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ABSTRACT

This research presents a Hybrid Particle Swarmn@pdition with Bat Algorithm (HPSOBA) based
approach to solve Optimal Reactive Power Dispa@RRD) problem. The primary objective of
this project is minimization of the active poweartismission losses by optimally setting the control
variables within their limits and at the same timeking sure that the equality and inequality
constraints are not violated. Particle Swarm Opmanon (PSO) and Bat Algorithm (BA)
algorithms which are nature-inspired algorithms endecome potential options to solving very
difficult optimization problems like ORPD. AlthougRSO requires high computational time, it
converges quickly; while BA requires less compuotai time and has the ability of switching
automatically from exploration to exploitation whéime optimality is imminent. This research
integrated the respective advantages of PSO an@lgéithms to form a hybrid tool denoted as
HPSOBA algorithm. HPSOBA combines the fast convecgeability of PSO with the less
computation time ability of BA algorithm to get atter optimal solution by incorporating the BA’s
frequency into the PSO velocity equation in oraecdntrol the pace. The HPSOBA, PSO and BA
algorithms were implemented using MATLAB programmitanguage and tested on three (3)
benchmark test functions (Griewank, Rastrigin activifel) and on IEEE 30- and 118-bus test
systems to solve for ORPD without DG unit. A maelifilEEE 30-bus test system was further used
to validate the proposed hybrid algorithm to sdlee optimal placement of DG unit for active
power transmission line loss minimization. By comgan, HPSOBA algorithm results proved to

be superior to those of the PSO and BA methods.

In order to check if there will be a further impeswent on the performance of the HPSOBA, the
HPSOBA was further modified by embedding three meadifications to form a modified Hybrid
approach denoted as MHPSOBA. This MHPSOBA was atditl using IEEE 30-bus test system to
solve ORPD problem and the results show that th8 ®8BA algorithm outperforms the modified
version (MHPSOBA).

Keywords—Hybridization; Hybrid Particle Swarm OptimizatiofHPSOBA); Modified Hybrid

Particle Swarm Optimization (MHPSOBA); Optimal Povidow (OPF); Optimal Reactive Power
Dispatch (ORPD); Particle Swarm Optimization (PSBat Algorithm (BA); Active Power Loss
Minimization; Benchmark Functions; Distributed Geateon (DG); Conventional Optimization
Technique; Evolutionary Optimization Technique; ifigtal Intelligence; Equality Constraints;

Inequality Constraints; Penalty Function.
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CHAPTER 1

INTRODUCTION

11 RESEARCH BACKGROUND

Electric power systems are comprised of large amdpbex components that produce electrical
energy. A modern electric power system has thewviolg components: 1) generating power plants,
2) transmission lines, 3) distribution lines, andldads. The long transmission lines carry the
generated electric power from the generating statim the loads. Every power system has the
primary objective of supplying cheap, reliable apdimized power to the consumers. In the bid to
optimize the power supplied to the various load® $ystem encounters problems which are

summarily referred to as Power System Optimizapi@mblems.

Optimization problems, which are widely encounteredelectric power systems, can be very
complex and non-linear depending on the naturbefitness function. The goal of an optimization
problem can be stated thus: finding the amalgamatfacontrol or decision variables that optimize
a given objective function to be maximized or miided, possibly subject to some constraints on
the allowed parameter values. Generally, the dlaagbns of the optimization problems are done
according to the mathematical features of the $grfenction, constraints and control variables. The
problem formulation of any optimization problem che thought of as a sequence of steps [1].
These steps are:

1) Choosing the design variables (control and statahias)

2) Formulating constraints

3) Formulating objective functions

4) Setting up variable limits

5) Choosing an optimization technique to solve thélenm

6) Solving the problem in order to obtain the optisalution.

In recent years, the electric power industry hgaseernced a major turn-around in the form of
deregulation or restructuring. Deregulation is allout of removing or reducing government
monopolistic control over prices with the introdoat of independent power providers thereby
giving consumers the power to choose their utpitgviders [2]. This led to competitive market in
the power industry which results in lowering ofafeity prices, innovation and expansion of the
power industry. This competitive market reducest clst unarguably bring uncertainty to
generation forecasting as power producers compeselt electricity. Meanwhile, in most places,



the rate of energy consumption has outpaced infretsire development, placing pressure on the
aging equipment. These factors contribute to tleeeasing need for fast and reliable optimization
methods that can address both security and econigsues simultaneously in support of power

system operation and control [3].

One of the most significant optimization problemslectric power systems is Optimal Power Flow
(OPF) which was introduced by Carpentier [4] in 298nd since then there has been a tremendous
development and algorithmic improvement. The pryrajective of OPF is to obtain the optimal
state of the control variables by minimizing anembijve function for a particular power system
while keeping all constraints (equality and inegyatonstraints) within limits [5]. Optimal
Reactive Power Dispatch (ORPD) is a sub-probleth@OPF problem, which determines all kinds
of controllable variables for optimal operation. an ORPD, the values of some (or all) of the
control variables need to be found so as to opérfmzaximize or minimize) a predefined objective
function. It is also important that the proper gesb definition with clearly stated objective be
given at the onset. The most common ORPD objeétinetions are minimization of active power
transmission loss, minimization of generation casgximization of power quality (often by
minimizing voltage deviation) and minimization cfpital cost during system planning [6]. The
active power transmission line loss leads to patertages which affects the economic growth of
a country. For reliable operation of any power aystthe power transmission losses are to be
minimized. This objective can be accomplished byinoging the control variables such as
generator bus voltages (continuous variable), toamer tap ratio or position, and reactive power

output of shunt compensations (discrete varialpigs)

The ORPD problem is a non-continuous and non-limdgective function optimization problem
which requires a more complex formulation, as #teo$ equations involved may not be linearized.
Solving ORPD problems has the advantage of, butlimited to, minimization of active power
transmission loss and power factor improvementéndistribution system. The ORPD problem can
also be described as a complex and combinatorisin@ation problem which contains both
continuous and discrete control variables [8h this case, non-linear optimization
methods/techniques must be employed. There ar@pwmization methods used in solving ORPD
optimization problems namely Conventional and Etrohary/Artificial Intelligence Optimization
Techniques. A number of conventional technique$ stscNewton-Raphson Method [9], Quadratic
Programming (QP) [10, 11], Interior Point Metho®M) [12, 13] and Linear Programming (LP)
[14, 15] have been successfully applied to solwimg ORPD problem. Traditional optimization
methods which use gradients for the search of gienam, need a function that is at least twice



differentiable and are inefficient in dealing wiiscrete variables-based problems which results in
their incapability for solving ORPD problems [1®h the past, some evolutionary methods have
been applied to solve the ORPD problems in a bigutonount the disadvantages imposed by the
conventional methods. Such evolutionary methodkidec Evolutionary Programming (EP) [17],
Genetic Algorithm (GA) [18, 19], Bat Algorithm (BARO], Seeker Optimization Algorithm (SOA)
[21], Differential Evolution (DE) [22—24], Bacteti&oraging Optimization (BFO) [25], Differential
Evolution (DE) [26] and Particle Swarm OptimizatifSO) [27]. Thus, evolutionary optimization
techniques have become an alternative to traditiopimization techniques for solving ORPD

problems since real-world problems are non-conmer;differentiable and discontinuous.

12 MOTIVATION

The electric power system conveys bulk electrica¢érgy from the generating plants to the

consumers via power substations, while sustainobgrdble or standardized power and voltage
qualities and limits for all consumers. The el@atienergy from the generating station is delivered
to the consumer terminals through transmissiondsigibution networks. The generating stations

supply both active power and reactive power to dbesumers. The consumer terminals need a
substantially constant voltage for satisfactoryrapen, but in practice, electric loads are time

variant which means that the consumer loads change time causing power and current

fluctuations. On no-load conditions, the reactiwsvpr is required for magnetizing purposes while

on load conditions, the reactive power requirentemends on the nature of the load which can be

real, reactive or both.

Reactive power requirement changes continuously lwad and system configuration. The change
in reactive power causes voltage variations instfgtem. Any change in the system formation or in
power demands may results in the change of voleggs in the system. Injecting reactive power
into the power system raises voltages while abagrthe reactive power from the system lowers
voltages. The main task of a power system is ttagushe load bus voltages within the nominal
range for consumer satisfaction especially in &giéiated or restructured power industry. Despite
the importance of deregulation which includes katnot limited to removal or reduction of
government control over the power industry and tal@ty price reduction etc., it leads to
expansion and reconfiguration of the power sysiBms situation, if not properly handled, can lead
to huge active power transmission line losses. @hmswver transmission losses lead to power
shortage, voltage collapse and electrical blackoutich affects the economic growth of the
country. For reliable operation of any power systdm active power transmission losses are to be
minimized. This situation can be improved by thermor through reallocation of reactive power



generation in the system by modelling it as an ORPIMization problem (without and without a

DG unit optimally installed) with the active powteansmission loss as the objective function.

13

OBJECTIVES

The following are some of the objectives of thisearch:

1)
2)

3)

4)

5)

6)

7)

14

To explore the advantages and disadvantages ofdR8 BA optimization techniques.

To explore the applications of the PSO and BA ojaation techniques in solving the
ORPD problems (with and without a DG unit).

To design a hybrid method of PSO with BA optimiaatiechniques in order to extend the
PSO capabilities and improve its accuracy in sgvV@RPD problems (with and without a
DG unit).

To demonstrate the application and implementatfathe hybridized PSO-BA algorithm in
solving ORPD problems (with and without a DG urid) active power transmission loss
minimization.

To investigate the effects of BA’s frequendy) (or two frequenciesffandf,) on the PSO
algorithm’s velocity update equation.

To investigate the effect of optimal placement dd@ unit in solving an ORPD problem
using the hybrid approach.

To compare the results from the above and drawlgsion.

RESEARCH QUESTIONS

The major question this project tends to answer is:

“How can a standard PSO be hybridized with a BAoatgm to solve an ORPD problem for an

Active Power Transmission Loss Minimization ObjeetFunction?”

In the quest to finding an answer to the abovearesequestion, the following sub-questions need

to be answered as well:

Q1) What are the advantages and disadvantages of thealg8rithm and BA algorithm?

Q2) Can the drawbacks of premature convergence of a BI§Qrithm be avoided by

hybridization with a BA algorithm?

Q3) Isit possible to combine PSO and BA algorithmsdtve ORPD problem?

Q4) If Q3 is possible, how then can the combinatiomati@eved?
Q5) What are the effects of the BA’s frequen€d) (©r two frequenciedlandf2) on the PSO

algorithm’s velocity update equation?



Q6) What is the effect of removing randomness from B&0O algorithm’s velocity and
position vectors thereby allowingpestandgbestto govern the update during iteration
in the hybrid approach?

Q7) What are the effects of monotonically increasingl alecreasing the pulse rate and
loudness respectively during the hybrid approaetaiive update?

Q8) How can the equality and inequality constraintsttid ORPD problem be restricted
without violation?

Q9) Where necessary, what kind of penalty functiomipased?

Q10) What can be done to further reduce the active ptraasmission line losses?

Q11) How can a distributed generation unit be optimplced in a distribution network?

Q12) What is the effect of optimal placement of a DGtumisolving an ORPD problem using
a PSO-BA hybrid approach?

15 SCOPE OF THE RESEARCH

The research is limited to form a hybrid algorithtop combining PSO with BA for solving an
ORPD problem (denoted as HPSOBA). The researclsaslianited to investigating only the active
power transmission loss objective function and dalon by using standard benchmark test
functions (Griewank, Rastrigin and Schwefet)d on IEEE 30- and 118-bus test systems to solve
for an ORPD problem without a DG unit on a MATLABogramming platform. A modified |IEEE
30-bus test system was further used to validatepttogposed algorithm to solve for optimal
placement of a DG unit for active power transmissioe loss minimization. The equality and
inequality constraints are also taken into congiti@n and where necessary a penalty function is

imposed when constraints are violated.

A further modification of the HPSOBA algorithm wasso considered to check if there will an

improvement of the hybrid approach performancenlaisg for ORPD problem or not.

16 OUTLINE OF THE DISSERTATION

The organization of the thesis is as follows:

Chapter 1, “Introduction” presents the research backgroundtivabon, objectives, research
guestions, scope and outline of this dissertation.

Chapter 2, “Literature Review” surveys the methods appliedatving the ORPD problem in the
past and the current scenario are presented coimggdee PSO and BA methods. The ORPD is
also presented alongside its problem formulatiod ahjective functions. The ORPD problem



formulation consists of equality (power flow) antequality (control variables) constraints. The
restriction of state variables is done by addingnthas quadratic penalty terms to the objective
function. It also describes the PSO and BA pseuddecand their basic fundamentals.Also
presented in this chapter is the review and apmdicaf optimal placement of DG unit(s) to solving

an ORPD problem.

Chapter 3, “Hybrid PSO-BA Model” describes the hybridizatiohtbe PSO with the BA algorithm
including its motivations. The approach was caftgfdlesigned to achieve a better and quality
optimized result. Standard benchmark test funstiemmd IEEE 30- and IEEE 118-bus test systems
were used to validate the robustness, accuracyeffiency of the proposed approach. The
simulation results and analysis of the test fumcbptimization and ORPD problem were presented
and compared with other results in the literatérenodified IEEE 30-bus test system was further
used to validate the proposed algorithm to solveofisimal placement of DG unit for active power

transmission line loss minimization.

Chapter 4, “Modified HPSOBA” The hybrid approach (HPSOBA) poxed by this research was
further modified to form a modified hybrid approagénoted as MHPSOBA by embedding three
new modifications. IEEE 30-bus test system was ueedhlidate this approach to solve for the
ORPD problem. The evaluated results were compaitidime base case and HPSOBA methods.

Chapter 5, “Conclusion” summarizes the outcomes of the researd outlines the contributions

of this research to the development of power system



CHAPTER 2

LITERATURE REVIEW

This chapter reviews the ORPD problem as part afropation problems encountered in electric
power systems and some of the optimization teclesiapplied in solving the ORPD problem. A
brief discussion of both conventional and evoluligntechniques is presented. PSO, BA and
hybridization of evolutionary techniques to solvidRPD problem are also reviewed as well as the
optimal placement of the DG unit(s) in the disttibo networks to reduce active power
transmission line losses. This chapter also cotte¥sORPD problem formulation, the constraints
(both equality and inequality) to which the objeetfunction is subjected to are also defined here.

21 OPTIMAL REACTIVE POWER DISPATCH

The difficulty of solving ORPD problems increaségngficantly with increasing network size and
complexity. Recent industry developments have Q{reatcreased electric power system
complexity. In prior decades, utilities had relativ few generators compared to the numbers
introduced today by the advent of independent poweducers. Meanwhile, demand response
programs add variables to the load side of ORPDlpnas. Unfortunately, these developments
have discouraged the use of ORPD in many real-wapplications [28, 29]. However, many
ORPD solution methods have been developed, eathdigtinct mathematical characteristics and
computational requirements. ORPD solutions methvadyg considerably in their adaptability to the

modelling and solution requirements of differentveo system applications.

ORPD optimization problem formulations differ gigatiepending on the particular selection of
variables, objective(s) and constraints. Becaudbetpecialized nature of ORPD, the formulation
selection often has implications for both solutimethod design and solution accuracy. The two
major types are Conventional and Evolutionary o#ation techniques.

Traditionally, conventional methods are effectivaBed to solve ORPD problems. They have been
applied to solving ORPD problems to suit the ddferobjective functions and constraints. These
techniques are based on mathematical formulatidnehwhave to be simplified in order to get an
optimal solution. Some of the weakness of the cotiwral methods include: limited ability in
solving real-world large scale optimization prob&nweakness in handling constraints, poor
convergence and stagnation, slow computational {@specially if the number of variables are
large) and expensive in computing large power systelutions [30].



To overcome the shortcomings of conventional tegnes, evolutionary methods and their
hybridized versions have been developed and appigdRPD problems in the recent past. The
major advantages of the evolutionary methods ireludst convergence rate, appropriate for
solving non-linear optimization problems, ability find global optimum solutions, suitable for
solving multi-objective optimization problems, peent in finding multiple optimal solutions in a

single simulation run and versatile in handlingstoaints [31].

2.1.1 CONVENTIONAL OPTIMIZATION TECHNIQUES
The development of conventional optimization tegoes and their applications to solve ORPD

problems are briefed here.

In reference [32], Mamundur and Chenoweth used Duedar Programming (DLP) to determine
the optimal settings of the ORPD control varialdesultaneously satisfying the constraints. The
method employs linearized sensitivity relationstoppower systems to establish both the objective
function for minimizing the active power transmasiline losses and the system performance
sensitivities relating dependent and control vdeisbThis technique is particularly suitable to

minimize system losses under operating conditions.

Reference [33]used-Q decomposition approach to formulate OPF based upendecoupling
principle well recognized in bulk power transmissimad flow. This approach decompodées
OPF formulation into &-problem (real power model) an@-problem (reactive power model),
thereby showing ORPD as a sub-problem of ORfe.Q-Problem is defined as the minimization of
real power transmission line losses by optimallitisg the generator voltages, transformer tap
settings and shunt reactive power compensationg gdioblem of enforcing state variables
(inequality constraints) is included in the problémnmulation by use of penalty functionsChis
approachsimplifies the formulation, improves computatiomé& and permits certain flexibility in

the types of calculations desired (FeProblem,Q-Problem or both).

Burchett et al. [34] in their paper proposed a Qathtl Programming (QP) solution to ti@&PF
problem. This method used the second derivativeth@fobjective function to find the optimal
solution. This method is suitable for optimizatiproblems with infeasible or divergent starting

points.

Lee et al. [35] broadly solved the OPF problem bgainposing the problem in®-optimization
module andQ-optimization module and solved them using the @radProjection Method (GPM)



for the first time in a power system optimizatidmdy. This GPM technique allows the use of
functional constraints without the need of pendliyctions or Lagrange multipliers among other
advantages. Mathematical formulations were develdperepresent the sensitivity relationships

between the state and control variables for Batptimization andl-optimization modules.

Mota-Palomino and Quintana [36] presented a Lifragramming based solution for the reactive
power dispatch problem. The reactive power modeheffast decoupled load flow algorithm was
used to derive linear sensitivities. A suitabletezton was suggested to form a sparse reactive
power sensitivity matrix. The sparse sensitivitytmxawas modelled as a bipartite graph to define

an efficient constraint relaxation strategy to sdimearized reactive power dispatch problems.

In reference [37], Nanda et al. developed Fletch€uadratic Programming to solve the OPF
problem. The algorithm decoupled the OPF probleim sub-problems with two different objective
functions: minimization of generation cost and mmimation of active power transmission line
losses. These sub-problems were solved to optirsallfhe control variables while restricting the
system constraints without violations. This algamtshowed some potential for online solving of

OPF problems.

Transforming discrete control variables such asmxsheactive compensations and transformer tap
settings into continuous control variables and diog these off to the nearest step is not suitable
for controls with large step sizes because thisistcamation brings about optimal solution
degradation. Solving discrete variable controlsolmgs a combinatorial search procedure which
slows the system in real-time applications. Refeee[88] solved this problem by proposing a
penalty based discretization technique which elateéd combinatorial search in providing a near

optimal discrete solution.

Granville [39] presented an Interior Point Methdfel) technique based on the primal dual method
to solve the ORPD problem in large scale poweresyst In the problem formulation, the inequality
constraints were eliminated by incorporating thesnaalogarithmic barrier function. The main
feature of the IPM is:

1) Insusceptibility of the size of power system to tloenber of iterations

2) Numerical robustness

3) Effectiveness in solving ORPD problems in largdespawer systems



Reference [40] proposed a new Newton method apprdacsolve the OPF problem which
incorporates an augmented Lagrangian function winak the function of combining all the
equality and inequality constraints. The mathenaafarmulation and computation of the method is
exploited using the sparsity of the Hessian maifithe augmented Lagrangian. Optimal solutions
were achieved by this method and can be utilizedafo infeasible starting point as its set of

constraints does not have to be identified.

Momoh and Zhu [41] proposed an improved Quadratierior Point Method (QIPM) to solve the
OPF problem. The proposed method has the featurdasbfconvergence and a general starting

point, rather than selected good point as in timege IPM.

2.1.2 EVOLUTIONARY OPTIMIZATION TECHNIQUES

There has been tremendous success in the develbpimevolutionary optimization techniques in
recent past. This section explores the developroémvolutionary optimization techniques and
their applications to solve an ORPD problem or @Riblem in general.

Reference [42] presented the application of Evohary Programming (EP) to solve the ORPD
problem and also control of the voltage profile gpawer systems. The method proved to be
applicable in solving large scale power system glaptimization problems.

Wu et al. [43] presented an Adaptive Genetic Aldon (AGA) for solving the ORPD problem and
control of the voltage profile in power systems.pBeding on the objective functions of the
solutions and the normalized fitness distances é@twthe solutions in the evolution process, the
crossover and mutation probabilities were variethguigshe proposed AGA method to prevent
premature convergence and at the same time impiw/eonvergence performance of genetic

algorithms.

Abido [44] presented an efficient and reliable Tebearch (TS) based method to solve the OPF
problem. The method employed TS method to optimadély the control variables of the OPF
problem. In order to reduce the computational rte,method integrated TS as a derivative-free
optimization technique. The TS algorithm as presgtty Abido has as an advantage its robustness
as it can set its own parameters as well as th@ligolution. TS has the ability of avoiding
entrapment in a local optimum thereby preventingling by using a flexible memory of the search

history.
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Genetic Algorithm (GA) - based technique [45] waspgwsed for solving the ORPD problem
including a Voltage Stability Limit (VSL) in powesystems. The monitoring methodology for
voltage stability is based on theindex of load buses. A binary coded GA with toumeat

selection, two point crossovers and bit-wise matatvas used to solve the ORPD problem.

Optimal location and control of a Unified Power Wl&ontroller (UPFC) along with transformer
taps are tuned with a view to simultaneously oérthe real power losses and the VSL of a mesh
power network using the Bacteria Foraging Optiriizra(BFO) technique [46]. The problem was
formulated as a nonlinear equality and inequalipnstrained optimization problem with an

objective function incorporating both the real povoss and the VSL.

Devaraj[47] presented an improved GA approach for soluimg multi-objective reactive power
dispatch problem. Loss minimization and maximizatad the voltage stability margin were taken
as the objectives. In the proposed GA, voltage miadges are represented as floating point numbers
and transformer tap-settings and the reactive pgereration of a capacitor bank were represented
as integers. This alleviates the problems assacwith conventional binary-coded GAs to deal
with real variables and integer variables. Cross@rel mutation operators which can deal with

mixed variables were proposed.

Abbasy and Hosseini [48] applied Ant Colony Optiatian (ACO) technique to solve the ORPD
problem. The approach consisted of mapping thetisalgpace on a search graph, where artificial
ants walk. They proposed four variants of the gatesns: 1) basic ant system, 2) elitist ant system,
3) rank based ant system and 4) max-min ant syskeey also portrayed that applying the elitist
and ranking strategies to the basic ant systemowegr the algorithm's performance in every

respect.

Liang et al. [49] showed that due to DE’s simplkgproduction and selection schemes, it uses less
time than other evolutionary methods do to achenlations with better quality. They also showed
that their method is robust (reproducing close Itesa different runs) and has a simple parameter
setting. They identified one short coming of DEattlit requires relatively large populations to

avoid premature convergence which leads to a longpatational time.

Reference [50] presented an Improved Genetic Adgari(IGA) approach for solving the multi-
objective ORPD problem. Minimization of real powess and total voltage deviation were the
objectives of this reactive power optimization gesh. They applied some modifications to the
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original GA to take into account the discrete natof transformer tap settings and capacitor banks.
For effective genetic operation, the crossover rmdiation operators which can directly deal with

the floating point numbers and integers were used.

Dai et al. [51] proposed a Seeker Optimization Allpon (SOA) for solving the reactive power

dispatch problem. The SOA is based on the conckegtnaulating the act of human searching,
where the search direction is based on the empigiclient by evaluating the response to the
position changes and the step length is based oertamty reasoning by a simple Fuzzy Logic
rule. The algorithm directly uses search directamd step length to update the position. A

proportional selection rule is implemented for setey the best position.

Reference [52] proposed an approach which emplwy$E algorithm for optimal settings of the
ORPD control variables with different objectivesatthreflect power loss minimization, voltage
profile improvement, and voltage stability enhaneat They demonstrated the potential of the

proposed method and showed its effectiveness dnsticess to solve the ORPD problem.

Ayan and Kilic[53] presented an Atrtificial Bee Colony (ABC) alghm based on the intelligent
foraging behaviour of a honeybee swarm in solving ORPD problem. They showed that the
advantage of the ABC algorithm is that it does meafuire cross over and mutation rates as in the
case of Genetic Algorithm and Differential Evolutiorhe other advantage is that the global search
ability of the algorithm is implemented by introdug a neighbourhood source production

mechanism which is similar to a mutation process.

A newly developed Teaching Learning Based Optinoza{TLBO) algorithm [54] was presented
to solve a multi-objective ORPD problem by minimgireal power loss, voltage deviation and
voltage stability index. To accelerate the convecgespeed and to improve the solution quality, a
Quasi Opposition Based Learning (QOBL) concepacoiporated in original TLBO algorithm.

Dharmaraj and Ravi [55] presented an Improved Hagm8earch Algorithm (IHSA) to solve
multi-objective ORPD problem by minimizing activewger loss, voltage deviation and voltage
stability index. To accelerate the convergenced@mnd to enhance the solution quality dynamic

pitch adjusting rate and variable band width ao®iporated in the original HSA.

The TLBO algorithm [56] was based on the influenfea teacher on learners. In their work, the
authors used this technique to solve the OPF pmoblenhey proved that the TLBO technique
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provided an effective and robust high-quality solutwhen solving the OPF problem with different

complexities.

Another new nature-inspired meta-heuristic algonitivas proposed to solve the OPF problem in a
power system. This algorithm was inspired by thecklhole phenomenon and called Black-Hole-
Based Optimization (BHBO) approach [57]. A blacklenas a region of space-time whose
gravitational field is so strong that nothing whigtters it, not even light, can escape.

Reference [58] presented a multi-level methodolbgyed on the optimal reactive power planning
problem considering voltage stability as the ihigalution of the fuel cost minimization problem.

To improve the latter, the load voltage deviatioalgpem is applied to improve the system voltage
profile. They also showed that the reactive powanmping problem and the load voltage deviation
minimization problems are solved using an optimiaratmethod namely the Differential Search

Algorithm (DSA) and the fuel cost minimization ptetn is solved using IPM.

In [59], a Gray Wolf Optimizer (GWO) algorithm (wihi was inspired from gray wolves’
leadership and hunting behaviour) is presentedliceghe ORPD problem. GWO is utilized to find
the best combination of control variables such esegator voltages, tap changing transformers’
ratios as well as the amount of reactive compemsatevices so that the loss and voltage deviation

minimizations can be achieved.

The Honey Bee Optimization (HBO) algorithm [60], ialn is a nature inspired algorithm that

mimics the mating behaviour of the bee in the epgiilon and exploitation search, is also employed
to solve ORPD. There are three kinds of bees ircttheny, the queen, the workers and the drones.
This technique was realised by sorting of all deohased on their fithess function. Crossover and

mutation operators were applied to this technigusotve the ORPD problem.

22 THE ORPD PROBLEM FORMULATION
The objective of the ORPD is to minimize the ac{poaver loss in the transmission network, which

can be described as follows:

Minimizef (x, u) 1)
while satisfying

g(x,u)=0 (2)
h (x, u)<0 3)
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wheref(x, u)is the objective function to be optimizeg(x, u)andh(x, u)are the set of equality and
inequality constraints respectively.is a vector of state variables, ands the vector of control
variables. The state variables are the load IR lfus) voltages, phase angles, generator bus
voltages and the slack active generation power.cbnérol variables are the generator bus voltages,

the shunt capacitors/reactors and the transfortaprsettings.

The objective function of the ORPD is to minimizes tactive power losses in the transmission

lines/network, which can be defined as follows:

N
: 4
F = Min. Puoss= ¥, G[Vi2 + V{2 - 2\ cosgi —)] @
k=1
wherek refers to the branch between busemdj; Poss and G are the active loss and mutual
conductance of brandhrespectivelyp; andd; are the voltage angles at buandj; N, is the total
number of transmission lines.
The above minimization objective function is sulbgec to the both equality and inequality

constraints.

221 EQUALITY CONSTRAINTS

The equality constraints are the load flow equatiginen as:

Ng
Pei —Fbi —\M kZ V; [Gk cosgi —6j) + Bk sin@i —d;)] = 0 (5)
=1
Ng
Qci — i — MYV, [GksinEi —d;) + Bk cosgi —d;)] =0 (6)
k=1

wherePg; and Qg are the active and reactive power generationsisit ktespectivelyPpi and Qp;
are the active and reactive power load demandssatrbspectivelyBy is the mutual susceptance of

branchk; Ng is the total number of buses.

2.2.2 INEQUALITY CONSTRAINTS
The inequality constraints are:
1) Generator Constraints: The generator voltagesand reactive power outpulQg are

restricted by their limits as shown below in EQ. 4id Eq. (8):

Vei™ < Vgi < Vg™ ;i=1,...,Ng (7)
Q™ < Qai <Qai™ ;i=1,...,Ne (8)
whereNg is the total number of generators
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2) Reactive Compensation Sources: These devicesatedias follows:

Qci™ < Qci < Q™ ;i=1,...,Nc 9
whereNc is the number of reactive compensation devices

3) Transformer Constraints: Tap settings are resttibte the upper and lower bounds on the

transformer tap ratios:

T, M < T, < T, MaX i=1,...,Ny (10)

whereNy is the number of transformers

2.2.3 PENALTY FUNCTION

The most efficient and easiest way to handle camgt in optimization problems is by the use of
penalty functions. The direction of the search psscand thus, the quality of the optimal solution
are hugely impacted by these functions. A suitgdaealty function has to be chosen in order to
solve a particular problem. The main goal of a fgrfanction is to maintain the systems security.
These penalty functions are associated with nunseuser defined coefficients which have to be
rigorously tuned to suit the given problem. Thise&ch used a quadratic penalty function method
in which a penalty term is added to the objectivaction for any violation of constraints. The
inequality constraints which include the generatonstraints, reactive compensation sources and
transformer constraints are combined into the abjecfunction as a penalty term, while the
equality constraints and generator reactive poweitd are satisfied by the Newton-Raphson load
flow method. By adding the inequality constraintsthe objective functiorF in Eq. (4), the

augmented objective functid# to be minimized becomes:

Ne limy 2 Ne limy 2 Ne limy 2 (11)
Fr=F +7»vk=21 V=M™ + Xck;(Qci -QiM) +7»T|<Z1(Ti -T™
wherely, Ac, At are the penalty factors; and ™, Q. "™, andT;"™ are defined as:
Vi lim —
VAL AV VAL (12)
Qci fim , |f Qci < Qci min
Qci lim -
Q"™ ; if Qi > Q¢ ™™ (13)
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Ti lim -

By using the concept of the penalty function metf@&i], the constrained optimization problem is
transformed into an unconstrained optimization fmwbin which the augmented objective function

as described above is minimized.

2.3 PARTICLE SWARM OPTIMIZATION

PSO is a population-based stochastic optimizagehrtique introduced by Kennedy and Eberhart
[62] in 1995. PSO is inspired by the social forggiehaviour of some animals such as the flocking
behaviour of birds and schooling behaviour of fiRl 8O exploits a population of individuals to
explore promising regions within the search spalieis algorithm optimizes a problem by
iteratively improving the candidate solution. In®@3here is a population of candidate solutions
(particles) that move around in the search spacerding to mathematical formulas. In the search
procedure, each individual (particle) moves withile decision space over time and changes its
position in accordance with its own best experieanue the current best particle [63]. The partisle i
characterised by @&dimensional vector representing the position efphrticle in the search space.
The position vector represents a potential solutionan optimization problem. During the
evolutionary process, the particles traverse the&eenolution space with a certain velocity. Each
particle is associated with a fithess value evaldiaising the objective function at the particle’s
current position. Each particle memorizes its imiral best position encountered by it during its
exploration and the swarm remembers the positiathe@best performer among the population. At
each iterative process, the particles update pgesition by adding a certain velocity. The velocity
of each particle is influenced by its previous eély the distance from its individual best positio
(cognitive) and the distance from the best pariitldhe swarm (social).

The particle therefore appends its previous flygxgeriences to control the speed and direction of
its journey. Apart from its own performances, tretigle also interacts with its neighbours and
share information regarding their previous expemsn The particle also utilizes this social
information to build their future searching trajgt During the iterative procedure the particles
update their velocity so as to stochastically mtoxgards its local and global best positions. The
particle therefore tracks the optimal solution byperation and competition among the particles in

the swarm.
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Compared with other evolutionary optimization metho PSO has comparable or superior
convergence rate and stability for several diffiayptimization problems [64]. However, as with
many evolutionary approaches, a primary drawbacktandard PSO is premature convergence
when the parameters are not chosen correctly, ediyeshile handling problems with many local
optima [65]. But when compared with other heurisfitimization methods, PSO has comparable or
superior convergence rate and stability for sevdiflicult optimization problems. Despite this
major drawback, PSO has many advantages over t#witional optimization techniques [66]
which can be summarized as follows:

1) PSO is a population-based search algorithm (i®Q Ras implicit parallelism). This
property ensures that PSO is less susceptibleing bapped on local minima.

2) PSO uses payoff (performance index or objectivetian) information to guide the
search in the problem space. Therefore, PSO caly dasl with non-differentiable
objective functions. In addition, this property ieges PSO of assumptions and
approximations, which are often required by tradigil optimization models.

3) PSO uses probabilistic transition rules and noe¢meiistic rules. Hence, PSO is a
kind of stochastic optimization algorithm that caearch a complicated and
uncertain area. This makes PSO more flexible arulgio than conventional
methods.

4) Unlike the genetic and other heuristic algorithidS0O has the flexibility to control
the balance between global and local exploratiothefsearch space. This unique
feature of a PSO overcomes the premature convezgprablem and enhances
search capability.

5) Unlike traditional methods, the solution quality tbe proposed approach does not
depend on the initial population. Starting anywhémethe search space, the

algorithm ensures convergence to the optimal swiluti

Some of the attempts made to develop and apply ®S€vlve an ORPD problem are briefed
below:

Kennedy and Eberhart [62] proposed a new methogidiggimulating the movements of birds and
flocks called PSO for optimization of continuousifimear functions. The population is responding
to the quality factors lik@bestand gbest The adjustment towargbestand gbestis conceptually
similar to the crossover operation in genetic atpors. Much of the success of particle swarms

seems to lie in the agents’ tendency to hurtle {hest target.

17



Yoshida et al. [67] proposed a PSO technique ferdblution of the reactive power and voltage
control problem. The control problem was formulateda mixed-integer non-linear optimization
problem. The continuation power flow and contingeaoalysis methods were used to assess the

voltage security.

Abido [30] presented a PSO technique to solve the OPBlgmo The problem formulation
considered three objectives, such as, minimizagidiuel cost, improvement of voltage profile and
voltage stability enhancement through théndex method. PSO is a population based search
algorithm which avoids trapping into local optinRSO can easily deal with non-differentiable and
non-convex objective functions. PSO uses probdiciliziles for particle movements rather than

deterministic rules.

In [68], Stacey et al. integrated a mutation opmratto a PSO. A PSO converges rapidly during the
initial stages of a search, but often slows conalollg and can get trapped in local optima. This
behaviour has been attributed to the loss of diyens the population. The searched points are
tightly clustered and the velocities are close @00z During the search process, these points are
becoming local optimum points and hence there ifurtber improvement. The mutation operator

used speeds up convergence and escapes local minima

Zhao et al. [69] presented a Multi-Agent PSO (MARS@ the solution of the ORPD problem.
This method integrated the Multi-Agent System (MA&)d the PSO algorithms. An agent in
MAPSO represents a particle in PSO and a candstatgion to the optimization problem. All
agents live in a lattice-like environment, with kagent fixed on a lattice point. In order to obtai
an optimal solution quickly, each agent competaesaoperates with its neighbours and it can also
learn by using its knowledge. Making use of thegen&agent interactions and the evolution

mechanism of PSO, MAPSO realizes the purpose ahaphg the value of an objective function.

Vlachogiannis and Lee [70] presented three new imessof PSO for optimal steady-state
performance of power systems with respect to reagower and voltage control. Two of the three
introduced (the enhanced GPAC PSO and LPAC PSOgE vixsed on global and local-
neighbourhood variant PSOs respectively. They abrithized with the constriction factor
approach together with a reflection operator. Fielttechnique is based on CA and simulates how

the achievements of particles can be distributdderswarm affecting its manipulation.
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To overcome the drawback of premature convergen&Ss0, a learning strategy can be introduced
in PSO and this approach is called Comprehensianiieg PSO (CLPSO) [71]. In this CLPSO,
for each particle, besides its owhes} pbestof other particles were also used as exemplarsh Eac

particle learns potentially from the behaviour biparticles in the swarm.

In [72], Lenin presented a Quantum-behaved Pargelarm Optimization algorithm (QPSOQO) for
solving the multi-objective ORPD problem. QPSO asspnted by the authors was designed as a

result of stimulations by the traditional PSO meklamd quantum procedure theories.

Reference [73] presented a PSO based approactolfong the ORPD problem for minimizing
power losses without violating the inequality coastts and satisfying the equality constraints. The
control variables are bus voltage magnitudes (nootis type), transformer tap settings (discrete

type) and reactive power generation of capacitakbddiscrete type).

Ben et al. [74] applied a PSO-Thyristor Control®dries Capacitor (PSO-TVAC) algorithm to
solve the ORPD. The ORPD problem was formulateda asonlinear, non-convex constrained
optimization problem considering both continuous aiscrete control variables. It also had both
equality constraints and inequality constraintse Heceleration coefficients in the PSO algorithm
were varied adaptively during iterations to imprdhe solution quality of the original PSO and

avoided premature convergence.

231 PSO ALGORITHM PSEUDO CODE

The flowchart in Fig. 1 delineates the steps ofstedard PSO algorithm and its pseudo code is
presented as thus:

Pseudo code of the Standard PSO algorithm

Input: PSO population of particlo§ = (X1, X, . . . %) fori=1, ... N, MAX FE
Output: The best solution Gbest and its correspondingeviald = min (x)).
1: init_patrticles;

2: eval=0;

3: while termination_condition_not_medod

4: fori=1toNdo

5: fi = evaluate_the new_solutioXi);

6: eval=eval+ 1;

7 if fi < Pbest then

8: P = X; Pbestfi; / | save the local best solution
9: end if

10: if fi < fmin then

11: Gbest= Xi; fmin = fi; / | save the global best solution
12: end if

13: Xi = generate_new_solutioKXif;
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14: end for
15: end while

\ 4
Generate an initial swarni
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Calculate the objective function for each particle
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Fig. 1 Conventional PSO Flowchart

In a PSO algorithm, the population hbisparticles that represent candidate solutions dwed t
coordinates of each particle represent a possililgien associated with two vectors, the posifipn
and velocityV, vectors. In ad-dimensional search or solution spa¥es [Xi1, X2, ..., Xig] andV; =
[Vis, Vi, ..., Vig] are the two vectors associated each particlehe best previous position &f
particle, based on the evaluation of fithess fuomcis represented iybest = [Pbest, Pbesg, ...,
Pbest] and the index of the best particle among allipkag in the group is represented Gpest
The swarm, which consists of a number of particliess through the feasible solution space to

explore optimal solutions. The steps of the PS@riepie can be described as follows:
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Step l:Initialization: Setk = 0 and generate randosparticles §; (0);1 =1, 2, . . .N}. Each
particle is considered to be a solution for thebpgm and it can be described Xs(0) = [x1(0),
xi2(0), ... ,xn(0)]. Each control variable has a rangg&] Xnad. Each particle in the initial
population is evaluated using the objective funrctidf the candidate solution is a feasible solution

(i.e., all problem constraints have been met), theto Step 2; else repeat this step.
Step 2:Counter updating: Update the countde=k + 1.
Step 3:Computethe objective function.

Step 4:Velocity updating: Using the global best and individual best, itAgarticle velocity in the
j™dimension is updated according to the followingaipn:
Vi< =wV ot 1+ (Pbest X )+c*r *(Gbesf*-X; ) (15)
i=1,2,...,N; j=1,2,....d
wherec; andc; are acceleration constantgandr; are two random numbers with a range of [0, 1];
w is the inertia weight anklis the iteration index.
Then, check the velocity limits. If the velocityolates its limit, set it at its proper limit. Thecond
term of the above equation represents the cognpiare of the PSO where the particle changes its
velocity based on its own thinking and memory. Tied term represents the social part of the PSO

where the particle changes its velocity based erstitial-psychological adaptation of knowledge.

Step 5:Position updating: Each particle updates its position based on et lexploration, best
swarm overall experience, and its previous veloagigtor according to Eq. (16):
Xij (k+1) =X (k) + Vjj (k+1) (16)
i=1,2,...,N;j=1,2,..d

Step 6:Individual best updating: Each particle is evaluated and updated accoridirtbe update

position.

Step 7:Minimum value search: Search for the minimum value in the individualsbéor all
iterations and consider it as the best solution.

Step 8:Stopping criteria: If one of the stopping criteria is satisfied, its&top; otherwise go to Step
2.

21



2.3.2 BASIC FUNDAMENTALSOF THE PSO
The basic fundamentals of the PSO technique atedséad defined as follows:
1) ParticleX; (k): A candidate solution represented bg-dimensional real-valued vector, whate
is the number of optimized parameters; at iteratiahei™ particleX; (k) can be described as
Xi (K) =[x (K), X2 (K), .. . Xid(K)]
where th&'s are the optimized parameters ahepresents the number of control variables.

2) Population: This is a set Nfparticles at iteratiok.
Pop K) = [X1 (K), X2(K), ..., Xn(K)]
whereN represents the number of candidate solutions.

3) Swarm: This is an apparently disorganized pafpui of moving particles that tend to cluster

together and each particle seems to be movingan@om direction.

4) Particle velocity; (k): The velocity of the moving particles represenby ad-dimensional
real-valued vector; at iteratidq thei™ particleV; (k) can be described as
Vi (K) = [viz (K), iz (K), . . . ,Via(K) ]
wherevig(K) is the velocity component of th particle with respect to tre" dimension.

5) Inertia weightw(k). This is a control parameter, used to control ithpact of the previous
velocity on the current velocity. In other words,controls the momentum of the particle by
weighing the contribution of the previous velociyence, it influences the trade-off between the
global and local exploration abilities of the pelgs. For initial stages of the search procesargel
inertia weight to enhance global exploration isoramended whereas it should be reduced at the
last stages for better local exploration. Thereftite inertia factor decreases linearly from alt@bt
to 0.4 during a run. In general, this factor isastording to Eq. (17):
W = Winax — (Wmax= Winin) e (17)
itermas
whereitermax is the maximum number of iterations andr is the current number of

iterations.
6) Constriction Factory : The constriction coefficient was developed bher€ [75]. This

coefficient is extremely important to control theptration and exploitation trade-off in order to

ensure convergence behaviour. The constrictiofficiemt guarantees convergence of the particles
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over time and also prevents collapse [76]. Thearsiapdate equation with the constriction factor
can be expressed as follows:
Vijk+1 =y [V\/*Vijk + cl*rl*(Pbesi';k — Xijk) + cz*rz*(Gbes,-f‘ — Xijk)] (18)

where
X

= 2
|2-0-[2@-4)| (19)

With @ =@, + @,;, @ =cir1. @, =Coro. EQ. (19) is used under the constraint that 4

If @ < 4, then all particles would slowly spiral towadd around the best solution in the searching
space without convergence guarantee, b@ i 4, then all particles are guaranteed to converge
quickly [77].

7) Acceleration Constants andc,: The acceleration coefficients govern the relatretocity of

the particle towards its local and global best fimsi These parameters have to be tuned based on
the complexity of the problem. A suitable constantfactor calculated from these parameters will
ensure cyclic behaviour for the particles [78, 7Bje acceleration coefficients together with the
random vectors; andr,, control the stochastic influence of the cognitwrel social components on
the overall velocity of a particle. The constacisandc, are also referred to as trust parameters,
where c; expresses how much confidence a particle has @ff,itwhile c, expresses how much
confidence a particle has in its neighbours.

8) Individual besPbest During the movement of a particle through thedeapace, it compares
its fitness value at the current position to thstlfigness value it has ever reached at any itaratp
to the current iteration. The best position thatgsociated with the best fithess encounteredféiius
is called the individual bedtbest For each particle in the swarfbest can be determined and
updated during the search. For tigarticle, individual best can be expressed as:

Pbest= [Pbest, Pbesg, ..., Pbesf] (20)

9) Global besGbest This is the best position among all of the indual best positions achieved

thus far.

10) Stopping criteria: The search process wiltdseninated whenever one of the following criteria
is satisfied.
« The number of iterations since the last changehefltest solution is greater than a pre-
specified

number.
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« The number of iterations reaches the maximum albdevaumber.

24 BAT ALGORITHM
Since the appearance of the original paper on theogtimization method in 2010 by Xin-She
Yang [80], literature abounded with a wide rangeapplications. The original paper outlined the
main formulation of the algorithm and applied thé Bo study function optimization with
promising results. A BA simulates parts of the dobation characteristics of the micro-bat in an
uncomplicated way. Three major characteristicshef micro-bat are employed to construct the
basic structure of BA. Hence, the first charactiriss the echolocation behaviour. The second
characteristic is the signal frequency. The signaknt by the micro-bat with frequenicgnd with a
variable wavelength. The third is the loudnes% of the emitted soundyhich is used to search for
prey.
The approximate or idealized rules in this methetisted by Xin-She Yang are as follows:
1) All bats use echolocation to sense distance ang dlso ‘know’ the difference between
food/prey and background barriers in some magiegl, w
2) Bats fly randomly with velocity; at positionx; and emit sounds with a fixed frequerfgy,
varying wavelengtih and loudnesgy to search for prey. They can automatically adjost
wavelength (or frequency) of their emitted pulsed adjust the rate of pulse emissioa
[0,1], depending on the proximity of their target;
3) Although the loudness can vary in many ways, amrapson is made that the loudness

varies from a large (positivé) to a minimum constant valugnin.

Another obvious simplification is that no ray tnagiis used in estimating the time delay and three
dimensional topography. The following approximatioare also used to simplify matters even
further:
1) Speed of sound in air is takenwas 340 m/s
2) The range of frequencieknf, , fmad correspond to the range of wavelengthgn[, Ama-
v

Since A= : (22)

a frequency range of [20 kHz, 500 kHz] correspads wavelength range of [0.7 mm, 17 mm].
Nowadays, BA and its variants are applied for sgjvimany optimization and classification

problems. BA has been applied to the following s#gsof optimization problems: continuous,
constrained and multi-objective [81, 82]. In adufitj it is used for classification problems in:
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clustering, neural networks and feature selectionally, BAs are also used in many branches of

engineering [83, 84]. In this research, the fosusn the ORPD optimization problem.

Biswal et al. [85] solved OPF using a bio-inspiBA with cost as an objective function. They were
able to prove that their method has good convemenaperty and a better quality of solution than
some other results reported in their paper. Thennamvantage of their technique is easy
implementation and the capability of finding a fbss near global optimal solution with less

computational effort.

Reference [86] presented an Improved BA (IBA) tdveoan ORPD problem. The algorithm
utilized chaotic behaviour to produce a candidatleit®n in behaviours analogous to acoustic

monophony and was applied to reduce real powelimoagpower system.

In [87], a BA was used to solve the OPF problenhlie TCSC. The TCSC was used to reduce the
transmission line losses and improve the voltagélprof the power system. This method proved

to be effective.

A modified version of the meta-heuristic algoritirased on bat behaviour was proposed in [88] to
find the best system configuration with a low lasdée. The method presented two different
approaches: reduction of search space and intrioduat a sigmoid function to fit the algorithm to

the problem. The main advantages of the proposddaadelogy are: easy implementation and less

computational efforts to find an optimal solution.

Integration of distributed generation in power eys$ challenges the operation and management of
power distribution networks. Latif et al. [89] pesded a Modified BA (MBA) for the OPRD of a
distributed generation of voltage support in arthstion network. An objective function with
constraints of voltage, DG reactive power and tlarimits of lines was presented. Their results

showed that the MBA was quite effective for voltagefile improvement and loss minimization.

241 MOVEMENTSOF VIRTUAL BATS
In BA, the virtual bats (naturally used for simubais) are defined by their positiors velocitiesv,
and frequencie§ in ad-dimensional search space. The new solutijrend velocities/; at time
stept are given by

fi = foin + (max— fmin)f (22)

Vi=v T+ (= X2 f (23)
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X' =x"H v (24)
wherep € [0,1] is a random vector drawn from a uniform disttibo; x°*¢ is the current global best

location (solution) which is located after comparaill the solutions among all tinebats.

From Eq. (21), the produdt fi determines the velocity increment. To adjust thieaiey change,
eitherfi (or Ai) can used while fixing the other factor(or fi) depending on the type of the problem
of interest. In implementatiofi,i, = 0 andfimax = 100 will be used, depending the domain sizéef t
problem of interest. Initially, each bat is randgraksigned a frequency which is drawn uniformly

from [fmin, fma)a.

For the local search part, once a solution is ssfeamong the current best solutions, a new
solution for each bat is generated locally usingloan walk

Xnew = Xold + A (25)
wheree € [-1, 1] is a random number, whil is the average loudness of all the bats at this tim
step.
The update of the velocities and positions of betge some similarity to the procedure in the
standard PSO aB essentially controls the pace and range of the mewé of the swarming

particles.

242 LOUDNESSAND PUL SE EMISSION
Furthermore, in order to provide an effective mecsira to control the exploration and exploitation
and to switch to the exploitation stage when nengsghe loudnes#; and the rate; of pulse
emission have to be varied during the iteratiomsceSthe loudness usually decreases once a bat has
found its prey, while the rate of pulse emissiotréases, the loudness can be chosen as any value
of convenience, betweeRin andAmax AssumingAmin = 0 means that a bat has just found its prey
and temporarily stopped emitting any sound. Withsth assumptions, the loudnéssand the
emission pulse ratg' are updated accordingly as the iterations proeseshown in Eq. (26) and
Eq. (27)

Ait+1 — ocAit (26)

r™ =11 - expEyt)] (27)
wherea andy are constants;° is the initial emission pulse rate. For ang®< 1 andy > 0, we
have

A'—>0, -1’ astoon. (28)
The choice of parameters requires some experingentiitially, each bat should have different

values of loudness and pulse emission rate, asd#m be achieved by randomization.
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Loosely speaking, the pulse rate controls the mavesof the bats by switching between Eq. (25)
(local search) and Eg. (24) (global search). Atlibginning of iterations, a BA tends to promote a
global search over local random walks so as tocgplhe search space more effectively. This
mechanism is obtained by attributing a low valuéh®initial emission rate®. However, this value
should not be too low, thus allowing a small frantdf bats to exploit the solutions of the bat with
the good positions. As the iterations approactetiok a large value should be assigned to the pulse
rate so that exploitation takes over from explomtiThe loudness; controls the acceptance or
rejection of a new generated solution. The impaeaof this parameter is that by rejecting some
solutions, it allows the algorithm to avoid beimgpped in local optima (and thus avoid premature

convergence as well).

243 BAT ALGORITHM PSEUDO CODE
The flowchart in Fig. 2 delineates the steps ofdtamdard BA algorithm and its pseudo code given

as follows:

Pseudo code of the Standard Bat Algorithm

Objective functior (x), X = (X, ....%)"
Initialize the bat populatiow; (i = 1,2, ...,n) andv;
Define pulse frequendyat x;
Initialize pulse rates; and the loudnes4;
while (t <Max number of iterations
Generate new solutions by adjusting frequency,
and updating velocities and locations/solusifags.(22) to (24)]
if (rand >r;)
Select a solution among the best solutions
Generate a local solution around the seledtest solution
end if
Generate a new solution by flying randomly
if (rand <A & f (x) < f (xX°"))
Accept the new solutions
Increase; and reduce);
end if
Rank the bats and find the current b&8t*
end while

Post process results and visualization
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The BA technique steps can be described as follows:

Step l:nitialization: Sett = 0 and generate randawbats X (0);i = 1, 2, .. .N}. Each bat is
considered to be a solution for the problem arwit be described a6 (0) = [x1(0), x2(0), ...,
xin(0)]. Each control variable has a ranggil, Xnay. Each bat in the initial population is evaluated
using the objective functiof If the candidate solution is a feasible soluti@e., all problem
constraints have been met), then go to Step 2;refseat this step. Velocity, Pulse rate; and
LoudnessA are also initialized while Pulse Frequeffidg defined ak;.

Step 2:Counter updating: Update the counteér=1t+ 1.

Step 3:Individual best updating: Each particle is evaluated and individual andbglobest

solutions are updated.
Step 4:Frequency Adjustment: The pulse frequencies are adjusted using Eq. (22)

Step 5Velocity updating: Using the global best position and the bat's @filsquency, thé" bat's
velocity in thed- dimension is updated according to Eq. (23)

Step 6:Position updating: Each bat updates its position based on its pusvielocity vector
according to Eq. (24)

Step 7:Check if rand is greater than r;: If true select a solution among the best solgtiand
generate a local solution around the selected dmdstion, else generate a new solution by flying

randomly using a random walk according to Eq. (25).

Step 8:Compute the objective function: Each bat is evaluated and updated according €0 th
update position.

Ghesty.
)

Step 9:Check if rand is less than A; and f(x;) is less than f(x . If it is, accept the new

solutions. Increase using Eq. (26) and reduéeusing Eq. (27).

Step 10:Rank the Solutions: Search for the minimum value in the individualtfes all iterations

and consider it as the best solution.
Step 11Stopping criteria: If one of the stopping criteria is satisfied,hstop; else go to Step 2.
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Fig. 2 Conventional BA Flowchart
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25 HYBRIDIZATION OF EVOLUTIONARY ALGORITHMSTO SOLVE ORPD

The essence of hybridization is to alleviate tmeitations of one algorithm with diversification
aspects of the other. Researchers have observed tmambination of one evolutionary algorithm
with either another evolutionary or a conventioagdorithm may result in a potent algorithm
capable of dealing with complex optimization probse[90]. In this section an overview of the
attempts made in recent years to hybridize an éeolary algorithm with either an evolutionary or

a conventional algorithm in solving an ORPD problsith be presented.

Das and Patvardhan [91] presented a method fomgpllie ORPD problem based on Evolutionary
Strategy (ES). Some major improvements were adalelet traditional ES in order to improve the
convergence and to find a better solution. Thisroued technique is referred to as Hybrid
Evolutionary Strategy (HES). A conscious effort waade in the design of HES to reduce the

number of load flow executions so that computatioequirements were within reasonable limits.

In [92], Yang et al. presented an Improved Evoheiy Programming (IEP) and its hybrid version
combined with the nonlinear IP technique to soNRRD problems. In an IEP method, the common
practices in regulating reactive power were folldvie adjusting the mutation direction of control
variables in order to increase the possibility eéfing the state variables within bounds. The IEP
was also hybridized with the IP method to obtaifast initial solution, which was then used as a

highly evolved individual in the initial populatiasf the improved EP method.

Esmin et al. [93] proposed a Hybrid PSO with Muat{HPSOM) for loss minimization. The study
was carried out in two steps. In the first stepngishe tangent vector technique, the critical aka
the power system was identified under the pointiefv of voltage instability. In the second step,
after identifying the critical area, the PSO tecjus was used to calculate the amount of shunt
reactive power compensation of each bus. The HP&@@rithm is basically the standard PSO
combined with arithmetic mutation. The notion oftation in the hybrid model was introduced as

in any other genetic algorithm.

By integrating GA with a nonlinear IPM, a novel higb method for the ORPD problem was

proposed in [94]. The method was divided into twaot@ The first part was to solve the ORPD with
the IPM by relaxing the discrete variables. Theosdcpart was to decompose the original ORPD
into two sub-problems: continuous optimization ahscrete optimization. The GA was used to
solve the discrete optimization with the continueasiables being fixed, whereas the IPM solved
the continuous optimization with the discrete Vialea being constant. The optimal solution was
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obtained by solving the two sub-problems alteryatél dynamic adjustment strategy was also
presented to make the GA and the IPM to complereach other and to enhance the efficiency of
the hybrid method.

DE is a promising evolutionary algorithm for solgithe ORPD problem, but it requires relatively
large population size to avoid premature convergemtich will increase the computational time.
On the other hand, EP has been proved to have d global search ability. Exploiting this
complementary feature, a hybrid algorithm of DE &Rl denoted as DEEP, was proposed in [95]
to reduce the required population size. The hybaiibn was designed as a novel primary—auxiliary

model to minimise the additional computational cost

In [96], Subbaraj et al. presented a two-phaseidyp8O approach in solving ORPD problem. In
their hybrid approach, PSO was used to explor@piienal region and a direct search was used as a

local optimization technique for finer convergence.

Fister et al. [97] presented a hybrid tool basedhenBA. BA was hybridized with DE strategies.
This hybridization showed very promising results standard benchmark functions and also

significantly improved the original BA.

Reference [98] presented a reliable and effectigerithm based on Hybrid Modified Imperialist
Competitive Algorithm (MICA) and Invasive Weed Qpization (IWO) for solving the ORPD
problem. The original Imperialist Competitive Algtam (ICA) often converges to local optima. In
order to avoid this shortcoming, a new method wag@sed that profited from the IWO method to
improve local search near the global best and &éssasf modifications were added to the
assimilation policy rule of ICA in order to furthenhance the algorithm's rate of convergence for

achieving a better solution quality.

Mojtaba et al. [99] introduced a hybrid tool to denthe ORPD problem by combining Modified
Teaching Learning Algorithm (MTLA) and Double Difntial Evolution (DDE) algorithm. Their
hybrid method also proved to be efficient and shibfaster convergence.

In [100], Lenin et al. presented Hybridization dBA with Harmony Search Algorithm (BAHS) for

solving an ORPD problem. The approach includedattdition of a pitch modification procedure in

Harmony Search, serving as a mutation operatonguhe procedure of the bat updating with the
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aim of speeding up convergence, thus making theoapp more feasible for a wider range of real-

world applications.

Hybridization of a Simulated Annealing and a Nelt¥@ad (SANM) algorithm was proposed in
[101] to solve an ORPD problem. The proposed aligoriSANM) started with a primary solution,
which was generated arbitrarily and then the smiutwas alienated into partitions. The
neighbourhood zone was generated, an arbitrary auofipartitions were selected and a variable
updating procedure was started in order to generatail neighbour solution. This process helped
the SANM algorithm to explore the region around thierent iterated solution. The Nelder- Mead
(NM) algorithm was used in the final stage in orteprogress the best solution found so far and

accelerates the convergence in the final stage.

Singh et al. [102] presented a PSO with an Agingdez and Challengers (ALC) (denoted as ALC-
PSO) for the solution of an ORPD problem. The OR#Bblem was formulated as a nonlinear
constrained single-objective optimization problerneve the real power loss and the total voltage

deviation was to be minimized separately.

Reference [103] presented a novel hybrid algoritembining a Firefly Algorithm (FA) and the
NM simplex method for solving ORPD problems. Likemy other general purpose optimization
methods, the original FA often traps into localimat and in order to overcome this shortcoming,
an efficient local search method called the NM dexrpsubroutine was introduced in the internal
architecture of the original FA algorithm. This med proved to avoid premature convergence of
the original FA by exploration with a FA and expétion with a NM simplex.

A Hybrid BA (HBA) was proposed in [104] to reduceetreal power loss in ORPD problem.
Swarm Intelligence based BA was hybridized with & €rategy to solve the problem. The HBA
was used to find the optimal settings of generbtm voltage, transformer tap settings and reactive

power of a shunt compensator.

Radosavljevic and Jevtiv [105] presented a newibydlgorithm (Hybrid GSA-SQP) consisting of
the Gravitational Search Algorithm (GSA) and they@mntial Quadratic Programming (SQP) for
solving the ORPD problem. The performance of thyilsrid algorithm for the ORPD problem was
formulated for two different objective functionsamely minimization of real power loss and

voltage profile improvement.

32



Reference [106] presented a hybrid approach baseehdCA and a PSO to find the solution of
ORPD of power systems. This hybrid method was pideebe and has higher capability in finding
better solutions.

26 OPTIMAL PLACEMENT OF DG UNIT(S)

Power system generating stations are located estbhse to the resources (water, coal and gas) or
otherwise located far from the load centres. Thgemerating stations are designed to take
advantage of available economies of scale in asggxific manner and are built as “one-off”
custom projects. Over the years, electric powenstrassion line losses increase as a result of
increasingly age deterioration and capacity comggaipon the transmission networks. This led to
the introduction of a new technology called disitédl generation (DG) unit or system. DG units
refer to the installation of small-scale generatechnologies or stations from a few kilowatts ap t
50 MW to the existing power networks at the disttibn level [107]. These small-scale generating
stations, which include but are not limited to mhattaic (PV) or solar cells (typically rooftop sol
PV); small wind power system or wind turbines andhbined heat power (CHP), are connected in
parallel with the utility power networks. They al@cated near the consumer loads to reduce
transmission line losses and improve voltage msfiln general, DG units tend to produce some or
all of the power required by the consumer loadswvéier, due to the renewable nature of the DG
unit's energy sources, there are times when thesegg sources will be insufficient. In such
circumstances, the consumer will need to receiwgepdrom the utility grid. When the DG units
produce more power than the consumer needs atdispmeoment, the excess power is available to
the utility grid. The integration of DGs in the tlibution network has diverse advantages which
include reduction of active power losses, improvemef voltage profile, reduction of
environmental pollution, less capital intensivecreased efficiency and reliability of the system
network [108].

Numerous methods (conventional and evolutionarigrtiegies) have earlier been used to optimally
install DG unit(s) in the distribution networks teduce active power transmission line losses. A
number of conventional techniques such as gradieatch (GS) [109], linear programming (LP)
[110], Newton-Raphson Extended Method [111] hawenb&iccessfully applied to optimally install
DG unit(s). While, some evolutionary methods sustG& [112], BA [113], PSO [114, 115], CS
[116], ABC [117], Competitive Swarm Optimizer (CS{)18], Cat Swarm Optimization (CSO)
[119], Parallel Cat Swarm Optimization AlgorithmB3QSO) [119] etc, have also been applied in the
past to optimally install DG unit(s).
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27 SUMMARY

This chapter reviews the development and applicatad conventional and evolutionary
optimization techniques to solve the ORPD problgndifferent authors in the field of electrical
power system. It also gives detailed informatioroldbORPD problem formulation and the
application of PSO, as well as BA in solving an @Rjproblem. It also reviews the development
and application of some hybrid methods to solve@®PD as well as optimal placement of DG
unit(s) in the distribution networks to reduce @aetpower transmission line losses. The next chapter
presents the hybridization of PSO and BA to fornS&@BA and show in a flow chat how they can
be used to solve the ORPD problem as well as thelation results and analysis of using the

proposed hybrid method on the test cases.
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CHAPTER 3

HYBRID PSO-BA MODEL

This chapter covers the hybridization tool usedhis research and the proposed methodology for
the hybridization. There are different methods byal these two optimization techniques can be
hybridized so as to come up with a better methoddlve the problem at hand. This chapter
presents the hybridization of PSO and BA to formS@BA and the details of the proposed

methodology.

3.1 MOTIVATION FOR HYBRIDIZATION OF PSO WITH BA

The objective function of this research is to mizenthe active power loss in a transmission
network using a hybrid algorithm which is a combioa of PSO and BA methods. The PSO has
been applied many times to solve optimization goid but in this research considering the PSO'’s
shortcomings of premature convergence and reguooatputational time in most cases, an attempt
is made to improve the PSO algorithm. By findingd aanalyzing a variety of evolutionary
optimization algorithms which were raised in recgedrs, it was found that the BA is gradually and
excellently applied in the field of power system#dthough the BA cannot guarantee a fast
convergence because it completely depends on ramndalky it is proficient at controlling the
exploration and exploitation of the search spaa# @so requires less computational time. Thus
exploring their possible hybridization is a step the right direction to solve power system

optimization problems.

The use of hybrid algorithms is a new and succéssfnd in solving optimization problems. The
main aim of this research is to obtain a bettefgoering algorithm that combines the advantages of
individual algorithms. Hybrid algorithms benefitofn synergy. However, choosing an adequate
combination of component algorithms to achieve #ebeoverall performance in a particular
situation or problem is important. This researahmdteto combine the PSO and BA optimization
techniques to form a hybrid tool that can out-penfdhe algorithms when individually applied in

solving power system optimization problems.
At the start of every optimization process, a gladgloration of the search space is required to

probe a wider region for the perspective solutiod &ater on search for a better solution in the

vicinity of a given starting solution within a mopromising region. PSO can quickly identify
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promising areas in the search space while BA cacklyudetermine the best solution within those

areas.

PSO, which is one of the most popular meta-hearagproaches, is based on information sharing
among the particles and is transmitted by the rapsimistic, global best particle to other particles
One of the main advantages of PSO, rapid conveegec&n also be its main weakness, as
premature convergence to a suboptimal solution stagnate the swarm without any pressure to
continue exploration. The PSO algorithm has fourtifficult to converge to an optimal solution as
the particles arrive in the vicinity of the optinsdlution and thus causes slow convergence in the
refined search stage.

On the other hand, the BA has a capability of aatocally zooming into a region where promising
solutions have been found and also a strong lezathk ability controlled by the loudness and pulse
rate. The local search method is applied by usirapdom walk method in order to refine the best-
found solution at each iteration. Despite its lessiputational time advantage, it converges very
quickly at the early stage and then convergeneesiatvs down.

In order to alleviate the drawbacks of both PSO BAdoptimization techniques a new hybrid

algorithm, the HPSOBA, is proposed.

3.2 PROPOSED HYBRID PSO-BA (HPSOBA) METHODOLOGY

The proposed HPSOBA optimization method by thigaesh, integrated the respective advantages
of PSO and BA to form a hybrid PSO with a BA dedots HPSOBA. It combines the fast
convergence ability of a PSO with the less computaime ability of a BA to get a better optimal
solution. The PSO’s Eq. (15) was modified by introdg the BA’s frequency; as shown in Eq.
(29) below for the HPSOBA. The frequenigywhich controls the pace and range of the movement
of the swarming patrticles, is generated as showeqin(22). Maximum number of iterations is set

as a stopping criterion.

Vi ¥ = wrv; K+ (crrand*(Pbest® — X %) + c*rand*(Gbest — % X)) * f; (29)
The flowchart in Fig. 3 delineates the steps of IRSOBA algorithm for solving ORPD and its
pseudo code given as follows:
Stepl: The bat solutions; ¥nd their velocities \are initialized
For each bat i, define pulse frequencgtfX
Initialize emission pulse rates r and the loudn&ss
The lower and lower boundaries/limits of every colntariables are identified.
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Step 2: Run Newton-Raphson power flow method on the liz#é solutions to calculate the
transmission line losses of all the candidate sohs.

Step 3: The minimum transmission line loss is assigne®lasst. At this juncture the Pbest is
also the Gbest.
Step 4: While (iteration < Max number of iterations)
New frequency is generated using adaptive methdda@ndomization thus:
fi = fmin+(Fmax - fmin)* 8
Update velocity using the proposed improved PS@tsan as thus:
Vi = wHv, K+ (crrrand*(Pbest® — %) + co*rand*(Gbestt — X 1) * f;
Update solution with the improved velocity equats thus:

| - | |
Step 5: if (rand > 1)
Select a solution among the best solutions

Perform a random walk (local search) around thiested best solution
Endif

Step 6: New random solutions are generated around theatgatisolutions while restricting

the limits of the control variables.

Step 7: Run Newton-Raphson power flow method on the iizédlsolutions to calculate the

transmission line losses of all the candidate sohg
Step 8: If (rand<A & f(X) < f(X°")
Accept the new solutions
Increase rand reduce A
Endif
Step 9: Rank the solutions and find the overall best tsahu
Step 10:  End while

Step 11:  Post process results and visualization.
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Fig. 3 Proposed HPSOBA Algorithm flowchart
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3.3 TEST FUNCTION OPTIMIZATION USING HPSOBA

Test functions also known as standard benchmar&g ah important role in validating and
comparing the general performance, convergence aa@iracy and robustness of optimization
algorithms [120]. The test functions should haveediverse properties, which can be useful in
testing of any new algorithm. The efficiency, rbllay and validation of optimization algorithms
can be done by using a set of standard benchmartesbfunctions. For any new optimization
technique, it is necessary to validate its perforceaand compare it with other existing algorithms
using a good set of test functions. These testtiume whose details such as search range and
optima positions were provided, were applied to pmeposed HPSOBA method to assess its
performance and robustness. PSO and BA methodsalgereleveloped in the course of developing
the proposed HPSOBA method.

3.31 SIMULATION RESULTSAND ANALYLSISOF TEST FUNCTION
OPTIMIZATION

The proposed hybrid approach (HPSOBA) including tiieer two approaches (PSO and BA)
developed by this research were first tested ogetistandard benchmark/test functions to confirm
their accuracy and robustness. The test functisesl dor this case study include Griewank,
Rastrigin and Schwefel. The results of this redeéarextensive numerical experiments are
summarized in Table I. The table shows the resoft$SO, BA and HPSOBA optimization
methods for solving the test functions with dimensid = 5, 30 and 100. The maximum number of
iterations and number of bats or particles are 20@D10 respectively. Each method was performed

for 30 trials to solve the given test function desb.

Griewank Function
d 2 d

fx)=> 48('60 —Hfos(%)+ 1 (30)

i=1 1= '

X € [-600, 600], forali =1, ...,d

Rastrigin Function

d
f(x)=10d + Y[ x%° — 10 cos(zx)] (31)
i=1

X € [-5.12,5.12], forall =1, ...,d

Schwefel Function

d
f(x) =418.9828 - x sin(V|x|) (32)
i=1
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X € [-500, 500], forali=1, ...,d

BENCHMARK FUNCTIONS

TABLE I. COMPARISONBETWEENDIFFERENTALGORITHMS ON 3 STANDARD

ALGORITHM | DIMENSIONS | VALUE PSO BA HPSOBA
GRIEWANK 5 BEST 57.8285 1.1711 5.4514
WORST 328.2437 260.0861 214.7897
MEAN 157.1529 108.0102 66.7185
STD. DEV 68.0770 64.1219 47.5775
30 BEST 522.9148 16.1033 101.3931
WORST 1.1506e+03  1.0745e+03 885.328(
MEAN 861.0965 629.3576 534.6278
STD. DEV 149.3709 281.0386 196.5750
100 BEST 2.4095e+03  1.0826e+03 884.6522
WORST 3.5618e+03  3.3493e+03 3.0002e+03
MEAN 2.9961e+03| 2.5574e+03 2.3906e+03
STD. DEV 292.2196 532.6977 572.2150
RASTRIGIN 5 BEST -284.8841 | -379.7818 -240.4818
WORST 98.9437 121.6203 99.3437
MEAN 23.1221 10.6579 -0.2336
STD. DEV 92.3501 122.5785 103.1661
30 BEST -162.9674 -789.3809 -1.0689e+03
WORST 569.9399 655.3263 638.5661
MEAN 377.1201 353.9556 336.1339
STD. DEV 158.1019 326.2176 394.9394
100 BEST 1.6055e+03 561.5273 1.1438e+03
WORST 1.9659e+03  2.1029e+03 1.9657e+03
MEAN 1.7608e+03| 1.7002e+03 1.6662e+03
STD. DEV 100.1611 292.4334 225.8081
SCHWEFEL 5 BEST -2.5234e+03 -1.2745e+04  -1.8619e+D4
WORST 3.1426e+03  2.7637e+03 3.0274e+03
MEAN 1.8502e+03| -2.6896e+0B -2.7273e+03
STD. DEV | 1.4914e+03| 5.0362e+03 6.6470e+03
30 BEST -2.1333e+04 -6.8378e+(04  -4.7411e+P4
WORST 1.6043e+04  1.4204e+04 1.4623e+04
MEAN 8.9964e+03| -3.0271e+0B -6.0857e+03
STD. DEV | 8.8948e+03| 2.2048e+04 1.9236e+04
100 BEST -1.2534e+03 -5.4329e+04  -9.1366e+04
WORST 4.4911e+04; 4.3968e+04 4.4159e+04
MEAN 3.4320e+04| 2.0747e+04 1.2664e+04
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STD. DEV | 1.0954e+04| 2.5903e+04 3.9666e+04

As reflected in Table I, the proposed hybrid altjon (HPSOBA) when tested on the chosen
standard benchmark/test functions (Griewank, Rsistand Schwefel) outperformed the other two
approaches (PSO and BA) also developed and anabyztds research for 5, 30 and 100 different

dimensions.

34 SOLVING ORPD USING HPSOBA

This section presents the simulation results aradlyais of using the proposed HPSOBA algorithm
to solve an ORPD problem. There are two case sudinducted as part of this resarch in solving
an ORPD problem. The first case study deals witlvirep an ORPD problem (active power
transmission line loss minimization objective fuan) without a DG unit installed using the
proposed HPSOBA approach on IEEE 30- and 118-bsemsg, while the second case study is
about installing a new DG unit in the distributisystem (load bus) and using the proposed hybrid
approach (HPSOBA) only to optimally place the DGt wm a modified IEEE 30-bus system for

active power transmission line loss minimization.

341 CASE 1: SMULATION RESULTSAND ANALYSISOF SOLVING AN ORPD
WITHOUT A DG UNIT
The proposed HPSOBA optimization method alongsii® Rnd BA were tested on the IEEE 30-
bus and 118-bus test systems with an objective tifumcof minimizing the active power
transmission losses in an electric power systers. ddia for these systems can be found in [100].
The algorithms of the PSO, BA and HPSOBA methodseweoded in MATLAB R2012b
incorporated with MATPOWER 5.1 and run on an Ifie) Pentium (R) CPU @ 2.00 GHz with 2
GB of RAM PC. The parameters and data settingd@iproposed algorithms for the test systems
are summarized in Table Il. Due to the randomneska PSO, BA and HPSOBA techniques, each
method was executed for 30 runs to solve the gidBfD problem (without a DG unit installed)
objective function when applied to the test systems

TABLE II. PARAMETERSAND DATA SETTINGSFORTHE PROPOSEALGORITHMS
PARAMETER SYMBOL PSO BA HPSOBA
Swarm/Bat size N 50 20 20
Maximum number of iterations Iteration/N_gen 200 200 200
Number of variables nvargd 12 12 12
Acceleration constants CI=C 2.05 - 2.05
Adaptive inertia weight w 09-04 09-04 09-04
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PARAMETER SYMBOL PSO BA HPSOBA
Minimum frequency frnin 0 0
Maximum frequency frax 2 2
Minimum pulse rate I min 0 0
Maximum pulse rate I max 1 1
Minimum loudness Anin 1 1
Maximum loudness Anmax 2 2

Loudness constant a 0.99 0.99
Pulse rate constant 0.9 0.9
Constriction factor X 0.729

3.4.1.11EEE 30-BUSTEST SYSTEM

In order to validate the proposed hybrid approatRSOBA) for ORPD without a DG unit as well
as the PSO and BA developed in the course of adgekie hybrid approach, an IEEE 30-bus test
system was used. The single-line diagram of theEIBB-bus test case is shown in Fig. 4. It
consists of six generator buses, 24 load buses4anidranches in which four branches are tap
changing transformers branches at lines 6-9, &411R, and 28-27. In addition, buses 10 and 24
have been selected as shunt VAR compensation bHsege, a total of 12 optimized control

variables were taken for this ORPD problem. Thentinaparameters and loads were taken from

[121].

Fig. 4 Single-line diagram of IEEE 30-bus test egs{122].
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The test was carried out by solving the ORPD probtd the active power transmission loss
objective in which variable limits (as given in Talll) were used as system constraints. For
comparison purposes, Newton-Raphson Method, PSOamBR HPSOBA optimization methods
were applied to solve this test case and comparttdother methods in the literature. The initial
system loads, total generation and power lossel=toE 30-bus system from the actual load flow
study using Newton-Raphson method (base case)wae gs follows:

Pload = 283.40; Qioad = 126.20
The initial total generation and power losses artolows:

Pc =301.21; Qs =160.94

Poss= 17.807; Qioss = 69.61

TABLE Ill.  IEEE30-BUSTESTSYSTEM CONTROLVARIABLE LIMITS FORORPD

CONTROL VARIABLES (p.u) | MINIMUM | MAXIMUM
Generator Voltage 0.95 1.10
Transformer Tap Setting 0.90 1.10

Reactive Power Compensation 0.00 0.20

The average convergence curves of the PSO, BA &8ICHBA techniques are shown in Figs. 5-7
respectively for IEEE 30-bus test system. Delvintpithe figures, it will be observed that the
HPSOBA hybrid approach showed better convergenaeacteristics than the PSO and BA
methods. While the PSO in Fig. 5 starts convergihgbout the 48 iteration, the BA in Fig. 6
starts to converge at about the #i@ration and the HPSOBA in Fig. 7 starts to cogeeat about
the 3¢ iteration.
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Fig. 5 Average convergence curve of the PSO

43



Iz bl
u BAT Algorithm Based Optimal Reactive Power Dispatch | = | (5] —s-:;hj
File Edit View Inset Tools Desktop Window Help ™
Dodde | | RRARODEL- S| 0H =D

ACTIVE POWER LOSS MINIMIZATION
18 """" L e e I Cae e e RS e Rt Diacka et Pt
L e SO SN TR TS SR ST S
L s S s SO O S S
e e T SR EEPEESS
w
o
S s SRR e Temeees LEEEEE R AR it Pomeee- 1
o
% 1? _______________________________________________________________________
o
Lt
cE T R L | S | S . O
Q ' 1]
£ ., Convelgencge
B N i
T Gt S S
| CESEE .. SN
16 i I i i I I i I I i
0 20 40 60 80 100 120 140 160 180 200
Iteration Number

Fig. 6 Average convergence curve of the BA

B Hybrid PSO-BAT Algorithm Based Optimal Reactive Power Dispatch o | B
File ' Edit View Insett Tools Desktop Window Help e

Qagde k| RRODEA-2|0EE D
ACTIVE POWER LOSS MINIMIZATION

19'....’..'}.’..
185 ______ A ot e e e | BN e e SREEE ¥ Ll e g ot Ll 1
T e P B e
E ! : : ! : : : : : :
= : : ; ! : : : ! : :
i S R
o : : : i ] : : : ! :
o
= ! ! : ! ! i f ' 1 ¢
5 il HCORVergenee
5 : : : ' : y : :
2

Point

I I I I i I i
20 40 60 80 1000 120 140 160 180 200
Iteration Mumber

Fig. 7 Average convergence curve of the HPSOBA

The simulation results of this research for sohamgORPD (without a DG unit) on an IEEE 30-bus
system were compared with the results of PSO, DIEABC and ABC algorithms from previous
studies as shown in Table IV. The table shows thatother two algorithms (PSO and BA)
outperformed the results of the previous studiethéliterature and the Newton-Raphson method
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(base case), while the proposed hybrid approachS@BA) developed by this research

outperformed all.

TABLE IV. COMPARATIVERESULTSOFIEEE30-BUSTESTSYSTEM

ACTIVE POWER LOSSES (MW)

ALGORITHM Min. M ax. M ean Std.
L osses L osses Losses | Deviation
BASE CASE - - 17.807 -
PSO [123] - - 16.1810
DE [124] 16.2184 16.6272 16.1376  0.089508

DE-ABC [124] | 16.2163| 16.2164 16.21683 2.34e-05
ABC [124] 16.2325 17.693 16.5908  0.034919

PSO 16.163 16.166 16.165 7.65e-04
BA 16.061 16.185 16.133 2.79e-02
HPSOBA 16.059 16.169 | 16.125 2.80e-02

Table V shows values of the various control vagabfter optimization for the PSO, BA, and
HPSOBA algorithms. It can be observed from thedahlkt the control variables are restricted
within their respective constraint’s limits and iohkate. Further more, Table V also showed that the
HPSOBA computation time of 257.01 seconds outper$othat of the PSO and BA(g indicates
generated voltageT indicates transformer tap setting ad¥ indicates shunt compensation
respectively in p.u. These optimal setting of vasiacontrol variables minimizes the objective

function to an optimum solution after a maximun®00 iterations.

TABLE V. VALUES OFCONTROLVARIABLES BEFOREAND AFTEROPTIMIZATION
FORIEEE30-BUSTESTSYSTEM

CONTROL BASE | PSO BA HPSOBA
VARIABLES (p.u) CASE
Vo 1.06 1.10 1.10 1.10
Vg, 1.04 1.09 1.09 1.09
Vg 1.01 1.05 1.05 1.05
Vg 1.01 1.06 1.06 1.06
Vo 1.08 1.10 1.10 1.10
Vs 1.07 1.10 1.10 1.10
Tos 0.98 1.06 1.02 1.02
Tios 0.97 0.90 0.98 0.96
Tira 0.93 1.05 0.99 1.06
Toszr 0.97 0.98 0.99 0.98
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CONTROL BASE | PSO BA HPSOBA
VARIABLES (p.u) CASE

Qcio 0.19 0.15 0.10 0.11
QG 0.04 0.15 01.0 0.10
POWERLOSS(MW) | 17.807 | 16.165  16.133| 16.125
CPU TIME () - 74450 27320 | 257.01

3.4.1.2 |EEE 118-BUSTEST SYSTEM

To further test the proposed technique in solvingGRPD without a DG unit on a large-scale
power system, a standard IEEE 118-bus test sys@scansidered. The single-line diagram of the
IEEE 118-bus test case is shown in Fig. 8. Thedas¢ system has 77 dimensions/variables, that is
54 generator buses, 64 load buses, 186 transmigses) 9 transformer taps and 14 reactive power

sources. The system line and bus data were takan[fr21].

i © >
I - \
pE| 54 56 L |53
43 45 12 @ _
33
6, | A Ede e
838 @ Iy —— 53_
15 51 500 63
C |11(; 66 ‘r@ 62
L 7 - iy
- — 63
—:@ P2 1 ¥
. I s 99 :
- 6 1 o4 _
TN o o
- @ \gi‘ ol ol ‘101 N
! — 5
Bl i __9i 9% ,ﬁ.oﬂﬁ gm@ 108

N —

83 95 93

87 86 o 8| 89© —‘Q T o1 111 [
) | © — | - 57 ©
| @ @ L‘ <buo
88 ] 5o L1 102 (i)—l@

Fig. 8 Single-line diagram of IEEE 118-bus testeays[125].

The maximum and minimum limits of reactive poweuses, voltage and tap setting limits were
given in Table VI, while the initial values of tlentrol variables are in Table VIII. The initial
system loads, total generation and power lossearfdEEE 118-bus system from the actual load
flow study using Newton-Raphson method are asvidlo

Pioad = 4242.00; Qioad = 1438.00
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The initial total generation and power losses artolows:
Pc = 4375.35; Qs = 881.06
Ploss = 133.350; Qioss= 785.09

TABLE VI. |IEEE118-BUSTESTSYSTEM CONTROLVARIABLE LIMITS FORORPD

CONTROL VARIABLES (p.u) | MMINMUM MAXIMUM
Generator Voltage 0.95 1.10
Transformer Tap Setting 0.90 1.10

Reactive Power Compensation 0.00 0.25

Figs. 9-11 below show the average convergence su¥ePSO, BA and HPSOBA techniques
respectively for an IEEE 118-bus system. Delvintp ithe figures, it will be observed that the
HPSOBA hybrid approach showed better convergenagacteristics than the PSO and BA
techniques. While the PSO in Fig. 9 showed a littlegular convergence trait, the BA in Fig. 10
starts to converge at about the @ ®ration and the HPSOBA in Fig. 11 starts to @rge at about
the 69" iteration.
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Fig. 9 Average convergence curve of the PSO
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The simulation results achieved without a DG unitao IEEE 118-bus system were compared with
the results of the PSO, CLPSO, GSA and OGSA algostfrom previous studies as shown in
Table VII. The table shows that the other two altfpons (PSO and BA) outperformed the results of
the Newton-Raphson method (base case) and thae girevious studies in the literature, while the
main proposed hybrid approach (HPSOBA) developedhis/research outperformed all. Further
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more, Table VIl also showed that the HPSOBA comipantatime of 424.97 seconds outperforms
that of the PSO, BA and the previous studies ifitbmature.

TABLE VII. COMPARATIVERESULTSOFIEEE118-BUSTESTSYSTEM

ACTIVE POWER LOSSES (MW)
ALGORITHM Min. Max. Mean Std. CPU
Losses Losses L osses Deviation TIME (s)
BASE CASE - - 133.350 - -
PSO [126] 132.370 134.500 131.990 3.2e-04 1215.00
CLPSO [126] 131.150 132.740 130.960 8.5e-05 1472.00
GSA [127] - - 127.760 - 1198.66
OGSA [128] 127.140 131.99¢ 126.990 8.80e-05 1101.26
PSO 123.827 128.841 126.215 1.5239 1013.49
BA 108.852 | 110.889| 109.772 0.7012 495.88
HPSOBA 107.259 | 109.229 108.151 0.5747 424.97

Table VIII shows the values of various control abtes after optimization for the PSO, BA, and
HPSOBA methods. It can be observed from the tdtaethe control variables are restricted within
their respective constraint’s limits and inviolaiénese optimal settings of various control variable

minimizes the objective function to an optimum s$iola after 200 iterations.

TABLE VIIl. VALUES OFCONTROLVARIABLES BEFOREAND AFTEROPTIMIZATION
FORIEEE118-BUSTESTSYSTEM

CONTROL BASE PSO | CLPSO | GSA | OGSA | PSO BA HPSOB

VARIABLES (p.u) | CASE | [126] [126] [127] [128] A
Va, 0.96 1.09 1.03 0.96 1.03 1.02 1.04 1.05
Vg, 1.00 1.04 1.05 0.96 1.06 1.03 1.06 1.07
Vgs 0.99 1.08 0.98 0.97 1.03 1.03 1.05 1.06
Vg 1.02 0.97 0.97 1.06 1.02 1.03 1.09 1.10
Vo 1.05 1.08 0.98 1.09 1.02 1.03 1.10 1.10
Vo 0.99 1.02 1.01 0.96 1.04 1.02 1.05 1.05
Vs 0.97 1.08 0.98 1.01 1.00 1.02 1.05 1.05
Vs 0.97 1.05 1.08 1.01 1.00 1.03 1.05 1.05
Vi 0.96 1.08 1.08 1.00 0.99 1.02 1.05 1.05
Vou 0.99 1.08 1.03 1.01 1.03 1.03 1.06 1.07
Vs 1.05 0.96 1.03 1.01 1.06 1.04 1.09 1.10
Vs 1.02 1.08 0.99 1.04 1.09 1.04 1.10 1.10
Vg 0.97 1.09 1.02 0.98 1.01 1.02 1.05 1.06
Vs 0.97 0.96 0.96 0.95 0.99 1.01 1.04 1.05
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CONTROL BASE PSO | CLPSO | GSA | OGSA | PSO BA HPSOB
VARIABLES (p.u) | CASE | [126] [126] [127] [128] A
Vs 0.96 1.10 0.99 0.96 1.00 1.02 1.05 1.05
Vs 0.98 0.96 1.02 0.99 1.00 1.03 1.06 1.07
Vs 0.98 1.04 1.08 1.01 0.98 1.03 1.06 1.06
Vo 0.97 1.09 0.98 0.95 1.00 1.02 1.04 1.05
Vg 0.99 0.97 1.05 0.95 1.01 1.02 1.04 1.05
Vs 1.01 1.04 0.98 0.98 1.04 1.02 1.06 1.07
Vo 1.03 1.08 0.98 1.04 1.03 1.03 1.07 1.09
Vs 0.96 0.98 0.96 1.04 0.99 1.02 1.04 1.06
Vs 0.95 1.01 0.97 0.99 0.99 1.02 1.04 1.06
Vs 0.95 0.95 1.02 1.03 0.99 1.02 1.04 1.06
Vko 0.99 0.97 1.00 1.01 0.99 1.03 1.07 1.08
Vs, 1.00 1.09 1.08 1.09 1.07 1.02 1.07 1.09
V52 1.00 1.10 1.05 1.04 1.08 1.02 1.07 1.09
Vs 1.01 1.09 0.97 1.00 0.98 1.03 1.10 1.10
Vs 1.05 1.09 0.96 1.04 1.05 1.03 1.09 1.10
Vo 1.04 0.97 0.96 1.10 1.05 1.04 1.09 1.10
Varo 0.98 1.08 0.98 1.10 1.04 1.02 1.05 1.06
Vg, 0.98 0.95 1.02 1.00 0.99 1.03 1.04 1.05
Vars 0.99 0.97 0.97 1.01 1.05 1.03 1.04 1.05
Vg7 0.96 0.97 1.07 1.05 1.02 1.01 1.04 1.06
Vs 0.94 0.96 1.03 1.02 1.00 1.02 1.04 1.06
Vg, 1.01 1.08 1.03 1.02 1.01 1.03 1.07 1.08
Vko 1.04 0.99 1.08 1.05 1.01 1.04 1.08 1.09
Vs 0.99 0.96 0.98 1.05 0.99 1.03 1.09 1.09
Vs, 1.02 0.96 1.09 1.04 0.97 1.02 1.07 1.07
Vso 1.01 0.97 0.99 1.10 1.05 1.04 1.10 1.10
Voo 0.99 1.02 0.99 1.04 1.03 1.03 1.07 1.08
Vo, 0.98 0.96 1.03 1.00 1.03 1.00 1.08 1.08
Vo2 0.99 0.96 0.98 1.09 1.04 1.03 1.09 1.09
Voo 1.01 0.95 1.09 1.04 1.04 1.03 1.07 1.08
V100 1.02 0.96 0.96 1.08 1.03 1.03 1.08 1.08
V103 1.01 1.02 0.96 1.03 1.02 1.03 1.06 1.07
V104 0.97 1.10 1.01 0.98 1.02 1.03 1.05 1.06
V105 0.97 0.97 1.07 1.02 1.02 1.02 1.04 1.05
V107 0.95 0.97 0.98 1.00 1.04 1.03 1.03 1.04
V110 0.97 1.09 1.04 1.02 1.03 1.02 1.03 1.04
Vo1 0.98 1.04 0.98 0.99 1.02 1.03 1.03 1.05
Vo1 0.98 1.09 0.98 0.95 1.01 1.02 1.02 1.02
V13 0.99 1.08 0.97 0.98 1.04 1.03 1.06 1.06
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CONTROL BASE PSO | CLPSO | GSA | OGSA | PSO BA HPSOB
VARIABLES (p.u) | CASE | [126] [126] [127] [128] A

V016 1.01 0.96 1.03 1.04 0.97 1.03 1.09 1.10
Tes 0.985 1.01 1.00 1.07 0.96 1.00 1.02 1.01
Too26 0.96 1.09 1.06 0.95 1.04 1.00 0.99 0.99
Tao-17 0.96 1.00 1.00 0.93 1.00 1.00 1.01 1.01
Tasar 0.94 1.00 1.01 1.09 0.98 0.99 1.00 1.01
Toas 0.96 1.01 0.99 1.06 0.96 0.99 1.00 0.99
Toas 0.99 1.03 1.01 0.95 1.00 1.00 1.03 1.01
Tos-66 0.94 0.94 1.06 1.00 0.99 1.00 1.01 1.03
Tosc0 0.94 0.91 0.93 0.99 0.93 0.96 1.01 1.00
Tor-80 0.94 0.97 0.96 0.98 1.07 0.97 0.99 0.9¢
Qe -0.40 0.00 0.00 0.00 -0.33 0.13 0.11 0.12
Qs 0.14 0.09 0.12 0.07 0.05 0.13 0.12 0.10
Qs -0.25 0.00 0.00 0.00 -0.25 0.11 0.17 0.13
QCa4 0.10 0.09 0.10 0.06 0.03 0.13 0.13 0.11
QCss 0.10 0.09 0.09 0.03 0.04 0.12 0.14 0.14
QCse 0.10 0.09 0.03 0.07 0.05 0.13 0.10 0.13
Qcss 0.15 0.12 0.03 0.04 0.02 0.14 0.15 0.14
QCra 0.12 0.05 0.01 0.10 0.05 0.12 0.12 0.08
QCro 0.20 0.11 0.15 0.14 0.11 0.13 0.12 0.14
Qs 0.20 0.16 0.19 0.17 0.10 0.13 0.12 0.13
QCss 0.10 0.10 0.07 0.04 0.03 0.12 0.12 0.10
QCuos 0.20 0.09 0.09 0.12 0.04 0.11 0.16 0.13
QCior 0.06 0.05 0.05 0.02 0.01 0.12 0.09 0.15
QCizo 0.06 0.06 0.02 0.03 0.01 0.12 0.11 0.12

POWERLOSS | 133.350 ] 131.990 130.960 127.760 126.990 126.215 .7I9 108.151
(MWw)

342 CASEII: OPTIMAL PLACEMENT OF A DG UNIT USING HPSOBA

The proposed hybrid approach (HPSOBA) was furttedidated on a modified IEEE 30-bus test

system to minimize the active power transmissiae Ibosses. A DG unit was installed on the load
buses (except on the slack bus) with the DG usitagd to operate at its rated power. The DG unit
generated 2.05 MW of real power while it delivessnauch as 1.2 MVAR or absorbs -1.0 MVAR

reactive power.

3421 SIMULATION RESULTSAND ANALYLSISOF SOLVING ORPD WITH A DG
UNIT
The DG unit was first installed on a generator bosg then both the real and reactive power

capacity of the generator were altered. Secontlly,XG unit was also installed on a load bus. In
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addition to modifying the real and reactive powapacity, the voltage magnitude of the newly
installed DG unit was treated as a new controlalde, thereby increasing the total number of
control variables from 12 to 13. Each of the madifiDG units installed on the buses were
evaluated for 30 independent runs and the meare wais taken for the real power minimization
objective function. The simulation results were pamed with that of a HPSOBA method without a
DG unit installed. The load bus, generator buslaadch parameters of the test system were taken
from [121] while the control variables as well & tinstalled DG unit’'s real and reactive power

limits used as system constraints are as giverabiellX.

TABLE IX. MODIFIED IEEE30-BUSTESTSYSTEM CONSTRAINTSFORDG UNIT
OPTIMAL INSTALLATION

CONTROL VARIABLES MMINMUM | MAXIMUM
Generator Voltage (p.u) 0.95 1.10
Transformer Tap Setting (p.u) 0.90 1.10
Reactive Power Compensation (p.u) 0.00 0.20
DG Reactive Power Output (MVAR -1.0 1.2
DG Real Power Output (MW) 0 2.05

The simulation results of the DG unit's placememtiseach load bus except on the slack bus are
shown in Table X and the simulation graph showfig 12. It is observed that installing the DG
unit on bus 24 gave the best result of 15.738MWhdisated in bold in the table. That is an 11.62%
real power transmission line loss reduction, making 24 the optimum location. It can also be
observed from Table X that installing the DG umnit lous 18 gave the best computation time of
230.92 seconds (also indicated in bold in the jable

TABLE X. COMPARATIVERESULTSOFTHE DG UNIT PLACEMENTON EACHBUS

BusNo Loss Loss Reduction | CPU Time

(MW) (%) O

1 0 0 -
2 16.026 10.00 243.35
3 15.988 10.22 240.65
4 15.924 10.57 245.12
5 15.861 10.93 272.11
6 15.829 11.11 250.94
7 15.835 11.07 247.25
8 15.883 10.80 238.33
9 15.820 11.16 241.20
10 15.819 11.16 252.44
11 15.910 10.65 261.23
12 15.901 10.70 239.78
13 15.947 10.45 254.09
14 15.891 10.76 243.95
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BusNo Loss Loss Reduction | CPU Time
(MW) (%) ()

15 15.856 10.96 240.28
16 15.894 10.74 232.29
17 15.850 10.99 238.93
18 15.820 11.16 230.92
19 15.815 11.19 266.78
20 15.838 11.06 255.63
21 15.759 11.50 231.99
22 15.789 11.33 298.63
23 15.790 11.33 237.45
24 15.738 11.62 238.26
25 15.831 11.10 237.34
26 15.807 11.23 237.07
27 15.881 10.82 246.02
28 15.882 10.81 245.91
29 15.870 10.88 236.88
30 15.793 11.31 232.02

COMPARATIVE RESULTS OF THE DG UNIT PLACEMENT ON EACH BUS
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Fig. 12 Graph of the comparative results of the i@ placement on each bus
Table XI showed the comparative results of the psepd HPSOBA approach with and without the

DG unit placement on each load bus. The table stialat the proposed HPSOBA algorithm

developed by this research have better results Wiee®G unit is installed on bus 24 than without

53



any form of DG unit installed on any of the loadsbes. It also showed a further reduction of real
power transmission line losses from 9.45% (with®@@G unit installed) to 11.62% (with the DG
unit installed on bus 24).

TABLE XI. COMPARATIVERESULTSOFHPSOBAALGORITHM FORWITH AND
WITHOUT DG UNIT PLACEMENT

ACTIVE POWER LOSSES (MW) LOSS
ALGORITHM Min. Max. Mean Std. REDUCTION
Losses | Losses Losses Deviation (%)
BASE CASE - - 17.807 - -
HPSOBA 16.059 | 16.169 16.125 2.80e-02 9.45
(without DG)
HPSOBA 15.639 | 15.894| 15.738 5.13e-02 11.62
(with DG at Bus 24)

Fig. 13 shows the average convergence curve diiEOBA method for the optimal placement of
a DG unit at bus 24 using a modified IEEE 30-bwss $gstem. From the figure, it is observed that

HPSOBA hybrid approach showed a good convergeraeacteristics and performance.

r ™Y
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Fig. 13 Average convergence curve of HPSOBA fodifned IEEE 30-bus test system

Table XII shows the values of the various contratiables before and after optimal placement of
the DG unit in the load buses for the modified IEB&bus test system using the proposed
HPSOBA method. It can be observed from the talde e control variables are restricted within

their respective constraint’s limits and kept ilate. These optimal setting of various control
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variables minimizes the objective function to antimpm solution with a maximum of 200

iterations.

TABLE Xll. VALUES OFCONTROLVARIABLES BEFOREAND AFTEROPTIMAL
PLACEMENTOFDG UNIT FORMODIFIED IEEE30-BUSTESTSYSTEM

Control Base Case HPSOBA DGat | DGat | DGat | DGat | DG at
Variables (without DG) | (without DG) | Bus2 Bus3 Bus4 Bus5 | Busé6
Voltage at bus 1, 1.06 1.10 1.10 1.10 1.10 1.10 1.10
Vgl

Voltage at bus 2, 1.04 1.09 1.09 1.09 1.09 1.09 1.00
Vg2

Voltage at bus 3, 1.08
Vg3

Voltage at bus 4, 1.07
Vg4

Voltage at bus 5, 1.01 1.05 1.05 1.06 1.06 1.05 1.06
Vg5

Voltage at bus 6, 1.07
Vg6

Voltage at bus 8, 1.01 1.06 1.06 1.06 1.06 1.06 1.06
Vg8

Voltage at bus 1.08 1.10 1.10 1.10 1.10 1.10 1.0y
11,Vgll
Voltage at bus 1.07 1.10 1.10 1.09 1.06 1.10 1.10
13,Vgl3

Toe 0.98 1.02 1.01 1.02 1.00 1.02 0.96
Tice 0.97 0.96 0.98 0.98 0.98 0.99 0.95
Tio4 0.93 1.06 1.06 1.04 0.97 1.07 1.08
Tog27 0.97 0.98 0.99 0.99 0.98 0.99 0.9y
Q¢ 0.19 0.11 0.09 0.10 0.11 0.12 0.11
Qe 0.04 0.10 0.13 0.10 0.10 0.11 0.11

TABLE Xll. VALUES OFCONTROLVARIABLES BEFOREAND AFTEROPTIMAL
PLACEMENTOFDG UNIT FORMODIFIED IEEE30-BUSTESTSYSTEM(CONT D)

Control DG at DG at DG at DG at DG at DG at DG at DG at
Variables Bus7 Bus8 Bus9 | Bus10 | Bus1l | Bus12 | Bus13 | Bus14
Voltage atbus 1,/ 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.1p
Vgl
Voltage at bus 2,/ 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.00
Vg2
Voltage at bus 5,/ 1.06 1.05 1.06 1.05 1.05 1.05 1.0% 1.0
Vg5
Voltage at bus 7, 1.06
Vg7
Voltage at bus 8, 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06
Vg8
Voltage at bus 9, 1.09
Vg9
Voltage at bus 1.07
10,Vg10
Voltage at bus 1.10 1.10 1.02 1.03 1.10 1.10 1.10 1.1p
11,Vgll
Voltage at bus 1.07
12,Vgl12
Voltage at bus 1.10 1.10 1.10 1.10 1.10 1.03 1.10 1.1p
13,Vg13
Voltage at bus 1.04
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14,Vgl4
Tos 1.01 1.02 1.03 1.05 1.01 0.99 1.01 1.0
Tice 0.98 0.97 1.00 1.02 0.98 0.96 0.99 0.99
T2 1.05 1.06 1.02 1.01 1.06 1.07 1.06 1.0b
Tog07 0.98 0.98 0.97 0.96 0.98 0.97 0.98 0.99
Qcio 0.10 0.08 0.09 0.10 0.09 0.08 0.10 0.10
QCp4 0.10 0.11 0.09 0.10 0.10 0.11 0.12 0.09
TABLE XlIl. VALUES OFCONTROLVARIABLES BEFOREAND AFTEROPTIMAL
PLACEMENTOFDG UNIT FORMODIFIED IEEE30-BUSTESTSYSTEM(CONT D)
Control DGat | DGat | DGat | DGat | DGat | DGat | DGat | DGat
Variables Bus15 | Bus16 | Bus17 | Bus18 | Bus19 | Bus20 | Bus21 | Bus?22
Voltage at bus 1,| 1.10 1.10 1.10 1.10 1.10 1.10Q 1.1 1.10
Vgl
Voltage at bus 2,| 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09
Vg2
Voltage at bus 5, 1.06 1.06 1.05 1.05 1.06 1.05 1.0% 1.0b
Vg5
Voltage at bus 8, 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06
Vg8
Voltage at bus 11| 1.10 1.10 1.10 1.10 1.10 1.10Q 1.1 1.10
Vgll
Voltage at bus 13| 1.10 1.10 1.10 1.10 1.10 1.10Q 1.10 1.10
Vgl3
Voltage at bus 15| 1.05
Vgl5
Voltage at bus 16 1.04
Vgl6
Voltage at bus 17 1.06
Vgl7
Voltage at bus 18 1.04
Vgl8
Voltage at bus 19 1.03
Vgl9
Voltage at bus 20 1.04
Vg20
Voltage at bus 21 1.05
Vg2l
Voltage at bus 22 1.05
Vg22
Tos 1.00 1.02 1.01 1.01 1.03 1.02 1.02 1.08
Tice 1.00 0.99 0.98 0.99 0.99 0.99 1.0 0.99
Tiza 1.06 1.06 1.04 1.05 1.06 1.05 1.03 1.04
Tog07 0.99 0.99 0.97 0.98 0.98 0.99 0.97 0.98
Qcio 0.10 0.09 0.10 0.15 0.11 0.10 0.1 0.11
QCp4 0.13 0.09 0.11 0.09 0.11 0.09 0.08 0.09
TABLE XlIl. VALUES OFCONTROLVARIABLES BEFOREAND AFTEROPTIMAL
PLACEMENTOFDG UNIT FORMODIFIED IEEE30-BUSTESTSYSTEM(CONT D)
Control DG at DG at DG at DG at DG at DG at DG at DG at
Variables Bus 23 Bus24 Bus 25 Bus 26 Bus 27 Bus 28 Bus 29 Bus 30
Voltage at bus 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10
1,Vvgl
Voltage at bus 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09
2,Vg2
Voltage at bus 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.0%
5,Vg5
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Voltage at bus
8,Vg8

1.06

1.06

1.06

1.06

1.06

1.06

1.06

1.06

Voltage at bus
11,Vgll

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

Voltage at bus
13,Vg13

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

Voltage at bus
23,Vg23

1.04

Voltage at bus
24,Vg24

1.03

Voltage at bus
25,Vg25

1.04

Voltage at bus
26,Vg26

1.03

Voltage at bus
27,Vg27

1.05

Voltage at bus
28,Vg28

1.06

Voltage at bus
29,Vg29

1.03

Voltage at bus
30,Vg30

1.02

T9-6

1.02

1.02

1.01

1.02

1.00

0.99

1.00

1.0]

TlC-G

0.98

1.01

0.98

0.97

0.98

0.99

1.00

0.9

T12-4

1.06

1.06

1.05

1.06

1.05

1.05

1.06

1.0

T28-27

0.99

1.00

1.00

0.99

1.04

0.98

1.00

1.0

Qcyc

0.09

0.10

0.11

0.11

0.10

0.12

0.12

0.1%

QCzq

0.10

0.10

0.10

0.13

0.11

0.10

0.12

N il
L = A e B B

0.1]
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SUMMARY

This chapter dealt with the hybridization of theeady chosen optimization techniques and their

step implementation. It also discussed the simandaprocedures and results obtained using the

proposed HPSOBA to solve for test function optiima and ORPD problems. The results

obtained from solving the ORPD problem using theSBBA considered two case studies of with

and with a DG unit installed. The first case stadlygolving an ORPD problem without a DG unit

installed was tested of both IEEE 30-bus and 118tbst systems, while the second case study of
solving an ORPD problem with a DG unit installedswasted on a modified IEEE 30-bus test

system. The simulation results were compared witieroevolutionary algorithms in the literature.

The next chapter presents the modification of treppsed HPSOBA to check if there will be

further improvement on its performance or not.
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CHAPTER 4

MODIFIED HPSOBA

41 OVERVIEW

This chapter presents three new modifications ewchx@anto this research’s proposed HPSOBA to
check if there will be further improvement on iterfprmance or not. The modified HPSOBA
denoted as MHPSOBA also followed the line of theSIIBA in fulfilling the local search by using
the random walk operation mechanism of a BA whetbasglobal search is accomplished by a
PSO operator. Using this combination it maintainsbalance between ‘exploration’ and
‘exploitation’ and enjoying the best of both thgaithms (BA and PSO). The MHPSOBA has the
same pseudo code and flowchart as the proposed BIRQSwas also tested on a modified IEEE
30-bus system to solve an ORPD problem (active pawasmission line loss minimization

objective function) without a DG unit installed.

42 MODIFICATIONS OF HPSOBA
The MHPSOBA method emanated from three new modifina embedded into the proposed
HPSOBA method and is captured in this subsection:

42.1 1¥MODIFICATION (Pulse Frequency)
Microbats use echolocation as their main navigatsystem. During their flights, bats emit
continuously short pulses that last a few milliset® By analyzing the echoes, they can create a
3D mental image of their surroundings. The infoliorabf other bats such as their positions can be
useful to guide the search process. In additioilggsucan travel in different directions and thus it
may be useful to assume that each bat emits tvsepuhto two different directions before deciding
in which direction it will fly and this feature cdme used to simulate the time difference or delay
between echoes received by two ears. It is alsonass that the two pulses emitted have the same
pulse rates but different pulse frequendieandf,. To extend further along this line of thinking, it
can also be assumed that all the bats emit a putke direction of the best bat (solution) whére t
food is considered to exist, and the other pulgdéadirection of a randomly chosen bat. From the
echoes (feedback), the bat can know if food exsisnd these two bats or not.
The frequencief andf, of the two pulses are updated as follows:

fi1= frmin +(fmax - fmin)*rand1 (33)

fi 2= frnin*+(fmax - fmin)*rand2 (34)
Bothrandlandrand2 are two random vectors between 0 and 1.
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422 2" MODIFICATION (Velocity Vector)

In a standard PSO algorithm, population and contariables are randomly generated during
initialization, while during iterative proceggpestandpbestare used to govern the update of the
population, but there is no such term in velocitg gosition vectors which are purely random in
nature. In this section, the velocities update @f 9) is modified using the equations below which
calculated the distance between the bat posxiamdpbest and also the distance between the bat
positionx; andgbestusing a Cartesian distance.

The Cartesian distance (denoteg@psbetween the bat positiohandpbestis given as:

d
ppﬂ Y, (pbest - X)? (35)

The Cartesian distance (denoteggsbetween the bat positiohandgbestis given as:

d
pgﬂ Y, (gbest — X)? (36)

The velocity update equation becomes:
Vit = wrvi K+ (crrexp(—pP)*(pbest’ — X )* fi 1+ (c2* exp(—pd)*(gbest’ — X)) * fi 2
(37)

The inclusion of Eg. (35) and Eq. (36) in Eq. (3&mnoves every element of randomness in the
velocity update equation thereby giving room firestand gbestto govern the update of the

velocity and position vectors.

423 3YMODIFICATION (Pulserate and L oudness Update)

In standard BA, the pulse rate and loudness upsteh their final value during the iterative
process very quickly, thus reducing the possibiifythe auto-switch from global search to local
search due to a higher pulse rate and the acceptdrecnew solution (low loudness). This section
proposes the use of monotonically increasing prdte and decreasing loudness updates as shown
is Eq. (38) and Eq. (39):

r o= Fo— e (t — iterationnay) + .\ *a
(38)
1 —terationmyay
AT = Ao— A (t - iterationnay + A, [1 — expEyt)]
(39)

1 —terationmyay
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where the index 0 ane stand for the initial and final values respectyet denotes alphay
denotes gamma;denotes iterative indexgration,axdenotes maximum number of iterations.
43 SIMULATION RESULTS AND ANALYLSIS OF SOLVING ORPD USING
MHPSOBA

The MHPSOBA method was tested on the IEEE 30-bstssiestems with an objective function of
minimizing the active power transmission loss ined@ctrical power system. The data for these
systems can also be found in [121]. The MHPSOBAordigm was also coded in MATLAB
R2012b incorporated with MATPOWER 5.1 and run orrdal (R) Pentium (R) CPU @ 2.00 GHz
with 2 GB of RAM PC. The parameters and data sgdtiof the MHPSOBA algorithm for the test
system are the same as that of HPSOBA as summaniZeble Il. The control variables limits are
also the same as for the HPSOBA shown in TableTlHe MHPSOBA method was executed for 30
runs to solve the given ORPD problem objective fiamcwhen applied to the test system.

The simulation results of the MHPSOBA for solving @RPD on an IEEE 30-bus system were
compared with the results of the HPSOBA algorittexslaown in Table XIll. The table showed that
the earlier proposed HPSOBA algorithm developegedidormed the results of the modified hybrid
algorithm (MHPSOBA). It can be deduced from thedation results that the randomness nature
of the velocity and position vectors during itepaticontributes to a large extent to the good

performance of the the HPSOBA algorithm.

TABLE Xlll. COMPARATIVERESULTSOFMHPSOBAALGORITHM WITH HPSOBA
ALGORITHM FORSOLVING ORPDPROBLEM
ACTIVE POWER LOSSES (MW) LOSS
ALGORITHM Min. Max. Mean Std. REDUCTION
Losses | Losses | Losses | Deviation (%)
BASE CASE - - 17.807 - -
HPSOBA 16.059 | 16.169 16.125 | 2.80e-02 9.45
MHPSOBA 16.064| 16.254 16.149  3.84e-02 9.31

Table XIV shows the values of various control vhalés after optimization for MHPSOBA and its
comparison with the base case and HPSOBA methbdanlbe observed from the table that the
control variables were restricted within their resfive constraint’s limits and inviolate. These
optimal settings of various control variables miizes the objective function to an optimum

solution after 200 iterations.
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TABLE XIV. COMPARATIVEVALUES OFCONTROLVARIABLES AFTER
OPTIMIZATION FORHPSOBAAND MHPSOBAMETHODSFORIEEE30-BUSTEST

SYSTEM
CONTROL BASE | HPSOBA | MHPSOBA
VARIABLES (p.u) | CASE

Vo 1.06 1.10 1.10

Vo 1.04 1.09 1.09

Vg 1.01 1.05 1.05

Vg 1.01 1.06 1.06

Vi 1.08 1.10 1.10

Vs 1.07 1.10 1.09

To-s 0.98 1.02 1.01

Tr06 0.97 0.96 0.99

Tio4 0.93 1.06 1.05

Tos.27 0.97 0.98 0.98

Qcuo 0.19 0.11 0.12

QG 0.04 0.10 0.11
POWER LOSS (MW) | 17.807 | 16.125 16.149
CPU TIME (s) - 257.01 276.24

44  SUMMARY

This chapter dealt with the modification of the posed algorithm denoted as MHPSOBA to check
if there will be further improvement on the perf@mnce of the HPSOBA or not. The MHPSOBA
has the same pseudo code and flowchart as theggopdPOSBA and it was tested on a modified
IEEE 30-bus test system to solve an ORPD probleativéa power transmission line loss

minimization objective function) without a DG unitstalled. It also discussed the simulation
results obtained from solving the ORPD problem witha DG unit installed using the MHPSOBA.

The simulation results were compared with that (#SDBA. The next chapter presents the
modification of the proposed HPSOBA to check if rhewill be further improvement on its

performance or notconclusion and future work.
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CHAPTER S

CONCLUSION AND FUTURE WORK

51 CONCLUSION

The HPSOBA approach was evaluated and tested da 80Ebus and IEEE 118-bus test systems to
solve the ORPD (with and without DG unit optimalhgtalled) as well as benchmark test functions.
Simulation results confirm the robustness of theppsed HPSOBA algorithm when tested on test
functions such as Griewank, Rastrigin and Schwéaf#ien tested on the IEEE 30-bus and IEEE
118-bus test systems to solve for the ORPD witlagoDiG unit and on modified IEEE 30-bus test
system for solving an ORPD with a DG unit optimatgtalled, it was observed that the proposed
HPSOBA algorithm yields optimal settings of the wohvariables of the test power systems and
reduced the active power transmission line lossgslass computational time. The results obtained
from the simulations demonstrate its effectivenagssl superiority over the Newton-Raphson

method and other evolutionary algorithms such a®,PBE, ABC, CLPSO, GSA and OGSA

mentioned in this research in solving the ORPD lemlof power systems.

In conclusion, the contributions of this researah be divided into three parts designated as Part |
benchmark function optimization; Part Il: solvirgetORPD problem for active power transmission
line loss minimization; and Part Ill: Modificatiaf the proposed hybrid approach and its test on an

IEEE 30-bus system for solving the ORPD problem.

Contributions of Part I: In solving benchmark fuoaos, the results show that HPSOBA
outperformed the other two algorithms of PSO andf8®both high and low dimensions in terms

of general performance. The proposed method waslftabe accurate, robust and efficient.

Contributions of Part Il: This can be divided intwo case studies namely solving the ORPD
without a DG unit installed and solving the ORPDdptimal installation of a DG unit. For solving
the ORPD problem without a DG unit (first case $udhe proposed HPSOBA method was
validated using IEEE 30- and 118- bus test systéhe. simulation results show that HPSOBA
method reduced the the active power transmissiom lbsses from 17.807 MW (base case) to
16.125 MW (9.45% loss reduction) for the IEEE 3&-Ilsystem and from 133.350 MW (base case)
to 108.151 MW (18.90% loss reduction) for the IEEBB-bus system.

For the second case study, optimal placement oGaubit for real power transmission line loss
minimization was successfully solved in this reskausing the hybrid algorithm (HPSOBA). The
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proposed algorithm was validated using a modiflelE 30-bus test system and compared for with
and without a DG unit installed on the load buddwe outcome of the simulation tests proved that
the hybrid approach (HPSOBA) further reduced tla pewer transmission line losses from 16.125
MW (without DG unit installed) to 15.738 MW (with® unit installed on bus 24), representing

11.62% loss reduction while maintaining the contrariables within their respective limits.

Contributions of Part Ill: The proposed HPSOBA wasdified to check if there will be further

improvement in its performance. The simulation lssof the MHPSOBA showed that the earlier
proposed HPSOBA algorithm developed by this resealso outperformed the results of this
modified hybrid approach (MHPSOBA). The simulatr@sults also show that the random nature of
the velocity and position vectors during iteraticontributes to a large extent to the good

performance of the HPSOBA algorithm.

Summarily, Table XV shows that the hybrid appro@8dRSOBA) outperformed the PSO, BA and
MHPSOBA methods for both IEEE 30- and 118- busdgstems.

TABLE XV. ALGORITHM PERFORMANCESUMMARY FORSOLVING ORPDPROBLEM

ALGORITHM |EEE 30-BUS |[EEE 118-BUS
POWER LOSS (MW) | POWER LOSS (MW)
BASE CASE 17.807 133.350
PSO 16.165 126.215
BA 16.133 109.772
HPSOBA 16.125 108.151
HPSOBA 15.738 -
(with DG at Bus 24)
MHPSOBA 16.149 -

In general, the contributions of this research,rafram optimally installing a DG unit using a

HPSOBA, can be summarized as follows: (1) minimarabf active power transmission losses, (2)
load bus voltage levels are maintained within tihespective limits, (3) reactive power generation
is kept within limits and (4) transformer tap segs are maintained within limits.

The simulation test results show that the propod®BOBA method not only improves the

solution’s quality but also reduces the computatidime and is suitable for solving an ORPD,
optimal placement of a DG unit for real power losgmimization as well as benchmark function

optimization problems.
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52 FUTURE WORK
Three areas are proposed for further research:

1) This research considered only one DG unit, furtlesearch needs to be done on adding
more DG units in solving an ORPD problem. The comaponal time must also be
considered.

2) Reduction in computational time of the proposed BBA& should be investigated.

3) Application of the proposed HPSOBA on real-world IR problems should also be

investigated.
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APPENDICES

APPENDIX A STANDARD IEEE 30- (case_ieee30) AND IEEE 118- (casel18) BUS
TEST SYSTEMSDATA
APPENDIX A.1 STANDARD IEEE 30-BUSTEST SYSTEM DATA

% CASE_IEEE30 Power flow data for IEEE 30-bus teste.
% Power Flow Data

% system MVA base

baseMVA = 100;

% bus data

bus i type Pd Qd Gs Bs area Vm Va baseKV Vidaxin
1 3 0 0 0 0 1 106 O 132 1.10 0.95
2 2 21.7 127 O 0 1 1.043 -548 132 1.10 0.95
3 1 2.4 1.2 0 0 1 1021 -796 132 1.05 0.95
4 1 7.6 1.6 0 0 1 1012 -9.62 132 1.05 0.95
5 2 942 19 0 0 1 101 -14.37 132 1.10 0.95
6 1 0 0 0 0 1 101 -11.34 132 1.05 0.95
7 1 228 109 O 0 1 1.002 -13.12 132 1.05 0.95
8 2 30 30 0 0 1 101 -121 132 1.10 0.95
9 1 0 0 0 0 1 1051 -1438 1 1.05 0.95
10 1 5.8 2 0 019 1 1.045 -15.97 33 1.05 0.95
11 2 0 0 0 0 1 1.082 -14.39 11 1.10 0.95
12 1 112 75 0 0 1 1.057 -15.24 33 1.05 0.95
13 2 0 0 0 0 1 1071 -15.24 11 1.10 0.95
14 1 6.2 1.6 0 0 1 1.042 -16.13 33 1.05 0.95
15 1 8.2 2.5 0 0 1 1.038 -16.22 33 1.05 0.95
16 1 3.5 1.8 0 0 1 1.045 -15.83 33 1.05 0.95
17 1 9 5.8 0 0 1 104 -16.14 33 1.05 0.95
18 1 3.2 0.9 0 0 1 1.028 -16.82 33 1.05 0.95
19 1 9.5 3.4 0 0 1 1.026 -17.00 33 1.05 0.95
20 1 2.2 0.7 0 0 1 103 -16.8 33 1.05 0.95
21 1 175 112 O 0 1 1.033 -16.42 33 1.05 0.95
22 1 0 0 0 0 1 1.033 -16.41 33 1.05 0.95
23 1 3.2 1.6 0 0 1 1.027 -16.61 33 1.05 0.95
24 1 8.7 6.7 0 043 1 1.021 -16.78 33 1.05 0.95
25 1 0 0 0 0 1 1017 -16.35 33 1.05 0.95
26 1 3.5 2.3 0 0 1 1.000 -16.77 33 1.05 0.95
27 1 0 0 0 0 1 1.023 -15.82 33 1.05 0.95
28 1 0 0 0 0 1 1.007 -11.97 132 1.05 0.95
29 1 2.4 0.9 0 0 1 1.003 -17.06 33 1.05 0.95
30 1 10.6 1.9 0 0 1 0992 -17.94 33 1.05 0.95

% generator data

bus Pg Qg Qmax Qmin Vg mBase status Pmax Pmin
1 260.2 -16.1 10 0 1.06100 1 360.2 O
2 40 50 50 -40 1.04500 1 140 0
5 0 37 40 -40 1.01100 1 100 0
8 0 37.3 40 -10 1.01100 1 100 0
11 0 16.2 24 -6 1.08200 1 100 0
13 0 10.6 24 -6 1.07100 1 100 0
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% branch data

Fbus tbus r
1 2 0.0192
1 3 0.0452
2 4 0.057
3 4 0.0132
2 5 0.0472
2 6 0.0581
4 6 0.0119
5 7 0.046
6 7 0.0267
6 8 0.012
6 9 0
6 10 0
9 11 0
9 10 0
4 12 0
12 13 0
12 14 0.1231
12 15 0.0662
12 16 0.0945
14 15 0.221
16 17 0.0524
15 18 0.1073
18 19 0.0639
19 20 0.034
10 20 0.0936
10 17 0.0324
10 21 0.0348
10 22 0.0727
21 22 0.0116
15 23 0.1
22 24 0.115
23 24 0.132
24 25 0.1885
25 26 0.2544
25 27 0.1093
28 27 0
27 29 0.2198
27 30 0.3202
29 30 0.2399
8 28 0.0636
6 28 0.0169

APPENDIX A.2

b
0.0575
0.1652
0.1737
0.0379
0.1983
0.1763
0.0414
0.116
0.082
0.042
0.208
0.556
0.208
0.11
0.256
0.14
0.2559
0.1304
0.1987
0.1997
0.1923
0.2185
0.1292
0.068
0.209
0.0845
0.0749
0.1499
0.0236
0.202

0.179
0.27
0.3292
0.38
0.2087
0.396
0.4153
0.6027
0.4533
0.2
0.0599

rateA ekt

0.0528
0.0408
0.0368
0.0084
0.0418
0.0374
0.009

0.0204
0.017

0.009

OC0OO0OCO00O00000000O00DO0O00 00090000 O0O

0.0428
0.013

%CASE118 Power flow data for IEEE 118-bus tesikc
% system MVA base
baseMVA = 100

% bus data

bus i
1

2
3
4
5

type

PNR RN

Pd
51
20
39
39
0

Qd
27

10
12
0

area Vm
1 0.955
1 0971
1 0.968
1 0.998
1 1.002

rateC
0
0

lcfeReoleRek=NoleNololoNoNoNoNoleNoNoNoRoNoleNoloNo llelolooloNoNoNoNoNo o Ro Ra)

Va
10.67
11.22
11.56
15.28
15.73

ratio angle

oNeojojeojoojoojojoolojojojolojojojojojoojojojojojojejojojojojlolojoNoNoNololole!

ek¥s
138
138
138
138
138

=jejejejojojojojejojojojojeojejejojojeojojojojejojoleojojojojejololoNoNal NN

STANDARD IEEE 118-BUSTEST SYSTEM DATA

status
1 0 1
1 0 1
1 0O 1
1 0 1
1 0 1
1 0 1
1 0 1
1 0 1
1 0 1
1 0 1
0.978 0 1
0.969 O 1
1 0 1
1 0 1
0932 0 1
1 0 1
1 0 1
1 0 1
1 0 1
1 0 1
1 0 1
1 0 1
1 0 1
1 0 1
1 0 1
1 0 1
1 0 1
1 0 1
1 0 1
1 0 1
1 0 1
1 0 1
1 0 1
1 0 1
1 0 1
0.968 O 1
1 0 1
1 0 1
1 0 1
1 0 1
1 0 1
Vmax Vmin
1.06 0.94;
1.06 0.94;
1.06 0.94;
1.06 0.94;
1.06 0.94;
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52
19
28

70
47
34
14
90
25
11
60
45
18
14
10

13

71
17
24

43
59
23
59
33
31

27
66
37
96
18
16
53
28
34
20
87
17
17
18
23
113
63
84
12
12
277
78
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0.99

0.989
1.015
1.043
1.05

0.985
0.99

0.968
0.984
0.97

0.984
0.995
0.973
0.963
0.958
0.959
0.97

0.992
1.05

1.015
0.968
0.962
0.963
0.968
0.967
0.964
0.972
0.986
0.981
0.98

0.992
0.962
0.97

0.97

0.967
0.985
0.978
0.985
0.987
1.005
1.017
1.021
1.025
1.001
0.967
0.957
0.946
0.955
0.952
0.954
0.971
0.959
0.985
0.993
0.995
0.998

13
12.56
20.77
28.02
35.61
12.72
12.2
11.35
11.5
11.23
11.91
13.74
11.53
11.05
11.93
13.52
16.08
21
20.89
27.93
29.71
15.35
13.62
12.63
18.79
12.75
14.8
10.63
11.3
10.87
10.87
11.77
16.91
8.41
7.35
6.92
8.53
11.28
13.82
15.67
18.49
20.73
19.93
20.94
18.9
16.28
15.32
14.35
15.26
14.97
15.16
16.36
15.51
19.37
23.15
24.04
23.43

138
138
345
345
345
138
138
138
138
138
138
138
138
138
138
138
138
138
138
138
345
138
138
138
345
138
138
138
138
138
138
138
345
138
138
138
138
138
138
138
138
138
138
138
138
138
138
138
138
138
138
138
138
138
138
138
138

1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06

0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
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63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
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130

54
20
11
24
21

48

163
10
65
12
30
42
38
15
34
42
37
22

23
38
31
43
50

39

68

22

184

20
33
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0.969
0.984
1.005
1.05
1.02
1.003
1.035
0.984
0.987
0.98
0.991
0.958
0.967
0.943
1.006
1.003
1.009
1.04
0.997
0.989
0.985
0.98
0.985
0.987
1.015
0.987
1.005
0.985
0.98
0.993
0.987
0.991
0.981
0.993
1.011
1.024
1.01
1.017
0.993
0.991
1.001
0.971
0.965
0.962
0.952
0.967
0.967
0.973
0.98
0.975
0.993
0.96
0.96
1.005
0.974
0.949

22.75
24.52
27.65
27.48
24.84
27.55
30
22.58
22.15
20.98
21.94
21.64
2291
21.77
26.72
26.42
26.72
28.96
28.1
27.24
28.42
30.95
32.51
31.14
31.4
35.64
39.69
33.29
33.31
33.8
30.79
28.64
27.67
27.51
27.88
27.4
27.04
28.03
29.61
32.3
24.44
21.69
20.57
20.32
17.53
19.38
18.93
18.09
19.74
14.99
13.74
14.46
14.46
27.12
10.67
21.92

345
345
345
138
138
345
138
138
138
138
138
138
138
138
138
138
138
138
345
138
138
138
138
138
161
138
138
138
138
138
138
138
138
138
138
138
138
138
138
138
138
138
138
138
138
138
138
138
138
138
138
138
138
138
138
138

1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06

0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
0.94;
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% generator data

bus Pg Qg Qmax Qmin Vg mBase status Pmaxin Pm
1 0 0 15 -5 0.955 1001 100 0
4 0 0 300 -300 0.998001 1 100 0
6 0 0 50 -13 0.99 001 1 100 0
8 0 0 300 -300 1.015001 1 100 0
10 450 0 200 -147 105001 1 550 0
12 85 0 120 -35 0.99 001 1 185 0
15 0 0 30 -10 0.97 001 1 100 0
18 0 0 50 -16 0.973001 1 100 0
19 0 0 24 -8 0.962001 1 100 0
24 0 0 300 -300  0.992001 1 100 0
25 220 0 140 -47 1.05001 1 320 0
26 314 0 1000 -1000 1.015010 1 414 0
27 0 0 300 -300 0.968 010 1 100 0
31 7 0 300 -300 0.967001 1 107 0
32 0 0 42 -14  0.963001 1 100 0
34 0 0 24 -8 0.984001 1 100 0
36 0 0 24 -8 0.98 001 1 100 0
40 O 0 300 -300 0.97 001 1 100 0
42 0 0 300 -300 0.983001 1 100 0
46 19 0 100 -100 1.005001 1 119 0
49 204 0 210 -85 1.025001 1 304 0
54 48 0 300 -300 0.95%001 1 148 0
55 0 0 23 -8 0.952001 1 100 0
56 0 0 15 -8 0.954001 1 100 0
59 155 0 180 -60 0.985001 1 255 0
61 160 0 300 -100  0.99%001 1 260 0
62 O 0 20 -20 0.998001 1 100 0
65 391 0 200 -67 1.005001 1 491 0
66 392 0 200 -67 1.05001 1 492 0
69 5164 O 300 -300 1.03%01 1 805.2 0
70 O 0 32 -10 0.984001 1 100 0
72 0 0 100 -100 0.98 001 1 100 0
73 0 0 100 -100 0.991001 1 100 0
74 0 0 9 -6 0.958001 1 100 0
76 0 0 23 -8 0.943001 1 100 0
77 O 0 70 -20 1.006001 1 100 0
80 477 0 280 -165 1.04001 1 577 0
85 O 0 23 -8 0.985001 1 100 0
87 4 0 1000 -100 1.01%001 1 104 0
89 607 0 300 -210 1.009001 1 707 0
90 O 0 300 -300 0.985001 1 100 0
91 O 0 100 -100 098 001 1 100 0
92 0 0 9 -3 0.99 001 1 100 0
9 0 0 100 -100 1.01 001 1 100 0
100 252 0 155 -50 1.017001 1 352 0
103 40 0 40 -15 1.01 001 1 140 0
104 0 0 23 -8 0.971001 1 100 0
105 0 0 23 -8 0.965001 1 100 0
107 0 0 200 -200 0.952001 1 100 0
110 O 0 23 -8 0.973001 1 100 0
111 36 0 1000 -100 098001 1 136 0
112 0 0 1000 -100 0.975001 1 100 0
113 0 0 200 -100  0.993001 1 100 0
116 O 0 1000 -1000 1.00%01 1 100 0



% branch data

fous thus r X b rateAateB rateC ratio angle status
1 2 0.0303 0.0999 0.0254 00 0 0 0 1
1 3 0.0129 0.0424 0.01082 00 0 0 0 1
4 5 0.00176 0.00798 0.0021 00 0 0 0 1
3 5 0.0241 0.108 0.0284 0 0 0 0 0 1
5 6 0.0119 0.054 0.01426 00 0 0 0 1
6 7 0.00459 0.0208 0.0055 0 0 0 0 0 1
8 9 0.00244 0.0305 1.162 00 0 0 0 1
8 5 0 0.0267 0 0 O 0 0.985 0 1
9 10 0.00258 0.0322 1.23 0 0 0 0 0 1
4 11 0.0209 0.0688 0.01748 00 0 0 0 1
5 11  0.0203 0.0682 0.01738 00 0 0 0 1
11 12 0.00595 0.0196 0.00502 00 0 0 0 1
2 12 0.0187 0.0616 0.01572 0 0 0 0 0 1
3 12 0.0484 0.16 0.0406 0 0 0 0 0 1
7 12 0.00862 0.034 0.00874 00 0 0 0 1
11 13 0.02225 0.0731 0.01876 00 0 0 0 1
12 14 0.0215 0.0707 0.01816 00 0 0 0 1
13 15 0.0744 0.2444 0.06268 00 0 0 0 1
14 15 0.0595 0.195 0.0502 00 0 0 0 1
12 16 0.0212 0.0834 0.0214 00 0 0 0 1
15 17 0.0132 0.0437 0.0444 00 0 0 0 1
16 17 0.0454 0.1801 0.0466 00 0 0 0 1
17 18 0.0123 0.0505 0.01298 00 0 0 0 1
18 19 0.01119 0.0493 0.01142 00 0 0 0 1
19 20 0.0252 0.117 0.0298 00 0 0 0 1
15 19 0.012 0.0394 0.0101 00 0 0 0 1
20 21 0.0183 0.0849 0.0216 00 0 0 0 1
21 22 0.0209 0.097 0.0246 00 0 0 0 1
22 23 0.0342 0.159 0.0404 00 0 0 0 1
23 24 0.0135 0.0492 0.0498 00 0 0 0 1
23 25 0.0156 0.08 0.0864 00 0 0 0 1
26 25 O 0.0382 0 0 O 0 096 O 1
25 27 0.0318 0.163 0.1764 0 0 0 0 0 1
27 28 0.01913 0.0855 0.0216 00 0 0 0 1
28 29 0.0237 0.0943 0.0238 00 0 0 0 1
30 17 O 0.0388 0 0 O 0 096 O 1
8 30 0.00431 0.0504 0.514 0 0 0 0 0 1
26 30 0.00799 0.086 0.908 00 0 0 0 1
17 31 0.0474 0.1563 0.0399 00 0 0 0 1
29 31 0.0108 0.0331 0.0083 00 0 0 0 1
23 32 0.0317 0.1153 0.1173 0 0 0 0 0 1
31 32 0.0298 0.0985 0.0251 00 0 0 0 1
27 32 0.0229 0.0755 0.01926 00 0 0 0 1
15 33 0.038 0.1244 0.03194 00 0 0 0 1
19 34 0.0752 0.247 0.0632 00 0 0 0 1
35 36 0.00224 0.0102 0.00268 00 0 0 0 1
35 37 0.011 0.0497 0.01318 00 0 0 0 1
33 37 0.0415 0.142 0.0366 00 0 0 0 1
34 36 0.00871 0.0268 0.00568 00 0 0 0 1
34 37 0.00256 0.0094 0.00984 00 0 0 0 1
38 37 O 0.0375 0 0 O 0 0935 0 1
37 39 0.0321 0.106 0.027 00 0 0 0 1
37 40 0.0593 0.168 0.042 00 0 0 0 1
30 38 0.00464 0.054 0.422 0 0 0 0 0 1
39 40 0.0184 0.0605 0.01552 00 0 0 0 1
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40
40
41
43
34
44
45
46
46
47
42
42
45
48
49
49
51
52
53
49
49
54
54
55
56
50
56
51
54
56
56
55
59
59
60
60
61
63
63
64
38
64
49
49
62
62
65
66
65
47
49
68
69
24
70
24
71

41
42
42
44
43
45
46
47
48
49
49
49
49
49
50
51
52
53
54
54
54
55
56
56
57
57
58
58
59
59
59
59
60
61
61
62
62
59
64
61
65
65
66
66
66
67
66
67
68
69
69
69
70
70
71
72
72

0.0145
0.0555
0.041
0.0608
0.0413
0.0224
0.04
0.038
0.0601
0.0191
0.0715
0.0715
0.0684
0.0179
0.0267
0.0486
0.0203
0.0405
0.0263
0.073
0.0869
0.0169
0.00275
0.00488
0.0343
0.0474
0.0343
0.0255
0.0503
0.0825
0.0803
0.04739
0.0317
0.0328
0.00264
0.0123
0.00824
0
0.00172
0
0.00901
0.00269
0.018
0.018
0.0482
0.0258
0
0.0224
0.00138
0.0844
0.0985
0
0.03
0.00221
0.00882
0.0488
0.0446

0.0487
0.183
0.135
0.2454
0.1681
0.0901
0.1356
0.127
0.189
0.0625
0.323
0.323
0.186
0.0505
0.0752
0.137
0.0588
0.1635
0.122
0.289
0.291
0.0707
0.00955
0.0151
0.0966
0.134
0.0966
0.0719
0.2293
0.251
0.239
0.2158
0.145
0.15
0.0135
0.0561
0.0376
0.0386
0.02
0.0268
0.0986
0.0302
0.0919
0.0919
0.218
0.117
0.037
0.1015
0.016
0.2778
0.324
0.037
0.127
0.4115
0.0355
0.196
0.18

0.01222
0.0466
0.0344
0.06068
0.04226
0.0224
0.0332
0.0316
0.0472
0.01604
0.086
0.086
0.0444
0.01258
0.01874
0.0342
0.01396
0.04058
0.031
0.0738
0.073
0.0202
0.00732
0.00374
0.0242
0.0332
0.0242
0.01788
0.0598
0.0569
0.0536
0.05646
0.0376
0.0388
0.01456
0.01468
0.0098
0

0.216

0

1.046
0.38
0.0248
0.0248
0.0578
0.031

0
0.02682
0.638
0.07092
0.0828
0

0.122
0.10198
0.00878
0.0488
0.04444
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71
70
70
69
74
76
69
75
77
78
77
77
79
68
81
77
82
83
83
84
85
86
85
85
88
89
89
90
89
89
91
92
92
93
94
80
82
94
80
80
80
92
94
95
96
98
99
100
92
101
100
100
103
103
100
104
105

73
74
75
75
75
77
77
77
78
79
80
80
80
81
80
82
83
84
85
85
86
87
88
89
89
90
90
91
92
92
92
93
94
94
95
96
96
96
97
08
99
100
100
96
97
100
100
101
102
102
103
104
104
105
106
105
106

0.00866
0.0401
0.0428
0.0405
0.0123
0.0444
0.0309
0.0601
0.00376
0.00546
0.017
0.0294
0.0156
0.00175
0
0.0298
0.0112
0.0625
0.043
0.0302
0.035
0.02828
0.02
0.0239
0.0139
0.0518
0.0238
0.0254
0.0099
0.0393
0.0387
0.0258
0.0481
0.0223
0.0132
0.0356
0.0162
0.0269
0.0183
0.0238
0.0454
0.0648
0.0178
0.0171
0.0173
0.0397
0.018
0.0277
0.0123
0.0246
0.016
0.0451
0.0466
0.0535
0.0605
0.00994
0.014

0.0454
0.1323
0.141
0.122
0.0406
0.148
0.101
0.1999
0.0124
0.0244
0.0485
0.105
0.0704
0.0202
0.037
0.0853
0.03665
0.132
0.148
0.0641
0.123
0.2074
0.102
0.173
0.0712
0.188
0.0997
0.0836
.0505
0.1581
0.1272
0.0848
0.158
0.0732
0.0434
0.182
0.053
0.0869
0.0934
0.108
0.206
0.295
0.058
0.0547
0.0885
0.179
0.0813
0.1262
0.0559
0.112
0.0525
0.204
0.1584
0.1625
0.229
0.0378
0.0547

0.01178
0.03368
0.036
0.124
0.01034
0.0368
0.1038
0.04978
0.01264
0.00648
0.0472
0.0228
0.0187
0.808

0
0.08174
0.03796
0.0258
0.0348
0.01234
0.0276
0.0445
0.0276
0.047
0.01934
0.0528
0.106
0.0214
0.0548
0.0414
0.03268
0.0218
0.0406
0.01876
0.0111
0.0494
0.0544
0.023
0.0254
0.0286
0.0546
0.0472
0.0604
0.01474
0.024
0.0476
0.0216
0.0328
0.01464
0.0294
0.0536
0.0541
0.0407
0.0408
0.062
0.00986
0.01434
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105 107 0.053 0.183 0.0472 0 O 0 0 0 1
105 108 0.0261 0.0703 0.01844 0 0 0 0 0 1
106 107 0.053 0.183 0.0472 0 0 0 0 0 1
108 109 0.0105 0.0288 0.0076 0 0 0 0 0 1
103 110 0.03906 0.1813 0.0461 0 0 0 0 0 1
109 110 0.0278 0.0762 0.0202 00 0 0 0 1
110 111 0.022 0.0755 0.02 0 0 0 0 0 1
110 112 0.0247 0.064 0.062 0 O 0 0 0 1
17 113 0.00913 0.0301 0.00768 0 0 0 0 0 1
32 113 0.0615 0.203 0.0518 0 O 0 0 0 1
32 114 0.0135 0.0612 0.01628 0 0 0 0 0 1
27 115 0.0164 0.0741 0.01972 0 0 0 0 0 1
114 115 0.0023 0.0104 0.00276 00 0 0 0 1
68 116 0.00034 0.00405 0.164 0 0 0 0 0 1
12 117 0.0329 0.14 0.0358 0 0 0 0 0 1
75 118 0.0145 0.0481 0.01198 0 0 0 0 0 1
76 118 0.0164 0.0544 0.01356 0 0 0 0 0 1
APPENDIX B MATALAB CODES FOR PSO, BA AND HPSOBA ALGORITHMS

(IEEE 30-BUS TEST SYSTEM)

APPENDIX B.1 MATALAB CODES FOR PSO ALGORITHM FOR ORPD

(without DG Unit)

%% PSO algorithm to solve Optimal Reactive Power Di spatch
% Authored by AGBUGBA E.E.

% Student No: 57441022

% Department of Electrical and Mining Engineering
% College of Science, Engineering and Technology
% University Of South Africa

%% Initialization Parameters

clear all

clc

tic

iter=0;

iteration=200;

nvars = 12; %Number of variables

N = 50; %Number of Particles or Swarm size
%Acceleration constants

cl =2.05;

c2 =2.05;

%lInertia Weight

w_max=0.9;

w_min=0.4;

w_temp(1)=w_max;

%Load IEEE 30-bus data

[baseMVA, bus, gen, branch]=loadcase(case_ieee30);
%% Initialization of Swarm & velocity

Swarm=[unifrnd(0.95,1.10,N,6),unifrnd(0.90,1.10,N,4 ),unifrnd(0.00,0.20,N,2)];
% Initialize velocity
Velocity =[unifrnd(-0.003,0.003,N,6),unifrnd(-0.003 ,0.003,N,4), unifrnd(-
0.003,0.003,N,2)];
for i=1:N
vl=Swarm(i,1); %v1
bus(1,8)=v1; %Vm, column 8 is voltage magnitude (p.u.)
gen(1,6)=v1,; %V(g, column 6 is voltage magnitude setpoint (p.u.)
v2=Swarm(i,2); %v2
bus(2,8)=v2;
gen(2,6)=v2;
v5=Swarm(i,3); %V5
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bus(5,8)=Vv5;

gen(3,6)=v5;

v8=Swarm(i,4); %v8
bus(8,8)=v8;

gen(4,6)=v8;

v11l=Swarm(i,5); %v1l

bus(11,8)=v11;

gen(5,6)=v11,;

v13=Swarm(i,6); %v13
bus(13,8)=v13;

gen(6,6)=v13;

t1=Swarm(i,7); %tpl 6-9, column 9 is tap position

branch(11,9)=t1;

t2=Swarm(i,8); %tp2 6-10

branch(12,9)=t2;

t3=Swarm(i,9); %tp3 4-12

branch(15,9)=t3;

t4=Swarm(i,10); %tp4 27-28

branch(36,9)=t4;

gcl0=Swarm(i,11); %Shunt capacitor 10, column 6 is BS

bus(10,6)=qc10;

gc24=Swarm(i,12); %Shunt capacitor 10, column 6 is BS

bus(24,6)=qc24;

eval([ 'savecase ("case_ieee30_test' , hum2str(i), “mat", baseMVA, bus,
gen, branch)' D;

eval([ initial_results_' ,num2str(i), '=runpf("case_ieee30_test' , hum2str(i)
".mat")’ D;

eval([ ‘initial_losses_' ,num2str(i), '‘=sum(real(get_losses(initial_results_'

num2str(i), M D
%Penalty for bus voltage violation
bus_inf=bus(;,8);
for bus_num=1:30
if bus_inf(bus_num)>1.10
penalty VI(bus_num)=10000*(bus_inf(bus_ num)-1.10)"2;
elseif  bus_inf(bus_num)<0.95
penalty VI(bus_num)=10000*(bus_inf(bus_ num)-0.95)"2;
else
penalty VI(bus_num)=0;
end
end
penalty VI violation=sum(penalty_VI);
%Penalty for shunt violation
buus_inf=bus(:,6);
for bus_num=1:30
if buus_inf(bus_num)>0.20
penalty Qc(bus_num)=10000*(buus_inf(bus _num)-0.20)"2;
elseif  buus_inf(bus_num)<0.00
penalty Qc(bus_num)=10000*(buus_inf(bus _hum)-0.00)"2;
else
penalty _Qc(bus_num)=0;
end
end
penalty Qc_violation=sum(penalty_Qc);
%Penalty for tap position violation
brch_inf=[branch(11,9); branch(12,9); branch(15 ,9); branch(36,9)];
for brch_num=1:4
if brch_inf(brch_num)>1.10

penalty Tk(brch_num)=10000*(brch_inf(br ch_num)-1.10)"2;
elseif  brch_inf(brch_num)<0.90

penalty Tk(brch_num)=10000*(brch_inf(br ch_num)-0.90)"2;
else

penalty Tk(brch_num)=0;
end



end
penalty Tk_violation=sum(penalty TK);

%objective function=sum of active power losses of t he transmission lines
losses(i)=eval([ initial_losses_' ,num2str(i)]); %sum of real power losses of
all branches
Obj_fun_initial(i)=losses(i)+penalty_VI_violation+p enalty_Qc_violation+penalty T
k_violation; %augumented objective function with penalty functio n
end
%% Initialize best position (Pbest) and global best postion (Gbest) matrix

Pbest=Swarm;
Val_Pbest=0bj_fun_initial;
%finding best particle in initial population
[Val_Gbest,m]=min(Val_Pbest);
Gbest=Swarm(m,:); %used to keep track of the best particle ever
Gbest_calc=repmat(Swarm(m,:),N,1);
%% PSO LOOP
figure(  'NumberTitle' , 'off , 'Name' , 'PSO Algorithm Based Optimal Reactive Power
Dispatch' );
title( 'ACTIVE POWER LOSS MINIMIZATION" );
ylabel( 'Total Active Power Loss (MW)' );
xlabel( 'lteration Number' );
grid on;
hold on
for iter=1:iteration

% Update the value of the inertia weight w

if iter <= iteration

w_temp(iter)=w_max + (((w_min-w_max)/iterati on)*iter); %Change inertia

weight

end

%generate random numbers

R1=rand(N,nvars);
R2=rand(N,nvars);

% constriction factor
%2.05+2.05=4.1,
%?2/abs(2-4.1-sqrt(4.1*4.1-4*4.1))=0.729
%calculate velocity
Velocity=(w_temp(iter)*Velocity+c1*R1.*(Pbest-S warm)+c2*R2.*(Gbest_calc-
Swarm));
for v_iter=1:nvars
if v_iter==nvars
Outstep=Velocity(:,v_iter)>0.003;
Velocity(find(Outstep),v_iter)=0.003;
Outstep=Velocity(:,v_iter)<-0.003;
Velocity(find(Outstep),v_iter)=-0.003;
else
Outstep=Velocity(;,v_iter)>0.01;
Velocity(find(Outstep),v_iter)=0.01;
Outstep=Velocity(:,v_iter)<-0.01;
Velocity(find(Outstep),v_iter)=-0.01,;
end
end
%update positions of particles
Swarm=Swarm+0.729*Velocity; %evaluate a new swarm
for k=1:N
v1l=Swarm(k,1); %v1
bus(1,8)=v1,; %Vm, column 8 is voltage magnitude (p.u.)
gen(1,6)=v1; %Vg, column 6 is voltage magnitude setpoint (p.u.)
v2=Swarm(k,2); %v2
bus(2,8)=v2;
gen(2,6)=v2;
v5=Swarm(k,3); %v5
bus(5,8)=v5;
gen(3,6)=v5;
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gen,

v8=Swarm(k,4); %v8
bus(8,8)=v8;

gen(4,6)=v8;

v1ll=Swarm(k,5); %v1l
bus(11,8)=v11;

gen(5,6)=v11;

v13=Swarm(k,6); %v13
bus(13,8)=v13;

gen(6,6)=v13;

t1=Swarm(k,7); %tpl 6-9, column 9 is tap position

branch(11,9)=t1;

t2=Swarm(k,8); %tp2 6-10
branch(12,9)=t2;

t3=Swarm(k,9); %tp3 4-12
branch(15,9)=t3;

t4=Swarm(k,10); %tp4 27-28
branch(36,9)=t4;

gcl0=Swarm(k,11); %Shunt capacitor 10, column 6 is BS

bus(10,6)=qc10;

gc24=Swarm(k,12); %Shunt capacitor 10, column 6 is BS

bus(24,6)=qc24;

eval([ 'savecase ("case_ieee30 _test'
branch)' D;

eval([ 'final_results_' ,num2str(k),

num2str(k)  '.mat")’ D;

, hum2str(k), "mat", baseMVA, bus,

‘zrunpf("case_ieee30 _test'

eval([ ‘'final losses ' ,num2str(k), '=sum(real(get_losses(final_results_' ,num2str(k

N s

%Penalty for bus voltage violation
bus_inf=bus(:,8);
for bus_num=1:30
if bus_inf(bus_num)>1.10
penalty VI(bus_num)=10000*(bus_inf(
elseif  bus_inf(bus_num)<0.95
penalty VI(bus_num)=10000*(bus_inf(
else
penalty VI(bus_num)=0;
end
end
penalty VI_violation=sum(penalty_VI);
%Penalty for shunt violation
buus_inf=bus(:,6);
for bus_num=1:30
if buus_inf(bus_num)>0.20
penalty Qc(bus_num)=10000*(buus_inf
elseif  buus_inf(bus_num)<0.00
penalty Qc(bus_num)=10000*(buus_inf
else
penalty Qc(bus_num)=0;
end
end
penalty Qc_violation=sum(penalty_Qc);
%Penalty for tap position violation
brch_inf=[branch(11,9); branch(12,9); branc
for brch_num=1:4
if brch_inf(brch_num)>1.10
penalty Tk(brch_num)=10000*(brch_in
elseif  brch_inf(brch_num)<0.90
penalty Tk(brch_num)=10000*(brch_in
else
penalty Tk(brch_num)=0;
end
end

bus_num)-1.10)"2;

bus_num)-0.95)"2;

(bus_num)-0.20)"2;

(bus_num)-0.00)"2;

h(15,9); branch(36,9)];

f(brch_num)-1.10)"2;

f(brch_num)-0.90)"2;
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penalty Tk violation=sum(penalty_TKk);

%o0bjective function=sum of active power losses of t he transmission lines

losses_temp(k)=eval([ final_losses_' ;num2str(k)]); %sum of real power

losses of all branches

Obj_fun_temp(k)=losses_temp(k)+penalty VI violation +penalty_Qc_violation+penalty

_Tk_violation; %augumented objective function with penalty functio n
% Final Evaluation
Val_Pbest_temp(k)=0bj_fun_temp(k);
end
if Val_Pbest temp<Val_Pbest
losses=losses_temp;
Val_Pbest=Val_Pbest_temp;
Pbest=Swarm;
end

[Val_Gbest_temp,n]=min(Val_Pbest);
if Val _Gbest temp<Val_Gbest
Val_Gbest=Val_Gbest_temp;
Gbest=Swarm(n,:);
Gbest_calc=repmat(Swarm(n,:),N,1);
end

Val_Gbest_rec(iter)=Val_Gbest;
plot(Val_Gbest_rec);
drawnow;
toc
end

APPENDIX B.2 MATALAB CODES FOR BA ALGORITHM FOR
(without DG Unit)

%% Bat algorithm to solve Optimal Reactive Power Di spatch
% Authored by AGBUGBA E.E.

% Student No: 57441022

% Department of Electrical and Mining Engineering

% College of Science, Engineering and Technology

% University Of South Africa

%% Initialization Parameters

clear all

clc

tic

% Default parameters

N=20; % Number of bats (population), typically 10 to 25
N_gen=200; % No of generation (iteration))
Qmin=0; % Frequency minimum
Qmax=2; % Frequency maximum
rOmax=1,

rOmin=0;

Amax=2;

Amin=1;

%lnertia Weight

w_max=0.9;

w_min=0.4;

w_temp=w_max;

w_step=(w_max-w_min)/N_gen;

% Iteration parameters

N_iter=0; % Total number of function evaluations
% Dimension of the search variables

d=12;

% Constants

alpha=0.99; % Loudness constant

ORPD
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gamma=0.9; % Pulse rate constant

%Load IEEE 30-bus data

[baseMVA, bus, gen, branch]=loadcase(case_ieee30);
%% Initialization of Population/ Solutions, Frequen
% Initialize velocity

Velocity =[unifrnd(-0.003,0.003,N,6),unifrnd(-0.003
0.003,0.003,N,2)];

% Initialize frequency

Freq=zeros(N,1); % Frequency;

% Initialize solutions/locations
Sol=[unifrnd(0.95,1.10,N,6),unifrnd(0.90,1.10,N,4),
r=(rand(N,1).*(rOmax-rOmin))+rOmin;
A=(rand(N,1).*(Amax-Amin))+Amin;

cy & velocity

,0.003,N,4), unifrnd(-

unifrnd(0,0.20,N,2)];

for i=1:N
v1=Sol(i,1); %v1
bus(1,8)=v1; %Vm, column 8 is voltage magnitude (p.u.)
gen(1,6)=v1,; %V(g, column 6 is voltage magnitude setpoint (p.u.)
v2=So0l(i,2); %v2
bus(2,8)=v2;
gen(2,6)=v2;
v5=So0l(i,3); %Vv5
bus(5,8)=v5;
gen(3,6)=v5;
v8=Sol(i,4); %v8
bus(8,8)=v8;
gen(4,6)=v8;
v11=Sol(i,5); %v1l

bus(11,8)=v11;

gen(5,6)=v11;

v13=Sol(i,6); %v13
bus(13,8)=v13;

gen(6,6)=v13;

.‘mat", baseMVA, bus,

t1=Sol(i,7); %tpl 6-9, column 9 is tap position

branch(11,9)=t1;

t2=Sol(i,8); %tp2 6-10

branch(12,9)=t2;

t3=Sol(i,9); %tp3 4-12

branch(15,9)=t3;

t4=Sol(i,10); %tp4 27-28

branch(36,9)=t4;

gcl0=Sol(i,11); %Shunt capacitor 10, column 6 is BS

bus(10,6)=qc10;

gc24=Sol(i,12); %Shunt capacitor 10, column 6 is BS

bus(24,6)=qc24;

eval([ 'savecase ("2case_ieee30_test' , hum2str(i),
gen, branch)’ D;

eval([ results ' ,num2str(i), '=runpf("2case_ieee30_test' , hum2str(i)
“mat")’ D;
eval([ ‘'losses ' ,num2str(i), '‘=sum(real(get_losses(results '

%Penalty for bus voltage violation
bus_inf=bus(;,8);
for bus_num=1:30
if bus_inf(bus_num)>1.10
penalty bus(bus_num)=10000*((bus_inf(bu
elseif  bus_inf(bus_num)<0.95
penalty bus(bus_num)=10000*((bus_inf(bu
else
penalty bus(bus_num)=0;
end
end
penalty bus_violation=sum(penalty_bus);
%Penalty for shunt violation

,num2str(i), )

S_num)-1.10)"2);

S_num)-0.95)"2);

)&
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buus_inf=bus(:,6);
for bus_num=1:30
if buus_inf(bus_num)>0.20
penalty sht(bus_num)=10000*(buus_inf(bu S_num)-0.20)"2;
elseif  buus_inf(bus_num)<0.00
penalty sht(bus_num)=10000*(buus_inf(bu S_num)-0.00)"2;
else
penalty sht(bus_num)=0;
end
end
penalty_sht_violation=sum(penalty_sht);
%Penalty for tap position violation
brch_inf=[branch(11,9); branch(12,9); branch(15 ,9); branch(36,9)];
for brch_num=1:4
if brch_inf(brch_num)>1.10

penalty brch(brch_num)=10000*(brch_inf( brch_num)-1.10)"2;
elseif  brch_inf(brch_num)<0.90
penalty brch(brch_num)=10000*(brch_inf( brch_num)-0.90)"2;
else
penalty brch(brch_num)=0;
end
end
penalty brch_violation=sum(penalty_brch);
% objective function=sum of active power losses of the transmission lines
losses(i)=eval([ losses ' ,num2str(i)]);
Obj_fun_initial(i)=losses(i)+penalty_bus_violation+ penalty sht_violation+penalty
brch_violation; % augumented objective function with penalty functi on

end
% Evaluate solution
Fithess=0bj_fun_initial,
pbest=Sol;
%% finding the current best solution in the initial population (first
evaluation)
[fmin,m]=min(Fitness);
best=Sol(m,:); % used to keep track of the best current solution e ver
%% Bat Algorithm LOOP
figure(  'NumberTitle' , 'off , 'Name' , 'Bat Algorithm Based Optimal Reactive Power
Dispatch' );
title( 'ACTIVE POWER LOSS MINIMIZATION' );
ylabel( 'Total Active Power Loss (MW)' );
xlabel( 'lteration Number' );
grid on;
hold on

for N_iter=1:N_gen
% Loop over all bats/solutions
meanA=mean(A);
if (N_iter <= N_gen) & (N_iter > 1)

w_temp=w_temp-w_step; %Change inertia weight
end
for i=1:N
Freq(i)=Qmin+(Qmax-Qmin)*rand;
Velocity(i,:)=w_temp*Velocity(i,:)+(Sol(i,:)-be st)*Freq(i);

S(i,:)=Sol(i,:)+Velocity(i,:);
% Local Search
if rand>r(i)
randnValueA=randn(1,d).*(abs(meanA));
S(i,:)=best+(0.001*randnValueA); % The factor 0.001 limits the
step sizes of random walks
end
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v1=S(i,1);
bus(1,8)=v1;
gen(1,6)=v1,;
v2=5(i,2);
bus(2,8)=v2;
gen(2,6)=v2;
v5=5(i,3);
bus(5,8)=v5;
gen(3,6)=v5;
v8=S(i,4);
bus(8,8)=v8;
gen(4,6)=v8;
v11=5(i,5);
bus(11,8)=v11;
gen(5,6)=v11;
v13=5(i,6);
bus(13,8)=v13;
gen(6,6)=v13;

eval(| 'losses '

%v1

%Vm, column 8 is voltage magnitude (p.u.)

%V(g, column 6 is voltage magnitude setpoint (p.u.)
%v2

%V5

%vVv8

%v11

%v13

t1=S(i,7); %tpl 6-9, column 9 is tap position

branch(11,9)=t1;

t2=5(i,8); %tp2 6-10

branch(12,9)=t2;

t3=5(i,9); %tp3 4-12

branch(15,9)=t3;

t4=S(i,10); %tp4 27-28

branch(36,9)=t4;

gcl10=S(i,11); %Shunt capacitor 10, column 6 is BS

bus(10,6)=qc10;

gc24=5(i,12); %Shunt capacitor 10, column 6 is BS

bus(24,6)=qc24;

eval([ 'savecase ("2case_ieee30_test' , hum2str(i), "mat", baseMVA, bus,
gen, branch)’ D;

eval([ ‘results_' ,num2str(i), ‘=runpf("2case_ieee30_test' , hum2str(i)
“mat")’ D;

,num2str(i), '=sum(real(get_losses(results ' ,num2str(i), )’

%Penalty for bus voltage violation

bus_inf=bus(:,8);

for bus_num=1:30
if bus_inf(bus_num)>1.10

penalty bus(bus_num)=10000*((bus_inf(bu S_num)-1.10)"2);
elseif  bus_inf(bus_num)<0.95

penalty bus(bus_num)=10000*((bus_inf(bu S_num)-0.95)"2);
else

penalty bus(bus_num)=0;

end
end

penalty bus_violation=sum(penalty_bus);
%Penalty for shunt violation
buus_inf=bus(:,6);
for bus_num=1:30

if buus_inf(bus_num)>0.20

penalty sht(bus_num)=10000*(buus_inf(bu S_num)-0.20)"2;
elseif  buus_inf(bus_num)<0.00

penalty sht(bus_num)=10000*(buus_inf(bu S_num)-0.00)"2;
else

penalty sht(bus_num)=0;

end
end

penalty_sht_violation=sum(penalty_sht);

D
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%Penalty for tap position violation
brch_inf=[branch(11,9); branch(12,9); branch(15 ,9); branch(36,9)];
for brch_num=1:4
if brch_inf(brch_num)>1.10
penalty _brch(brch_num)=10000*(brch_inf( brch_num)-1.10)"2;
elseif  brch_inf(brch_num)<0.90
penalty brch(brch_num)=10000*(brch_inf( brch_num)-0.90)"2;
else
penalty brch(brch_num)=0;
end
end
penalty brch_violation=sum(penalty_brch);
%sum of real power losses of all branches
losses_final(i)=eval([ losses ' ,num2str(i)]);

Obj_fun_final(i)=losses_final(i)+penalty _bus_violat ion+penalty_sht_violation+pen
alty _brch_violation;

% Evaluate new solutions
Fitness_final(i)=0bj_fun_final(i);
%% If the solution improves or not too loud
if (Fitness_final(i)<=Fitness(i)) & (rand<A(i))
losses(i)=losses_final(i);

Sol(i,))=S(i,:); % replace initial solution with improved
solution

Fitness(i)=Fitness_final(i); % replace initial FITNESS with improved
fitness

A(i)=A(i)*alpha; % update loudness of bats

r(i)=r(i)*(1-exp(-gamma*N_iter)); % update the pitch of bats

end

[fnew,n]=min(Fitness_final);
% Update the current best
if fnew<=fmin
best=S(n,:);
fmin=fnew;
end

end

fmin_rec(N_iter)=fmin;
plot(fmin_rec);
drawnow;
toc

end

APPENDIX B.3 MATALAB CODES FOR HPSOBA ALGORITHM FOR ORPD
(without DG Unit)

%% Hybrid PSO-BA algorithm to solve Optimal Reactiv e Power Dispatch
% Authored by AGBUGBA E.E.

% Student No: 57441022

% Department of Electrical and Mining Engineering

% College of Science, Engineering and Technology

% University Of South Africa

%% Initialization Parameters

clear all

clc

tic

% Dimension of the search variables
d=12;

% Bat Algorithm Default parameters
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N=20; % Number of bats (population), typically 10 to 25

N_gen=200; % No of generation (iteration)
Q_max=2; % Frequency maximum
Q_min=0; % Frequency minimum
r_max=1; % Maximum pulse rate
r_min=0; % Minimum pulse rate
A_max=2; % Maximum loudness

A _min=1, % Minimum loudness

% Constants

alpha=0.99; % Loudness constant

gamma=0.9; % Pulse rate constant
% PSO Algorithm Default parameters
% Inertia Weight

w_max=0.9;

w_min=0.4;

w_temp(1)=w_max;

% Acceleration constants

c1=2.05;

€2=2.05;

% lteration parameters
N_iter=0;

%Load IEEE 30-bus data
[baseMVA, bus, gen, branch]=loadcase(case_ieee30);

%% Initialization of Population/ Solutions, Frequen cy & velocity
% Initialize velocity
Velocity =[unifrnd(-0.003,0.003,N,6),unifrnd(-0.003 ,0.003,N,4), unifrnd(-

0.003,0.003,N,2)];

% Initialize frequency

Freq=zeros(N,1); % Frequency;

% Initialize solutions/locations

Sol=[unifrnd(0.95,1.10,N,6),unifrnd(0.90,1.10,N,4), unifrnd(0,0.20,N,2)];
% Initialize pulse rate

r=(rand(N,1).*(r_max-r_min))+r_min;

% Initialize loudness

A=(rand(N,1).*(A_max-A_min))+A_min;

for i=1:N
v1=Sol(i,1); %v1
bus(1,8)=v1; %Vm, column 8 is voltage magnitude (p.u.)
gen(1,6)=v1; %Vg, column 6 is voltage magnitude setpoint (p.u.)
v2=So0l(i,2); %v2
bus(2,8)=v2;
gen(2,6)=v2;
v5=So0l(i,3); %vV5
bus(5,8)=v5;
gen(3,6)=v5;
v8=Sol(i,4); %v8
bus(8,8)=v8;
gen(4,6)=v8;
v11=Sol(i,5); %v1l

bus(11,8)=v11;

gen(5,6)=v11;

v13=Sol(i,6); %v13
bus(13,8)=v13;

gen(6,6)=v13;

t1=Sol(i,7); %tpl 6-9, column 9 is tap position
branch(11,9)=t1;
t2=Sol(i,8); %tp2 6-10

branch(12,9)=t2;
t3=Sol(i,9); %tp3 4-12



branch(15,9)=t3;

t4=Sol(i,10); %tp4 27-28

branch(36,9)=t4;

gcl0=Sol(i,11); %Shunt capacitor 10, column 6 is BS

bus(10,6)=qc10;

gc24=Sol(i,12); %Shunt capacitor 10, column 6 is BS

bus(24,6)=qc24;

eval([ 'savecase ("2case_ieee30 _test' , hum2str(i), “mat", baseMVA, bus,
gen, branch)' D;

eval([ ‘results_’ ,num2str(i), ‘=runpf("2case_ieee30_test' , hum2str(i)
.mat")’ D;
eval([ ‘'losses ' ,num2str(i), '‘=sum(real(get_losses(results_' ,num2str(i), )

%Penalty for bus voltage violation
bus_inf=bus(:,8);
for bus_num=1:30
if bus_inf(bus_num)>1.10
penalty bus(bus_num)=10000*(bus_inf(bus _num)-1.10)"2;
elseif  bus_inf(bus_num)<0.95
penalty bus(bus_num)=10000*(bus_inf(bus _hum)-0.95)"2;
else
penalty bus(bus_num)=0;
end
end
penalty bus_violation=sum(penalty_bus);
%Penalty for reactive shunt violation
buus_inf=bus(:,6);
for bus_num=1:30
if buus_inf(bus_num)>0.20
penalty sht(bus_num)=10000*(buus_inf(bu S_num)-0.20)"2;
elseif  buus_inf(bus_num)<0.00
penalty sht(bus_num)=10000*(buus_inf(bu S_num)-0.00)"2;
else
penalty sht(bus_num)=0;
end
end
penalty_sht_violation=sum(penalty_sht);
%Penalty for tap position violation
brch_inf=[branch(11,9); branch(12,9); branch(15 ,9); branch(36,9)];
for brch_num=1:4
if brch_inf(brch_num)>1.10

penalty _brch(brch_num)=10000*(brch_inf( brch_num)-1.10)"2;
elseif  brch_inf(brch_num)<0.90
penalty brch(brch_num)=10000*(brch_inf( brch_num)-0.90)"2;
else
penalty brch(brch_num)=0;
end
end
penalty _brch_violation=sum(penalty_brch);
% objective function=sum of active power losses of the transmission lines
losses(i)=eval([ losses ' ,numa2str(i)]);
Obj_fun_initial(i)=losses(i)+penalty_bus_violation+ penalty sht violation+penalty
brch_violation; % augumented objective function with penalty functi on

end
% Evaluate solution
Fitness=0bj_fun_initial;
pbest=Sol;
%% finding the current best solution in the initial population (first
evaluation)
[fmin,m]=min(Fitness);



best=Sol(m,:); % used to keep track of the best current solution e ver
%% Hybrid PSO-BA Algorithm LOOP

figure(  'NumberTitle' , ‘'off . 'Name' , ‘'Hybrid PSO-BA Algorithm Based Optimal
Reactive Power Dispatch' );

title( 'ACTIVE POWER LOSS MINIMIZATION' );

ylabel( 'Total Active Power Loss (MW)' );

xlabel( 'lteration Number' );

grid on;

hold on

for N_iter=1:N_gen
% Loop over all bats/particles
meanA=mean(A);
% Update the value of the inertia weight w
if N_iter <= N_gen
w_temp(N_iter)=w_max + (((w_min-w_max)/N_gen
weight
end

)*N_iter); %Change inertia

for k=1:N
Freq(k)=Q_min+(Q_max-Q_min)*rand;
Velocity(k,:)=w_temp(N_iter).*Velocity(k,:)+(c1
Sol(k,:))+c2*rand*(best-Sol(k,:)))*Freq(k);
for v_iter=1:d
if v_iter==
Outstep=Velocity(:,v_iter)>0.003;
Velocity(find(Outstep),v_iter)=0.003;
Outstep=Velocity(:,v_iter)<-0.003;
Velocity(find(Outstep),v_iter)=-0.003;
else
Outstep=Velocity(:,v_iter)>0.01;
Velocity(find(Outstep),v_iter)=0.01;
Outstep=Velocity(:,v_iter)<-0.01;
Velocity(find(Outstep),v_iter)=-0.01,;
end

*rand*(pbest(k,:)-

end
Sol(k,:)=best+Velocity(k,:);
% Local Search
if rand>r(k)
randnValueA=randn(1,d).*(abs(meanA));
Sol(k,:)=best+(0.001*randnValueA);
step sizes of random walks

% The factor 0.001 limits the

end
v1=Sol(k,1); %v1
bus(1,8)=v1; %Vm, column 8 is voltage magnitude (p.u.)
gen(1,6)=v1,; %Vg, column 6 is voltage magnitude setpoint (p.u.)
v2=Sol(k,2); %v2
bus(2,8)=v2;
gen(2,6)=v2;
v5=Sol(k,3); %vVv5
bus(5,8)=Vv5;
gen(3,6)=v5;
v8=Sol(k,4); %v8
bus(8,8)=v8;
gen(4,6)=v8;
v11=Sol(k,5); %v1l
bus(11,8)=v11;
gen(5,6)=v11;
v13=Sol(k,6); %v13

bus(13,8)=v13;
gen(6,6)=v13;
t1=Sol(k,7);

%tpl 6-9, column 9 is tap position
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branch(11,9)=t1;

t2=Sol(k,8); %tp2 6-10

branch(12,9)=t2;

t3=Sol(k,9); %tp3 4-12

branch(15,9)=t3;

t4=Sol(k,10); %tp4 27-28

branch(36,9)=t4;

gcl0=Sol(k,11); %Shunt capacitor 10, column 6 is BS

bus(10,6)=qc10;

gc24=Sol(k,12); %Shunt capacitor 10, column 6 is BS

bus(24,6)=qc24;

eval([ 'savecase ("2case_ieee30_test' , hum2str(k), "mat", baseMVA, bus,
gen, branch)' D;

eval([ ‘results_’ ,num2str(k), ‘=runpf("2case_ieee30_test' , hum2str(k)
“mat")' D;
eval([ ‘'losses '  ,num2str(k), '=sum(real(get_losses(results_' ,num2str(k), )’

%Penalty for bus voltage violation
bus_inf=bus(;,8);
for bus_num=1:30
if bus_inf(bus_num)>1.10
penalty bus(bus_num)=10000*(bus_inf(bus _hum)-1.10)"2;
elseif  bus_inf(bus_num)<0.95
penalty bus(bus_num)=10000*(bus_inf(bus _num)-0.95)"2;
else
penalty bus(bus_num)=0;
end
end
penalty bus_violation=sum(penalty_bus);
%Penalty for reactive shunt violation
buus_inf=bus(:,6);
for bus_num=1:30
if buus_inf(bus_num)>0.20
penalty sht(bus_num)=10000*(buus_inf(bu S_num)-0.20)"2;
elseif  buus_inf(bus_num)<0.00
penalty sht(bus_num)=10000*(buus_inf(bu S_num)-0.00)"2;
else
penalty sht(bus_num)=0;
end
end
penalty_sht_violation=sum(penalty_sht);
%Penalty for tap position violation
brch_inf=[branch(11,9); branch(12,9); branch(15 ,9); branch(36,9)];
for brch_num=1:4
if brch_inf(brch_num)>1.10
penalty brch(brch_num)=10000*(brch_inf( brch_num)-1.10)"2;
elseif  brch_inf(brch_num)<0.90
penalty _brch(brch_num)=10000*(brch_inf( brch_num)-0.90)"2;
else
penalty brch(brch_num)=0;
end
end
penalty _brch_violation=sum(penalty_brch);
%sum of real power losses of all branches
losses_final(k)=eval([ losses ' ,num2str(K)]);

Obj_fun_final(k)=losses_final(k)+penalty bus_violat ion+penalty_sht_violation+pen
alty _brch_violation;

% Evaluate new solutions
Fitness_final(k)=0bj_fun_final(k);



%% If the solution improves or not too loud
if Fitness_final(k)<=Fitness(k) & (rand<A(k))
losses(k)=losses_final(k);
pbest(k,:)=Sol(k,:);
improved solution
Fitness(k)=Fitness_final(k);
fithess
A(k)=A(k)*alpha;
r(k)=r(k)*(1-exp(-gamma*N _iter));
end

[fnew,n]=min(Fitness_final);
% Update the current best
if fnew<=fmin
best=Sol(n,:);
fmin=fnew;
end

end

fmin_rec(N_iter)=fmin;
plot(fmin_rec);
drawnow;
toc

end

% replace initial solution with
% replace initial FITNESS with improved

% update loudness of bats
% update the pitch of bats

APPENDIX C MATALAB CODES FOR PSO, BA AND HPSOBA ALGORITHMS
(IEEE 118-BUSTEST SYSTEM)
APPENDIX C.1 MATALAB CODES FOR PSO ALGORITHM FOR ORPD

(without DG Unit)

%% PSO algorithm to solve Optimal Reactive Power Di spatch

% Authored by AGBUGBA E.E.

% Student No: 57441022

% Department of Electrical and Mining Engineering
% College of Science, Engineering and Technology
% University Of South Africa

%% Initialization Parameters

clear all

clc

tic

iter=0;

iteration=200;

nvars = 77, %Number of variables

N = 50; %Number of Particles or Swarm size
%Acceleration constants

cl =2.05;

c2 = 2.05;

%lInertia Weight

w_max=0.9;

w_min=0.4;

w_temp(1)=w_max;

%Load IEEE 118-bus data

[baseMVA, bus, gen, branch]=loadcase(case118);
%% Initialization of Swarm & velocity

% Random 50*77 matrix
Swarm=[unifrnd(0.95,1.10,N,54),unifrnd(0.90,1.10,N,
%lInitialize velocity

Velocity =[unifrnd(-0.003,0.003,N,54),unifrnd(-0.00
0.003,0.003,N,14)];

for i=1:N

9),unifrnd(0.00,0.25,N,14)];

3,0.003,N,9), unifrnd(-
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vl=Swarm(i,1);
bus(1,8)=v1;
gen(1,6)=v1,;
v4=Swarm(i,2);
bus(4,8)=v4;
gen(2,6)=v4;
v6=Swarm(i,3);
bus(6,8)=v6;
gen(3,6)=v6;
v8=Swarm(i,4);
bus(8,8)=v8;
gen(4,6)=v8;
v10=Swarm(i,5);
bus(10,8)=v10;
gen(5,6)=v10;
v12=Swarm(i,6);
bus(12,8)=v12;
gen(6,6)=v12;
v15=Swarm(i,7);
bus(15,8)=v15;
gen(7,6)=v15;
v18=Swarm(i,8);
bus(18,8)=v18;
gen(8,6)=v18;
v19=Swarm(i,9);
bus(19,8)=v19;
gen(9,6)=v19;
v24=Swarm(i,10);
bus(24,8)=v24;
gen(10,6)=v24;
v25=Swarm(i,11);
bus(25,8)=v25;
gen(11,6)=v25;
v26=Swarm(i,12);
bus(26,8)=v26;
gen(12,6)=v26;
v27=Swarm(i,13);
bus(27,8)=v27,;
gen(13,6)=v27;
v31=Swarm(i,14);
bus(31,8)=v31;
gen(14,6)=v31;
v32=Swarm(i,15);
bus(32,8)=v32;
gen(15,6)=v32;
v34=Swarm(i,16);
bus(34,8)=v34;
gen(16,6)=v34;
v36=Swarm(i,17);
bus(36,8)=v36;
gen(17,6)=v36;
v40=Swarm(i,18);
bus(40,8)=v40;
gen(18,6)=v40;
v42=Swarm(i,19);
bus(42,8)=v42;
gen(19,6)=v42;
v46=Swarm(i,20);
bus(46,8)=v46;
gen(20,6)=v46;
v49=Swarm(i,21);
bus(49,8)=v49;
gen(21,6)=v49;
v54=Swarm(i,22);

%v1

%Vm, column 8 is voltage magnitude (p.u.)

%V(g, column 6 is voltage magnitude setpoint (p.u.)
%v4

%V6

%vVv8

%v10

%v12

%v15

%v18

%v19

%v24

%Vv25

%Vv26

%v27

%v31

%v32

%vVv34

%Vv36

%v40

%v42

%Vv46

%vVv49

%v54
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bus(54,8)=v54;
gen(22,6)=v54;
v55=Swarm(i,23);
bus(55,8)=v55;
gen(23,6)=v55;
v56=Swarm(i,24);
bus(56,8)=v56;
gen(24,6)=v56;
v59=Swarm(i,25);
bus(59,8)=v59;
gen(25,6)=v59;
v61=Swarm(i,26);
bus(61,8)=v61;
gen(26,6)=v61;
v62=Swarm(i,27);
bus(62,8)=v62;
gen(27,6)=v62;
v65=Swarm(i,28);
bus(65,8)=v65;
gen(28,6)=v65;
v66=Swarm(i,29);
bus(66,8)=v66;
gen(29,6)=v66;
v69=Swarm(i,30);
bus(69,8)=v69;
gen(30,6)=v69;
v70=Swarm(i,31);
bus(70,8)=v70;
gen(31,6)=v70;
v72=Swarm(i,32);
bus(72,8)=v72;
gen(32,6)=v72;
v73=Swarm(i,33);
bus(73,8)=v73;
gen(33,6)=v73;
v74=Swarm(i,34);
bus(74,8)=v74;
gen(34,6)=v74;
v76=Swarm(i,35);
bus(76,8)=v76;
gen(35,6)=v76;
v77=Swarm(i,36);
bus(77,8)=v77,
gen(36,6)=v77;
v80=Swarm(i,37);
bus(80,8)=v80;
gen(37,6)=v80;
v85=Swarm(i,38);
bus(85,8)=v85;
gen(38,6)=v85;
v87=Swarm(i,39);
bus(87,8)=v87;
gen(39,6)=v87;
v89=Swarm(i,40);
bus(89,8)=v89;
gen(40,6)=v89;
v90=Swarm(i,41);
bus(90,8)=v90;
gen(41,6)=v90;
v91=Swarm(i,42);
bus(91,8)=v91;
gen(42,6)=v91;
v92=Swarm(i,43);
bus(92,8)=v92;

%Vv55

%Vv56

%Vv59

%vVv61

%Vv62

%V65

%Vv66

%Vv69

%vVv70

%Vv72

%Vv73

%Vv74

%V76

%Vv77

%v80

%vVv85

%Vv87

%v89

%Vv90

%v91l

%Vv92
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gen(43,6)=v92;
v99=Swarm(i,44);
bus(99,8)=v99;
gen(44,6)=v99;
v100=Swarm(i,45);
bus(100,8)=v100;
gen(45,6)=v100;
v103=Swarm(i,46);
bus(103,8)=v103;
gen(46,6)=v103;
v104=Swarm(i,47);
bus(104,8)=v104;
gen(47,6)=v104;
v105=Swarm(i,48);
bus(105,8)=v105;
gen(48,6)=v105;
v107=Swarm(i,49);
bus(107,8)=v107;
gen(49,6)=v107;
v110=Swarm(i,50);
bus(110,8)=v110;
gen(50,6)=v110;
v11ll=Swarm(i,51);
bus(111,8)=v111;
gen(51,6)=v111;
v112=Swarm(i,52);
bus(112,8)=v112;
gen(52,6)=v112;
v113=Swarm(i,53);
bus(113,8)=v113;
gen(53,6)=v113;
v116=Swarm(i,54);
bus(116,8)=v116;
gen(54,6)=v116;
t1=Swarm(i,55);
branch(8,9)=t1;
t2=Swarm(i,56);
branch(32,9)=t2;
t3=Swarm(i,57);
branch(36,9)=t3;
t4=Swarm(i,58);
branch(51,9)=t4;
t5=Swarm(i,59);
branch(93,9)=t5;
t6=Swarm(i,60);
branch(95,9)=t6;
t7=Swarm(i,61);
branch(102,9)=t7;
t8=Swarm(i,62);
branch(107,9)=t8;
t9=Swarm(i,63);
branch(127,9)=t9;
gc5=Swarm(i,64);
bus(5,6)=qc5;
gc34=Swarm(i,65);
bus(34,6)=qc34;
gc37=Swarm(i,66);
bus(37,6)=qc37;
gc44=Swarm(i,67);
bus(44,6)=qc44;
gc45=Swarm(i,68);
bus(45,6)=qc45;
gc46=Swarm(i,69);
bus(46,6)=qc46;

%Vv99

%v100

%v103

%v104

%v105

%v107

%v110

%v11l

%v112

%v113

%v116

%tpl 8-5, column 9 is tap position
%tp2 26-25
%tp3 30-17
%tp4 38-37
%tp5 63-59
%tp6 64-61
%tp7 65-66
%tp8 68-69
%tp9 81-80
%Shunt capacitor 5, column 6 is BS
%Shunt capacitor 34, column 6 is BS
%Shunt capacitor 37, column 6 is BS
%Shunt capacitor 44, column 6 is BS
%Shunt capacitor 45, column 6 is BS

%Shunt capacitor 46, column 6 is BS
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gc48=Swarm(i,70); %Shunt capacitor 48, column 6 is BS

bus(48,6)=qc48;

gc74=Swarm(i,71); %Shunt capacitor 74, column 6 is BS

bus(74,6)=qc74;

gc79=Swarm(i,72); %Shunt capacitor 79, column 6 is BS

bus(79,6)=qc79;

gc82=Swarm(i,73); %Shunt capacitor 82, column 6 is BS

bus(82,6)=qc82;

gc83=Swarm(i,74); %Shunt capacitor 83, column 6 is BS

bus(83,6)=qc83;

gcl05=Swarm(i,75); %Shunt capacitor 105, column 6 is BS

bus(105,6)=qc105;

gcl07=Swarm(i,76); %Shunt capacitor 107, column 6 is BS

bus(107,6)=qc107;

gcl10=Swarm(i,77); %Shunt capacitor 110, column 6 is BS

bus(110,6)=qc110;

eval([ 'savecase ("casell8_test' , hum2str(i), "mat", baseMVA, bus, gen,
branch)' 1);

eval([ initial_results_" ,num2str(i), ‘=runpf("casell8 test' , hum2str(i)
“mat")’ D;

eval([ initial_losses_' ,num2str(i), '=sum(real(get_losses(initial_results '

num2str(i), )" s

%Penalty for bus voltage violation
bus_inf=bus(;,8);
for bus_num=1:118
if bus_inf(bus_num)>1.10
penalty VI(bus_num)=1000*(bus_inf(bus_n
elseif  bus_inf(bus_num)<0.95
penalty VI(bus_num)=1000*(bus_inf(bus_n
else
penalty VI(bus_num)=0;
end
end
penalty VI violation=sum(penalty_VI);
%Penalty for shunt violation
buus_inf=bus(:,6);
for bus_num=1:118
if buus_inf(bus_num)>0.25
penalty Qc(bus_num)=1000*(buus_inf(bus_
elseif  buus_inf(bus_num)<0.00
penalty Qc(bus_num)=1000*(buus_inf(bus_
else
penalty _Qc(bus_num)=0;
end
end
penalty Qc_violation=sum(penalty_Qc);
%Penalty for tap position violation
brch_inf=[branch(8,9); branch(32,9); branch(36,
branch(93,9); branch(95,9); branch(102,9); branch(1
for brch_num=1:9
if brch_inf(brch_num)>1.10
penalty Tk(brch_num)=1000*(brch_inf(brc
elseif  brch_inf(brch_num)<0.90
penalty Tk(brch_num)=1000*(brch_inf(brc
else
penalty Tk(brch_num)=0;
end
end
penalty Tk violation=sum(penalty TKk);
%o0bjective function=sum of active power losses of t

um)-1.10)"2;

um)-0.95)"2;

num)-0.25)"2;

num)-0.00)"2;

9); branch(51,9);
07,9); branch(127,9)];

h_num)-1.10)"2;

h_num)-0.90)"2;

he transmission lines
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losses(i)=eval([ initial_losses_' ,num2str(i)]); %sum of real power losses of
all branches

Obj_fun_initial(i)=losses(i)+penalty_VI_violation+p enalty_Qc_violation+penalty T
k_violation; %augumented objective function with penalty functio n

end

%% Initialize best position (Pbest) and global best postion (Gbest) matrix

Pbest=Swarm;

Val_Pbest=0bj_fun_initial;

%finding best particle in initial population

[Val_Gbest,m]=min(Val_Pbest);

Gbest=Swarm(m,:); %used to keep track of the best particle ever
Gbest_calc=repmat(Swarm(m,:),N,1);

%% PSO LOOP

figure( 'NumberTitle' , 'off , 'Name' , 'PSO Algorithm Based Optimal Reactive Power
Dispatch' );

title( '‘ACTIVE POWER LOSS MINIMIZATION" );

ylabel( 'Total Active Power Loss (MW)' );

xlabel( 'lteration Number' );

grid on;

hold on

for iter=1:iteration

% Update the value of the inertia weight w
if iter <= iteration
w_temp(iter)=w_max + (((w_min-w_max)/iterati on)*iter); %Change inertia
weight
end

%generate random numbers
R1=rand(N,nvars);
R2=rand(N,nvars);

% constriction factor
%2.05+2.05=4.1;
%?2/abs(2-4.1-sqrt(4.1*4.1-4*4.1))=0.729
%calculate velocity
Velocity=(w_temp(iter).*Velocity+c1*R1.*(Pbest- Swarm)+c2*R2.*(Gbest_calc-
Swarm));
for v_iter=1:nvars
if v_iter==nvars
Outstep=Velocity(:,v_iter)>0.003;
Velocity(find(Outstep),v_iter)=0.003;
Outstep=Velocity(;,v_iter)<-0.003;
Velocity(find(Outstep),v_iter)=-0.003;
else
Outstep=Velocity(;,v_iter)>0.01;
Velocity(find(Outstep),v_iter)=0.01;
Outstep=Velocity(;,v_iter)<-0.01;
Velocity(find(Outstep),v_iter)=-0.01,;
end
end

%update positions of particles

Swarm=Swarm+0.729*Velocity; %evaluate a new swarm
for k=1:N
vl=Swarm(k,1); %v1
bus(1,8)=v1; %Vm, column 8 is voltage magnitude (p.u.)
gen(1,6)=v1; %Vg, column 6 is voltage magnitude setpoint (p.u.)
v4=Swarm(k,2); %v4
bus(4,8)=v4;
gen(2,6)=v4;
v6=Swarm(k,3); %V6
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bus(6,8)=v6;
gen(3,6)=v6;
v8=Swarm(k,4);
bus(8,8)=v8;
gen(4,6)=v8;
v10=Swarm(k,5);
bus(10,8)=v10;
gen(5,6)=v10;
v12=Swarm(k,6);
bus(12,8)=v12;
gen(6,6)=v12;
v15=Swarm(k,7);
bus(15,8)=v15;
gen(7,6)=v15;
v18=Swarm(k,8);
bus(18,8)=v18;
gen(8,6)=v18;
v19=Swarm(k,9);
bus(19,8)=v19;
gen(9,6)=v19;
v24=Swarm(k,10);
bus(24,8)=v24;
gen(10,6)=v24;
v25=Swarm(k,11);
bus(25,8)=v25;
gen(11,6)=v25;
v26=Swarm(k,12);
bus(26,8)=v26;
gen(12,6)=v26;
v27=Swarm(k,13);
bus(27,8)=v27,;
gen(13,6)=v27,;
v31=Swarm(k,14);
bus(31,8)=v31;
gen(14,6)=v31;
v32=Swarm(k,15);
bus(32,8)=v32;
gen(15,6)=v32;
v34=Swarm(k,16);
bus(34,8)=v34;
gen(16,6)=v34;
v36=Swarm(k,17);
bus(36,8)=v36;
gen(17,6)=v36;
v40=Swarm(k,18);
bus(40,8)=v40;
gen(18,6)=v40;
v42=Swarm(k,19);
bus(42,8)=v42;
gen(19,6)=v42;
v46=Swarm(k,20);
bus(46,8)=v46;
gen(20,6)=v46;
v49=Swarm(k,21);
bus(49,8)=v49;
gen(21,6)=v49;
v54=Swarm(k,22);
bus(54,8)=v54;
gen(22,6)=v54;
v55=Swarm(k,23);
bus(55,8)=v55;
gen(23,6)=v55;
v56=Swarm(k,24);
bus(56,8)=v56;

%V8

%v10

%v12

%v15

%v18

%vVv19

%v24

%vVv25

%v26

%v27

%v31

%v32

%v34

%Vv36

%v40

%v42

%Vv46

%v49

%vVv54

%Vv55

%Vv56
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gen(24,6)=v56;
v59=Swarm(k,25);
bus(59,8)=v59;
gen(25,6)=v59;
v61l=Swarm(k,26);
bus(61,8)=v61;
gen(26,6)=v61;
v62=Swarm(k,27);
bus(62,8)=v62;
gen(27,6)=v62;
v65=Swarm(k,28);
bus(65,8)=v65;
gen(28,6)=v65;
v66=Swarm(k,29);
bus(66,8)=v66;
gen(29,6)=v66;
v69=Swarm(k,30);
bus(69,8)=v69;
gen(30,6)=v69;
v70=Swarm(k,31);
bus(70,8)=v70;
gen(31,6)=v70;
v72=Swarm(k,32);
bus(72,8)=v72;
gen(32,6)=v72;
v73=Swarm(k,33);
bus(73,8)=v73;
gen(33,6)=v73;
v74=Swarm(k,34);
bus(74,8)=v74;
gen(34,6)=v74;
v76=Swarm(k,35);
bus(76,8)=v76;
gen(35,6)=v76;
v77=Swarm(k,36);
bus(77,8)=v77,;
gen(36,6)=v77,;
v80=Swarm(k,37);
bus(80,8)=v80;
gen(37,6)=v80;
v85=Swarm(k,38);
bus(85,8)=v85;
gen(38,6)=v85;
v87=Swarm(k,39);
bus(87,8)=v87;
gen(39,6)=v87,;
v89=Swarm(k,40);
bus(89,8)=v89;
gen(40,6)=v89;
v90=Swarm(k,41);
bus(90,8)=v90;
gen(41,6)=v90;
v91=Swarm(k,42);
bus(91,8)=v91;
gen(42,6)=v91;
v92=Swarm(k,43);
bus(92,8)=v92;
gen(43,6)=v92;
v99=Swarm(k,44);
bus(99,8)=v99;
gen(44,6)=v99;

v100=Swarm(k,45);

bus(100,8)=v100;
gen(45,6)=v100;

%Vv59

%v61

%Vv62

%V65

%Vv66

%Vv69

%v70

%V72

%Vv73

%v74

%V76

%Vv77

%v80

%vVv85

%v87

%vVv89

%v90

%vVv91

%Vv92

%Vv99

%v100
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v103=Swarm(k,46);
bus(103,8)=v103;
gen(46,6)=v103;
v104=Swarm(k,47);
bus(104,8)=v104;
gen(47,6)=v104;
v105=Swarm(k,48);
bus(105,8)=v105;
gen(48,6)=v105;
v107=Swarm(k,49);
bus(107,8)=v107;
gen(49,6)=v107;
v110=Swarm(k,50);
bus(110,8)=v110;
gen(50,6)=v110;
v111=Swarm(k,51);
bus(111,8)=v111;
gen(51,6)=v111;
v112=Swarm(k,52);
bus(112,8)=v112;
gen(52,6)=v112;
v113=Swarm(k,53);
bus(113,8)=v113;
gen(53,6)=v113;
v116=Swarm(k,54);
bus(116,8)=v116;
gen(54,6)=v116;
t1=Swarm(k,55);
branch(8,9)=t1;
t2=Swarm(k,56);
branch(32,9)=t2;
t3=Swarm(k,57);
branch(36,9)=t3;
t4=Swarm(k,58);
branch(51,9)=t4;
t5=Swarm(k,59);
branch(93,9)=t5;
t6=Swarm(k,60);
branch(95,9)=t6;
t7=Swarm(k,61);
branch(102,9)=t7;
t8=Swarm(k,62);
branch(107,9)=t8;
t9=Swarm(k,63);
branch(127,9)=t9;
gc5=Swarm(k,64);
bus(5,6)=qc5;
gc34=Swarm(k,65);
bus(34,6)=qc34;
gc37=Swarm(k,66);
bus(37,6)=qc37;
gc44=Swarm(k,67);
bus(44,6)=qc44;
gc45=Swarm(k,68);
bus(45,6)=qc45;
gc46=Swarm(k,69);
bus(46,6)=qc46;
gc48=Swarm(k,70);
bus(48,6)=qc48;
qc74=Swarm(k,71);
bus(74,6)=qc74;
qc79=Swarm(k,72);
bus(79,6)=qc79;
gc82=Swarm(k,73);

%v103

%v104

%vVv105

%v107

%v110

%v11l

%v112

%v113

%v116

%tpl 8-5, column 9 is tap position
%tp2 26-25
%tp3 30-17
%tp4 38-37
%tp5 63-59
%tp6 64-61
%tp7 65-66
%tp8 68-69
%tp9 81-80
%Shunt capacitor 5, column 6 is BS
%Shunt capacitor 34, column 6 is BS
%Shunt capacitor 37, column 6 is BS
%Shunt capacitor 44, column 6 is BS
%Shunt capacitor 45, column 6 is BS
%Shunt capacitor 46, column 6 is BS
%Shunt capacitor 48, column 6 is BS
%Shunt capacitor 74, column 6 is BS
%Shunt capacitor 79, column 6 is BS

%Shunt capacitor 82, column 6 is BS
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bus(82,6)=qc82;

qc83=Swarm(k,74); %Shunt capacitor 83, column 6 is BS

bus(83,6)=qc83;

gcl05=Swarm(k,75); %Shunt capacitor 105, column 6 is BS

bus(105,6)=qc105;

gqcl0o7=Swarm(k,76); %Shunt capacitor 107, column 6 is BS

bus(107,6)=qc107;

gcli0=Swarm(k,77); %Shunt capacitor 110, column 6 is BS

bus(110,6)=qc110;

eval([ 'savecase ("casell8_test' , hum2str(k), “mat", baseMVA, bus,
gen, branch)’ D;

eval([ 'final_results_' ,num2str(k), '=runpf("casell8 test' , hum2str(k)
“mat")’ D;
eval([ ‘'final losses ' ,num2str(k), '‘=sum(real(get_losses(final_results_' ,num2str(k
)I)) N VK

%Penalty for bus voltage violation
bus_inf=bus(:,8);
for bus_num=1:118
if bus_inf(bus_num)>1.10
penalty VI(bus_num)=1000*(bus_inf(b us_num)-1.10)"2;
elseif  bus_inf(bus_num)<0.95
penalty VI(bus_num)=1000*(bus_inf(b us_num)-0.95)"2;
else
penalty VI(bus_num)=0;
end
end
penalty VI violation=sum(penalty_VI);
%Penalty for shunt violation
buus_inf=bus(:,6);
for bus_num=1:118
if buus_inf(bus_num)>0.25
penalty Qc(bus_num)=1000*(buus_inf( bus_num)-0.25)"2;
elseif  buus_inf(bus_num)<0.00
penalty Qc(bus_num)=1000*(buus_inf( bus_num)-0.00)"2;
else
penalty Qc(bus_num)=0;
end
end
penalty Qc_violation=sum(penalty_Qc);
%Penalty for tap position violation
brch_inf=[branch(8,9); branch(32,9); branch (36,9); branch(51,9);
branch(93,9); branch(95,9); branch(102,9); branch(1 07,9); branch(127,9)];
for brch_num=1:9
if brch_inf(brch_num)>1.10

penalty Tk(brch_num)=1000*(brch_inf (brch_num)-1.10)"2;
elseif  brch_inf(brch_num)<0.90
penalty Tk(brch_num)=1000*(brch_inf (brch_num)-0.90)"2;
else
penalty Tk(brch_num)=0;
end
end
penalty Tk violation=sum(penalty_TKk);
%o0bjective function=sum of active power losses of t he transmission lines
losses_temp(k)=eval([ final_losses_' ;num2str(k)]); %sum of real power

losses of all branches

Obj_fun_temp(k)=losses_temp(k)+penalty VI violation +penalty_Qc_violation+penalty
_Tk_violation; %augumented objective function with penalty functio n
% Final Evaluation
Val_Pbest_temp(k)=0bj_fun_temp(k);
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end

if Val_Pbest temp<Val_Pbest
losses=losses_temp;
Val_Pbest=Val_Pbest_temp;
Pbest=Swarm;

end

[Val_Gbest_temp,n]=min(Val_Pbest);
if Val_Gbest_temp<Val_Gbest
Val_Gbest=Val_Gbest_temp;
Gbest=Swarm(n,:);
Gbest_calc=repmat(Swarm(n,:),N,1);
end

Val_Gbest_rec(iter)=Val_Gbest;
plot(Val_Gbest_rec);
drawnow;
toc
end

APPENDIX C.2 MATALAB CODESFOR BA ALGORITHM FOR ORPD

%% Bat algorithm to solve Optimal Reactive Power Di spatch
% Authored by AGBUGBA E.E.

% Student No: 57441022

% Department of Electrical and Mining Engineering

% College of Science, Engineering and Technology

% University Of South Africa

%% Initialization Parameters

clear all

clc

tic

% Default parameters

N=20; % Number of bats (population), typically 10 to 25
N_gen=200; % No of generation (iteration)

Qmin=0; % Frequency minimum

Qmax=2; % Frequency maximum

rOmax=1,

rOmin=0;

Amax=2;

Amin=1;

%lnertia Weight

w_max=0.9;

w_min=0.4;

w_temp=w_max;
w_step=(w_max-w_min)/N_gen;
% lteration parameters

N_iter=0; % Total number of function evaluations
% Dimension of the search variables

d=77;

% Constants

alpha=0.99; % Loudness constant

gamma=0.9; % Pulse rate constant
%Load IEEE 118-bus data
[baseMVA, bus, gen, branch]=loadcase(case118);

%% Initialization of Population/ Solutions, Frequen cy & velocity

% Initialize velocity

Velocity =[unifrnd(-0.003,0.003,N,54),unifrnd(-0.00 3,0.003,N,9), unifrnd(-

0.003,0.003,N,14)];
% Initialize frequency
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Freq=zeros(N,1); % Frequency;

% Initialize solutions/locations

Sol=[unifrnd(0.95,1.10,N,54),unifrnd(0.90,1.10,N,9) ,unifrnd(0.00,0.25,N,14)];
r=(rand(N,1).*(rOmax-rOmin))+rOmin;

A=(rand(N,1).*(Amax-Amin))+Amin;

for i=1:N
v1=Sol(i,1); %v1
bus(1,8)=v1; %Vm, column 8 is voltage magnitude (p.u.)
gen(1,6)=v1,; %Vg, column 6 is voltage magnitude setpoint (p.u.)
v4=Sol(i,2); %v4
bus(4,8)=v4;
gen(2,6)=v4;
v6=So0l(i,3); %Vv6
bus(6,8)=Vv6;
gen(3,6)=v6;
v8=Sol(i,4); %v8
bus(8,8)=v8;
gen(4,6)=v8;
v10=Sol(i,5); %v10

bus(10,8)=v10;

gen(5,6)=v10;

v12=So0l(i,6); %v12
bus(12,8)=v12;

gen(6,6)=v12;

v15=Sol(i,7); %v15
bus(15,8)=v15;

gen(7,6)=v15;

v18=So0l(i,8); %v18
bus(18,8)=v18;

gen(8,6)=v18;

v19=So0l(i,9); %v19
bus(19,8)=v19;

gen(9,6)=v19;

v24=So0l(i,10); %v24
bus(24,8)=v24;

gen(10,6)=v24;

v25=Sol(i,11); %v25
bus(25,8)=v25;

gen(11,6)=v25;

v26=Sol(i,12); %Vv26
bus(26,8)=v26;

gen(12,6)=v26;

v27=So0l(i,13); %v27
bus(27,8)=v27;

gen(13,6)=v27;

v31=Sol(i,14); %v31
bus(31,8)=v31;

gen(14,6)=v31;

v32=Sol(i,15); %v32
bus(32,8)=v32;

gen(15,6)=v32;

v34=So0l(i,16); %v34
bus(34,8)=v34;

gen(16,6)=v34;

v36=Sol(i,17); %Vv36
bus(36,8)=v36;

gen(17,6)=v36;

v40=So0l(i,18); %v40
bus(40,8)=v40;

gen(18,6)=v40;

v42=So0l(i,19); %v42
bus(42,8)=v42;

gen(19,6)=v42;

v46=So0l(i,20); %Vv46
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bus(46,8)=v46;
gen(20,6)=v46;
v49=Sol(i,21);
bus(49,8)=v49;
gen(21,6)=v49;
v54=So0l(i,22);
bus(54,8)=v54;
gen(22,6)=v54;
v55=So0l(i,23);
bus(55,8)=v55;
gen(23,6)=v55;
v56=So0l(i,24);
bus(56,8)=v56;
gen(24,6)=v56;
v59=So0il(i,25);
bus(59,8)=v59;
gen(25,6)=v59;
v61=So0l(i,26);
bus(61,8)=v61;
gen(26,6)=v61;
v62=So0l(i,27);
bus(62,8)=v62;
gen(27,6)=v62;
v65=So0I(i,28);
bus(65,8)=v65;
gen(28,6)=v65;
v66=So0I(i,29);
bus(66,8)=v66;
gen(29,6)=v66;
v69=So0il(i,30);
bus(69,8)=v69;
gen(30,6)=v69;
v70=Sol(i,31);
bus(70,8)=v70;
gen(31,6)=v70;
v72=So0l(i,32);
bus(72,8)=v72;
gen(32,6)=v72;
v73=So0l(i,33);
bus(73,8)=v73;
gen(33,6)=v73;
v74=Sol(i,34);
bus(74,8)=v74;
gen(34,6)=v74;
v76=Soil(i,35);
bus(76,8)=v76;
gen(35,6)=v76;
v77=So0l(i,36);
bus(77,8)=v77;
gen(36,6)=v77;
v80=Sol(i,37);
bus(80,8)=v80;
gen(37,6)=v80;
v85=5So0il(i,38);
bus(85,8)=v85;
gen(38,6)=v85;
v87=So0l(i,39);
bus(87,8)=v87;
gen(39,6)=v87;
v89=Soil(i,40);
bus(89,8)=v89;
gen(40,6)=v89;
v90=Sol(i,41);
bus(90,8)=v90;

%v49

%vVv54

%Vv55

%Vv56

%Vv59

%vVv61

%Vv62

%Vv65

%Vv66

%Vv69

%vVv70

%V72

%v73

%vVv74

%V76

%Vv77

%v80

%v85

%Vv87

%v89

%Vv90
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gen(41,6)=v90;
v91=Sol(i,42);
bus(91,8)=v91;
gen(42,6)=v91;
v92=Sol(i,43);
bus(92,8)=v92;
gen(43,6)=v92;
v99=Soil(i,44);
bus(99,8)=v99;
gen(44,6)=v99;
v100=Sol(i,45);
bus(100,8)=v100;
gen(45,6)=v100;
v103=Soil(i,46);
bus(103,8)=v103;
gen(46,6)=v103;
v104=Sol(i,47);
bus(104,8)=v104;
gen(47,6)=v104;
v105=Soil(i,48);
bus(105,8)=v105;
gen(48,6)=v105;
v107=Sol(i,49);
bus(107,8)=v107;
gen(49,6)=v107;
v110=Sol(i,50);
bus(110,8)=v110;
gen(50,6)=v110;
v111=Sol(i,51);
bus(111,8)=v111;
gen(51,6)=v111;
v112=Sol(i,52);
bus(112,8)=v112;
gen(52,6)=v112;
v113=Sol(i,53);
bus(113,8)=v113;
gen(53,6)=v113;
v116=Sol(i,54);
bus(116,8)=v116;
gen(54,6)=v116;
t1=Sol(i,55);
branch(8,9)=t1;
t2=Sol(i,56);
branch(32,9)=t2;
t3=Sol(i,57);
branch(36,9)=t3;
t4=Sol(i,58);
branch(51,9)=t4;
t5=Sol(i,59);
branch(93,9)=t5;
t6=Sol(i,60);
branch(95,9)=t6;
t7=Sol(i,61);
branch(102,9)=t7;
t8=S0l(i,62);
branch(107,9)=t8;
t9=Sol(i,63);
branch(127,9)=t9;
gc5=Sol(i,64);
bus(5,6)=qc5;
gc34=Sol(i,65);
bus(34,6)=qc34;
gc37=Sol(i,66);
bus(37,6)=qc37;

%vVv91l

%Vv92

%Vv99

%v100

%v103

%v104

%v105

%v107

%v110

%v111

%v112

%v113

%v116

%tpl 8-5, column 9 is tap position
%tp2 26-25
%tp3 30-17

%tp4 38-37

%tp5 63-59

%tp6 64-61

%tp7 65-66

%tp8 68-69

%tp9 81-80

%Shunt capacitor 5, column 6 is BS
%Shunt capacitor 34, column 6 is BS

%Shunt capacitor 37, column 6 is BS

111



gc44=Sol(i,67);
bus(44,6)=qc44;
gc45=Sol(i,68);
bus(45,6)=qc45;
gc46=Sol(i,69);
bus(46,6)=qc46;
gc48=Sol(i,70);
bus(48,6)=qc48;
gc74=Sol(i,71);
bus(74,6)=qc74;
gc79=Sol(i,72);
bus(79,6)=qc79;
gc82=Sol(i,73);
bus(82,6)=qc82;
gc83=Sol(i,74);
bus(83,6)=qc83;
gcl105=Sol(i,75);
bus(105,6)=qc105;
gcl07=Sol(i,76);
bus(107,6)=qc107;
gcl110=Sol(i,77);
bus(110,6)=qc110;

%Shunt capacitor 44, column 6 is BS
%Shunt capacitor 45, column 6 is BS
%Shunt capacitor 46, column 6 is BS
%Shunt capacitor 48, column 6 is BS
%Shunt capacitor 74, column 6 is BS
%Shunt capacitor 79, column 6 is BS
%Shunt capacitor 82, column 6 is BS

%Shunt capacitor 83, column 6 is BS

%Shunt capacitor 105, column 6 is BS
%Shunt capacitor 107, column 6 is BS

%Shunt capacitor 110, column 6 is BS

.mat", baseMVA, bus, gen,

, hum2str(i)

eval([ 'savecase ("casell8_test' , hum2str(i),
branch)' 1);
eval([ ‘results_' ,num2str(i), ‘=runpf("casell8 test'
eval([ losses ' ,num2str(i), '=sum(real(get_losses(results_' ,

num2str(i), )" s

%Penalty for bus voltage violation
bus_inf=bus(;,8);
for bus_num=1:118
if bus_inf(bus_num)>1.10
penalty bus(bus_num)=10000*((bus_inf(bu
elseif  bus_inf(bus_num)<0.95
penalty bus(bus_num)=10000*((bus_inf(bu
else
penalty bus(bus_num)=0;
end
end
penalty bus_violation=sum(penalty_bus);
%Penalty for shunt violation
buus_inf=bus(:,6);
for bus_num=1:118
if buus_inf(bus_num)>0.25
penalty sht(bus_num)=10000*(buus_inf(bu
elseif  buus_inf(bus_num)<0.00
penalty sht(bus_num)=10000*(buus_inf(bu
else
penalty sht(bus_num)=0;
end
end
penalty_sht_violation=sum(penalty_sht);
%Penalty for tap position violation
brch_inf=[branch(8,9); branch(32,9); branch(36,
branch(93,9); branch(95,9); branch(102,9); branch(1
for brch_num=1:9
if brch_inf(brch_num)>1.10
penalty _brch(brch_num)=10000*(brch_inf(
elseif  brch_inf(brch_num)<0.90
penalty _brch(brch_num)=10000*(brch_inf(
else
penalty brch(brch_num)=0;

S_num)-1.10)"2);

S_num)-0.95)"2);

S_num)-0.25)"2;

S_num)-0.00)"2;

9); branch(51,9);
07,9); branch(127,9)];

brch_num)-1.10)"2;

brch_num)-0.90)"2;

"mat")'

)&
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end
end
penalty brch_violation=sum(penalty_brch);

% objective function=sum of active power losses of the transmission lines
losses(i)=eval([ losses ' ,num2str(i)]);
Obj_fun_initial(i)=losses(i)+penalty_bus_violation+ penalty sht violation+penalty
_brch_violation; % augumented objective function with penalty functi on

end
% Evaluate solution
Fitness=0bj_fun_initial;
pbest=Sol;
%% finding the current best solution in the initial population (first
evaluation)
[fmin,m]=min(Fitness);
best=Sol(m,:); % used to keep track of the best current solution e ver
%% Bat Algorithm LOOP
figure(  'NumberTitle' , 'off | 'Name' , 'Bat Algorithm Based Optimal Reactive Power
Dispatch' );
title( '‘ACTIVE POWER LOSS MINIMIZATION" );
ylabel( 'Total Active Power Loss (MW)' );
xlabel( 'lteration Number' );
grid on;
hold on

for N_iter=1:N_gen
% Loop over all bats/solutions
%mean of loudness
meanA=mean(A);
if (N_iter <= N_gen) & (N_iter > 1)

w_temp=w_temp-w_step; %Change inertia weight
end
for i=1:N
Freq(i)=Qmin+(Qmax-Qmin)*rand;
Velocity(i,:)=w_temp*Velocity(i,:)+(Sol(i,:)-be st)*Freq(i);

S(i,:)=Sol(i,:)+Velocity(i,:);
% Local Search
if rand>r(i)
randnValueA=randn(1,d).*(abs(meanA));
S(i,:)=best+(0.001*randnValueA); % The factor 0.001 limits the
step sizes of random walks
end

v1=S(i,1); %v1

bus(1,8)=v1,; %Vm, column 8 is voltage magnitude (p.u.)
gen(1,6)=v1; %Vg, column 6 is voltage magnitude setpoint (p.u.)
v4=5(i,2); %v4

bus(4,8)=v4;

gen(2,6)=v4;

v6=5(i,3); %V6

bus(6,8)=v6;

gen(3,6)=v6;

v8=S(i,4); %v8

bus(8,8)=v8;

gen(4,6)=v8;

v10=5(i,5); %v10

bus(10,8)=v10;

gen(5,6)=v10;

v12=5(i,6); %v12

bus(12,8)=v12;

gen(6,6)=v12;
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v15=5(i,7);
bus(15,8)=v15;
gen(7,6)=v15;
v18=5(i,8);
bus(18,8)=v18;
gen(8,6)=v18;
v19=5(i,9);
bus(19,8)=v19;
gen(9,6)=v19;
v24=5(i,10);
bus(24,8)=v24;
gen(10,6)=v24;
v25=5(i,11);
bus(25,8)=v25;
gen(11,6)=v25;
v26=5(i,12);
bus(26,8)=v26;
gen(12,6)=v26;
v27=5(i,13);
bus(27,8)=v27;
gen(13,6)=v27;
v31=S5(i,14);
bus(31,8)=v31;
gen(14,6)=v31;
v32=5(i,15);
bus(32,8)=v32;
gen(15,6)=v32;
v34=5(i,16);
bus(34,8)=v34;
gen(16,6)=v34;
v36=S(i,17);
bus(36,8)=v36;
gen(17,6)=v36;
v40=5(i,18);
bus(40,8)=v40;
gen(18,6)=v40;
v42=5(i,19);
bus(42,8)=v42;
gen(19,6)=v42;
v46=5(i,20);
bus(46,8)=v46;
gen(20,6)=v46;
v49=5(i,21);
bus(49,8)=v49;
gen(21,6)=v49;
v54=5(i,22);
bus(54,8)=v54;
gen(22,6)=v54;
v55=5(i,23);
bus(55,8)=v55;
gen(23,6)=v55;
v56=S5(i,24);
bus(56,8)=v56;
gen(24,6)=v56;
v59=5(i,25);
bus(59,8)=v59;
gen(25,6)=v59;
v61=5(i,26);
bus(61,8)=v61;
gen(26,6)=v61;
v62=S5(i,27);
bus(62,8)=v62;
gen(27,6)=v62;
v65=5(i,28);

%v15

%v18

%vVv19

%v24

%Vv25

%v26

%v27

%v31

%vVv32

%vVv34

%Vv36

%v40

%v42

%v46

%v49

%vVv54

%Vv55

%Vv56

%vVv59

%vVv61

%Vv62

%Vv65

114



bus(65,8)=v65;
gen(28,6)=v65;
v66=S5(i,29);
bus(66,8)=v66;
gen(29,6)=v66;
v69=5(i,30);
bus(69,8)=v69;
gen(30,6)=v69;
v70=5(i,31);
bus(70,8)=v70;
gen(31,6)=v70;
v72=5(i,32);
bus(72,8)=v72;
gen(32,6)=v72;
v73=5(i,33);
bus(73,8)=v73;
gen(33,6)=v73;
v74=5(i,34);
bus(74,8)=v74;
gen(34,6)=v74;
v76=5(i,35);
bus(76,8)=v76;
gen(35,6)=v76;
v77=5(i,36);
bus(77,8)=v77;
gen(36,6)=v77;
v80=S(i,37);
bus(80,8)=v80;
gen(37,6)=v80;
v85=5(i,38);
bus(85,8)=v85;
gen(38,6)=v85;
v87=5(i,39);
bus(87,8)=v87;
gen(39,6)=v87;
v89=5(i,40);
bus(89,8)=v89;
gen(40,6)=v89;
v90=5(i,41);
bus(90,8)=v90;
gen(41,6)=v90;
v91=5(i,42);
bus(91,8)=v91;
gen(42,6)=v91;
v92=5(i,43);
bus(92,8)=v92;
gen(43,6)=v92;
v99=5(i,44);
bus(99,8)=v99;
gen(44,6)=v99;
v100=5(i,45);

bus(100,8)=v100;
gen(45,6)=v100;

v103=5(i,46);

bus(103,8)=v103;
gen(46,6)=v103;

v104=S(i,47);

bus(104,8)=v104;
gen(47,6)=v104;

v105=5(i,48);

bus(105,8)=v105;
gen(48,6)=v105;

v107=S(i,49);

bus(107,8)=v107;

%Vv66

%Vv69

%v70

%V72

%v73

%Vv74

%V76

%Vv77

%v80

%Vv85

%vVv87

%vVv89

%Vv90

%vVv91l

%Vv92

%Vv99

%v100

%v103

%v104

%v105

%v107

115



gen(49,6)=v107;

v110=S5(i,50); %v110
bus(110,8)=v110;
gen(50,6)=v110;

v111=S(i,51); %v11l
bus(111,8)=v111;
gen(51,6)=v111;

v112=5(i,52); %v112
bus(112,8)=v112;
gen(52,6)=v112;

v113=5(i,53); %v113
bus(113,8)=v113;
gen(53,6)=v113;

v116=5S(i,54); %v116
bus(116,8)=v116;
gen(54,6)=v116;

t1=5(i,55); %tpl 8-5, column 9 is tap position
branch(8,9)=t1;

t2=5(i,56); %tp2 26-25

branch(32,9)=t2;

t3=S(i,57); %tp3 30-17

branch(36,9)=t3;

t4=5(i,58); %tp4 38-37

branch(51,9)=t4;

t5=5(i,59); %tp5 63-59

branch(93,9)=t5;

t6=5(i,60); %tp6 64-61

branch(95,9)=t6;

t7=S(i,61); %tp7 65-66

branch(102,9)=t7;

t8=5(i,62); %tp8 68-69

branch(107,9)=t8;

t9=5(i,63); %tp9 81-80

branch(127,9)=t9;

gc5=5(i,64); %Shunt capacitor 5, column 6 is BS
bus(5,6)=qc5;

gc34=5(i,65); %Shunt capacitor 34, column 6 is BS
bus(34,6)=qc34;

gc37=5(i,66); %Shunt capacitor 37, column 6 is BS
bus(37,6)=qc37;

qc44=5(i,67); %Shunt capacitor 44, column 6 is BS
bus(44,6)=qc44;

gc45=5(i,68); %Shunt capacitor 45, column 6 is BS
bus(45,6)=qc45;

gqc46=5(i,69); %Shunt capacitor 46, column 6 is BS
bus(46,6)=qc46;

qc48=5(i,70); %Shunt capacitor 48, column 6 is BS
bus(48,6)=qc48;

qc74=S(i,71); %Shunt capacitor 74, column 6 is BS
bus(74,6)=qc74;

qc79=5(i,72); %Shunt capacitor 79, column 6 is BS
bus(79,6)=qc79;

gc82=5(i,73); %Shunt capacitor 82, column 6 is BS
bus(82,6)=qc82;

qc83=S(i,74); %Shunt capacitor 83, column 6 is BS
bus(83,6)=qc83;

gcl105=5(i,75); %Shunt capacitor 105, column 6 is BS
bus(105,6)=qc105;

gqcl07=S(i,76); %Shunt capacitor 107, column 6 is BS
bus(107,6)=qc107;

gqcl110=S(i,77); %Shunt capacitor 110, column 6 is BS

bus(110,6)=qc110;
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eval([ 'savecase ("casell8_test'
branch)' 1);

eval([ ‘results_' ,num2str(i),

eval([ losses ' ,num2str(i),
num2str(i), )" 1)

%Penalty for bus voltage violation
bus_inf=bus(:,8);
for bus_num=1:118
if bus_inf(bus_num)>1.10
penalty bus(bus_num)=10000*((bus_inf(bu
elseif  bus_inf(bus_num)<0.95
penalty bus(bus_num)=10000*((bus_inf(bu
else
penalty bus(bus_num)=0;
end
end
penalty bus_violation=sum(penalty_bus);
%Penalty for shunt violation
buus_inf=bus(:,6);
for bus_num=1:118
if buus_inf(bus_num)>0.25
penalty sht(bus_num)=10000*(buus_inf(bu
elseif  buus_inf(bus_num)<0.00
penalty sht(bus_num)=10000*(buus_inf(bu
else
penalty sht(bus_num)=0;
end
end
penalty_sht_violation=sum(penalty_sht);
%Penalty for tap position violation
brch_inf=[branch(8,9); branch(32,9); branch(36,
branch(93,9); branch(95,9); branch(102,9); branch(1
for brch_num=1:9
if brch_inf(brch_num)>1.10
penalty brch(brch_num)=10000*(brch_inf(
elseif  brch_inf(brch_num)<0.90
penalty brch(brch_num)=10000*(brch_inf(
else
penalty _brch(brch_num)=0;
end
end
penalty brch_violation=sum(penalty_brch);
%sum of real power losses of all branches
losses_final(i)=eval([ 'losses '

Obj_fun_final(i)=losses_final(i)+penalty _bus_violat
alty _brch_violation;

% Evaluate new solutions
Fitness_final(i)=0bj_fun_final(i);

%% If the solution improves or not too loud
if (Fitness_final(i)<=Fitness(i)) & (rand<A(i))
losses(i)=losses_final(i);
Sol(i,))=S(i,:);

solution
Fitness(i)=Fitness_final(i);

fitness
A(i)=A(i)*alpha;
r(i)=r(i)*(1-exp(-gamma*N_iter));
end

, hum2str(i),

‘zrunpf("casell8 test'
'=sum(real(get_losses(results_' ,

"mat", baseMVA, bus, gen,

, num2str(i) " mat")' D;

S_num)-1.10)"2);

S_num)-0.95)"2);

S_num)-0.25)"2;

S_num)-0.00)"2;

9); branch(51,9);
07,9); branch(127,9)];

brch_num)-1.10)"2;

brch_num)-0.90)"2;

,num2str(i)]);

ion+penalty_sht_violation+pen

% replace initial solution with improved
% replace initial FITNESS with improved

% update loudness of bats
% update the pitch of bats
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[fnew,n]=min(Fitness_final);
% Update the current best
if fnew<=fmin
best=S(n,:);
fmin=fnew;
end

end

fmin_rec(N_iter)=fmin;
plot(fmin_rec);
drawnow;
toc

end

APPENDIX C.3 MATALAB CODES FOR HPSOBA ALGORITHM FOR ORPD

%% Hybrid PSO-BA algorithm to solve Optimal Reactiv e Power Dispatch
% Authored by AGBUGBA E.E.

% Student No: 57441022

% Department of Electrical and Mining Engineering

% College of Science, Engineering and Technology

% University Of South Africa

%% Initialization Parameters

clear all

clc

tic

% Dimension of the search variables

d=77;

% Bat Algorithm Default parameters

N=20; % Number of bats (population), typically 10 to 25
N_gen=200; % No of generation (iteration)
Q_max=2; % Frequency maximum
Q_min=0; % Frequency minimum
r_max=1, % Maximum pulse rate
r_min=0; % Minimum pulse rate
A_max=2; % Maximum loudness
A_min=1; % Minimum loudness

% Constants

alpha=0.99; % Loudness constant

gamma=0.9; % Pulse rate constant

% PSO Algorithm Default parameters

% Inertia Weight

w_max=0.9;

w_min=0.4;

w_temp(1)=w_max;

% Acceleration constants

c1=2.05;

€2=2.05;

% lteration parameters

N_iter=0;

%Load IEEE 118-bus data

[baseMVA, bus, gen, branch]=loadcase(case118);

%% Initialization of Population/ Solutions, Frequen cy & velocity
% Initialize velocity

%Velocity=zeros(N,d);

Velocity =[unifrnd(-0.003,0.003,N,54),unifrnd(-0.00 3,0.003,N,9), unifrnd(-
0.003,0.003,N,14)];

% Initialize frequency

Freg=zeros(N,1); % Frequency;

% Initialize solutions/locations

Sol=[unifrnd(0.95,1.10,N,54),unifrnd(0.90,1.10,N,9) ,unifrnd(0.00,0.25,N,14)];
% Initialize pulse rate

r=(rand(N,1).*(r_max-r_min))+r_min;

% Initialize loudness
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A=(rand(N,1).*(A_max-A_min))+A_min;

for i=1:N
v1=Sol(i,1); %v1
bus(1,8)=v1,; %Vm, column 8 is voltage magnitude (p.u.)
gen(1,6)=v1,; %V(g, column 6 is voltage magnitude setpoint (p.u.)
v4=So0l(i,2); %v4
bus(4,8)=v4;
gen(2,6)=v4;
v6=So0l(i,3); %Vv6
bus(6,8)=v6;
gen(3,6)=v6;
v8=Sol(i,4); %v8
bus(8,8)=v8;
gen(4,6)=v8;
v10=Sol(i,5); %v10

bus(10,8)=v10;

gen(5,6)=v10;

v12=Sol(i,6); %v12
bus(12,8)=v12;

gen(6,6)=v12;

v15=Sol(i,7); %v15
bus(15,8)=v15;

gen(7,6)=v15;

v18=So0l(i,8); %v18
bus(18,8)=v18;

gen(8,6)=v18;

v19=So0l(i,9); %v19
bus(19,8)=v19;

gen(9,6)=v19;

v24=So0l(i,10); %v24
bus(24,8)=v24;

gen(10,6)=v24;

v25=Sol(i,11); %v25
bus(25,8)=v25;

gen(11,6)=v25;

v26=So0l(i,12); %Vv26
bus(26,8)=v26;

gen(12,6)=v26;

v27=So0l(i,13); %v27
bus(27,8)=v27,;

gen(13,6)=v27;

v31=Sol(i,14); %v31
bus(31,8)=v31;

gen(14,6)=v31;

v32=So0l(i,15); %v32
bus(32,8)=v32;

gen(15,6)=v32;

v34=Sol(i,16); %v34
bus(34,8)=v34;

gen(16,6)=v34;

v36=Sol(i,17); %Vv36
bus(36,8)=v36;

gen(17,6)=v36;

v40=Sol(i,18); %v40
bus(40,8)=v40;

gen(18,6)=v40;

v42=So0l(i,19); %v42
bus(42,8)=v42;

gen(19,6)=v42;

v46=So0l(i,20); %v46
bus(46,8)=v46;
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gen(20,6)=v46;
v49=Sol(i,21);
bus(49,8)=v49;
gen(21,6)=v49;
v54=So0l(i,22);
bus(54,8)=v54;
gen(22,6)=v54;
v55=So0l(i,23);
bus(55,8)=v55;
gen(23,6)=v55;
v56=So0l(i,24);
bus(56,8)=v56;
gen(24,6)=v56;
v59=So0il(i,25);
bus(59,8)=v59;
gen(25,6)=v59;
v61=So0l(i,26);
bus(61,8)=v61;
gen(26,6)=v61;
v62=So0l(i,27);
bus(62,8)=v62;
gen(27,6)=v62;
v65=So0I(i,28);
bus(65,8)=v65;
gen(28,6)=v65;
v66=So0I(i,29);
bus(66,8)=v66;
gen(29,6)=v66;
v69=So0il(i,30);
bus(69,8)=v69;
gen(30,6)=v69;
v70=Sol(i,31);
bus(70,8)=v70;
gen(31,6)=v70;
v72=So0l(i,32);
bus(72,8)=v72;
gen(32,6)=v72;
v73=So0l(i,33);
bus(73,8)=v73;
gen(33,6)=v73;
v74=Sol(i,34);
bus(74,8)=v74;
gen(34,6)=v74;
v76=Sol(i,35);
bus(76,8)=v76;
gen(35,6)=v76;
v77=So0l(i,36);
bus(77,8)=v77,
gen(36,6)=v77;
v80=Soil(i,37);
bus(80,8)=v80;
gen(37,6)=v80;
v85=So0il(i,38);
bus(85,8)=v85;
gen(38,6)=v85;
v87=So0l(i,39);
bus(87,8)=v87;
gen(39,6)=v87;
v89=Soil(i,40);
bus(89,8)=v89;
gen(40,6)=v89;
v90=Sol(i,41);
bus(90,8)=v90;
gen(41,6)=v90;

%v49

%v54

%Vv55

%Vv56

%Vv59

%vVv61

%Vv62

%V65

%Vv66

%Vv69

%vVv70

%Vv72

%Vv73

%vVv74

%V76

%Vv77

%v80

%vVv85

%Vv87

%v89

%Vv90
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v91=Sol(i,42);
bus(91,8)=v91;
gen(42,6)=v91;
v92=5So0l(i,43);
bus(92,8)=v92;
gen(43,6)=v92;
v99=Soil(i,44);
bus(99,8)=v99;
gen(44,6)=v99;
v100=Soil(i,45);
bus(100,8)=v100;
gen(45,6)=v100;
v103=Sol(i,46);
bus(103,8)=v103;
gen(46,6)=v103;
v104=Sol(i,47);
bus(104,8)=v104;
gen(47,6)=v104;
v105=Soil(i,48);
bus(105,8)=v105;
gen(48,6)=v105;
v107=Sol(i,49);
bus(107,8)=v107;
gen(49,6)=v107;
v110=Sol(i,50);
bus(110,8)=v110;
gen(50,6)=v110;
v111=Sol(i,51);
bus(111,8)=v111;
gen(51,6)=v111;
v112=Sol(i,52);
bus(112,8)=v112;
gen(52,6)=v112;
v113=Sol(i,53);
bus(113,8)=v113;
gen(53,6)=v113;
v116=Sol(i,54);
bus(116,8)=v116;
gen(54,6)=v116;
t1=Sol(i,55);
branch(8,9)=t1;
t2=Sol(i,56);
branch(32,9)=t2;
t3=Sol(i,57);
branch(36,9)=t3;
t4=Sol(i,58);
branch(51,9)=t4;
t5=Sol(i,59);
branch(93,9)=t5;
t6=So0l(i,60);
branch(95,9)=t6;
t7=Sol(i,61);
branch(102,9)=t7;
t8=S0l(i,62);
branch(107,9)=t8;
t9=Sol(i,63);
branch(127,9)=t9;
gc5=Sol(i,64);
bus(5,6)=qc5;
gc34=Sol(i,65);
bus(34,6)=qc34;
gc37=Sol(i,66);
bus(37,6)=qc37;
gc44=Sol(i,67);

%v91l

%Vv92

%Vv99

%v100

%v103

%v104

%v105

%v107

%v110

%v11l

%v112

%v113

%v116

%tpl 8-5, column 9 is tap position
%tp2 26-25
%tp3 30-17
%tp4 38-37
%tp5 63-59
%tp6 64-61
%tp7 65-66
%tp8 68-69
%tp9 81-80
%Shunt capacitor 5, column 6 is BS
%Shunt capacitor 34, column 6 is BS
%Shunt capacitor 37, column 6 is BS

%Shunt capacitor 44, column 6 is BS
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bus(44,6)=qc44;
gc45=Sol(i,68);
bus(45,6)=qc45;
gc46=Sol(i,69);
bus(46,6)=qc46;
gc48=Sol(i,70);
bus(48,6)=qc48;
gc74=Sol(i,71);
bus(74,6)=qc74;
gc79=Sol(i,72);
bus(79,6)=qc79;
gc82=Sol(i,73);
bus(82,6)=qc82;
gc83=Sol(i,74);
bus(83,6)=qc83;
gcl105=Sol(i,75);
bus(105,6)=qc105;
gcl07=Sol(i,76);
bus(107,6)=qc107;
gcl110=Sol(i,77);
bus(110,6)=qc110;

%Shunt capacitor 45, column 6 is BS
%Shunt capacitor 46, column 6 is BS
%Shunt capacitor 48, column 6 is BS
%Shunt capacitor 74, column 6 is BS
%Shunt capacitor 79, column 6 is BS
%Shunt capacitor 82, column 6 is BS

%Shunt capacitor 83, column 6 is BS

%Shunt capacitor 105, column 6 is BS
%Shunt capacitor 107, column 6 is BS

%Shunt capacitor 110, column 6 is BS

.mat", baseMVA, bus, gen,

, hum2str(i)

eval([ 'savecase ("casell8_test' , hum2str(i),
branch)' 1);
eval([ ‘results_' ,num2str(i), ‘=runpf("casell8 test'
eval([ losses ' ,num2str(i), ‘=sum(real(get_losses(results '

num2str(i), )" s

%Penalty for bus voltage violation
bus_inf=bus(;,8);
for bus_num=1:118
if bus_inf(bus_num)>1.10
penalty bus(bus_num)=10000*(bus_inf(bus
elseif  bus_inf(bus_num)<0.95
penalty bus(bus_num)=10000*(bus_inf(bus
else
penalty bus(bus_num)=0;
end
end
penalty bus_violation=sum(penalty_bus);
%Penalty for reactive shunt violation
buus_inf=bus(:,6);
for bus_num=1:118
if buus_inf(bus_num)>0.25
penalty sht(bus_num)=10000*(buus_inf(bu
elseif  buus_inf(bus_num)<0.00
penalty sht(bus_num)=10000*(buus_inf(bu
else
penalty sht(bus_num)=0;
end
end
penalty_sht_violation=sum(penalty_sht);
%Penalty for tap position violation
brch_inf=[branch(8,9); branch(32,9); branch(36,
branch(93,9); branch(95,9); branch(102,9); branch(1
for brch_num=1:9
if brch_inf(brch_num)>1.10
penalty brch(brch_num)=10000*(brch_inf(
elseif  brch_inf(brch_num)<0.90
penalty _brch(brch_num)=10000*(brch_inf(
else
penalty brch(brch_num)=0;
end

_hum)-1.10)"2;

_num)-0.95)"2;

S_num)-0.25)"2;

S_num)-0.00)"2;

9); branch(51,9);
07,9); branch(127,9)];

brch_num)-1.10)"2;

brch_num)-0.90)"2;

"mat")'

)&
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end
penalty brch_violation=sum(penalty_brch);

% objective function=sum of active power losses of the transmission lines
losses(i)=eval([ losses ' ,num2str(i)]);
Obj_fun_initial(i)=losses(i)+penalty_bus_violation+ penalty sht_violation+penalty
brch_violation; % augumented objective function with penalty functi on

End

% Evaluate solution
Fithess=0bj_fun_initial,

pbest=Sol;
%% finding the current best solution in the initial population (first
evaluation)
[fmin,m]=min(Fitness);
best=Sol(m,:); % used to keep track of the best current solution e ver
%% Hybrid PSO-BA Algorithm LOOP
figure(  'NumberTitle' , 'off , 'Name', 'Hybrid PSO-BA Algorithm Based Optimal
Reactive Power Dispatch' );
title( '‘ACTIVE POWER LOSS MINIMIZATION" );
ylabel( 'Total Active Power Loss (MW)' );
xlabel(  'lteration Number' );
grid on;
hold on

for N_iter=1:N_gen
% Loop over all bats/particles
%mean pf loudness
meanA=mean(A);
% Update the value of the inertia weight w
if N_iter<=N_gen

w_temp(N_iter)=w_max + (((w_min-w_max)/N_gen )*N_iter); %Change inertia
weight
end
for k=1:N
Freq(k)=Q_min+(Q_max-Q_min)*rand;
Velocity(k,:)=w_temp(N_iter).*Velocity(k,:)+(c1 *rand*(pbest(k,:)-

Sol(k,:))+c2*rand*(best-Sol(k,:)))*Freq(k);
for v_iter=1:d
if v_iter==d
Outstep=Velocity(:,v_iter)>0.003;
Velocity(find(Outstep),v_iter)=0.003;
Outstep=Velocity(;,v_iter)<-0.003;
Velocity(find(Outstep),v_iter)=-0.003;
else
Outstep=Velocity(;,v_iter)>0.01;
Velocity(find(Outstep),v_iter)=0.01;
Outstep=Velocity(;,v_iter)<-0.01;
Velocity(find(Outstep),v_iter)=-0.01,;
end
end
Sol(k,:)=best+Velocity(k,:);
% Local Search
if rand>r(k)
randnValueA=randn(1,d).*(abs(meanA));

Sol(k,:)=best+(0.001*randnValueA); % The factor 0.001 limits the
step sizes of random walks
end
v1=Sol(k,1); %v1
bus(1,8)=v1; %Vm, column 8 is voltage magnitude (p.u.)
gen(1,6)=v1; %Vg, column 6 is voltage magnitude setpoint (p.u.)

123



v4=Sol(k,2);
bus(4,8)=v4;
gen(2,6)=v4;
v6=Sol(k,3);
bus(6,8)=Vv6;
gen(3,6)=v6;
v8=Sol(k,4);
bus(8,8)=v8;
gen(4,6)=v8;
v10=Sol(k,5);
bus(10,8)=v10;
gen(5,6)=v10;
v12=Sol(k,6);
bus(12,8)=v12;
gen(6,6)=v12;
v15=Sol(k,7);
bus(15,8)=v15;
gen(7,6)=v15;
v18=Sol(k,8);
bus(18,8)=v18;
gen(8,6)=v18;
v19=Sol(k,9);
bus(19,8)=v19;
gen(9,6)=v19;
v24=Sol(k,10);
bus(24,8)=v24;
gen(10,6)=v24;
v25=Sol(k,11);
bus(25,8)=v25;
gen(11,6)=v25;
v26=Sol(k,12);
bus(26,8)=v26;
gen(12,6)=v26;
v27=Sol(k,13);
bus(27,8)=v27;
gen(13,6)=v27;
v31=Sol(k,14);
bus(31,8)=v31;
gen(14,6)=v31;
v32=Sol(k,15);
bus(32,8)=v32;
gen(15,6)=v32;
v34=Sol(k,16);
bus(34,8)=v34;
gen(16,6)=v34;
v36=Sol(k,17);
bus(36,8)=v36;
gen(17,6)=v36;
v40=Sol(k,18);
bus(40,8)=v40;
gen(18,6)=v40;
v42=Sol(k,19);
bus(42,8)=v42;
gen(19,6)=v42;
v46=Sol(k,20);
bus(46,8)=v46;
gen(20,6)=v46;
v49=Sol(k,21);
bus(49,8)=v49;
gen(21,6)=v49;
v54=Sol(k,22);
bus(54,8)=v54;
gen(22,6)=v54;
v55=Sol(k,23);

%v4

%V6

%V8

%v10

%v12

%v15

%v18

%vVv19

%v24

%Vv25

%v26

%v27

%v31

%vVv32

%vVv34

%Vv36

%v40

%v42

%v46

%v49

%Vv54

%Vv55
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bus(55,8)=v55;
gen(23,6)=v55;
v56=Sol(k,24);
bus(56,8)=v56;
gen(24,6)=v56;
v59=Sol(k,25);
bus(59,8)=v59;
gen(25,6)=v59;
v61=Sol(k,26);
bus(61,8)=v61;
gen(26,6)=v61;
v62=Sol(k,27);
bus(62,8)=v62;
gen(27,6)=v62;
v65=Sol(k,28);
bus(65,8)=v65;
gen(28,6)=v65;
v66=Sol(k,29);
bus(66,8)=v66;
gen(29,6)=v66;
v69=Sol(k,30);
bus(69,8)=v69;
gen(30,6)=v69;
v70=Sol(k,31);
bus(70,8)=v70;
gen(31,6)=v70;
v72=Sol(k,32);
bus(72,8)=v72;
gen(32,6)=v72;
v73=Sol(k,33);
bus(73,8)=v73;
gen(33,6)=v73;
v74=Sol(k,34);
bus(74,8)=v74;
gen(34,6)=v74;
v76=Sol(k,35);
bus(76,8)=v76;
gen(35,6)=v76;
v77=Sol(k,36);
bus(77,8)=v77;
gen(36,6)=v77;
v80=Sol(k,37);
bus(80,8)=v80;
gen(37,6)=v80;
v85=Sol(k,38);
bus(85,8)=v85;
gen(38,6)=v85;
v87=Sol(k,39);
bus(87,8)=v87;
gen(39,6)=v87;
v89=Sol(k,40);
bus(89,8)=v89;
gen(40,6)=v89;
v90=Sol(k,41);
bus(90,8)=v90;
gen(41,6)=v90;
v91=Sol(k,42);
bus(91,8)=v91;
gen(42,6)=v91;
v92=Sol(k,43);
bus(92,8)=v92;
gen(43,6)=v92;
v99=Sol(k,44);
bus(99,8)=v99;

%Vv56

%Vv59

%v61

%Vv62

%Vv65

%Vv66

%Vv69

%v70

%V72

%v73

%Vv74

%V76

%Vv77

%v80

%v85

%vVv87

%vVv89

%v90

%vVv91l

%Vv92

%Vv99
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gen(44,6)=v99;
v100=Sol(k,45);
bus(100,8)=v100;
gen(45,6)=v100;
v103=Sol(k,46);
bus(103,8)=v103;
gen(46,6)=v103;
v104=Sol(k,47);
bus(104,8)=v104;
gen(47,6)=v104;
v105=Sol(k,48);
bus(105,8)=v105;
gen(48,6)=v105;
v107=Sol(k,49);
bus(107,8)=v107;
gen(49,6)=v107;
v110=Sol(k,50);
bus(110,8)=v110;
gen(50,6)=v110;
v111=Sol(k,51);
bus(111,8)=v111;
gen(51,6)=v111;
v112=Sol(k,52);
bus(112,8)=v112;
gen(52,6)=v112;
v113=Sol(k,53);
bus(113,8)=v113;
gen(53,6)=v113;
v116=Sol(k,54);
bus(116,8)=v116;
gen(54,6)=v116;
t1=Sol(k,55);
branch(8,9)=t1;
t2=Sol(k,56);
branch(32,9)=t2;
t3=Sol(k,57);
branch(36,9)=t3;
t4=Sol(k,58);
branch(51,9)=t4;
t5=Sol(k,59);
branch(93,9)=t5;
t6=Sol(k,60);
branch(95,9)=t6;
t7=Sol(k,61);
branch(102,9)=t7;
t8=Sol(k,62);
branch(107,9)=t8;
t9=Sol(k,63);
branch(127,9)=t9;
gc5=Sol(k,64);
bus(5,6)=qc5;
gc34=Sol(k,65);
bus(34,6)=qc34;
gc37=Sol(k,66);
bus(37,6)=qc37;
gc44=Sol(k,67);
bus(44,6)=qc44;
gc45=Sol(k,68);
bus(45,6)=qc45;
gc46=Sol(k,69);
bus(46,6)=qc46;
gc48=Sol(k,70);
bus(48,6)=qc48;
gc74=Sol(k,71);

%v100

%v103

%v104

%v105

%v107

%v110

%v111

%v112

%v113

%v116

%tpl 8-5, column 9 is tap position
%tp2 26-25
%tp3 30-17
%tp4 38-37
%tp5 63-59
%tp6 64-61
%tp7 65-66
%tp8 68-69
%tp9 81-80
%Shunt capacitor 5, column 6 is BS
%Shunt capacitor 34, column 6 is BS
%Shunt capacitor 37, column 6 is BS
%Shunt capacitor 44, column 6 is BS
%Shunt capacitor 45, column 6 is BS
%Shunt capacitor 46, column 6 is BS
%Shunt capacitor 48, column 6 is BS

%Shunt capacitor 74, column 6 is BS
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bus(74,6)=qc74;

.mat", baseMVA, bus, gen,

, num2str(k) .mat")’ )&

gc79=Sol(k,72); %Shunt capacitor 79, column 6 is BS

bus(79,6)=qc79;

gc82=Sol(k,73); %Shunt capacitor 82, column 6 is BS

bus(82,6)=qc82;

gc83=Sol(k,74); %Shunt capacitor 83, column 6 is BS

bus(83,6)=qc83;

gcl05=Sol(k,75); %Shunt capacitor 105, column 6 is BS

bus(105,6)=qc105;

gcl07=Sol(k,76); %Shunt capacitor 107, column 6 is BS

bus(107,6)=qc107;

gcl110=Sol(k,77); %Shunt capacitor 110, column 6 is BS

bus(110,6)=qc110;

eval([ 'savecase ("casell8_test' , hum2str(k),
branch)' 1);

eval([ results ' ,num2str(k), '=runpf("casell8 test'
eval([ ‘'losses '  ,num2str(k), '‘=sum(real(get_losses(results '

%Penalty for bus voltage violation
bus_inf=bus(:,8);
for bus_num=1:118
if bus_inf(bus_num)>1.10
penalty bus(bus_num)=10000*(bus_inf(bus
elseif  bus_inf(bus_num)<0.95
penalty bus(bus_num)=10000*(bus_inf(bus
else
penalty bus(bus_num)=0;
end
end
penalty bus_violation=sum(penalty_bus);
%Penalty for reactive shunt violation
buus_inf=bus(:,6);
for bus_num=1:18
if buus_inf(bus_num)>0.25
penalty sht(bus_num)=10000*(buus_inf(bu
elseif  buus_inf(bus_num)<0.00
penalty sht(bus_num)=10000*(buus_inf(bu
else
penalty sht(bus_num)=0;
end
end
penalty_sht_violation=sum(penalty_sht);
%Penalty for tap position violation
brch_inf=[branch(8,9); branch(32,9); branch(36,
branch(93,9); branch(95,9); branch(102,9); branch(1
for brch_num=1:9
if brch_inf(brch_num)>1.10
penalty _brch(brch_num)=10000*(brch_inf(
elseif  brch_inf(brch_num)<0.90
penalty brch(brch_num)=10000*(brch_inf(
else
penalty brch(brch_num)=0;
end
end
penalty brch_violation=sum(penalty_brch);
%sum of real power losses of all branches

losses_final(k)=eval([ losses ' ,num2str(K)]);

Obj_fun_final(k)=losses_final(k)+penalty bus_violat
alty _brch_violation;

,num2str(k), D)) K

_num)-1.10)"2;

_hum)-0.95)"2;

S_num)-0.25)"2;

S_num)-0.00)"2;

9); branch(51,9);
07,9); branch(127,9)];

brch_num)-1.10)"2;

brch_num)-0.90)"2;

ion+penalty_sht_violation+pen
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% Evaluate new solutions
Fitness_final(k)=0bj_fun_final(k);

%% If the solution improves or not too loud
if Fitness_final(k)<=Fitness(k) & (rand<A(k))
losses(k)=losses_final(k);
pbest(k,:)=Sol(k,:);

improved solution
Fitness(k)=Fitness_final(k);

fitness
A(k)=A(k)*alpha;
r(k)=r(k)*(1-exp(-gamma*N_iter));
end

[fnew,n]=min(Fitness_final);
% Update the current best
if fnew<=fmin
best=Sol(n,:);
fmin=fnew;
end

end

fmin_rec(N_iter)=fmin;
plot(fmin_rec);
drawnow;
toc

end

% replace initial solution with
% replace initial FITNESS with improved

% update loudness of bats
% update the pitch of bats
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