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Abstract

The first few chapters of the dissertation will catalogue what is known regarding z-ideals in

commutative rings with identity. Some special attention will be paid to z-ideals in function

rings to show how the presence of the topological description simplifies z-covers of arbitrary

ideals. Conditions in an f -ring that ensure that the sum of z-ideals is a z-ideal will be given.

In the latter part of the dissertation I will generalise a result in higher order z-ideals and

introduce a notion of higher order d-ideals.

Keywords: Commutative ring, z-ideal, d-ideal, minimal prime ideal, radical ideal, f -ring, von

Neumann regular ring, higher order z-ideal, higher order d-ideal, d-termination.

iv



Declaration

Student number: 457 777 72

Degree: Master of science (Mathematics)

I declare that Topics on z-ideals of commutative rings is my own work and that all the sources

that I have used or quoted have been indicated and acknowledged by means of complete

references.

Batsile Tlharesakgosi.

17 AUGUST 2017

v



Acknowledgments

I wish to express my sincere gratitude to my supervisors, Doctor Oghenetega Ighedo and

Professor Themba Dube for their guidance, motivation, patience, sacrifices and continuous

support throughout the preparation of this dissertation.

A special word of gratitude goes to my friend (Brother), Dr Jissy Nsonde Nsayi for his assistance

on numerous matters pertaining to my studies. I would also like to thank Ms Lindiwe Sithole

who assisted me with matters of proofreading. I also extend my appreciation to Dr Collins

Agyingi for his advice concerning my research when I needed it most.

I would also like to express my sincere gratitude to all my friends and all staff (academic and

administrative), Ms Busi Zwane, Ms Janeffer Sambogo, Ms Mokgadi Chipu, Ms Stable Khoza,

Mr Given Mahale and Mr Maluti Kgarose, for all the discussions we had and the pleasant

moments I had with them during my studies.

I gratefully acknowlege financial support from the Topology and Category Research Chair at

UNISA.

I also want to express my profound gratitude to my beloved family for their continuous support.

They are simply the best.

Modimo re a leboga.

vi



List of notation
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N Set of all positive integers
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Chapter 1

Introduction and preliminaries

1.1 A brief history on z-ideals

The birth of z-ideals came about in the study of the ideal structure of the ring C(X) of real-

valued continuous functions on a completely regular Hausdorff space X. This was undertaken

by Kohls [24], and is recorded in the book Rings of Continuous Functions by Gillman and

Jerison [13].

Although Kohls showed that in the ring C(X) z-ideals can be described purely algebraically, it

was Mason [31] who initiated the study of z-ideals in commutative rings with identity.

1.2 Synopsis of the dissertation

The dissertation consists of four chapters. It is mainly about the study of z-ideals in commutative

rings with identity. Chapter 1 is introductory. It is a chapter in which we fix notation and

provide the requisite background needed to read the dissertation.

In Chapter 2 we define z-ideals algebraically, and show the various equivalent ways of defining

these ideals. We show that every ideal has a “z-cover”, by which we mean a smallest z-ideal

containing it. In the classical function rings C(X) the sum of two z-ideals is a z-ideal (see, for

instance, [13] and [38]). It has recently been shown by Dube and Ighedo [12] that, in fact, in

any function ring RL of continuous real-valued functions on a frame L, the sum of two z-ideals
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is a z-ideal. There are rings in which the sum of z-ideals is not a z-ideal, as shown by Henriksen

and Smith [16]. We also discuss, mainly in the class of f -rings, sufficient conditions for the sum

of z-ideals to be a z-ideal. Most results in this regard were proved by Larson [27].

There are special types of z-ideals that have received a great deal of attention both in rings and

Riesz spaces. These are called d-ideals, and have been studied by many mathematicians such as

Huijsman and de Pagter [19]. Other authors, such as Azarpanah et al [4] call these z◦-ideals. In

Chapter 3 we give various properties and characterisations of d-ideals. We also give sufficient

conditions when their sums are also d-ideals. Rings in which d-ideals coincide with z-ideals will

be characterised.

Chapter 4 will be the last chapter in the dissertation, and will consist of completely new concepts

which have hitherto not been considered. These ideals will be generalisations of d-ideals. We

will develop as far as possible the theory of these generalisations, which we will call higher order

d-ideals. We also give a generalisation of a result of the authors in [11].

1.3 Basic definitions

In this section we shall give definitions of basic terms which will be frequently used throughout

this dissertation. These may be found in the book Advanced modern Algebra ([37]). All rings

considered in this dissertation are commutative with identity.

An ideal in a commutative ring A is a subset I of A such that

(i) 0 ∈ I,

(ii) if x ∈ I, then −x ∈ I,

(iii) if x, y ∈ I, then x+ y ∈ I,

(iv) if x ∈ I and a ∈ A, then xa ∈ I.

The ring A itself and {0}, the subset consisting of 0 alone, are always ideals in a commutative

ring A. An ideal I 6= A is called a proper ideal.

Example 1.3.1. If an ideal I in a commutative ring contains 1, then I = A, for I contains

a = a1 for every a ∈ A. Indeed, if I contains a unit u, then I = A, for then I contains u−1u = 1.
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An ideal I in commutative ring A is called a prime ideal if it is a proper ideal, that is, I 6= A,

and ab ∈ I implies that a ∈ I or b ∈ I.

A principal ideal of a ring A is an ideal generated by one element. We shall denote the ideal

generated by an element a by 〈a〉. An ideal I in a ring A is a minimal ideal if I 6= 〈0〉 and there

is no ideal J with 〈0〉 ( J ( I. A ring need not contain minimal ideals. For example, Z has no

minimal ideals: every nonzero ideal I in Z has the form I = 〈n〉 for some nonzero integer n,

and I = 〈n〉 ) 〈2n〉 6= 〈0〉. The minimal prime ideals of a ring A will be denoted by Min(A).

An ideal I in a commutative ring A is a maximal ideal if I is a proper ideal and there is no

proper ideal J with I ( J ( A. The set of maximal ideals of a ring A will be denoted by

Max(A).

If A and B are rings, a ring homomorphism is a function φ : A→ B such that

(i) φ(1) = 1,

(ii) φ(x+ y) = φ(x) + φ(y) for all x, y ∈ A,

(iii) φ(xy) = φ(x)φ(y) for all x, y ∈ A.

A ring homomorphism that is also a bijection is called an isomorphism. Rings A and B are

called isomorphic, denoted by A ∼= B, if there is an isomorphism φ : A→ B.

Remark 1.3.2. If φ : A→ B is an isomorphism, then condition (i)φ(1) in the definition of a

ring homomorphism becomes redundant.

A set X is a partially ordered set if it has a binary relation � defined on it that satisfies, for all

x, y, z ∈ X,

(i) Reflexivity: x � x,

(ii) Antisymmetry: if x � y and y � z, then x = y,

(iii) Transitivity: if x � y and y � z, then x � z.

A partially ordered set X is a chain if, for all, x, y ∈ X, either x � y or y � x.
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The set of real numbers R with its usual ordering is a chain.

Recall that an upper bound of a nonempty subset Y of a partially ordered set X is an element

x0 ∈ X, not necessarily in Y , with y � x0 for every y ∈ Y .

We state the Zorn’s lemma next.

Lemma 1.3.3. If X is a nonempty partially ordered set in which every chain has an upper

bound in X, then X has a maximal element.

A set M of elements of a ring A is said to be an m-system if and only if it has the following

property: If a, b ∈M , there exists x ∈ A such that axb ∈M .
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Chapter 2

z-Ideals of commutative rings

2.1 Characterisations of z-ideals

All rings are assumed to be commutative with identity. In consequence, all maximal ideals

are prime. We let Max(A) denote the set of all maximal ideals of a ring A, and we define

M(a) = {M ∈ Max(A) | a ∈M} for all a ∈ A. We now define the ideals that will form the main

study in this dissertation.

Definition 2.1.1. An ideal I of a ring A is a z-ideal if for every a, b ∈ A, M(a) = M(b) and

a ∈ I imply b ∈ I.

Before we proceed let us give some examples of z-ideals.

Example 2.1.2. (a) Every maximal ideal is a z-ideal. Indeed, if M is a maximal ideal of a

ring A, and a, b are elements of A such that M(a) = M(b) and a ∈M , then b belongs to every

maximal ideal containing a. In particular, b ∈M , which then shows that M is a z-ideal.

(b) Intersections of z-ideals is a z-ideal. Let {Iλ | λ ∈ Λ} be a family of z-ideals of a ring A. We

need to show that
⋂
{Iλ | λ ∈ Λ} is a z-ideal. Consider x, y ∈ A such that x ∈

⋂
{Iλ | λ ∈ Λ}

and M(x) = M(y). Since x ∈
⋂
{Iλ | λ ∈ Λ}, then for any β ∈ Λ, we have that x ∈ Iβ. It follows

that y ∈ Iβ since Iβ is a z-ideal. But Iβ is chosen arbitrarily. Therefore y ∈
⋂
{Iλ | λ ∈ Λ}

making
⋂
{Iλ | λ ∈ Λ} a z-ideal.

Less obvious examples of z-ideals are minimal prime ideals in certain types of rings. A ring is
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said to be reduced if it has no nonzero nilpotent elements. The Jacobson radical of a ring A,

denoted by Jac(A), is the intersection of all maximal ideals of A. If A has zero Jacobson radical,

then A is reduced because the ideal of nilpotent elements of A is the intersection of all prime

ideals of A, and is therefore zero as well, which then says A has no nonzero nilpotent element.

Let us recall the following from [15, Lemma 1.1] that a prime ideal P in a reduced ring is

minimal prime if and only if for every x ∈ P there is an a ∈ Ar P such that ax = 0.

Proposition 2.1.3. Every minimal prime ideal in a ring with zero Jacobson radical is a z-ideal.

Proof. Let P be a minimal prime ideal in a ring A with zero Jacobson radical. Let x, y ∈ A
be such that M(x) = M(y) and x ∈ P . Since P is minimal prime, there exists a /∈ P such

that ax = 0. We must show that y ∈ P . We claim that ay = 0. If this were false, then there

would be a maximal ideal M that does not contain ay, since an element which belongs to every

maximal ideal is zero as A has zero Jacobson radical. Since M is a maximal ideal, this would

mean that the ideal 〈M,ay〉 is the whole ring, and so there would be elements r ∈ A and m ∈M
such that ray +m = 1, which then implies x = xm, and hence x ∈M . But M(x) = M(y), so

we would have y ∈ M , and hence ay ∈ M , leading to a contradiction. Therefore ay = 0 ∈ P ,

and since P is prime with a /∈ P , we deduce that y ∈ P . Thus, P is a z-ideal.

The following results show the various equivalent ways of defining these ideals and they are

given without proofs in [31].

Lemma 2.1.4. Let A be a ring and a, b ∈ A. Then M(a) ⊇M(b) if and only if M(a) = M(ab).

Proof. (⇒): Assume M(b) ⊆ M(a). Suppose M ∈ M(ab), so that ab ∈ M . Since M is a

maximal ideal, it is prime. It follows that a ∈M or b ∈M .

(1) If a ∈M , then M ∈M(a).

(2) If b ∈ M , then M ∈ M(b), and since M(b) ⊆ M(a) by hypothesis, it follows that

M ∈M(a).

Consequently, M(ab) ⊆M(a).

Conversely, let M ∈ M(a). Then a ∈ M , and hence ab ∈ M since M is an ideal, giving

M ∈M(ab). It follows that M(a) ⊆M(ab). Therefore M(a) = M(ab).
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(⇐): Assume M(a) = M(ab). Let M ∈ M(b). We have ab ∈ M since M is an ideal. This

implies that M ∈ M(ab). But by hypothesis M(ab) = M(a); so M ∈ M(a), showing that

M(b) ⊆M(a).

Lemma 2.1.5. Let A be a ring and I ⊆ A be an ideal. Then I is a z-ideal if and only if for

any a, b ∈ A, M(a) ⊇M(b) and b ∈ I imply a ∈ I.

Proof. (⇒): Assume I is a z-ideal, and consider any a, b ∈ A with b ∈ I and M(b) ⊆ M(a).

But by Lemma 2.1.4, M(b) ⊆M(a) if and only if M(a) = M(ab). We then have ab ∈ I, since I

is an ideal. By hypothesis I is a z-ideal implying a ∈ I.

(⇐): Assume that the stated condition holds. To show that I is a z-ideal, consider any a and b

in A with M(a) = M(b) and b ∈ I. We must show that a ∈ I. Since M(a) = M(b), we have

M(a) ⊇M(b) and b ∈ I, so by the stated condition a ∈ I. It follows that I is a z-ideal.

For use in the upcoming lemma, and elsewhere, we introduce the following notation. For any

a ∈ A,

M(a) =
⋂

M(a).

Lemma 2.1.6. Let A be a ring and I ⊆ A be an ideal. Then I is a z-ideal if and only if for

every a ∈ I, M(a) ⊆ I.

Proof. (⇒): Assume I is a z-ideal, and let a ∈ I. We must show that M(a) ⊆ I. So let

x ∈M(a). Since M(a) =
⋂

M(a), this implies that x belongs to every maximal ideal containing

a. Therefore the set of all maximal ideals containing a contains the set of all maximal ideals

containing x. That is, M(x) ⊆M(a). We therefore have

M(x) ⊆M(a) and a ∈ I

which implies x ∈ I since I is a z-ideal. Since x is an arbitrary element of M(a), it follows that

M(a) ⊆ I.

(⇐): Assume that M(a) ⊆ I for every a ∈ I. To show that I is a z-ideal, consider any x and y

in A with M(x) = M(y) and y ∈ I. We must show that x ∈ I. But now we have

x ∈M(x) =
⋂

M(x) =
⋂

M(y) = M(y),

and since y ∈ I, the hypothesis says M(y) ⊆ I. So x ∈ I. Therefore I is a z-ideal.
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Next we show that every ideal has a z-cover, by which we mean a smallest z-ideal containing it,

namely, Iz =
⋂
{J | J is a z-ideal, J ⊇ I}. Before we do that, we will give the definition of the

radical of an ideal I of a ring A. The radical of an ideal I, denoted by
√
I, is defined by

√
I = {a ∈ A | an ∈ I for some n ∈ N}.

An ideal I is called a radical ideal if I =
√
I. An `-ring A has a root property if every positive

element in A has a square root. Next we give some properties of z-covers and we shall give the

proofs which were not given in [32].

Lemma 2.1.7. Let A be a ring and I, J be ideals of A. Then we have the following.

(1) I ⊆ J =⇒ Iz ⊆ Jz.

(2) (
∑
Iα)z = (

∑
(Iα)z)z.

(3) (Iz)z = Iz.

(4) I ⊆
√
I ⊆ Iz.

(5) For any positive integer n, (In)z = Iz.

(6) If I, J are z-ideals in a commutative ring A with root property then, IJ is a z-ideal iff

IJ = I ∩ J .

(7) If I is a z-ideal, then I =
√
I = Iz.

Proof. (1) Let I ⊆ J and Jz =
⋂
{K | K is a z-ideal, K ⊇ J}. If K is a z-ideal containing J ,

then K ⊇ I. So Jz ⊇ I. That is I ⊆ Jz. But Jz is a z-ideal and Iz is the smallest z-ideal

containing I. Therefore Iz ⊆ Jz.

(2) As proved in [30, Proposition 3.1 (a)], both (
∑
Iα)z and (

∑
Iαz)z are z-ideals containing∑

Iα so by the minimality of the former, it is contained in the latter. Conversely (
∑
Iα)z is a

z-ideal containing each Iα, therefore containing each (Iα)z and so contains ((
∑
Iα)z)z.

(3) If J is a z-ideal, then Jz = J . Since Iz is a z-ideal then Iz = (Iz)z.

(4) To show that I ⊆
√
I, we recall from the definition that

√
I = {a ∈ A : an ∈ I for some n ∈ N}.
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It is therefore clear from the above that I ⊆
√
I.

To show that
√
I ⊆ Iz, we let a ∈

√
I. So there exist n ∈ N such that an ∈ I. Consider

any z-ideal J ⊇ I. Then an ∈ J . So an is an element of every z-ideal containing I. Since

M(a) = M(an), if an ∈ J and J is a z-ideal, then a ∈ J . So

a ∈
⋂
{J | J is a z-ideal containing I} = Iz.

Therefore
√
I ⊆ Iz.

(5) Since In ⊆ I, by the first part we have (In)z ⊆ Iz. To show the other containment, suppose

we define the following sets,

{K ⊆ A |K is a z-ideal with K ⊇ In}

and

{H ⊆ A |H is a z-ideal with H ⊇ I}.

Now since In ⊆ I, we have that

{K ⊆ A |K is a z-ideal with K ⊇ In} ⊆ {H ⊆ A |H is a z-ideal with H ⊇ I}.

But
⋂
{H ⊆ A |H is a z-ideal with H ⊇ I} ⊆

⋂
{K ⊆ A |K is a z-ideal with K ⊇ In} since a

collection with more sets has a smaller intersection. Now⋂
{H ⊆ A |H is a z-ideal with H ⊇ I} = Iz,

also ⋂
{K ⊆ A |K is a z-ideal with K ⊇ In} = (In)z.

Therefore Iz ⊆ (In)z.

(6) (⇒): Let I and J be z-ideals in a ring A with root property. Suppose IJ is a z-ideal. Then∑
aibi ∈ IJ for ai ∈ I and bi ∈ J ∀i ∈ I. So since I and J are ideals, we have

∑
aibi ∈ I and∑

aibi ∈ J , and hence
∑
aibi ∈ I ∩ J . Therefore IJ ⊆ I ∩ J .

Conversely let f ∈ I ∩ J . We can write f = (f
1
3 )3. So since I and J are z-ideals and

M(f
1
3 ) = M(f) then f

1
3 ∈ I and f

1
3 ∈ J . Therefore f

1
3 ·f 1

3 = (f
1
3 )2 ∈ I and (f

1
3 )2 ·f 1

3 = f ∈ IJ
giving I ∩ J ⊆ IJ . Hence IJ = I ∩ J .
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(⇐): Suppose IJ = I ∩J . Since I and J are z-ideals and the intersection of z-ideals are z-ideals,

I ∩ J = IJ is a z-ideal.

(7) If I is a z-ideal then I = Iz. By (4) I ⊆
√
I ⊆ Iz = I. Therefore I =

√
I.

Remark 2.1.8. We deduce from item (7) of the foregoing lemma that every z-ideal is a radical

ideal. Consequently, every z-ideal is an intersection of prime ideals. It is however not the case

that in every ring prime ideals are z-ideals. See [13, 14B.4] for an example where prime ideals

are not z-ideals.

2.2 Miscellaneous results on z-ideals

In this section we recall from [31] some miscellaneous results on z-ideals of commutative rings.

We examine rings with zero Jacobson radical to investigate the z-ideal structure. We record

results showing the relationship between z-ideals and minimal prime ideals. We begin with the

following theorem.

Theorem 2.2.1. If P is minimal in the class of prime ideals containing a z-ideal I, then P is

a z-ideal.

Proof. Let P be a prime ideal containing I, and suppose that P is not a z-ideal. There exist

a /∈ P and b ∈ P such that M(a) = M(b). Consider the set

S = (Ar P ) ∪ {cbn | n ∈ N and c /∈ P}.

Since P is prime, S is closed under multiplication. Furthermore, S does not meet I; for if

cbn ∈ I, then ca belongs to the z-ideal I, and hence to the prime ideal P , whence c ∈ P . By [13,

Theorem 0.16], there is a prime ideal containing I and disjoint from S, and hence contained

properly in P . So P is not minimal.

Next we shall give characterisations of regular ring in terms of z-ideals. In order to present the

next results we remind the reader that a ring A is von Neumann regular if for every a ∈ A,

there exists an element x ∈ A such that axa = a. We shall also recall that a principal ideal

of a ring A is an ideal generated by one element. The intersections of maximal ideals are the

most obvious z-ideals and they will be called strong z-ideals. Also any principal z-ideal 〈x〉 is
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strong, for if y ∈
⋂
{M |M ⊇ 〈x〉}, then M(y) ⊇ M(〈x〉) = M(x) so y ∈ 〈x〉. We start with

following lemma that is going to be useful in the proof of the next theorem. Recall that if I and

J are ideals of a ring A, then IJ is the ideal whose elements are finite linear combinations of

the
∑
iαjα, where each iα ∈ I and each jα ∈ J .

Lemma 2.2.2. If 〈a〉 is a principal ideal, then 〈a〉2 = 〈a2〉.

Proof. Let x ∈ 〈a〉2. Then there are finitely many elements r1, . . . , rn and s1, . . . , sn in A such

that

x = r1as1a+ · · ·+ rnasna

= (r1s1)a
2 + · · ·+ (rnsn)a2

= (r1s1 + · · ·+ rnsn)a2

which shows that x ∈ 〈a2〉. Therefore 〈a〉2 ⊆ 〈a2〉.

On the other hand, if y ∈ 〈a2〉, then y = ra2 = (ra)a for some r ∈ A, whence y ∈ 〈a〉2, showing

that 〈a2〉 ⊆ 〈a〉2.

Theorem 2.2.3. The following are equivalent for a ring A.

(1) Every ideal is a strong z-ideal.

(2) Every ideal is a z-ideal.

(3) Every principal ideal is a z-ideal.

(4) A is a von Neumann regular ring.

Proof. (1)⇒ (2): Suppose that every ideal is a strong z-ideal. Then every ideal is an intersection

of maximal ideals which implies that every ideal is a z-ideal.

(2)⇒ (3): Suppose that every ideal is a z-ideal. Then every principal ideal is a z-ideal.

(3)⇒ (4): Now the hypothesis says the principal ideal 〈a〉 is a z-ideal. By Lemma 2.1.7, this

implies 〈a2〉 = (〈a2〉)z = (〈a〉)z = 〈a〉. Since a ∈ 〈a〉, this implies a ∈ 〈a2〉, hence there exists

b ∈ A such that a = a2b. So A is von Neumann regular.

(4)⇒ (1): Every ideal in a von Neumann regular ring is the intersection of the maximal ideals

containing it. Hence every ideal is a strong z-ideal.
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Next we recall that the annihilator of I ⊆ A is the ideal

Ann(I) = {a ∈ A | ax = 0 for everyx ∈ I}.

If I and J are ideals of a ring A, their ideal quotient (J : I) is the set

(J : I) = {a ∈ A | aI ⊆ J}.

The next result shows how z-ideals are related to their ideal quotients.

Proposition 2.2.4. If J is a z-ideal, so is (J : I) for any I.

Proof. If M(a) = M(b) where bI ⊆ J , then M(ai) = M(bi) for all i ∈ I. Since bi ∈ J and J is

a z-ideal, then ai ∈ J for all i ∈ I, that is a ∈ (J : I).

For use in the following theorem, we recall that a z-ideal I in a ring A is a maximal z-ideal if

I is a proper z-ideal and there is no proper z-ideal J with I ( J ( A. The inductive set is

non-empty partially ordered set in which every element has a successor.

Theorem 2.2.5. If P is a prime ideal, then either P is a z-ideal or the maximal z-ideals

contained in P are prime z-ideals.

Proof. Put S = {I ⊆ A | I is a z-ideal and I ⊆ P}. Then {0} ∈ S and S is inductive, so by

Zorn’s lemma, S has a maximal element. Let I be one. Then I = P iff P is a prime z-ideal. If

I $ P then there exists a prime ideal Q minimal with respect to containing I and contained in

P ; Q 6= P since Q will be a z-ideal (Theorem 2.2.1). Moreover, either Q = I in which case I is

prime, or I $ Q, which contradicts the maximality of I.

For use in the following proposition, we recall that a minimal z-ideal is a nonzero z-ideal which

contains no z-ideal except {0}. Even though minimal prime ideals exist, minimal z-ideals may

not. Example of such rings is a field, because it has only one z-ideal which is a maximal ideal

{0}.

Proposition 2.2.6. If A has minimal nonzero ideals, they are strong minimal z-ideals.

Proof. A minimal ideal has the form 〈e〉 where e2 = e [21, Lemma 2] . But 〈e〉 = Ann((1− e)A)

is a z-ideal and since it is principal, it is strong.
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Suppose A has minimal z-ideals (though not necessarily minimal ideals). If I is one such then

the z-ideal Ann(1− x) ⊆ I for all x ∈ I, so either

(a) Ann(1− x) = {0} for all x or

(b) Ann(1− x) = I for some x.

There exist rings in which (a) cannot occur. If we write

m(I) = {x |x = ax for some a ∈ I} =
⋃
x∈I

Ann(1− x)

then by [22] if M(I) = M(m(I)), condition (a) will not hold. Again if A is weakly regular

(every nonzero ideal contains an idempotent 6= {0}), every ideal has an element e such that

Ann(1− e) 6= {0} and (a) does not hold. In such rings, x ∈ Ann(1− x) =⇒ I = 〈x〉, where

x2 = x so these z-ideals are again strong and minimal.

Next we show that z-ideals behave nicely under contractions. Before we do that let us recall

that a ring is said to be reduced if it has no nonzero nilpotent elements. Let φ : A→ B be a

ring homomorphism, where A and B are reduced rings. By the contraction of an ideal J of B

we mean the ideal J c = φ−1(J).

Lemma 2.2.7. Every proper z-deal of B contracts to a proper z-ideal of A if and only if every

maximal ideal of B contracts to a proper z-ideal of A.

Proof. (⇒): Suppose that every z-ideal of B contracts to a z-ideal of A and let φ−1(I) be a

z-ideal in A. To show that the maximal ideal I of B contracts to a z-ideal φ−1(I) of A, consider

x and y in B with MB(φ(x)) = MB(φ(y)) and φ(x) ∈ I. We must show that φ(y) ∈ I. Since

φ−1(I) is a z-ideal in A, the hypothesis says I is a z-ideal in B. So φ(y) ∈ I.

(⇐): Suppose that every maximal ideal of B contracts to a proper z-ideal of A and let J be a

proper z-ideal in B. To show that φ−1(J) is a z-ideal, consider x and y in A with MA(x) = MA(y)

and y ∈ φ−1(J). Let M be a maximal ideal of B containing φ(y). Then y ∈ φ−1(M) and

since M(x) = M(y) and φ−1(M) is a z-ideal by hypothesis, hence x ∈ φ−1(M) which implies

φ(x) ∈M . Thus we have shown that MB(φ(x)) = MB(φ(y)) and φ(x) is in the z-ideal J . So

φ(y) ∈ J implies y ∈ φ−1(J). Therefore φ−1(J) is a z-ideal.

13



In [25, page 27], Lambek gives a characterisation that if A is a commutative ring with identity,

then an ideal Q of A is a maximal ideal if and only if for every x not in Q, there exists r in A

such that 1− rx ∈ Q. We will make use of this result in the proof of the following lemma which

we need to deduce that surjective ring homomorphism contract z-ideals to z-ideals.

Lemma 2.2.8. If φ : A→ B is a surjective ring homomorphism, then every maximal ideal of

B contracts to a maximal ideal of A.

Proof. Let M ∈ Max(B). We must show that φ−1[M ] ∈ Max(A). Suppose that x /∈ φ−1[M ],

then we have φ(x) /∈M . Since M ∈ Max(B) and φ(x) /∈M , there exists u ∈ B such that

1B − uφ(x) ∈M.

Since φ is surjective and u ∈ B, there exists r ∈ A such that φ(r) = u. It follows that

φ(1A)− φ(r)φ(x) = φ(1A − rx) ∈M.

Since φ(1A−rx) ∈M , x /∈ φ−1[M ] and r ∈ A, then 1A−rx ∈ φ−1[M ]. Therefore every maximal

ideal of B contracts to maximal ideal of A.

Corollary 2.2.9. If φ : A → B is a surjective ring homomorphism, then every z-ideal of B

contracts to a z-ideal of A.

2.3 Sums of z-ideals

In this section we will discuss, mainly in the class of f -rings, sufficient conditions for the sum of

z-ideals to be a z-ideal. Most results in this regard were proved by Larson [27]. Recall that all

rings are assumed to be commutative with identity.

A lattice-ordered ring is a ring A with a lattice structure such that, for all a, b, c ∈ A,

(a ∧ b) + c = (a+ c) ∧ (b+ c)

or, equivalently

(a ∨ b) + c = (a+ c) ∨ (b+ c),

and

0 ≤ ab whenever 0 ≤ a and 0 ≤ b.

14



An f -ring is a lattice-ordered ring A in which the identity

(a ∧ b)c = (ac) ∧ (bc)

holds for all a, b ∈ A and c ≥ 0 in A.

We present some of the background facts concerning f -rings which are used in showing that the

sum of z-ideals is a z-ideal. Given an f -ring A and x ∈ A, we let

A+ = {a ∈ A : a ≥ 0}

and

x+ = x ∨ 0, x− = (−x) ∨ 0 and |x| = x ∨ (−x).

A ring ideal I of an f -ring A is an `-ideal if |x| ≤ |y| and y ∈ I implies x ∈ I. An `-ideal I of

an f -ring A is square dominated if

I = {a ∈ A : |a| ≤ x2 for some x ∈ A such that x2 ∈ I}.

We give a lemma, recorded in [26, Lemma 2.1], that will be used later and that also gives a

characterisation of commutative reduced f -rings in which minimal prime `-ideals are square

dominated.

Lemma 2.3.1. Let A be a commutative reduced f -ring.

(1) A radical `-ideal I is square dominated if every prime `-ideal minimal with respect to

containing I is square dominated.

(2) Every minimal prime `-ideal of A is square dominated if and only if for every a ∈ A+, the

`-ideal Ann(a) = {b ∈ A : ab = 0} is square dominated.

Proof. (1) Let b ∈ I+. Let M = {c21 · · · c2n : n ∈ N; b ≤ c2i }. Then M is an m-system. Suppose

that M ∩I = ∅. Then there is a prime `-ideal P such that I ⊆ P and M ∩P = ∅. Let P1 ⊆ P be

a prime `-ideal minimal with respect to containing I. By hypothesis, P1 is square dominated, so

there is a p ∈ A such that b ≤ p2 and p2 ∈ P1. But then p2 ∈M ∩P , contrary to assumption. So

M∩I 6= ∅. Let c21 · · · c2n ∈M∩I, where b ≤ c2i for each i. Then b ≤ c21∧· · ·∧c2n = (|c1|∧· · ·∧|cn|)2.
Also, 0 ≤ (|c1| ∧ · · · ∧ |cn|)2n ≤ c21 · · · c2n. This implies (|c1| ∧ · · · ∧ |cn|)2n ∈ I, and because I is

radical, (|c1| ∧ · · · ∧ |cn|)2 ∈ I.
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(2) (⇒): Suppose that every minimal prime `-ideal is square dominated. Let a ∈ A+. Suppose

P is a prime `-ideal minimal with respect to containing Ann(a). Then

M = {b : b ∈ Ar P} ∪ {an : n ∈ N} ∪ {ban : b ∈ Ar P, n ∈ N}

is an m-system such that M ∩ Ann(a) = ∅. So there is a prime `-ideal P1 satisfying

Ann(a) ⊆ P1 ⊆ P.

But our choice of P implies P1 = P and a /∈ P .

Now if P2 is a minimal prime `-ideal contained in P , a /∈ P2 implies Ann(a) ⊆ P2. Hence

P2 = P , and P is in fact a minimal prime `-ideal which is square dominated. So every prime

`-ideal minimal with respect to containing Ann(a) is square dominated, and part (1) implies

Ann(a) is square dominated.

(⇐): Let P be a minimal prime `-ideal, and f ∈ P . By [26, 1.2], there is a g /∈ P such that

fg = 0. By hypothesis, Ann(g) is square dominated. So there is f1 ∈ Ann(g) such that f ≤ f 2
1

and f 2
1 ∈ P .

There is a large class of f -rings, specifically those f -rings in which minimal prime `-ideals are

square dominated, in which the sum of any two radical `-ideals is a radical `-ideal. We are going

to use the following two results recorded in [27] to show that in an f -ring in which minimal

prime `-ideals are square dominated, if the sum of any two minimal prime `-ideals is a z-ideal,

then the sum of any two z-ideals is a z-ideal.

Theorem 2.3.2. Let A be an f -ring. In A, the sum of a radical `-ideal and a square dominated

radical `-ideal is a radical `-ideal.

Proof. Suppose that I and J are radical `-ideals and that J is square dominated. Let a2 ∈ I +J

with a ≥ 0. Then a2 ≤ i + j for some i ∈ I+, j ∈ J+. Since J is square dominated, j ≤ j21

for some j1 ∈ A+ with j21 ∈ J . So a2 ≤ i + j21 . Let x = a − (a ∧ j1) and y = a ∧ j1. Since

J is a radical `-ideal, j1 ∈ J and y ∈ J. Now for any positive elements a, j1 of any totally

ordered ring, a ∧ j1 = a or a ∧ j1 = j1. In the first case (a− (a ∧ j1))2 = 0, and in the second

case (a − (a ∧ j1))2 = (a − j1)2 = a2 − aj1 − j1a + j21 ≤ a2 − 2j21 + j21 = a2 − j21 . Therefore

in any totally ordered ring, (a− (a ∧ j1))2 ≤ 0 ∨ (a2 − j21). This implies that in the f -ring A,
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x2 = (a− (a ∧ j1))2 ≤ 0 ∨ (a2 − j21) ≤ i. Thus, x2 ∈ I and hence x ∈ I. We have a = x+ y with

x ∈ I and y ∈ J. Therefore a ∈ I + J .

Lemma 2.3.3. Let A be an f -ring in which minimal prime `-ideals are square dominated. In

A, the sum of any two prime `-ideals is prime.

Proof. Let I and J be prime `-ideals of A. Let I1 and J1 be minimal prime `-ideals contained

in I and J respectively. We will show that I + J is an intersection of prime `-ideals. To do so,

we let z ∈ A be such that z /∈ I + J and we will show that there is a prime `-ideal containing

I + J but not z. The `-ideal I1 + J1 is prime, and the prime `-ideals containing it form a chain.

By the maximal principle, there is a prime `-ideal Q containing I1 + J1 which is maximal with

respect to not containing z. By the previous theorem, I + J1 is a radical `-ideal. It also contains

a prime `-ideal and is therefore prime. Similarly, I1 + J is prime. Thus I ⊆ I + J1 ⊆ Q and

J ⊆ I1 + J ⊆ Q. This implies that I + J ⊆ Q and z /∈ Q. Therefore I + J is an intersection

of prime `-ideals. So it is a radical `-ideal. It also contains a prime `-ideal and is therefore

prime.

In [14, Theorem 4.7], Gillman and Kohls show that in C(X), the f -ring of all real-valued

continuous functions defined on the topological space X, an `-ideal is an intersection of `-ideals,

each of which contains a prime `-ideal. Following [27], their proof easily generalises the proof

that in an f -ring, an `-ideal which contains all nilpotent elements of the f -ring is an intersection

of `-ideals, each of which contains a prime `-ideal. We will make use of this result in the proof

of the following theorem.

Theorem 2.3.4. Let A be an f -ring in which minimal prime `-ideals are square dominated. In

A, the sum of any two radical `-ideals is a radical `-ideal.

Proof. Let I and J be radical `-ideals. We will show that I + J is an intersection of prime

`-ideals. To do so, we let z ∈ A such that z /∈ I + J and we show that there is a prime `-ideal

containing I +J but not z. By Gillman and Kohl’s result mentioned above, there is an `-ideal Q

containing I + J and containing a prime `-ideal but not containing z. Let P be a minimal prime

`-ideal contained in Q. By Theorem 2.3.2, P + I is a radical `-ideal. Also, it contains a prime

`-ideal and so is prime. Similarly, P + J is prime. Then by Lemma 2.3.3, (P + I) + (P + J) is

prime. Since (P + I) + (P + J) ⊆ Q, z /∈ (P + I) + (P + J) and I + J ⊆ (P + I) + (P + J).
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For use in the next example recall that a principal ideal of a ring A is an ideal generated by one

element. The ideal generated by one element a is denoted by 〈a〉. Larson in [26, Lemma 2.1]

proves that every mininal prime `-ideal of a commutative reduced f -ring A is square dominated

if and only if for every a ∈ A+, the `-ideal Ann(a) is square dominated. We will use this result

of Larson to show that the converse of Theorem 2.3.4 does not hold, as we show next.

Example 2.3.5. Let C([0, 1]) be the ring of real-valued continuous functions on the closed

interval [0, 1]. In C([0, 1]), denote by i the function i(x) = x, and by e the function e(x) = 1.

Let A = {f ∈ C([0, 1]) : f = ae+ g where a ∈ R, g ∈ 〈i〉} with coordinate operations. Then A

is a commutative reduced f -ring.

Next we show that the sum of two radical `-ideals of A is a radical `-ideal. So suppose I and

J are radical `-ideals. If I or J contains an element f = ae + g such that a 6= 0, then it can

be shown that I or J is square dominated. Then by Theorem 2.3.2, I + J is a radical `-ideal.

So we may now suppose that both I, J ⊆ 〈i〉. If f 2 ∈ I + J , then there is i1 ∈ I+, j1 ∈ J+

such that f 2 = i1 + j1. Also f ∈ 〈i〉 which implies |f | ≤ ni and f 2 ≤ n2i2 for some n ∈ N. So

i1 ≤ n2i2 and j1 ≤ n2j2. Therefore
√
i1 ≤ ni and

√
i1 ∈ A. Since I is a radical `-ideal,

√
i1 ∈ I.

Similarly
√
j1 ∈ J . So f ≤

√
i1 +
√
j1 implies f ∈ I + J . Thus I + J is a radical `-ideal.

Next we show that not every minimal prime `-ideal of A is square dominated. Let f be a function

such that 0 ≤ f ≤ i with f(x) = 0 for all x ∈ [1/4, 1], f(x) = 0 for all x ∈ [1/(4n + 2), 1/4n],

and f(1/(4n + 3)) = 1/(4n + 3) for all n ∈ N. Also, let g be a function such that 0 ≤ g ≤ i

with g(x) = 0 for all x ∈ [1/4, 1], g(1/(4n+ 1)) = 1/(4n+ 1), and g(x) = 0 for all

x ∈ [1/(4n+ 4), 1/(4n+ 2)]

for all n ∈ N. Then g ∈ Ann(f), and there is no element h ∈ A which satisfies g ≤ h2 and

h2 ∈ Ann(f). So Ann(f) is not square dominated, and by Larson’s results mentioned above, it

implies that not every minimal prime `-ideal of A is square dominated.

Next we turn our attention to the sum of two z-ideals which are `-ideals. An f -ring A has

bounded inversion if every a ∈ A with a ≥ 1 is invertible. In a commutative ring with identity

every maximal ideal is a z-ideal, and if every maximal ideal is an `-ideal (or equivalently if for

all x ≥ 1, x−1 exists), then a z-ideal is always an `-ideal [27].

Mason established two results concerning z-ideals and Larson in [27] slightly modified them to
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get the following two theorems. We are going to use them later when we show that the sum of

any two z-ideals which are `-ideals of a ring A is a z-ideal.

Theorem 2.3.6. If A is an f-ring and P ⊆ A is minimal in the class of prime `-ideals

containing a z-ideal I which is an `-ideal, then P is also a z-ideal.

Proof. We show that if Q is a prime `-ideal containing I which is not a z-ideal, it is not minimal.

Let Q be a prime `-ideal containing an `-ideal I, and suppose that Q is not a z-ideal. There

exist a /∈ Q and b ∈ Q such that M(a) = M(b).

Consider the set

S = (ArQ) ∪ {cbn | n ∈ N and c /∈ Q}.

Since Q is prime, S is closed under multiplication. Furthermore, S does not meet I; for, if

cbn ∈ I, then ca belongs to the z-ideal I, and hence in the prime `-ideal Q, whence c ∈ Q.

By [13, Theorem 0.16], there is a prime `-ideal containing I and disjoint from S and hence

contained properly in Q. So Q is not minimal.

An f -ring A is 1-convex if for any u, v ∈ A such that 0 ≤ u ≤ v, there is a w ∈ A such that

u = vw. For the proof of the upcoming theorem we need to recall the following lemma from [10,

Lemma 3.6].

Lemma 2.3.7. Let A be an f -ring, I be a prime ideal, and P , Q be convex prime ideals each

containing I. Then P and Q are in a chain.

Proof. If P = Q, there is nothing to prove. So we may assume there exists p ∈ P such that

p /∈ Q. Then, by primeness, p2 /∈ Q. Let q ∈ Q and put a = p2 − q2. By properties of f -rings,

(a − |a|)(a + |a|) = 0 ∈ I. Since I is prime, it contains one of these factors. We show that

a+ |a| /∈ I. If not, then p2 − q2 + |a| ∈ Q, which implies p2 + |a| ∈ Q. Since 0 ≤ p2 ≤ p2 + |a|,
this implies p2 ∈ Q, and hence, p ∈ Q, which is false. So we must have a− |a| ∈ I ⊆ P , that is,

p2 − q2 − |a| ∈ P , whence we deduce q2 + |a| ∈ P . As before, this implies q ∈ P , and therefore,

Q ⊆ P .

Theorem 2.3.8. Let A be an f -ring with bounded inversion. Suppose that the sum of any two

minimal prime `-ideals of A is a prime z-ideal. Then the sum of any two prime `-ideals not in

a chain is a z-ideal. .
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Proof. Suppose P and Q are prime `-ideals of A. Let R1 and R2 be minimal prime `-ideals

such that R1 ⊆ P and R2 ⊆ Q. By hypothesis, R1 +R2 is a prime z-ideal. Since R1 ⊆ P and

R2 ⊆ Q, it follows that R1 +R2 ⊆ P +Q.

On the other hand, R1 +R2 is a prime `-ideal containing R1 and R2 so is in a chain with both

P and Q by Lemma 2.3.7. Since P and Q are not in a chain, both P and Q must be contained

in R1 +R2 whence R1 +R2 = P +Q is a prime z-ideal.

The following result is recorded in [27].

Theorem 2.3.9. Let A be an f-ring in which minimal prime `-ideals are square dominated.

Suppose that the sum of any two minimal prime `-ideals of A is a z-ideal. Then the sum of any

two z-ideals which are `-ideals of A is a z-ideal.

Proof. Suppose I and J are z-ideals which are `-ideals. Then I and J are radical `-ideals since

every z-ideal is a radical `-ideal, and by Theorem 2.3.4, I + J is a radical `-ideal. We will show

that I + J is the intersection of z-ideals. To do so, we let z ∈ A such that z /∈ I + J, and we

will show there is a z-ideal containing I + J but not z. Since I + J is a radical `-ideal, it is

the intersection of prime `-ideals. So there is a prime `-ideal P containing I + J but not z.

Let P1, P2 ⊆ P be prime `-ideals minimal with respect to containing I and J respectively. By

Theorem 2.3.6, P1, P2 are prime z-ideals. It follows from Theorem 2.3.8 that P1 +P2 is a z-ideal.

Also, I + J ⊆ P1 + P2 and z /∈ (P1 + P2) since P1 + P2 ⊆ P .

For any element a of an f -ring A, Ann(a) is a z-ideal. Larson in [26, 1.2] gives a characterisation

that a prime `-ideal P of a commutative reduced f -ring is minimal if and only if a ∈ P implies

there is a b /∈ P such that ab = 0. Recall that A+ = {a ∈ A : a ≥ 0}. Then we obtain the

following results which are recorded in [27].

Corollary 2.3.10. Let A be a reduced f-ring in which minimal prime `-ideals are square

dominated. Suppose that for every a, b ∈ A+, Ann(a) + Ann(b) is a z-ideal. Then the sum of

any two z-ideals which are `-ideals of A is a z-ideal.

Proof. We only need to show that the sum of any two minimal prime `-ideals is a z-ideal. Let

P and Q be minimal prime `-ideals. Suppose a, b are in the same set of maximal ideals and

b ∈ P + Q. Then b = p + q for some p ∈ P and q ∈ Q. Also, there is p1, q1 ∈ A+ such that
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p1 /∈ P , q1 /∈ Q, and pp1 = 0, qq1 = 0. So b = p + q ∈ Ann(p1) + Ann(q1). By hypothesis,

Ann(p1) + Ann(q1) is a z-ideal. So a ∈ Ann(p1) + Ann(q1) ⊆ P +Q.

Following [18], an f -ring A is called normal if

A = Ann(a+) + Ann(a−)

for all a ∈ A, or equivalently if

a ∧ b = 0 implies A = Ann(a) + Ann(b).

In [26, Lemma 2.5] it is shown that in a commutative reduced normal f -ring with identity

element, every minimal prime `-ideal is square dominated. We will make use of that result in

the proof of the next corollary.

Corollary 2.3.11. Let A be a reduced normal f -ring. In A, the sum of any two z-ideals which

are `-ideals is a z-ideal.

Proof. In view of the fact that minimal prime `-ideals of A are square dominated and in light of

Theorem 2.3.9, we only need to show that the sum of any two minimal prime `-ideals is a z-ideal.

So let P and Q be minimal prime `-ideals. We will show that if P 6= Q, then P + Q = A. If

P 6= Q, then there is an element p ∈ P r Q. Since P is a minimal prime `-ideal, there is an

element q /∈ P such that pq = 0. Then p ∧ q = 0, and Ann(p) + Ann(q) = A. But Ann(p) ⊆ Q,

Ann(q) ⊆ P . So A = P +Q.
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Chapter 3

d-Ideals of commutative rings

There are special types of z-ideals that have received a great deal of attention both in rings and

Riesz spaces. These are called d-ideals, and have been studied by many mathematicians such as

Huijsman and de Pagter [19]. In [2], [3], [5] and [6], d-ideals have been studied under the name

z◦-ideal. In this chapter all rings are reduced. We give various properties and characterisations

of d-ideals. We will also give sufficient conditions when their sums are also d-ideals. Rings in

which d-ideals coincide with z-ideals will be characterised.

3.1 Characterisations of d-ideals

We recall that the annihilator of a singleton {a} of a ring A is the ideal

Ann(a) = {x ∈ A : ax = 0}

and the double annihilator is the ideal

Ann2(a) = {x ∈ A : xy = 0 for all y ∈ Ann(a)}.

Furthermore Ann3(a) = Ann(a).

We start by defining the ideals that will form the main study in this section. The results in this

section are recorded in [2].

Definition 3.1.1. An ideal I of a ring A is a d-ideal if for any a, b ∈ A, Ann(a) = Ann(b) and
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a ∈ I imply b ∈ I. Equivalently, I is a d-ideal if and only if for any a, b ∈ A, Ann2(a) = Ann2(b)

and a ∈ I imply b ∈ I.

Examples of d-ideals which are recorded in [2] are given below. Recall that a ring is said to be

reduced if it has no nonzero nilpotent elements. The set of minimal prime ideals of the ring

A will be denoted by Min(A). If B is a subset of a ring A and x is an element of B, define

V (B) = {P ∈ Min(A) : P ⊆ B}, V (x) = {P ∈ Min(A) : x ∈ P}, and D(B) = Min(A)rV (B),

then the set D(a) = Min(A) r V (a) form a basis for the usual Zariski topology.

Examples 3.1.2. (1) If I is a nonzero ideal in a reduced ring A, then Ann(I) is a d-ideal, for

we observe that Ann(I) =
⋂
{P ∈ Min(A) : P ∈ D(I)}. More generally if I is a d-ideal in A

and S is a subset of A not contained in I, then (I : S) = {a ∈ A : aS ⊆ I} is a d-ideal.

(2) If S is a multiplicatively closed set in a reduced ring A, then

Os = {a ∈ A : as = 0 for some s ∈ S} =
⋃
s∈S

Ann(s) =
∑
s∈S

Ann(s)

is a d-ideal.

(3) Let I be any ideal in a reduced ring A. Put S = 1 + I = {1 + x : x ∈ I}, then the ideal

Os defined as in the previous example deserves to be called the d-trace of I and denoted by

T (I) = Os. Clearly T (I) ⊆ I.

(4) Let I be a d-ideal in a reduced ring A and S be any multiplicatively closed set in A with

I ∩ S = ∅. Now define

Is = {a ∈ A : sa ∈ I for some s ∈ S}

then IS =
⋃
s∈S

(I : s) =
∑
s∈S

(I : s) is a d-ideal.

(5) Let A be a reduced ring, then each minimal ideal and the socle of A, which is the sum of all

minimal ideals, are d-ideals.

In the next proposition we will show various ways of characterising these ideals. For use in the

upcoming proposition, and elsewhere, we introduce the following notation. For any a ∈ A, let

P (a) =
⋂
{Q ∈ Min(A) | a ∈ Q}

and we call it a basic d-ideal.

It is shown in [29] that P (a) = Ann2(a).
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Proposition 3.1.3. The following are equivalent for an ideal I of a ring A.

(1) I is a d-ideal in A.

(2) P (a) ⊆ I for every a ∈ I.

(3) For a, b ∈ A, P (a) = P (b) and b ∈ I imply that a ∈ I.

(4) For a, b ∈ A, V (a) = V (b) and a ∈ I imply that b ∈ I.

(5) a ∈ I implies that Ann2(a) ⊆ I.

Proof. (1)⇒ (2): Assume that I is a d-ideal. Let a ∈ I. We need to show that

P (a) = Ann2(a) ⊆ I.

Let x ∈ P (a). By [29, Lemma 1.3], Ann2(x) ⊆ Ann2(a). Therefore

Ann2(x) ⊆ Ann2(a) and a ∈ I

imply that x ∈ I since I is a d-ideal. Since x is an arbitrary element of P (a), it follows that

P (a) ⊆ I.

(2) ⇒ (3): Let P (a) ⊆ I for every a ∈ I. Consider any x and y in A with P (x) = P (y) and

y ∈ I. We must show that x ∈ I. We have

x ∈ P (x) = P (y).

But by hypothesis P (y) ⊆ I for every y ∈ I. Therefore x ∈ I.

(3)⇒ (4): Assume that (3) holds. Consider any x and y in A with V (x) = V (y) and y ∈ I. We

must show that x ∈ I. We have

x ∈ P (x) =
⋂

V (x) =
⋂

V (y) = P (y)

and y ∈ I, so by the stated condition, x ∈ I.

(4) ⇒ (5): Assume that the stated condition holds and let x ∈ I. We must show that

Ann2(x) ⊆ I. It is shown in [29, Lemma 1.3] that V (x) = V (Ann2(x)). We therefore have

V (x) = V (Ann2(x)) = V (Ann2(y)) = V (y) and x ∈ I,
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so by the stated condition, Ann2(x) ⊆ I.

(5)⇒ (1): Assume that Ann2(a) ⊆ I for every a ∈ I. To show that I is a d-ideal, consider any

x and y in A with Ann2(x) = Ann2(y) and y ∈ I. We must show that x ∈ I. But now we have

x ∈ Ann2(x) = Ann2(y).

Now, by hypothesis Ann2(y) ⊆ I for every y ∈ I. So x ∈ I. Therefore I is a d-ideal.

We now give the following useful results in terms of d-ideals and they are recorded in [2].

Remark 3.1.4. (1) Every ideal in a von Neumann regular ring is an intersection of minimal

prime ideals, that is, it is a d-ideal.

(2) Each d-ideal I in a reduced ring is a radical ideal (that is, an intersection of prime ideals).

(3) The principal ideal is a d-ideal if and only if it is a basic d-ideal.

3.2 Miscellaneous results on d-ideals

The following results, which are presented in [2] without proofs, show how d-ideals behave under

contraction and extension with respect to some natural homomorphisms.

Let φ : A→ B be a ring homomorphism, where A and B are reduced rings. Recall that by the

contraction of an ideal J of B we mean the ideal J c = φ−1(J) and by the extension of an ideal

J of A we mean the ideal Je = φ(J)B. If S is a multiplicatively closed set, then by S−1[A] we

mean the ring of fractions of A with respect to S and if S is the set of all nonzero-divisors, then

S−1[A] is called the classical ring of quotients of A and is denoted by Q.

Lemma 3.2.1. Let φ : A → B be a ring homomorphism, where A and B are reduced rings.

Then every proper d-ideal of B contracts to a proper d-ideal of A if and only if every minimal

prime ideal of A contracts to a d-ideal.

Proof. (⇒): Suppose that every d-ideal of B contracts to a d-ideal of A and let φ−1(I) be a

d-ideal in A. To show that the minimal prime ideal I of B contracts to a d-ideal φ−1(I) of

A, consider a and b in B with AnnB(φ(a)) = AnnB(φ(b)) and φ(a) ∈ I. We must show that

φ(b) ∈ I. Since φ−1(I) is a d-ideal in A, the hypothesis says I is a d-ideal in B. So φ(b) ∈ I.
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(⇐): Suppose that every minimal prime ideal of B contracts to a proper d-ideal of A and let

J be a proper d-ideal in A. To show that φ−1(J) is a d-ideal, consider x and y in A with

AnnA(x) = AnnA(y) and y ∈ φ−1(J). Let M be a minimal prime ideal in B containing φ(y).

Then y ∈ φ−1(M) and since Ann(x) = Ann(y) and φ−1(M) is a d-ideal by hypothesis, then

x ∈ φ−1(M) which implies φ(x) ∈ M . Thus we have shown that AnnB(φ(x)) = AnnB(φ(y))

and φ(x) is in the d-ideal J . So φ(y) ∈ J implies y ∈ φ−1(J). Therefore φ−1(J) is a d-ideal.

The above result immediately yields the following.

Corollary 3.2.2. If A is a reduced ring and f : A→ S−1[A] is the natural ring homomorphism,

then every d-ideal of S−1[A] contracts to a d-ideal of A.

Proposition 3.2.3. If A is a reduced ring and f : A→ S−1[A] is the natural ring homomorphism

and I is a d-ideal in A with S ∩ I = ∅, then Iec is also a d-ideal containing I.

Proof. We just observe that Iec =
⋃
s∈S

(I : s) =
∑
s∈S

(I : s) = Is. By example 3.1.2 (4), Iec is a

d-ideal.

In order to present the next result, we will recall the definition of the Jacobson radical. Recall

that the Jacobson radical of a ring A, denoted by Jac(A), is the intersection of all maximal

ideals. The following results in [2] and [23] show that in a large class of rings, every d-ideal is a

z-ideal. The proofs are recorded in [29, Proposition 2.12] and [1, Theorem 2.3].

Proposition 3.2.4. The Jacobson radical Jac(A) of a ring A is zero if and only if every d-ideal

is a z-ideal.

Proof. (⇒): Let I be a d-ideal and suppose M(x) = M(y) with y ∈ I. We claim that

x ∈ Ann2(y) ⊆ I. For if s ∈ Ann(y) and xs 6= 0 then since Jac(A) = 0 there is a maximal ideal

M such that xs /∈ M , that is x /∈ M and s /∈ M . But sy = 0 and s /∈ M implies y ∈ M , so

x ∈M which is a contradiction.

(⇐): Suppose a 6= 0 belongs to Jac(A) and take a minimal prime ideal P of A not containing a.

Then P is a d-ideal and it is not a z-ideal for M(a) = M(0) and a does not belong to P .

Aliabad, Azarpanah and Karamzadeh in [2] mention that not every z-ideal is a d-ideal. For

every maximal ideal in any ring with identity is a z-ideal and not every maximal ideal consists
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entirely of zero-divisors. Kaplansky in [23] gives the following result, which proves that not all

z-ideals are d-ideals.

Theorem 3.2.5. Let A be a ring and M a maximal ideal in the polynomial ring A[x]. Then M

cannot consist entirely of zero-divisors.

Proof. Assume the contrary. Then x /∈ M since x is not a zero-divisor. Hence 〈x,M〉 = A[x]

and we write 1 = xf + g with f ∈ A[x] and g ∈ M . But clearly g = 1 − xf cannot be a

zero-divisor.

A d-ideal P in a ring A is a maximal d-ideal if P is a proper d-ideal and there is no proper

d-ideal S with P ( S ( A. Recall that an inductive set is a non-empty partially ordered set in

which every element has a successor. The following results in [2] show that prime d-ideals are

key elements in the concepts of d-ideals.

Lemma 3.2.6. Let A be a ring and Ann(Si) ⊆ Ann(Ti), i = 1, 2, . . . , n, where Si and Ti are

subsets of A, for every i. Then Ann(S1S2 . . . Sn) ⊆ Ann(T1T2 . . . Tn).

Theorem 3.2.7. Let A be a reduced ring and I be a d-ideal, then every prime ideal, minimal

over I is a prime d-ideal.

Proof. Let P be a prime ideal, minimal over I and Ann(a) ⊆ Ann(b) where a ∈ P and b ∈ A.

Now since P/I is minimal prime ideal in A/I and A/I is a reduced ring, there exists 0 6= c+ I

in A/I with c /∈ P and ac ∈ I. Now by the previous lemma, Ann(ac) = Ann(bc). Since I is a

d-ideal and ac ∈ I, we have bc ∈ I ⊆ P . But c /∈ P , that is b ∈ P .

The following corollaries are now immediate.

Corollary 3.2.8. If f : A→ A/I is a natural epimorphism, where A is a reduced ring and I is

a d-ideal in A, then every d-ideal of A/I contracts to a d-ideal in A.

Proof. Suppose that K is a d-ideal in A. Consider x and y in A such that Ann(x) = Ann(y)

and x+ I ∈ f(K). We must show that y + I ∈ f(K). Since K is a d-ideal and f : A→ A/I is

the natural epimorphism then f(y) = y + I ∈ f(K). Therefore f(K) is a d-ideal in A/I.

Corollary 3.2.9. An ideal I in a reduced ring A is a d-ideal if and only if it is an intersection

of prime d-ideals.
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Corollary 3.2.10. If A is a reduced ring, then every maximal d-ideal is a prime d-ideal.

Corollary 3.2.11. Let A be a reduced ring and P be a prime ideal in A, then either P is a

d-ideal or contains a maximal d-ideal which is a prime d-ideal.

Proof. Put K = {I ⊆ A | I is a d-ideal and I ⊆ P}. Then {0} ∈ K and K is inductive so by

Zorn’s lemma, K has a maximal element. Let I be one. Then I = P iff P is a prime d-ideal. If

I $ P then there exists a prime ideal Q minimal with respect to containing I and contained in

P ; Q 6= P since Q will be a d-ideal (Theorem 3.2.7). Moreover, either Q = I in which case I is

prime, or I $ Q, which contradicts the maximality of I.

Definition 3.2.12. According to [2], a ring A satisfies property R if each finitely generated

ideal of A consisting of zero-divisors has a nonzero annihilator. A is said to have the annihilator

condition or briefly A satisfies a.c if for each finitely generated ideal I of A there exists an

element b ∈ A with Ann(I) = Ann(b). If this element b ∈ A can be chosen to be an element in

I, we say A satisfies strong a.c.

It is well known that most rings satisfy some of these properties. For example, Noetherian rings,

see [23, page 56], C(X), see [13], zero-dimensional rings (each prime ideal is maximal), the

polynomial ring A[x] and rings whose classical ring of quotients are regular. See [15] and [29]

for examples of rings with property R. We also observe that A[x], where A is a reduced ring,

C(X) and Bezout rings (rings where finitely generated ideals are principal) and many other

rings satisfy a.c. see [17], [28] and [33]. Moreover, the latter two classes of rings satisfy strong

a.c. The reader is referred to [17] for various examples and counter examples of rings with these

properties.

The next results in [2] show that d-ideals are indispensable in dealing with ideals consisting of

zero-divisors.

Theorem 3.2.13. If A is a reduced ring satisfying property R and I is an ideal consisting of

zero-divisors, then I is contained in a d-ideal.

Proof. We define I0 = I, I1 =
∑
x∈I0

Ann2(x) and if α is a limit ordinal, we define Iα =
⋃
β<α

Iβ,

where β is an ordinal, and finally if α = β + 1, we define Iα =
∑
x∈Iβ

Ann2(x). Then we get an

ascending chain I0 ⊆ I1 ⊆ · · · ⊆ Iα ⊆ Iα+1 ⊆ . . . and since A is a set, there exists the smallest
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ordinal α such that Iα = Iγ, for all γ ≥ α. We claim that Iα is a proper ideal which is also

a d-ideal. If Iα is a proper ideal, it is certainly a d-ideal, for Iα = Iα+1 =
∑
x∈Iα

Ann2(x). This

means that Ann2(x) ⊆ Iα, for all x ∈ Iα and therefore by Proposition 3.1.3, we are through.

Thus it remains to be shown that Iα is proper ideal. To see this, it suffices to show that each

Iα, ∀α consists entirely of zero-divisors. We proceed by transfinite induction (an extension of

mathematical induction to well-ordered sets) on α. For α = 0, it is evident. Let us assume it is

true for all ordinals β < α and prove it for α. If α is a limit ordinal, then Iα =
⋃
β<α

Iβ and therefore

Iα consists of zero-divisors. Now let α = β + 1 be a nonlimit ordinal, then Iα =
∑
x∈Iβ

Ann2(x).

We must show that each element a of Iα is a zero-divisor. Put a = a1 + a2 + · · ·+ an, where

ai ∈ Ann2(xi), xi ∈ Iβ, i = 1, 2, . . . , n. But by the induction hypothesis each element of Iβ is a

zero-divisor. Now by the property R, there exists 0 6= b ∈ Ann(x1A+ x2A+ · · ·+ xnA), that is,

ab = 0.

Corollary 3.2.14. If A is reduced with property R, then every maximal ideal consisting only of

zero-divisors is a d-ideal.

Corollary 3.2.15. If A is a reduced ring with property R, and I is an ideal of A consisting of

zero-divisors, then there is the smallest d-ideal containing I and also there is a maximal d-ideal

containing I which is also a prime d-ideal.

In the case of f -rings, the proof of the previous theorem does not use ordinals. This was proved

by Ighedo in her PhD thesis [20]. We reproduce the proof. An ideal of a ring A is singular if it

consists entirely of zero-divisors. A set Λ is a directed set if and only if there is a relation ≤ on

Λ satisfying:

(a) λ ≤ λ, for each λ ∈ Λ,

(b) if λ1 ≤ λ2 and λ2 ≤ λ3, then λ1 ≤ λ3,

(c) if λ1, λ2 ∈ Λ then there is some λ3 ∈ Λ with λ1 ≤ λ3, λ2 ≤ λ3.

Theorem 3.2.16. Let A be a reduced f -ring and I be a singular ideal of A. Then the set

J =
⋃{

Ann2(a) | a ∈ I
}

is the smallest d-ideal of A containing I.
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Proof. Let us show first that the family
{

Ann2(a) | a ∈ I
}

is directed. Let a, b ∈ I. We claim

that Ann2(a) ∪ Ann2(b) ⊆ Ann2(a2 + b2). To verify this it suffices to show that

Ann(a2 + b2) ⊆ Ann(a) ∩ Ann(b).

Let r ∈ Ann(a2 + b2). Then r(a2 + b2) = 0, which implies (ra)2 + (rb)2 = 0. Since squares are

positive in f -rings, this implies (ra)2 = (rb)2 = 0, and hence ra = rb = 0 since A is reduced.

Therefore r ∈ Ann(a) ∩ Ann(b). Thus, J is d-ideal which clearly contains I. To show that it is

the smallest such, consider any d-ideal K of A which contains I. Let u ∈ J . Then u ∈ Ann2(a)

for some a ∈ I. But a ∈ K since K is a d-ideal, so u ∈ K, and hence J ⊆ K.

We also have the following.

Proposition 3.2.17. If A is a reduced ring with strong a.c, then an ideal I in A is a d-ideal if

and only if I[x] is a d-ideal in A[x].

Proof. (⇒): Let I be a d-ideal in A and Ann(f) = Ann(g), where f ∈ I[x], g ∈ A[x]. Now put

f =
n∑
i=0

aix
i, g =

m∑
i=0

bix
i and K = (a0, a1, . . . , an), B = (b0, b1, . . . , bm), then h ∈ Ann(f) if and

only if KC = {0}, where C = (c0, c1, . . . , ck) and h =
k∑
i=0

cix
i (note that if P is a prime ideal

in A, then hf = 0 ∈ P [x] implies that h ∈ P [x] or f ∈ P [x], that is, KC ⊆ P ). This means

that Ann(K) = Ann(B). But A satisfies strong a.c., that is Ann(K) = Ann(a) for some a ∈ K.

Hence Ann(a) = Ann(B) =
m⋂
i=0

Ann(bi), that is, Ann(a) ⊆ Ann(bi), i = 0, 1, . . . ,m and therefore

a ∈ I implies that bi ∈ I, for all i = 0, 1, . . . ,m. This shows that g ∈ I[x].

(⇐): Let I[x] be a d-ideal in A[x] and let Ann(a) = Ann(b), a ∈ I, b ∈ A. Then

Ann(ax) = Ann(bx)

in A[x] and ax ∈ I[x] implies that bx ∈ I[x], that is, b ∈ I.

We know that P (b) ⊆ Ann(a) for every b ∈ Ann(a), for if a 6= 0, Ann(a) is a d-ideal in a reduced

ring A. We show next when equality holds.

Lemma 3.2.18. If A is a reduced ring and b ∈ Ann(a), then Ann(a) = P (b) if and only if a+ b

is not a zero-divisor in A.
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Proof. If Ann(a) = P (b), then let a + b belong to a minimal prime ideal P of A and seek a

contradiction. We consider two cases. First, let a ∈ P , then b ∈ P implies that P (b) ⊆ P , that

is, P (b) = Ann(a) ⊆ P , which is impossible, for we also have a ∈ P . Now let a /∈ P , then we

must have b /∈ P , that is, Ann(a) = P (b) * P , which is again impossible. Conversely, if a+ b is

not a zero-divisor in A, we are to show that Ann(a) ⊆ P (b). Let P be a minimal prime ideal

with b ∈ P , then a+ b /∈ P implies that a /∈ P , that is, Ann(a) ⊆ P . Hence Ann(a) ⊆ P (b) and

we are through.

Rings whose classical rings of quotients are regular have been characterised in various ways, see

[17] and [33]. Using the concept of d-ideals, we state the following results given in [2].

Proposition 3.2.19. Let A be a reduced ring, then the following statements are equivalent.

(1) Minimal prime ideals of A are the only prime ideals consisting of zero-divisors.

(2) A satisfies property R and each prime d-ideal in A is a minimal prime ideal.

(3) The classical ring of quotients of A is a reqular ring.

(4) Ann(a) is a basic d-ideal for all a ∈ A.

Proof. (1) ⇒ (2): It suffices to show that A satisfies property R. Let I be a nonzero finitely

generated ideal consisting of zero-divisors. Hence I ⊆
⋃
{P : P ∈ Min(A)}, that is, I ∩ S = ∅

where S =
⋂
{Ar P : P ∈ Min(A)}. Now there exists a prime ideal P ′ ⊇ I with P ′ ∩ S = ∅.

This shows that P ′ consists of zero-divisors and therefore by our hypothesis, P ′ must be a

minimal prime ideal, that is, Ann(I) * P ′ and therefore Ann(I) 6= {0}.

(2)⇒ (3): Let Q be the classical ring of quotients of A and M be a maximal ideal of Q. Then

since every element of Q is either a zero-divisor or a unit, M consists of zero-divisors, that is,

by Corollary 3.2.14, M is a d-ideal. Thus by Corollary 3.2.18, M c = A ∩M is a prime d-ideal

which must be a minimal prime ideal. This shows that M is a minimal prime ideal. Hence each

prime ideal of Q is maximal and since Q is reduced, it is a regular ring.

(3)⇒ (4): Let Q be a classical ring of quotients of A, then if a ∈ A we have AnnQ(a) = eQ, for

some idempotent e ∈ Q, since Q is a regular ring. But

eQ = AnnQ(1− e) =
⋂
{P ∈ Min(Q) : e ∈ P}.
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Now let e = b
s
, where b, s ∈ A and s is a nonzero-divisor, then e ∈ P if and only if b ∈ P , for all

P ∈ Min(Q). Hence AnnA(a) = AnnQ(a) ∩ A =
⋂
{P ∈ Min(A) : b ∈ P} = P (b).

(4)⇒ (1): Let P be a prime ideal consisting of zero-divisors. We must show that for each a ∈ P ,

Ann(a) * P . Let us assume that a ∈ P and Ann(a) ⊆ P and seek a contradiction. By part (4),

we have Ann(a) = P (b), for some b ∈ A, that is, a+ b ∈ P . But by Lemma 3.2.18, a+ b is not

a zero-divisor, which is a contradiction.

Definition 3.2.20. A reduced ring A is called an almost regular ring if A has the property R

and is its own classical ring of quotients.

Clearly every regular ring is almost regular but not conversely. The following is a characterisation

of the d-trace of an ideal in almost regular rings, see Example 3.1.2 (3).

Proposition 3.2.21. Let A be an almost regular ring and I be any ideal of A, then

T (I) = {c ∈ A : ∃a ∈ I,∃b ∈ A with V (a) ⊆ D(b) ⊆ V (c)}.

Proof. Let x ∈ T (I), then x(1 + y) = 0 for some y ∈ I. Now if P is a minimal prime ideal

containing y, then 1 + y /∈ P , that is, x ∈ P . Hence we have V (y) ⊆ D(1 + y) ⊆ V (x).

Conversely, if b, c ∈ A and a ∈ I are given with V (a) ⊆ D(b) ⊆ V (c), then we are to show that

c ∈ T (I). We first observe that bc = 0, for Ann(b) =
⋂

P∈D(b)

P and D(b) ⊆ V (c). Moreover

〈a〉 + 〈b〉 = A, for otherwise 〈a〉 + 〈b〉 consists of zero-divisors and by property R, we must

have V (〈a〉+ 〈b〉) 6= ∅ which is impossible, for V (a) ⊆ D(b). Now 〈a〉+ 〈b〉 = A implies that

I + Ann(c) = A. Hence ∃x ∈ I with 1− x ∈ Ann(c), that is, c ∈ Ann(1 + x) ⊆ T (I).

We observed in the previous chapter that every ideal has a z-cover, by which we mean the

smallest z-ideal containing it. We shall now show that similarly every ideal has a d-cover.

Definition 3.2.22. Let I be an ideal consisting of zero-divisors in a ring A. Then the smallest

d-ideal containing I is called the d-cover of I.

The d-cover of I is denoted by Id and if it does not exist we put Id = A.

The next proposition reveals some properties of the d-cover in rings with strong annihilator

condition.
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Proposition 3.2.23. Let A be a reduced ring with strong annihilator condition and I, J be

ideals in A consisting of zero-divisors, then we have the following.

(1) Id = {a ∈ A : ∃b ∈ A with Ann(b) ⊆ Ann(a)}.

(2) (I ∩ J)d = Id ∩ Jd.

(3) If A is an almost regular ring, then T (Id) = T (I)d = T (I), where T (I) is the d-trace of I.

Proof. (1) Clearly Id contains the set on the right hand side. We claim that this set is an ideal

and then clearly becomes a d-ideal containing I and we are through. To this end, let a, a′ be in

this set, then there exists b, b′ ∈ I with Ann(b) ⊆ Ann(a) and Ann(b′) ⊆ Ann(a′). Now since A

has strong annihilator condition, there exists c ∈ I such that

Ann(c) = Ann(〈b〉+ 〈b′〉) = Ann(b) ∩ Ann(b′) ⊆ Ann(a+ a′).

This shows that a + a′ belongs to this set. We also note that Ann(a) ⊆ Ann(ar), for every

r ∈ A implies that ar belongs to this set whenever a does.

(2) Since I ⊆ Id and J ⊆ Jd, by the first part we have (I ∩ J)d ⊆ Id ∩ Jd.

Conversely, if x ∈ Id ∩ Jd, then there exist a ∈ I, b ∈ J such that Ann(a) ⊆ Ann(x) and

Ann(b) ⊆ Ann(x), by part (1). Therefore by Lemma 3.2.6, we have

Ann(ab) ⊆ Ann(x2) = Ann(x).

Now ab ∈ I ∩ J and by part (1) imply that x ∈ (I ∩ J)d.

(3) Since I ⊆ Id, we infer that T (I) ⊆ T (Id). Conversely, if z ∈ T (Id) then by Proposition

3.2.21, there exist x ∈ Id, y ∈ A such that V (x) ⊆ D(y) ⊆ V (z). But by part (1), x ∈ Id means

that there exists b ∈ I with Ann(b) ⊆ Ann(x) ⊆ Ann(z) (note that V (x) ⊆ V (z)). Hence

V (b) ⊆ V (x) ⊆ D(y) ⊆ V (z), that is, z ∈ T (I), by Proposition 3.2.21. Hence T (Id) = T (I) and

it is evident that T (I)d = T (I), for T (I) is a d-ideal.

The above result immediately yields the following.

Corollary 3.2.24. Let A be a reduced ring with strong annihilator condition, then any ideal I

of A consisting of zero-divisors is contained in a d-ideal and Id =
⋃
b∈I

P (b) =
∑
b∈I

P (b).
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3.3 Sums of d-ideals

We observed in the previous chapter that in the class of f -rings, given sufficient conditions, the

sum of z-ideals is a z-ideal. Similarly, in this section we will discuss, mainly in the class of

f -rings, sufficient conditions for the sum of d-ideals to be a d-ideal. For the following results,

our main reference is [27].

In the previous section, we showed that if A is an f -ring with bounded inversion in which the

sum of any two minimal prime `-ideals is a prime z-ideal, then the sum of any two prime `-ideals

not in a chain is a z-ideal. Now we deduce from the result mentioned above the following

theorem in terms of d-ideals

Theorem 3.3.1. Let A be an f -ring with bounded inversion. Suppose that the sum of any two

minimal prime `-ideals of A is a prime d-ideal. Then the sum of any two prime `-ideals not in

a chain is a d-ideal. .

Proof. Suppose X and Y are prime `-ideals of A. Let K1 and K2 be minimal prime `-ideals

such that K1 ⊆ X and K2 ⊆ Y . By hypothesis, K1 +K2 is a prime d-ideal. Since K1 ⊆ X and

K2 ⊆ Y , it follows that K1 +K2 ⊆ X + Y .

On the other hand, K1 +K2 is a prime `-ideal containing K1 and K2 so is in a chain with both

X and Y by Lemma 2.3.7. Since X and Y are not in a chain, both X and Y must be contained

in K1 +K2 whence K1 +K2 = X + Y is a prime d-ideal.

Mason in [29, Theorem 2.5] proves that the prime ideals minimal with respect to containing a

d-ideal I are themselves d-ideals. With very slight modifications to the proof of Mason’s results,

we give the next result in the context of f -rings, recorded in [27], and we will use it in the proof

of the next theorem.

Lemma 3.3.2. If A is an f -ring and P ⊆ A is minimal in the class of prime `-ideals containing

a d-ideal I which is an `-ideal, then P is also a d-ideal.

The following results are recorded in [27].

Theorem 3.3.3. Let A be a f-ring in which minimal prime `-ideals are square dominated.

Suppose that the sum of any two minimal prime `-ideals of A is a d-ideal. Then the sum of any

two d-ideals which are `-ideals of A is a d-ideal.
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Proof. Suppose M and N are d-ideals which are `-ideals. Then M and N are radical `-ideals

since every d-ideal is a radical `-ideal, and by Theorem 2.3.4, M +N is a radical `-ideal. We will

show that M +N is the intersection of d-ideals. To do so, we let z ∈ A such that z /∈M +N ,

and we will show there is a d-ideal containing M +N but not z. Since M +N is a radical `-ideal,

it is the intersection of prime `-ideals. So there is a prime `-ideal P containing M +N but not

z. Let P1, P2 ⊆ P be prime `-ideals minimal with respect to containing M and N respectively.

By Lemma 3.3.2, P1, P2 are prime d-ideals. It follows from Theorem 3.3.1 that P1 + P2 is a

d-ideal. Also, M +N ⊆ P1 + P2 and z /∈ (P1 + P2) since P1 + P2 ⊆ P .

It is known that for any element a of an f -ring A, Ann(a) is a d-ideal. Recall that a prime

`-ideal P of a commutative reduced f -ring is minimal if and only if a ∈ P implies there is a

b /∈ P such that ab = 0. By the preceeding results the following two corollaries are immediate.

Corollary 3.3.4. Let A be a reduced f -ring in which minimal prime `-ideals are square domi-

nated. Suppose that for every a, b ∈ A+, Ann(a) + Ann(b) is a d-ideal. Then the sum of any

two d-ideals which are `-ideals of A is a d-ideal.

Proof. We only need show that the sum of any two minimal prime `-ideals is a d-ideal. Let C and

D be minimal prime `-ideals and Ann(a) + Ann(b) be a d-ideal for every a, b ∈ A+. We need to

show that the sum of any two minimal prime `-ideals is a d-ideal. Suppose that for any a, b ∈ A,

Ann(a) = Ann(b) and b ∈ C + D. Then b = c + d for some c ∈ C and d ∈ D. Also, there is

c1, d1 ∈ A+ such that c1 /∈ C, d1 /∈ D, and cc1 = 0, dd1 = 0. So b = c+ d ∈ Ann(c1) + Ann(d1).

By hypothesis, Ann(c1) + Ann(d1) is a d-ideal. So a ∈ Ann(c1) + Ann(d1) ⊆ C +D.

In [26, Lemma 2.5] it is shown that in a commutative, reduced normal f -ring with identity

element, every minimal prime `-ideal of A is square dominated. We therefore conclude this

chapter with the following result from [2].

Corollary 3.3.5. Let A be a reduced normal f-ring with identity element. In A, the sum of

any two d-ideals which are `-ideals is a d-ideal.

Proof. In view of the fact that minimal prime `-ideals of A are square dominated and in light of

Theorem 3.3.3, we only need to show that the sum of any two minimal prime `-ideals is a d-ideal.

So let C and D be minimal prime `-ideals. We will show that if C 6= D, then C +D = A. If
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C 6= D, then there is an element c ∈ C rD. Since C is a minimal prime `-ideal, there is an

element d /∈ C such that cd = 0. Then c ∧ d = 0, and Ann(c) + Ann(d) = A. But Ann(d) ⊆ D,

Ann(c) ⊆ C. So A = C +D.
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Chapter 4

Higher order d-ideals of commutative

rings

This chapter will consist of new concepts which have hitherto not been considered. We will

introduce ideals that resemble d-ideals, called higher order d-ideals, and the definition we use is

motivated by the definition of higher order z-ideals in [11].

Dube and Ighedo in [11] prove that the direct product of finitely many rings is z-terminating if

and only if each factor is z-terminating. In the first section of this chapter we extend the result

by proving that the direct product of infinitely many rings is z-terminating if each factor is

z-terminating.

4.1 Higher order z-ideals of commutative rings

We recall from [11] the definition of a zn-ideal. Let n be a positive integer. An ideal I of a ring

A is a zn-ideal if for any a, b ∈ A, M(a) = M(b) and bn ∈ I imply an ∈ I. We denote by Zn(A)

the set of all zn-ideals of A. In particular, Z(A) denotes the set of all z-ideals of A.

It is also defined in [11] that a ring A is z-terminating if there is a positive integer n such that

for every m ≥ n, each zm-ideal is a zn-ideal.

We state the result given in [11] below.

Theorem 4.1.1. The direct product of finitely many rings is z-terminating if and only if each

37



factor is z-terminating.

Next we extend the above result.

Let {Aλ | λ ∈ Λ} be a family of commutative rings with identity. For each fixed k ∈ Λ, let

πk :
∏
λ

Aλ → Ak be the projection of the product ring
∏
λ

Aλ to the ring Ak. This means that if

we write an arbitrary element of
∏
λ

Aλ as a = (aλ), then πk(a) = ak.

It is a known result in commutative rings with identity that an ideal of the direct product
∏
λ

Aλ

is maximal if and only if it is of the form π−1` [M ], for some index ` and M ∈ Max(A`). That is

Max
(∏

λ

Aλ

)
=
{
π−1` [M ] | ` ∈ Λ and M ∈ Max(A`)

}
.

Theorem 4.1.2. Suppose {Aλ |λ ∈ Λ} is a family of z-terminating rings, and suppose there

exists m ∈ N such that termination for each Aλ occurs at or before stage m. Then
∏
λ

Aλ is

z-terminating.

Proof. We first show that if {Aλ | λ ∈ Λ} is a family of commutative rings with identity, and

n ∈ N, for each λ if Jλ is an ideal of Aλ, then∏
λ

Jλ is a zn-ideal if and only if each Jλ is a zn-ideal.

(⇒): Suppose
∏
λ

Jλ is a zn-ideal in
∏
λ

Aλ. Fix an index ` ∈ Λ, and consider x, y ∈ J` such that

M(x) = M(y) and yn ∈ Jλ. Consider the elements x̄ = (xλ) and ȳ = (yλ) of
∏
λ

Aλ given by

xλ =

x if λ = `,

0 if λ 6= `

and

yλ =

y if λ = `,

0 if λ 6= `.

We claim that in the ring
∏
λ

Aλ, M(x̄) ⊇M(ȳ). To see this, let n ∈M(ȳ). Then n is a maximal

ideal of
∏
λ

Aλ containing x̄. Therefore there is an index k ∈ Λ and a maximal ideal M of Ak

such that n = π−1k [M ]. If k 6= λ, then x̄ ∈ n. On the other hand, if k = `, then y ∈ M which
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implies x ∈M since M(x) = M(y), hence x̄ ∈ n, so that n ∈M(x̄). Now, ȳn ∈
∏
λ

Jλ, and since∏
λ

Jλ is a zn-ideal, we have x̄n ∈
∏
λ

Jλ, which implies xn ∈ Jλ showing that Jλ is a zn-ideal.

(⇐): Suppose Jλ is a zn-ideal in {Aλ | λ ∈ Λ}. Let x̄ = xλ and ȳ = yλ be elements of
∏
λ

Aλ

such that M(xλ) = M(yλ) and ynλ ∈
∏
λ

Jλ. We must show that M(xλ) ⊇ M(yλ). Consider

any n ∈ M(yλ). Then n is a maximal ideal of
∏
λ

Aλ containing yλ, and hence xλ. Therefore

n ∈M(xλ). Since Jλ is a zn-ideal and ynλ ∈ Jλ, it follows that xnλ ∈ Jλ. Hence xnλ ∈
∏
λ

Jλ, which

proves that
∏
λ

Jλ is a zn-ideal.

Suppose {Aλ |λ ∈ Λ} are z-terminating. Pick m ∈ N such that termination for each Aλ occurs

at or before stage m. We claim that

Zm

(∏
λ

Aλ

)
= Zm+1

(∏
λ

Aλ

)
= · · · .

Let
∏
λ

Jλ ∈ Zm+1(
∏
λ

Aλ). Then, as proved above, Jλ ∈ Zm+1(Aλ) which implies Jλ ∈ Zm(Aλ)

for each λ ∈ Λ. A simple induction argument shows that Zm
(∏

λ

Aλ

)
= Zm+i (

∏
Aλ) for all i.

Therefore
∏
λ

Aλ is z-terminating.

4.2 A tower of d-like ideals

We start by defining the ideals that will form the main study in this chapter.

Definition 4.2.1. Let n be a positive integer. An ideal I of a ring A is a dn-ideal if for any

a, b ∈ A, Ann(a) = Ann(b) and an ∈ I imply bn ∈ I. Equivalently, I is a dn-ideal if and only if

for any a, b ∈ A, Ann2(a) = Ann2(b) and an ∈ I imply bn ∈ I.

Let D(A) denote the set of all d-ideals of A and Dn(A) denote the set of all dn-ideals of A.

It is clear that every d-ideal is a dn-ideal for every n ∈ N, so that, indeed, these ideals generalise

d-ideal in a natural way. We show that, for every n ∈ N, every dn-ideal is a zn-ideal in a ring

with zero Jacobson radical. We start with the following lemma.

Lemma 4.2.2. Let A be a ring with zero Jacobson radical. For any a, b ∈ A, M(a) = M(b)

implies Ann(a) = Ann(b).
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Proof. Let x ∈ Ann(a). Then ax = 0. Suppose, by way of contradiction, that bx 6= 0. Then

since Jac(A) = 0, there is a maximal ideal M such that bx /∈ M . Since M is prime, this

implies b /∈ M and x /∈ M . Since ax = 0 ∈ M , we therefore have a ∈ M , and have b ∈ M as

M(a) = M(b). Thus we have reached a contradiction.

Corollary 4.2.3. If A has zero Jacobson radical, then for any n ∈ N, Dn(A) ⊆ Zn(A).

Proof. Let I ∈ Dn(A). Consider any x and y in A with M(x) = M(y) and yn ∈ I. Since A has

zero Jacobson radical, then M(x) = M(y) implies Ann(x) = Ann(y). It follows that xn ∈ I
since I is a dn-ideal. Therefore I ∈ Zn(A).

Henceforth all rings are assumed to have zero Jacobson radical. In [29], Mason proves that a

d-ideal consist entirely of zero-divisors. We show that this holds for higher order d-ideals.

Proposition 4.2.4. For every n ∈ N, any dn-ideal consists entirely of zero-divisors.

Proof. Let I be a dn-ideal. Suppose I does not consist entirely of zero-divisors. Let u ∈ I be a

nonzero-divisor. Then un is a nonzero-divisor because if for w ∈ A, wun = 0, then (wu)n = 0,

implying wu = 0 since the ring is reduced. This then imply w = 0. Thus Ann(u) = Ann(1), but

un ∈ I; so 1 ∈ I, contradicting that I is a proper ideal.

They can also be characterised similarly to d-ideals in terms of intersections of minimal prime

ideals. Recall that Mn(a) = {xn |x ∈M(a)} for every n ∈ N and a ∈ A. Let A be a ring, a be

an element of A and n ∈ N. We recall that

P (a) =
⋂
{Q ∈ Min(A) | a ∈ Q }

and we define

P n(a) = {xn | x ∈ P (a) }.

It is clear that P n(a) ⊆ P (a) for every n ∈ N.

Proposition 4.2.5. Let A be a ring and n be a positive integer. The following are equivalent

for an ideal I of a ring A.

(1) I is a dn-ideal.
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(2) P n(a) ⊆ I for every an ∈ I.

(3) For a, b ∈ A, P n(a) = P n(b) and bn ∈ I imply that an ∈ I.

(4) For a, b ∈ A, V (a) = V (b) and an ∈ I imply that bn ∈ I.

(5) an ∈ I implies that Ann2(a) ⊆ I.

Proof. (1)⇒ (2): Assume that I is a dn-ideal. Let an ∈ I. We need to show that P n(a) ⊆ I.

Let xn ∈ P n(a). Since P n(a) ⊆ P (a) = Ann2(a), then

Ann2(xn) ⊆ Ann2(a).

Since A is reduced, Ann2(xn) = Ann2(x). Therefore Ann2(x) ⊆ Ann2(a) and an ∈ I imply that

xn ∈ I since I is a dn-ideal. Since xn is an arbitrary element of P n(a), it follows that P n(a) ⊆ I.

(2)⇒ (3): Let P n(a) ⊆ I for every an ∈ I. Consider any x and y in A with P n(x) = P n(y) and

yn ∈ I. We must show that xn ∈ I. We have

xn ∈ P n(x) = P n(y).

But by hypothesis P n(y) ⊆ I for every yn ∈ I. Therefore xn ∈ I.

(3)⇒ (4): Assume that (3) holds. Consider x and y in A with V (x) = V (y) and yn ∈ I. We

must show that xn ∈ I. We have

xn ∈ P n(x) ⊆
⋂

V (x) =
⋂

V (y) ⊇ P n(y)

and yn ∈ I, so by the stated condition, xn ∈ I.

(4) ⇒ (5): Assume that the stated condition holds and let xn ∈ I. We must show that

Ann2(x) ⊆ I. It is shown in [29, Lemma 1.3] that V (x) = V (Ann2(x)). We therefore have

V (x) = V (Ann2(x)) = V (Ann2(y)) = V (y) and xn ∈ I,

so by the stated condition, Ann2(x) ⊆ I.

(5)⇒ (1): Assume that Ann2(a) ⊆ I for every an ∈ I. To show that I is a dn-ideal, consider

any x and y in A with Ann2(x) = Ann2(y) and yn ∈ I. We must show that xn ∈ I. But now

we have

xn ∈ Ann2(x) = Ann2(y).

Now, by hypothesis Ann2(y) ⊆ I for every y ∈ I. So xn ∈ I. Therefore I is a dn-ideal.
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The following lemma records some elementary observations regarding dn-ideals. Following [6],

we say I is a
√
d-ideal in case

√
I is a d-ideal. We define the set

Drad(A) = {I ⊆ A | I is a
√
d-ideal}.

We know that every d-ideal is a radical ideal, so that

Rad(A) ∩D(A) = D(A).

We are going to use this result in the proof of the following theorem.

Lemma 4.2.6. Let A be a reduced ring and n be a positive integer. Then we have the following.

(1) Dn(A) ⊆ Dn+1(A).

(2) Dn(A) ⊆ Drad(A).

(3) Rad(A) ∩Dn(A) = D(A).

Proof. (1) Let I ∈ Dn(A). Consider any x and y in A with Ann(x) = Ann(y) and yn+1 ∈ I.

Since 2n ≥ n+ 1, we have (y2)n = y2n ∈ I. Putting w = y2, we see that x and w are elements

of A such that Ann(x) = Ann(w) and wn ∈ I. Since I ∈ Dn(A), it follows that xn ∈ I, hence

xn+1 ∈ I. Therefore I ∈ Dn+1(A), showing that Dn(A) ⊆ Dn+1(A).

(2) Let I ∈ Dn(A). Consider any x and y in A such that Ann(x) = Ann(y) and y ∈
√
I. Pick

m ∈ N such that ym ∈ I. Then (ym)n ∈ I. Since A is reduced, we have that Ann(x) = Ann(ym)

and I ∈ Dn(A), it follows that xn ∈ I. But this implies x ∈
√
I; so

√
I is a d-ideal. Thus,

I ∈ Drad(A), which establishes the desired inclusion.

(3) Since every d-ideal is a radical ideal, then D(A) ⊆ Rad(A) ∩ Dn(A). It suffices to show

that Rad(A) ∩Dn(A) ⊆ D(A). So let I be a radical dn-ideal. Consider any x and y in A such

that Ann(x) = Ann(y) and y ∈ I. Then yn ∈ I, which implies xn ∈ I since I is a dn-ideal, by

hypothesis. But I is also a radical ideal, so x ∈ I, which shows that I is a d-ideal.

We observed that Dn(A) ⊆ Dn+1(A) in Lemma 4.2.6 above. We thus have an ascending chain

D(A) ⊆ D2(A) ⊆ D3(A) ⊆ · · · ⊆ Dn(A) ⊆ Dn+1(A) ⊆ · · ·
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of collections of ideals of A. We call it the d-tower of A. For brevity, we write

D∞(A) =
∞⋃
n=1

Dn(A),

and observe that D∞(A) ⊆ Drad(A). We say an ideal of A is a higher order d-ideal if it belongs

to D∞(A). If there is a positive integer k such that

Dk(A) = Dk+1(A) = Dk+2(A) = · · · ,

we say the d-tower terminates.

Mason [29, Theorem 2.5] proves that the prime ideals minimal with respect to containing a

d-ideal I are themselves d-ideals. If P is a prime ideal minimal with respect to containing I

is a d-ideal, then P minimal with respect to containing
√
I is a d-ideal. Combining this with

Mason’s result, cited above, we deduce from Lemma 4.2.6 the following corollary.

Corollary 4.2.7. A prime ideal minimal with respect to containing a higher order d-ideal is a

d-ideal.

We name the rings with terminating d-towers.

Definition 4.2.8. A ring A is d-terminating in case its d-tower terminates.

Before we give examples of d-terminating rings, recall that an f -ring A is 1-convex if for any

u, v ∈ A such that 0 ≤ u ≤ v, there is a w ∈ A such that u = vw. We also recall that a reduced

f -ring has square roots if for every u ≥ 0 there exists a (necessarily unique) v ≥ 0 such that

v2 = u. In this case we write u
1
2 . For any positive integer k, we denote (u

1
2 )k by u

1

2k .

Examples 4.2.9. (1) Every von Neumann regular ring is d-terminating. By Remark 3.1.4

every ideal in von Neuman regular ring is an intersection of minimal prime ideals, that is, it is a

d-ideal.

(2) The ring of integers is d-terminating, although (as shown in [11, Example 5]) it is not

z-terminating. We will show, in fact that, for any positive integer n, the zero ideal is the only

proper dn-ideal of Z. Recall that every ideal of Z is principal. Also, the generators can be taken

to be non-negative integers.
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Now suppose that for some positive integer k the ideal 〈k〉 is a dn-ideal. Since Ann(k) =

Ann(k + 1)(they equal the zero ideal) and since kn ∈ 〈k〉, we should then have (k + 1)n ∈ 〈k〉.
Consequently, there is a non-negative integer l such that (k + 1)n = kl. Thus,

kl = (k + 1)n =
n∑
r=0

(
n

r

)
kn−r · 1r

= kn +

(
n

1

)
kn−1 + · · ·+

(
n

n− 1

)
k + 1

= ks+ 1,

for some positive integer s. This implies k(l − s) = 1, and since l − s is an integer, this make

k = 1, so that 〈k〉 = Z. Hence Z has no proper dn-ideal except for the zero ideal. So the d-tower

terminates right at the base.

(3) If a reduced 1-convex f -ring has square roots, then it is d-terminating. We show that in

such an f -ring every higher order d-ideal is a d-ideal. Let n be a positive integer, and let I be a

dn-ideal in an f -ring A of the stated kind. Consider any a, b ∈ A such that Ann(a) = Ann(b)

and b ∈ I. Choose k ∈ N such that 2k ≥ n. Since A has square roots, |a|
1

2k exists in A, and,

furthermore, Ann
(
|a|

1

2k

)
= Ann(b). Since b2

k ∈ I, and I is a d2
k
-ideal, by Lemma 4.2.6, it

follows that |a| =
(
|a|

1

2k

)2k
∈ I. Since I is an `-ideal, this implies a ∈ I, showing that I is a

d-ideal. Consequently, Dn(A) = D(A) for every n, and hence A is d-terminating.

Recall that Noetherian ring is a ring in which every ideal is finitely generated. Using the

ascending chain conditions and Lemma 4.2.6, we observed that D∞(A) ⊆ Drad(A). We shall see

that the equality D∞(A) = Drad(A) is not enough for d-termination. We shall actually exhibit

a large class of rings for which the stated equality holds, as we show next.

Definition 4.2.10. A ring A is radically d-covered if D∞(A) = Drad(A).

A ring A is radically d-covered precisely when every
√
d-ideal in A is a higher order d-ideal.

Examples of radically d-covered rings include Noetherian rings, as the following theorem shows.

Theorem 4.2.11. Noetherian rings are radically d-covered.

Proof. Let A be a Noetherian ring. We need to show that Drad(A) ⊆ D∞(A). So let I ∈ Drad(A).

Then
√
I is a d-ideal. Since A is Noetherian, there exist finitely many elements a1, . . . , an in
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A such that
√
I is generated by the set {a1, . . . , an}. Choose positive integers k1, . . . , kn such

that akii ∈ I for each i = 1, . . . , n. Put k = k1 + · · ·+ kn. We claim that I ∈ Dk(A). To show

this, consider any x, y ∈ A with Ann(x) = Ann(y) and xk ∈ I. Then x ∈
√
I, and since

√
I

is a d-ideal, we deduce that y ∈
√
I. Since

√
I is generated by the elements a1, . . . , an, there

exist elements u1, . . . un in A such that y = u1a1 + · · ·+ unan. Note that (uiai)
ki ∈ I, for each

i = 1, . . . , n. We prove by induction on n to show that yk ∈ I. The result is trivial for n = 1.

So assume n > 1. For brevity, we write bi = uiai, for i = 1, 2, . . . , n. Then

(b1 + · · ·+ bn)k =
(
b1 + (b2 + · · ·+ bn)

)k
=

k∑
r=0

(
k

r

)
br1(b2 + · · ·+ bn)k−r

=
∑
r<k1

(
k

r

)
br1(b2 + · · ·+ bn)k−r +

∑
r≥k1

(
k

r

)
br1(b2 + · · ·+ bn)k−r

The second summand is in I since bk1 ∈ I. By the induction hypothesis, each term of the form

(b2 + · · ·+ bn)k−r is in I if r < k1 because then k − r ≥ k2 + · · ·+ kn. It follows therefore that

(b1 + · · · + bn)k1+···+kn ∈ I. Thus, yk ∈ I since k ≥ n. Therefore I ∈ Dk(A). Consequently,

Drad(A) ⊆ D∞(A), and hence equality.

4.3 Direct products and d-termination

In this section we examine the preservation and reflection of the d-terminating property by

direct products, and by homomorphic images. In the proof of the following results we are going

to use the fact that, for any x = xλ ∈
∏
λ

Aλ, we have
∏

Ann(xλ) = Ann(x) [36, Lemma 4.3.5].

Lemma 4.3.1. Suppose {Aλ |λ ∈ Λ} are d-terminating, and suppose there exist m ∈ N such

that termination for each Aλ occurs at or before stage m. Then
∏
λ

Aλ is d-terminating.

Proof. To start with, we will first show that if {Aλ | λ ∈ Λ} is a family of commutative rings

with identity, and n ∈ N, then for each λ, if Iλ be an ideal of Aλ, then∏
λ

Iλ is a dn-ideal if and only if each Iλ is a dn-ideal.

(⇒): Suppose
∏
λ

Iλ is a dn-ideal in
∏
λ

Aλ. Fix an index ` ∈ Λ and consider x, y ∈ I` such

that Ann(x) = Ann(y) and yn ∈ Iλ. Consider any x = xλ and y = yλ in
∏
λ

Aλ such that
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Ann(x) = Ann(y) and yn ∈ Iλ. Then using [36, Lemma 4.3.5], Ann(x) = Ann(y) and yn ∈ Iλ if

and only if
∏
λ

Ann(xλ) =
∏
λ

Ann(yλ) and ynλ ∈
∏
λ

Iλ. By hypothesis
∏
λ

Iλ is a dn-ideal implying

xnλ ∈
∏
λ

Iλ. Hence xn ∈ Iλ which proves that Iλ is a dn-ideal.

(⇐): Suppose Iλ is a dn-ideal in {Aλ | λ ∈ Λ}. Let x̄ = xλ and ȳ = yλ be elements of
∏
λ

Aλ such

that Ann(xλ) = Ann(yλ) and ynλ ∈
∏
λ

Iλ. We must show that xλ ∈
∏
λ

Iλ. Since Ann(x̄) = Ann(ȳ)

and ynλ ∈ Iλ imply xnλ ∈ Iλ by hypothesis and ynλ ∈
∏
λ

Iλ, it follows that xnλ ∈
∏
λ

Iλ. Therefore∏
λ

Iλ is a dn-ideal.

Suppose {Aλ |λ ∈ Λ} are d-terminating. Pick m ∈ N such that termination for each Aλ occurs

at or before stage m. We claim that

Dm

(∏
λ

Aλ

)
= Dm+1

(∏
λ

Aλ

)
= · · · .

Let
∏
λ

Iλ ∈ Dm+1(
∏
λ

Aλ). Then, as proved above, Iλ ∈ Dm+1(Aλ) which implies Iλ ∈ Dm(Aλ)

for each λ. A simple induction argument shows that Dm

(∏
λ

Aλ

)
= Dm+i

(∏
λ

Aλ

)
for all i.

Therefore
∏
λ

Aλ is d-terminating.

We have established in the foregoing proof that if A and B are rings, and m ∈ N, then

Dm(A×B) = Dm(A)×Dm(B).

A moment’s reflection, taking into account Lemma 4.2.6 and the fact that, for any ideal I of A

and any ideal J of B,
√
I × J =

√
I ×
√
J , shows that

D∞(A×B) = D∞(A)×D∞(B) and Drad(A×B) = Drad(A)×Drad(B).

These relations yield the following result.

Proposition 4.3.2. The direct product of finitely many rings is radically d-covered if and only

if each factor is radically d-covered.

Proof. Assume that A and B are radically d-covered. Then

D∞(A×B) = D∞(A)×D∞(B)

= Drad(A)×Drad(B) = Drad(A×B).
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Therefore A×B is radically d-covered. Conversely, assume that A×B is radically d-covered.

Then

D∞(A)×D∞(B) = D∞(A×B)

= Drad(A×B) = Drad(A)×Drad(B).

Since none of these sets is empty, it follows that D∞(A) = Drad(A) and D∞(B) = Drad(B);

which says A and B are radically d-covered.

4.4 Homomorphic images

We show next a class of ring homomorphisms that map d-terminating (respectively, radically

d-covered) rings onto rings with the same features. We give such homomorphisms the following

name.

Definition 4.4.1. A ring homomorphism φ : A→ B is strong if it is surjective and for every

minimal prime ideal P of A, there is a minimal prime ideal Q of B such that φ−1[Q] = P .

It is clear that an isomorphism is a strong homomorphism. In the following example we show

that there are strong homomorphisms which are not isomorphisms.

Example 4.4.2. Let A be a ring which is not an integral domain, and which has exactly one

minimal prime ideal. For instance, Z4 is such a ring. Denote by P the sole minimal prime ideal

of A. The canonical map η : A→ A/P is surjective, but it is not an isomorphism since A is not

an integral domain and A/P is an integral domain as P is a prime ideal. Now, the zero ideal

{0A/P} of A/P is a minimal prime ideal, and η−1(0A/P ) = ker(η) = P ; which shows that η is

strong.

In [11], Dube and Ighedo define a ring homomorphism to be strict if it is surjective and it

contracts maximal ideals to maximal ideals. This they do in order to obtain homomorphisms

that map z-terminating rings onto z-terminating rings. Since our aim in this section is to do

likewise, but for d-termination, it is natural to compare strong homomorphisms with surjective

ring homomorphisms that contract minimal prime ideals to minimal prime ideals. We show

that the class of the latter kind of rings contains strictly the class of strong homomorphisms.
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Proposition 4.4.3. Every strong homomorphism contracts minimal prime ideals to minimal

prime ideals.

Proof. Let Q ∈ Min(B). Then φ−1[Q] is a prime ideal in A, and hence contains some minimal

prime P . By strongness, there exists R ∈ Min(B) such that P = φ−1[R]. We show that R ⊆ Q,

which will imply R = Q by minimality. Let r ∈ R. Since φ is onto, there exists a ∈ A such that

φ(a) = r. Then a ∈ φ−1[R] = P ⊆ φ−1[Q]. Therefore φ(a) ∈ Q, that is, r ∈ Q, hence R ⊆ Q,

where R = Q. Therefore φ−1[Q] = P , which is minimal prime.

Here is an example of a surjective ring homomorphism that contracts minimal prime ideals to

minimal prime ideals, which is however not strong.

Example 4.4.4. Let A be a von Neumann ring with two maximal ideals. For instance, if X is

a discrete space with two points, then the ring C(X) is von Neumann regular and it has two

maximal ideals. Say the maximal ideals of A are M and N . Since A is von Neumann regular,

M and N are actually minimal prime ideals. The canonical map η : A → A/M is surjective,

and since A/M is a field, it has only one prime ideal; its zero ideal, whose contraction under η

is M . Thus η contracts minimal prime ideals to minimal prime ideals. Since N 6= M , there is

no minimal prime ideal whose contraction is N , so η is not strong.

We have some further observations regarding strong homomorphisms, which we now present.

Observations 4.4.5. When we say a homomorphism φ : A → B takes minimal primes to

minimal primes we mean that φ[P ] ∈ Min(B) for every P ∈ Min(A). Recall that a local ring is

a ring with exactly one maximal ideal.

(a) A strong homomorphism takes minimal primes to minimal primes.

(b) A surjective homomorphism that takes minimal primes to minimal primes need not be

strong.

Proof. (a) If φ : A → B is a strong homomorphism and P ∈ Min(A), then there exists some

Q ∈ Min(B) such that P = φ−1[Q]. We show that φ[P ] = Q. Let q ∈ φ[P ]. There exists p ∈ A
such that φ(p) = q. Then p ∈ P = φ−1[Q]. Therefore φ(p) ∈ Q, that is, q ∈ Q, hence φ[P ] ⊆ Q.
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Conversely, let q ∈ Q. Since φ is surjective, there exists p ∈ A such that φ(p) = q. Then

p ∈ φ−1[Q] = P . Therefore φ(p) ∈ φ[P ], that is, q ∈ φ[P ], hence Q ⊆ φ[P ]. Thus φ[P ] = Q.

(b) Let A be a local ring which is not von Neumann regular, and denote by M its sole maximal

ideal. Let P be any minimal prime ideal of A. Consider the canonical map η : A→ A/M . Since

P ⊆M , we have

η[P ] = {η(x) | x ∈ P} = {x+M | x ∈ P} = {M} = {0A/P},

which shows that η takes minimal primes to minimal primes since {0A/P} is a minimal prime

ideal in A/M . We claim that η is not strong. Indeed, since A is not von Neumann regular, M

is not a minimal prime ideal. It however contains a minimal prime ideal, Q, say. Thus,

η−1[{0A/M}] = ker η = M 6= Q,

which shows that there is no minimal prime ideal of A/M whose contraction is Q. Therefore η

is not strong.

Recall from Lemma 3.2.1 that a ring homomorphism φ : A→ B contracts d-ideals to d-ideals

if and only if it contracts minimal prime ideals to d-ideals. An almost verbatim arqument as

employed in Lemma 3.2.1 to prove this establishes the following lemma.

Lemma 4.4.6. Let φ : A→ B be a strong ring homomorphism, and let n be a positive integer.

Then the following statements are equivalent.

1. φ−1[I] ∈ Dn(A) for every I ∈ Dn(B).

2. φ−1[P ] ∈ Dn(A) for every P ∈ Min(B).

3. φ−1[P ] ∈ D(A) for every P ∈ Min(B).

4. φ−1[I] ∈ D(A) for every I ∈ D(B).

Proof. (1) ⇒ (2): This is so because every minimal prime ideal is a d-ideal, and therefore a

dn-ideal, by (1) of Lemma 4.2.6.

(2)⇔ (3): This follows from the fact that φ−1[P ] is a minimal prime ideal for every minimal

prime ideal P , and prime ideals are dn-ideals precisely when they are d-ideals, by the third part

of Lemma 4.2.6.
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(3)⇔ (4): See Lemma 3.2.1 for the proof.

(2)⇒ (1): Exactly as in the proof of Lemma 3.2.1.

We now give the following result.

Proposition 4.4.7. Let φ : A→ B be a strong homomorphism.

(a) If A is d-terminating, then so is B.

(b) If A is radically d-covered, then so is B.

Proof. (a) Let n be a positive integer such that Dn(A) = Dn+i(A) for every i = 1, 2, . . . . We

aim to show that the same n works for B as well. Fix i ∈ N, and let I ∈ Dn+i(B). Since

φ is strong, φ−1[I] ∈ Dn+i(A), by Lemma 4.4.6, and hence φ−1[I] ∈ Dn(A). Consider any

b1, b2 ∈ B such that Ann(b1) = Ann(b2) and bn2 ∈ I. Pick a1, a2 ∈ A with φa1 = b1 and

φa2 = b2. Then Ann(φa1) = Ann(φa2) for every Ann(a1) = Ann(a2), by Observation 4.4.5,

since φ is strong. Now, an2 ∈ φ−1[I] implies an1 ∈ φ−1[I] since φ−1[I] is a dn-ideal. Consequently,

bn1 = φ(a1)
n = φ(an1 ) ∈ I. This shows that I is a dn-ideal, and therefore Dn(B) = Dn+i(B).

Thus, B is d-terminating.

(b) Let I ∈ Drad(B). Then
√
I is a d-ideal, and therefore φ−1

√
I is a d-ideal in A. But

φ−1
√
I =

√
φ−1[I]; so, by hypothesis, there exists a positive integer n such that φ−1[I] ∈ Dn(A).

Exactly as above, this implies I ∈ Dn(B), which shows that Drad(B) ⊆ D∞(B), and hence the

desired equality.

Corollary 4.4.8. If A[[x]] is d-terminating (respectively, radically d-covered) then A has the

same property.

Corollary 4.4.9. If Jac(A) is contained in every higher order d-ideal of A, then A is d-

terminating (respectively, radically d-covered) if and only if A/ Jac(A) has the same property.

Proof. For brevity, we write J = Jac(A). The left-to-right implication always holds since, as

observed above, the canonical mapping A→ A/J is strong.

Conversely, assume that A/J is d-terminating. Then there exists a positive integer n such that

Dn(A/J) = Dn+i(A/J) for every i = 1, 2, . . .. We shall show that

Dn(A) = Dn+1(A) = Dn+2(A) = · · · .
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Fix i ∈ N, and let I ∈ Dn+i(A). By hypothesis, J ⊆ I, and therefore I/J is an ideal of A/J .

Since φ is strong, φ−1[I] ∈ Dn+i(A), by Lemma 4.4.6, and hence φ−1[I] ∈ Dn(A). Consider any

y1, y2 ∈ A/J such that Ann(y1) = Ann(y2) and yn2 ∈ I/J . Pick x1, x2 ∈ A with φx1 = y1 and

φx2 = y2. Then Ann(φx1) = Ann(φx2) for every Ann(x1) = Ann(x2), by Observation 4.4.5,

since φ is strong. Now, xn2 ∈ φ−1[I] implies xn1 ∈ φ−1[I] since φ−1[I] is a dn-ideal. Consequently,

yn1 = φ(x1)
n = φ(xn1 ) ∈ I/J . Hence I/J ∈ Dn(A/J). By Lemma 4.4.6, I ∈ Dn(A) since I is the

inverse image of I/J under the (strong) canonical map A→ A/J . Therefore A is d-terminating.

The proof for the result in parenthesis is similar.
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