1	CROP YIELD, WEED INFESTATION AND SOIL FERTILITY RESPONSES TO
2	CONTRASTED PLOUGHING INTENSITY AND MANURE ADDITIONS IN A
3	MEDITERRANEAN ORGANIC CROP ROTATION
4	
5	
6	Paola Baldivieso-Freitas ^{a, b} , José M. Blanco-Moreno ^{a, b} , Laura Armengot ^{a, b, c} , Lourdes
7	Chamorro ^{a, b} , Joan Romanyà ^{d, e} , Francisco Xavier Sans ^{a, b}
8	
9	^a Department of Evolutionary Biology, Ecology and Environmental Sciences, University of
10	Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
11	^b Biodiversity Research Institute (IRBio)
12	^c Research Institute of Organic Agriculture (FiBL), 5070 Frick, Switzerland
13	^d Department of Natural Products, Plant Biology and Soil Science, University of Barcelona, Av.
14	Joan XXIII s/ n, 08028, Barcelona, Spain.
15	^e Research Institute of Nutrition and Food Safety (INSA), Av. Prat de la Riba, 171, 08921,
16	Barcelona, Spain

17 Abstract

18 Conservation agriculture and organic farming are two alternative strategies that aim to improve 19 soil quality and fertility in arable cropping systems through reducing tillage intensity, 20 maintaining soil cover and increasing nutrient recycling, using farmyard and green manures. 21 However, these practices can increase weed infestation or decrease nutrient availability. The 22 objectives of this study were to evaluate the effects of tillage type (mouldboard vs. chisel 23 ploughing), fertilization and green manure on soil parameters (SOC, N, bulk density, carbon stocks, and soil microbial biomass C_{mic} and N_{mic}), weed abundance and crop yields in a four-24 25 year rotation of spelt, chickpea, winter wheat and lentil in the Mediterranean region (Catalonia, 26 Spain). Tillage and green manure did not affect crop yields or weed biomass, although during 27 the last year of the experiment, plots with mouldboard ploughing had less weed biomass and 28 higher lentil biomass. Fertilization was the most important factor, increasing the cereal yields, 29 SOC, N and soil microbial biomass (Cmic and Nmic) content of the soil. However, fertilization did 30 not favour chickpea and lentil crops because weed competition limited legume crop growth. 31 Overall, there was a loss of SOC and a reduction of carbon stocks over the four years of the trial 32 in the soil because of the deep soil tillage (25 cm) and low crop productivity irrespective of 33 tillage type. In contrast, N content increased in all of the plots and was enhanced by fertilization. 34 The use of chisel plough stratified the distribution of SOC and N in the surface layers (0-10 35 cm). Both C_{mic} and C_{mic}/SOC ratio increased in fertilized treatments, suggesting an increased 36 lability of SOC. The application of more stabilized organic matter may be a better practice to 37 build up soil organic matter and to maintain crop yields in organic farming systems.

38

39 Keywords: chisel plough; carbon stock; amendments; microbial biomass; cover crop

40

41 1. INTRODUCTION

42 Soils play a key role in agricultural systems because they represent the basis of food production 43 (Fließbach et al., 2007). However, most arable soils are prone to degradation, mainly caused by 44 intensive soil use (Gadermaier et al., 2012). Crop rotation, cover crops and reduced or no tillage 45 practices aim to improve soil quality in arable cropping systems. Farmyard manure and green 46 manure (organic fertilizers) can also contribute to soil fertility and quality. While most of these 47 practices are used in organic farming cropping systems, the adoption of reduced tillage practices 48 is not widespread in such systems (Gadermaier et al., 2012). The increase of weed infestation 49 and the limited availability of N mainly at the beginning of the growing season are probably the 50 main problems that reduced tillage pose to organic farmers (Gadermaier et al., 2012; Peigné et 51 al., 2007; Sans et al., 2011). On the other hand, reduced tillage is highly suited to conserve soil 52 fertility and prevent erosion (Berner et al., 2008; Gadermaier et al., 2012) by enhancing soil 53 organic carbon (SOC) content, microbial activity and soil structure (Mäder and Berner, 2012; 54 Peigné et al., 2013).

55 Cover crops can also contribute to the accumulation of organic matter in the upper soil layer and 56 they can reduce weed infestation (Hobbs et al., 2008; Masilionyte et al., 2017). However, the 57 use of cover crops must consider the possible consequences of competition for nutrients and 58 water with cash crops (Plaza-Bonilla et al., 2017).

Crop production in organic farms is often limited by the lack of nitrogen. In such farms nitrogen inputs are needed to restore the amount of N depleted by crops (Fließbach et al., 2007). The use of organic fertilizers, in one hand, is an effective way to increase soil organic matter content (Alvarez, 2005) and N availability (Krauss et al., 2010; Lal, 2009; Maltas et al., 2013). On the other hand, suitable crop rotations containing legumes are fundamental to produce surpluses in N budgets (Gadermaier et al., 2012). However, the residue from a cover crop rich in legume species is often mineralised very fast, and nutrients can be released before the demands of the

subsequent cash crop (Pang and Letey, 2000) and thus be lost or used by weeds. Therefore, the
use of cover crops for supplying N to crops must be adapted to the reduced tillage systems
(Peigné et al., 2007). In consequence, it is considered of great interest to gain knowledge on the
N dynamics after the introduction of green manures and reduced tillage practices in organic
arable cropping systems.

71 Links between C and N cycling are important to understand N supply in arable systems. The 72 application of organic manures, and reducing tillage intensity can increase the SOC in topsoil, 73 improve soil physical and biological properties and lead to reduced carbon losses or even to 74 increased soil carbon storage in the soil (Cooper et al., 2016; Gattinger et al., 2012). In addition, 75 soil microbiological activity is of primary importance in organic farming because N supply is 76 mainly dependent on the degradation of soil organic matter by soil micro-organisms (Vian et al., 77 2009). In this case, and because of their high sensitivity, C and N in soil microbial biomass can 78 be used as indicators of changes in soil owing to management in the short term (Fließbach et al., 79 2007).

80 Few experiments integrate reduced tillage into organic farming systems, and most of them are 81 performed in temperate climates (Berner et al., 2008; Krauss et al., 2010; Peigné et al., 2007; 82 Pekrun et al., 2003). So far, in Mediterranean climates reduced tillage practices have been 83 studied only in conventional systems (Kassam et al., 2012; López-Garrido et al., 2014; Ward et 84 al., 2012), and thus there is a lack of long term reduced tillage studies in organic systems. The 85 low organic matter content with poor soil structure of the Mediterranean arable soils and the 86 climatic constraints that limit plant growth during summer may constrain the chances to 87 improve soil quality by means of reduced tillage and green manures (Kassam et al., 2012; 88 Romanyà and Rovira, 2011; Hernanz et al, 2009).

Our aims were to study the effects of reduced tillage, farmyard manure and green manure (cover
crop) on crop yields, weed abundance and soil organic C stocks and N availability. To address

91	these aims we set in 2011 a mid-term experiment that was monitored during a four-year rotation
92	of spelt (Triticum spelta L., 2011-12), chickpea (Cicer arietinum L., spring 2013), winter wheat
93	(Triticum aestivum L., 2013-14) and lentil (Lens culinaris Medik., spring 2015).
94	We hypothesized that a) the lower disturbance of the soil profile by reduced tillage plus the
95	addition of farmyard and green manures contribute to an increase, or at least maintain SOC and
96	N stocks. These changes, combined with the increased stability of the soil system, b) will
97	increase microbial biomass and N availability; and c) will allow a sustainable crop performance
98	in reduced tillage organic crops.
99	
100	2. MATERIALS AND METHODS
101	2.1. Site conditions

102 In November of 2011, a midterm field experiment was initiated in Gallecs (41°33'31.9"N

103 2°11'59.5"E), a peri-urban agricultural area of 753 ha situated 15 km north of Barcelona

104 (Catalonia, Spain). Gallecs has a Mediterranean climate; the mean annual temperature and

105 precipitation are 14.9 °C and 647 mm, respectively. At the beginning of the experiment, the soil

106 properties of the field were evaluated. On average, the mineral fraction consisted of $43.3 \pm$

107 6.9 % sand, 26.9 ± 4.7 % loam and 29.7 ± 3.7 % clay; the texture was classified as loamy-clay

108 (Soil Survey Staff, 1998); the soil type was Haplic Luvisol (IUSS Working Group WRB, 2015);

109 the average soil organic matter was 1.5 \pm 0.1 % (Walkley-Black); and the pH (H_2O) was 8.1 \pm

110 0.1.

111 2.2. Field experiment

112 The trial consisted of a four-year crop rotation in a strip-split-block design of three factors (with

113 two levels each): tillage system (mouldboard ploughing (P) vs. chisel (C)), fertilization

114 (composted farmyard manure (+F) vs. no fertilizer (-F)) and green manure (with green manure

115 (+G) vs. no green manure (-G)). The factors were arranged with tillage treatments laid out in 116 strips; fertilization was applied in perpendicular strips across the experiment, and the tillage 117 strips were split into subplots for the green manure treatment. In total, 32 plots measuring 13 m 118 \times 12 m were established, comprising four replicates of each treatment (Figure 1). The field had 119 been under organic management for five years prior to the trial establishment, with a typical 120 dryland Mediterranean crop rotation that alternated winter cereals and legumes in spring for 121 human consumption. The crop rotation of this trial consisted of spelt (2011-2012), chickpea 122 (2013), winter wheat (2013-2014) and lentil (2015) (Figure 2).

123 Two tillage systems were used: a mouldboard plough (P) (soil inversion at 25 cm depth) plus a 124 rotary harrow (5 cm depth), and a chisel plough (C) (no soil inversion at 25 cm depth) plus a 125 rotary harrow (same as for the mouldboard plough). The fertilization treatment (+F) consisted of 126 partially composted farmyard manure, composed of cattle manure and plant residues, obtained 127 without managing and controlling the process, by gradually accumulating the material that was 128 seasonally available, according to the normal practice used in the area. In consequence, the 129 composted manure had a variable composition. The manure was applied every year before 130 sowing the main crop. The total amount of manure applied each year differed in relation to the 131 nutrient availability in the fertilizer and the nutritional demands of each crop (Table 1). The 132 organic fertilizers were mixed in the soil by means of a chisel or mouldboard plough in 133 accordance with the tillage treatment. In September 2012 and 2014, cover crops (+G) were 134 sown in the corresponding 16 plots, consisting of a mixture of oat (Avena sativa L.), white 135 mustard (Sinapis alba L.), bitter vetch (Vicia ervilia (L.) Willd.) and common vetch (Vicia 136 sativa L.) (Table 1). At the end of March of the following year, cover crops (as well as the 137 weeds developing in –G treatment) were incorporated into the soil as green manure by disc 138 harrowing.

Weeds were not controlled during the first year of the crop rotation due to an extremelyprolonged rainy period that prevented the mechanical post-emergence weeding. In the second

141 year of the rotation, weeds were controlled with an inter-row cultivator adapted to pass between 142 the seeding rows of chickpea. The third year of the rotation, weeds were controlled with a flex-143 tine harrow during the wheat crop season. Finally, the last year of the rotation, lentil was 144 established poorly because of drought and was outcompeted by weeds despite the manual 145 removal of lamb's quarters individuals (*Chenopodium album* L.), which was the most important 146 weed during the lentils' growth (Table 1).

147 2.3. <u>Weed and crop assessment</u>

148 Crop density was evaluated every year once the crop plants were well-established. The

individuals were counted in a sample 0.5 m long, comprising two crop lines in four replicates ineach plot.

151 Before crop harvest, four permanent square frames of 1 m^2 were randomly established, one in 152 each quarter of the plot, to assess weed and crop aboveground biomass. The total aboveground 153 biomass of weeds and crop was harvested in each frame and oven-dried at 60 °C for 48 h. The 154 aboveground biomass of green manure and weeds was also evaluated during the green manure 155 period. Grain crop yield was assessed in the inner 9 m \times 8 m of each plot by a plot combine 156 each year (except for lentils). The straw of the crops was not removed from the field and was 157 incorporated with the stubble into the soil by disc harrowing at 10 cm deep. The spelt straw was 158 chopped by a hammer straw chopper before being incorporated

159 2.4. Soil sampling and analyses of SOC, N, bulk density and carbon stocks

In November 2011 and 2015, the soil was studied at four depths: from 0 to 10 cm, from 10 to 20 cm, from 20 to 30 cm and from 30 to 40 cm. The first two depths were sampled in all of the plots, whereas the two deepest soil layers were sampled only in plots with farmyard manure and green manure with mouldboard ploughing and with chisel ploughing (P + F + GM and C + F +GM). To study soil bulk density, 3 soil cores of 6.2 cm diameter and 10 cm deep were extracted

165 in each soil layer at each plot. Soil samples were oven-dried at 90-100 °C for 48 h. Soil bulk 166 density was calculated according to the following formula: Bulk density $(g \text{ cm}^{-3}) = dry$ soil 167 weight $(g) / \text{ core volume (cm}^3)$.

168 To study total soil organic carbon (SOC) and total nitrogen content (N), 20 soil cores of 2.5 cm 169 of diameter were systematically extracted every 2 meters of distance in each plot. Each set of 20 170 cores extracted at each plot and depth constituted a sample. Soil samples were kept in plastic 171 bags, properly labelled, in a fridge at 4 °C until analysis. Samples were air dried and sieved on a 172 2 mm mesh. A minimum amount of 50 g dried soil was prepared for SOC and N analysis, and 173 the rest was separated for the soil microbial analyses (see below section 2.5). Total carbon and 174 total nitrogen were analysed through dry combustion with a LECO© Truspec CHNS analyser 175 (Bremner, 1996). The Walkley-Black procedure/ISO 14235 was finally chosen to indirectly 176 estimate the soil organic carbon (SOC) due to the high proportion of carbonates.

- 177 Based on the soil bulk density and SOC, carbon stocks were calculated according to the
- 178 following formula (Lee et al., 2009): Soil carbon stock ($g m^{-2}$) = soil carbon content

179 (mg g⁻¹) × depth of soil layer (m) × area (m²) × bulk density (g cm⁻³) × 10⁶.

180 2.5. <u>Soil microbial biomass analyses</u>

181 All of the soil microbial analyses were carried out on moist soil samples adjusted to a water

182 content corresponding to 40–50 % of maximum water retention capacity. The soil microbial

183 biomass (C_{mic} and N_{mic}) was estimated using chloroform fumigation extraction (CFE) following

184 Vance et al. (1987). CFE was done in triplicate on 20 g (dry matter) subsamples that were

185 extracted with 80 ml of a 0.5 M K₂SO₄ solution. Total organic carbon (SOC) in soil extracts was

- 186 determined by infrared spectrometry after combustion at 850°C. Total nitrogen (N) was
- 187 measured subsequently in the same sample by chemoluminescence. The soil microbial biomass

188 was then calculated according to the formula: C_{mic} (µg g⁻¹ oven dry soil) = EC/ k_{EC} , where EC =

189 (SOC in fumigated samples - SOC in control samples) and $k_{EC} = 0.45$ (Joergensen, 1996). N_{mic}

190	$(\mu g g^{-1})$	oven dry soil) = E	N/k_{EN} , where E	EN = (N extracte)	d from fum	nigated sam	ıples – N
-----	------------------	----------------------	----------------------	-------------------	------------	-------------	-----------

191 extracted from control samples) and $k_{\text{EN}} = 0.40$ (Joergensen and Mueller, 1996).

192 2.6. <u>Statistical analyses</u>

193 The individual and combined effects of the type of tillage (P vs. C), fertilization (+F vs. -F) and 194 green manure (+G vs. -G) on crop yields (spelt, chickpea, winter wheat), lentil aboveground 195 biomass and weed aboveground biomass were evaluated using linear mixed effects models. For 196 spelt crop, the factor of green manure was not analysed because the green manure crop was 197 implemented after it. The weed biomass was introduced in the models as a covariate to evaluate 198 the effect of weeds on grain yields (or crop biomass, when yield was not available). Tillage, 199 fertilization and green manure were used as fixed factors, and the block was introduced as a 200 random factor. The normality of residuals was verified using the Shapiro-Wilk test, and 201 homoscedasticity was assessed using Bartlett's test. To meet the normality and 202 homoscedasticity requirements, we used logarithmic or square root transformation on the data 203 when necessary. The same statistical procedure was followed to analyse the effects of tillage, 204 fertilization, green manure and depth of the soil layers and the interaction between the factors on 205 the following soil parameters: SOC, N, soil bulk density, carbon stocks, and soil microbial 206 biomass (C_{mic} and N_{mic}). The changes in soil quality indicators over the 4-year rotation were also 207 studied, comparing soil samplings carried out twice during the experiment ($\Delta = t_f - t_i$). The first 208 analysis was performed at the beginning of the trial, representing the initial status of the soil (t_i) , 209 and the second analysis was performed at the end of the experiment (t_f) . All the analyses were 210 performed in R version 3.2.2 (R Development Core Team, 2015) using the package lme4 (Bates 211 et al., 2015) for linear mixed effects model fitting.

213 3. RESULTS

214 3.1. Crop yields and weed biomass

215 No differences in the density (individuals/ m^2) of the established crops were found between 216 treatments in the first two years (spelt and chickpea), although the establishment of winter 217 wheat and lentil differed according to the type of tillage and the presence or not of green manure 218 the previous year (wheat) or months (lentil). Wheat establishment was significantly higher in 219 plots with mouldboard ploughing and no green manure compared to chisel (T (P vs. C) \times G (+G 220 vs. -G): p = 0.009). More plants of lentil emerged in plots with no green manure in general, and 221 in plots with green manure, crop emergence was significantly higher in plots with mouldboard 222 ploughing ((T (P vs. C) \times G (+G vs. -G): p = 0.04).

223 The winter wheat crop had the highest yields $(3200 \pm 280.08 \text{ kg ha}^{-1})$, followed by spelt (2328) 224 \pm 100.51 kg ha⁻¹) and chickpea (384 \pm 65.38 kg ha⁻¹). Lentil did not produce grain because 225 extended drought dramatically affected both flowering and fruiting. Cereal yields were 226 significantly higher in plots with fertilization; both the spelt and winter wheat yields were 227 higher in plots with farmyard manure (Table 2 and Figure 3). Legumes did not follow the same 228 trend; the chickpea yield and lentil biomass did not vary in relation to fertilization. Regarding 229 the effects of the type of tillage and the incorporation of cover crops as green manure, crop 230 yields did not vary significantly, with the exception of lentil biomass. The lentil biomass was 231 significantly higher in plots that underwent mouldboard ploughing (Table 2 and Figure 3).

The effect of tillage on aboveground weed biomass varied over time. Although no significant differences were found in the first two crops in the rotation, the aboveground weed biomass was significantly lower in plots tilled with mouldboard ploughing than in plots tilled with chisel ploughing during wheat and lentil crop. The incorporation of the cover crop as green manure did not affect weed biomass during subsequent crops of chickpea (in the same year) and winter wheat (in the following year). However, in the fourth year (during the lentil crop), weed

238 biomass was significantly higher in plots in which cover crops had been incorporated into the

soil prior to lentil seeding. No statistically significant interaction between factors were found,

- 240 with the exception of a significant lower weed biomass in plots with fertilization and
- 241 mouldboard ploughing in the spelt crop (Table 2).
- 242 The results showed that the weed biomass did not affect spelt and winter wheat grain yield
- (slope for the effect of weed biomass on spelt yield: 1.60 ± 4.17 , p = 0.7 and slope for the
- effect of weed biomass on winter wheat yield: -6.54 ± 26.99 , p = 0.8). In contrast, chickpea
- 245 yield and lentil biomass correlated negatively with weed biomass (slope for the effect of weed
- biomass on chickpea yield: p < 0.001 and slope for the effect of weed biomass on lentil

247 biomass: p = 0.003).

- 248 Green manure biomass did not differ between treatments in 2013 or 2015. The analysis of the
- 249 effect of the green manure on weed abundance and on the crop yield of the subsequent crop
- 250 demonstrates that cover crop was effective in controlling weeds during its growing season but
- 251 not the following year. The effect of green manure on the control of weed biomass was
- statistically significant (+G vs. -G: p < 0.001 in 2013 and 2015).

253 3.2. Changes in SOC and N during the four years of the experiment

254 Overall, SOC decreased significantly (t_f vs. t_i : p < 0.001) in all of the treatments over the 4-year 255 rotation of the experiment, with the exception of the soil layer between 0 to 10 cm deep in plots 256 with chisel plough and fertilization. In contrast, N content increased across all the treatments (t_f 257 vs. t_i : p < 0.001) (Table 3 and Figure 4). The highest SOC losses occurred at superficial soil 258 layers (0 to 10 cm) of plots without fertilization. SOC decreases were significantly higher at 259 deeper soil layers (10 to 20 cm) of plots with chisel plough (C) than of plots with soil layers 260 inversion using mouldboard ploughing (P) (Table 4). Although no significant interaction was 261 found between the type of tillage and fertilization, our results showed that SOC content at 0 to 262 10 cm was maintained over the 4-year rotation in plots with chisel and fertilization (Table 3 and 263 Figure 4).

264 Regarding the changes in N content, the highest increases occurred in plots with fertilization

265 (Table 3). The type of tillage also affected ΔN ; plots with chisel ploughing had higher increase

than plots with mouldboard ploughing (Table 4 and Figure 4). However, this significant

 $267 \qquad \text{increase in } N_t \text{ content occurred at the top soil layer of plots with chisel and fertilization, as}$

268 indicated by the significant interaction between fertilization, tillage and soil layer (Table 4).

269 Green manure did not show any effect. No significant differences were found in \triangle SOC and

 $270 \quad \Delta N_{tot}$ over the 4-year rotation of the trial according to the presence of green manure.

Overall, the C:N ratio of the soil decreased by 32 % after the four years (t_f vs. t_i : p < 0.001), and there was a significant interaction between tillage and fertilization, indicating a higher C:N ratio in plots with fertilization and reduced tillage compared to plots with mouldboard ploughing, irrespective of the soil layer (Table 4).

3.3. Bulk density and carbon stocks after four years of reduced tillage and organic
inputs

After four years of the experiment, soil bulk density did not vary significantly in relation to the
different experimental factors. Deeper soil layers had a higher bulk density than surface layers,
but this pattern was not associated with the type of tillage or the organic fertilizer inputs, such as
composted farmyard manure and green manure (Table 5).

281 Carbon stocks, assessed from the SOC content and the soil bulk density of soil samples in

282 different soil layers, were significantly higher in plots fertilized with composted farmyard manure

and were higher at deeper soil layers from 10 to 20 cm (Table 5), although this is mainly

associated with higher bulk density. Furthermore, there was a significant interaction with the type

285 of tillage and green manure; higher carbon stocks were detected in plots with chisel and green

286 manure. The effect of the treatments at different soil layers showed some significant results as

287 well. Carbon stocks were higher at deeper soil layers in plots with fertilization, and the plots with

288 mouldboard ploughing presented lower carbon stocks at superficial soil layers (Table 5).

289 The diachronic analyses of carbon stocks over the 4-year rotation at four different soil layers (0 to

290 10 cm, 10 to 20 cm, 20 to 30 cm and 30 to 40 cm) in relation to the tillage (P +F + GM and C + F

291 + GM) indicate that carbon stocks were significantly lower in deeper soil layers (soil layer 20 to

292 30 cm vs. superficial soil layers: p < 0.001; and 30 to 40 cm vs. superficial soil layers: p < 0.001).

293 Overall, carbon stocks decreased after four years, irrespective of the soil layer (p = 0.01), and the

294 negative effect of soil layer inversion using mouldboard ploughing was only statistically

significant in the two upper soil layers (0 to 10 and 10 to 20 cm, p < 0.001).

296 3.4. Changes in soil microbial biomass

297 Soil microbial biomass (assessed as the C_{mic} and N_{mic}) was significantly higher in plots with

farmyard manure (Table 6 and 7). Furthermore, soil microbial biomass was lower at deeper soil

 $299 \qquad \text{layers, and the significant interaction with fertilization reflects differences in C_{mic} and N_{mic} and N_{mic} in C_{mic} and N_{mic} and $N_{$

300 fertilized and unfertilized plots (Table 7). Superficial soil layers showed greater differences

 $301 \qquad \text{between fertilized and plots without fertilization in C_{mic} and N_{mic}, compared to soil layers at 10}$

302 to 20 cm. Plots with mouldboard ploughing showed similar C_{mic} at 0-10 cm depth and at 10 to

30320 cm depth; conversely, plots with chisel ploughing showed significantly higher microbial304biomass at superficial soil layers compared to the deeper soil layers (Table 6 and Figure 5). The305highest C_{mic} was observed in superficial layers (0 to 10 cm) in plots with farmyard manure and306chisel ploughing (Figure 5). N_{mic} did not vary significantly between soil layers in interaction307with tillage, and C_{mic} and N_{mic} were not significantly affected by the presence or absence of308green manure (Table 6 and 7).

The comparison of C_{mic} and N_{mic} between superficial and deeper soil layers in relation to the tillage (plots P +F + GM vs. plots C + F + GM) indicate that both C_{mic} and N_{mic} were decreased in deeper soil layers (20 to 30 cm C_{mic} : p<0.001, N_{mic} : p<0.001 and 30 to 40 cm C_{mic} : p<0.001, N_{mic} : p<0.001), although no significant differences were found in relation to tillage (data not shown).

314 The differences in C_{mic} and N_{mic} between the first and last year of the trial (ΔC_{mic} and ΔN_{mic}) did 315 not vary in relation to the individual factors (tillage, fertilization and green manure). Cmic 316 increased overall after the four years of the trial (t_f vs. t_i: p<0.001). Significant interactions were 317 found between fertilization, tillage and soil depth, indicating higher increases of C_{mic} in plots 318 with chisel plough (T: P vs. C: p<0.001) and fertilization (F: + vs. -: p<0.001) at 0 to 10 cm and 319 decreases in the 10 to 20 cm layer (depth 10 to 20 vs. 0 to 10 cm: p<0.001). In contrast, plots 320 with mouldboard ploughing did not show significant changes in C_{mic} at different soil depths. 321 The N_{mic} decreased, in general, in all the plots after the four years of the trial (t_f vs. t_i: p<0.001), 322 but the highest losses of N_{mic} were at superficial soil layers (depth 10 to 20 vs. 0 to 10 cm: 323 p < 0.001). Additionally, there was a significant interaction between the year and the type of 324 tillage, indicating lower N_{mic} values in the last year in plots with chisel (T: P vs. C: p = 0.02); 325 this was associated with the superficial layers, although no significant interactions were found 326 (data not shown).

- 327 The C_{mic} /SOC ratio increased in all of the plots after the four years of the experiment (t_f vs. t_i :
- p<0.001). Furthermore, the C_{mic}/SOC after the four years of the experiment varied significantly
- 329 with soil depth, and this factor also interacted significantly with the fertilization and the type of
- tillage (Table 7). We found the highest ratio at the superficial layers in plots with chisel plough
- and no fertilization compared to plots with chisel plough and no fertilization at deeper soil
- 332 layers (Table 7 and Figure 5).

334 4. DISCUSSION

4.1. Crop yields and weed biomass

336 Our study reveals that fertilization is the most important factor affecting crop yields, particularly 337 during the cereal cropping period. Organic systems rely upon the use of organic fertilizers and 338 amendments that typically release nutrients (especially N) at a slower rate compared with 339 mineral fertilizers. Nitrogen inputs are critical to the productivity of these systems, and the 340 application of farmyard manure seems to be effective to maintain cereal yields (Fließbach et al., 341 2007; Maltas et al., 2013). Conversely, the grain yield of chickpea and aboveground biomass of 342 lentil were not increased by fertilization. In general, legumes do not need supplemental N 343 fertilization (Clayton et al., 2003) because they can obtain a significant proportion of its N by

344 symbiotic nitrogen fixation (Walley et al., 2005).

345 The type of tillage had no significant effects on grain yields of cereals (spelt and winter wheat)

346 and chickpea. Other studies under Mediterranean conditions obtained similar results (López-

347 Garrido et al. 2014). However, many studies from temperate regions reveal lower crop yields in

348 systems with no soil layer inversion by chiselling (Cooper et al., 2016) because of a

349 combination of a shortage of nutrients and competition from weeds (Mäder and Berner, 2012;

350 Peigné et al., 2013). Indeed, the lower biomass of lentil in plots with reduced tillage can be

351 explained by the higher weed biomass under these conditions.

352 The positive effect of fertilization and mouldboard ploughing in controlling weeds in spelt and

353 winter wheat highlights the importance of both factors in enhancing the competitive ability of

354 crops. Weed abundance did not affect significantly spelt and winter wheat grain yield,

indicating that the crop was able to suppress the growth of weeds to a point where their effect

on crop growth was negligible. In contrast, the effect of weed biomass on chickpea yields and

357 lentil crop biomass was statistically significant, indicating a strong negative correlation between

358 weeds and legume crops. The growth of weeds was significantly enhanced by fertilization

359 during legume crops and, consequently, they significantly reduced the growth of chickpea and 360 lentil. Some studies indicated that lentil is very vulnerable to weed competition because of its 361 short stature, slow establishment, and limited vegetative growth (Ahmadi et al., 2016). The high 362 amount of weed biomass in chickpea and lentil irrespective of the treatment can be related to the 363 inadequate post-emergence weed control. Our results indicated that mouldboard ploughing 364 increased weed control and consequently lentil crop biomass. Therefore, improving weed 365 management in legume crops is critical to their feasibility in organic farming because of the 366 high susceptibility of such crops to weed competition.

367 Although we expected a negative or neutral effect of green manures on weed abundance, green 368 manure increased weed abundance during the subsequent lentil crop. The extremely weak 369 growth of lentil as a result of drought may have reduced the competitive ability of the crop and 370 promoted weed growth. These results call for a careful evaluation of the insertion of cover crops 371 in Mediterranean crop rotations (Plaza-Bonilla et al. 2017).

4.2. Changes in SOC, carbon stocks and N change during the experiment?

373 The amount of SOC stored in the soil is determined by the balance production of organic matter 374 by plants and decomposition of organic matter by soil organisms. Each of these processes is 375 controlled by physical, chemical, and biological factors (Guo and Gifford, 2002). In organic 376 arable cropping systems, the intensity of soil disturbance, the farmyard manure and green 377 manure fertilization are overriding factors that determine the amounts of SOC and N and their 378 pattern of distribution in the soil profile (Gattinger et al., 2012). Some authors have indicated 379 that SOC is enhanced by reduced tillage practices after several years (Mäder and Berner, 2012; 380 Peigné et al., 2013). However, other studies were unable to demonstrate such a positive effect 381 (Berner et al., 2008). Our study shows losses of SOC irrespective of the ploughing intensity, 382 indicating that Mediterranean low input farming systems may reduce SOC content and 383 consequently soil carbon stocks. It is interesting to note that such losses were lower in plots with

384 chisel than in plots with mouldboard ploughing. Similar to other studies, reduced tillage 385 stratified SOC and consequently soil carbon stocks and microbial biomass concentrated in the 386 upper layers especially in fertilized plots (Berner et al., 2008, Cooper et al., 2016, Gadermaier et 387 al., 2012). It is worthy to highlight that soil inversion by mouldboard ploughing reduces 388 carbon stocks in the topsoil mainly in unfertilized soils while it increases SOC at deeper layers. 389 As the SOC losses also occurred in reduced tillage treatments, they must relate to other aspects 390 of organic farming practices. Crop productivity is one of the main drivers of carbon stocks in 391 arable systems. Both carbon stocks and crop productivity may be enhanced by crop fertilization 392 practices (Johnston et al., 2009). The cereal grain yield even in our fertilized plots was less than 393 half that of conventional systems in the region (Ministerio de Agricultura y Pesca, Alimentación 394 y Medio Ambiente, 2009), indicating a low plant productivity in comparison to neighbouring 395 cereal monocultures. This may explain SOC losses throughout the soil profile. Moreover, low 396 productivity of legume crops as compared to cereals may further contribute to decrease soil 397 organic matter in such crop rotations. These SOC loses may be partly compensated by the 398 addition of farmyard manure. In these experimental systems, organic fertilization was crucial to 399 maintain SOC level and to enhance cereal crop productivity, but it reduced productivity in 400 legume crops. This suggests in one hand nutrient limitation for cereal productivity and on the 401 other hand a negative effect of organic fertilization in rotations including legumes. As the use of 402 fresh, unstabilized materials may induce the mineralization of native SOC stocks (Molina-403 Herrera and Romanyà, 2015; Romanyà et al., 2012), the addition of more stabilized composted 404 organic materials may have contributed to building up SOC stocks. 405 There is a broad support in the literature for the positive effects of cover crops on SOC (Poeplau 406 and Don, 2015). However, our results suggest that the incorporation of crop residues with low 407 C:N ratio, such as those from legumes, into the soil can accelerate SOC decomposition,

408 although other studies show positive responses on SOC levels in response to legumes (Beedy et

409 al., 2010). The lack of response of green manure in our experiment may have been due to the

410 general low plant productivity in the experimental area or lack of effect over short time-spans411 (Biederbeck et al., 1998).

412 N content was clearly enhanced after the 4-year rotation in all the plots. Our results show that N 413 increase was significantly higher with the incorporation of farmyard manure, and the highest 414 increase occurred in plots with reduced tillage. Increased N levels after adding manures have 415 also been reported by other authors (Krauss et al., 2010; Maltas et al., 2013). In contrast, we did 416 not find any significant effect of the incorporation of green manure on the increase of the N. 417 indicating that the effect of applying farmyard manure was more important. Slight increases of 418 N amount in unfertilized plots can be attributed to N fixation or to atmospheric deposition (Pang 419 and Letey, 2000), which in the area may be as high a 15-22 kg ha⁻¹ year⁻¹ (Vallejo et al., 2005). 420 In our experimental site in Gallecs this value can be especially high because of its proximity to

421 urban areas (highways, industry, etc.) (Ochoa-Hueso et al., 2011).

422

423 4.3. Changes in soil microbial biomass and N availability

424Reduced tillage caused a stratification of soil microbial biomass in the soil profile, which425parallels total SOC content. In agreement with previous studies (Vian et al., 2009), our results426on microbial biomass (C_{mic} and N_{mic}) indicated that shifting from conventional to reduced tillage427modifies crop residue distribution in the soil profile and environmental conditions for soil428micro-organisms. Increased organic residues in top layers may go along with a decrease in the429turnover rate of the SOC that may increase N immobilization and produce N shortages for crops430(Pekrun et al., 2003; Vian et al., 2009).

431 In our experiment, the increase of C_{mic} after four years of trial can be mainly explained by the

432 addition of manures. The addition of labile sources of SOC promotes soil microbial activity and

433 consequently an increase of microbial biomass (Molina-Herrera and Romanyà, 2015; Fließbach

434 and Mäder, 2000). Reduced tillage has also been found to increase microbial biomass in surface 435 soils, although its effects have been found to be much stronger when combined with 436 fertilization. These increases, however, have not been related to increases in N availability. 437 Indeed, some studies in temperate climates reported a decrease of N availability for the crop 438 under reduced tillage due to lower mineralization rates (Berner et al., 2008; Peigné et al., 2007). 439 The decrease of N_{mic} that ocurred in all treatments after four years of trial coincided with a 32 % 440 decrease in the C:N ratio (see section 3.2). A low C:N ratio indicates an increased degree of 441 humification (Bayer et al., 2002). Humified organic matter strongly holds N in highly 442 recalcitrant forms and is thus unavailable to soil microbiota. In our experiment, low N 443 availability was indicated by the decreased N_{mic}. N mobilization in such soils may involve 444 destabilization of soil organic matter and its subsequent mineralization (Clarholm et al., 2015). 445 This may coincide with increases in fungi and Gram (+) bacteria as has been reported by other 446 authors studying organically managed minimum tillage farming systems (Sun et al., 2016). 447 The Cmic/SOC ratio can indicate the soil microbial efficiency of conversion of organic matter to 448 microbial biomass and the stabilization of SOC by the soil mineral fractions (Sparling, 1992). In 449 our mid-term trial, the loss of SOC in all the plots coincides with the increase of the C_{mic}/SOC 450 ratio, which indicates that the microorganisms are integrating a greater proportion of soil 451 organic matter.

452 5. CONCLUSIONS

453 Farmyard manure is the main factor affecting crop yields and weed biomass, as well as soil 454 fertility and quality. Organic fertilization is crucial to sustain cereal yields, but can also exert a 455 negative effect on legume crops by increasing the competitive effects of weeds. Although 456 farmers are concerned that reduced tillage could reduce the already low crop yields under 457 organic farming by increasing weed pressure and delaying nutrient mineralization, we have 458 found that the concerns are unfounded. The tillage system does not have a consistent negative 459 effect on yields, and the increased weed control of mouldboard plough only occurs in the mid-460 to long-term. The implementation of green manure in dryland areas requires a careful redesign 461 of the cropping system. Although applying green manure could alleviate some fertility and 462 weed control issues, we have not found positive effects on crop yields. 463 In the Mediterranean region of Spain, soils have low N availability and the organic fertilization 464 might not be enough to maintain SOC content. Future research should explore the effects of 465 applying more stabilized organic matter, which may be a better practice for the enhancement of

466 soil quality and the build-up of soil organic matter in the soil.

467 ACKNOWLEDGMENTS

468 The authors wish to acknowledge the efforts of all researchers who participated in this

469 experiment. We sincerely thank the people involved in field activities, particularly Alejandro

- 470 Pérez-Ferrer for technical assistance and Salvi Safont for his willingness and experience in
- 471 running the machinery needed to perform the field management.
- 472 Funding: We thank the economic support of the Ministry of Economy and Competitiveness
- 473 through the National Institute of Agrarian and Food Research and Technology (INIA), part of
- 474 the CORE Organic Plus funding bodies, which in turn are partners of FP7 ERA-Net and
- 475 financed by the European Commission through projects TILMAN-ORG and FERTILCROP,
- 476 which allowed this work to be carried out. This research has also been partially funded by the
- 477 Department of Agriculture, Livestock, Fisheries and Food of Catalonia (projects 2011 AGEC
- 478 001, 2012 AGEC 00027, 53 05007 2015) and by a fellowship from the Spanish Ministry of
- 479 Education, Culture and Sports to the first author.
- 480

481 REFERENCES

482	Ahmadi, A.R., Shahbazi, S., Diyanat, M., 2016. Efficacy of five herbicides for weed control
483	in rain-fed lentil (Lens culinaris Medik.). Weed Technol. 30, 448–455.

- 484 Alvarez, R., 2005. A review of nitrogen fertilizer and conservation tillage effects on soil organic
 485 carbon storage. Soil Use Manag. 21, 38–52.
- 486 Bates, D., Mächler, M., Bolker, B., Walker, S., 2015. Fitting linear mixed-effects models using
 487 lme4. J. Stat. Softw. 67, 1–48.
- Bayer, C., Mielniczuk, J., Martin-Neto, L., Ernani, P.R., 2002. Stocks and humification degree
 of organic matter fractions as affected by no-tillage on a subtropical soil. Plant Soil 238,
 133–140.
- Beedy, T.L., Snapp, S.S., Akinnifesi, F.K., Sileshi, G.W., 2010. Impact of *Gliricidia sepium*intercropping on soil organic matter fractions in a maize-based cropping system. Agr.
 Ecosyst. Environ. 138, 139–146.
- Berner, A., Hildermann, I., Fließbach, A., Pfiffner, L., Niggli, U., Mäder, P., 2008. Crop yield
 and soil fertility response to reduced tillage under organic management. Soil Tillage Res.
- 496 101, 89–96.
- Biederbeck, V.O., Campbell, C.A., Rasiah, V., Zentner, R.P., Wen, G., 1998. Soil quality
 attributes as influenced by annual legumes used as green manure. Soil Biol. Biochem. 30,
 1177–1185.
- 500 Bremner, J.M., 1996. Nitrogen-total. Methods Soil Anal. Part 3 Chemical Methods 1085–1121
- 501 Clarholm, M., Skyllberg, U., Rosling, A., 2015. Organic acid induced release of nutrients from
 502 metal-stabilized soil organic matter The unbutton model. Soil Biol. Biochem, 84, 168–

503 176.

504	Clayton, G.W., Rice, W.A., Lupwayi, N.Z., Johnston, A.M., Lafond, G.P., Grant, C.A., Walley,
505	F., 2004. Inoculant formulation and fertilizer nitrogen effects on field pea: Nodulation, N_2
506	fixation, and nitrogen partitioning. Can. J. Plant Sci. 84, 79–88.
507	Cooper, J., Baranski, M., Stewart, G., Nobel-de Lange, M., Bàrberi, P., Fließbach, A., Peigné,
508	J., Berner, A., Brock, C., Casagrande, M., Crowley, O., David, C., De Vliegher, A.,
509	Döring, T.F., Dupont, A., Entz, M., Grosse, M., Haase, T., Halde, C., Hammerl, V.,
510	Huiting, H., Leithold, G., Messmer, M., Schloter, M., Sukkel, W., van der Heijden,
511	M.G.A., Willekens, K., Wittwer, R., Mäder, P., 2016. Shallow non-inversion tillage in
512	organic farming maintains crop yields and increases soil C stocks: a meta-analysis. Agron.
513	Sustain. Dev. 36, 22.
514	Fließbach, A., & Mäder, P., 2000. Microbial biomass and size-density fractions difer between
515	soils of organic and conventional agricultural systems. Soil Biol. Biochem, 32, 757-768.
516	Fließbach, A., Oberholzer, HR., Gunst, L., Mäder, P., 2007. Soil organic matter and biological
517	soil quality indicators after 21 years of organic and conventional farming. Agric. Ecosyst.
518	Environ. 118, 273–284.
519	Food and Agriculture Organization of the United Nations, 2013. FAO Statistical Yearbook.
520	World food and agriculture.
521	Gadermaier, F., Berner, A., Fließbach, A., Friedel, J.K., Mäder, P., 2012. Impact of reduced
522	tillage on soil organic carbon and nutrient budgets under organic farming. Renew. Agric.
523	Food Syst. 27, 68–80.
524	Gattinger, A., Muller, A., Haeni, M., Skinner, C., Fliessbach, A., Buchmann, N., Mäder, P.,
525	Stolze, M., Smith, P., Scialabba, N.EH., Niggli, U., 2012. Enhanced top soil carbon

526	stocks under organic farming. Proc. Natl. Acad. Sci. U. S. A. 109, 18226–31.
527	Guo, L., Gifford, R., 2002. Soil carbon stocks and land use change: a meta analysis. Glob.
528	Chang. Biol. 8, 345–360.
529	Hernanz, J.L., Sánchez-Girón, V., Navarrete, L., 2009. Soil carbon sequestration and
530	stratification in a cereal/leguminous crop rotation with three tillage systems in semiarid
531	conditions. Agric. Ecosyst. Environ. 133, 114-122.
532	Hobbs, P.R., Sayre, K., Gupta, R., 2008. The role of conservation agriculture in sustainable
533	agriculture. Philos. Trans. R. Soc. B. 363, 543-555.
534	IUSS Working Group WRB, 2015. World reference base for soil resources 2014, update 2015.
535	International soil classification system for naming soils and creating legends for soil maps,
536	World Soil Resources Reports No. 106 FAO, Rome.
537	Joergensen, R. G. (1996). The fumigation-extraction method to estimate soil microbial biomass:
538	calibration of the k_{EC} value. Soil Biol. Biochem, 28, 25-31.
539	Joergensen, R. G., Mueller, T. (1996). The fumigation-extraction method to estimate soil
540	microbial biomass: calibration of the k_{EN} value. Soil Biol. Biochem, 28, 33-37.
541	Johnston, A.E., Poulton, P.R., Coleman, K., 2009. Soil Organic Matter: its importance in
542	sustainable agriculture and carbon dioxide fluxes. Adv. Agron. 101, 1-57.
543	Kassam, A., Friedrich, T., Derpsch, R., Lahmar, R., Mrabet, R., Basch, G., González-Sánchez,
544	E.J., Serraj, R., 2012. Conservation agriculture in the dry Mediterranean climate. F. Crop.

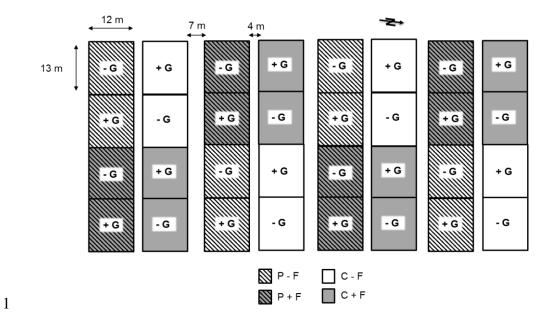
- 545 Res. 132, 7–17.
- Krauss, M., Berner, A., Burger, D., Wiemken, A., Niggli, U., Mäder, P., 2010. Reduced tillage
 in temperate organic farming: implications for crop management and forage production.

548 Soil Use Manag. 26, 12–20.

- Lal, R., 2009. Challenges and opportunities in soil organic matter research. Eur. J. Soil Sci. 60,
 158–169.
- Lee, J., Hopmans, J.W., Rolston, D.E., Baer, S.G., Six, J., 2009. Determining soil carbon stock
 changes: simple bulk density corrections fail. Agric. Ecosyst. Environ. 134, 251–256.
- 553 López-Garrido, R., Madejón, E., León-Camacho, M., Girón, I., Moreno, F., Murillo, J.M., 2014.
- Reduced tillage as an alternative to no-tillage under Mediterranean conditions: A case
 study. Soil Tillage Res. 140, 40–47.
- Mäder, P., Berner, A., 2012. Development of reduced tillage systems in organic farming in
 Europe. Renew. Agric. Food Syst. 27, 7–11.
- Maltas, A., Charles, R., Jeangros, B., Sinaj, S., 2013. Effect of organic fertilizers and reducedtillage on soil properties, crop nitrogen response and crop yield: Results of a 12-year
 experiment in Changins, Switzerland. Soil Tillage Res. 126, 11–18.
- 561 Masilionyte, L., Maiksteniene, S., Kriauciuniene, Z., Jablonskyte-Rasce, D., Zou, L., Sarauskis,
- 562 E., 2017. Effect of cover crops in smothering weeds and volunteer plants in alternative
- farming systems. Crop Prot. 91, 74–81.
- 564 Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente, 2009,
- 565 http://www.mapama.gob.es/es/agricultura/temas/producciones-agricolas/ (accesessed
 566 20.05.2017)
- Molina-Herrera, S., Romanyà, J., 2015. Synergistic and antagonistic interactions among organic
 amendments of contrasted stability, nutrient availability and soil organic matter in the
 regulation of C mineralization. Eur. J. Soil Biol. 70, 118–125.

570	Ocnoa-Hueso, K., Anen, E.D., Branquinno, C., Cruz, C., Dias, T., Fenn, M.E., Manique, E.,
571	Pérez-Corona, M.E., Sheppard, L.J., Stock, W.D., 2011. Nitrogen deposition effects on
572	Mediterranean-type ecosystems: An ecological assessment. Environ. Pollut. 159, 2265-
573	2279.

Ochos Husse D. Allen E.D. Drengwinhs C. Cruz C. Dies T. Fenn M.E. Menziews E.


570

- 574 Pang, X.P., Letey, J., 2000. Organic farming: Challenge of timing nitrogen availability to crop
 575 nitrogen requirements. Soil Sci. Soc. Am. J. 64:247–253.
- 576 Peigné, J., Ball, B.C., Roger-Estrade, J., David, C., 2007. Is conservation tillage suitable for
 577 organic farming? A review. Soil Use Manag. 23, 129–144.
- 578 Peigné, J., Vian, J.-F., Cannavacciuolo, M., Lefevre, V., Gautronneau, Y., Boizard, H., 2013.
- 579 Assessment of soil structure in the transition layer between topsoil and subsoil using the 580 profil cultural method. Soil Tillage Res. 127, 13–25.
- Pekrun, C., Kaul, H.-P., Claupein, W., 2003. Soil tillage for sustainable nutrient management,
 in: El Titi, A. (Ed.), Soil Tillage in Agroecosystems, Advances in Agroecology. CRC
 Press, pp. 83–106.
- Plaza-Bonilla, D., Nolot, J.-M., Raffaillac, D., Justes, E., 2017. Innovative cropping systems to
 reduce N inputs and maintain wheat yields by inserting grain legumes and cover crops in
 southwestern France. Eur. J. Agron. 82, 31-341.
- 587 Poeplau, C., Don, A., 2015. Carbon sequestration in agricultural soils via cultivation of cover
 588 crops A meta-analysis. Agric. Ecosyst. Environ. 200, 33–41.
- 589 R Development Core Team, 2015. R: A Language and Environment for Statistical Computing.
- 590 R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
- Romanyà, J., Arco, N., Solà-Morales, I., Armengot, L., Sans, F.X., 2012. Carbon and nitrogen
 stocks and nitrogen mineralization in organically managed soils amended with composted

- 593 manures. J. Environ. Qual. 41, 1337-1347.
- Romanyà, J., Rovira, P., 2011. An appraisal of soil organic C content in Mediterranean
 agricultural soils. Soil Use Manag. 27, 321–332.
- 596 Sans, F.X., Berner, A., Armengot, L., Mäder, P., 2011. Tillage effects on weed communities in
- an organic winter wheat-sunflower-spelt cropping sequence. Weed Res. 51, 413–421.
- Soil Survey Staff, 1998. Keys to soil taxonomy, Soil Conservation Service, United States
 Department of Agriculture.
- 600 Sparling, G.P., 1992. Ratio of microbial biomass carbon to soil organic carbon as a sensitive

601 indicator of changes in soil organic matter. Soil Res. 30, 195–207.

- 602 Sun, H., Koal, P., Liu, D., Gerl, G., Schroll, R., Gattinger, A., Joergensen, R., Munch, J.
- 603 Charles, J. (2016). Soil microbial community and microbial residues respond positively to
- 604 minimum tillage under organic farming in Southern Germany. Appl. Soil Ecol, 108, 16-24.
- Vance, E.D., Brookes, P.C., Jenkinson, D.S., 1987. An extraction method for measuring soil
 microbial biomass C. Soil Biol. Biochem. 19, 703–707
- Vian, J.F., Peigné, J., Chaussod, R., Roger-Estrade, J., 2009. Effects of four tillage systems on
 soil structure and soil microbial biomass in organic farming. Soil Use Manag. 25, 1–10.
- Walley, F.L., Kyei-Boahen, S., Hnatowich, G., Stevenson, C., 2005. Nitrogen and phosphorus
 fertility management for desi and kabuli chickpea. Can. J. Plant Sci. 85, 73–79.
- 611 Ward, P.R., Flower, K.C., Cordingley, N., Weeks, C., Micin, S.F., 2012. Soil water balance
- with cover crops and conservation agriculture in a Mediterranean climate. F. Crop. Res.
 132, 33–39.
- 614

- 2 Figure 1. Experimental design in a strip-split-block with three factors of two levels
- 3 each. P, mouldboard ploughing; C, chisel ploughing; + F, fertilization with farmyard
- 4 manure, F, not fertilized: + G, with green manure, G, no green manure. Each
- 5 treatment is replicated four times, totalling 32 plots.

Table 1. Date of field operations, sowing characteristics, and fertilization inputs for each crop of the rotation. The type and brand of agricultural equipment are also indicated.

Year of rotation	1 st	2^{nd}	3 rd	4 th
	Spelt	Chickpea	Winter wheat	Lentil
Tillage				
Conventional tillage				
Mouldboard ploughing, depth 25 cm EG 85-240-8, Kverneland	December 12 th , 2011	March 28 th , 2013	December 10 th , 2013	March 20 th , 2015
Rotative, depth 5 cm HR3003D, Kuhn	December 14 th , 2011	April 13 th , 2013	December 16 th , 2013	March 30 th , 2015
Reduced tillage				
Chisel, depth 25 cm KCCC 1187 - A00, Kverneland	December 14 th , 2011	March 28 th , 2013	November 12 th , 2013	March 20 th , 2015
Rotative, depth 5 cm HR3003D, Kuhn	December 14 th , 2011	April 13 th , 2013	December 16 th , 2013	March 30 th , 2015
Fertilization				
Composted cow farmyard manure	December 12 th , 2011	March 28 th , 2013	November 12 th , 2013	March 19 th , 2015
tn ha ⁻¹	21.5	22	38	22
N _t kg ha ⁻¹	134.60	40.04	138.28	62.36
Weed control	No control	May 30th, 2013	March 4 th , 2014	June 2 nd , 2015
Machinery for weed control		Inter-row cultivator	Flex-tine harrow Herse-6M, PICHON	Hand weeding
Sowing Amazone D09- 30	Spelt	Chickpea	Winter wheat	Lentil
Date of sowing	December 14th, 2011	April 13th, 2013	December 16th, 2013	March 31st, 2015
Sowing density	195 kg ha ⁻¹	30 kg ha ⁻¹	220 kg ha ⁻¹	180 kg ha ⁻¹
Spacing between rows	12 cm	75 cm	12 cm	12 cm
Harvest Plot combine Elite, Wintersteiger, Inc. Deuthz fhar	July, 12 th 2012	July 31 st , 2013	August 12 th , 2014	-
Disc harrowing Norma RLBH 32, RAU	September 18 th , 2012	October 26 th , 2013	September 9 th , 2014	September 20 th , 2013
Green manure	October 17 th , 2012	-	September 22 th , 2014	-
Sowing density kg ha ⁻¹	45.8 oat 1.5 mustard 61 bitter vetch 39.7 common vetch	-	45.8 oat 1.5 mustard 61 bitter vetch 39.7 common vetch	-

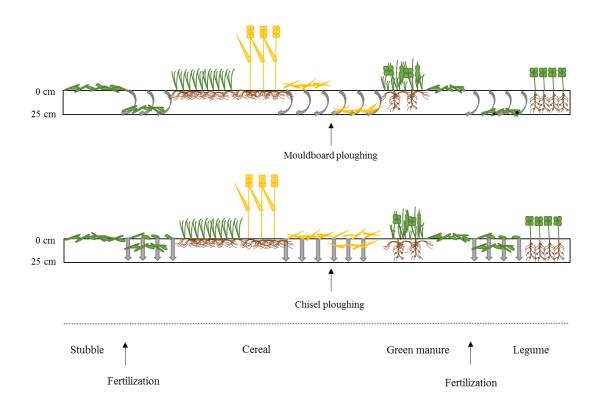


Figure 2. Cereal-legume crop rotation schemes of the experiment with two different tillage systems in two years. The first scheme (top) represents the rotation with mouldboard ploughing (inversion of soil layers) and the second scheme (bottom) represents the rotation with chisel ploughing (no soil inversion). The schemes start from the stubble incorporation of the previous crop, followed by the fertilization (in the corresponding plots) and the soil tillage for the cereal crop season. After cereal harvest and the stubble incorporation (disc harrowing), the cover crops are sown and later incorporated into the soil (in the corresponding plots), before the fertilization and tillage for the legume crop season.

Table 2. Results of the linear mixed effects models of the effect of fertilization (F +, fertilization with farmyard manure; F -,not fertilized), tillage system (T P: mouldboard ploughing; T C: chisel ploughing), green manure (G +, with green manure; G -, no green manure) and their interaction on the different variables measured (crop yields of spelt, chickpea and winter wheat, crop biomass of lentil, and weed biomass during each cropping season).

	F (+ vs -)	T (P vs C)	G (+ vs -)	F (+ vs -) × T (P vs C)	$F (+ vs -) \times G (+ vs -)$	$T(P vs C) \times G(+ vs -)$	$F\times T\times G$
Crop yields (kg ha ⁻¹)							
Spelt	$163.06 \pm 38.25*$	$6.72\pm58.29^{\text{NS}}$	$23.28\pm22.48^{\text{NS}}$	-26.44 ± 22.48^{NS}	-2.25 ± 22.48^{NS}	$13.95 \pm 22.48^{\text{NS}}$	16.92 ± 22.48^{NS}
Chickpea	$-61.47 \pm 29.10^{\text{NS}}$	$\textbf{-0.12} \pm 30.46^{NS}$	$5.35\pm15.76^{\text{NS}}$	$9.34 \pm 15.76^{\text{NS}}$	-29.57 ± 15.76^{NS}	$-9.06\pm15.76^{\text{NS}}$	$-1.06 \pm 15.76^{\rm NS}$
Wheat	484.96 ± 121.61*	$36.82 \pm 120.04^{\rm NS}$	$28.92\pm68.36^{\text{NS}}$	-45.32 ± 68.36^{NS}	-8.45 ± 68.36^{NS}	-4.80 ± 68.36^{NS}	-1.42 ± 68.36^{NS}
Lentil (biomass g m ⁻²)	-7.33 ± 5.13^{NS}	$12.251 \pm 4.70*$	2.47 ± 3.87^{NS}	-2.16 ± 3.87^{NS}	-4.18 ± 3.87^{NS}	5.29 ± 3.87^{NS}	-4.91 ± 3.87^{NS}
Weed biomass (g m ⁻²)							
Spelt	-0.16 ± 0.04 **	$\textbf{-0.26} \pm 0.12^{NS}$	$\textbf{-0.07} \pm 0.04^{NS}$	-0.24 ± 0.04 ***	$0.001\pm0.04^{\text{NS}}$	$\textbf{-0.01} \pm 0.04^{NS}$	$\textbf{-0.05} \pm 0.04^{NS}$
Chickpea	12.46 ± 5.47^{NS}	-2.46 ± 7.53^{NS}	$1.92\pm3.40^{\text{NS}}$	$-2.77\pm3.40^{\text{NS}}$	$3.67\pm3.40^{\text{NS}}$	$1.09\pm3.40^{\text{NS}}$	$2.19\pm3.40^{\text{NS}}$
Wheat	$-0.31 \pm 0.08*$	$-0.28 \pm 0.08*$	$\textbf{-0.03} \pm 0.07^{NS}$	$0.11\pm0.07^{\text{NS}}$	$0.10\pm0.07^{\text{NS}}$	$0.03\pm0.07^{\text{NS}}$	-0.04 ± 0.07^{NS}
Lentil	32.45 ± 7.75**	$-12.79 \pm 4.25 **$	11.55 ± 4.25*	-6.88 ± 4.25^{NS}	$6.98\pm4.25^{\text{NS}}$	-3.95 ± 4.25^{NS}	$0.81 \pm 4.25^{\text{NS}}$

The values are estimated differences, standard errors and their significance levels, which are indicated according to the following codes: *** $p \le 0.001$, ** $p \le 0.01$, * $p \le 0.05$, ^{NS} not significant.

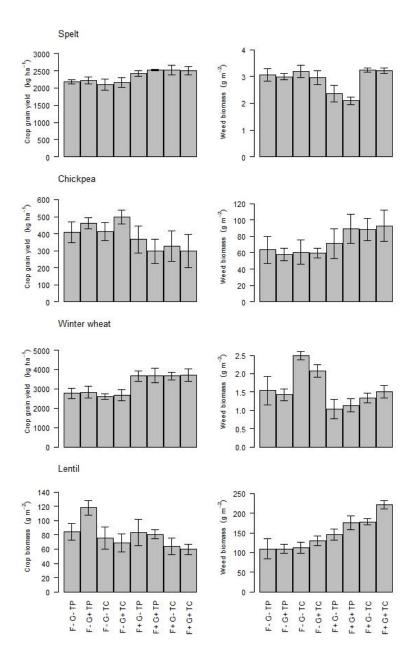


Figure 3. Mean (\pm SE standard error of differences) crop yields of spelt, chickpea, winter wheat and crop biomass of lentil (left) and the corresponding aboveground weed biomass (right) in each treatment: fertilization (F - , not fertilized; F +, fertilization with farmyard manure); green manure (G -, no green manure; G + sown with green manure); tillage systems (T P, mouldboard ploughing; T C, chisel ploughing). Because lentil crop was not harvested, aboveground lentil biomass was evaluated. Note the different vertical scale for each crop.

Table 3. Mean (\pm SE) of SOC and N_{tot} at two soil depths (0 – 10 cm and 10 – 20 cm) in each treatment: fertilization (F +, fertilization with farmyard manure; F -, not fertilized); tillage system (T P, mouldboard ploughing; T C, chisel ploughing); green manure (G +, sown with green manure; G -, no green manure) in the first and last year of the trial (t_i and t_f).

	0-10) cm	10-20 cm		0-10cm		10-20 cm	
	SOC t_i	SOC t_f	SOC t_i	SOC t_f	$\mathbf{N} t_i$	$\mathbf{N} t_f$	$\mathbf{N} t_i$	$\mathbf{N} t_f$
F +	1.170 ± 0.090	1.118 ± 0.060	1.110 ± 0.090	0.970 ± 0.060	0.124 ± 0.005	0.163 ± 0.006	0.113 ± 0.006	0.148 ± 0.006
F -	1.150 ± 0.130	0.827 ± 0.060	1.090 ± 0.120	0.800 ± 0.040	0.119 ± 0.007	0.127 ± 0.005	0.112 ± 0.005	0.123 ± 0.002
ΤP	1.140 ± 0.100	0.904 ± 0.036	1.090 ± 0.100	0.900 ± 0.030	0.120 ± 0.005	0.139 ± 0.003	0.110 ± 0.005	0.137 ± 0.00
ТC	1.180 ± 0.120	1.042 ± 0.080	1.110 ± 0.120	0.860 ± 0.070	0.121 ± 0.006	0.152 ± 0.008	0.114 ± 0.006	0.134 ± 0.00
G+	1.180 ± 0.120	0.97 ± 0.060	1.120 ± 0.120	0.880 ± 0.050	0.121 ± 0.006	0.144 ± 0.005	0.114 ± 0.006	0.136 ± 0.00
G -	1.140 ± 0.100	0.975 ± 0.050	1.080 ± 0.100	0.890 ± 0.040	0.122 ± 0.006	0.146 ± 0.006	0.110 ± 0.005	0.135 ± 0.00

Table 4. Results of the linear mixed effects models of the effect of the different experimental factors, plus depth and year and their interactions on the changes in soil organic carbon, in total nitrogen and in the ratio among these (Δ SOC, Δ N and Δ C:N). F +, fertilization with farmyard manure; F -, not fertilized; T P, mouldboard ploughing; T C, chisel ploughing; G +, sown with green manure; G -, no green manure.

	∆SOC	ΔN	∆C:N
F (+ vs -)	$0.137{\pm}0.075^{NS}$	$0.015{\pm}\ 0.002{***}$	$0.264 \pm 0.675^{\rm NS}$
T (P vs C)	$\text{-}0.049 {\pm}\ 0.060^{\text{NS}}$	$-0.008 \pm 0.001 ***$	$0.085 \pm 0.579^{\text{NS}}$
G (+ vs -)	$\text{-}0.021{\pm}\ 0.020^{\text{NS}}$	-0.001 ± 0.001^{NS}	$\textbf{-0.169} \pm 0.188^{NS}$
F (+ vs -) × T (P vs C)	$0.009{\pm}~0.020^{NS}$	-0.006±0.001**	$0.452 \pm 0.188 *$
F (+ vs -) × G (+ vs -)	$\text{-}0.007{\pm}\ 0.020^{\text{NS}}$	-0.002 ± 0.001^{NS}	0.082 ± 0.188^{NS}
T (P vs C) \times G (+ vs -)	$\text{-}0.022{\pm}\ 0.020^{\text{NS}}$	-0.002 \pm 0.001 ^{NS}	0.007 ± 0.189^{NS}
Depth (10-20 vs 0-10 cm)	-0.025 ± 0.029^{NS}	-0.001 ± 0.002^{NS}	-0.461 ± 0.267^{NS}
F (+ vs -) × depth (10-20 vs 0-10 cm)	$-0.060 \pm 0.029*$	-0.003 ± 0.002^{NS}	$\text{-}0.297 \pm 0.267^{\text{NS}}$
T (P vs C) × depth (10-20 vs 0-10 cm)	$0.084 \pm 0.029 **$	$0.012 \pm 0.002 ***$	-0.021 ± 0.267^{NS}
G (+ vs -) × depth (10-20 vs 0-10 cm)	-0.002 ± 0.029^{NS}	-0.002 ± 0.002^{NS}	$0.180\pm0.267^{\text{NS}}$
F (+ vs -) \times T (P vs C) \times depth (10-20 vs 0-10 cm)	$0.0578 {\pm} 0.29^{\rm NS}$	$0.006 \pm 0.002*$	$0.190\pm0.267^{\text{NS}}$

The values are estimated differences in marginal means, standard errors and their significance levels, which are indicated according to the following codes: *** p < 0.001, ** p < 0.01, * p < 0.05, NS not significant.

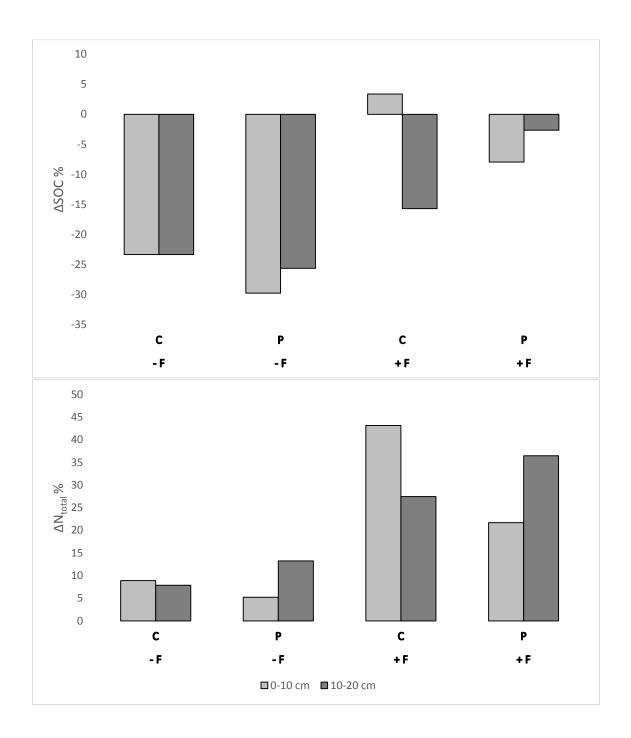


Figure 4. Changes in SOC and N contents, at two soil depths (0 to 10 cm and 10 to 20 cm), in plots under different treatments over the 4-year rotation of the experiment. Fertilization (F -, not fertilized; F +, fertilization with farmyard manure); tillage system (P, mouldboard ploughing; C chisel ploughing). Δ SOC and Δ N_{tot} represent the differences between the t_f and the t_i .

Table 5. Results of the linear mixed effects models of the effect of the different factors: fertilization (F + fertilization with farmyard, F - not fertilized; manure); tillage system (T P, mouldboard ploughing; T C, chisel ploughing); green manure (G -, no green manure; G +, sown with green manure); depth (1, 0 - 10 cm; 2, 10 - 20cm); and the interaction between them on soil bulk density and carbon stocks after the four years of trial (t_f).

	Bulk density (t _f)	Carbon stocks (t_f)
F (+ vs -)	-0.0038 ± 0.017^{NS}	$1064.77 \pm 295.35*$
T (P vs C)	$\text{-}0.007 \pm 0.015^{\text{NS}}$	$415.15 \pm 334.56^{\rm NS}$
G (+ vs -)	$\text{-}0.003 \pm 0.015^{\text{NS}}$	$-149.21 \pm 203.76^{\text{NS}}$
F (+ vs -) × T (P vs C)	$0.012\pm0.015^{\text{NS}}$	$18.22 \pm 203.76^{\text{NS}}$
F (+ vs -) × G (+ vs -)	$0.008\pm0.015^{\text{NS}}$	$130.66 \pm 203.76^{\rm NS}$
T (P vs C) × G (+ vs -)	$0.003\pm0.015^{\text{NS}}$	$597.26 \pm 203.76^{**}$
Depth (10-20 vs 0-10 cm)	$0.259 \pm 0.022^{***}$	1234.81 ± 269.12***
F (+ vs -) × depth (10-20 vs 0-10 cm)	$\text{-}0.017 \pm 0.022^{\text{NS}}$	$716.31 \pm 269.12*$
T (P vs C) × depth (10-20 vs 0-10 cm)	$0.021\pm0.022^{\text{NS}}$	$-1287.24 \pm 269.12^{***}$
G (+ vs –) × depth (10-20 vs 0-10 cm)	$\text{-}0.010 \pm 0.022^{\text{NS}}$	96.99 ± 269.12^{NS}

The values are estimated differences in marginal means, standard errors and their significance levels, which are indicated according to the following codes: *** p < 0.001, ** p < 0.01, * p < 0.05, NS not significant.

Table 6. Mean (\pm SE) of soil microbial biomass (C_{mic} and N_{mic}) and the ratio (C_{mic}/SOC) in the last year of the trial (t_f) at two soil depths (0 -10 cm and 10 – 20 cm) in each treatment: fertilization (F +, fertilization with farmyard manure; F -, not fertilized); tillage system (T P, mouldboard ploughing; T C, chisel ploughing); green manure (G +, sown with green manure; G - no green manure).

System	C _{mic} (µ	$\mathbf{C}_{\mathrm{mic}} \left(\boldsymbol{\mu} \mathbf{g}^{-1} \right) \left(t_f \right)$		$N_{mic} (\mu g^{-1}) (t_f)$		C_{mic}/SOC (%)(t_f)	
Depth	0 -10 cm	10 – 20 cm	0 -10 cm	10 – 20 cm	0 -10 cm	10 – 20 cm	
F+	297.13 ± 15.66	250.48 ± 11.66	31.81 ± 7.00	25.27 ± 4.13	2.64 ± 0.31	2.57 ± 0.36	
F -	234.73 ± 13.59	210.48 ± 12.65	19.70 ± 3.51	24.37 ± 4.75	2.88 ± 0.41	2.60 ± 0.24	
ТР	243.34 ± 12.93	234.41 ± 11.00	26.37 ± 4.62	27.60 ± 4.86	2.72 ± 0.31	2.61 ± 0.26	
ТС	288.53 ± 16.31	226.56 ± 13.31	25.14 ± 5.89	22.04 ± 4.02	2.80 ± 0.41	2.56 ± 0.33	
G +	269.04 ± 14.50	231.69 ± 11.85	26.33 ± 5.85	25.44 ± 5.66	2.80 ± 0.39	2.61 ± 0.32	
G -	262.82 ± 14.74	229.27 ± 12.45	25.18 ± 4.65	24.19 ± 3.22	2.72 ± 0.34	2.55 ± 0.28	

Table 7. Results of the linear mixed effects models of the effect of the different factors: fertilization (F +, fertilization with farmyard manure; F -, not fertilized); tillage system (T P, mouldboard ploughing; T C, chisel ploughing); green manure (G +, sown with green manure; G - no green manure; depth (0 – 10 cm and 10 – 20 cm); and the interaction between them on C_{mic} , N_{mic} and C_{mic}/SOC in the last year of the trial (t_f).

System	$C_{\rm mic}(t_f)$	$N_{mic}(t_f)$	$C_{mic}/SOC(t_f)$
F (+ vs -)	$30.77 \pm 3.56^{***}$	$5.91\pm2.71^*$	$\textbf{-0.10} \pm 0.21^{NS}$
T (P vs C)	$-21.66 \pm 14.93^{\rm NS}$	$0.74\pm2.25^{\rm NS}$	$\textbf{-0.07} \pm 0.05^{NS}$
G (+ vs -)	$3.02\pm4.02^{\text{NS}}$	$0.58\pm2.25^{\text{NS}}$	$0.03\pm0.03^{\rm NS}$
Depth (10-20 vs 0-10 cm)	$-35.69 \pm 3.77 ***$	$\textbf{-1.06} \pm 2.05^{\text{NS}}$	$-0.15 \pm 0.07*$
F (+ vs -) × depth (10-20 vs 0-10 cm)	$-11.57 \pm 3.78 **$	$-5.04 \pm 2.05*$	$0.11\pm0.07^{\text{NS}}$
T (P vs C) × depth (10-20 vs 0-10 cm)	$26.38 \pm 3.78^{***}$	$1.40\pm2.04^{\text{NS}}$	$0.07\pm0.07^{\text{NS}}$
F (+ vs -) × T (P vs C)	$-3.13\pm3.42^{\text{NS}}$	$\textbf{-1.41} \pm 2.25^{\text{NS}}$	$0.11\pm0.05*$
$F (+ vs -) \times T (P vs C) \times depth (10-20 vs 0-10 cm)$	-6.04 ± 6.23^{NS}	$-0.25\pm2.05^{\rm NS}$	-0.27 ± 0.07 ***

Significance levels are indicated according to the following codes: *** p < 0.001, ** p < 0.01, * p < 0.05, ^{NS} not significant. Interactions with the green manure were not significant.

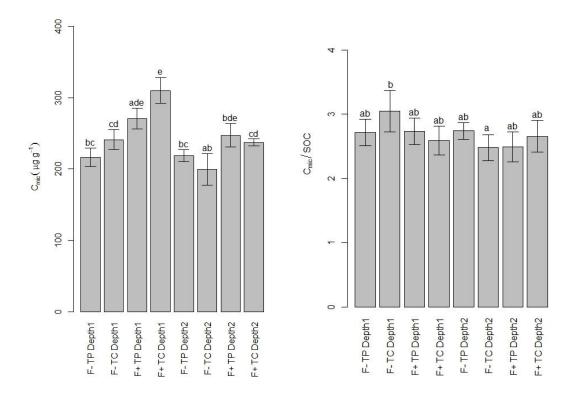


Figure 5. Soil microbial biomass C (left) and C_{mic}/SOC ratio (right, in percentage) after four years of the trial (t_f) in the different treatments: fertilization (F + fertilization with farmyard manure, F - not fertilized); tillage system (T P mouldboard ploughing, T C chisel ploughing); green manure (G + sown with green manure, G - no green manure); depth (1: 0 – 10 cm, 2: 10 – 20cm). Bars with no letters in common are significantly different (Tukey HSD test, p < 0.05).