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ABSTRACT 

 

This research presents a Hybrid Particle Swarm Optimization with Bat Algorithm (HPSOBA) based 

approach to solve Optimal Reactive Power Dispatch (ORPD) problem. The primary objective of 

this project is minimization of the active power transmission losses by optimally setting the control 

variables within their limits and at the same time making sure that the equality and inequality 

constraints are not violated. Particle Swarm Optimization (PSO) and Bat Algorithm (BA) 

algorithms which are nature-inspired algorithms have become potential options to solving very 

difficult optimization problems like ORPD. Although PSO requires high computational time, it 

converges quickly; while BA requires less computational time and has the ability of switching 

automatically from exploration to exploitation when the optimality is imminent. This research 

integrated the respective advantages of PSO and BA algorithms to form a hybrid tool denoted as 

HPSOBA algorithm. HPSOBA combines the fast convergence ability of PSO with the less 

computation time ability of BA algorithm to get a better optimal solution by incorporating the BA’s 

frequency into the PSO velocity equation in order to control the pace. The HPSOBA, PSO and BA 

algorithms were implemented using MATLAB programming language and tested on three (3) 

benchmark test functions (Griewank, Rastrigin and Schwefel) and on IEEE 30- and 118-bus test 

systems to solve for ORPD without DG unit. A modified IEEE 30-bus test system was further used 

to validate the proposed hybrid algorithm to solve for optimal placement of DG unit for active 

power transmission line loss minimization. By comparison, HPSOBA algorithm results proved to 

be superior to those of the PSO and BA methods. 

In order to check if there will be a further improvement on the performance of the HPSOBA, the 

HPSOBA was further modified by embedding three new modifications to form a modified Hybrid 

approach denoted as MHPSOBA. This MHPSOBA was validated using IEEE 30-bus test system to 

solve ORPD problem and the results show that the HPSOBA algorithm outperforms the modified 

version (MHPSOBA). 

Keywords—Hybridization; Hybrid Particle Swarm Optimization (HPSOBA); Modified Hybrid 

Particle Swarm Optimization (MHPSOBA); Optimal Power Flow (OPF); Optimal Reactive Power 

Dispatch (ORPD); Particle Swarm Optimization (PSO); Bat Algorithm (BA); Active Power Loss 

Minimization; Benchmark Functions; Distributed Generation (DG); Conventional Optimization 

Technique; Evolutionary Optimization Technique; Artificial Intelligence; Equality Constraints; 

Inequality Constraints; Penalty Function. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 RESEARCH BACKGROUND  

Electric power systems are comprised of large and complex components that produce electrical 

energy. A modern electric power system has the following components: 1) generating power plants, 

2) transmission lines, 3) distribution lines, and 4) loads. The long transmission lines carry the 

generated electric power from the generating stations to the loads. Every power system has the 

primary objective of supplying cheap, reliable and optimized power to the consumers. In the bid to 

optimize the power supplied to the various loads, the system encounters problems which are 

summarily referred to as Power System Optimization problems. 

 

Optimization problems, which are widely encountered in electric power systems, can be very 

complex and non-linear depending on the nature of the fitness function. The goal of an optimization 

problem can be stated thus: finding the amalgamation of control or decision variables that optimize 

a given objective function to be maximized or minimized, possibly subject to some constraints on 

the allowed parameter values. Generally, the classifications of the optimization problems are done 

according to the mathematical features of the fitness function, constraints and control variables. The 

problem formulation of any optimization problem can be thought of as a sequence of steps [1]. 

These steps are: 

1) Choosing the design variables (control and state variables) 

2) Formulating constraints 

3) Formulating objective functions 

4) Setting up variable limits 

5) Choosing an optimization technique to solve the problem 

6) Solving the problem in order to obtain the optimal solution. 

 

In recent years, the electric power industry has experienced a major turn-around in the form of 

deregulation or restructuring. Deregulation is all about of removing or reducing government 

monopolistic control over prices with the introduction of independent power providers thereby 

giving consumers the power to choose their utility providers [2]. This led to competitive market in 

the power industry which results in lowering of electricity prices, innovation and expansion of the 

power industry. This competitive market reduces cost but unarguably bring uncertainty to 

generation forecasting as power producers compete to sell electricity. Meanwhile, in most places, 
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the rate of energy consumption has outpaced infrastructure development, placing pressure on the 

aging equipment. These factors contribute to the increasing need for fast and reliable optimization 

methods that can address both security and economic issues simultaneously in support of power 

system operation and control [3]. 

 

One of the most significant optimization problems in electric power systems is Optimal Power Flow 

(OPF) which was introduced by Carpentier [4] in 1962, and since then there has been a tremendous 

development and algorithmic improvement. The primary objective of OPF is to obtain the optimal 

state of the control variables by minimizing an objective function for a particular power system 

while keeping all constraints (equality and inequality constraints) within limits [5]. Optimal 

Reactive Power Dispatch (ORPD) is a sub-problem of the OPF problem, which determines all kinds 

of controllable variables for optimal operation. In an ORPD, the values of some (or all) of the 

control variables need to be found so as to optimize (maximize or minimize) a predefined objective 

function. It is also important that the proper problem definition with clearly stated objective be 

given at the onset. The most common ORPD objective functions are minimization of active power 

transmission loss, minimization of generation cost, maximization of power quality (often by 

minimizing voltage deviation) and minimization of capital cost during system planning [6]. The 

active power transmission line loss leads to power shortages which affects the economic growth of 

a country. For reliable operation of any power system, the power transmission losses are to be 

minimized. This objective can be accomplished by optimizing the control variables such as 

generator bus voltages (continuous variable), transformer tap ratio or position, and reactive power 

output of shunt compensations (discrete variables) [7].  

 

The ORPD problem is a non-continuous and non-linear objective function optimization problem 

which requires a more complex formulation, as the set of equations involved may not be linearized. 

Solving ORPD problems has the advantage of, but not limited to, minimization of active power 

transmission loss and power factor improvement in the distribution system. The ORPD problem can 

also be described as a complex and combinatorial optimization problem which contains both 

continuous and discrete control variables [8]. In this case, non-linear optimization 

methods/techniques must be employed. There are two optimization methods used in solving ORPD 

optimization problems namely Conventional and Evolutionary/Artificial Intelligence Optimization 

Techniques. A number of conventional techniques such as Newton-Raphson Method [9], Quadratic 

Programming (QP) [10, 11], Interior Point Method (IPM) [12, 13] and Linear Programming (LP) 

[14, 15] have been successfully applied to solving the ORPD problem. Traditional optimization 

methods which use gradients for the search of the optimum, need a function that is at least twice 
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differentiable and are inefficient in dealing with discrete variables-based problems which results in 

their incapability for solving ORPD problems [16]. In the past, some evolutionary methods have 

been applied to solve the ORPD problems in a bid to surmount the disadvantages imposed by the 

conventional methods. Such evolutionary methods include Evolutionary Programming (EP) [17], 

Genetic Algorithm (GA) [18, 19], Bat Algorithm (BA) [20], Seeker Optimization Algorithm (SOA) 

[21], Differential Evolution (DE) [22–24], Bacterial Foraging Optimization (BFO) [25], Differential 

Evolution (DE) [26] and Particle Swarm Optimization (PSO) [27]. Thus, evolutionary optimization 

techniques have become an alternative to traditional optimization techniques for solving ORPD 

problems since real-world problems are non-convex, non-differentiable and discontinuous.   

 

1.2 MOTIVATION  

The electric power system conveys bulk electrical energy from the generating plants to the 

consumers via power substations, while sustaining tolerable or standardized power and voltage 

qualities and limits for all consumers. The electrical energy from the generating station is delivered 

to the consumer terminals through transmission and distribution networks. The generating stations 

supply both active power and reactive power to the consumers. The consumer terminals need a 

substantially constant voltage for satisfactory operation, but in practice, electric loads are time 

variant which means that the consumer loads change over time causing power and current 

fluctuations. On no-load conditions, the reactive power is required for magnetizing purposes while 

on load conditions, the reactive power requirement depends on the nature of the load which can be 

real, reactive or both. 

 

Reactive power requirement changes continuously with load and system configuration. The change 

in reactive power causes voltage variations in the system. Any change in the system formation or in 

power demands may results in the change of voltage levels in the system. Injecting reactive power 

into the power system raises voltages while absorbing the reactive power from the system lowers 

voltages. The main task of a power system is to sustain the load bus voltages within the nominal 

range for consumer satisfaction especially in a deregulated or restructured power industry. Despite 

the importance of deregulation which includes but is not limited to removal or reduction of 

government control over the power industry and electricity price reduction etc., it leads to 

expansion and reconfiguration of the power system. This situation, if not properly handled, can lead 

to huge active power transmission line losses. These power transmission losses lead to power 

shortage, voltage collapse and electrical blackouts which affects the economic growth of the 

country. For reliable operation of any power system, the active power transmission losses are to be 

minimized. This situation can be improved by the operator through reallocation of reactive power 
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generation in the system by modelling it as an ORPD optimization problem (without and without a 

DG unit optimally installed) with the active power transmission loss as the objective function.  

 

1.3 OBJECTIVES  

The following are some of the objectives of this research: 

1) To explore the advantages and disadvantages of PSO and BA optimization techniques.  

2) To explore the applications of the PSO and BA optimization techniques in solving the 

ORPD problems (with and without a DG unit).  

3) To design a hybrid method of PSO with BA optimization techniques in order to extend the 

PSO capabilities and improve its accuracy in solving ORPD problems (with and without a 

DG unit). 

4) To demonstrate the application and implementation of the hybridized PSO-BA algorithm in 

solving ORPD problems (with and without a DG unit) for active power transmission loss 

minimization.  

5) To investigate the effects of BA’s frequency (f1) or two frequencies (f1and f2) on the PSO 

algorithm’s velocity update equation. 

6) To investigate the effect of optimal placement of a DG unit in solving an ORPD problem 

using the hybrid approach. 

7) To compare the results from the above and draw conclusion. 

 

1.4 RESEARCH QUESTIONS  

The major question this project tends to answer is: 

“How can a standard PSO be hybridized with a BA algorithm to solve an ORPD problem for an 

Active Power Transmission Loss Minimization Objective Function?” 

In the quest to finding an answer to the above research question, the following sub-questions need 

to be answered as well: 

Q1) What are the advantages and disadvantages of the PSO algorithm and BA algorithm? 

Q2) Can the drawbacks of premature convergence of a PSO algorithm be avoided by 

hybridization with a BA algorithm? 

Q3) Is it possible to combine PSO and BA algorithms to solve ORPD problem? 

Q4) If Q3 is possible, how then can the combination be achieved? 

Q5) What are the effects of the BA’s frequency (f1) or two frequencies (f1and f2) on the PSO 

algorithm’s velocity update equation? 
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Q6) What is the effect of removing randomness from the PSO algorithm’s velocity and 

position vectors thereby allowing pbest and gbest to govern the update during iteration 

in the hybrid approach? 

Q7) What are the effects of monotonically increasing and decreasing the pulse rate and 

loudness respectively during the hybrid approach iterative update? 

Q8) How can the equality and inequality constraints of the ORPD problem be restricted 

without violation? 

Q9) Where necessary, what kind of penalty function is imposed? 

Q10) What can be done to further reduce the active power transmission line losses? 

Q11) How can a distributed generation unit be optimally placed in a distribution network? 

Q12) What is the effect of optimal placement of a DG unit in solving an ORPD problem using 

a PSO-BA hybrid approach? 

 

1.5 SCOPE OF THE RESEARCH  

The research is limited to form a hybrid algorithm by combining PSO with BA for solving an 

ORPD problem (denoted as HPSOBA). The research is also limited to investigating only the active 

power transmission loss objective function and validation by using standard benchmark test 

functions (Griewank, Rastrigin and Schwefel) and on IEEE 30- and 118-bus test systems to solve 

for an ORPD problem without a DG unit on a MATLAB programming platform. A modified IEEE 

30-bus test system was further used to validate the proposed algorithm to solve for optimal 

placement of a DG unit for active power transmission line loss minimization. The equality and 

inequality constraints are also taken into consideration and where necessary a penalty function is 

imposed when constraints are violated. 

 

A further modification of the HPSOBA algorithm was also considered to check if there will an 

improvement of the hybrid approach performance in solving for ORPD problem or not. 

 

1.6 OUTLINE OF THE DISSERTATION 

The organization of the thesis is as follows: 

Chapter 1, “Introduction” presents the research background, motivation, objectives, research 

questions, scope and outline of this dissertation.  

 

Chapter 2, “Literature Review” surveys the methods applied in solving the ORPD problem in the 

past and the current scenario are presented considering the PSO and BA methods. The ORPD is 

also presented alongside its problem formulation and objective functions. The ORPD problem 
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formulation consists of equality (power flow) and inequality (control variables) constraints. The 

restriction of state variables is done by adding them as quadratic penalty terms to the objective 

function. It also describes the PSO and BA pseudo code and their basic fundamentals.Also 

presented in this chapter is the review and application of optimal placement of DG unit(s) to solving 

an ORPD problem. 

 

Chapter 3, “Hybrid PSO-BA Model” describes the hybridization of the PSO with the BA algorithm 

including its motivations. The approach was carefully designed to achieve a better and quality 

optimized result.  Standard benchmark test functions and IEEE 30- and IEEE 118-bus test systems 

were used to validate the robustness, accuracy and efficiency of the proposed approach. The 

simulation results and analysis of the test function optimization and ORPD problem were presented 

and compared with other results in the literature. A modified IEEE 30-bus test system was further 

used to validate the proposed algorithm to solve for optimal placement of DG unit for active power 

transmission line loss minimization.  

 

Chapter 4, “Modified HPSOBA” The hybrid approach (HPSOBA) proposed by this research was 

further modified to form a modified hybrid approach denoted as MHPSOBA by embedding three 

new modifications. IEEE 30-bus test system was used to validate this approach to solve for the 

ORPD problem. The evaluated results were compared with the base case and HPSOBA methods. 

 

Chapter 5, “Conclusion” summarizes the outcomes of the research and outlines the contributions 

of this research to the development of power systems. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

This chapter reviews the ORPD problem as part of optimization problems encountered in electric 

power systems and some of the optimization techniques applied in solving the ORPD problem. A 

brief discussion of both conventional and evolutionary techniques is presented. PSO, BA and 

hybridization of evolutionary techniques to solving ORPD problem are also reviewed as well as the 

optimal placement of the DG unit(s) in the distribution networks to reduce active power 

transmission line losses. This chapter also covers the ORPD problem formulation, the constraints 

(both equality and inequality) to which the objective function is subjected to are also defined here. 

 

2.1 OPTIMAL REACTIVE POWER DISPATCH  

The difficulty of solving ORPD problems increases significantly with increasing network size and 

complexity. Recent industry developments have greatly increased electric power system 

complexity. In prior decades, utilities had relatively few generators compared to the numbers 

introduced today by the advent of independent power producers. Meanwhile, demand response 

programs add variables to the load side of ORPD problems. Unfortunately, these developments 

have discouraged the use of ORPD in many real-world applications [28, 29]. However, many 

ORPD solution methods have been developed, each with distinct mathematical characteristics and 

computational requirements. ORPD solutions methods vary considerably in their adaptability to the 

modelling and solution requirements of different power system applications. 

 
ORPD optimization problem formulations differ greatly depending on the particular selection of 

variables, objective(s) and constraints. Because of the specialized nature of ORPD, the formulation 

selection often has implications for both solution method design and solution accuracy. The two 

major types are Conventional and Evolutionary optimization techniques.  

Traditionally, conventional methods are effectively used to solve ORPD problems. They have been 

applied to solving ORPD problems to suit the different objective functions and constraints. These 

techniques are based on mathematical formulations which have to be simplified in order to get an 

optimal solution. Some of the weakness of the conventional methods include: limited ability in 

solving real-world large scale optimization problems, weakness in handling constraints, poor 

convergence and stagnation, slow computational time (especially if the number of variables are 

large) and expensive in computing large power system solutions [30]. 

 



8 
 

To overcome the shortcomings of conventional techniques, evolutionary methods and their 

hybridized versions have been developed and applied to ORPD problems in the recent past. The 

major advantages of the evolutionary methods include: fast convergence rate, appropriate for 

solving non-linear optimization problems, ability to find global optimum solutions, suitable for 

solving multi-objective optimization problems, pertinent in finding multiple optimal solutions in a 

single simulation run and versatile in handling constraints [31]. 

 

2.1.1 CONVENTIONAL OPTIMIZATION TECHNIQUES 

The development of conventional optimization techniques and their applications to solve ORPD 

problems are briefed here. 

 

In reference [32], Mamundur and Chenoweth used Dual Linear Programming (DLP) to determine 

the optimal settings of the ORPD control variables simultaneously satisfying the constraints. The 

method employs linearized sensitivity relationships of power systems to establish both the objective 

function for minimizing the active power transmission line losses and the system performance 

sensitivities relating dependent and control variables. This technique is particularly suitable to 

minimize system losses under operating conditions. 

 

Reference [33]used P-Q decomposition approach to formulate OPF based upon the decoupling 

principle well recognized in bulk power transmission load flow. This approach decomposes the 

OPF formulation into a P-problem (real power model) and Q-problem (reactive power model), 

thereby showing ORPD as a sub-problem of OPF. The Q-Problem is defined as the minimization of 

real power transmission line losses by optimally setting the generator voltages, transformer tap 

settings and shunt reactive power compensations. The problem of enforcing state variables 

(inequality constraints) is included in the problem formulation by use of penalty functions.  This 

approach simplifies the formulation, improves computation time and permits certain flexibility in 

the types of calculations desired (i.e. P-Problem, Q-Problem or both).  

 

Burchett et al. [34] in their paper proposed a Quadratic Programming (QP) solution to the OPF 

problem. This method used the second derivatives of the objective function to find the optimal 

solution. This method is suitable for optimization problems with infeasible or divergent starting 

points. 

 

Lee et al. [35] broadly solved the OPF problem by decomposing the problem into P-optimization 

module and Q-optimization module and solved them using the Gradient Projection Method (GPM) 
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for the first time in a power system optimization study.  This GPM technique allows the use of 

functional constraints without the need of penalty functions or Lagrange multipliers among other 

advantages. Mathematical formulations were developed to represent the sensitivity relationships 

between the state and control variables for both P-optimization and Q-optimization modules.  

 

Mota-Palomino and Quintana [36] presented a Linear Programming based solution for the reactive 

power dispatch problem. The reactive power model of the fast decoupled load flow algorithm was 

used to derive linear sensitivities. A suitable criterion was suggested to form a sparse reactive 

power sensitivity matrix. The sparse sensitivity matrix was modelled as a bipartite graph to define 

an efficient constraint relaxation strategy to solve linearized reactive power dispatch problems. 

 

In reference [37], Nanda et al. developed Fletcher’s Quadratic Programming to solve the OPF 

problem. The algorithm decoupled the OPF problem into sub-problems with two different objective 

functions: minimization of generation cost and minimization of active power transmission line 

losses. These sub-problems were solved to optimally set the control variables while restricting the 

system constraints without violations. This algorithm showed some potential for online solving of 

OPF problems. 

 

Transforming discrete control variables such as shunt reactive compensations and transformer tap 

settings into continuous control variables and rounding these off to the nearest step is not suitable 

for controls with large step sizes because this transformation brings about optimal solution 

degradation. Solving discrete variable controls involves a combinatorial search procedure which 

slows the system in real-time applications. Reference [38] solved this problem by proposing a 

penalty based discretization technique which eliminated combinatorial search in providing a near 

optimal discrete solution.  

 

Granville [39] presented an Interior Point Method (IPM) technique based on the primal dual method 

to solve the ORPD problem in large scale power systems. In the problem formulation, the inequality 

constraints were eliminated by incorporating them as a logarithmic barrier function. The main 

feature of the IPM is:  

1) Insusceptibility of the size of power system to the number of iterations  

2) Numerical robustness 

3) Effectiveness in solving ORPD problems in large scale power systems 
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Reference [40] proposed a new Newton method approach to solve the OPF problem which 

incorporates an augmented Lagrangian function which has the function of combining all the 

equality and inequality constraints. The mathematical formulation and computation of the method is 

exploited using the sparsity of the Hessian matrix of the augmented Lagrangian. Optimal solutions 

were achieved by this method and can be utilized for an infeasible starting point as its set of 

constraints does not have to be identified. 

 

Momoh and Zhu [41] proposed an improved Quadratic Interior Point Method (QIPM) to solve the 

OPF problem. The proposed method has the features of fast convergence and a general starting 

point, rather than selected good point as in the general IPM. 

 

2.1.2 EVOLUTIONARY OPTIMIZATION TECHNIQUES 

There has been tremendous success in the development of evolutionary optimization techniques in 

recent past. This section explores the development of evolutionary optimization techniques and 

their applications to solve an ORPD problem or OPF problem in general. 

 

Reference [42] presented the application of Evolutionary Programming (EP) to solve the ORPD 

problem and also control of the voltage profile in power systems. The method proved to be 

applicable in solving large scale power system global optimization problems.  

 

Wu et al. [43] presented an Adaptive Genetic Algorithm (AGA) for solving the ORPD problem and 

control of the voltage profile in power systems. Depending on the objective functions of the 

solutions and the normalized fitness distances between the solutions in the evolution process, the 

crossover and mutation probabilities were varied using the proposed AGA method to prevent 

premature convergence and at the same time improve the convergence performance of genetic 

algorithms.  

 

Abido [44] presented an efficient and reliable Tabu Search (TS) based method to solve the OPF 

problem. The method employed TS method to optimally set the control variables of the OPF 

problem. In order to reduce the computational rate, the method integrated TS as a derivative-free 

optimization technique. The TS algorithm as presented by Abido has as an advantage its robustness 

as it can set its own parameters as well as the initial solution. TS has the ability of avoiding 

entrapment in a local optimum thereby preventing cycling by using a flexible memory of the search 

history.  
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Genetic Algorithm (GA) - based technique [45] was proposed for solving the ORPD problem 

including a Voltage Stability Limit (VSL) in power systems. The monitoring methodology for 

voltage stability is based on the L-index of load buses. A binary coded GA with tournament 

selection, two point crossovers and bit-wise mutation was used to solve the ORPD problem. 

 

Optimal location and control of a Unified Power Flow Controller (UPFC) along with transformer 

taps are tuned with a view to simultaneously optimize the real power losses and the VSL of a mesh 

power network using the Bacteria Foraging  Optimization (BFO) technique [46]. The problem was 

formulated as a nonlinear equality and inequality constrained optimization problem with an 

objective function incorporating both the real power loss and the VSL.  

 

Devaraj [47] presented an improved GA approach for solving the multi-objective reactive power 

dispatch problem. Loss minimization and maximization of the voltage stability margin were taken 

as the objectives. In the proposed GA, voltage magnitudes are represented as floating point numbers 

and transformer tap-settings and the reactive power generation of a capacitor bank were represented 

as integers. This alleviates the problems associated with conventional binary-coded GAs to deal 

with real variables and integer variables. Crossover and mutation operators which can deal with 

mixed variables were proposed.  

 

Abbasy and Hosseini [48] applied Ant Colony Optimization (ACO) technique to solve the ORPD 

problem. The approach consisted of mapping the solution space on a search graph, where artificial 

ants walk. They proposed four variants of the ant systems: 1) basic ant system, 2) elitist ant system, 

3) rank based ant system and 4) max-min ant system. They also portrayed that applying the elitist 

and ranking strategies to the basic ant system improves the algorithm's performance in every 

respect.  

 

Liang et al. [49] showed that due to DE’s simpler reproduction and selection schemes, it uses less 

time than other evolutionary methods do to achieve solutions with better quality. They also showed 

that their method is robust (reproducing close results in different runs) and has a simple parameter 

setting. They identified one short coming of DE; that it requires relatively large populations to 

avoid premature convergence which leads to a long computational time.  

 

Reference [50] presented an Improved Genetic Algorithm (IGA) approach for solving the multi-

objective ORPD problem. Minimization of real power loss and total voltage deviation were the 

objectives of this reactive power optimization problem. They applied some modifications to the 
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original GA to take into account the discrete nature of transformer tap settings and capacitor banks. 

For effective genetic operation, the crossover and mutation operators which can directly deal with 

the floating point numbers and integers were used.  

 

Dai et al. [51] proposed a Seeker Optimization Algorithm (SOA) for solving the reactive power 

dispatch problem. The SOA is based on the concept of simulating the act of human searching, 

where the search direction is based on the empirical gradient by evaluating the response to the 

position changes and the step length is based on uncertainty reasoning by a simple Fuzzy Logic 

rule. The algorithm directly uses search direction and step length to update the position. A 

proportional selection rule is implemented for selecting the best position. 

 

Reference [52] proposed an approach which employs the DE algorithm for optimal settings of the 

ORPD control variables with different objectives that reflect power loss minimization, voltage 

profile improvement, and voltage stability enhancement. They demonstrated the potential of the 

proposed method and showed its effectiveness and robustness to solve the ORPD problem. 

 

Ayan and Kilic [53] presented an Artificial Bee Colony (ABC) algorithm based on the intelligent 

foraging behaviour of a honeybee swarm in solving the ORPD problem. They showed that the 

advantage of the ABC algorithm is that it does not require cross over and mutation rates as in the 

case of Genetic Algorithm and Differential Evolution. The other advantage is that the global search 

ability of the algorithm is implemented by introducing a neighbourhood source production 

mechanism which is similar to a mutation process. 

 

A newly developed Teaching Learning Based Optimization (TLBO) algorithm [54] was presented 

to solve a multi-objective ORPD problem by minimizing real power loss, voltage deviation and 

voltage stability index. To accelerate the convergence speed and to improve the solution quality, a 

Quasi Opposition Based Learning (QOBL) concept is incorporated in original TLBO algorithm. 

 

Dharmaraj and Ravi [55] presented an Improved Harmony Search Algorithm (IHSA) to solve 

multi-objective ORPD problem by minimizing active power loss, voltage deviation and voltage 

stability index.  To accelerate the convergence speed and to enhance the solution quality dynamic 

pitch adjusting rate and variable band width are incorporated in the original HSA. 

 

The TLBO algorithm [56] was based on the influence of a teacher on learners. In their work, the 

authors used this technique to solve the OPF problem. They proved that the TLBO technique 
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provided an effective and robust high-quality solution when solving the OPF problem with different 

complexities. 

 

Another new nature-inspired meta-heuristic algorithm was proposed to solve the OPF problem in a 

power system. This algorithm was inspired by the black hole phenomenon and called Black-Hole-

Based Optimization (BHBO) approach [57]. A black hole is a region of space-time whose 

gravitational field is so strong that nothing which enters it, not even light, can escape.  

 

Reference [58] presented a multi-level methodology based on the optimal reactive power planning 

problem considering voltage stability as the initial solution of the fuel cost minimization problem. 

To improve the latter, the load voltage deviation problem is applied to improve the system voltage 

profile. They also showed that the reactive power planning problem and the load voltage deviation 

minimization problems are solved using an optimization method namely the Differential Search 

Algorithm (DSA) and the fuel cost minimization problem is solved using IPM. 

 

In [59], a Gray Wolf Optimizer (GWO) algorithm (which was inspired from gray wolves’ 

leadership and hunting behaviour) is presented to solve the ORPD problem. GWO is utilized to find 

the best combination of control variables such as generator voltages, tap changing transformers’ 

ratios as well as the amount of reactive compensation devices so that the loss and voltage deviation 

minimizations can be achieved.  

 

The Honey Bee Optimization (HBO) algorithm [60], which is a nature inspired algorithm that 

mimics the mating behaviour of the bee in the exploration and exploitation search, is also employed 

to solve ORPD. There are three kinds of bees in the colony, the queen, the workers and the drones. 

This technique was realised by sorting of all drones based on their fitness function. Crossover and 

mutation operators were applied to this technique to solve the ORPD problem. 

 

2.2 THE ORPD PROBLEM FORMULATION 

The objective of the ORPD is to minimize the active power loss in the transmission network, which 

can be described as follows: 

            Minimize  f (x, u)              (1) 

            while satisfying 

 g (x, u) = 0     (2) 

 h (x, u) ≤ 0    (3) 
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where f(x, u) is the objective function to be optimized, g(x, u) and h(x, u) are the set of equality and 

inequality constraints respectively. x is a vector of state variables, and u is the vector of control 

variables. The state variables are the load bus (PQ bus) voltages, phase angles, generator bus 

voltages and the slack active generation power. The control variables are the generator bus voltages, 

the shunt capacitors/reactors and the transformers tap settings. 

 

The objective function of the ORPD is to minimize the active power losses in the transmission 

lines/network, which can be defined as follows: 

 

    (4) 

 

where k refers to the branch between buses i and j; PLoss and Gk are the active loss and mutual 

conductance of branch k respectively; δi and δj are the voltage angles at bus i and j; NL is the total 

number of transmission lines. 

The above minimization objective function is subjected to the both equality and inequality 

constraints.  

 

2.2.1 EQUALITY CONSTRAINTS 

The equality constraints are the load flow equations given as: 

                                                           (5) 

 

    (6) 

 

where PGi and QGi are the active and reactive power generations at bus i respectively; PDi and QDi 

are the active and reactive power load demands at bus i respectively; Bk is the mutual susceptance of 

branch k; NB is the total number of buses. 

 

2.2.2 INEQUALITY CONSTRAINTS 

The inequality constraints are: 

1) Generator Constraints: The generator voltages VG and reactive power outputs QG are 

restricted by their limits as shown below in Eq. (7) and Eq. (8): 

VGi 
min  ≤  VGi  ≤ VGi

 max  ; i=1,…, NG     (7) 

QGi 
min ≤ QGi  ≤ QGi

 max ; i= 1,…, NG         (8) 

where NG is the total number of generators 

 

PGi  – PDi  – Vi  ∑ Vj [Gk cos(δi – δj) + Bk sin(δi – δj)] = 0 
NB 

k=1 

 
QGi  – QDi  – Vi ∑ Vj [Gk sin(δi – δj) + Bk cos(δi – δj)] = 0 

NB 

k=1 

 

F = Min. PLoss = ∑ Gk [Vi
2 + Vj

2 – 2ViVj cos(δi – δj)] 
NL 

k=1 
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2) Reactive Compensation Sources: These devices are limited as follows: 

QCi 
min ≤ QCi  ≤ QCi

 max ; i= 1,…, NC         (9) 

where NC is the number of reactive compensation devices 

 

3) Transformer Constraints: Tap settings are restricted by the upper and lower bounds on the 

transformer tap ratios: 

Ti 
min ≤ Ti  ≤ Ti

 max ; i= 1,…, NT         (10) 

where NT is the number of transformers 

 

2.2.3 PENALTY FUNCTION 

The most efficient and easiest way to handle constraints in optimization problems is by the use of 

penalty functions. The direction of the search process and thus, the quality of the optimal solution 

are hugely impacted by these functions. A suitable penalty function has to be chosen in order to 

solve a particular problem. The main goal of a penalty function is to maintain the systems security. 

These penalty functions are associated with numerous user defined coefficients which have to be 

rigorously tuned to suit the given problem. This research used a quadratic penalty function method 

in which a penalty term is added to the objective function for any violation of constraints. The 

inequality constraints which include the generator constraints, reactive compensation sources and 

transformer constraints are combined into the objective function as a penalty term, while the 

equality constraints and generator reactive power limits are satisfied by the Newton-Raphson load 

flow method. By adding the inequality constraints to the objective function F in Eq. (4), the 

augmented objective function FT to be minimized becomes: 

 

                    (11) 

 

where λV, λC , λT are the penalty factors; and  Vi
 lim, Qci

 lim, and Ti
 lim are defined as: 

Vi
 lim ; if Vi

  < Vi
 min 

 

Vi
 lim ; if Vi

  > Vi
 max           (12) 

 

Qci
 lim ; if Qci

  < Qci
 min 

                 

Qci
 lim ; if Qci

  > Qci
 max           (13) 

{ Vi
 lim = 

{  Qci
 lim = 

 
FT = F + λV ∑ (Vi – Vi

 lim)2 + λC ∑ (Qci – Qci
 lim)2 + λT ∑ (Ti – Ti

 lim)2  
NB 

k=1 

NB 

k=1 

NB 

k=1 
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Ti
 lim ; if Ti

  < Ti
 min 

                     

Ti
 lim ; if Ti

  > Ti
 min           (14) 

 

By using the concept of the penalty function method [61], the constrained optimization problem is 

transformed into an unconstrained optimization problem in which the augmented objective function 

as described above is minimized.  

 

2.3 PARTICLE SWARM OPTIMIZATION  

PSO is a population-based stochastic optimization technique introduced by Kennedy and Eberhart 

[62] in 1995. PSO is inspired by the social foraging behaviour of some animals such as the flocking 

behaviour of birds and schooling behaviour of fish. PSO exploits a population of individuals to 

explore promising regions within the search space. This algorithm optimizes a problem by 

iteratively improving the candidate solution. In PSO, there is a population of candidate solutions 

(particles) that move around in the search space according to mathematical formulas. In the search 

procedure, each individual (particle) moves within the decision space over time and changes its 

position in accordance with its own best experience and the current best particle [63]. The particle is 

characterised by a d-dimensional vector representing the position of the particle in the search space. 

The position vector represents a potential solution to an optimization problem. During the 

evolutionary process, the particles traverse the entire solution space with a certain velocity. Each 

particle is associated with a fitness value evaluated using the objective function at the particle’s 

current position. Each particle memorizes its individual best position encountered by it during its 

exploration and the swarm remembers the position of the best performer among the population. At 

each iterative process, the particles update their position by adding a certain velocity. The velocity 

of each particle is influenced by its previous velocity, the distance from its individual best position 

(cognitive) and the distance from the best particle in the swarm (social). 

 

The particle therefore appends its previous flying experiences to control the speed and direction of 

its journey. Apart from its own performances, the particle also interacts with its neighbours and 

share information regarding their previous experiences. The particle also utilizes this social 

information to build their future searching trajectory. During the iterative procedure the particles 

update their velocity so as to stochastically move towards its local and global best positions. The 

particle therefore tracks the optimal solution by cooperation and competition among the particles in 

the swarm. 

{ Ti
 lim = 
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Compared with other evolutionary optimization methods, PSO has comparable or superior 

convergence rate and stability for several difficult optimization problems [64]. However, as with 

many evolutionary approaches, a primary drawback of standard PSO is premature convergence 

when the parameters are not chosen correctly, especially while handling problems with many local 

optima [65]. But when compared with other heuristic optimization methods, PSO has comparable or 

superior convergence rate and stability for several difficult optimization problems. Despite this 

major drawback, PSO has many advantages over other traditional optimization techniques [66] 

which can be summarized as follows:  

1) PSO is a population-based search algorithm (i.e., PSO has implicit parallelism). This 

property ensures that PSO is less susceptible to being trapped on local minima. 

2) PSO uses payoff (performance index or objective function) information to guide the 

search in the problem space. Therefore, PSO can easily deal with non-differentiable 

objective functions. In addition, this property relieves PSO of assumptions and 

approximations, which are often required by traditional optimization models. 

3) PSO uses probabilistic transition rules and not deterministic rules. Hence, PSO is a 

kind of stochastic optimization algorithm that can search a complicated and 

uncertain area. This makes PSO more flexible and robust than conventional 

methods. 

4) Unlike the genetic and other heuristic algorithms, PSO has the flexibility to control 

the balance between global and local exploration of the search space. This unique 

feature of a PSO overcomes the premature convergence problem and enhances 

search capability. 

5) Unlike traditional methods, the solution quality of the proposed approach does not 

depend on the initial population. Starting anywhere in the search space, the 

algorithm ensures convergence to the optimal solution. 

 

Some of the attempts made to develop and apply PSO to solve an ORPD problem are briefed 

below: 

Kennedy and Eberhart [62] proposed a new methodology by simulating the movements of birds and 

flocks called PSO for optimization of continuous non-linear functions. The population is responding 

to the quality factors like pbest and gbest. The adjustment toward pbest and gbest is conceptually 

similar to the crossover operation in genetic algorithms. Much of the success of particle swarms 

seems to lie in the agents’ tendency to hurtle past their target. 
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Yoshida et al. [67] proposed a PSO technique for the solution of the reactive power and voltage 

control problem. The control problem was formulated as a mixed-integer non-linear optimization 

problem. The continuation power flow and contingency analysis methods were used to assess the 

voltage security. 

 

Abido [30] presented a PSO technique to solve the OPF problem. The problem formulation 

considered three objectives, such as, minimization of fuel cost, improvement of voltage profile and 

voltage stability enhancement through the L-index method. PSO is a population based search 

algorithm which avoids trapping into local optima. PSO can easily deal with non-differentiable and 

non-convex objective functions. PSO uses probabilistic rules for particle movements rather than 

deterministic rules. 

 

In [68], Stacey et al. integrated a mutation operator into a PSO. A PSO converges rapidly during the 

initial stages of a search, but often slows considerably and can get trapped in local optima. This 

behaviour has been attributed to the loss of diversity in the population. The searched points are 

tightly clustered and the velocities are close to zero. During the search process, these points are 

becoming local optimum points and hence there is no further improvement. The mutation operator 

used speeds up convergence and escapes local minima.  

 

Zhao et al. [69] presented a Multi-Agent PSO (MAPSO) for the solution of the ORPD problem. 

This method integrated the Multi-Agent System (MAS) and the PSO algorithms. An agent in 

MAPSO represents a particle in PSO and a candidate solution to the optimization problem. All 

agents live in a lattice-like environment, with each agent fixed on a lattice point. In order to obtain 

an optimal solution quickly, each agent competes and cooperates with its neighbours and it can also 

learn by using its knowledge. Making use of these agent–agent interactions and the evolution 

mechanism of PSO, MAPSO realizes the purpose of optimizing the value of an objective function. 

 

Vlachogiannis and Lee [70] presented three new versions of PSO for optimal steady-state 

performance of power systems with respect to reactive power and voltage control. Two of the three 

introduced (the enhanced GPAC PSO and LPAC PSO) were based on global and local-

neighbourhood variant PSOs respectively. They are hybridized with the constriction factor 

approach together with a reflection operator. The third technique is based on CA and simulates how 

the achievements of particles can be distributed in the swarm affecting its manipulation. 
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To overcome the drawback of premature convergence in PSO, a learning strategy can be introduced 

in PSO and this approach is called Comprehensive Learning PSO (CLPSO) [71]. In this CLPSO, 

for each particle, besides its own pbest, pbest of other particles were also used as exemplars. Each 

particle learns potentially from the behaviour of all particles in the swarm. 

 

In [72], Lenin presented a Quantum-behaved Particle Swarm Optimization algorithm (QPSO) for 

solving the multi-objective ORPD problem. QPSO as presented by the authors was designed as a 

result of stimulations by the traditional PSO method and quantum procedure theories. 

 

Reference [73] presented a PSO based approach for solving the ORPD problem for minimizing 

power losses without violating the inequality constraints and satisfying the equality constraints. The 

control variables are bus voltage magnitudes (continuous type), transformer tap settings (discrete 

type) and reactive power generation of capacitor banks (discrete type).  

 

Ben et al. [74] applied a PSO-Thyristor Controlled Series Capacitor (PSO-TVAC) algorithm to 

solve the ORPD. The ORPD problem was formulated as a nonlinear, non-convex constrained 

optimization problem considering both continuous and discrete control variables. It also had both 

equality constraints and inequality constraints. The acceleration coefficients in the PSO algorithm 

were varied adaptively during iterations to improve the solution quality of the original PSO and 

avoided premature convergence.  

 

2.3.1 PSO ALGORITHM PSEUDO CODE 

The flowchart in Fig. 1 delineates the steps of the standard PSO algorithm and its pseudo code is 

presented as thus:  

Pseudo code of the Standard PSO algorithm 

Input: PSO population of particles Xi = (xi1,  xi2, . . . , xid)
T for i = 1, . . . , N,  MAX FE. 

Output: The best solution Gbest and its corresponding value fmin = min (f(x)). 
1:  init_particles; 
2:  eval = 0; 
3:  while termination_condition_not_meet do 
4:      for i = 1 to N do 
5:          fi = evaluate_the_new_solution (Xi); 
6:          eval = eval + 1; 
7:          if  fi  ≤  Pbesti  then 
8:              Pi  =  Xi;  Pbesti= fi;              / / save the local best solution 
9:          end if 
10:        if  fi  ≤  fmin  then 
11:            Gbest = Xi;  fmin =  fi;       / / save the global best solution 
12:        end if 
13:        Xi = generate_new_solution (Xi); 



20 
 

14:    end for 
15:  end while 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Conventional PSO Flowchart 

 

In a PSO algorithm, the population has N particles that represent candidate solutions and the 

coordinates of each particle represent a possible solution associated with two vectors, the position Xi 

and velocity Vi vectors. In a d-dimensional search or solution space, Xi = [xi1, xi2, …, xid] and Vi = 

[vi1, vi2, …, vid] are the two vectors associated each particle i. The best previous position of ith 

particle, based on the evaluation of fitness function is represented by Pbesti = [Pbesti1, Pbesti2, …, 

Pbestid] and the index of the best particle among all particles in the group is represented by Gbest. 

The swarm, which consists of a number of particles, flies through the feasible solution space to 

explore optimal solutions. The steps of the PSO technique can be described as follows: 

 

Generate an initial swarm 

Calculate the objective function for each particle  

Check constraints 

Update personal best and global best 

i = i+1 

Update each  
velocity and swarm 

Start 

Is stopping criteria 
satisfied? 

End 

No 

Yes 



21 
 

Step 1: Initialization: Set k = 0 and generate random N particles {Xi (0); i = 1, 2, . . ., N}. Each 

particle is considered to be a solution for the problem and it can be described as Xi (0) = [xi1(0),  

xi2(0),  . . . , xiN(0)]. Each control variable has a range [xmin, xmax]. Each particle in the initial 

population is evaluated using the objective function f. If the candidate solution is a feasible solution 

(i.e., all problem constraints have been met), then go to Step 2; else repeat this step. 

 

Step 2: Counter updating: Update the counter k = k + 1. 

 

Step 3: Compute the objective function. 

 

Step 4: Velocity updating: Using the global best and individual best, the i th particle velocity in the 

j th dimension is updated according to the following equation: 

Vij
k+1=w*V ij

k+c1*r 1*(Pbestij
k-Xij

k)+c2*r 2*(Gbestj
k–Xij

k)           (15) 

i = 1, 2, …, N;  j = 1, 2, …, d 

where c1 and c2 are acceleration constants; r1 and r2 are two random numbers with a range of [0, 1]; 

w is the inertia weight and k is the iteration index. 

Then, check the velocity limits. If the velocity violates its limit, set it at its proper limit. The second 

term of the above equation represents the cognitive part of the PSO where the particle changes its 

velocity based on its own thinking and memory. The third term represents the social part of the PSO 

where the particle changes its velocity based on the social–psychological adaptation of knowledge. 

 

Step 5: Position updating: Each particle updates its position based on its best exploration, best 

swarm overall experience, and its previous velocity vector according to Eq. (16): 

Xij (k+1) = Xij (k) + Vij (k+1)                                                   (16) 

i = 1, 2, …, N;  j = 1, 2, …, d 

 

Step 6: Individual best updating: Each particle is evaluated and updated according to the update 

position. 

 

Step 7: Minimum value search: Search for the minimum value in the individual best for all 

iterations and consider it as the best solution. 

 

Step 8: Stopping criteria: If one of the stopping criteria is satisfied, then stop; otherwise go to Step 

2. 
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2.3.2 BASIC FUNDAMENTALS OF THE PSO 

The basic fundamentals of the PSO technique are stated and defined as follows: 

1)  Particle Xi (k): A candidate solution represented by a d-dimensional real-valued vector, where d 

is the number of optimized parameters; at iteration k, the i th particle Xi (k) can be described as 

 Xi (k) = [xi1 (k),  xi2 (k), . . . , xid(k) ]   

          where the x’s are the optimized parameters and d represents the number of control variables.  

 

2)  Population: This is a set of N particles at iteration k. 

 Pop (k) = [X1 (k),  X2 (k), . . . , XN (k) ] 

          where N represents the number of candidate solutions. 

 

3)  Swarm: This is an apparently disorganized population of moving particles that tend to cluster 

together and each particle seems to be moving in a random direction. 

 

4)  Particle velocity Vi (k):  The velocity of the moving particles represented by a d-dimensional 

real-valued vector; at iteration k, the i th particle Vi (k) can be described as 

 Vi (k) = [vi1 (k), vi2 (k), . . . , vid(k) ] 

          where vid(k) is the velocity component of the i th particle with respect to the dth dimension. 

 

5)  Inertia weight w(k): This is a control parameter, used to control the impact of the previous 

velocity on the current velocity. In other words, it controls the momentum of the particle by 

weighing the contribution of the previous velocity. Hence, it influences the trade-off between the 

global and local exploration abilities of the particles. For initial stages of the search process, a large 

inertia weight to enhance global exploration is recommended whereas it should be reduced at the 

last stages for better local exploration. Therefore, the inertia factor decreases linearly from about 0.9 

to 0.4 during a run. In general, this factor is set according to Eq. (17): 

    (17) 

 

           where itermax is the maximum number of iterations and iter is the current number of 

iterations. 

 

6)  Constriction Factor χ :  The constriction coefficient was developed by Clerc [75]. This 

coefficient is extremely important to control the exploration and exploitation trade-off in order to 

ensure convergence behaviour.  The constriction coefficient guarantees convergence of the particles 

w  = (wmax - wmin) 

itermax 
wmax  – * iter  
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over time and also prevents collapse [76]. The velocity update equation with the constriction factor 

can be expressed as follows: 

 Vij
k+1 = χ [w*Vij

k + c1* r1*(Pbestij
k – Xij

k) + c2* r2*(Gbestj
k – Xij

k)]         (18) 

          where  

    (19) 

 

With Ø = Ø1 + Ø2;  Ø1 = c1r1;  Ø2 = c2r2. Eq. (19) is used under the constraint that Ø ≥ 4 

If Ø < 4, then all particles would slowly spiral toward and around the best solution in the searching 

space without convergence guarantee, but if Ø > 4, then all particles are guaranteed to converge 

quickly [77]. 

 

7)  Acceleration Constants c1 and c2: The acceleration coefficients govern the relative velocity of 

the particle towards its local and global best position. These parameters have to be tuned based on 

the complexity of the problem. A suitable constriction factor calculated from these parameters will 

ensure cyclic behaviour for the particles [78, 79]. The acceleration coefficients together with the 

random vectors r1 and r2, control the stochastic influence of the cognitive and social components on 

the overall velocity of a particle. The constants c1 and c2 are also referred to as trust parameters, 

where c1 expresses how much confidence a particle has in itself, while c2 expresses how much 

confidence a particle has in its neighbours.  

 

8)  Individual best Pbesti: During the movement of a particle through the search space, it compares 

its fitness value at the current position to the best fitness value it has ever reached at any iteration up 

to the current iteration. The best position that is associated with the best fitness encountered thus far 

is called the individual best Pbesti. For each particle in the swarm, Pbesti can be determined and 

updated during the search. For the i th particle, individual best can be expressed as: 

 Pbesti = [Pbesti1, Pbesti2, …, Pbestid]   (20) 

 

9)  Global best Gbest: This is the best position among all of the individual best positions achieved 

thus far. 

 

10)  Stopping criteria: The search process will be terminated whenever one of the following criteria 

is satisfied. 

• The number of iterations since the last change of the best solution is greater than a pre-

specified 

number. 

χ  =                2 

| 2 – Ø –   Ø (Ø – 4) | 
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• The number of iterations reaches the maximum allowable number. 

 

2.4 BAT ALGORITHM  

Since the appearance of the original paper on the BA optimization method in 2010 by Xin-She 

Yang [80], literature abounded with a wide range of applications. The original paper outlined the 

main formulation of the algorithm and applied the BA to study function optimization with 

promising results. A BA simulates parts of the echolocation characteristics of the micro-bat in an 

uncomplicated way. Three major characteristics of the micro-bat are employed to construct the 

basic structure of BA. Hence, the first characteristic is the echolocation behaviour. The second 

characteristic is the signal frequency. The signal is sent by the micro-bat with frequency f and with a 

variable wavelength λ. The third is the loudness A0 of the emitted sound, which is used to search for 

prey.  

The approximate or idealized rules in this method as listed by Xin-She Yang are as follows: 

1) All bats use echolocation to sense distance and they also ‘know’ the difference between 

food/prey and background barriers in some magical way;  

2) Bats fly randomly with velocity vi at position xi and emit sounds with a fixed frequency fmin, 

varying wavelength λ and loudness A0 to search for prey. They can automatically adjust the 

wavelength (or frequency) of their emitted pulses and adjust the rate of pulse emission r ∈ 

[0,1], depending on the proximity of their target; 

3) Although the loudness can vary in many ways, an assumption is made that the loudness 

varies from a large (positive) A0 to a minimum constant value Amin. 

 

Another obvious simplification is that no ray tracing is used in estimating the time delay and three 

dimensional topography. The following approximations are also used to simplify matters even 

further: 

1) Speed of sound in air is taken as v = 340 m/s 

2) The range of frequencies [fmin , fmax] correspond to the range of wavelengths [λmin , λmax].  

 

    Since   λ =          (21) 

a frequency range of [20 kHz, 500 kHz] corresponds to a wavelength range of [0.7 mm, 17 mm]. 

 

Nowadays, BA and its variants are applied for solving many optimization and classification 

problems. BA has been applied to the following classes of optimization problems: continuous, 

constrained and multi-objective [81, 82]. In addition, it is used for classification problems in: 

v 
f 
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clustering, neural networks and feature selection. Finally, BAs are also used in many branches of 

engineering [83, 84]. In this research, the focus is on the ORPD optimization problem. 

 

Biswal et al. [85] solved OPF using a bio-inspired BA with cost as an objective function. They were 

able to prove that their method has good convergence property and a better quality of solution than 

some other results reported in their paper. The main advantage of their technique is easy 

implementation and the capability of finding a feasible near global optimal solution with less 

computational effort.  

 

Reference [86] presented an Improved BA (IBA) to solve an ORPD problem. The algorithm 

utilized chaotic behaviour to produce a candidate solution in behaviours analogous to acoustic 

monophony and was applied to reduce real power loss in a power system.  

 

In [87], a BA was used to solve the OPF problem with the TCSC. The TCSC was used to reduce the 

transmission line losses and improve the voltage profile of the power system. This method proved 

to be effective. 

 

A modified version of the meta-heuristic algorithm based on bat behaviour was proposed in [88] to 

find the best system configuration with a low loss rate. The method presented two different 

approaches: reduction of search space and introduction of a sigmoid function to fit the algorithm to 

the problem. The main advantages of the proposed methodology are: easy implementation and less 

computational efforts to find an optimal solution.  

 

Integration of distributed generation in power systems challenges the operation and management of 

power distribution networks. Latif et al. [89] presented a Modified BA (MBA) for the OPRD of a 

distributed generation of voltage support in a distribution network. An objective function with 

constraints of voltage, DG reactive power and thermal limits of lines was presented. Their results 

showed that the MBA was quite effective for voltage profile improvement and loss minimization. 

 

2.4.1 MOVEMENTS OF VIRTUAL BATS 

In BA, the virtual bats (naturally used for simulations) are defined by their positions xi, velocities vi, 

and frequencies fi in a d-dimensional search space. The new solutions xt
i and velocities vt

i at time 

step t are given by 

fi = fmin  + (fmax −  fmin)β        (22) 

vt
i = vi

t−1 + (xi
t  − xbest) fi       (23)   
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xi
t = xi 

t−1 + vi
t      (24) 

where β ∈ [0,1] is a random vector drawn from a uniform distribution; xbest is the current global best 

location (solution) which is located after comparing all the solutions among all the n bats.  

 

From Eq. (21), the product λi fi determines the velocity increment. To adjust the velocity change, 

either fi (or λi) can used while fixing the other factor λi (or fi) depending on the type of the problem 

of interest. In implementation, fmin = 0 and fmax = 100 will be used, depending the domain size of the 

problem of interest. Initially, each bat is randomly assigned a frequency which is drawn uniformly 

from [ fmin, fmax]. 

 

For the local search part, once a solution is selected among the current best solutions, a new 

solution for each bat is generated locally using random walk 

xnew = xold + εAt     (25) 

where ε ∈ [−1, 1] is a random number, while At is the average loudness of all the bats at this time 

step. 

The update of the velocities and positions of bats have some similarity to the procedure in the 

standard PSO as fi essentially controls the pace and range of the movement of the swarming 

particles.  

 

2.4.2 LOUDNESS AND PULSE EMISSION 

Furthermore, in order to provide an effective mechanism to control the exploration and exploitation 

and to switch to the exploitation stage when necessary, the loudness Ai and the rate r i of pulse 

emission have to be varied during the iterations. Since the loudness usually decreases once a bat has 

found its prey, while the rate of pulse emission increases, the loudness can be chosen as any value 

of convenience, between Amin and Amax. Assuming Amin  = 0 means that a bat has just found its prey 

and temporarily stopped emitting any sound. With these assumptions, the loudness Ai
t and the 

emission pulse rate r i
t are updated accordingly as the iterations proceed as shown in Eq. (26) and 

Eq. (27) 

Ai
t+1 = αAi

t      (26) 

r i
t+1 = r i

0[1 − exp(−γt)]     (27) 

where α and γ are constants; r i
0 is the initial emission pulse rate. For any 0 <α < 1 and γ > 0, we 

have  

Ai
t → 0,    ri

t → ri
0,    as t →∞.     (28) 

The choice of parameters requires some experimenting. Initially, each bat should have different 

values of loudness and pulse emission rate, and this can be achieved by randomization.  
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Loosely speaking, the pulse rate controls the movements of the bats by switching between Eq. (25) 

(local search) and Eq. (24) (global search). At the beginning of iterations, a BA tends to promote a 

global search over local random walks so as to explore the search space more effectively. This 

mechanism is obtained by attributing a low value to the initial emission rate r i
0. However, this value 

should not be too low, thus allowing a small fraction of bats to exploit the solutions of the bat with 

the good positions. As the iterations approach the end, a large value should be assigned to the pulse 

rate so that exploitation takes over from exploration. The loudness Ai controls the acceptance or 

rejection of a new generated solution. The importance of this parameter is that by rejecting some 

solutions, it allows the algorithm to avoid being trapped in local optima (and thus avoid premature 

convergence as well).  

 

2.4.3 BAT ALGORITHM PSEUDO CODE 

The flowchart in Fig. 2 delineates the steps of the standard BA algorithm and its pseudo code given 

as follows: 

          Pseudo code of the Standard Bat Algorithm   

Objective function f (x),   x = (x1, ...,xd)
T 

Initialize the bat population xi (i = 1,2, ...,n) and vi 

Define pulse frequency fi at xi 

Initialize pulse rates ri and the loudness Ai 

while (t <Max number of iterations) 

     Generate new solutions by adjusting frequency, 

     and updating velocities and locations/solutions [Eqs. (22) to (24)] 

if (rand > ri) 

     Select a solution among the best solutions 

     Generate a local solution around the selected best solution 

end if 

Generate a new solution by flying randomly 

if (rand < Ai & f (xi) < f (xGbest)) 

     Accept the new solutions 

     Increase ri and reduce Ai 

end if 

     Rank the bats and find the current best xGbest 

end while 

Post process results and visualization 
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The BA technique steps can be described as follows: 

Step 1: Initialization: Set t = 0 and generate random N bats {Xi (0); i = 1, 2, . . ., N}. Each bat is 

considered to be a solution for the problem and it can be described as Xi (0) = [xi1(0),  xi2(0),  . . . , 

xiN(0)]. Each control variable has a range [xmin, xmax]. Each bat in the initial population is evaluated 

using the objective function f. If the candidate solution is a feasible solution (i.e., all problem 

constraints have been met), then go to Step 2; else repeat this step. Velocity vi, Pulse rate r i and 

Loudness Ai are also initialized while Pulse Frequency fi is defined at xi. 

 

Step 2: Counter updating: Update the counter t = t + 1. 

 

Step 3: Individual best updating: Each particle is evaluated and individual and global best 

solutions are updated. 

 

Step 4: Frequency Adjustment: The pulse frequencies are adjusted using Eq. (22) 

 

Step 5: Velocity updating: Using the global best position and the bat’s pulse frequency, the i th bat’s 

velocity in the d- dimension is updated according to Eq. (23) 

 

Step 6: Position updating: Each bat updates its position based on its previous velocity vector 

according to Eq. (24) 

 

Step 7: Check if rand is greater than ri: If true select a solution among the best solutions and 

generate a local solution around the selected best solution, else generate a new solution by flying 

randomly using a random walk according to Eq. (25). 

 

Step 8: Compute the objective function: Each bat is evaluated and updated according to the 

update position. 

 

Step 9: Check if rand is less than Ai and f(xi) is less than f(xGbest): If it is, accept the new 

solutions. Increase r i using Eq. (26) and reduce Ai using Eq. (27). 

 

Step 10: Rank the Solutions: Search for the minimum value in the individual best for all iterations 

and consider it as the best solution. 

 

Step 11: Stopping criteria: If one of the stopping criteria is satisfied, then stop; else go to Step 2. 
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Fig. 2 Conventional BA Flowchart 

 

Initialize frequency, velocity, bat population, pulse 
emission rate, loudness 

Calculate the objective function for each bat 
and store the best solution 

Move the bat in space using Eq. 23 & 24 

Calculate the fitness of the newly 

generated population 

Select the best 
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generate a new 
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selected solution 

Store the solution 
and update the 

loudness and pulse 
rate 

Is stopping criteria 
satisfied? 

End 
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2.5 HYBRIDIZATION OF EVOLUTIONARY ALGORITHMS TO SOLVE ORPD 

The essence of hybridization is to alleviate the limitations of one algorithm with diversification 

aspects of the other. Researchers have observed that a combination of one evolutionary algorithm 

with either another evolutionary or a conventional algorithm may result in a potent algorithm 

capable of dealing with complex optimization problems [90]. In this section an overview of the 

attempts made in recent years to hybridize an evolutionary algorithm with either an evolutionary or 

a conventional algorithm in solving an ORPD problem will be presented.  

 

Das and Patvardhan [91] presented a method for solving the ORPD problem based on Evolutionary 

Strategy (ES). Some major improvements were added to the traditional ES in order to improve the 

convergence and to find a better solution. This improved technique is referred to as Hybrid 

Evolutionary Strategy (HES). A conscious effort was made in the design of HES to reduce the 

number of load flow executions so that computational requirements were within reasonable limits.  

 

In [92], Yang et al. presented an Improved Evolutionary Programming (IEP) and its hybrid version 

combined with the nonlinear IP technique to solve ORPD problems. In an IEP method, the common 

practices in regulating reactive power were followed in adjusting the mutation direction of control 

variables in order to increase the possibility of keeping the state variables within bounds. The IEP 

was also hybridized with the IP method to obtain a fast initial solution, which was then used as a 

highly evolved individual in the initial population of the improved EP method.  

 

Esmin et al. [93] proposed a Hybrid PSO with Mutation (HPSOM) for loss minimization. The study 

was carried out in two steps. In the first step, using the tangent vector technique, the critical area of 

the power system was identified under the point of view of voltage instability. In the second step, 

after identifying the critical area, the PSO technique was used to calculate the amount of shunt 

reactive power compensation of each bus. The HPSOM algorithm is basically the standard PSO 

combined with arithmetic mutation. The notion of mutation in the hybrid model was introduced as 

in any other genetic algorithm. 

 

By integrating GA with a nonlinear IPM, a novel hybrid method for the ORPD problem was 

proposed in [94]. The method was divided into two parts. The first part was to solve the ORPD with 

the IPM by relaxing the discrete variables. The second part was to decompose the original ORPD 

into two sub-problems: continuous optimization and discrete optimization. The GA was used to 

solve the discrete optimization with the continuous variables being fixed, whereas the IPM solved 

the continuous optimization with the discrete variables being constant. The optimal solution was 
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obtained by solving the two sub-problems alternately. A dynamic adjustment strategy was also 

presented to make the GA and the IPM to complement each other and to enhance the efficiency of 

the hybrid method.  

 

DE is a promising evolutionary algorithm for solving the ORPD problem, but it requires relatively 

large population size to avoid premature convergence, which will increase the computational time. 

On the other hand, EP has been proved to have a good global search ability. Exploiting this 

complementary feature, a hybrid algorithm of DE and EP, denoted as DEEP, was proposed in [95] 

to reduce the required population size. The hybridisation was designed as a novel primary–auxiliary 

model to minimise the additional computational cost.  

 

In [96], Subbaraj et al. presented a two-phase hybrid PSO approach in solving ORPD problem. In 

their hybrid approach, PSO was used to explore the optimal region and a direct search was used as a 

local optimization technique for finer convergence.  

 

Fister et al. [97] presented a hybrid tool based on the BA. BA was hybridized with DE strategies. 

This hybridization showed very promising results on standard benchmark functions and also 

significantly improved the original BA. 

 

Reference [98] presented a reliable and effective algorithm based on Hybrid Modified Imperialist 

Competitive Algorithm (MICA) and Invasive Weed Optimization (IWO) for solving the ORPD 

problem. The original Imperialist Competitive Algorithm (ICA) often converges to local optima. In 

order to avoid this shortcoming, a new method was proposed that profited from the IWO method to 

improve local search near the global best and a series of modifications were added to the 

assimilation policy rule of ICA in order to further enhance the algorithm's rate of convergence for 

achieving a better solution quality.  

 

Mojtaba et al. [99] introduced a hybrid tool to handle the ORPD problem by combining Modified 

Teaching Learning Algorithm (MTLA) and Double Differential Evolution (DDE) algorithm. Their 

hybrid method also proved to be efficient and showed faster convergence. 

 

In [100], Lenin et al. presented Hybridization of a BA with Harmony Search Algorithm (BAHS) for 

solving an ORPD problem. The approach included the addition of a pitch modification procedure in 

Harmony Search, serving as a mutation operator during the procedure of the bat updating with the 
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aim of speeding up convergence, thus making the approach more feasible for a wider range of real-

world applications.  

 

Hybridization of a Simulated Annealing and a Nelder-Mead (SANM) algorithm was proposed in 

[101] to solve an ORPD problem. The proposed algorithm (SANM) started with a primary solution, 

which was generated arbitrarily and then the solution was alienated into partitions. The 

neighbourhood zone was generated, an arbitrary number of partitions were selected and a variable 

updating procedure was started in order to generate a trail neighbour solution. This process helped 

the SANM algorithm to explore the region around the current iterated solution. The Nelder- Mead 

(NM) algorithm was used in the final stage in order to progress the best solution found so far and 

accelerates the convergence in the final stage.  

 

Singh et al. [102] presented a PSO with an Aging Leader and Challengers (ALC) (denoted as ALC-

PSO) for the solution of an ORPD problem. The ORPD problem was formulated as a nonlinear 

constrained single-objective optimization problem where the real power loss and the total voltage 

deviation was to be minimized separately.  

 

Reference [103] presented a novel hybrid algorithm combining a Firefly Algorithm (FA) and the 

NM simplex method for solving ORPD problems. Like many other general purpose optimization 

methods, the original FA often traps into local optima and in order to overcome this shortcoming, 

an efficient local search method called the NM simplex subroutine was introduced in the internal 

architecture of the original FA algorithm. This method proved to avoid premature convergence of 

the original FA by exploration with a FA and exploitation with a NM simplex. 

 

A Hybrid BA (HBA) was proposed in [104] to reduce the real power loss in ORPD problem. 

Swarm Intelligence based BA was hybridized with a DE strategy to solve the problem. The HBA 

was used to find the optimal settings of generator bus voltage, transformer tap settings and reactive 

power of a shunt compensator.  

 

Radosavljevic and Jevtiv [105] presented a new hybrid algorithm (Hybrid GSA-SQP) consisting of 

the Gravitational Search Algorithm (GSA) and the Sequential Quadratic Programming (SQP) for 

solving the ORPD problem. The performance of this hybrid algorithm for the ORPD problem was 

formulated for two different objective functions, namely minimization of real power loss and 

voltage profile improvement. 
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Reference [106] presented a hybrid approach based on an ICA and a PSO to find the solution of 

ORPD of power systems. This hybrid method was proved to be and has higher capability in finding 

better solutions. 

 

2.6 OPTIMAL PLACEMENT OF DG UNIT(S) 

Power system generating stations are located either close to the resources (water, coal and gas) or 

otherwise located far from the load centres. These generating stations are designed to take 

advantage of available economies of scale in a site specific manner and are built as “one-off” 

custom projects. Over the years, electric power transmission line losses increase as a result of 

increasingly age deterioration and capacity constraints upon the transmission networks. This led to 

the introduction of a new technology called distributed generation (DG) unit or system. DG units 

refer to the installation of small-scale generating technologies or stations from a few kilowatts up to 

50 MW to the existing power networks at the distribution level [107]. These small-scale generating 

stations, which include but are not limited to photovoltaic (PV) or solar cells (typically rooftop solar 

PV); small wind power system or wind turbines and combined heat power (CHP), are connected in 

parallel with the utility power networks. They are located near the consumer loads to reduce 

transmission line losses and improve voltage profiles. In general, DG units tend to produce some or 

all of the power required by the consumer loads. However, due to the renewable nature of the DG 

unit’s energy sources, there are times when these energy sources will be insufficient. In such 

circumstances, the consumer will need to receive power from the utility grid. When the DG units 

produce more power than the consumer needs at a specific moment, the excess power is available to 

the utility grid. The integration of DGs in the distribution network has diverse advantages which 

include reduction of active power losses, improvement of voltage profile, reduction of 

environmental pollution, less capital intensive, increased efficiency and reliability of the system 

network [108]. 

 

Numerous methods (conventional and evolutionary techniques) have earlier been used to optimally 

install DG unit(s) in the distribution networks to reduce active power transmission line losses. A 

number of conventional techniques such as gradient search (GS) [109], linear programming (LP) 

[110], Newton-Raphson Extended Method [111] have been successfully applied to optimally install 

DG unit(s). While, some evolutionary methods such as GA [112], BA [113], PSO [114, 115], CS 

[116], ABC [117], Competitive Swarm Optimizer (CSO) [118], Cat Swarm Optimization (CSO) 

[119], Parallel Cat Swarm Optimization Algorithms (PCSO) [119] etc, have also been applied in the 

past to optimally install DG unit(s). 
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2.7 SUMMARY 

This chapter reviews the development and application of conventional and evolutionary 

optimization techniques to solve the ORPD problem by different authors in the field of electrical 

power system. It also gives detailed information about ORPD problem formulation and the 

application of PSO, as well as BA in solving an ORPD problem. It also reviews the development 

and application of some hybrid methods to solve the ORPD as well as optimal placement of DG 

unit(s) in the distribution networks to reduce active power transmission line losses. The next chapter 

presents the hybridization of PSO and BA to form HPSOBA and show in a flow chat how they can 

be used to solve the ORPD problem as well as the simulation results and analysis of using the 

proposed hybrid method on the test cases.  
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CHAPTER 3 

 

HYBRID PSO-BA MODEL 

 

This chapter covers the hybridization tool used in this research and the proposed methodology for 

the hybridization. There are different methods by which these two optimization techniques can be 

hybridized so as to come up with a better method to solve the problem at hand. This chapter 

presents the hybridization of PSO and BA to form HPSOBA and the details of the proposed 

methodology. 

 

3.1 MOTIVATION FOR HYBRIDIZATION OF PSO WITH BA  

The objective function of this research is to minimize the active power loss in a transmission 

network using a hybrid algorithm which is a combination of PSO and BA methods. The PSO has 

been applied many times to solve optimization problems but in this research considering the PSO’s 

shortcomings of premature convergence and required computational time in most cases, an attempt 

is made to improve the PSO algorithm. By finding and analyzing a variety of evolutionary 

optimization algorithms which were raised in recent years, it was found that the BA is gradually and 

excellently applied in the field of power systems. Although the BA cannot guarantee a fast 

convergence because it completely depends on random walk, it is proficient at controlling the 

exploration and exploitation of the search space and also requires less computational time. Thus 

exploring their possible hybridization is a step in the right direction to solve power system 

optimization problems. 

 

The use of hybrid algorithms is a new and successful trend in solving optimization problems. The 

main aim of this research is to obtain a better performing algorithm that combines the advantages of 

individual algorithms. Hybrid algorithms benefit from synergy. However, choosing an adequate 

combination of component algorithms to achieve a better overall performance in a particular 

situation or problem is important. This research tends to combine the PSO and BA optimization 

techniques to form a hybrid tool that can out-perform the algorithms when individually applied in 

solving power system optimization problems. 

 

At the start of every optimization process, a global exploration of the search space is required to 

probe a wider region for the perspective solution and later on search for a better solution in the 

vicinity of a given starting solution within a more promising region. PSO can quickly identify 
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promising areas in the search space while BA can quickly determine the best solution within those 

areas.  

 

PSO, which is one of the most popular meta-heuristic approaches, is based on information sharing 

among the particles and is transmitted by the most optimistic, global best particle to other particles. 

One of the main advantages of PSO, rapid convergence, can also be its main weakness, as 

premature convergence to a suboptimal solution may stagnate the swarm without any pressure to 

continue exploration. The PSO algorithm has found it difficult to converge to an optimal solution as 

the particles arrive in the vicinity of the optimal solution and thus causes slow convergence in the 

refined search stage. 

On the other hand, the BA has a capability of automatically zooming into a region where promising 

solutions have been found and also a strong local search ability controlled by the loudness and pulse 

rate. The local search method is applied by using a random walk method in order to refine the best-

found solution at each iteration.  Despite its less computational time advantage, it converges very 

quickly at the early stage and then convergence rate slows down. 

 

In order to alleviate the drawbacks of both PSO and BA optimization techniques a new hybrid 

algorithm, the HPSOBA, is proposed.  

 

3.2 PROPOSED HYBRID PSO-BA (HPSOBA) METHODOLOGY 

The proposed HPSOBA optimization method by this research, integrated the respective advantages 

of PSO and BA to form a hybrid PSO with a BA denoted as HPSOBA. It combines the fast 

convergence ability of a PSO with the less computation time ability of a BA to get a better optimal 

solution. The PSO’s Eq. (15) was modified by introducing the BA’s frequency fi as shown in Eq. 

(29) below for the HPSOBA. The frequency fi, which controls the pace and range of the movement 

of the swarming particles, is generated as shown in Eq. (22). Maximum number of iterations is set 

as a stopping criterion.  

 

Vi 
k+1 = w*V i 

k + (c1*rand*(Pbesti 
k  – Xi 

k) + c2*rand*(Gbest 
k  –  Xi 

k)) * f i    (29) 

The flowchart in Fig. 3 delineates the steps of the HPSOBA algorithm for solving ORPD and its 

pseudo code given as follows: 

Step1:     The bat solutions Xi and their velocities Vi are initialized 

   For each bat i, define pulse frequency fi at Xi 

Initialize emission pulse rates r and the loudness A  

The lower and lower boundaries/limits of every control variables are identified. 
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Step 2: Run Newton-Raphson power flow method on the initialized solutions to calculate the 

transmission line losses of all the candidate solutions. 

  

Step 3: The minimum transmission line loss is assigned as Pbest. At this juncture the Pbest is 

also the Gbest. 

Step 4:  While (iteration < Max number of iterations)  

 New frequency is generated using adaptive method and randomization thus:  

fi  = fmin +(fmax - fmin)*β  

 Update velocity using the proposed improved PSO equation as thus: 

Vi 
k+1 = w*V i 

k + (c1*rand*(Pbesti 
k  – Xi 

k) + c2*rand*(Gbest 
k  –  Xi 

k)) * f i  

 Update solution with the improved velocity equation as thus: 

Xi  
k+1 = Xi  

k + Vi  
k+1  

 

Step 5:  if (rand > ri ) 

 Select a solution among the best solutions 

 Perform a random walk (local search) around the selected best solution 

 End if 

 

Step 6:  New random solutions are generated around the updated solutions while restricting 

the limits of the control variables. 

 

Step 7:  Run Newton-Raphson power flow method on the initialized solutions to calculate the 

transmission line losses of all the candidate solutions. 

 

Step 8:  If  (rand ˂  Ai   &   f(Xi) ˂ f(XGbest)) 

 Accept the new solutions  

 Increase ri and reduce Ai 

 End if 

 

Step 9:  Rank the solutions and find the overall best solution. 

 

Step 10: End while  

 

Step 11: Post process results and visualization. 
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Fig. 3 Proposed HPSOBA Algorithm flowchart 

 

Initialize frequency, velocity, bat population, 
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value of all the candidate solutions. 
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3.3 TEST FUNCTION OPTIMIZATION USING HPSOBA 

Test functions also known as standard benchmarks play an important role in validating and 

comparing the general performance, convergence rate, accuracy and robustness of optimization 

algorithms [120]. The test functions should have some diverse properties, which can be useful in 

testing of any new algorithm. The efficiency, reliability and validation of optimization algorithms 

can be done by using a set of standard benchmarks or test functions. For any new optimization 

technique, it is necessary to validate its performance and compare it with other existing algorithms 

using a good set of test functions. These test functions whose details such as search range and 

optima positions were provided, were applied to the proposed HPSOBA method to assess its 

performance and robustness. PSO and BA methods were also developed in the course of developing 

the proposed HPSOBA method. 

 

3.3.1 SIMULATION RESULTS AND ANALYLSIS OF TEST FUNCTION 

OPTIMIZATION 

The proposed hybrid approach (HPSOBA) including the other two approaches (PSO and BA) 

developed by this research were first tested on three standard benchmark/test functions to confirm 

their accuracy and robustness. The test functions used for this case study include Griewank, 

Rastrigin and Schwefel. The results of this research’s extensive numerical experiments are 

summarized in Table I. The table shows the results of PSO, BA and HPSOBA optimization 

methods for solving the test functions with dimensions d = 5, 30 and 100. The maximum number of 

iterations and number of bats or particles are 2000 and 10 respectively. Each method was performed 

for 30 trials to solve the given test function problem. 

Griewank Function       

        (30) 

 

xi ∈ [-600, 600], for all i = 1, …, d 

 

Rastrigin Function  

       (31) 

  

 xi ∈ [-5.12, 5.12], for all i = 1, …, d 

 

Schwefel Function 

   (32) 

 

xi
2 

 4000 
xi

 

√ i i = 1 

d 

i = 1 

d  

   f (x) = ∑            − ∏ cos           + 1 

 

 

f (x) = 10d + ∑[ xi
2 − 10 cos(2πxi)] 

 i = 1 

d 

 

f (x) = 418.9829d  − ∑ xi sin(√| xi |) 
 i = 1 

d 
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 xi ∈ [-500, 500], for all i = 1, …, d 
 

TABLE I.  COMPARISON BETWEEN DIFFERENT ALGORITHMS ON 3 STANDARD 

BENCHMARK FUNCTIONS 

ALGORITHM DIMENSIONS VALUE PSO BA HPSOBA 

GRIEWANK 5 BEST 57.8285 1.1711 5.4514 

WORST 328.2437 260.0861 214.7897 

MEAN 157.1529 108.0102 66.7185 

STD. DEV 68.0770 64.1219 47.5775 

30 BEST 522.9148 16.1033 101.3931 

WORST 1.1506e+03 1.0745e+03 885.3280 

MEAN 861.0965 629.3576 534.6278 

STD. DEV 149.3709 281.0386 196.5750 

100 BEST 2.4095e+03 1.0826e+03 884.6522 

WORST 3.5618e+03 3.3493e+03 3.0002e+03 

MEAN 2.9961e+03 2.5574e+03 2.3906e+03 

STD. DEV 292.2196 532.6977 572.2150 

RASTRIGIN 5 BEST -284.8841 -379.7818 -240.4818 

WORST 98.9437 121.6203 99.3437 

MEAN 23.1221 10.6579 -0.2336 

STD. DEV 92.3501 122.5785 103.1661 

30 BEST -162.9674 -789.3809 -1.0689e+03 

WORST 569.9399 655.3263 638.5661 

MEAN 377.1201 353.9556 336.1339 

STD. DEV 158.1019 326.2176 394.9394 

100 BEST 1.6055e+03 561.5273 1.1438e+03 

WORST 1.9659e+03 2.1029e+03 1.9657e+03 

MEAN 1.7608e+03 1.7002e+03 1.6662e+03 

STD. DEV 100.1611 292.4334 225.8081 

SCHWEFEL 5 BEST -2.5234e+03 -1.2745e+04 -1.8619e+04 

WORST 3.1426e+03 2.7637e+03 3.0274e+03 

MEAN 1.8502e+03 -2.6896e+03 -2.7273e+03 

STD. DEV 1.4914e+03 5.0362e+03 6.6470e+03 

30 BEST -2.1333e+04 -6.8378e+04 -4.7411e+04 

WORST 1.6043e+04 1.4204e+04 1.4623e+04 

MEAN 8.9964e+03 -3.0271e+03 -6.0857e+03 

STD. DEV 8.8948e+03 2.2048e+04 1.9236e+04 

100 BEST -1.2534e+03 -5.4329e+04 -9.1366e+04 

WORST 4.4911e+04 4.3968e+04 4.4159e+04 

MEAN 3.4320e+04 2.0747e+04 1.2664e+04 
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STD. DEV 1.0954e+04 2.5903e+04 3.9666e+04 

 

As reflected in Table I, the proposed hybrid algorithm (HPSOBA) when tested on the chosen 

standard benchmark/test functions (Griewank, Rastrigin and Schwefel) outperformed the other two 

approaches (PSO and BA) also developed and analyzed by this research for 5, 30 and 100  different 

dimensions.  

 

3.4 SOLVING ORPD USING HPSOBA 

This section presents the simulation results and analysis of using the proposed HPSOBA algorithm 

to solve an ORPD problem. There are two case studies conducted as part of this resarch in solving 

an ORPD problem. The first case study deals with solving an ORPD problem (active power 

transmission line loss minimization objective function) without a DG unit installed using the 

proposed HPSOBA approach on IEEE 30- and 118-bus systems, while the second case study is 

about installing a new DG unit in the distribution system (load bus) and using the proposed hybrid 

approach (HPSOBA) only to optimally place the DG unit on a modified IEEE 30-bus system for 

active power transmission line loss minimization. 

 

3.4.1 CASE 1: SIMULATION RESULTS AND ANALYSIS OF SOLVING AN ORPD 

WITHOUT A DG UNIT 

The proposed HPSOBA optimization method alongside PSO and BA were tested on the IEEE 30-

bus and 118-bus test systems with an objective function of minimizing the active power 

transmission losses in an electric power system. The data for these systems can be found in [100]. 

The algorithms of the PSO, BA and HPSOBA methods were coded in MATLAB R2012b 

incorporated with MATPOWER 5.1 and run on an Intel (R) Pentium (R) CPU @ 2.00 GHz with 2 

GB of RAM PC. The parameters and data settings of the proposed algorithms for the test systems 

are summarized in Table II. Due to the randomness in the PSO, BA and HPSOBA techniques, each 

method was executed for 30 runs to solve the given ORPD problem (without a DG unit installed) 

objective function when applied to the test systems. 

TABLE II.  PARAMETERS AND DATA  SETTINGS FOR THE PROPOSED ALGORITHMS 

PARAMETER SYMBOL PSO BA HPSOBA 

Swarm/Bat size N 50 20 20 

Maximum number of iterations Iteration/N_gen 200 200 200 

Number of variables nvars/d 12 12 12 

Acceleration constants c1= c2 2.05 - 2.05 

Adaptive inertia weight w 0.9 - 0.4 0.9 - 0.4 0.9 - 0.4 
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PARAMETER SYMBOL PSO BA HPSOBA 

Minimum frequency fmin - 0 0 

Maximum frequency fmax - 2 2 

Minimum pulse rate rmin - 0 0 

Maximum pulse rate rmax - 1 1 

Minimum loudness Amin - 1 1 

Maximum loudness Amax - 2 2 

Loudness constant α - 0.99 0.99 

Pulse rate constant γ - 0.9 0.9 

Constriction factor χ  0.729 - - 

 

3.4.1.1 IEEE 30-BUS TEST SYSTEM 

In order to validate the proposed hybrid approach (HPSOBA) for ORPD without a DG unit as well 

as the PSO and BA developed in the course of achieving the hybrid approach, an IEEE 30-bus test 

system was used. The single-line diagram of the IEEE 30-bus test case is shown in Fig. 4. It 

consists of six generator buses, 24 load buses and 41 branches in which four branches are tap 

changing transformers branches at lines 6-9, 6-10, 4-12, and 28-27. In addition, buses 10 and 24 

have been selected as shunt VAR compensation buses. Hence, a total of 12 optimized control 

variables were taken for this ORPD problem. The branch parameters and loads were taken from 

[121].  

 

Fig. 4 Single-line diagram of IEEE 30-bus test system [122]. 
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The test was carried out by solving the ORPD problem of the active power transmission loss 

objective in which variable limits (as given in Table III) were used as system constraints. For 

comparison purposes, Newton-Raphson Method, PSO, BA and HPSOBA optimization methods 

were applied to solve this test case and compared with other methods in the literature. The initial 

system loads, total generation and power losses for IEEE 30-bus system from the actual load flow 

study using Newton-Raphson method (base case) are given as follows: 

   Pload = 283.40;  Qload = 126.20 

The initial total generation and power losses are as follows: 

   PG = 301.21;   QG = 160.94 

   Ploss = 17.807;   Qloss = 69.61 

TABLE III.  IEEE 30-BUS TEST SYSTEM  CONTROL VARIABLE  LIMITS  FOR ORPD 

CONTROL VARIABLES (p.u) MINIMUM MAXIMUM 

Generator Voltage   0.95 1.10 

Transformer Tap Setting  0.90 1.10 

Reactive Power Compensation  0.00 0.20 

 

The average convergence curves of the PSO, BA and HPSOBA techniques are shown in Figs. 5-7 

respectively for IEEE 30-bus test system. Delving into the figures, it will be observed that the 

HPSOBA hybrid approach showed better convergence characteristics than the PSO and BA 

methods. While the PSO in Fig. 5 starts converging at about the 48th iteration, the BA in Fig. 6 

starts to converge at about the 110th iteration and the HPSOBA in Fig. 7 starts to converge at about 

the 30th iteration. 

   

Fig. 5 Average convergence curve of the PSO 

Convergence 
Point 
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Fig. 6 Average convergence curve of the BA 

 

 

Fig. 7 Average convergence curve of the HPSOBA 

 

The simulation results of this research for solving an ORPD (without a DG unit) on an IEEE 30-bus 

system were compared with the results of PSO, DE, DE-ABC and ABC algorithms from previous 

studies as shown in Table IV. The table shows that the other two algorithms (PSO and BA) 

outperformed the results of the previous studies in the literature and the Newton-Raphson method 

Convergence 
Point 

Convergence 
Point 
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(base case), while the proposed hybrid approach (HPSOBA) developed by this research 

outperformed all.  

TABLE IV.  COMPARATIVE RESULTS OF IEEE 30-BUS TEST SYSTEM 

ALGORITHM 

ACTIVE POWER LOSSES (MW) 

Min. 

Losses 

Max. 

Losses 

Mean 

Losses 

Std. 

Deviation 

BASE CASE - - 17.807 - 

PSO [123] - - 16.1810 - 

DE [124] 16.2184 16.6272 16.1376 0.089508 

DE-ABC [124] 16.2163 16.2164 16.2163 2.34e-05 

ABC [124] 16.2325 17.693 16.5908 0.034919 

PSO 16.163 16.166 16.165 7.65e-04 

BA 16.061 16.185 16.133 2.79e-02 

HPSOBA 16.059 16.169 16.125 2.80e-02 

 
 
Table V shows values of the various control variables after optimization for the PSO, BA, and 

HPSOBA algorithms. It can be observed from the table that the control variables are restricted 

within their respective constraint’s limits and inviolate. Further more, Table V also showed that the 

HPSOBA computation time of 257.01 seconds outperforms that of the PSO and BA. Vg indicates 

generated voltage, T indicates transformer tap setting and Qc indicates shunt compensation 

respectively in p.u. These optimal setting of various control variables minimizes the objective 

function to an optimum solution after a maximum of 200 iterations. 

 

TABLE V.  VALUES OF CONTROL VARIABLES BEFORE AND AFTER OPTIMIZATION 

FOR IEEE 30-BUS TEST SYSTEM 

CONTROL 

VARIABLES (p.u) 

BASE 

CASE 

PSO BA HPSOBA 

Vg1   1.06 1.10 1.10 1.10 

Vg2   1.04 1.09 1.09 1.09 

Vg5   1.01 1.05 1.05 1.05 

Vg8   1.01 1.06 1.06 1.06 

Vg11  1.08 1.10 1.10 1.10 

Vg13  1.07 1.10 1.10 1.10 

T9-6     0.98 1.06 1.02 1.02 

T10-6    0.97 0.90 0.98 0.96 

T12-4   0.93 1.05 0.99 1.06 

T28-27   0.97 0.98 0.99 0.98 
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CONTROL 

VARIABLES (p.u) 

BASE 

CASE 

PSO BA HPSOBA 

Qc10   0.19 0.15 0.10 0.11 

Qc24  0.04 0.15 01.0 0.10 

POWER LOSS (MW) 17.807 16.165 16.133 16.125 

CPU TIME (s) - 744.50 273.20 257.01 

 

3.4.1.2 IEEE 118-BUS TEST SYSTEM 

To further test the proposed technique in solving an ORPD without a DG unit on a large-scale 

power system, a standard IEEE 118-bus test system was considered. The single-line diagram of the 

IEEE 118-bus test case is shown in Fig. 8. The test case system has 77 dimensions/variables, that is 

54 generator buses, 64 load buses, 186 transmission lines, 9 transformer taps and 14 reactive power 

sources. The system line and bus data were taken from [121].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8 Single-line diagram of IEEE 118-bus test system [125]. 

 

The maximum and minimum limits of reactive power sources, voltage and tap setting limits were 

given in Table VI, while the initial values of the control variables are in Table VIII. The initial 

system loads, total generation and power losses for an IEEE 118-bus system from the actual load 

flow study using Newton-Raphson method are as follows: 

   Pload = 4242.00;  Qload = 1438.00 
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The initial total generation and power losses are as follows: 

   PG = 4375.35;   QG = 881.06 

   Ploss = 133.350;  Qloss = 785.09 

 

TABLE VI.  IEEE 118-BUS TEST SYSTEM  CONTROL VARIABLE  LIMITS  FOR ORPD 

CONTROL VARIABLES (p.u) MMINMUM MAXIMUM 

Generator Voltage   0.95 1.10 

Transformer Tap Setting  0.90 1.10 

Reactive Power Compensation  0.00 0.25 

 

Figs. 9-11 below show the average convergence curves of PSO, BA and HPSOBA techniques 

respectively for an IEEE 118-bus system. Delving into the figures, it will be observed that the 

HPSOBA hybrid approach showed better convergence characteristics than the PSO and BA 

techniques. While the PSO in Fig. 9 showed a little irregular convergence trait, the BA in Fig. 10 

starts to converge at about the 175th iteration and the HPSOBA in Fig. 11 starts to converge at about 

the 65th iteration. 

 

 

     Fig. 9 Average convergence curve of the PSO 

Convergence 
Point 
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Fig. 10 Average convergence curve of the BA 
 

 

Fig. 11 Average  convergence curve of the HPSOBA 
 

The simulation results achieved without a DG unit on an IEEE 118-bus system were compared with 

the results of the PSO, CLPSO, GSA and OGSA algorithms from previous studies as shown in 

Table VII. The table shows that the other two algorithms (PSO and BA) outperformed the results of 

the Newton-Raphson method (base case) and that of the previous studies in the literature, while the 

main proposed hybrid approach (HPSOBA) developed by this research outperformed all. Further 

Convergence 
Point 

Convergence 
Point 
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more, Table VII also showed that the HPSOBA computation time of 424.97 seconds outperforms 

that of the PSO, BA and the previous studies in the literature. 

TABLE VII.  COMPARATIVE RESULTS OF IEEE 118-BUS TEST SYSTEM 

ALGORITHM 

ACTIVE POWER LOSSES (MW)  

CPU 

TIME (s) 

Min. 

Losses 

Max. 

Losses 

Mean 

Losses 

Std. 

Deviation 

BASE CASE - - 133.350 - - 

PSO [126] 132.370 134.500 131.990 3.2e-04 1215.00 

CLPSO [126] 131.150 132.740 130.960 8.5e-05 1472.00 

GSA [127] - - 127.760 - 1198.66 

OGSA [128] 127.140 131.990 126.990 8.80e-05 1101.26 

PSO 123.827 128.841 126.215 1.5239 1013.49 

BA 108.852 110.889 109.772 0.7012 495.88 

HPSOBA 107.259 109.229 108.151 0.5747 424.97 

 

Table VIII shows the values of various control variables after optimization for the PSO, BA, and 

HPSOBA methods. It can be observed from the table that the control variables are restricted within 

their respective constraint’s limits and inviolate. These optimal settings of various control variables 

minimizes the objective function to an optimum solution after 200 iterations. 

TABLE VIII.  VALUES OF CONTROL VARIABLES BEFORE AND AFTER OPTIMIZATION 

FOR IEEE 118-BUS TEST SYSTEM 

CONTROL 

VARIABLES (p.u) 

BASE 

CASE 

PSO 

[126] 

CLPSO 

[126] 

GSA 

[127] 

OGSA 

[128] 

PSO BA HPSOB

A 

Vg1   0.96 1.09 1.03 0.96 1.03 1.02 1.04 1.05 

Vg4   1.00 1.04 1.05 0.96 1.06 1.03 1.06 1.07 

Vg6   0.99 1.08 0.98 0.97 1.03 1.03 1.05 1.06 

Vg8   1.02 0.97 0.97 1.06 1.02 1.03 1.09 1.10 

Vg10  1.05 1.08 0.98 1.09 1.02 1.03 1.10 1.10 

Vg12  0.99 1.02 1.01 0.96 1.04 1.02 1.05 1.05 

Vg15  0.97 1.08 0.98 1.01 1.00 1.02 1.05 1.05 

Vg18  0.97 1.05 1.08 1.01 1.00 1.03 1.05 1.05 

Vg19  0.96 1.08 1.08 1.00 0.99 1.02 1.05 1.05 

Vg24  0.99 1.08 1.03 1.01 1.03 1.03 1.06 1.07 

Vg25  1.05 0.96 1.03 1.01 1.06 1.04 1.09 1.10 

Vg26  1.02 1.08 0.99 1.04 1.09 1.04 1.10 1.10 

Vg27  0.97 1.09 1.02 0.98 1.01 1.02 1.05 1.06 

Vg31  0.97 0.96 0.96 0.95 0.99 1.01 1.04 1.05 
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CONTROL 

VARIABLES (p.u) 

BASE 

CASE 

PSO 

[126] 

CLPSO 

[126] 

GSA 

[127] 

OGSA 

[128] 

PSO BA HPSOB

A 

Vg32  0.96 1.10 0.99 0.96 1.00 1.02 1.05 1.05 

Vg34  0.98 0.96 1.02 0.99 1.00 1.03 1.06 1.07 

Vg36  0.98 1.04 1.08 1.01 0.98 1.03 1.06 1.06 

Vg40  0.97 1.09 0.98 0.95 1.00 1.02 1.04 1.05 

Vg42  0.99 0.97 1.05 0.95 1.01 1.02 1.04 1.05 

Vg46  1.01 1.04 0.98 0.98 1.04 1.02 1.06 1.07 

Vg49  1.03 1.08 0.98 1.04 1.03 1.03 1.07 1.09 

Vg54  0.96 0.98 0.96 1.04 0.99 1.02 1.04 1.06 

Vg55  0.95 1.01 0.97 0.99 0.99 1.02 1.04 1.06 

Vg56  0.95 0.95 1.02 1.03 0.99 1.02 1.04 1.06 

Vg59  0.99 0.97 1.00 1.01 0.99 1.03 1.07 1.08 

Vg61  1.00 1.09 1.08 1.09 1.07 1.02 1.07 1.09 

Vg62  1.00 1.10 1.05 1.04 1.08 1.02 1.07 1.09 

Vg65  1.01 1.09 0.97 1.00 0.98 1.03 1.10 1.10 

Vg66  1.05 1.09 0.96 1.04 1.05 1.03 1.09 1.10 

Vg69  1.04 0.97 0.96 1.10 1.05 1.04 1.09 1.10 

Vg70  0.98 1.08 0.98 1.10 1.04 1.02 1.05 1.06 

Vg72  0.98 0.95 1.02 1.00 0.99 1.03 1.04 1.05 

Vg73  0.99 0.97 0.97 1.01 1.05 1.03 1.04 1.05 

Vg74  0.96 0.97 1.07 1.05 1.02 1.01 1.04 1.06 

Vg76  0.94 0.96 1.03 1.02 1.00 1.02 1.04 1.06 

Vg77  1.01 1.08 1.03 1.02 1.01 1.03 1.07 1.08 

Vg80  1.04 0.99 1.08 1.05 1.01 1.04 1.08 1.09 

Vg85  0.99 0.96 0.98 1.05 0.99 1.03 1.09 1.09 

Vg87  1.02 0.96 1.09 1.04 0.97 1.02 1.07 1.07 

Vg89  1.01 0.97 0.99 1.10 1.05 1.04 1.10 1.10 

Vg90  0.99 1.02 0.99 1.04 1.03 1.03 1.07 1.08 

Vg91  0.98 0.96 1.03 1.00 1.03 1.00 1.08 1.08 

Vg92  0.99 0.96 0.98 1.09 1.04 1.03 1.09 1.09 

Vg99  1.01 0.95 1.09 1.04 1.04 1.03 1.07 1.08 

Vg100  1.02 0.96 0.96 1.08 1.03 1.03 1.08 1.08 

Vg103  1.01 1.02 0.96 1.03 1.02 1.03 1.06 1.07 

Vg104  0.97 1.10 1.01 0.98 1.02 1.03 1.05 1.06 

Vg105  0.97 0.97 1.07 1.02 1.02 1.02 1.04 1.05 

Vg107  0.95 0.97 0.98 1.00 1.04 1.03 1.03 1.04 

Vg110  0.97 1.09 1.04 1.02 1.03 1.02 1.03 1.04 

Vg111  0.98 1.04 0.98 0.99 1.02 1.03 1.03 1.05 

Vg112  0.98 1.09 0.98 0.95 1.01 1.02 1.02 1.02 

Vg113  0.99 1.08 0.97 0.98 1.04 1.03 1.06 1.06 
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CONTROL 

VARIABLES (p.u) 

BASE 

CASE 

PSO 

[126] 

CLPSO 

[126] 

GSA 

[127] 

OGSA 

[128] 

PSO BA HPSOB

A 

Vg116  1.01 0.96 1.03 1.04 0.97 1.03 1.09 1.10 

T8-5     0.985 1.01 1.00 1.07 0.96 1.00 1.02 1.01 

T26-25    0.96 1.09 1.06 0.95 1.04 1.00 0.99 0.99 

T30-17   0.96 1.00 1.00 0.93 1.00 1.00 1.01 1.01 

T38-37   0.94 1.00 1.01 1.09 0.98 0.99 1.00 1.01 

T63-59   0.96 1.01 0.99 1.06 0.96 0.99 1.00 0.99 

T64-61   0.99 1.03 1.01 0.95 1.00 1.00 1.03 1.01 

T65-66   0.94 0.94 1.06 1.00 0.99 1.00 1.01 1.03 

T68-69   0.94 0.91 0.93 0.99 0.93 0.96 1.01 1.00 

T81-80   0.94 0.97 0.96 0.98 1.07 0.97 0.99 0.99 

Qc5   -0.40 0.00 0.00 0.00 -0.33 0.13 0.11 0.12 

Qc34  0.14 0.09 0.12 0.07 0.05 0.13 0.12 0.10 

Qc37   -0.25 0.00 0.00 0.00 -0.25 0.11 0.17 0.13 

Qc44  0.10 0.09 0.10 0.06 0.03 0.13 0.13 0.11 

Qc45  0.10 0.09 0.09 0.03 0.04 0.12 0.14 0.14 

Qc46  0.10 0.09 0.03 0.07 0.05 0.13 0.10 0.13 

Qc48  0.15 0.12 0.03 0.04 0.02 0.14 0.15 0.14 

Qc74  0.12 0.05 0.01 0.10 0.05 0.12 0.12 0.09 

Qc79   0.20 0.11 0.15 0.14 0.11 0.13 0.12 0.14 

Qc82  0.20 0.16 0.19 0.17 0.10 0.13 0.12 0.13 

Qc83   0.10 0.10 0.07 0.04 0.03 0.12 0.12 0.10 

Qc105  0.20 0.09 0.09 0.12 0.04 0.11 0.16 0.13 

Qc107  0.06 0.05 0.05 0.02 0.01 0.12 0.09 0.15 

Qc110  0.06 0.06 0.02 0.03 0.01 0.12 0.11 0.12 

POWER LOSS 

(MW) 

133.350 131.990 130.960 127.760 126.990 126.215 109.772 108.151 

 

3.4.2 CASE II: OPTIMAL PLACEMENT OF A DG UNIT USING HPSOBA 

The proposed hybrid approach (HPSOBA) was further validated on a modified IEEE 30-bus test 

system to minimize the active power transmission line losses. A DG unit was installed on the load 

buses (except on the slack bus) with the DG unit assumed to operate at its rated power. The DG unit 

generated 2.05 MW of real power while it delivers as much as 1.2 MVAR or absorbs -1.0 MVAR 

reactive power. 
 

3.4.2.1 SIMULATION RESULTS AND ANALYLSIS OF SOLVING ORPD WITH A DG 

UNIT 

The DG unit was first installed on a generator bus and then both the real and reactive power 

capacity of the generator were altered. Secondly, the DG unit was also installed on a load bus. In 
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addition to modifying the real and reactive power capacity, the voltage magnitude of the newly 

installed DG unit was treated as a new control variable, thereby increasing the total number of 

control variables from 12 to 13. Each of the modified DG units installed on the buses were 

evaluated for 30 independent runs and the mean value was taken for the real power minimization 

objective function. The simulation results were compared with that of a HPSOBA method without a 

DG unit installed. The load bus, generator bus and branch parameters of the test system were taken 

from [121] while the control variables as well as the installed DG unit’s real and reactive power 

limits used as system constraints are as given in Table IX. 

TABLE IX.  MODIFIED IEEE 30-BUS TEST SYSTEM  CONSTRAINTS FOR DG UNIT 
OPTIMAL INSTALLATION 

CONTROL VARIABLES MMINMUM MAXIMUM 
Generator Voltage  (p.u) 0.95 1.10 

Transformer Tap Setting (p.u) 0.90 1.10 

Reactive Power Compensation (p.u) 0.00 0.20 

DG Reactive Power Output (MVAR) -1.0 1.2 

DG Real Power Output (MW) 0 2.05 

 

The simulation results of the DG unit’s placements on each load bus except on the slack bus are 

shown in Table X and the simulation graph shown in Fig. 12. It is observed that installing the DG 

unit on bus 24 gave the best result of 15.738MW as indicated in bold in the table. That is an 11.62% 

real power transmission line loss reduction, making bus 24 the optimum location. It can also be 

observed from Table X that installing the DG unit on bus 18 gave the best computation time of 

230.92 seconds (also indicated in bold in the table).  

TABLE X.  COMPARATIVE RESULTS OF THE DG UNIT PLACEMENT ON EACH BUS 

Bus No Loss 
(MW) 

Loss Reduction 
(%) 

CPU Time 
(s) 

1 0 0 - 

2 16.026 10.00 243.35 

3 15.988 10.22 240.65 

4 15.924 10.57 245.12 

5 15.861 10.93 272.11 

6 15.829 11.11 250.94 

7 15.835 11.07 247.25 

8 15.883 10.80 238.33 

9 15.820 11.16 241.20 

10 15.819 11.16 252.44 

11 15.910 10.65 261.23 

12 15.901 10.70 239.78 

13 15.947 10.45 254.09 

14 15.891 10.76 243.95 
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Bus No Loss 
(MW) 

Loss Reduction 
(%) 

CPU Time 
(s) 

15 15.856 10.96 240.28 

16 15.894 10.74 232.29 

17 15.850 10.99 238.93 

18 15.820 11.16 230.92 

19 15.815 11.19 266.78 

20 15.838 11.06 255.63 

21 15.759 11.50 231.99 

22 15.789 11.33 298.63 

23 15.790 11.33 237.45 

24 15.738 11.62 238.26 

25 15.831 11.10 237.34 

26 15.807 11.23 237.07 

27 15.881 10.82 246.02 

28 15.882 10.81 245.91 

29 15.870 10.88 236.88 

30 15.793 11.31 232.02 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12 Graph of the comparative results of the DG unit placement on each bus 

 

Table XI showed the comparative results of the proposed HPSOBA approach with and without the 

DG unit placement on each load bus. The table showed that the proposed HPSOBA algorithm 

developed by this research have better results when the DG unit is installed on bus 24 than without 
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any form of DG unit installed on any of the load buses.  It also showed a further reduction of real 

power transmission line losses from 9.45% (without a DG unit installed) to 11.62% (with the DG 

unit installed on bus 24).  
 

TABLE XI.  COMPARATIVE RESULTS OF HPSOBA ALGORITHM FOR WITH AND 
WITHOUT DG UNIT PLACEMENT 

ALGORITHM 
ACTIVE POWER LOSSES (MW) LOSS 

REDUCTION 
(%) 

Min. 
Losses 

Max. 
Losses 

Mean 
Losses 

Std. 
Deviation 

BASE CASE - - 17.807 - - 

HPSOBA 
(without DG) 

16.059 16.169 16.125 2.80e-02 9.45 

HPSOBA 
(with DG at Bus 24) 

15.639 15.894 15.738 5.13e-02 11.62 

 

Fig. 13 shows the average convergence curve of the HPSOBA method for the optimal placement of 

a DG unit at bus 24 using a modified IEEE 30-bus test system. From the figure, it is observed that 

HPSOBA hybrid approach showed a good convergence characteristics and performance. 

 

 

Fig. 13 Average  convergence curve of HPSOBA for modified IEEE 30-bus test system 

 

Table XII shows the values of the various control variables before and after optimal placement of 

the DG unit in the load buses for the modified IEEE 30-bus test system using the proposed 

HPSOBA method. It can be observed from the table that the control variables are restricted within 

their respective constraint’s limits and kept inviolate. These optimal setting of various control 

 

Convergence 
Point 
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variables minimizes the objective function to an optimum solution with a maximum of 200 

iterations.  
 

TABLE XII.  VALUES OF CONTROL VARIABLES BEFORE AND AFTER OPTIMAL 
PLACEMENT OF DG UNIT FOR MODIFIED IEEE 30-BUS TEST SYSTEM 

Control 
Variables 

Base Case 
(without DG) 

HPSOBA 
(without DG) 

DG at 
Bus 2 

DG at 
Bus 3 

DG at 
Bus 4 

DG at 
Bus 5 

DG at 
Bus 6 

Voltage at bus 1, 
Vg1 

1.06 1.10 1.10 1.10 1.10 1.10 1.10 

Voltage at bus 2, 
Vg2 

1.04 1.09 1.09 1.09 1.09 1.09 1.09 

Voltage at bus 3, 
Vg3 

   1.08    

Voltage at bus 4, 
Vg4 

    1.07   

Voltage at bus 5, 
Vg5 

1.01 1.05 1.05 1.06 1.06 1.05 1.06 

Voltage at bus 6, 
Vg6 

      1.07 

Voltage at bus 8, 
Vg8 

1.01 1.06 1.06 1.06 1.06 1.06 1.06 

Voltage at bus 
11, Vg11 

1.08 1.10 1.10 1.10 1.10 1.10 1.07 

Voltage at bus 
13, Vg13 

1.07 1.10 1.10 1.09 1.06 1.10 1.10 

T9-6 0.98 1.02 1.01 1.02 1.00 1.02 0.96 
T10-6 0.97 0.96 0.98 0.98 0.98 0.99 0.95 
T12-4 0.93 1.06 1.06 1.04 0.97 1.07 1.03 
T28-27 0.97 0.98 0.99 0.99 0.98 0.99 0.97 
Qc10 0.19 0.11 0.09 0.10 0.11 0.12 0.11 
Qc24 0.04 0.10 0.13 0.10 0.10 0.11 0.11 

 

TABLE XII.  VALUES OF CONTROL VARIABLES BEFORE AND AFTER OPTIMAL 
PLACEMENT OF DG UNIT FOR MODIFIED IEEE 30-BUS TEST SYSTEM (CONT’D) 

Control 
Variables 

DG at 
Bus 7 

DG at 
Bus 8 

DG at 
Bus 9 

DG at 
Bus 10 

DG at 
Bus 11 

DG at 
Bus 12 

DG at 
Bus 13 

DG at 
Bus 14 

Voltage at bus 1, 
Vg1 

1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 

Voltage at bus 2, 
Vg2 

1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 

Voltage at bus 5, 
Vg5 

1.06 1.05 1.06 1.05 1.05 1.05 1.05 1.05 

Voltage at bus 7, 
Vg7 

1.06        

Voltage at bus 8, 
Vg8 

1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 

Voltage at bus 9, 
Vg9 

  1.09      

Voltage at bus 
10, Vg10 

   1.07     

Voltage at bus 
11, Vg11 

1.10 1.10 1.02 1.03 1.10 1.10 1.10 1.10 

Voltage at bus 
12, Vg12 

     1.07   

Voltage at bus 
13, Vg13 

1.10 1.10 1.10 1.10 1.10 1.03 1.10 1.10 

Voltage at bus        1.04 
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14, Vg14 
T9-6 1.01 1.02 1.03 1.05 1.01 0.99 1.01 1.01 
T10-6 0.98 0.97 1.00 1.02 0.98 0.96 0.99 0.99 
T12-4 1.05 1.06 1.02 1.01 1.06 1.07 1.06 1.06 
T28-27 0.98 0.98 0.97 0.96 0.98 0.97 0.98 0.99 
Qc10 0.10 0.08 0.09 0.10 0.09 0.08 0.10 0.10 
Qc24 0.10 0.11 0.09 0.10 0.10 0.11 0.12 0.09 

 

TABLE XII.  VALUES OF CONTROL VARIABLES BEFORE AND AFTER OPTIMAL 
PLACEMENT OF DG UNIT FOR MODIFIED IEEE 30-BUS TEST SYSTEM (CONT’D) 

Control 
Variables 

DG at 
Bus 15 

DG at 
Bus 16 

DG at 
Bus 17 

DG at 
Bus 18 

DG at 
Bus 19 

DG at 
Bus 20 

DG at 
Bus 21 

DG at 
Bus 22 

Voltage at bus 1, 
Vg1 

1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 

Voltage at bus 2, 
Vg2 

1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 

Voltage at bus 5, 
Vg5 

1.06 1.06 1.05 1.05 1.06 1.05 1.05 1.05 

Voltage at bus 8, 
Vg8 

1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 

Voltage at bus 11, 
Vg11 

1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 

Voltage at bus 13, 
Vg13 

1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 

Voltage at bus 15, 
Vg15 

1.05        

Voltage at bus 16, 
Vg16 

 1.04       

Voltage at bus 17, 
Vg17 

  1.06      

Voltage at bus 18, 
Vg18 

   1.04     

Voltage at bus 19, 
Vg19 

    1.03    

Voltage at bus 20, 
Vg20 

     1.04   

Voltage at bus 21, 
Vg21 

      1.05  

Voltage at bus 22, 
Vg22 

       1.05 

T9-6 1.00 1.02 1.01 1.01 1.03 1.02 1.02 1.03 
T10-6 1.00 0.99 0.98 0.99 0.99 0.99 1.00 0.99 
T12-4 1.06 1.06 1.04 1.05 1.06 1.05 1.03 1.04 
T28-27 0.99 0.99 0.97 0.98 0.98 0.99 0.97 0.98 
Qc10 0.10 0.09 0.10 0.15 0.11 0.10 0.10 0.11 
Qc24 0.13 0.09 0.11 0.09 0.11 0.09 0.08 0.09 

 

TABLE XII.  VALUES OF CONTROL VARIABLES BEFORE AND AFTER OPTIMAL 
PLACEMENT OF DG UNIT FOR MODIFIED IEEE 30-BUS TEST SYSTEM (CONT’D) 

Control 
Variables 

DG at 
Bus 23 

DG at 
Bus 24 

DG at 
Bus 25 

DG at 
Bus 26 

DG at 
Bus 27 

DG at 
Bus 28 

DG at 
Bus 29 

DG at 
Bus 30 

Voltage at bus 
1, Vg1 

1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 

Voltage at bus 
2, Vg2 

1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 

Voltage at bus 
5, Vg5 

1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 
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Voltage at bus 
8, Vg8 

1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 

Voltage at bus 
11, Vg11 

1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 

Voltage at bus 
13, Vg13 

1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 

Voltage at bus 
23, Vg23 

1.04        

Voltage at bus 
24, Vg24 

 1.03       

Voltage at bus 
25, Vg25 

  1.04      

Voltage at bus 
26, Vg26 

   1.03     

Voltage at bus 
27, Vg27 

    1.05    

Voltage at bus 
28, Vg28 

     1.06   

Voltage at bus 
29, Vg29 

      1.03  

Voltage at bus 
30, Vg30 

       1.02 

T9-6 1.02 1.02 1.01 1.02 1.00 0.99 1.00 1.02 
T10-6 0.98 1.01 0.98 0.97 0.98 0.99 1.00 0.97 
T12-4 1.06 1.06 1.05 1.06 1.05 1.05 1.06 1.07 
T28-27 0.99 1.00 1.00 0.99 1.04 0.98 1.00 1.01 
Qc10 0.09 0.10 0.11 0.11 0.10 0.12 0.12 0.12 
Qc24 0.10 0.10 0.10 0.13 0.11 0.10 0.12 0.11 

 
 

3.5 SUMMARY 

This chapter dealt with the hybridization of the already chosen optimization techniques and their 

step implementation. It also discussed the simulation procedures and results obtained using the 

proposed HPSOBA to solve for test function optimization and ORPD problems. The results 

obtained from solving the ORPD problem using the HPSOBA considered two case studies of with 

and with a DG unit installed. The first case study of solving an ORPD problem without a DG unit 

installed was tested of both IEEE 30-bus and 118-bus test systems, while the second case study of 

solving an ORPD problem with a DG unit installed was tested on a modified IEEE 30-bus test 

system. The simulation results were compared with other evolutionary algorithms in the literature. 

The next chapter presents the modification of the proposed HPSOBA to check if there will be 

further improvement on its performance or not. 
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CHAPTER 4 

 

MODIFIED HPSOBA 

 

4.1 OVERVIEW 

This chapter presents three new modifications embedded into this research’s proposed HPSOBA to 

check if there will be further improvement on its performance or not. The modified HPSOBA 

denoted as MHPSOBA also followed the line of the HPSOBA in fulfilling the local search by using 

the random walk operation mechanism of a BA whereas the global search is accomplished by a 

PSO operator. Using this combination it maintains a balance between ‘exploration’ and 

‘exploitation’ and enjoying the best of both the algorithms (BA and PSO). The MHPSOBA has the 

same pseudo code and flowchart as the proposed HPOSBA. It was also tested on a modified IEEE 

30-bus system to solve an ORPD problem (active power transmission line loss minimization 

objective function) without a DG unit installed. 

 

4.2 MODIFICATIONS OF HPSOBA 

The MHPSOBA method emanated from three new modifications embedded into the proposed 

HPSOBA method and is captured in this subsection: 

 

4.2.1 1st MODIFICATION (Pulse Frequency) 

Microbats use echolocation as their main navigation system. During their flights, bats emit 

continuously short pulses that last a few milliseconds. By analyzing the echoes, they can create a 

3D mental image of their surroundings. The information of other bats such as their positions can be 

useful to guide the search process. In addition, pulses can travel in different directions and thus it 

may be useful to assume that each bat emits two pulses into two different directions before deciding 

in which direction it will fly and this feature can be used to simulate the time difference or delay 

between echoes received by two ears. It is also assumed that the two pulses emitted have the same 

pulse rates but different pulse frequencies f1 and f2. To extend further along this line of thinking, it 

can also be assumed that all the bats emit a pulse in the direction of the best bat (solution) where the 

food is considered to exist, and the other pulse to the direction of a randomly chosen bat.  From the 

echoes (feedback), the bat can know if food exists around these two bats or not. 

The frequencies f1 and f2 of the two pulses are updated as follows:  

fi1= fmin +(fmax - fmin)*rand1   (33) 

fi 2= fmin +(fmax - fmin)*rand2    (34) 

Both rand1 and rand2 are two random vectors between 0 and 1. 
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4.2.2 2nd MODIFICATION (Velocity Vector) 

In a standard PSO algorithm, population and control variables are randomly generated during 

initialization, while during iterative process gbest and pbest are used to govern the update of the 

population, but there is no such term in velocity and position vectors which are purely random in 

nature. In this section, the velocities update of Eq. (29) is modified using the equations below which 

calculated the distance between the bat position xi and pbesti and also the distance between the bat 

position xi and gbesti using a Cartesian distance. 

 

The Cartesian distance (denoted as pp) between the bat position xi and pbesti is given as: 

  

     (35) 

 

The Cartesian distance (denoted as pg) between the bat position xi and gbesti is given as: 

 

            (36) 

 

The velocity update equation becomes: 

Vi 
k+1 = w*V i 

k + (c1*exp(–pp2)*(pbesti 
k  – Xi 

k))* f i 1 + (c2* exp(–pg2)*(gbest 
k  –  Xi 

k)) * f i 2   

           (37) 

 

The inclusion of Eq. (35) and Eq. (36) in Eq. (37) removes every element of randomness in the 

velocity update equation thereby giving room for pbest and gbest to govern the update of the 

velocity and position vectors. 

 

4.2.3 3rd MODIFICATION (Pulse rate and Loudness Update) 

In standard BA, the pulse rate and loudness update reach their final value during the iterative 

process very quickly, thus reducing the possibility of the auto-switch from global search to local 

search due to a higher pulse rate and the acceptance of a new solution (low loudness). This section 

proposes the use of monotonically increasing pulse rate and decreasing loudness updates as shown 

is Eq. (38) and Eq. (39):  

 

                   (38) 

 

 

    (39) 

 
pp =   ∑ (pbesti  –  xi)

2  
d 

k=1 

 
pg =   ∑ (gbesti  –  xi)

2  
d 

k=1 

r i 
t+1  =           r0 − r∞           ( t − iterationmax) + r∞    * α 

      
1 −iterationmax   

Ai 
t+1  =           A0 − A∞          ( t − iterationmax) + A∞   [1 − exp(−γt)] 

      
1 −iterationmax   
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where the index 0 and ∞ stand for the initial and final values respectively; α denotes alpha; γ 

denotes gamma; t denotes iterative index; iterationmax denotes maximum number of iterations.  

 

4.3 SIMULATION RESULTS AND ANALYLSIS OF SOLVING ORPD USING 

MHPSOBA 

The MHPSOBA method was tested on the IEEE 30-bus test systems with an objective function of 

minimizing the active power transmission loss in an electrical power system. The data for these 

systems can also be found in [121]. The MHPSOBA algorithm was also coded in MATLAB 

R2012b incorporated with MATPOWER 5.1 and run on an Intel (R) Pentium (R) CPU @ 2.00 GHz 

with 2 GB of RAM PC. The parameters and data settings of the MHPSOBA algorithm for the test 

system are the same as that of HPSOBA as summarized in Table II. The control variables limits are 

also the same as for the HPSOBA shown in Table III.  The MHPSOBA method was executed for 30 

runs to solve the given ORPD problem objective function when applied to the test system. 

 

The simulation results of the MHPSOBA for solving an ORPD on an IEEE 30-bus system were 

compared with the results of the HPSOBA algorithm as shown in Table XIII. The table showed that 

the earlier proposed HPSOBA algorithm developed outperformed the results of the modified hybrid 

algorithm (MHPSOBA). It can be deduced from the simulation results that the randomness nature 

of the velocity and position vectors during iteration contributes to a large extent to the good 

performance of the the HPSOBA algorithm.  

TABLE XIII.  COMPARATIVE RESULTS OF MHPSOBA ALGORITHM WITH HPSOBA 
ALGORITHM FOR SOLVING ORPD PROBLEM 

ALGORITHM 
ACTIVE POWER LOSSES (MW) LOSS 

REDUCTION 
(%) 

Min. 
Losses 

Max. 
Losses 

Mean 
Losses 

Std. 
Deviation 

BASE CASE - - 17.807 - - 
HPSOBA 16.059 16.169 16.125 2.80e-02 9.45 

MHPSOBA 16.064 16.254 16.149 3.84e-02 9.31 
 

Table XIV shows the values of various control variables after optimization for MHPSOBA and its 

comparison with the base case and HPSOBA methods. It can be observed from the table that the 

control variables were restricted within their respective constraint’s limits and inviolate. These 

optimal settings of various control variables minimizes the objective function to an optimum 

solution after 200 iterations.  
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TABLE XIV.  COMPARATIVE VALUES OF CONTROL VARIABLES AFTER 

OPTIMIZATION FOR HPSOBA AND MHPSOBA METHODS FOR IEEE 30-BUS TEST 

SYSTEM 

CONTROL 

VARIABLES (p.u) 

BASE 

CASE 

HPSOBA MHPSOBA 

Vg1   1.06 1.10 1.10 

Vg2   1.04 1.09 1.09 

Vg5   1.01 1.05 1.05 

Vg8   1.01 1.06 1.06 

Vg11  1.08 1.10 1.10 

Vg13  1.07 1.10 1.09 

T9-6     0.98 1.02 1.01 

T10-6    0.97 0.96 0.99 

T12-4   0.93 1.06 1.05 

T28-27   0.97 0.98 0.98 

Qc10   0.19 0.11 0.12 

Qc24  0.04 0.10 0.11 

POWER LOSS (MW) 17.807 16.125 16.149 

CPU TIME (s) - 257.01 276.24 

 

4.4 SUMMARY 

This chapter dealt with the modification of the proposed algorithm denoted as MHPSOBA to check 

if there will be further improvement on the performance of the HPSOBA or not. The MHPSOBA 

has the same pseudo code and flowchart as the proposed HPOSBA and it was tested on a modified 

IEEE 30-bus test system to solve an ORPD problem (active power transmission line loss 

minimization objective function) without a DG unit installed. It also discussed the simulation 

results obtained from solving the ORPD problem without a DG unit installed using the MHPSOBA. 

The simulation results were compared with that of HPSOBA. The next chapter presents the 

modification of the proposed HPSOBA to check if there will be further improvement on its 

performance or notconclusion and future work. 
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CHAPTER 5 

 

CONCLUSION AND FUTURE WORK 

 

5.1 CONCLUSION 

The HPSOBA approach was evaluated and tested on IEEE 30-bus and IEEE 118-bus test systems to 

solve the ORPD (with and without DG unit optimally installed) as well as benchmark test functions. 

Simulation results confirm the robustness of the proposed HPSOBA algorithm when tested on test 

functions such as Griewank, Rastrigin and Schwefel. When tested on the IEEE 30-bus and IEEE 

118-bus test systems to solve for the ORPD without a DG unit and on modified IEEE 30-bus test 

system for solving an ORPD with a DG unit optimally installed, it was observed that the proposed 

HPSOBA algorithm yields optimal settings of the control variables of the test power systems and 

reduced the active power transmission line losses with less computational time. The results obtained 

from the simulations demonstrate its effectiveness and superiority over the Newton-Raphson 

method and other evolutionary algorithms such as PSO, DE, ABC, CLPSO, GSA and OGSA 

mentioned in this research in solving the ORPD problem of power systems. 

 

In conclusion, the contributions of this research can be divided into three parts designated as Part I: 

benchmark function optimization; Part II: solving the ORPD problem for active power transmission 

line loss minimization; and Part III: Modification of the proposed hybrid approach and its test on an 

IEEE 30-bus system for solving the ORPD problem. 

 

Contributions of Part I: In solving benchmark functions, the results show that HPSOBA 

outperformed the other two algorithms of PSO and BA for both high and low dimensions in terms 

of general performance. The proposed method was found to be accurate, robust and efficient.  

 

Contributions of Part II: This can be divided into two case studies namely solving the ORPD 

without a DG unit installed and solving the ORPD by optimal installation of a DG unit. For solving 

the ORPD problem without a DG unit (first case study), the proposed HPSOBA method was 

validated using IEEE 30- and 118- bus test systems. The simulation results show that HPSOBA 

method reduced the the active power transmission line losses from 17.807 MW (base case) to 

16.125 MW (9.45% loss reduction) for the IEEE 30-bus system and from 133.350 MW (base case)  

to 108.151 MW (18.90% loss reduction) for the IEEE 118-bus system. 

For the second case study, optimal placement of a DG unit for real power transmission line loss 

minimization was successfully solved in this research using the hybrid algorithm (HPSOBA). The 
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proposed algorithm was validated using a modified IEEE 30-bus test system and compared for with 

and without a DG unit installed on the load buses. The outcome of the simulation tests proved that 

the hybrid approach (HPSOBA) further reduced the real power transmission line losses from 16.125 

MW (without DG unit installed) to 15.738 MW (with DG unit installed on bus 24), representing 

11.62% loss reduction while maintaining the control variables within their respective limits.  

 

Contributions of Part III: The proposed HPSOBA was modified to check if there will be further 

improvement in its performance. The simulation results of the MHPSOBA showed that the earlier 

proposed HPSOBA algorithm developed by this research also outperformed the results of this 

modified hybrid approach (MHPSOBA). The simulation results also show that the random nature of 

the velocity and position vectors during iteration contributes to a large extent to the good 

performance of the HPSOBA algorithm. 

 

Summarily, Table XV shows that the hybrid approach (HPSOBA) outperformed the PSO, BA and 

MHPSOBA methods for both IEEE 30- and 118- bus test systems. 

TABLE XV.  ALGORITHM PERFORMANCE SUMMARY FOR SOLVING ORPD PROBLEM 

ALGORITHM IEEE 30-BUS 

POWER LOSS (MW) 

IEEE 118-BUS 

POWER LOSS (MW) 

BASE CASE 17.807 133.350 

PSO 16.165 126.215 

BA 16.133 109.772 

HPSOBA 16.125 108.151 

HPSOBA 
 (with DG at Bus 24) 

15.738 - 

MHPSOBA 16.149 - 

 

In general, the contributions of this research, apart from  optimally installing a DG unit using a 

HPSOBA, can be summarized as follows: (1) minimization of active power transmission losses, (2) 

load bus voltage levels are maintained within their respective limits, (3) reactive power generation 

is kept within limits and (4) transformer tap settings are maintained within limits. 

The simulation test results show that the proposed HPSOBA method not only improves the 

solution’s quality but also reduces the computational time and is suitable for solving an ORPD, 

optimal placement of a DG unit for real power loss minimization as well as benchmark function 

optimization problems.  
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5.2 FUTURE WORK 

Three areas are proposed for further research: 

1) This research considered only one DG unit, further research needs to be done on adding 

more DG units in solving an ORPD problem. The computational time must also be 

considered. 

2) Reduction in computational time of the proposed HPSOBA should be investigated. 

3) Application of the proposed HPSOBA on real-world ORPD problems should also be 

investigated. 
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APPENDICES 

 

APPENDIX A STANDARD IEEE 30- (case_ieee30) AND IEEE 118- (case118) BUS 

TEST SYSTEMS DATA 

APPENDIX A.1 STANDARD IEEE 30-BUS TEST SYSTEM DATA 

% CASE_IEEE30 Power flow data for IEEE 30-bus test case. 
% Power Flow Data   
% system MVA base 
baseMVA = 100; 
  
% bus data 
bus_i    type Pd Qd Gs Bs area Vm Va baseKV  Vmax  Vmin 
    1       3       0        0        0    0    1        1.06      0       132      1.10     0.95 
    2        2        21.7     12.7     0    0    1        1.043    -5.48    132      1.10     0.95 
    3        1        2.4      1.2      0    0    1        1.021    -7.96    132      1.05     0.95 
    4        1        7.6      1.6      0    0    1        1.012    -9.62    132      1.05     0.95 
    5        2        94.2     19       0    0    1        1.01     -14.37   132      1.10     0.95 
    6        1        0        0        0    0    1        1.01     -11.34   132      1.05     0.95 
    7        1        22.8     10.9     0    0    1        1.002    -13.12   132         1.05     0.95 
    8        2        30       30       0    0    1        1.01     -12.1    132      1.10     0.95 
    9        1        0        0        0    0    1        1.051    -14.38   1        1.05     0.95 
    10      1        5.8      2        0   0.19  1   1.045    -15.97   33       1.05     0.95 
    11      2        0        0        0    0    1        1.082    -14.39  11       1.10     0.95 
    12      1        11.2     7.5      0    0    1        1.057    -15.24   33       1.05     0.95 
    13      2        0        0        0    0    1        1.071    -15.24   11          1.10     0.95 
    14      1        6.2      1.6      0    0    1        1.042    -16.13   33       1.05     0.95 
    15      1        8.2      2.5      0    0    1        1.038    -16.22   33       1.05     0.95 
    16      1        3.5      1.8      0    0    1        1.045    -15.83  33           1.05     0.95 
    17      1        9        5.8      0    0    1        1.04     -16.14   33         1.05     0.95 
    18      1        3.2      0.9      0    0    1        1.028    -16.82   33         1.05     0.95 
    19      1        9.5      3.4      0    0    1        1.026    -17.00   33       1.05     0.95 
    20      1        2.2      0.7      0    0    1        1.03     -16.8    33       1.05     0.95 
    21      1        17.5     11.2     0    0    1        1.033    -16.42   33       1.05     0.95 
    22      1        0        0        0    0    1        1.033    -16.41   33        1.05     0.95 
    23      1        3.2      1.6      0    0    1        1.027    -16.61   33       1.05     0.95 
    24      1        8.7      6.7      0  .043   1        1.021    -16.78   33       1.05     0.95 
    25      1        0        0        0    0    1        1.017    -16.35   33       1.05     0.95 
    26      1        3.5      2.3      0    0    1        1.000    -16.77   33       1.05     0.95 
    27      1        0        0        0    0    1        1.023    -15.82   33       1.05     0.95 
    28      1        0        0        0    0    1        1.007    -11.97   132        1.05     0.95 
    29      1        2.4      0.9      0    0    1        1.003    -17.06   33       1.05     0.95 
    30      1        10.6     1.9      0    0    1        0.992    -17.94   33       1.05     0.95 
 
% generator data 
bus  Pg Qg Qmax Qmin Vg mBase status Pmax  Pmin     
    1    260.2    -16.1    10       0        1.06     100      1        360.2    0 
    2    40       50       50       -40      1.045    100      1        140     0 
    5    0        37       40       -40      1.01     100      1        100      0 
    8    0        37.3     40       -10      1.01     100      1        100      0 
    11   0        16.2     24       -6       1.082    100      1        100      0  
    13   0        10.6     24       -6       1.071    100      1        100      0 
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% branch data 
Fbus tbus r          x        b          rateA  rateB rateC ratio   angle status 
    1       2    0.0192        0.0575     0.0528      0        0        0        1        0        1 
    1       3    0.0452         0.1652    0.0408      0        0        0        1        0    1 
    2       4    0.057     0.1737    0.0368       0            0           0        1        0        1 
    3       4    0.0132    0.0379    0.0084    0        0        0        1        0        1 
    2       5    0.0472    0.1983    0.0418    0        0        0        1        0        1 
    2       6    0.0581    0.1763    0.0374    0        0        0        1        0        1 
    4       6    0.0119    0.0414    0.009     0        0        0        1        0        1 
    5       7    0.046     0.116     0.0204    0        0        0        1        0        1 
    6       7    0.0267    0.082     0.017     0        0        0        1        0        1 
    6       8    0.012     0.042     0.009     0        0        0        1        0        1 
    6       9    0         0.208     0         0        0        0        0.978    0        1 
    6       10   0         0.556     0         0        0        0        0.969    0        1 
    9       11   0         0.208     0         0        0        0        1        0        1 
    9       10   0         0.11      0         0       0        0        1        0        1 
    4       12   0         0.256     0         0        0        0        0.932    0        1 
    12      13   0         0.14      0         0        0        0        1        0        1 
    12      14   0.1231    0.2559    0         0        0        0        1        0        1 
    12      15   0.0662    0.1304    0         0        0        0        1        0        1 
    12      16   0.0945    0.1987    0         0        0        0        1        0        1 
    14      15   0.221     0.1997    0         0        0        0        1        0        1 
    16      17   0.0524    0.1923    0         0        0        0        1        0        1 
    15      18   0.1073    0.2185    0         0        0        0        1        0        1 
    18      19   0.0639    0.1292    0         0        0        0        1        0        1 
    19      20   0.034     0.068     0         0        0        0        1        0        1 
    10      20   0.0936    0.209     0         0        0        0        1        0        1 
    10      17   0.0324   0.0845    0         0        0        0        1        0        1 
    10      21   0.0348    0.0749    0         0        0        0        1        0        1 
    10      22   0.0727    0.1499    0         0        0        0        1        0        1 
    21      22   0.0116    0.0236    0        0        0        0        1        0        1 
    15      23   0.1       0.202     0         0        0        0        1        0        1 
    22      24   0.115     0.179     0         0        0        0        1        0        1 
    23      24   0.132     0.27      0         0        0        0        1        0        1 
    24      25   0.1885    0.3292    0         0        0        0        1        0       1 
    25      26   0.2544    0.38      0         0        0        0        1        0        1 
    25      27   0.1093    0.2087    0         0        0        0        1        0        1 
    28      27   0         0.396     0         0        0        0        0.968    0        1 
    27      29   0.2198    0.4153    0         0        0        0        1        0        1 
    27      30   0.3202    0.6027    0         0        0       0        1        0        1 
    29      30   0.2399    0.4533    0         0        0        0        1        0        1 
    8       28   0.0636    0.2       0.0428    0        0        0        1        0        1 
    6       28   0.0169    0.0599    0.013     0        0        0        1        0        1 
 

APPENDIX A.2 STANDARD IEEE 118-BUS TEST SYSTEM DATA 

%CASE118    Power flow data for IEEE 118-bus test case. 
% system MVA base 
baseMVA = 100 
  
% bus data 
bus_i   type Pd Qd Gs   Bs area     Vm       Va baseKV  Vmax Vmin 
    1       2        51   27   0    0        1        0.955    10.67    138      1.06     0.94; 
    2       1        20   9    0    0        1        0.971    11.22    138      1.06     0.94; 
    3       1        39   10   0    0     1        0.968    11.56    138      1.06     0.94; 
    4       2        39   12   0    0        1        0.998    15.28    138      1.06     0.94; 
    5       1        0    0    0    -0.4     1        1.002    15.73    138      1.06     0.94; 
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    6       2        52   22   0    0        1        0.99     13       138        1.06     0.94; 
    7       1        19   2    0    0        1        0.989    12.56    138      1.06     0.94; 
    8       2        28   0    0    0        1        1.015    20.77    345      1.06     0.94; 
    9       1        0    0    0    0        1        1.043    28.02    345      1.06     0.94; 
    10      2        0    0    0    0        1        1.05     35.61    345      1.06     0.94; 
    11      1        70   23   0    0        1        0.985    12.72    138         1.06     0.94; 
    12      2        47   10   0    0        1        0.99     12.2     138         1.06     0.94; 
    13      1        34   16   0    0        1        0.968    11.35    138        1.06     0.94; 
    14      1        14   1    0    0        1        0.984    11.5     138        1.06     0.94; 
    15      2        90   30   0    0        1        0.97     11.23    138      1.06     0.94; 
    16      1        25   10   0    0        1        0.984    11.91    138      1.06     0.94; 
    17      1        11   3    0    0        1        0.995    13.74    138        1.06     0.94; 
    18      2        60   34   0    0        1        0.973    11.53    138      1.06     0.94; 
    19      2        45   25   0    0        1        0.963    11.05    138         1.06     0.94; 
    20      1        18   3    0    0        1        0.958    11.93    138      1.06     0.94; 
    21      1        14   8    0    0        1        0.959    13.52    138         1.06     0.94; 
    22      1        10   5    0    0        1        0.97     16.08    138         1.06     0.94; 
    23      1        7    3    0    0        1        1        21       138      1.06     0.94; 
    24      2        13   0    0    0        1        0.992    20.89    138      1.06     0.94; 
    25      2        0    0    0    0        1        1.05     27.93    138         1.06     0.94; 
    26      2        0    0    0    0        1        1.015    29.71    345       1.06     0.94; 
    27      2        71   13   0    0        1        0.968    15.35    138      1.06     0.94; 
    28      1        17   7    0    0        1        0.962    13.62    138      1.06     0.94; 
    29      1        24   4    0    0        1        0.963    12.63    138      1.06     0.94; 
    30      1        0    0    0    0        1        0.968    18.79    345         1.06     0.94; 
    31      2        43   27   0    0        1        0.967    12.75    138      1.06     0.94; 
    32      2        59   23   0    0        1        0.964    14.8     138         1.06     0.94; 
    33      1        23   9    0    0        1        0.972    10.63    138      1.06     0.94; 
    34      2        59   26   0    0.14     1        0.986    11.3     138         1.06     0.94; 
    35      1        33   9    0    0        1        0.981    10.87    138         1.06     0.94; 
    36      2        31   17   0    0        1        0.98     10.87    138      1.06     0.94; 
    37      1        0    0    0    -0.25    1        0.992    11.77    138      1.06     0.94; 
    38      1        0    0    0    0        1        0.962    16.91    345         1.06     0.94; 
    39      1        27   11   0    0        1        0.97     8.41     138      1.06     0.94; 
    40      2        66   23   0    0        1        0.97     7.35     138      1.06     0.94; 
    41      1        37   10   0    0        1        0.967    6.92     138      1.06     0.94; 
    42      2        96   23   0   0        1        0.985    8.53     138      1.06     0.94; 
    43      1        18   7    0    0        1        0.978    11.28    138      1.06     0.94; 
    44      1        16   8    0    0.1      1        0.985    13.82    138      1.06     0.94; 
    45      1        53   22   0    0.1      1        0.987    15.67    138      1.06     0.94; 
    46      2        28   10   0    0.1      1        1.005    18.49    138         1.06     0.94; 
    47      1        34   0    0    0        1        1.017    20.73    138         1.06     0.94; 
    48      1        20   11   0    0.15     1        1.021    19.93    138        1.06     0.94; 
    49      2        87   30   0    0        1        1.025    20.94    138         1.06     0.94; 
    50      1        17   4    0    0        1        1.001    18.9     138      1.06     0.94; 
    51      1        17   8    0    0        1        0.967    16.28    138      1.06     0.94; 
    52      1        18   5    0    0        1        0.957    15.32    138          1.06     0.94; 
    53      1        23   11   0    0        1        0.946    14.35    138          1.06     0.94; 
    54      2        113  32   0    0        1        0.955    15.26    138       1.06     0.94; 
    55      2        63   22   0    0        1        0.952    14.97    138          1.06     0.94; 
    56      2        84   18   0    0        1        0.954    15.16    138            1.06     0.94; 
    57      1        12   3    0    0        1        0.971    16.36    138          1.06     0.94; 
    58      1        12   3    0    0        1        0.959    15.51    138           1.06     0.94; 
    59      2        277  113  0    0        1        0.985    19.37    138            1.06     0.94; 
    60      1        78   3    0    0        1        0.993    23.15    138           1.06     0.94; 
    61      2        0    0    0    0        1        0.995    24.04    138          1.06     0.94; 
    62      2        77   14   0    0        1        0.998    23.43    138          1.06     0.94; 
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    63      1        0    0    0    0        1        0.969    22.75   345         1.06     0.94; 
    64      1        0    0    0    0        1        0.984    24.52    345      1.06     0.94; 
    65      2        0    0    0    0        1        1.005    27.65    345      1.06     0.94; 
    66      2        39   18   0    0        1        1.05     27.48    138           1.06     0.94; 
    67      1        28   7    0    0        1        1.02     24.84    138      1.06     0.94; 
    68      1        0    0    0    0        1        1.003    27.55    345         1.06     0.94; 
    69      3        0    0    0    0        1        1.035    30       138             1.06     0.94; 
    70      2        66   20   0    0        1        0.984    22.58    138      1.06     0.94; 
    71      1        0    0    0    0        1        0.987    22.15    138         1.06     0.94; 
    72      2        12   0    0    0        1        0.98     20.98    138            1.06     0.94; 
    73      2        6    0    0    0        1        0.991    21.94    138      1.06     0.94; 
    74      2        68   27   0    0.12     1        0.958    21.64    138           1.06     0.94; 
    75      1        47   11   0    0        1        0.967    22.91    138           1.06     0.94; 
    76      2        68   36   0    0        1        0.943    21.77    138      1.06     0.94; 
    77      2        61   28   0    0        1        1.006    26.72    138             1.06     0.94; 
    78      1        71   26   0    0        1        1.003    26.42    138           1.06     0.94; 
    79      1        39   32   0    0.2      1        1.009    26.72    138           1.06     0.94; 
    80      2        130  26   0    0        1        1.04     28.96    138            1.06     0.94; 
    81      1        0    0    0    0        1        0.997    28.1     345           1.06     0.94; 
    82      1        54   27   0    0.2      1        0.989    27.24    138           1.06     0.94; 
    83      1        20   10   0    0.1      1        0.985    28.42    138      1.06     0.94; 
    84      1        11  7    0    0        1        0.98     30.95    138          1.06     0.94; 
    85      2        24   15   0    0        1        0.985    32.51    138            1.06     0.94; 
    86      1        21   10   0    0        1        0.987    31.14    138            1.06     0.94; 
    87      2        0    0    0    0        1       1.015    31.4     161      1.06     0.94; 
    88      1        48   10   0    0        1        0.987    35.64    138      1.06     0.94; 
    89      2        0    0    0    0        1        1.005    39.69    138           1.06     0.94; 
    90      2        163  42   0    0        1        0.985    33.29    138             1.06     0.94; 
    91      2        10   0    0    0        1        0.98     33.31    138           1.06     0.94; 
    92      2        65   10   0    0        1        0.993    33.8     138            1.06     0.94; 
    93      1        12   7    0    0        1        0.987    30.79    138           1.06     0.94; 
    94      1        30   16   0    0        1        0.991    28.64    138      1.06     0.94; 
    95      1        42   31   0    0        1        0.981    27.67    138            1.06     0.94; 
    96      1        38   15   0    0        1        0.993    27.51    138      1.06     0.94; 
    97      1        15   9    0    0        1        1.011    27.88    138            1.06     0.94; 
    98      1        34   8    0    0        1        1.024    27.4     138            1.06     0.94; 
    99      2        42   0    0    0        1        1.01     27.04    138      1.06     0.94; 
    100     2        37   18   0    0        1        1.017    28.03    138            1.06     0.94; 
    101     1        22   15   0    0        1        0.993    29.61    138            1.06     0.94; 
    102     1        5    3    0    0        1        0.991    32.3     138         1.06     0.94; 
    103     2        23   16   0    0        1        1.001    24.44    138      1.06     0.94; 
    104     2        38   25   0    0        1        0.971    21.69    138           1.06     0.94; 
    105     2        31   26   0    0.2      1        0.965    20.57    138      1.06     0.94; 
    106     1        43   16   0    0        1        0.962    20.32    138           1.06     0.94; 
    107     2        50   12   0    0.06     1        0.952    17.53    138             1.06     0.94; 
    108     1        2    1    0    0        1        0.967    19.38    138           1.06     0.94; 
    109     1        8    3    0    0        1        0.967    18.93    138            1.06     0.94; 
    110     2        39   30  0    0.06     1        0.973    18.09    138         1.06     0.94; 
    111     2        0    0    0    0        1        0.98     19.74    138           1.06     0.94; 
    112     2        68   13   0    0        1        0.975    14.99    138           1.06     0.94; 
    113     2        6    0    0    0        1        0.993    13.74    138          1.06     0.94; 
    114     1        8    3    0    0        1        0.96     14.46    138             1.06     0.94; 
    115     1        22   7    0    0        1        0.96     14.46    138          1.06    0.94; 
    116     2        184  0    0    0        1        1.005    27.12    138         1.06     0.94; 
    117     1        20   8    0    0        1        0.974    10.67    138         1.06    0.94; 
    118     1        33   15   0    0        1        0.949    21.92    138        1.06     0.94; 
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% generator data 
bus  Pg  Qg   Qmax    Qmin Vg mBase status  Pmax Pmin 
    1    0        0    15 -5       0.955    100      1        100     0 
    4    0        0    300      -300     0.998    100      1        100      0        
    6    0        0    50       -13      0.99     100      1        100      0        
    8    0        0    300      -300     1.015    100      1        100      0        
    10   450      0    200      -147     1.05     100      1        550      0        
    12   85       0    120      -35      0.99     100      1        185      0        
    15   0        0    30       -10      0.97     100      1        100      0        
    18   0        0    50       -16      0.973    100      1        100      0        
    19   0        0    24       -8       0.962    100      1        100      0        
    24   0        0    300      -300     0.992    100      1        100      0        
    25   220      0    140      -47      1.05     100      1        320      0        
    26   314      0    1000    -1000    1.015    100      1        414     0        
    27   0        0    300     -300     0.968    100      1        100      0        
    31   7        0    300      -300     0.967    100      1        107      0        
    32   0        0    42       -14      0.963    100      1        100      0        
    34   0        0    24       -8       0.984    100      1        100      0       
    36   0        0    24       -8       0.98     100      1        100      0        
    40   0        0    300      -300     0.97     100      1        100      0        
    42   0        0    300      -300     0.985    100      1        100      0        
    46   19       0    100      -100     1.005    100      1        119      0        
    49   204      0    210      -85      1.025    100      1        304      0        
    54   48       0    300      -300     0.955    100      1        148      0        
    55   0        0    23       -8       0.952    100      1        100      0        
    56   0        0    15       -8       0.954    100      1        100      0        
    59   155      0    180      -60      0.985    100      1        255      0        
    61   160      0    300      -100     0.995    100      1        260      0        
    62   0        0    20       -20      0.998    100      1        100      0        
    65   391      0    200      -67      1.005    100      1        491      0        
    66   392      0    200      -67      1.05     100      1        492      0        
    69   516.4    0    300      -300     1.035    100      1        805.2    0        
    70   0        0    32       -10      0.984    100      1        100      0        
    72   0        0    100      -100     0.98     100      1        100      0        
    73   0        0    100      -100     0.991    100      1        100      0        
    74   0        0    9        -6       0.958    100      1        100      0        
    76   0        0    23       -8       0.943    100      1        100      0        
    77   0        0    70       -20      1.006    100      1        100     0        
    80   477      0    280      -165     1.04     100      1        577      0        
    85   0        0    23       -8       0.985    100      1        100      0        
    87   4        0    1000     -100     1.015    100      1        104      0        
    89   607      0    300      -210     1.005    100      1        707      0        
    90   0        0    300      -300     0.985    100      1        100      0        
    91   0        0    100      -100     0.98     100     1        100      0        
    92   0        0    9        -3       0.99     100      1        100      0        
    99   0        0    100      -100     1.01     100      1        100      0        
    100  252      0    155      -50      1.017    100      1        352      0        
    103  40       0    40       -15      1.01     100      1        140      0        
    104  0        0    23       -8       0.971    100      1        100      0        
    105  0        0    23       -8       0.965    100      1        100      0        
    107  0        0    200      -200     0.952    100      1        100      0        
    110  0        0    23       -8       0.973    100      1        100      0        
    111  36       0    1000     -100     0.98     100      1        136      0        
    112  0        0    1000     -100     0.975    100      1        100      0        
    113  0        0    200      -100     0.993    100      1        100      0        
    116  0        0    1000     -1000    1.005    100      1        100     0        
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% branch data 
fbus    tbus    r        x         b         rateA    rateB    rateC    ratio    angle   status 
    1        2       0.0303   0.0999    0.0254  0        0        0        0        0        1    
    1        3       0.0129   0.0424    0.01082  0        0        0        0       0        1        
    4        5       0.00176  0.00798  0.0021    0        0        0        0        0        1        
    3        5       0.0241   0.108     0.0284    0        0        0        0        0        1       
    5        6       0.0119   0.054     0.01426  0        0        0        0        0        1 
    6        7       0.00459  0.0208    0.0055    0        0        0        0        0        1        
    8        9       0.00244  0.0305    1.162     0        0        0        0        0        1        
    8        5       0        0.0267    0         0        0        0        0.985    0        1        
    9        10      0.00258  0.0322    1.23      0        0        0        0        0        1        
    4        11      0.0209   0.0688    0.01748  0        0        0       0        0        1        
    5        11      0.0203   0.0682    0.01738  0        0        0        0        0        1        
    11      12      0.00595  0.0196    0.00502  0        0        0        0        0        1       
    2        12      0.0187   0.0616    0.01572  0        0        0        0        0        1        
    3        12      0.0484   0.16      0.0406    0        0        0        0        0        1        
    7        12      0.00862  0.034     0.00874  0        0        0        0        0        1        
    11      13      0.02225  0.0731    0.01876  0        0        0        0        0        1       
    12      14      0.0215   0.0707    0.01816  0        0        0        0        0        1        
    13      15      0.0744   0.2444    0.06268  0        0        0        0        0        1        
    14      15      0.0595   0.195     0.0502    0        0        0        0        0        1        
    12      16      0.0212   0.0834    0.0214    0        0        0        0        0        1        
    15      17      0.0132   0.0437    0.0444    0       0        0        0        0        1        
    16      17      0.0454   0.1801    0.0466    0        0        0        0        0        1        
    17      18      0.0123   0.0505    0.01298  0        0        0        0        0        1        
    18      19      0.01119  0.0493    0.01142  0        0        0        0        0        1        
    19      20      0.0252   0.117     0.0298    0        0        0        0 0        1        
    15      19      0.012    0.0394    0.0101    0        0        0        0        0        1        
    20      21      0.0183   0.0849    0.0216    0        0        0        0        0        1        
    21      22      0.0209   0.097     0.0246    0        0        0        0        0        1        
    22      23      0.0342   0.159     0.0404    0        0        0        0        0        1        
    23     24      0.0135   0.0492    0.0498    0        0        0        0        0        1        
    23      25      0.0156  0.08      0.0864    0        0        0        0        0        1        
    26      25      0        0.0382    0         0        0        0        0.96     0        1        
    25      27      0.0318   0.163     0.1764    0        0        0        0        0        1        
    27      28      0.01913  0.0855    0.0216    0        0        0       0        0        1        
    28      29      0.0237   0.0943    0.0238    0        0        0        0        0        1        
    30      17      0        0.0388    0         0        0        0        0.96     0        1        
    8        30      0.00431  0.0504    0.514     0        0        0        0        0        1        
    26      30      0.00799  0.086     0.908     0        0        0        0        0        1        
    17     31      0.0474   0.1563    0.0399    0        0        0        0        0        1        
    29      31      0.0108   0.0331    0.0083    0        0        0        0        0        1        
    23      32      0.0317   0.1153    0.1173    0        0        0        0        0        1        
    31      32      0.0298   0.0985    0.0251    0        0        0        0        0        1        
    27      32      0.0229   0.0755    0.01926  0        0        0        0        0        1        
    15      33      0.038    0.1244    0.03194  0        0        0        0        0        1        
    19     34      0.0752   0.247     0.0632    0        0        0        0        0        1        
    35      36      0.00224  0.0102    0.00268  0       0        0        0        0        1        
    35      37      0.011    0.0497    0.01318  0        0        0        0        0        1        
    33      37      0.0415   0.142     0.0366    0        0        0        0        0        1        
    34      36      0.00871  0.0268    0.00568  0        0        0        0        0        1        
    34      37      0.00256  0.0094    0.00984  0        0       0        0        0        1        
    38      37      0        0.0375    0         0        0        0        0.935    0        1        
    37      39      0.0321   0.106     0.027     0        0        0        0        0        1        
    37      40      0.0593   0.168     0.042     0        0        0        0        0        1        
    30      38      0.00464  0.054     0.422     0        0        0        0        0        1       
    39      40      0.0184   0.0605    0.01552  0        0        0        0        0        1        
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    40      41      0.0145   0.0487    0.01222  0        0        0        0        0        1        
    40      42      0.0555   0.183     0.0466    0        0        0        0        0        1        
    41      42      0.041    0.135     0.0344    0        0        0        0        0        1        
    43      44      0.0608   0.2454    0.06068  0        0        0        0        0        1 
    34      43      0.0413   0.1681    0.04226  0        0        0        0        0        1        
    44      45      0.0224   0.0901    0.0224    0        0        0        0        0        1        
    45      46      0.04     0.1356    0.0332    0        0       0        0        0        1        
    46      47      0.038    0.127     0.0316    0       0        0        0        0        1        
    46      48      0.0601   0.189     0.0472    0        0        0        0        0        1        
    47      49      0.0191   0.0625    0.01604  0        0        0        0        0        1        
    42      49      0.0715   0.323    0.086     0        0        0        0        0        1        
    42      49      0.0715   0.323     0.086     0        0        0        0        0        1        
    45      49      0.0684   0.186     0.0444    0        0        0        0        0        1        
    48      49      0.0179   0.0505    0.01258  0        0        0       0        0        1        
    49      50      0.0267   0.0752    0.01874  0        0        0        0        0        1        
    49      51      0.0486   0.137     0.0342    0        0        0        0        0        1        
    51      52      0.0203   0.0588    0.01396  0        0        0        0        0        1        
    52      53      0.0405   0.1635    0.04058  0        0        0        0        0        1        
    53      54      0.0263   0.122     0.031     0        0        0        0        0        1        
    49      54      0.073    0.289     0.0738    0        0        0        0        0        1        
    49      54      0.0869   0.291     0.073     0        0        0        0        0        1        
    54      55      0.0169   0.0707    0.0202    0        0        0        0        0        1        
    54      56      0.00275  0.00955  0.00732  0        0        0        0        0        1        
    55      56      0.00488  0.0151    0.00374  0        0        0        0        0        1        
    56      57      0.0343   0.0966    0.0242    0        0        0        0        0        1        
    50      57      0.0474   0.134     0.0332    0        0        0        0        0        1        
    56      58      0.0343   0.0966    0.0242    0        0        0        0        0        1        
    51      58      0.0255   0.0719    0.01788  0        0        0       0        0        1        
    54      59      0.0503   0.2293    0.0598    0        0        0        0        0        1        
    56      59      0.0825   0.251     0.0569    0        0        0        0        0        1        
    56      59      0.0803   0.239     0.0536    0        0        0        0        0        1        
    55      59      0.04739  0.2158    0.05646  0        0        0        0        0        1        
    59      60      0.0317   0.145     0.0376    0        0        0        0        0        1        
    59     61      0.0328   0.15      0.0388    0        0        0        0        0        1        
    60      61      0.00264  0.0135    0.01456  0        0        0        0        0        1        
    60      62      0.0123   0.0561    0.01468  0        0        0        0        0        1        
    61      62      0.00824  0.0376    0.0098    0        0        0        0        0        1        
    63      59      0       0.0386    0         0        0        0        0.96     0        1        
    63      64      0.00172  0.02      0.216     0        0        0        0        0        1        
    64      61      0        0.0268    0         0        0        0        0.985    0        1        
    38      65      0.00901  0.0986    1.046     0        0        0        0        0        1        
    64      65      0.00269  0.0302    0.38      0        0        0        0        0        1        
    49      66      0.018    0.0919    0.0248    0        0        0        0        0        1        
    49      66      0.018    0.0919    0.0248    0        0        0        0        0        1        
    62      66      0.0482   0.218     0.0578    0        0        0        0        0        1        
    62      67      0.0258   0.117     0.031     0        0        0        0        0        1        
    65      66      0        0.037     0         0        0        0        0.935    0        1        
    66      67      0.0224   0.1015    0.02682  0        0        0        0        0        1        
    65      68      0.00138  0.016     0.638     0        0        0        0        0        1        
    47      69      0.0844   0.2778    0.07092  0        0        0        0        0        1        
    49      69      0.0985   0.324     0.0828    0        0        0        0        0        1        
    68      69      0        0.037     0         0        0        0        0.935    0        1        
    69      70      0.03     0.127     0.122     0        0        0        0        0        1        
    24      70      0.00221  0.4115    0.10198  0        0        0        0        0        1        
    70      71      0.00882  0.0355    0.00878  0        0        0        0        0        1    
    24      72      0.0488   0.196     0.0488    0        0        0        0        0        1        
    71      72      0.0446   0.18      0.04444  0        0        0        0        0        1        
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    71      73      0.00866  0.0454    0.01178  0        0        0        0        0        1        
    70      74      0.0401   0.1323    0.03368  0        0        0        0        0        1        
    70      75      0.0428   0.141     0.036     0        0        0        0        0        1        
    69     75      0.0405   0.122     0.124     0        0        0        0        0        1        
    74     75      0.0123   0.0406    0.01034  0        0        0        0        0        1        
    76      77      0.0444   0.148     0.0368    0        0        0        0        0        1        
    69      77      0.0309   0.101     0.1038    0        0        0        0        0        1        
    75      77      0.0601   0.1999    0.04978  0        0        0        0        0        1        
    77      78      0.00376  0.0124    0.01264  0        0        0        0        0        1        
    78      79      0.00546  0.0244    0.00648  0        0        0        0        0        1        
    77      80      0.017    0.0485    0.0472    0        0        0        0        0        1        
    77      80      0.0294   0.105     0.0228    0        0        0        0        0        1        
    79      80      0.0156   0.0704    0.0187    0        0        0        0        0        1        
    68      81      0.00175  0.0202    0.808     0        0        0        0        0        1        
    81      80      0        0.037     0         0        0        0        0.935    0        1        
    77      82      0.0298   0.0853    0.08174  0        0        0        0        0        1        
    82      83      0.0112   0.03665  0.03796  0        0        0        0        0        1        
    83      84      0.0625   0.132     0.0258    0        0        0        0        0        1        
    83      85      0.043    0.148     0.0348    0        0        0        0        0        1        
    84      85      0.0302   0.0641    0.01234  0        0        0        0        0        1        
    85      86      0.035    0.123     0.0276    0        0        0        0        0        1        
    86      87      0.02828  0.2074    0.0445    0        0        0        0        0        1        
    85      88      0.02     0.102     0.0276    0        0        0        0        0        1        
    85      89      0.0239   0.173     0.047     0        0        0        0        0        1        
    88      89      0.0139   0.0712    0.01934  0        0        0        0        0        1        
    89      90      0.0518   0.188     0.0528    0        0        0        0        0        1        
    89      90      0.0238   0.0997    0.106     0        0        0        0        0        1        
    90      91      0.0254   0.0836    0.0214    0        0        0        0        0        1       
    89      92      0.0099   .0505    0.0548    0        0        0        0        0        1        
    89      92      0.0393   0.1581    0.0414    0        0        0        0        0        1        
    91      92      0.0387   0.1272    0.03268  0        0       0        0        0        1        
    92      93      0.0258   0.0848    0.0218    0        0        0        0        0        1        
    92      94      0.0481   0.158     0.0406    0        0        0        0        0        1        
    93      94      0.0223   0.0732    0.01876  0        0        0        0        0        1        
    94      95      0.0132   0.0434    0.0111    0        0        0        0        0        1        
    80      96      0.0356   0.182     0.0494    0        0        0        0        0        1        
    82      96      0.0162   0.053     0.0544    0        0        0        0        0        1        
    94     96      0.0269   0.0869    0.023     0        0        0        0        0        1        
    80      97      0.0183   0.0934    0.0254    0        0        0        0        0        1        
    80      98      0.0238   0.108     0.0286    0        0        0        0        0       1        
    80      99      0.0454   0.206     0.0546    0        0        0        0        0        1        
    92      100     0.0648   0.295     0.0472    0        0        0        0        0        1        
    94      100     0.0178   0.058     0.0604    0        0        0        0        0        1        
    95      96      0.0171   0.0547    0.01474  0        0        0        0        0        1        
    96      97      0.0173   0.0885    0.024     0        0        0        0        0        1        
    98      100     0.0397   0.179     0.0476    0        0        0        0        0        1        
    99      100     0.018    0.0813    0.0216    0        0        0        0        0        1        
    100    101     0.0277   0.1262    0.0328    0        0        0        0        0        1        
    92      102     0.0123   0.0559    0.01464  0        0        0        0        0        1        
    101    102     0.0246   0.112     0.0294    0        0        0        0        0        1        
    100    103     0.016    0.0525    0.0536    0        0        0        0        0        1        
    100    104     0.0451   0.204     0.0541    0        0        0        0        0        1        
    103    104     0.0466   0.1584    0.0407    0        0        0        0        0        1        
    103    105     0.0535   0.1625    0.0408    0        0        0        0        0        1        
    100    106     0.0605   0.229     0.062     0        0        0        0        0        1        
    104    105     0.00994  0.0378    0.00986  0        0        0        0        0        1        
    105    106     0.014    0.0547    0.01434  0        0        0        0        0        1        
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    105    107     0.053    0.183     0.0472    0        0        0        0        0        1        
    105    108     0.0261   0.0703    0.01844  0        0        0        0        0        1        
    106   107     0.053    0.183     0.0472    0        0        0        0        0        1        
    108    109     0.0105   0.0288    0.0076    0        0        0        0        0        1        
    103   110     0.03906  0.1813    0.0461    0        0        0        0        0        1        
    109    110     0.0278   0.0762    0.0202    0        0        0        0        0        1        
    110    111     0.022    0.0755    0.02      0        0        0        0        0        1        
    110    112     0.0247   0.064     0.062     0        0        0        0        0        1        
    17      113     0.00913  0.0301    0.00768  0        0        0        0        0        1        
    32      113     0.0615   0.203     0.0518    0        0        0        0        0        1        
    32      114     0.0135   0.0612    0.01628  0        0        0        0        0        1        
    27      115     0.0164   0.0741    0.01972  0        0        0        0        0        1        
    114    115     0.0023   0.0104    0.00276  0        0        0        0        0        1        
    68      116     0.00034  0.00405  0.164     0        0        0        0        0        1        
    12      117     0.0329   0.14      0.0358    0        0        0        0        0        1        
    75      118     0.0145   0.0481    0.01198  0        0        0        0        0        1        
    76      118     0.0164   0.0544    0.01356  0        0        0        0        0        1      
 

APPENDIX B MATALAB CODES FOR PSO, BA AND HPSOBA ALGORITHMS 

(IEEE 30-BUS TEST SYSTEM) 

APPENDIX B.1 MATALAB CODES FOR PSO ALGORITHM FOR ORPD             

(without DG Unit) 

%% PSO algorithm to solve Optimal Reactive Power Di spatch  
%  Authored by AGBUGBA E.E.  
%  Student No: 57441022  
%  Department of Electrical and Mining Engineering  
%  College of Science, Engineering and Technology  
%  University Of South Africa  
%% Initialization Parameters  
clear all  
clc  
tic  
iter=0;  
iteration=200;  
nvars = 12; %Number of variables  
N = 50;  %Number of Particles or Swarm size  
%Acceleration constants  
c1 = 2.05;  
c2 = 2.05;  
%Inertia Weight  
w_max=0.9;  
w_min=0.4;  
w_temp(1)=w_max;  
%Load IEEE 30-bus data  
[baseMVA, bus, gen, branch]=loadcase(case_ieee30);  
%% Initialization of Swarm & velocity  
Swarm=[unifrnd(0.95,1.10,N,6),unifrnd(0.90,1.10,N,4 ),unifrnd(0.00,0.20,N,2)];  
%Initialize velocity  
Velocity =[unifrnd(-0.003,0.003,N,6),unifrnd(-0.003 ,0.003,N,4), unifrnd(-
0.003,0.003,N,2)];  
for  i=1:N  
    v1=Swarm(i,1);      %v1 
    bus(1,8)=v1;        %Vm, column 8 is voltage magnitude (p.u.)  
    gen(1,6)=v1;        %Vg, column 6 is voltage magnitude setpoint (p.u.)  
    v2=Swarm(i,2);      %v2 
    bus(2,8)=v2;  
    gen(2,6)=v2;  
    v5=Swarm(i,3);      %v5 
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    bus(5,8)=v5;  
    gen(3,6)=v5;  
    v8=Swarm(i,4);      %v8 
    bus(8,8)=v8;  
    gen(4,6)=v8;  
    v11=Swarm(i,5);     %v11 
    bus(11,8)=v11;  
    gen(5,6)=v11;  
    v13=Swarm(i,6);     %v13 
    bus(13,8)=v13;  
    gen(6,6)=v13;  
    t1=Swarm(i,7);      %tp1 6-9, column 9 is tap position  
    branch(11,9)=t1;  
    t2=Swarm(i,8);      %tp2 6-10  
    branch(12,9)=t2;  
    t3=Swarm(i,9);      %tp3 4-12  
    branch(15,9)=t3;  
    t4=Swarm(i,10);     %tp4 27-28  
    branch(36,9)=t4;  
    qc10=Swarm(i,11);   %Shunt capacitor 10, column 6 is BS  
    bus(10,6)=qc10;  
    qc24=Swarm(i,12);   %Shunt capacitor 10, column 6 is BS  
    bus(24,6)=qc24;  
  
    eval([ 'savecase (''case_ieee30_test' , num2str(i), '.mat'', baseMVA, bus, 
gen, branch)' ]);  
    eval([ 'initial_results_' ,num2str(i), '=runpf(''case_ieee30_test' , num2str(i) 
'.mat'')' ]);  
    eval([ 'initial_losses_' ,num2str(i), '=sum(real(get_losses(initial_results_' , 
num2str(i), ')))' ]);  
   %Penalty for bus voltage violation  
    bus_inf=bus(:,8);  
    for  bus_num=1:30  
        if  bus_inf(bus_num)>1.10  
            penalty_Vl(bus_num)=10000*(bus_inf(bus_ num)-1.10)^2;  
        elseif  bus_inf(bus_num)<0.95  
            penalty_Vl(bus_num)=10000*(bus_inf(bus_ num)-0.95)^2;  
        else  
            penalty_Vl(bus_num)=0;  
        end  
    end  
    penalty_Vl_violation=sum(penalty_Vl);  
    %Penalty for shunt violation  
    buus_inf=bus(:,6);  
    for  bus_num=1:30  
        if  buus_inf(bus_num)>0.20  
            penalty_Qc(bus_num)=10000*(buus_inf(bus _num)-0.20)^2;  
        elseif  buus_inf(bus_num)<0.00  
            penalty_Qc(bus_num)=10000*(buus_inf(bus _num)-0.00)^2;  
        else  
            penalty_Qc(bus_num)=0;  
        end  
    end  
    penalty_Qc_violation=sum(penalty_Qc);  
    %Penalty for tap position violation  
    brch_inf=[branch(11,9); branch(12,9); branch(15 ,9); branch(36,9)];  
    for  brch_num=1:4  
        if  brch_inf(brch_num)>1.10  
            penalty_Tk(brch_num)=10000*(brch_inf(br ch_num)-1.10)^2;  
        elseif  brch_inf(brch_num)<0.90  
            penalty_Tk(brch_num)=10000*(brch_inf(br ch_num)-0.90)^2;  
        else  
            penalty_Tk(brch_num)=0;  
        end  
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    end  
    penalty_Tk_violation=sum(penalty_Tk);  
    %objective function=sum of active power losses of t he transmission lines  
    losses(i)=eval([ 'initial_losses_' ,num2str(i)]); %sum of real power losses of 
all branches  
Obj_fun_initial(i)=losses(i)+penalty_Vl_violation+p enalty_Qc_violation+penalty_T
k_violation;  %augumented objective function with penalty functio n 
end  
%% Initialize best position (Pbest) and global best  postion (Gbest) matrix  
Pbest=Swarm;  
Val_Pbest=Obj_fun_initial;  
%finding best particle in initial population  
[Val_Gbest,m]=min(Val_Pbest);  
Gbest=Swarm(m,:);    %used to keep track of the best particle ever  
Gbest_calc=repmat(Swarm(m,:),N,1);  
%% PSO LOOP 
figure( 'NumberTitle' , 'off' , 'Name' , 'PSO Algorithm Based Optimal Reactive Power 
Dispatch' );  
title( 'ACTIVE POWER LOSS MINIMIZATION' );  
ylabel( 'Total Active Power Loss (MW)' );  
xlabel( 'Iteration Number' );  
grid on;  
hold on 
for  iter=1:iteration  
    % Update the value of the inertia weight w  
    if  iter <= iteration  
       w_temp(iter)=w_max + (((w_min-w_max)/iterati on)*iter); %Change inertia 
weight  
    end  
    %generate random numbers  
    R1=rand(N,nvars);  
    R2=rand(N,nvars);  
     
    % constriction factor  
    %2.05+2.05=4.1;  
    %2/abs(2-4.1-sqrt(4.1*4.1-4*4.1))=0.729  
    %calculate velocity  
    Velocity=(w_temp(iter)*Velocity+c1*R1.*(Pbest-S warm)+c2*R2.*(Gbest_calc-
Swarm));  
    for  v_iter=1:nvars  
        if  v_iter==nvars  
            Outstep=Velocity(:,v_iter)>0.003;  
            Velocity(find(Outstep),v_iter)=0.003;  
            Outstep=Velocity(:,v_iter)<-0.003;  
            Velocity(find(Outstep),v_iter)=-0.003;  
        else  
            Outstep=Velocity(:,v_iter)>0.01;  
            Velocity(find(Outstep),v_iter)=0.01;  
            Outstep=Velocity(:,v_iter)<-0.01;  
            Velocity(find(Outstep),v_iter)=-0.01;  
        end  
   end  
    %update positions of particles  
    Swarm=Swarm+0.729*Velocity;   %evaluate a new swarm  
    for  k=1:N  
        v1=Swarm(k,1);      %v1 
        bus(1,8)=v1;        %Vm, column 8 is voltage magnitude (p.u.)  
        gen(1,6)=v1;        %Vg, column 6 is voltage magnitude setpoint (p.u.)  
        v2=Swarm(k,2);      %v2 
        bus(2,8)=v2;  
        gen(2,6)=v2;  
        v5=Swarm(k,3);      %v5 
        bus(5,8)=v5;  
        gen(3,6)=v5;  
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        v8=Swarm(k,4);      %v8 
        bus(8,8)=v8;  
        gen(4,6)=v8;  
        v11=Swarm(k,5);     %v11 
        bus(11,8)=v11;  
        gen(5,6)=v11;  
        v13=Swarm(k,6);     %v13 
        bus(13,8)=v13;  
        gen(6,6)=v13;  
        t1=Swarm(k,7);      %tp1 6-9, column 9 is tap position  
        branch(11,9)=t1;  
        t2=Swarm(k,8);      %tp2 6-10  
        branch(12,9)=t2;  
        t3=Swarm(k,9);      %tp3 4-12  
        branch(15,9)=t3;  
        t4=Swarm(k,10);     %tp4 27-28  
        branch(36,9)=t4;  
        qc10=Swarm(k,11);   %Shunt capacitor 10, column 6 is BS  
        bus(10,6)=qc10;  
        qc24=Swarm(k,12);   %Shunt capacitor 10, column 6 is BS  
        bus(24,6)=qc24;  
         
        eval([ 'savecase (''case_ieee30_test' , num2str(k), '.mat'', baseMVA, bus, 
gen, branch)' ]);  
        eval([ 'final_results_' ,num2str(k), '=runpf(''case_ieee30_test' , 
num2str(k) '.mat'')' ]);  
        
eval([ 'final_losses_' ,num2str(k), '=sum(real(get_losses(final_results_' ,num2str(k
), ')))' ]);   
        %Penalty for bus voltage violation  
        bus_inf=bus(:,8);  
        for  bus_num=1:30  
            if  bus_inf(bus_num)>1.10  
                penalty_Vl(bus_num)=10000*(bus_inf( bus_num)-1.10)^2;  
            elseif  bus_inf(bus_num)<0.95  
                penalty_Vl(bus_num)=10000*(bus_inf( bus_num)-0.95)^2;  
            else  
                penalty_Vl(bus_num)=0;  
            end  
        end  
        penalty_Vl_violation=sum(penalty_Vl);  
        %Penalty for shunt violation  
        buus_inf=bus(:,6);  
        for  bus_num=1:30  
            if  buus_inf(bus_num)>0.20  
                penalty_Qc(bus_num)=10000*(buus_inf (bus_num)-0.20)^2;  
            elseif  buus_inf(bus_num)<0.00  
                penalty_Qc(bus_num)=10000*(buus_inf (bus_num)-0.00)^2;  
            else  
                penalty_Qc(bus_num)=0;  
            end  
        end  
        penalty_Qc_violation=sum(penalty_Qc);  
        %Penalty for tap position violation  
        brch_inf=[branch(11,9); branch(12,9); branc h(15,9); branch(36,9)];  
        for  brch_num=1:4  
            if  brch_inf(brch_num)>1.10  
                penalty_Tk(brch_num)=10000*(brch_in f(brch_num)-1.10)^2;  
            elseif  brch_inf(brch_num)<0.90  
                penalty_Tk(brch_num)=10000*(brch_in f(brch_num)-0.90)^2;  
            else  
                penalty_Tk(brch_num)=0;  
            end  
        end  
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        penalty_Tk_violation=sum(penalty_Tk);  
        %objective function=sum of active power losses of t he transmission lines  
        losses_temp(k)=eval([ 'final_losses_' ,num2str(k)]);  %sum of real power 
losses of all branches  
        
Obj_fun_temp(k)=losses_temp(k)+penalty_Vl_violation +penalty_Qc_violation+penalty
_Tk_violation; %augumented objective function with penalty functio n 
        % Final Evaluation  
        Val_Pbest_temp(k)=Obj_fun_temp(k);  
    end  
        if  Val_Pbest_temp<Val_Pbest  
            losses=losses_temp;  
            Val_Pbest=Val_Pbest_temp;  
            Pbest=Swarm;  
        end  
  
        [Val_Gbest_temp,n]=min(Val_Pbest);  
        if  Val_Gbest_temp<Val_Gbest  
            Val_Gbest=Val_Gbest_temp;  
            Gbest=Swarm(n,:);  
            Gbest_calc=repmat(Swarm(n,:),N,1);  
        end  
    
     
    Val_Gbest_rec(iter)=Val_Gbest;  
    plot(Val_Gbest_rec);  
    drawnow;  
    toc  
end  
APPENDIX B.2 MATALAB CODES FOR BA ALGORITHM FOR ORPD                

(without DG Unit) 

 
%% Bat algorithm to solve Optimal Reactive Power Di spatch  
%  Authored by AGBUGBA E.E.  
%  Student No: 57441022  
%  Department of Electrical and Mining Engineering  
%  College of Science, Engineering and Technology  
%  University Of South Africa  
%% Initialization Parameters  
clear all  
clc  
tic  
% Default parameters  
N=20;               % Number of bats (population), typically 10 to 25  
N_gen=200;          % No of generation (iteration))  
Qmin=0;             % Frequency minimum  
Qmax=2;             % Frequency maximum  
r0max=1;  
r0min=0;  
Amax=2;  
Amin=1;  
%Inertia Weight  
w_max=0.9;  
w_min=0.4;  
w_temp=w_max;  
w_step=(w_max-w_min)/N_gen;  
% Iteration parameters  
N_iter=0;       % Total number of function evaluations  
% Dimension of the search variables  
d=12;  
% Constants  
alpha=0.99;  % Loudness constant  
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gamma=0.9;  % Pulse rate constant  
%Load IEEE 30-bus data  
[baseMVA, bus, gen, branch]=loadcase(case_ieee30);  
%% Initialization of Population/ Solutions, Frequen cy & velocity  
% Initialize velocity  
Velocity =[unifrnd(-0.003,0.003,N,6),unifrnd(-0.003 ,0.003,N,4), unifrnd(-
0.003,0.003,N,2)];  
% Initialize frequency  
Freq=zeros(N,1);   % Frequency;  
% Initialize solutions/locations  
Sol=[unifrnd(0.95,1.10,N,6),unifrnd(0.90,1.10,N,4), unifrnd(0,0.20,N,2)];  
r=(rand(N,1).*(r0max-r0min))+r0min;  
A=(rand(N,1).*(Amax-Amin))+Amin;  
for  i=1:N    
    v1=Sol(i,1);      %v1 
    bus(1,8)=v1;        %Vm, column 8 is voltage magnitude (p.u.)  
    gen(1,6)=v1;        %Vg, column 6 is voltage magnitude setpoint (p.u.)  
    v2=Sol(i,2);      %v2 
    bus(2,8)=v2;  
    gen(2,6)=v2;  
    v5=Sol(i,3);      %v5 
    bus(5,8)=v5;  
    gen(3,6)=v5;  
    v8=Sol(i,4);      %v8 
    bus(8,8)=v8;  
    gen(4,6)=v8;  
    v11=Sol(i,5);     %v11 
    bus(11,8)=v11;  
    gen(5,6)=v11;  
    v13=Sol(i,6);     %v13 
    bus(13,8)=v13;  
    gen(6,6)=v13;  
    t1=Sol(i,7);      %tp1 6-9, column 9 is tap position  
    branch(11,9)=t1;  
    t2=Sol(i,8);      %tp2 6-10  
    branch(12,9)=t2;  
    t3=Sol(i,9);      %tp3 4-12  
    branch(15,9)=t3;  
    t4=Sol(i,10);     %tp4 27-28  
    branch(36,9)=t4;  
    qc10=Sol(i,11);   %Shunt capacitor 10, column 6 is BS  
    bus(10,6)=qc10;  
    qc24=Sol(i,12);   %Shunt capacitor 10, column 6 is BS  
    bus(24,6)=qc24;  
  
    eval([ 'savecase (''2case_ieee30_test' , num2str(i), '.mat'', baseMVA, bus, 
gen, branch)' ]);  
    eval([ 'results_' ,num2str(i), '=runpf(''2case_ieee30_test' , num2str(i) 
'.mat'')' ]);  
    
eval([ 'losses_' ,num2str(i), '=sum(real(get_losses(results_' ,num2str(i), ')))' ]);  
   %Penalty for bus voltage violation  
    bus_inf=bus(:,8);  
    for  bus_num=1:30  
        if  bus_inf(bus_num)>1.10  
            penalty_bus(bus_num)=10000*((bus_inf(bu s_num)-1.10)^2);  
        elseif  bus_inf(bus_num)<0.95  
            penalty_bus(bus_num)=10000*((bus_inf(bu s_num)-0.95)^2);  
        else  
            penalty_bus(bus_num)=0;  
        end  
    end  
    penalty_bus_violation=sum(penalty_bus);  
    %Penalty for shunt violation  
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    buus_inf=bus(:,6);  
    for  bus_num=1:30  
        if  buus_inf(bus_num)>0.20  
            penalty_sht(bus_num)=10000*(buus_inf(bu s_num)-0.20)^2;  
        elseif  buus_inf(bus_num)<0.00  
            penalty_sht(bus_num)=10000*(buus_inf(bu s_num)-0.00)^2;  
        else  
            penalty_sht(bus_num)=0;  
        end  
    end  
    penalty_sht_violation=sum(penalty_sht);  
    %Penalty for tap position violation  
    brch_inf=[branch(11,9); branch(12,9); branch(15 ,9); branch(36,9)];  
    for  brch_num=1:4  
        if  brch_inf(brch_num)>1.10  
            penalty_brch(brch_num)=10000*(brch_inf( brch_num)-1.10)^2;  
        elseif  brch_inf(brch_num)<0.90  
            penalty_brch(brch_num)=10000*(brch_inf( brch_num)-0.90)^2;  
        else  
            penalty_brch(brch_num)=0;  
        end  
    end  
    penalty_brch_violation=sum(penalty_brch);  
    % objective function=sum of active power losses of the transmission lines  
    losses(i)=eval([ 'losses_' ,num2str(i)]);  
    
Obj_fun_initial(i)=losses(i)+penalty_bus_violation+ penalty_sht_violation+penalty
_brch_violation;  % augumented objective function with penalty functi on 
end  
% Evaluate solution  
    Fitness=Obj_fun_initial;  
    pbest=Sol;  
%% finding the current best solution in the initial  population (first 
evaluation)  
[fmin,m]=min(Fitness);  
best=Sol(m,:);       % used to keep track of the best current solution e ver  
%% Bat Algorithm LOOP  
figure( 'NumberTitle' , 'off' , 'Name' , 'Bat Algorithm Based Optimal Reactive Power 
Dispatch' );  
title( 'ACTIVE POWER LOSS MINIMIZATION' );  
ylabel( 'Total Active Power Loss (MW)' );  
xlabel( 'Iteration Number' );  
grid on;  
hold on 
  
for  N_iter=1:N_gen  
     % Loop over all bats/solutions  
     meanA=mean(A);  
     if  (N_iter <= N_gen) & (N_iter > 1)  
       w_temp=w_temp-w_step; %Change inertia weight  
     end  
        
 for  i=1:N    
    Freq(i)=Qmin+(Qmax-Qmin)*rand;  
    Velocity(i,:)=w_temp*Velocity(i,:)+(Sol(i,:)-be st)*Freq(i);  
    S(i,:)=Sol(i,:)+Velocity(i,:);  
    % Local Search  
    if  rand>r(i)  
        randnValueA=randn(1,d).*(abs(meanA));  
        S(i,:)=best+(0.001*randnValueA);        % The factor 0.001 limits the 
step sizes of random walks  
    end  
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    v1=S(i,1);      %v1 
    bus(1,8)=v1;        %Vm, column 8 is voltage magnitude (p.u.)  
    gen(1,6)=v1;        %Vg, column 6 is voltage magnitude setpoint (p.u.)  
    v2=S(i,2);      %v2 
    bus(2,8)=v2;  
    gen(2,6)=v2;  
    v5=S(i,3);      %v5 
    bus(5,8)=v5;  
    gen(3,6)=v5;  
    v8=S(i,4);      %v8 
    bus(8,8)=v8;  
    gen(4,6)=v8;  
    v11=S(i,5);     %v11 
    bus(11,8)=v11;  
    gen(5,6)=v11;  
    v13=S(i,6);     %v13 
    bus(13,8)=v13;  
    gen(6,6)=v13;  
    t1=S(i,7);      %tp1 6-9, column 9 is tap position  
    branch(11,9)=t1;  
    t2=S(i,8);      %tp2 6-10  
    branch(12,9)=t2;  
    t3=S(i,9);      %tp3 4-12  
    branch(15,9)=t3;  
    t4=S(i,10);     %tp4 27-28  
    branch(36,9)=t4;  
    qc10=S(i,11);   %Shunt capacitor 10, column 6 is BS  
    bus(10,6)=qc10;  
    qc24=S(i,12);   %Shunt capacitor 10, column 6 is BS  
    bus(24,6)=qc24;  
  
    eval([ 'savecase (''2case_ieee30_test' , num2str(i), '.mat'', baseMVA, bus, 
gen, branch)' ]);  
    eval([ 'results_' ,num2str(i), '=runpf(''2case_ieee30_test' , num2str(i) 
'.mat'')' ]);  
    
eval([ 'losses_' ,num2str(i), '=sum(real(get_losses(results_' ,num2str(i), ')))' ]);  
     
     
    %Penalty for bus voltage violation  
    bus_inf=bus(:,8);  
    for  bus_num=1:30  
        if  bus_inf(bus_num)>1.10  
            penalty_bus(bus_num)=10000*((bus_inf(bu s_num)-1.10)^2);  
        elseif  bus_inf(bus_num)<0.95  
            penalty_bus(bus_num)=10000*((bus_inf(bu s_num)-0.95)^2);  
        else  
            penalty_bus(bus_num)=0;  
        end  
    end  
    penalty_bus_violation=sum(penalty_bus);  
    %Penalty for shunt violation  
    buus_inf=bus(:,6);  
    for  bus_num=1:30  
        if  buus_inf(bus_num)>0.20  
            penalty_sht(bus_num)=10000*(buus_inf(bu s_num)-0.20)^2;  
        elseif  buus_inf(bus_num)<0.00  
            penalty_sht(bus_num)=10000*(buus_inf(bu s_num)-0.00)^2;  
        else  
            penalty_sht(bus_num)=0;  
        end  
    end  
    penalty_sht_violation=sum(penalty_sht);  
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    %Penalty for tap position violation  
    brch_inf=[branch(11,9); branch(12,9); branch(15 ,9); branch(36,9)];  
    for  brch_num=1:4  
        if  brch_inf(brch_num)>1.10  
            penalty_brch(brch_num)=10000*(brch_inf( brch_num)-1.10)^2;  
        elseif  brch_inf(brch_num)<0.90  
            penalty_brch(brch_num)=10000*(brch_inf( brch_num)-0.90)^2;  
        else  
            penalty_brch(brch_num)=0;  
        end  
    end  
    penalty_brch_violation=sum(penalty_brch);  
    %sum of real power losses of all branches  
    losses_final(i)=eval([ 'losses_' ,num2str(i)]);  
    
Obj_fun_final(i)=losses_final(i)+penalty_bus_violat ion+penalty_sht_violation+pen
alty_brch_violation;  
  
    % Evaluate new solutions  
    Fitness_final(i)=Obj_fun_final(i);  
%% If the solution improves or not too loud  
    if  (Fitness_final(i)<=Fitness(i)) & (rand<A(i))  
        losses(i)=losses_final(i);  
        Sol(i,:)=S(i,:);                % replace initial solution with improved 
solution  
        Fitness(i)=Fitness_final(i);    % replace initial FITNESS with improved 
fitness  
        A(i)=A(i)*alpha;                   % update loudness of bats  
        r(i)=r(i)*(1-exp(-gamma*N_iter));    % update the pitch of bats  
    end  
  
    [fnew,n]=min(Fitness_final);  
    % Update the current best  
    if  fnew<=fmin  
        best=S(n,:);  
        fmin=fnew;  
    end  
 end  
     
    fmin_rec(N_iter)=fmin;  
    plot(fmin_rec);  
    drawnow;  
    toc  
end      
 

APPENDIX B.3 MATALAB CODES FOR HPSOBA ALGORITHM FOR ORPD      

(without DG Unit) 

 
%% Hybrid PSO-BA algorithm to solve Optimal Reactiv e Power Dispatch  
%  Authored by AGBUGBA E.E.  
%  Student No: 57441022  
%  Department of Electrical and Mining Engineering  
%  College of Science, Engineering and Technology  
%  University Of South Africa  
%% Initialization Parameters  
clear all  
clc  
tic  
% Dimension of the search variables  
d=12;  
% Bat Algorithm Default parameters  
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N=20;               % Number of bats (population), typically 10 to 25  
N_gen=200;          % No of generation (iteration)  
Q_max=2;            % Frequency maximum  
Q_min=0;            % Frequency minimum  
r_max=1;            % Maximum pulse rate  
r_min=0;            % Minimum pulse rate  
A_max=2;            % Maximum loudness  
A_min=1;            % Minimum loudness  
% Constants  
alpha=0.99;  % Loudness constant  
gamma=0.9;  % Pulse rate constant  
 % PSO Algorithm Default parameters  
% Inertia Weight  
w_max=0.9;  
w_min=0.4;  
w_temp(1)=w_max;  
% Acceleration constants  
c1=2.05;  
c2=2.05;  
  
% Iteration parameters  
N_iter=0;        
  
%Load IEEE 30-bus data  
[baseMVA, bus, gen, branch]=loadcase(case_ieee30);  
%% Initialization of Population/ Solutions, Frequen cy & velocity  
% Initialize velocity  
Velocity =[unifrnd(-0.003,0.003,N,6),unifrnd(-0.003 ,0.003,N,4), unifrnd(-
0.003,0.003,N,2)];  
% Initialize frequency  
Freq=zeros(N,1);   % Frequency;  
% Initialize solutions/locations  
Sol=[unifrnd(0.95,1.10,N,6),unifrnd(0.90,1.10,N,4), unifrnd(0,0.20,N,2)];  
% Initialize pulse rate  
r=(rand(N,1).*(r_max-r_min))+r_min;  
% Initialize loudness  
A=(rand(N,1).*(A_max-A_min))+A_min;  
  
for  i=1:N  
         
    v1=Sol(i,1);      %v1 
    bus(1,8)=v1;        %Vm, column 8 is voltage magnitude (p.u.)  
    gen(1,6)=v1;        %Vg, column 6 is voltage magnitude setpoint (p.u.)  
    v2=Sol(i,2);      %v2 
    bus(2,8)=v2;  
    gen(2,6)=v2;  
    v5=Sol(i,3);      %v5 
    bus(5,8)=v5;  
    gen(3,6)=v5;  
    v8=Sol(i,4);      %v8 
    bus(8,8)=v8;  
    gen(4,6)=v8;  
    v11=Sol(i,5);     %v11 
    bus(11,8)=v11;  
    gen(5,6)=v11;  
    v13=Sol(i,6);     %v13 
    bus(13,8)=v13;  
    gen(6,6)=v13;  
    t1=Sol(i,7);      %tp1 6-9, column 9 is tap position  
    branch(11,9)=t1;  
    t2=Sol(i,8);      %tp2 6-10  
    branch(12,9)=t2;  
    t3=Sol(i,9);      %tp3 4-12  
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    branch(15,9)=t3;  
    t4=Sol(i,10);     %tp4 27-28  
    branch(36,9)=t4;  
    qc10=Sol(i,11);   %Shunt capacitor 10, column 6 is BS  
    bus(10,6)=qc10;  
    qc24=Sol(i,12);   %Shunt capacitor 10, column 6 is BS  
    bus(24,6)=qc24;  
  
    eval([ 'savecase (''2case_ieee30_test' , num2str(i), '.mat'', baseMVA, bus, 
gen, branch)' ]);  
    eval([ 'results_' ,num2str(i), '=runpf(''2case_ieee30_test' , num2str(i) 
'.mat'')' ]);  
    
eval([ 'losses_' ,num2str(i), '=sum(real(get_losses(results_' ,num2str(i), ')))' ]);  
      
   %Penalty for bus voltage violation  
    bus_inf=bus(:,8);  
    for  bus_num=1:30  
        if  bus_inf(bus_num)>1.10  
            penalty_bus(bus_num)=10000*(bus_inf(bus _num)-1.10)^2;  
        elseif  bus_inf(bus_num)<0.95  
            penalty_bus(bus_num)=10000*(bus_inf(bus _num)-0.95)^2;  
        else  
            penalty_bus(bus_num)=0;  
        end  
    end  
    penalty_bus_violation=sum(penalty_bus);  
    %Penalty for reactive shunt violation  
    buus_inf=bus(:,6);  
    for  bus_num=1:30  
        if  buus_inf(bus_num)>0.20  
            penalty_sht(bus_num)=10000*(buus_inf(bu s_num)-0.20)^2;  
        elseif  buus_inf(bus_num)<0.00  
            penalty_sht(bus_num)=10000*(buus_inf(bu s_num)-0.00)^2;  
        else  
            penalty_sht(bus_num)=0;  
        end  
    end  
    penalty_sht_violation=sum(penalty_sht);  
    %Penalty for tap position violation  
    brch_inf=[branch(11,9); branch(12,9); branch(15 ,9); branch(36,9)];  
    for  brch_num=1:4  
        if  brch_inf(brch_num)>1.10  
            penalty_brch(brch_num)=10000*(brch_inf( brch_num)-1.10)^2;  
        elseif  brch_inf(brch_num)<0.90  
            penalty_brch(brch_num)=10000*(brch_inf( brch_num)-0.90)^2;  
        else  
            penalty_brch(brch_num)=0;  
        end  
    end  
    penalty_brch_violation=sum(penalty_brch);     
    % objective function=sum of active power losses of the transmission lines  
    losses(i)=eval([ 'losses_' ,num2str(i)]);  
    
Obj_fun_initial(i)=losses(i)+penalty_bus_violation+ penalty_sht_violation+penalty
_brch_violation;  % augumented objective function with penalty functi on 
end  
% Evaluate solution  
    Fitness=Obj_fun_initial;  
    pbest=Sol;  
%% finding the current best solution in the initial  population (first 
evaluation)  
[fmin,m]=min(Fitness);  
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best=Sol(m,:);       % used to keep track of the best current solution e ver  
%% Hybrid PSO-BA Algorithm LOOP  
figure( 'NumberTitle' , 'off' , 'Name' , 'Hybrid PSO-BA Algorithm Based Optimal 
Reactive Power Dispatch' );  
title( 'ACTIVE POWER LOSS MINIMIZATION' );  
ylabel( 'Total Active Power Loss (MW)' );  
xlabel( 'Iteration Number' );  
grid on;  
hold on 
  
for  N_iter=1:N_gen  
     % Loop over all bats/particles  
     meanA=mean(A);  
     % Update the value of the inertia weight w  
    if  N_iter <= N_gen  
       w_temp(N_iter)=w_max + (((w_min-w_max)/N_gen )*N_iter); %Change inertia 
weight  
    end  
        
 for  k=1:N    
    Freq(k)=Q_min+(Q_max-Q_min)*rand;  
    Velocity(k,:)=w_temp(N_iter).*Velocity(k,:)+(c1 *rand*(pbest(k,:)-
Sol(k,:))+c2*rand*(best-Sol(k,:)))*Freq(k);  
    for  v_iter=1:d  
        if  v_iter==d  
            Outstep=Velocity(:,v_iter)>0.003;  
            Velocity(find(Outstep),v_iter)=0.003;  
            Outstep=Velocity(:,v_iter)<-0.003;  
            Velocity(find(Outstep),v_iter)=-0.003;  
        else  
            Outstep=Velocity(:,v_iter)>0.01;  
            Velocity(find(Outstep),v_iter)=0.01;  
            Outstep=Velocity(:,v_iter)<-0.01;  
            Velocity(find(Outstep),v_iter)=-0.01;  
        end  
    end  
    Sol(k,:)=best+Velocity(k,:);  
    % Local Search  
    if  rand>r(k)  
        randnValueA=randn(1,d).*(abs(meanA));  
        Sol(k,:)=best+(0.001*randnValueA);        % The factor 0.001 limits the 
step sizes of random walks  
    end  
  
    v1=Sol(k,1);      %v1 
    bus(1,8)=v1;        %Vm, column 8 is voltage magnitude (p.u.)  
    gen(1,6)=v1;        %Vg, column 6 is voltage magnitude setpoint (p.u.)  
    v2=Sol(k,2);      %v2 
    bus(2,8)=v2;  
    gen(2,6)=v2;  
    v5=Sol(k,3);      %v5 
    bus(5,8)=v5;  
    gen(3,6)=v5;  
    v8=Sol(k,4);      %v8 
    bus(8,8)=v8;  
    gen(4,6)=v8;  
    v11=Sol(k,5);     %v11 
    bus(11,8)=v11;  
    gen(5,6)=v11;  
    v13=Sol(k,6);     %v13 
    bus(13,8)=v13;  
    gen(6,6)=v13;  
    t1=Sol(k,7);      %tp1 6-9, column 9 is tap position  
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    branch(11,9)=t1;  
    t2=Sol(k,8);      %tp2 6-10  
    branch(12,9)=t2;  
    t3=Sol(k,9);      %tp3 4-12  
    branch(15,9)=t3;  
    t4=Sol(k,10);     %tp4 27-28  
    branch(36,9)=t4;  
    qc10=Sol(k,11);   %Shunt capacitor 10, column 6 is BS  
    bus(10,6)=qc10;  
    qc24=Sol(k,12);   %Shunt capacitor 10, column 6 is BS  
    bus(24,6)=qc24;  
  
    eval([ 'savecase (''2case_ieee30_test' , num2str(k), '.mat'', baseMVA, bus, 
gen, branch)' ]);  
    eval([ 'results_' ,num2str(k), '=runpf(''2case_ieee30_test' , num2str(k) 
'.mat'')' ]);  
    
eval([ 'losses_' ,num2str(k), '=sum(real(get_losses(results_' ,num2str(k), ')))' ]);  
     
    %Penalty for bus voltage violation  
    bus_inf=bus(:,8);  
    for  bus_num=1:30  
        if  bus_inf(bus_num)>1.10  
            penalty_bus(bus_num)=10000*(bus_inf(bus _num)-1.10)^2;  
        elseif  bus_inf(bus_num)<0.95  
            penalty_bus(bus_num)=10000*(bus_inf(bus _num)-0.95)^2;  
        else  
            penalty_bus(bus_num)=0;  
        end  
    end  
    penalty_bus_violation=sum(penalty_bus);  
    %Penalty for reactive shunt violation  
    buus_inf=bus(:,6);  
    for  bus_num=1:30  
        if  buus_inf(bus_num)>0.20  
            penalty_sht(bus_num)=10000*(buus_inf(bu s_num)-0.20)^2;  
        elseif  buus_inf(bus_num)<0.00  
            penalty_sht(bus_num)=10000*(buus_inf(bu s_num)-0.00)^2;  
        else  
            penalty_sht(bus_num)=0;  
        end  
    end  
    penalty_sht_violation=sum(penalty_sht);  
    %Penalty for tap position violation  
    brch_inf=[branch(11,9); branch(12,9); branch(15 ,9); branch(36,9)];  
    for  brch_num=1:4  
        if  brch_inf(brch_num)>1.10  
            penalty_brch(brch_num)=10000*(brch_inf( brch_num)-1.10)^2;  
        elseif  brch_inf(brch_num)<0.90  
            penalty_brch(brch_num)=10000*(brch_inf( brch_num)-0.90)^2;  
        else  
            penalty_brch(brch_num)=0;  
        end  
    end  
    penalty_brch_violation=sum(penalty_brch);  
    %sum of real power losses of all branches  
    losses_final(k)=eval([ 'losses_' ,num2str(k)]);  
    
Obj_fun_final(k)=losses_final(k)+penalty_bus_violat ion+penalty_sht_violation+pen
alty_brch_violation;  
  
    % Evaluate new solutions  
    Fitness_final(k)=Obj_fun_final(k);  
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%% If the solution improves or not too loud  
    if  Fitness_final(k)<=Fitness(k) & (rand<A(k))  
        losses(k)=losses_final(k);  
        pbest(k,:)=Sol(k,:);                % replace initial solution with 
improved solution  
        Fitness(k)=Fitness_final(k);    % replace initial FITNESS with improved 
fitness  
        A(k)=A(k)*alpha;                   % update loudness of bats  
        r(k)=r(k)*(1-exp(-gamma*N_iter));    % update the pitch of bats  
    end  
  
    [fnew,n]=min(Fitness_final);  
    % Update the current best  
    if  fnew<=fmin  
        best=Sol(n,:);  
        fmin=fnew;  
    end  
 end  
     
    fmin_rec(N_iter)=fmin;  
    plot(fmin_rec);  
    drawnow;  
    toc  
end      
 
 
APPENDIX C MATALAB CODES FOR PSO, BA AND HPSOBA ALGORITHMS 

(IEEE 118-BUS TEST SYSTEM) 

APPENDIX C.1 MATALAB CODES FOR PSO ALGORITHM FOR ORPD                

(without DG Unit) 

%% PSO algorithm to solve Optimal Reactive Power Di spatch  
%  Authored by AGBUGBA E.E.  
%  Student No: 57441022  
%  Department of Electrical and Mining Engineering  
%  College of Science, Engineering and Technology  
%  University Of South Africa  
%% Initialization Parameters  
clear all  
clc  
tic  
iter=0;  
iteration=200;  
nvars = 77; %Number of variables  
N = 50;  %Number of Particles or Swarm size  
%Acceleration constants  
c1 = 2.05;  
c2 = 2.05;  
%Inertia Weight  
w_max=0.9;  
w_min=0.4;  
w_temp(1)=w_max;  
%Load IEEE 118-bus data  
[baseMVA, bus, gen, branch]=loadcase(case118);  
%% Initialization of Swarm & velocity  
% Random 50*77 matrix  
Swarm=[unifrnd(0.95,1.10,N,54),unifrnd(0.90,1.10,N, 9),unifrnd(0.00,0.25,N,14)];  
%Initialize velocity  
Velocity =[unifrnd(-0.003,0.003,N,54),unifrnd(-0.00 3,0.003,N,9), unifrnd(-
0.003,0.003,N,14)];  
for  i=1:N  
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    v1=Swarm(i,1);      %v1 
    bus(1,8)=v1;        %Vm, column 8 is voltage magnitude (p.u.)  
    gen(1,6)=v1;        %Vg, column 6 is voltage magnitude setpoint (p.u.)  
    v4=Swarm(i,2);      %v4 
    bus(4,8)=v4;  
    gen(2,6)=v4;  
    v6=Swarm(i,3);      %v6 
    bus(6,8)=v6;  
    gen(3,6)=v6;  
    v8=Swarm(i,4);      %v8 
    bus(8,8)=v8;  
    gen(4,6)=v8;  
    v10=Swarm(i,5);     %v10 
    bus(10,8)=v10;  
    gen(5,6)=v10;  
    v12=Swarm(i,6);     %v12 
    bus(12,8)=v12;  
    gen(6,6)=v12;  
    v15=Swarm(i,7);     %v15 
    bus(15,8)=v15;  
    gen(7,6)=v15;  
    v18=Swarm(i,8);     %v18 
    bus(18,8)=v18;  
    gen(8,6)=v18;  
    v19=Swarm(i,9);     %v19 
    bus(19,8)=v19;  
    gen(9,6)=v19;  
    v24=Swarm(i,10);     %v24 
    bus(24,8)=v24;  
    gen(10,6)=v24;  
    v25=Swarm(i,11);     %v25 
    bus(25,8)=v25;  
    gen(11,6)=v25;  
    v26=Swarm(i,12);     %v26 
    bus(26,8)=v26;  
    gen(12,6)=v26;  
    v27=Swarm(i,13);     %v27 
    bus(27,8)=v27;  
    gen(13,6)=v27;  
    v31=Swarm(i,14);     %v31 
    bus(31,8)=v31;  
    gen(14,6)=v31;  
    v32=Swarm(i,15);     %v32 
    bus(32,8)=v32;  
    gen(15,6)=v32;  
    v34=Swarm(i,16);     %v34 
    bus(34,8)=v34;  
    gen(16,6)=v34;  
    v36=Swarm(i,17);     %v36 
    bus(36,8)=v36;  
    gen(17,6)=v36;  
    v40=Swarm(i,18);     %v40 
    bus(40,8)=v40;  
    gen(18,6)=v40;  
    v42=Swarm(i,19);     %v42 
    bus(42,8)=v42;  
    gen(19,6)=v42;  
    v46=Swarm(i,20);     %v46 
    bus(46,8)=v46;  
    gen(20,6)=v46;  
    v49=Swarm(i,21);     %v49 
    bus(49,8)=v49;  
    gen(21,6)=v49;  
    v54=Swarm(i,22);     %v54 
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    bus(54,8)=v54;  
    gen(22,6)=v54;  
    v55=Swarm(i,23);     %v55 
    bus(55,8)=v55;  
    gen(23,6)=v55;  
    v56=Swarm(i,24);     %v56 
    bus(56,8)=v56;  
    gen(24,6)=v56;  
    v59=Swarm(i,25);     %v59 
    bus(59,8)=v59;  
    gen(25,6)=v59;  
    v61=Swarm(i,26);     %v61 
    bus(61,8)=v61;  
    gen(26,6)=v61;  
    v62=Swarm(i,27);     %v62 
    bus(62,8)=v62;  
    gen(27,6)=v62;  
    v65=Swarm(i,28);     %v65 
    bus(65,8)=v65;  
    gen(28,6)=v65;  
    v66=Swarm(i,29);     %v66 
    bus(66,8)=v66;  
    gen(29,6)=v66;  
    v69=Swarm(i,30);     %v69 
    bus(69,8)=v69;  
    gen(30,6)=v69;  
    v70=Swarm(i,31);     %v70 
    bus(70,8)=v70;  
    gen(31,6)=v70;  
    v72=Swarm(i,32);     %v72 
    bus(72,8)=v72;  
    gen(32,6)=v72;  
    v73=Swarm(i,33);     %v73 
    bus(73,8)=v73;  
    gen(33,6)=v73;  
    v74=Swarm(i,34);     %v74 
    bus(74,8)=v74;  
    gen(34,6)=v74;  
    v76=Swarm(i,35);     %v76 
    bus(76,8)=v76;  
    gen(35,6)=v76;  
    v77=Swarm(i,36);     %v77 
    bus(77,8)=v77;  
    gen(36,6)=v77;  
    v80=Swarm(i,37);     %v80 
    bus(80,8)=v80;  
    gen(37,6)=v80;  
    v85=Swarm(i,38);     %v85 
    bus(85,8)=v85;  
    gen(38,6)=v85;  
    v87=Swarm(i,39);     %v87 
    bus(87,8)=v87;  
    gen(39,6)=v87;  
    v89=Swarm(i,40);     %v89 
    bus(89,8)=v89;  
    gen(40,6)=v89;  
    v90=Swarm(i,41);     %v90 
    bus(90,8)=v90;  
    gen(41,6)=v90;  
    v91=Swarm(i,42);     %v91 
    bus(91,8)=v91;  
    gen(42,6)=v91;  
    v92=Swarm(i,43);     %v92 
    bus(92,8)=v92;  
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    gen(43,6)=v92;  
    v99=Swarm(i,44);     %v99 
    bus(99,8)=v99;  
    gen(44,6)=v99;  
    v100=Swarm(i,45);     %v100 
    bus(100,8)=v100;  
    gen(45,6)=v100;  
    v103=Swarm(i,46);     %v103 
    bus(103,8)=v103;  
    gen(46,6)=v103;  
    v104=Swarm(i,47);     %v104 
    bus(104,8)=v104;  
    gen(47,6)=v104;  
    v105=Swarm(i,48);     %v105 
    bus(105,8)=v105;  
    gen(48,6)=v105;  
    v107=Swarm(i,49);     %v107 
    bus(107,8)=v107;  
    gen(49,6)=v107;  
    v110=Swarm(i,50);     %v110 
    bus(110,8)=v110;  
    gen(50,6)=v110;  
    v111=Swarm(i,51);     %v111 
    bus(111,8)=v111;  
    gen(51,6)=v111;  
    v112=Swarm(i,52);     %v112 
    bus(112,8)=v112;  
    gen(52,6)=v112;  
    v113=Swarm(i,53);     %v113 
    bus(113,8)=v113;  
    gen(53,6)=v113;  
    v116=Swarm(i,54);     %v116 
    bus(116,8)=v116;  
    gen(54,6)=v116;  
    t1=Swarm(i,55);      %tp1 8-5, column 9 is tap position  
    branch(8,9)=t1;  
    t2=Swarm(i,56);      %tp2 26-25  
    branch(32,9)=t2;  
    t3=Swarm(i,57);      %tp3 30-17  
    branch(36,9)=t3;  
    t4=Swarm(i,58);     %tp4 38-37  
    branch(51,9)=t4;  
    t5=Swarm(i,59);     %tp5 63-59  
    branch(93,9)=t5;  
    t6=Swarm(i,60);     %tp6 64-61  
    branch(95,9)=t6;  
    t7=Swarm(i,61);     %tp7 65-66  
    branch(102,9)=t7;  
    t8=Swarm(i,62);     %tp8 68-69  
    branch(107,9)=t8;  
    t9=Swarm(i,63);     %tp9 81-80  
    branch(127,9)=t9;  
    qc5=Swarm(i,64);   %Shunt capacitor 5, column 6 is BS  
    bus(5,6)=qc5;  
    qc34=Swarm(i,65);   %Shunt capacitor 34, column 6 is BS  
    bus(34,6)=qc34;  
    qc37=Swarm(i,66);   %Shunt capacitor 37, column 6 is BS  
    bus(37,6)=qc37;  
    qc44=Swarm(i,67);   %Shunt capacitor 44, column 6 is BS  
    bus(44,6)=qc44;  
    qc45=Swarm(i,68);   %Shunt capacitor 45, column 6 is BS  
    bus(45,6)=qc45;  
    qc46=Swarm(i,69);   %Shunt capacitor 46, column 6 is BS  
    bus(46,6)=qc46;  
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    qc48=Swarm(i,70);   %Shunt capacitor 48, column 6 is BS  
    bus(48,6)=qc48;  
    qc74=Swarm(i,71);   %Shunt capacitor 74, column 6 is BS  
    bus(74,6)=qc74;  
    qc79=Swarm(i,72);   %Shunt capacitor 79, column 6 is BS  
    bus(79,6)=qc79;  
    qc82=Swarm(i,73);   %Shunt capacitor 82, column 6 is BS  
    bus(82,6)=qc82;  
    qc83=Swarm(i,74);   %Shunt capacitor 83, column 6 is BS  
    bus(83,6)=qc83;  
    qc105=Swarm(i,75);   %Shunt capacitor 105, column 6 is BS  
    bus(105,6)=qc105;  
    qc107=Swarm(i,76);   %Shunt capacitor 107, column 6 is BS  
    bus(107,6)=qc107;  
    qc110=Swarm(i,77);   %Shunt capacitor 110, column 6 is BS  
    bus(110,6)=qc110;  
  
    eval([ 'savecase (''case118_test' , num2str(i), '.mat'', baseMVA, bus, gen, 
branch)' ]);  
    eval([ 'initial_results_' ,num2str(i), '=runpf(''case118_test' , num2str(i) 
'.mat'')' ]);  
    eval([ 'initial_losses_' ,num2str(i), '=sum(real(get_losses(initial_results_' , 
num2str(i), ')))' ]);  
         
   %Penalty for bus voltage violation  
    bus_inf=bus(:,8);  
    for  bus_num=1:118  
        if  bus_inf(bus_num)>1.10  
            penalty_Vl(bus_num)=1000*(bus_inf(bus_n um)-1.10)^2;  
        elseif  bus_inf(bus_num)<0.95  
            penalty_Vl(bus_num)=1000*(bus_inf(bus_n um)-0.95)^2;  
        else  
            penalty_Vl(bus_num)=0;  
        end  
    end  
    penalty_Vl_violation=sum(penalty_Vl);  
    %Penalty for shunt violation  
    buus_inf=bus(:,6);  
    for  bus_num=1:118  
        if  buus_inf(bus_num)>0.25  
            penalty_Qc(bus_num)=1000*(buus_inf(bus_ num)-0.25)^2;  
        elseif  buus_inf(bus_num)<0.00  
            penalty_Qc(bus_num)=1000*(buus_inf(bus_ num)-0.00)^2;  
        else  
            penalty_Qc(bus_num)=0;  
        end  
    end  
    penalty_Qc_violation=sum(penalty_Qc);  
    %Penalty for tap position violation  
    brch_inf=[branch(8,9); branch(32,9); branch(36, 9); branch(51,9); 
branch(93,9); branch(95,9); branch(102,9); branch(1 07,9); branch(127,9)];  
    for  brch_num=1:9  
        if  brch_inf(brch_num)>1.10  
            penalty_Tk(brch_num)=1000*(brch_inf(brc h_num)-1.10)^2;  
        elseif  brch_inf(brch_num)<0.90  
            penalty_Tk(brch_num)=1000*(brch_inf(brc h_num)-0.90)^2;  
        else  
            penalty_Tk(brch_num)=0;  
        end  
    end  
    penalty_Tk_violation=sum(penalty_Tk);  
    %objective function=sum of active power losses of t he transmission lines  
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    losses(i)=eval([ 'initial_losses_' ,num2str(i)]); %sum of real power losses of 
all branches  
    
Obj_fun_initial(i)=losses(i)+penalty_Vl_violation+p enalty_Qc_violation+penalty_T
k_violation;  %augumented objective function with penalty functio n 
end  
%% Initialize best position (Pbest) and global best  postion (Gbest) matrix  
Pbest=Swarm;  
Val_Pbest=Obj_fun_initial;  
%finding best particle in initial population  
[Val_Gbest,m]=min(Val_Pbest);  
Gbest=Swarm(m,:);    %used to keep track of the best particle ever  
Gbest_calc=repmat(Swarm(m,:),N,1);  
%% PSO LOOP 
figure( 'NumberTitle' , 'off' , 'Name' , 'PSO Algorithm Based Optimal Reactive Power 
Dispatch' );  
title( 'ACTIVE POWER LOSS MINIMIZATION' );  
ylabel( 'Total Active Power Loss (MW)' );  
xlabel( 'Iteration Number' );  
grid on;  
hold on 
for  iter=1:iteration  
     
    % Update the value of the inertia weight w  
    if  iter <= iteration  
       w_temp(iter)=w_max + (((w_min-w_max)/iterati on)*iter); %Change inertia 
weight  
    end  
     
    %generate random numbers  
    R1=rand(N,nvars);  
    R2=rand(N,nvars);  
     
    % constriction factor  
    %2.05+2.05=4.1;  
    %2/abs(2-4.1-sqrt(4.1*4.1-4*4.1))=0.729  
    %calculate velocity  
    Velocity=(w_temp(iter).*Velocity+c1*R1.*(Pbest- Swarm)+c2*R2.*(Gbest_calc-
Swarm));  
    for  v_iter=1:nvars  
        if  v_iter==nvars  
            Outstep=Velocity(:,v_iter)>0.003;  
            Velocity(find(Outstep),v_iter)=0.003;  
            Outstep=Velocity(:,v_iter)<-0.003;  
            Velocity(find(Outstep),v_iter)=-0.003;  
        else  
            Outstep=Velocity(:,v_iter)>0.01;  
            Velocity(find(Outstep),v_iter)=0.01;  
            Outstep=Velocity(:,v_iter)<-0.01;  
            Velocity(find(Outstep),v_iter)=-0.01;  
        end  
   end  
     
    %update positions of particles  
    Swarm=Swarm+0.729*Velocity;   %evaluate a new swarm  
    for  k=1:N  
        v1=Swarm(k,1);      %v1 
        bus(1,8)=v1;        %Vm, column 8 is voltage magnitude (p.u.)  
        gen(1,6)=v1;        %Vg, column 6 is voltage magnitude setpoint (p.u.)  
        v4=Swarm(k,2);      %v4 
        bus(4,8)=v4;  
        gen(2,6)=v4;  
        v6=Swarm(k,3);      %v6 
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        bus(6,8)=v6;  
        gen(3,6)=v6;  
        v8=Swarm(k,4);      %v8 
        bus(8,8)=v8;  
        gen(4,6)=v8;  
        v10=Swarm(k,5);     %v10 
        bus(10,8)=v10;  
        gen(5,6)=v10;  
        v12=Swarm(k,6);     %v12 
        bus(12,8)=v12;  
        gen(6,6)=v12;  
        v15=Swarm(k,7);     %v15 
        bus(15,8)=v15;  
        gen(7,6)=v15;  
        v18=Swarm(k,8);     %v18 
        bus(18,8)=v18;  
        gen(8,6)=v18;  
        v19=Swarm(k,9);     %v19 
        bus(19,8)=v19;  
        gen(9,6)=v19;  
        v24=Swarm(k,10);     %v24 
        bus(24,8)=v24;  
        gen(10,6)=v24;  
        v25=Swarm(k,11);     %v25 
        bus(25,8)=v25;  
        gen(11,6)=v25;  
        v26=Swarm(k,12);     %v26 
        bus(26,8)=v26;  
        gen(12,6)=v26;  
        v27=Swarm(k,13);     %v27 
        bus(27,8)=v27;  
        gen(13,6)=v27;  
        v31=Swarm(k,14);     %v31 
        bus(31,8)=v31;  
        gen(14,6)=v31;  
        v32=Swarm(k,15);     %v32 
        bus(32,8)=v32;  
        gen(15,6)=v32;  
        v34=Swarm(k,16);     %v34 
        bus(34,8)=v34;  
        gen(16,6)=v34;  
        v36=Swarm(k,17);     %v36 
        bus(36,8)=v36;  
        gen(17,6)=v36;  
        v40=Swarm(k,18);     %v40 
        bus(40,8)=v40;  
        gen(18,6)=v40;  
        v42=Swarm(k,19);     %v42 
        bus(42,8)=v42;  
        gen(19,6)=v42;  
        v46=Swarm(k,20);     %v46 
        bus(46,8)=v46;  
        gen(20,6)=v46;  
        v49=Swarm(k,21);     %v49 
        bus(49,8)=v49;  
        gen(21,6)=v49;  
        v54=Swarm(k,22);     %v54 
        bus(54,8)=v54;  
        gen(22,6)=v54;  
        v55=Swarm(k,23);     %v55 
        bus(55,8)=v55;  
        gen(23,6)=v55;  
        v56=Swarm(k,24);     %v56 
        bus(56,8)=v56;  
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        gen(24,6)=v56;  
        v59=Swarm(k,25);     %v59 
        bus(59,8)=v59;  
        gen(25,6)=v59;  
        v61=Swarm(k,26);     %v61 
        bus(61,8)=v61;  
        gen(26,6)=v61;  
        v62=Swarm(k,27);     %v62 
        bus(62,8)=v62;  
        gen(27,6)=v62;  
        v65=Swarm(k,28);     %v65 
        bus(65,8)=v65;  
        gen(28,6)=v65;  
        v66=Swarm(k,29);     %v66 
        bus(66,8)=v66;  
        gen(29,6)=v66;  
        v69=Swarm(k,30);     %v69 
        bus(69,8)=v69;  
        gen(30,6)=v69;  
        v70=Swarm(k,31);     %v70 
        bus(70,8)=v70;  
        gen(31,6)=v70;  
        v72=Swarm(k,32);     %v72 
        bus(72,8)=v72;  
        gen(32,6)=v72;  
        v73=Swarm(k,33);     %v73 
        bus(73,8)=v73;  
        gen(33,6)=v73;  
        v74=Swarm(k,34);     %v74 
        bus(74,8)=v74;  
        gen(34,6)=v74;  
        v76=Swarm(k,35);     %v76 
        bus(76,8)=v76;  
        gen(35,6)=v76;  
        v77=Swarm(k,36);     %v77 
        bus(77,8)=v77;  
        gen(36,6)=v77;  
        v80=Swarm(k,37);     %v80 
        bus(80,8)=v80;  
        gen(37,6)=v80;  
        v85=Swarm(k,38);     %v85 
        bus(85,8)=v85;  
        gen(38,6)=v85;  
        v87=Swarm(k,39);     %v87 
        bus(87,8)=v87;  
        gen(39,6)=v87;  
        v89=Swarm(k,40);     %v89 
        bus(89,8)=v89;  
        gen(40,6)=v89;  
        v90=Swarm(k,41);     %v90 
        bus(90,8)=v90;  
        gen(41,6)=v90;  
        v91=Swarm(k,42);     %v91 
        bus(91,8)=v91;  
        gen(42,6)=v91;  
        v92=Swarm(k,43);     %v92 
        bus(92,8)=v92;  
        gen(43,6)=v92;  
        v99=Swarm(k,44);     %v99 
        bus(99,8)=v99;  
        gen(44,6)=v99;  
        v100=Swarm(k,45);     %v100 
        bus(100,8)=v100;  
        gen(45,6)=v100;  
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        v103=Swarm(k,46);     %v103 
        bus(103,8)=v103;  
        gen(46,6)=v103;  
        v104=Swarm(k,47);     %v104 
        bus(104,8)=v104;  
        gen(47,6)=v104;  
        v105=Swarm(k,48);     %v105 
        bus(105,8)=v105;  
        gen(48,6)=v105;  
        v107=Swarm(k,49);     %v107 
        bus(107,8)=v107;  
        gen(49,6)=v107;  
        v110=Swarm(k,50);     %v110 
        bus(110,8)=v110;  
        gen(50,6)=v110;  
        v111=Swarm(k,51);     %v111 
        bus(111,8)=v111;  
        gen(51,6)=v111;  
        v112=Swarm(k,52);     %v112 
        bus(112,8)=v112;  
        gen(52,6)=v112;  
        v113=Swarm(k,53);     %v113 
        bus(113,8)=v113;  
        gen(53,6)=v113;  
        v116=Swarm(k,54);     %v116 
        bus(116,8)=v116;  
        gen(54,6)=v116;  
        t1=Swarm(k,55);      %tp1 8-5, column 9 is tap position  
        branch(8,9)=t1;  
        t2=Swarm(k,56);      %tp2 26-25  
        branch(32,9)=t2;  
        t3=Swarm(k,57);      %tp3 30-17  
        branch(36,9)=t3;  
        t4=Swarm(k,58);     %tp4 38-37  
        branch(51,9)=t4;  
        t5=Swarm(k,59);     %tp5 63-59  
        branch(93,9)=t5;  
        t6=Swarm(k,60);     %tp6 64-61  
        branch(95,9)=t6;  
        t7=Swarm(k,61);     %tp7 65-66  
        branch(102,9)=t7;  
        t8=Swarm(k,62);     %tp8 68-69  
        branch(107,9)=t8;  
        t9=Swarm(k,63);     %tp9 81-80  
        branch(127,9)=t9;  
        qc5=Swarm(k,64);   %Shunt capacitor 5, column 6 is BS  
        bus(5,6)=qc5;  
        qc34=Swarm(k,65);   %Shunt capacitor 34, column 6 is BS  
        bus(34,6)=qc34;  
        qc37=Swarm(k,66);   %Shunt capacitor 37, column 6 is BS  
        bus(37,6)=qc37;  
        qc44=Swarm(k,67);   %Shunt capacitor 44, column 6 is BS  
        bus(44,6)=qc44;  
        qc45=Swarm(k,68);   %Shunt capacitor 45, column 6 is BS  
        bus(45,6)=qc45;  
        qc46=Swarm(k,69);   %Shunt capacitor 46, column 6 is BS  
        bus(46,6)=qc46;  
        qc48=Swarm(k,70);   %Shunt capacitor 48, column 6 is BS  
        bus(48,6)=qc48;  
        qc74=Swarm(k,71);   %Shunt capacitor 74, column 6 is BS  
        bus(74,6)=qc74;  
        qc79=Swarm(k,72);   %Shunt capacitor 79, column 6 is BS  
        bus(79,6)=qc79;  
        qc82=Swarm(k,73);   %Shunt capacitor 82, column 6 is BS  
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        bus(82,6)=qc82;  
        qc83=Swarm(k,74);   %Shunt capacitor 83, column 6 is BS  
        bus(83,6)=qc83;  
        qc105=Swarm(k,75);   %Shunt capacitor 105, column 6 is BS  
        bus(105,6)=qc105;  
        qc107=Swarm(k,76);   %Shunt capacitor 107, column 6 is BS  
        bus(107,6)=qc107;  
        qc110=Swarm(k,77);   %Shunt capacitor 110, column 6 is BS  
        bus(110,6)=qc110;  
         
        eval([ 'savecase (''case118_test' , num2str(k), '.mat'', baseMVA, bus, 
gen, branch)' ]);  
        eval([ 'final_results_' ,num2str(k), '=runpf(''case118_test' , num2str(k) 
'.mat'')' ]);  
        
eval([ 'final_losses_' ,num2str(k), '=sum(real(get_losses(final_results_' ,num2str(k
), ')))' ]);  
                
        %Penalty for bus voltage violation  
        bus_inf=bus(:,8);  
        for  bus_num=1:118  
            if  bus_inf(bus_num)>1.10  
                penalty_Vl(bus_num)=1000*(bus_inf(b us_num)-1.10)^2;  
            elseif  bus_inf(bus_num)<0.95  
                penalty_Vl(bus_num)=1000*(bus_inf(b us_num)-0.95)^2;  
            else  
                penalty_Vl(bus_num)=0;  
            end  
        end  
        penalty_Vl_violation=sum(penalty_Vl);  
        %Penalty for shunt violation  
        buus_inf=bus(:,6);  
        for  bus_num=1:118  
            if  buus_inf(bus_num)>0.25  
                penalty_Qc(bus_num)=1000*(buus_inf( bus_num)-0.25)^2;  
            elseif  buus_inf(bus_num)<0.00  
                penalty_Qc(bus_num)=1000*(buus_inf( bus_num)-0.00)^2;  
            else  
                penalty_Qc(bus_num)=0;  
            end  
        end  
        penalty_Qc_violation=sum(penalty_Qc);  
        %Penalty for tap position violation  
        brch_inf=[branch(8,9); branch(32,9); branch (36,9); branch(51,9); 
branch(93,9); branch(95,9); branch(102,9); branch(1 07,9); branch(127,9)];  
        for  brch_num=1:9  
            if  brch_inf(brch_num)>1.10  
                penalty_Tk(brch_num)=1000*(brch_inf (brch_num)-1.10)^2;  
            elseif  brch_inf(brch_num)<0.90  
                penalty_Tk(brch_num)=1000*(brch_inf (brch_num)-0.90)^2;  
            else  
                penalty_Tk(brch_num)=0;  
            end  
        end  
        penalty_Tk_violation=sum(penalty_Tk);  
        %objective function=sum of active power losses of t he transmission lines  
        losses_temp(k)=eval([ 'final_losses_' ,num2str(k)]);  %sum of real power 
losses of all branches  
        
Obj_fun_temp(k)=losses_temp(k)+penalty_Vl_violation +penalty_Qc_violation+penalty
_Tk_violation; %augumented objective function with penalty functio n 
        % Final Evaluation  
        Val_Pbest_temp(k)=Obj_fun_temp(k);  
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    end  
        if  Val_Pbest_temp<Val_Pbest  
            losses=losses_temp;  
            Val_Pbest=Val_Pbest_temp;  
            Pbest=Swarm;  
        end  
  
        [Val_Gbest_temp,n]=min(Val_Pbest);  
        if  Val_Gbest_temp<Val_Gbest  
            Val_Gbest=Val_Gbest_temp;  
            Gbest=Swarm(n,:);  
            Gbest_calc=repmat(Swarm(n,:),N,1);  
        end  
    
     
    Val_Gbest_rec(iter)=Val_Gbest;  
    plot(Val_Gbest_rec);  
    drawnow;  
    toc  
end  
 

APPENDIX C.2 MATALAB CODES FOR BA ALGORITHM FOR ORPD  

%% Bat algorithm to solve Optimal Reactive Power Di spatch  
%  Authored by AGBUGBA E.E.  
%  Student No: 57441022  
%  Department of Electrical and Mining Engineering  
%  College of Science, Engineering and Technology  
%  University Of South Africa  
%% Initialization Parameters  
clear all  
clc  
tic  
% Default parameters  
N=20;               % Number of bats (population), typically 10 to 25  
N_gen=200;          % No of generation (iteration)  
Qmin=0;             % Frequency minimum  
Qmax=2;             % Frequency maximum  
r0max=1;  
r0min=0;  
Amax=2;  
Amin=1; 

 
%Inertia Weight  
w_max=0.9;  
w_min=0.4;  
w_temp=w_max;  
w_step=(w_max-w_min)/N_gen;  
% Iteration parameters  
N_iter=0;       % Total number of function evaluations  
% Dimension of the search variables  
d=77;  
% Constants  
alpha=0.99;  % Loudness constant  
gamma=0.9;  % Pulse rate constant  
%Load IEEE 118-bus data  
[baseMVA, bus, gen, branch]=loadcase(case118);  
%% Initialization of Population/ Solutions, Frequen cy & velocity  
% Initialize velocity  
Velocity =[unifrnd(-0.003,0.003,N,54),unifrnd(-0.00 3,0.003,N,9), unifrnd(-
0.003,0.003,N,14)];  
% Initialize frequency  
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Freq=zeros(N,1);   % Frequency;  
% Initialize solutions/locations  
Sol=[unifrnd(0.95,1.10,N,54),unifrnd(0.90,1.10,N,9) ,unifrnd(0.00,0.25,N,14)];  
r=(rand(N,1).*(r0max-r0min))+r0min;  
A=(rand(N,1).*(Amax-Amin))+Amin;  
for  i=1:N  
    v1=Sol(i,1);      %v1 
    bus(1,8)=v1;        %Vm, column 8 is voltage magnitude (p.u.)  
    gen(1,6)=v1;        %Vg, column 6 is voltage magnitude setpoint (p.u.)  
    v4=Sol(i,2);      %v4 
    bus(4,8)=v4;  
    gen(2,6)=v4;  
    v6=Sol(i,3);      %v6 
    bus(6,8)=v6;  
    gen(3,6)=v6;  
    v8=Sol(i,4);      %v8 
    bus(8,8)=v8;  
    gen(4,6)=v8;  
    v10=Sol(i,5);     %v10 
    bus(10,8)=v10;  
    gen(5,6)=v10;  
    v12=Sol(i,6);     %v12 
    bus(12,8)=v12;  
    gen(6,6)=v12;  
    v15=Sol(i,7);     %v15 
    bus(15,8)=v15;  
    gen(7,6)=v15;  
    v18=Sol(i,8);     %v18 
    bus(18,8)=v18;  
    gen(8,6)=v18;  
    v19=Sol(i,9);     %v19 
    bus(19,8)=v19;  
    gen(9,6)=v19;  
    v24=Sol(i,10);     %v24 
    bus(24,8)=v24;  
    gen(10,6)=v24;  
    v25=Sol(i,11);     %v25 
    bus(25,8)=v25;  
    gen(11,6)=v25;  
    v26=Sol(i,12);     %v26 
    bus(26,8)=v26;  
    gen(12,6)=v26;  
    v27=Sol(i,13);     %v27 
    bus(27,8)=v27;  
    gen(13,6)=v27;  
    v31=Sol(i,14);     %v31 
    bus(31,8)=v31;  
    gen(14,6)=v31;  
    v32=Sol(i,15);     %v32 
    bus(32,8)=v32;  
    gen(15,6)=v32;  
    v34=Sol(i,16);     %v34 
    bus(34,8)=v34;  
    gen(16,6)=v34;  
    v36=Sol(i,17);     %v36 
    bus(36,8)=v36;  
    gen(17,6)=v36;  
    v40=Sol(i,18);     %v40 
    bus(40,8)=v40;  
    gen(18,6)=v40;  
    v42=Sol(i,19);     %v42 
    bus(42,8)=v42;  
    gen(19,6)=v42;  
    v46=Sol(i,20);     %v46 
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    bus(46,8)=v46;  
    gen(20,6)=v46;  
    v49=Sol(i,21);     %v49 
    bus(49,8)=v49;  
    gen(21,6)=v49;  
    v54=Sol(i,22);     %v54 
    bus(54,8)=v54;  
    gen(22,6)=v54;  
    v55=Sol(i,23);     %v55 
    bus(55,8)=v55;  
    gen(23,6)=v55;  
    v56=Sol(i,24);     %v56 
    bus(56,8)=v56;  
    gen(24,6)=v56;  
    v59=Sol(i,25);     %v59 
    bus(59,8)=v59;  
    gen(25,6)=v59;  
    v61=Sol(i,26);     %v61 
    bus(61,8)=v61;  
    gen(26,6)=v61;  
    v62=Sol(i,27);     %v62 
    bus(62,8)=v62;  
    gen(27,6)=v62;  
    v65=Sol(i,28);     %v65 
    bus(65,8)=v65;  
    gen(28,6)=v65;  
    v66=Sol(i,29);     %v66 
    bus(66,8)=v66;  
    gen(29,6)=v66;  
    v69=Sol(i,30);     %v69 
    bus(69,8)=v69;  
    gen(30,6)=v69;  
    v70=Sol(i,31);     %v70 
    bus(70,8)=v70;  
    gen(31,6)=v70;  
    v72=Sol(i,32);     %v72 
    bus(72,8)=v72;  
    gen(32,6)=v72;  
    v73=Sol(i,33);     %v73 
    bus(73,8)=v73;  
    gen(33,6)=v73;  
    v74=Sol(i,34);     %v74 
    bus(74,8)=v74;  
    gen(34,6)=v74;  
    v76=Sol(i,35);     %v76 
    bus(76,8)=v76;  
    gen(35,6)=v76;  
    v77=Sol(i,36);     %v77 
    bus(77,8)=v77;  
    gen(36,6)=v77;  
    v80=Sol(i,37);     %v80 
    bus(80,8)=v80;  
    gen(37,6)=v80;  
    v85=Sol(i,38);     %v85 
    bus(85,8)=v85;  
    gen(38,6)=v85;  
    v87=Sol(i,39);     %v87 
    bus(87,8)=v87;  
    gen(39,6)=v87;  
    v89=Sol(i,40);     %v89 
    bus(89,8)=v89;  
    gen(40,6)=v89;  
    v90=Sol(i,41);     %v90 
    bus(90,8)=v90;  
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    gen(41,6)=v90;  
    v91=Sol(i,42);     %v91 
    bus(91,8)=v91;  
    gen(42,6)=v91;  
    v92=Sol(i,43);     %v92 
    bus(92,8)=v92;  
    gen(43,6)=v92;  
    v99=Sol(i,44);     %v99 
    bus(99,8)=v99;  
    gen(44,6)=v99;  
    v100=Sol(i,45);     %v100 
    bus(100,8)=v100;  
    gen(45,6)=v100;  
    v103=Sol(i,46);     %v103 
    bus(103,8)=v103;  
    gen(46,6)=v103;  
    v104=Sol(i,47);     %v104 
    bus(104,8)=v104;  
    gen(47,6)=v104;  
    v105=Sol(i,48);     %v105 
    bus(105,8)=v105;  
    gen(48,6)=v105;  
    v107=Sol(i,49);     %v107 
    bus(107,8)=v107;  
    gen(49,6)=v107;  
    v110=Sol(i,50);     %v110 
    bus(110,8)=v110;  
    gen(50,6)=v110;  
    v111=Sol(i,51);     %v111 
    bus(111,8)=v111;  
    gen(51,6)=v111;  
    v112=Sol(i,52);     %v112 
    bus(112,8)=v112;  
    gen(52,6)=v112;  
    v113=Sol(i,53);     %v113 
    bus(113,8)=v113;  
    gen(53,6)=v113;  
    v116=Sol(i,54);     %v116 
    bus(116,8)=v116;  
    gen(54,6)=v116;  
    t1=Sol(i,55);      %tp1 8-5, column 9 is tap position  
    branch(8,9)=t1;  
    t2=Sol(i,56);      %tp2 26-25  
    branch(32,9)=t2;  
    t3=Sol(i,57);      %tp3 30-17  
    branch(36,9)=t3;  
    t4=Sol(i,58);     %tp4 38-37  
    branch(51,9)=t4;  
    t5=Sol(i,59);     %tp5 63-59  
    branch(93,9)=t5;  
    t6=Sol(i,60);     %tp6 64-61  
    branch(95,9)=t6;  
    t7=Sol(i,61);     %tp7 65-66  
    branch(102,9)=t7;  
    t8=Sol(i,62);     %tp8 68-69  
    branch(107,9)=t8;  
    t9=Sol(i,63);     %tp9 81-80  
    branch(127,9)=t9;  
    qc5=Sol(i,64);   %Shunt capacitor 5, column 6 is BS  
    bus(5,6)=qc5;  
    qc34=Sol(i,65);   %Shunt capacitor 34, column 6 is BS  
    bus(34,6)=qc34;  
    qc37=Sol(i,66);   %Shunt capacitor 37, column 6 is BS  
    bus(37,6)=qc37;  
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    qc44=Sol(i,67);   %Shunt capacitor 44, column 6 is BS  
    bus(44,6)=qc44;  
    qc45=Sol(i,68);   %Shunt capacitor 45, column 6 is BS  
    bus(45,6)=qc45;  
    qc46=Sol(i,69);   %Shunt capacitor 46, column 6 is BS  
    bus(46,6)=qc46;  
    qc48=Sol(i,70);   %Shunt capacitor 48, column 6 is BS  
    bus(48,6)=qc48;  
    qc74=Sol(i,71);   %Shunt capacitor 74, column 6 is BS  
    bus(74,6)=qc74;  
    qc79=Sol(i,72);   %Shunt capacitor 79, column 6 is BS  
    bus(79,6)=qc79;  
    qc82=Sol(i,73);   %Shunt capacitor 82, column 6 is BS  
    bus(82,6)=qc82;  
    qc83=Sol(i,74);   %Shunt capacitor 83, column 6 is BS  
    bus(83,6)=qc83;  
    qc105=Sol(i,75);   %Shunt capacitor 105, column 6 is BS  
    bus(105,6)=qc105;  
    qc107=Sol(i,76);   %Shunt capacitor 107, column 6 is BS  
    bus(107,6)=qc107;  
    qc110=Sol(i,77);   %Shunt capacitor 110, column 6 is BS  
    bus(110,6)=qc110;  
  
    eval([ 'savecase (''case118_test' , num2str(i), '.mat'', baseMVA, bus, gen, 
branch)' ]);  
    eval([ 'results_' ,num2str(i), '=runpf(''case118_test' , num2str(i) '.mat'')' ]);  
    eval([ 'losses_' ,num2str(i), '=sum(real(get_losses(results_' , 
num2str(i), ')))' ]);     
      
   %Penalty for bus voltage violation  
    bus_inf=bus(:,8);  
    for  bus_num=1:118  
        if  bus_inf(bus_num)>1.10  
            penalty_bus(bus_num)=10000*((bus_inf(bu s_num)-1.10)^2);  
        elseif  bus_inf(bus_num)<0.95  
            penalty_bus(bus_num)=10000*((bus_inf(bu s_num)-0.95)^2);  
        else  
            penalty_bus(bus_num)=0;  
        end  
    end  
    penalty_bus_violation=sum(penalty_bus);  
    %Penalty for shunt violation  
    buus_inf=bus(:,6);  
    for  bus_num=1:118  
        if  buus_inf(bus_num)>0.25  
            penalty_sht(bus_num)=10000*(buus_inf(bu s_num)-0.25)^2;  
        elseif  buus_inf(bus_num)<0.00  
            penalty_sht(bus_num)=10000*(buus_inf(bu s_num)-0.00)^2;  
        else  
            penalty_sht(bus_num)=0;  
        end  
    end  
    penalty_sht_violation=sum(penalty_sht);  
    %Penalty for tap position violation  
    brch_inf=[branch(8,9); branch(32,9); branch(36, 9); branch(51,9); 
branch(93,9); branch(95,9); branch(102,9); branch(1 07,9); branch(127,9)];  
    for  brch_num=1:9  
        if  brch_inf(brch_num)>1.10  
            penalty_brch(brch_num)=10000*(brch_inf( brch_num)-1.10)^2;  
        elseif  brch_inf(brch_num)<0.90  
            penalty_brch(brch_num)=10000*(brch_inf( brch_num)-0.90)^2;  
        else  
            penalty_brch(brch_num)=0;  
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        end  
    end  
    penalty_brch_violation=sum(penalty_brch);  
         
    % objective function=sum of active power losses of the transmission lines  
    losses(i)=eval([ 'losses_' ,num2str(i)]);  
    
Obj_fun_initial(i)=losses(i)+penalty_bus_violation+ penalty_sht_violation+penalty
_brch_violation;  % augumented objective function with penalty functi on 
end  
% Evaluate solution  
    Fitness=Obj_fun_initial;  
    pbest=Sol;  
%% finding the current best solution in the initial  population (first 
evaluation)  
[fmin,m]=min(Fitness);  
best=Sol(m,:);       % used to keep track of the best current solution e ver  
%% Bat Algorithm LOOP  
figure( 'NumberTitle' , 'off' , 'Name' , 'Bat Algorithm Based Optimal Reactive Power 
Dispatch' );  
title( 'ACTIVE POWER LOSS MINIMIZATION' );  
ylabel( 'Total Active Power Loss (MW)' );  
xlabel( 'Iteration Number' );  
grid on;  
hold on 
  
for  N_iter=1:N_gen  
     % Loop over all bats/solutions  
     %mean of loudness  
     meanA=mean(A);  
     if  (N_iter <= N_gen) & (N_iter > 1)  
       w_temp=w_temp-w_step; %Change inertia weight  
     end  
        
 for  i=1:N    
    Freq(i)=Qmin+(Qmax-Qmin)*rand;  
    Velocity(i,:)=w_temp*Velocity(i,:)+(Sol(i,:)-be st)*Freq(i);  
    S(i,:)=Sol(i,:)+Velocity(i,:);  
    % Local Search  
    if  rand>r(i)  
        randnValueA=randn(1,d).*(abs(meanA));  
        S(i,:)=best+(0.001*randnValueA);        % The factor 0.001 limits the 
step sizes of random walks  
    end  
  
    v1=S(i,1);      %v1 
    bus(1,8)=v1;        %Vm, column 8 is voltage magnitude (p.u.)  
    gen(1,6)=v1;        %Vg, column 6 is voltage magnitude setpoint (p.u.)  
    v4=S(i,2);      %v4 
    bus(4,8)=v4;  
    gen(2,6)=v4;  
    v6=S(i,3);      %v6 
    bus(6,8)=v6;  
    gen(3,6)=v6;  
    v8=S(i,4);      %v8 
    bus(8,8)=v8;  
    gen(4,6)=v8;  
    v10=S(i,5);     %v10 
    bus(10,8)=v10;  
    gen(5,6)=v10;  
    v12=S(i,6);     %v12 
    bus(12,8)=v12;  
    gen(6,6)=v12;  
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    v15=S(i,7);     %v15 
    bus(15,8)=v15;  
    gen(7,6)=v15;  
    v18=S(i,8);     %v18 
    bus(18,8)=v18;  
    gen(8,6)=v18;  
    v19=S(i,9);     %v19 
    bus(19,8)=v19;  
    gen(9,6)=v19;  
    v24=S(i,10);     %v24 
    bus(24,8)=v24;  
    gen(10,6)=v24;  
    v25=S(i,11);     %v25 
    bus(25,8)=v25;  
    gen(11,6)=v25;  
    v26=S(i,12);     %v26 
    bus(26,8)=v26;  
    gen(12,6)=v26;  
    v27=S(i,13);     %v27 
    bus(27,8)=v27;  
    gen(13,6)=v27;  
    v31=S(i,14);     %v31 
    bus(31,8)=v31;  
    gen(14,6)=v31;  
    v32=S(i,15);     %v32 
    bus(32,8)=v32;  
    gen(15,6)=v32;  
    v34=S(i,16);     %v34 
    bus(34,8)=v34;  
    gen(16,6)=v34;  
    v36=S(i,17);     %v36 
    bus(36,8)=v36;  
    gen(17,6)=v36;  
    v40=S(i,18);     %v40 
    bus(40,8)=v40;  
    gen(18,6)=v40;  
    v42=S(i,19);     %v42 
    bus(42,8)=v42;  
    gen(19,6)=v42;  
    v46=S(i,20);     %v46 
    bus(46,8)=v46;  
    gen(20,6)=v46;  
    v49=S(i,21);     %v49 
    bus(49,8)=v49;  
    gen(21,6)=v49;  
    v54=S(i,22);     %v54 
    bus(54,8)=v54;  
    gen(22,6)=v54;  
    v55=S(i,23);     %v55 
    bus(55,8)=v55;  
    gen(23,6)=v55;  
    v56=S(i,24);     %v56 
    bus(56,8)=v56;  
    gen(24,6)=v56;  
    v59=S(i,25);     %v59 
    bus(59,8)=v59;  
    gen(25,6)=v59;  
    v61=S(i,26);     %v61 
    bus(61,8)=v61;  
    gen(26,6)=v61;  
    v62=S(i,27);     %v62 
    bus(62,8)=v62;  
    gen(27,6)=v62;  
    v65=S(i,28);     %v65 
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    bus(65,8)=v65;  
    gen(28,6)=v65;  
    v66=S(i,29);     %v66 
    bus(66,8)=v66;  
    gen(29,6)=v66;  
    v69=S(i,30);     %v69 
    bus(69,8)=v69;  
    gen(30,6)=v69;  
    v70=S(i,31);     %v70 
    bus(70,8)=v70;  
    gen(31,6)=v70;  
    v72=S(i,32);     %v72 
    bus(72,8)=v72;  
    gen(32,6)=v72;  
    v73=S(i,33);     %v73 
    bus(73,8)=v73;  
    gen(33,6)=v73;  
    v74=S(i,34);     %v74 
    bus(74,8)=v74;  
    gen(34,6)=v74;  
    v76=S(i,35);     %v76 
    bus(76,8)=v76;  
    gen(35,6)=v76;  
    v77=S(i,36);     %v77 
    bus(77,8)=v77;  
    gen(36,6)=v77;  
    v80=S(i,37);     %v80 
    bus(80,8)=v80;  
    gen(37,6)=v80;  
    v85=S(i,38);     %v85 
    bus(85,8)=v85;  
    gen(38,6)=v85;  
    v87=S(i,39);     %v87 
    bus(87,8)=v87;  
    gen(39,6)=v87;  
    v89=S(i,40);     %v89 
    bus(89,8)=v89;  
    gen(40,6)=v89;  
    v90=S(i,41);     %v90 
    bus(90,8)=v90;  
    gen(41,6)=v90;  
    v91=S(i,42);     %v91 
    bus(91,8)=v91;  
    gen(42,6)=v91;  
    v92=S(i,43);     %v92 
    bus(92,8)=v92;  
    gen(43,6)=v92;  
    v99=S(i,44);     %v99 
    bus(99,8)=v99;  
    gen(44,6)=v99;  
    v100=S(i,45);     %v100 
    bus(100,8)=v100;  
    gen(45,6)=v100;  
    v103=S(i,46);     %v103 
    bus(103,8)=v103;  
    gen(46,6)=v103;  
    v104=S(i,47);     %v104 
    bus(104,8)=v104;  
    gen(47,6)=v104;  
    v105=S(i,48);     %v105 
    bus(105,8)=v105;  
    gen(48,6)=v105;  
    v107=S(i,49);     %v107 
    bus(107,8)=v107;  
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    gen(49,6)=v107;  
    v110=S(i,50);     %v110 
    bus(110,8)=v110;  
    gen(50,6)=v110;  
    v111=S(i,51);     %v111 
    bus(111,8)=v111;  
    gen(51,6)=v111;  
    v112=S(i,52);     %v112 
    bus(112,8)=v112;  
    gen(52,6)=v112;  
    v113=S(i,53);     %v113 
    bus(113,8)=v113;  
    gen(53,6)=v113;  
    v116=S(i,54);     %v116 
    bus(116,8)=v116;  
    gen(54,6)=v116;  
    t1=S(i,55);      %tp1 8-5, column 9 is tap position  
    branch(8,9)=t1;  
    t2=S(i,56);      %tp2 26-25  
    branch(32,9)=t2;  
    t3=S(i,57);      %tp3 30-17  
    branch(36,9)=t3;  
    t4=S(i,58);     %tp4 38-37  
    branch(51,9)=t4;  
    t5=S(i,59);     %tp5 63-59  
    branch(93,9)=t5;  
    t6=S(i,60);     %tp6 64-61  
    branch(95,9)=t6;  
    t7=S(i,61);     %tp7 65-66  
    branch(102,9)=t7;  
    t8=S(i,62);     %tp8 68-69  
    branch(107,9)=t8;  
    t9=S(i,63);     %tp9 81-80  
    branch(127,9)=t9;  
    qc5=S(i,64);   %Shunt capacitor 5, column 6 is BS  
    bus(5,6)=qc5;  
    qc34=S(i,65);   %Shunt capacitor 34, column 6 is BS  
    bus(34,6)=qc34;  
    qc37=S(i,66);   %Shunt capacitor 37, column 6 is BS  
    bus(37,6)=qc37;  
    qc44=S(i,67);   %Shunt capacitor 44, column 6 is BS  
    bus(44,6)=qc44;  
    qc45=S(i,68);   %Shunt capacitor 45, column 6 is BS  
    bus(45,6)=qc45;  
    qc46=S(i,69);   %Shunt capacitor 46, column 6 is BS  
    bus(46,6)=qc46;  
    qc48=S(i,70);   %Shunt capacitor 48, column 6 is BS  
    bus(48,6)=qc48;  
    qc74=S(i,71);   %Shunt capacitor 74, column 6 is BS  
    bus(74,6)=qc74;  
    qc79=S(i,72);   %Shunt capacitor 79, column 6 is BS  
    bus(79,6)=qc79;  
    qc82=S(i,73);   %Shunt capacitor 82, column 6 is BS  
    bus(82,6)=qc82;  
    qc83=S(i,74);   %Shunt capacitor 83, column 6 is BS  
    bus(83,6)=qc83;  
    qc105=S(i,75);   %Shunt capacitor 105, column 6 is BS  
    bus(105,6)=qc105;  
    qc107=S(i,76);   %Shunt capacitor 107, column 6 is BS  
    bus(107,6)=qc107;  
    qc110=S(i,77);   %Shunt capacitor 110, column 6 is BS  
    bus(110,6)=qc110;  
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    eval([ 'savecase (''case118_test' , num2str(i), '.mat'', baseMVA, bus, gen, 
branch)' ]);  
    eval([ 'results_' ,num2str(i), '=runpf(''case118_test' , num2str(i) '.mat'')' ]);  
    eval([ 'losses_' ,num2str(i), '=sum(real(get_losses(results_' , 
num2str(i), ')))' ]);     
     
     
    %Penalty for bus voltage violation  
    bus_inf=bus(:,8);  
    for  bus_num=1:118  
        if  bus_inf(bus_num)>1.10  
            penalty_bus(bus_num)=10000*((bus_inf(bu s_num)-1.10)^2);  
        elseif  bus_inf(bus_num)<0.95  
            penalty_bus(bus_num)=10000*((bus_inf(bu s_num)-0.95)^2);  
        else  
            penalty_bus(bus_num)=0;  
        end  
    end  
    penalty_bus_violation=sum(penalty_bus);  
    %Penalty for shunt violation  
    buus_inf=bus(:,6);  
    for  bus_num=1:118  
        if  buus_inf(bus_num)>0.25  
            penalty_sht(bus_num)=10000*(buus_inf(bu s_num)-0.25)^2;  
        elseif  buus_inf(bus_num)<0.00  
            penalty_sht(bus_num)=10000*(buus_inf(bu s_num)-0.00)^2;  
        else  
            penalty_sht(bus_num)=0;  
        end  
    end  
    penalty_sht_violation=sum(penalty_sht);  
    %Penalty for tap position violation  
    brch_inf=[branch(8,9); branch(32,9); branch(36, 9); branch(51,9); 
branch(93,9); branch(95,9); branch(102,9); branch(1 07,9); branch(127,9)];  
    for  brch_num=1:9  
        if  brch_inf(brch_num)>1.10  
            penalty_brch(brch_num)=10000*(brch_inf( brch_num)-1.10)^2;  
        elseif  brch_inf(brch_num)<0.90  
            penalty_brch(brch_num)=10000*(brch_inf( brch_num)-0.90)^2;  
        else  
            penalty_brch(brch_num)=0;  
        end  
    end  
    penalty_brch_violation=sum(penalty_brch);  
    %sum of real power losses of all branches  
    losses_final(i)=eval([ 'losses_' ,num2str(i)]);  
    
Obj_fun_final(i)=losses_final(i)+penalty_bus_violat ion+penalty_sht_violation+pen
alty_brch_violation;  
  
    % Evaluate new solutions  
    Fitness_final(i)=Obj_fun_final(i);  
%% If the solution improves or not too loud  
    if  (Fitness_final(i)<=Fitness(i)) & (rand<A(i))  
        losses(i)=losses_final(i);  
        Sol(i,:)=S(i,:);                % replace initial solution with improved 
solution  
        Fitness(i)=Fitness_final(i);    % replace initial FITNESS with improved 
fitness  
        A(i)=A(i)*alpha;                   % update loudness of bats  
        r(i)=r(i)*(1-exp(-gamma*N_iter));    % update the pitch of bats  
    end  
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    [fnew,n]=min(Fitness_final);  
    % Update the current best  
    if  fnew<=fmin  
        best=S(n,:);  
        fmin=fnew;  
    end  
 end  
     
    fmin_rec(N_iter)=fmin;  
    plot(fmin_rec);  
    drawnow;  
    toc  
end      

 
APPENDIX C.3 MATALAB CODES FOR HPSOBA ALGORITHM FOR ORPD  

%% Hybrid PSO-BA algorithm to solve Optimal Reactiv e Power Dispatch  
%  Authored by AGBUGBA E.E.  
%  Student No: 57441022  
%  Department of Electrical and Mining Engineering  
%  College of Science, Engineering and Technology  
%  University Of South Africa  
%% Initialization Parameters  
clear all  
clc  
tic  
% Dimension of the search variables  
d=77;  
% Bat Algorithm Default parameters  
N=20;               % Number of bats (population), typically 10 to 25  
N_gen=200;          % No of generation (iteration)  
Q_max=2;            % Frequency maximum  
Q_min=0;            % Frequency minimum  
r_max=1;            % Maximum pulse rate  
r_min=0;            % Minimum pulse rate  
A_max=2;            % Maximum loudness  
A_min=1;            % Minimum loudness  
% Constants  
alpha=0.99;  % Loudness constant  
gamma=0.9;  % Pulse rate constant  
% PSO Algorithm Default parameters  
% Inertia Weight  
w_max=0.9;  
w_min=0.4;  
w_temp(1)=w_max;  
% Acceleration constants  
c1=2.05;  
c2=2.05;  
% Iteration parameters  
N_iter=0;        
%Load IEEE 118-bus data  
[baseMVA, bus, gen, branch]=loadcase(case118);  
%% Initialization of Population/ Solutions, Frequen cy & velocity  
% Initialize velocity  
%Velocity=zeros(N,d);  
Velocity =[unifrnd(-0.003,0.003,N,54),unifrnd(-0.00 3,0.003,N,9), unifrnd(-
0.003,0.003,N,14)];  
% Initialize frequency  
Freq=zeros(N,1);   % Frequency;  
% Initialize solutions/locations  
Sol=[unifrnd(0.95,1.10,N,54),unifrnd(0.90,1.10,N,9) ,unifrnd(0.00,0.25,N,14)];  
% Initialize pulse rate  
r=(rand(N,1).*(r_max-r_min))+r_min;  
% Initialize loudness  
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A=(rand(N,1).*(A_max-A_min))+A_min;  
  
for  i=1:N  
         
    v1=Sol(i,1);      %v1 
    bus(1,8)=v1;        %Vm, column 8 is voltage magnitude (p.u.)  
    gen(1,6)=v1;        %Vg, column 6 is voltage magnitude setpoint (p.u.)  
    v4=Sol(i,2);      %v4 
    bus(4,8)=v4;  
    gen(2,6)=v4;  
    v6=Sol(i,3);      %v6 
    bus(6,8)=v6;  
    gen(3,6)=v6;  
    v8=Sol(i,4);      %v8 
    bus(8,8)=v8;  
    gen(4,6)=v8;  
    v10=Sol(i,5);     %v10 
    bus(10,8)=v10;  
    gen(5,6)=v10;  
    v12=Sol(i,6);     %v12 
    bus(12,8)=v12;  
    gen(6,6)=v12;  
    v15=Sol(i,7);     %v15 
    bus(15,8)=v15;  
    gen(7,6)=v15;  
    v18=Sol(i,8);     %v18 
    bus(18,8)=v18;  
    gen(8,6)=v18;  
    v19=Sol(i,9);     %v19 
    bus(19,8)=v19;  
    gen(9,6)=v19;  
    v24=Sol(i,10);     %v24 
    bus(24,8)=v24;  
    gen(10,6)=v24;  
    v25=Sol(i,11);     %v25 
    bus(25,8)=v25;  
    gen(11,6)=v25;  
    v26=Sol(i,12);     %v26 
    bus(26,8)=v26;  
    gen(12,6)=v26;  
    v27=Sol(i,13);     %v27 
    bus(27,8)=v27;  
    gen(13,6)=v27;  
    v31=Sol(i,14);     %v31 
    bus(31,8)=v31;  
    gen(14,6)=v31;  
    v32=Sol(i,15);     %v32 
    bus(32,8)=v32;  
    gen(15,6)=v32;  
    v34=Sol(i,16);     %v34 
    bus(34,8)=v34;  
    gen(16,6)=v34;  
    v36=Sol(i,17);     %v36 
    bus(36,8)=v36;  
    gen(17,6)=v36;  
    v40=Sol(i,18);     %v40 
    bus(40,8)=v40;  
    gen(18,6)=v40;  
    v42=Sol(i,19);     %v42 
    bus(42,8)=v42;  
    gen(19,6)=v42;  
    v46=Sol(i,20);     %v46 
    bus(46,8)=v46;  
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    gen(20,6)=v46;  
    v49=Sol(i,21);     %v49 
    bus(49,8)=v49;  
    gen(21,6)=v49;  
    v54=Sol(i,22);     %v54 
    bus(54,8)=v54;  
    gen(22,6)=v54;  
    v55=Sol(i,23);     %v55 
    bus(55,8)=v55;  
    gen(23,6)=v55;  
    v56=Sol(i,24);     %v56 
    bus(56,8)=v56;  
    gen(24,6)=v56;  
    v59=Sol(i,25);     %v59 
    bus(59,8)=v59;  
    gen(25,6)=v59;  
    v61=Sol(i,26);     %v61 
    bus(61,8)=v61;  
    gen(26,6)=v61;  
    v62=Sol(i,27);     %v62 
    bus(62,8)=v62;  
    gen(27,6)=v62;  
    v65=Sol(i,28);     %v65 
    bus(65,8)=v65;  
    gen(28,6)=v65;  
    v66=Sol(i,29);     %v66 
    bus(66,8)=v66;  
    gen(29,6)=v66;  
    v69=Sol(i,30);     %v69 
    bus(69,8)=v69;  
    gen(30,6)=v69;  
    v70=Sol(i,31);     %v70 
    bus(70,8)=v70;  
    gen(31,6)=v70;  
    v72=Sol(i,32);     %v72 
    bus(72,8)=v72;  
    gen(32,6)=v72;  
    v73=Sol(i,33);     %v73 
    bus(73,8)=v73;  
    gen(33,6)=v73;  
    v74=Sol(i,34);     %v74 
    bus(74,8)=v74;  
    gen(34,6)=v74;  
    v76=Sol(i,35);     %v76 
    bus(76,8)=v76;  
    gen(35,6)=v76;  
    v77=Sol(i,36);     %v77 
    bus(77,8)=v77;  
    gen(36,6)=v77;  
    v80=Sol(i,37);     %v80 
    bus(80,8)=v80;  
    gen(37,6)=v80;  
    v85=Sol(i,38);     %v85 
    bus(85,8)=v85;  
    gen(38,6)=v85;  
    v87=Sol(i,39);     %v87 
    bus(87,8)=v87;  
    gen(39,6)=v87;  
    v89=Sol(i,40);     %v89 
    bus(89,8)=v89;  
    gen(40,6)=v89;  
    v90=Sol(i,41);     %v90 
    bus(90,8)=v90;  
    gen(41,6)=v90;  
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    v91=Sol(i,42);     %v91 
    bus(91,8)=v91;  
    gen(42,6)=v91;  
    v92=Sol(i,43);     %v92 
    bus(92,8)=v92;  
    gen(43,6)=v92;  
    v99=Sol(i,44);     %v99 
    bus(99,8)=v99;  
    gen(44,6)=v99;  
    v100=Sol(i,45);     %v100 
    bus(100,8)=v100;  
    gen(45,6)=v100;  
    v103=Sol(i,46);     %v103 
    bus(103,8)=v103;  
    gen(46,6)=v103;  
    v104=Sol(i,47);     %v104 
    bus(104,8)=v104;  
    gen(47,6)=v104;  
    v105=Sol(i,48);     %v105 
    bus(105,8)=v105;  
    gen(48,6)=v105;  
    v107=Sol(i,49);     %v107 
    bus(107,8)=v107;  
    gen(49,6)=v107;  
    v110=Sol(i,50);     %v110 
    bus(110,8)=v110;  
    gen(50,6)=v110;  
    v111=Sol(i,51);     %v111 
    bus(111,8)=v111;  
    gen(51,6)=v111;  
    v112=Sol(i,52);     %v112 
    bus(112,8)=v112;  
    gen(52,6)=v112;  
    v113=Sol(i,53);     %v113 
    bus(113,8)=v113;  
    gen(53,6)=v113;  
    v116=Sol(i,54);     %v116 
    bus(116,8)=v116;  
    gen(54,6)=v116;  
    t1=Sol(i,55);      %tp1 8-5, column 9 is tap position  
    branch(8,9)=t1;  
    t2=Sol(i,56);      %tp2 26-25  
    branch(32,9)=t2;  
    t3=Sol(i,57);      %tp3 30-17  
    branch(36,9)=t3;  
    t4=Sol(i,58);     %tp4 38-37  
    branch(51,9)=t4;  
    t5=Sol(i,59);     %tp5 63-59  
    branch(93,9)=t5;  
    t6=Sol(i,60);     %tp6 64-61  
    branch(95,9)=t6;  
    t7=Sol(i,61);     %tp7 65-66  
    branch(102,9)=t7;  
    t8=Sol(i,62);     %tp8 68-69  
    branch(107,9)=t8;  
    t9=Sol(i,63);     %tp9 81-80  
    branch(127,9)=t9;  
    qc5=Sol(i,64);   %Shunt capacitor 5, column 6 is BS  
    bus(5,6)=qc5;  
    qc34=Sol(i,65);   %Shunt capacitor 34, column 6 is BS  
    bus(34,6)=qc34;  
    qc37=Sol(i,66);   %Shunt capacitor 37, column 6 is BS  
    bus(37,6)=qc37;  
    qc44=Sol(i,67);   %Shunt capacitor 44, column 6 is BS  
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    bus(44,6)=qc44;  
    qc45=Sol(i,68);   %Shunt capacitor 45, column 6 is BS  
    bus(45,6)=qc45;  
    qc46=Sol(i,69);   %Shunt capacitor 46, column 6 is BS  
    bus(46,6)=qc46;  
    qc48=Sol(i,70);   %Shunt capacitor 48, column 6 is BS  
    bus(48,6)=qc48;  
    qc74=Sol(i,71);   %Shunt capacitor 74, column 6 is BS  
    bus(74,6)=qc74;  
    qc79=Sol(i,72);   %Shunt capacitor 79, column 6 is BS  
    bus(79,6)=qc79;  
    qc82=Sol(i,73);   %Shunt capacitor 82, column 6 is BS  
    bus(82,6)=qc82;  
    qc83=Sol(i,74);   %Shunt capacitor 83, column 6 is BS  
    bus(83,6)=qc83;  
    qc105=Sol(i,75);   %Shunt capacitor 105, column 6 is BS  
    bus(105,6)=qc105;  
    qc107=Sol(i,76);   %Shunt capacitor 107, column 6 is BS  
    bus(107,6)=qc107;  
    qc110=Sol(i,77);   %Shunt capacitor 110, column 6 is BS  
    bus(110,6)=qc110;  
  
    eval([ 'savecase (''case118_test' , num2str(i), '.mat'', baseMVA, bus, gen, 
branch)' ]);  
    eval([ 'results_' ,num2str(i), '=runpf(''case118_test' , num2str(i) '.mat'')' ]);  
    eval([ 'losses_' ,num2str(i), '=sum(real(get_losses(results_' , 
num2str(i), ')))' ]);  
      
   %Penalty for bus voltage violation  
    bus_inf=bus(:,8);  
    for  bus_num=1:118  
        if  bus_inf(bus_num)>1.10  
            penalty_bus(bus_num)=10000*(bus_inf(bus _num)-1.10)^2;  
        elseif  bus_inf(bus_num)<0.95  
            penalty_bus(bus_num)=10000*(bus_inf(bus _num)-0.95)^2;  
        else  
            penalty_bus(bus_num)=0;  
        end  
    end  
    penalty_bus_violation=sum(penalty_bus);  
    %Penalty for reactive shunt violation  
    buus_inf=bus(:,6);  
    for  bus_num=1:118  
        if  buus_inf(bus_num)>0.25  
            penalty_sht(bus_num)=10000*(buus_inf(bu s_num)-0.25)^2;  
        elseif  buus_inf(bus_num)<0.00  
            penalty_sht(bus_num)=10000*(buus_inf(bu s_num)-0.00)^2;  
        else  
            penalty_sht(bus_num)=0;  
        end  
    end  
    penalty_sht_violation=sum(penalty_sht);  
    %Penalty for tap position violation  
    brch_inf=[branch(8,9); branch(32,9); branch(36, 9); branch(51,9); 
branch(93,9); branch(95,9); branch(102,9); branch(1 07,9); branch(127,9)];  
    for  brch_num=1:9  
        if  brch_inf(brch_num)>1.10  
            penalty_brch(brch_num)=10000*(brch_inf( brch_num)-1.10)^2;  
        elseif  brch_inf(brch_num)<0.90  
            penalty_brch(brch_num)=10000*(brch_inf( brch_num)-0.90)^2;  
        else  
            penalty_brch(brch_num)=0;  
        end  
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    end  
    penalty_brch_violation=sum(penalty_brch);     
    % objective function=sum of active power losses of the transmission lines  
    losses(i)=eval([ 'losses_' ,num2str(i)]);  
    
Obj_fun_initial(i)=losses(i)+penalty_bus_violation+ penalty_sht_violation+penalty
_brch_violation;  % augumented objective function with penalty functi on 
End 

 
% Evaluate solution  
    Fitness=Obj_fun_initial;  
    pbest=Sol;  
%% finding the current best solution in the initial  population (first 
evaluation)  
[fmin,m]=min(Fitness);  
best=Sol(m,:);       % used to keep track of the best current solution e ver  
%% Hybrid PSO-BA Algorithm LOOP  
figure( 'NumberTitle' , 'off' , 'Name' , 'Hybrid PSO-BA Algorithm Based Optimal 
Reactive Power Dispatch' );  
title( 'ACTIVE POWER LOSS MINIMIZATION' );  
ylabel( 'Total Active Power Loss (MW)' );  
xlabel( 'Iteration Number' );  
grid on;  
hold on 
  
for  N_iter=1:N_gen  
     % Loop over all bats/particles  
     %mean pf loudness  
     meanA=mean(A);  
     % Update the value of the inertia weight w  
    if  N_iter <= N_gen  
       w_temp(N_iter)=w_max + (((w_min-w_max)/N_gen )*N_iter); %Change inertia 
weight  
    end  
        
 for  k=1:N    
    Freq(k)=Q_min+(Q_max-Q_min)*rand;  
    Velocity(k,:)=w_temp(N_iter).*Velocity(k,:)+(c1 *rand*(pbest(k,:)-
Sol(k,:))+c2*rand*(best-Sol(k,:)))*Freq(k);  
    for  v_iter=1:d  
        if  v_iter==d  
            Outstep=Velocity(:,v_iter)>0.003;  
            Velocity(find(Outstep),v_iter)=0.003;  
            Outstep=Velocity(:,v_iter)<-0.003;  
            Velocity(find(Outstep),v_iter)=-0.003;  
        else  
            Outstep=Velocity(:,v_iter)>0.01;  
            Velocity(find(Outstep),v_iter)=0.01;  
            Outstep=Velocity(:,v_iter)<-0.01;  
            Velocity(find(Outstep),v_iter)=-0.01;  
        end  
    end  
    Sol(k,:)=best+Velocity(k,:);  
    % Local Search  
    if  rand>r(k)  
        randnValueA=randn(1,d).*(abs(meanA));  
        Sol(k,:)=best+(0.001*randnValueA);        % The factor 0.001 limits the 
step sizes of random walks  
    end  
  
    v1=Sol(k,1);      %v1 
    bus(1,8)=v1;        %Vm, column 8 is voltage magnitude (p.u.)  
    gen(1,6)=v1;        %Vg, column 6 is voltage magnitude setpoint (p.u.)  
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    v4=Sol(k,2);      %v4 
    bus(4,8)=v4;  
    gen(2,6)=v4;  
    v6=Sol(k,3);      %v6 
    bus(6,8)=v6;  
    gen(3,6)=v6;  
    v8=Sol(k,4);      %v8 
    bus(8,8)=v8;  
    gen(4,6)=v8;  
    v10=Sol(k,5);     %v10 
    bus(10,8)=v10;  
    gen(5,6)=v10;  
    v12=Sol(k,6);     %v12 
    bus(12,8)=v12;  
    gen(6,6)=v12;  
    v15=Sol(k,7);     %v15 
    bus(15,8)=v15;  
    gen(7,6)=v15;  
    v18=Sol(k,8);     %v18 
    bus(18,8)=v18;  
    gen(8,6)=v18;  
    v19=Sol(k,9);     %v19 
    bus(19,8)=v19;  
    gen(9,6)=v19;  
    v24=Sol(k,10);     %v24 
    bus(24,8)=v24;  
    gen(10,6)=v24;  
    v25=Sol(k,11);     %v25 
    bus(25,8)=v25;  
    gen(11,6)=v25;  
    v26=Sol(k,12);     %v26 
    bus(26,8)=v26;  
    gen(12,6)=v26;  
    v27=Sol(k,13);     %v27 
    bus(27,8)=v27;  
    gen(13,6)=v27;  
    v31=Sol(k,14);     %v31 
    bus(31,8)=v31;  
    gen(14,6)=v31;  
    v32=Sol(k,15);     %v32 
    bus(32,8)=v32;  
    gen(15,6)=v32;  
    v34=Sol(k,16);     %v34 
    bus(34,8)=v34;  
    gen(16,6)=v34;  
    v36=Sol(k,17);     %v36 
    bus(36,8)=v36;  
    gen(17,6)=v36;  
    v40=Sol(k,18);     %v40 
    bus(40,8)=v40;  
    gen(18,6)=v40;  
    v42=Sol(k,19);     %v42 
    bus(42,8)=v42;  
    gen(19,6)=v42;  
    v46=Sol(k,20);     %v46 
    bus(46,8)=v46;  
    gen(20,6)=v46;  
    v49=Sol(k,21);     %v49 
    bus(49,8)=v49;  
    gen(21,6)=v49;  
    v54=Sol(k,22);     %v54 
    bus(54,8)=v54;  
    gen(22,6)=v54;  
    v55=Sol(k,23);     %v55 



125 
 

    bus(55,8)=v55;  
    gen(23,6)=v55;  
    v56=Sol(k,24);     %v56 
    bus(56,8)=v56;  
    gen(24,6)=v56;  
    v59=Sol(k,25);     %v59 
    bus(59,8)=v59;  
    gen(25,6)=v59;  
    v61=Sol(k,26);     %v61 
    bus(61,8)=v61;  
    gen(26,6)=v61;  
    v62=Sol(k,27);     %v62 
    bus(62,8)=v62;  
    gen(27,6)=v62;  
    v65=Sol(k,28);     %v65 
    bus(65,8)=v65;  
    gen(28,6)=v65;  
    v66=Sol(k,29);     %v66 
    bus(66,8)=v66;  
    gen(29,6)=v66;  
    v69=Sol(k,30);     %v69 
    bus(69,8)=v69;  
    gen(30,6)=v69;  
    v70=Sol(k,31);     %v70 
    bus(70,8)=v70;  
    gen(31,6)=v70;  
    v72=Sol(k,32);     %v72 
    bus(72,8)=v72;  
    gen(32,6)=v72;  
    v73=Sol(k,33);     %v73 
    bus(73,8)=v73;  
    gen(33,6)=v73;  
    v74=Sol(k,34);     %v74 
    bus(74,8)=v74;  
    gen(34,6)=v74;  
    v76=Sol(k,35);     %v76 
    bus(76,8)=v76;  
    gen(35,6)=v76;  
    v77=Sol(k,36);     %v77 
    bus(77,8)=v77;  
    gen(36,6)=v77;  
    v80=Sol(k,37);     %v80 
    bus(80,8)=v80;  
    gen(37,6)=v80;  
    v85=Sol(k,38);     %v85 
    bus(85,8)=v85;  
    gen(38,6)=v85;  
    v87=Sol(k,39);     %v87 
    bus(87,8)=v87;  
    gen(39,6)=v87;  
    v89=Sol(k,40);     %v89 
    bus(89,8)=v89;  
    gen(40,6)=v89;  
    v90=Sol(k,41);     %v90 
    bus(90,8)=v90;  
    gen(41,6)=v90;  
    v91=Sol(k,42);     %v91 
    bus(91,8)=v91;  
    gen(42,6)=v91;  
    v92=Sol(k,43);     %v92 
    bus(92,8)=v92;  
    gen(43,6)=v92;  
    v99=Sol(k,44);     %v99 
    bus(99,8)=v99;  
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    gen(44,6)=v99;  
    v100=Sol(k,45);     %v100 
    bus(100,8)=v100;  
    gen(45,6)=v100;  
    v103=Sol(k,46);     %v103 
    bus(103,8)=v103;  
    gen(46,6)=v103;  
    v104=Sol(k,47);     %v104 
    bus(104,8)=v104;  
    gen(47,6)=v104;  
    v105=Sol(k,48);     %v105 
    bus(105,8)=v105;  
    gen(48,6)=v105;  
    v107=Sol(k,49);     %v107 
    bus(107,8)=v107;  
    gen(49,6)=v107;  
    v110=Sol(k,50);     %v110 
    bus(110,8)=v110;  
    gen(50,6)=v110;  
    v111=Sol(k,51);     %v111 
    bus(111,8)=v111;  
    gen(51,6)=v111;  
    v112=Sol(k,52);     %v112 
    bus(112,8)=v112;  
    gen(52,6)=v112;  
    v113=Sol(k,53);     %v113 
    bus(113,8)=v113;  
    gen(53,6)=v113;  
    v116=Sol(k,54);     %v116 
    bus(116,8)=v116;  
    gen(54,6)=v116;  
    t1=Sol(k,55);      %tp1 8-5, column 9 is tap position  
    branch(8,9)=t1;  
    t2=Sol(k,56);      %tp2 26-25  
    branch(32,9)=t2;  
    t3=Sol(k,57);      %tp3 30-17  
    branch(36,9)=t3;  
    t4=Sol(k,58);     %tp4 38-37  
    branch(51,9)=t4;  
    t5=Sol(k,59);     %tp5 63-59  
    branch(93,9)=t5;  
    t6=Sol(k,60);     %tp6 64-61  
    branch(95,9)=t6;  
    t7=Sol(k,61);     %tp7 65-66  
    branch(102,9)=t7;  
    t8=Sol(k,62);     %tp8 68-69  
    branch(107,9)=t8;  
    t9=Sol(k,63);     %tp9 81-80  
    branch(127,9)=t9;  
    qc5=Sol(k,64);   %Shunt capacitor 5, column 6 is BS  
    bus(5,6)=qc5;  
    qc34=Sol(k,65);   %Shunt capacitor 34, column 6 is BS  
    bus(34,6)=qc34;  
    qc37=Sol(k,66);   %Shunt capacitor 37, column 6 is BS  
    bus(37,6)=qc37;  
    qc44=Sol(k,67);   %Shunt capacitor 44, column 6 is BS  
    bus(44,6)=qc44;  
    qc45=Sol(k,68);   %Shunt capacitor 45, column 6 is BS  
    bus(45,6)=qc45;  
    qc46=Sol(k,69);   %Shunt capacitor 46, column 6 is BS  
    bus(46,6)=qc46;  
    qc48=Sol(k,70);   %Shunt capacitor 48, column 6 is BS  
    bus(48,6)=qc48;  
    qc74=Sol(k,71);   %Shunt capacitor 74, column 6 is BS  
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    bus(74,6)=qc74;  
    qc79=Sol(k,72);   %Shunt capacitor 79, column 6 is BS  
    bus(79,6)=qc79;  
    qc82=Sol(k,73);   %Shunt capacitor 82, column 6 is BS  
    bus(82,6)=qc82;  
    qc83=Sol(k,74);   %Shunt capacitor 83, column 6 is BS  
    bus(83,6)=qc83;  
    qc105=Sol(k,75);   %Shunt capacitor 105, column 6 is BS  
    bus(105,6)=qc105;  
    qc107=Sol(k,76);   %Shunt capacitor 107, column 6 is BS  
    bus(107,6)=qc107;  
    qc110=Sol(k,77);   %Shunt capacitor 110, column 6 is BS  
    bus(110,6)=qc110;  
  
    eval([ 'savecase (''case118_test' , num2str(k), '.mat'', baseMVA, bus, gen, 
branch)' ]);  
    eval([ 'results_' ,num2str(k), '=runpf(''case118_test' , num2str(k) '.mat'')' ]);  
    
eval([ 'losses_' ,num2str(k), '=sum(real(get_losses(results_' ,num2str(k), ')))' ]);     
     
    %Penalty for bus voltage violation  
    bus_inf=bus(:,8);  
    for  bus_num=1:118  
        if  bus_inf(bus_num)>1.10  
            penalty_bus(bus_num)=10000*(bus_inf(bus _num)-1.10)^2;  
        elseif  bus_inf(bus_num)<0.95  
            penalty_bus(bus_num)=10000*(bus_inf(bus _num)-0.95)^2;  
        else  
            penalty_bus(bus_num)=0;  
        end  
    end  
    penalty_bus_violation=sum(penalty_bus);  
    %Penalty for reactive shunt violation  
    buus_inf=bus(:,6);  
    for  bus_num=1:18  
        if  buus_inf(bus_num)>0.25  
            penalty_sht(bus_num)=10000*(buus_inf(bu s_num)-0.25)^2;  
        elseif  buus_inf(bus_num)<0.00  
            penalty_sht(bus_num)=10000*(buus_inf(bu s_num)-0.00)^2;  
        else  
            penalty_sht(bus_num)=0;  
        end  
    end  
    penalty_sht_violation=sum(penalty_sht);  
    %Penalty for tap position violation  
    brch_inf=[branch(8,9); branch(32,9); branch(36, 9); branch(51,9); 
branch(93,9); branch(95,9); branch(102,9); branch(1 07,9); branch(127,9)];  
    for  brch_num=1:9  
        if  brch_inf(brch_num)>1.10  
            penalty_brch(brch_num)=10000*(brch_inf( brch_num)-1.10)^2;  
        elseif  brch_inf(brch_num)<0.90  
            penalty_brch(brch_num)=10000*(brch_inf( brch_num)-0.90)^2;  
        else  
            penalty_brch(brch_num)=0;  
        end  
    end  
    penalty_brch_violation=sum(penalty_brch);  
    %sum of real power losses of all branches  
    losses_final(k)=eval([ 'losses_' ,num2str(k)]);  
    
Obj_fun_final(k)=losses_final(k)+penalty_bus_violat ion+penalty_sht_violation+pen
alty_brch_violation;  
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    % Evaluate new solutions  
    Fitness_final(k)=Obj_fun_final(k);  
%% If the solution improves or not too loud  
    if  Fitness_final(k)<=Fitness(k) & (rand<A(k))  
        losses(k)=losses_final(k);  
        pbest(k,:)=Sol(k,:);                % replace initial solution with 
improved solution  
        Fitness(k)=Fitness_final(k);    % replace initial FITNESS with improved 
fitness  
        A(k)=A(k)*alpha;                   % update loudness of bats  
        r(k)=r(k)*(1-exp(-gamma*N_iter));    % update the pitch of bats  
    end  
  
    [fnew,n]=min(Fitness_final);  
    % Update the current best  
    if  fnew<=fmin  
        best=Sol(n,:);  
        fmin=fnew;  
    end  
 end  
     
    fmin_rec(N_iter)=fmin;  
    plot(fmin_rec);  
    drawnow;  
    toc  
end      


