k,36);
bus (77,8)=v77;
gen (36,6)=v77;
v80=Sol(k,37);
bus(80,8)=v80;
gen (37, 6) =v80;
v85=Sol (k,38);
bus (85,8)=v85;
gen (38,6)=v85;
v87=Sol(k,39);
bus(87,8)=v87;
gen (39,6)=v87;
v89=Sol(k,40);
bus(89,8)=v89;
gen (40,6)=v89;
v90=Sol(k,41);
bus (90,8)=v90;
gen (41,6) =v90;
v91=Sol(k,42);
bus (91,8)=v91;
gen (42,6)=v91;
v92=Sol(k,43);
bus (92,8)=v92;
gen (43,6)=v92;
v99=Sol(k,44);

```
\%V56
\%V59
\%V61
\%V62
\%V65
\%V66
\%V69
\(\% \vee 70\)
\%V72
\%V73
\%V74
\%V76
\(\%\) V77
\(\%\) v80
\%V85
\%V87
\%v89
\(\% \mathrm{~V} 90\)
\%V91
\% v92
\%V99
\%v100
\%v103
\%v104
\%v105
\%v107
\%v110
\%v111
\%v112
\%v113
\%v116
\%tp1 8-5, column 9 is tap position
\%tp2 26-25
\%tp3 30-17
\%tp4 38-37
\%tp5 63-59
\%tp6 64-61
\%tp7 65-66
\%tp8 68-69
\%tp9 81-80
\%Shunt capacitor 5, column 6 is BS
\%Shunt capacitor 34 , column 6 is BS
\%Shunt capacitor 37, column 6 is BS
\%Shunt capacitor 44, column 6 is BS
\%Shunt capacitor 45, column 6 is BS
\%Shunt capacitor 46, column 6 is BS
\%Shunt capacitor 48, column 6 is BS
\%Shunt capacitor 74, column 6 is BS
```

gen(44,6)=v99;

```
gen(44,6)=v99;
v100=Sol(k,45);
v100=Sol(k,45);
bus(100,8)=v100;
bus(100,8)=v100;
gen (45,6)=v100;
gen (45,6)=v100;
v103=Sol(k,46);
v103=Sol(k,46);
bus (103,8)=v103;
bus (103,8)=v103;
gen (46,6)=v103;
gen (46,6)=v103;
v104=Sol(k,47);
v104=Sol(k,47);
bus (104,8)=v104;
bus (104,8)=v104;
gen (47,6)=v104;
gen (47,6)=v104;
v105=Sol(k,48);
v105=Sol(k,48);
bus(105,8)=v105;
bus(105,8)=v105;
gen (48,6)=v105;
gen (48,6)=v105;
v107=Sol(k,49);
v107=Sol(k,49);
bus(107,8)=v107;
bus(107,8)=v107;
gen (49,6)=v107;
gen (49,6)=v107;
v110=Sol(k,50);
v110=Sol(k,50);
bus(110,8)=v110;
bus(110,8)=v110;
gen (50,6)=v110;
gen (50,6)=v110;
v111=Sol(k,51);
v111=Sol(k,51);
bus(111,8)=v111;
bus(111,8)=v111;
gen (51,6)=v111;
gen (51,6)=v111;
v112=Sol(k,52);
v112=Sol(k,52);
bus (112,8)=v112;
bus (112,8)=v112;
gen (52,6)=v112;
gen (52,6)=v112;
v113=Sol(k,53);
v113=Sol(k,53);
bus (113,8)=v113;
bus (113,8)=v113;
gen (53,6)=v113;
gen (53,6)=v113;
v116=Sol(k,54);
v116=Sol(k,54);
bus (116,8)=v116;
bus (116,8)=v116;
gen (54,6)=v116;
gen (54,6)=v116;
t1=Sol(k,55);
t1=Sol(k,55);
branch (8,9)=t1;
branch (8,9)=t1;
t2=Sol (k,56);
t2=Sol (k,56);
branch (32,9)=t2;
branch (32,9)=t2;
t3=Sol (k,57);
t3=Sol (k,57);
branch (36,9) =t 3;
branch (36,9) =t 3;
t4=Sol(k,58);
t4=Sol(k,58);
branch (51,9) =t 4;
branch (51,9) =t 4;
t5=Sol(k,59);
t5=Sol(k,59);
branch (93,9) =t 5;
branch (93,9) =t 5;
t6=Sol (k,60);
t6=Sol (k,60);
branch (95,9) =t 6;
branch (95,9) =t 6;
t7=Sol(k,61);
t7=Sol(k,61);
branch (102,9)=t7;
branch (102,9)=t7;
t8=Sol(k,62);
t8=Sol(k,62);
branch (107,9) =t 8;
branch (107,9) =t 8;
t9=Sol(k,63);
t9=Sol(k,63);
branch (127,9)=t9;
branch (127,9)=t9;
qc5=Sol(k,64);
qc5=Sol(k,64);
bus (5,6)=qc5;
bus (5,6)=qc5;
qc34=Sol(k,65);
qc34=Sol(k,65);
bus (34,6)=qc34;
bus (34,6)=qc34;
qc37=Sol(k,66);
qc37=Sol(k,66);
bus (37,6)=qc37;
bus (37,6)=qc37;
qc44=Sol (k,67);
qc44=Sol (k,67);
bus (44,6)=qc44;
bus (44,6)=qc44;
qc45=Sol (k,68);
qc45=Sol (k,68);
bus (45,6)=qc45;
bus (45,6)=qc45;
qc46=Sol (k,69);
qc46=Sol (k,69);
bus (46,6)=qc46;
bus (46,6)=qc46;
qc48=Sol(k,70);
qc48=Sol(k,70);
bus (48,6)=qc48;
bus (48,6)=qc48;
qc74=Sol(k,71);
qc74=Sol(k,71);
%tp8 68-69
%tp8 68-69
%tp9 81-80
```

%tp9 81-80

```
```

    bus (74,6)=qc74;
    qc79=Sol(k,72);
    bus(79,6)=qc79;
    qc82=Sol (k,73);
    bus (82, 6) =qc82;
    qc83=Sol(k,74);
    bus (83,6) =qc83;
    qc105=Sol(k,75); %Shunt capacitor 105, column 6 is BS
    bus(105,6)=qc105;
    qc107=Sol(k,76); %Shunt capacitor 107, column 6 is BS
    bus(107,6)=qc107;
    qc110=Sol(k,77); %Shunt capacitor 110, column 6 is BS
    bus (110,6)=qc110;
    eval(['savecase (''case118_test', num2str(k), '.mat'', baseMVA, bus, gen,
    branch)']);
eval(['results_',num2str(k),'=runpf(''case118_test', num2str(k) '.mat'')']);
eval(['losses_', num2str(k),'=sum(real(get_losses(results_', num2str(k),')))']);
%Penalty for bus voltage violation
bus_inf=bus(:, 8);
for bus_num=1:118
if bus_inf(bus_num)>1.10
penalty_bus(bus_num)=10000* (bus_inf(bus_num)-1.10)^2;
elseif bus_inf(bus_num)<0.95
penalty_bus (bus_num)=10000*(bus_inf(bus_num)-0.95)^2;
else
penalty_bus(bus_num)=0;
end
end
penalty_bus_violation=sum(penalty_bus);
%Penalty for reactive shunt violation
buus_inf=bus(:,6);
for bus_num=1:18
if buus_inf(bus_num)>0.25
penalty_sht (bus_num)=10000*(buus_inf(bus_num) -0.25)^2;
elseif buus_inf(bus_num)<0.00
penalty_sht (bus_num)=10000*(buus_inf(bus_num)-0.00)^2;
else
penalty_sht (bus_num)=0;
end
end
penalty_sht_violation=sum(penalty_sht);
%Penalty for tap position violation
brch_inf=[branch(8,9); branch(32,9); branch(36,9); branch(51,9);
branch(93,9); branch(95,9); branch(102,9); branch(107,9); branch(127,9)];
for brch_num=1:9
if brch_inf(brch_num)>1.10
penalty_brch(brch_num)=10000*(brch_inf(brch_num)-1.10)^2;
elseif brch_inf(brch_num)<0.90
penalty_brch(brch_num)=10000*(brch_inf(brch_num)-0.90)^2;
else
penalty_brch(brch_num)=0;
end
end
penalty_brch_violation=sum(penalty_brch);
%sum of real power losses of all branches
losses_final(k)=eval(['losses_',num2str(k)]);
Obj_fun_final(k)=losses_final(k) +penalty_bus_violation+penalty_sht_violation+pen
alty_brch_violation;

```
```

    % Evaluate new solutions
    Fitness_final(k)=Obj_fun_final(k);
    %% If the solution improves or not too loud
if Fitness_final(k)<=Fitness(k) \& (rand<A(k))
losses(k)=losses_final(k);
pbest(k,:)=Sol(k,:); % replace initial solution with
improved solution
Fitness(k)=Fitness_final(k); % replace initial FITNESS with improved
fitness
A(k)=A(k)*alpha; % update loudness of bats
r(k)=r(k)*(1-exp(-gamma*N_iter)); % update the pitch of bats
end
[fnew,n]=min(Fitness_final);
% Update the current best
if fnew<=fmin
best=Sol(n,:);
fmin=fnew;
end
end
fmin_rec(N_iter)=fmin;
plot(fmin_rec);
drawnow;
toc
end

```
```

