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Abstract  
 

A hybrid-like (continuous and discrete-event) approach to controlling a small 

multi-rotor unmanned aerial system (UAS) while landing on a moving platform is 

described. The landing scheme is based on positioning visual markers on a 

landing platform in a detectable pattern. After the onboard camera detects the 

object pattern, the inner  control algorithm sends visual-based servo-commands 

to align the multi-rotor with the targets. This method is less computationally 

complex as it uses color-based object detection applied to a geometric pattern 

instead of feature tracking algorithms, and has the advantage of not requiring the 

distance to the objects to be calculated. The continuous approach accounts for the 

UAV and the platform rolling/pitching/yawing, which is essential for a real-time 

landing on a moving target such as a ship.  

A discrete-event supervisor working in parallel with the inner controller is 

designed to assist the automatic landing of a multi-rotor UAV on a moving target. 

This supervisory control strategy allows the pilot and crew to make time-critical 

decisions when exceptions, such as losing targets from the field of view, occur. 

The developed supervisor improves the low-level vision-based auto-landing 

system and high-level human-machine interface. 

The proposed hybrid-like approach was tested in simulation using a 

quadcopter model in Virtual Robotics Experimentation Platform (V-REP) 

working in parallel with Robot Operating System (ROS). Finally, this method was 
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validated in a series of real-time experiments with indoor and outdoor 

quadcopters landing on both static and moving platforms. The developed 

prototype system has demonstrated the capability of landing within 25 cm of the 

desired point of touchdown. This auto-landing system is small (100 x 100 mm), 

light-weight (100 g), and consumes little power (under 2 W). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

 

Acknowledgements 

I would like to express my gratitude to my supervisor, Dr. Siu O’Young, whose 

insight and expertise greatly assisted my research. I am thankful for his patience, 

motivation, and immense knowledge. His guidance helped me complete this 

research project and thesis. 

 I would also like to thank the Research and Development Corporation 

(RDC) and Atlantic Canada Opportunities Agency (ACOA) for their financial 

support of this research project, and express my gratitude to everyone who 

supported me throughout my PhD studies: Dr. Sam Nakhla, Dr. Tariq Iqbal, Dr. 

V. Mike Contarino, Dilhan Balage, Bruno Artacho, and the RAVEN II team. I am 

thankful for the invaluable guidance, constructive criticism, and advice they 

provided during my research work. I am sincerely grateful to them for sharing 

their honest and illuminating views on my research project. 

Finally, and most importantly, I would like to thank my family and friends: 

my mother, Tetyana, my sister, Natasha, my fiancé, Aaron, and his parents, 

Elaine and Leonard, who became my second family. You were always there with 

words of encouragement or a listening ear. Thank you. 

 

 

 

 

 



v 

 

Table of Contents 

1 Introduction ………………………………………………………………………………. 1 

 1.1  Why UAVs?.…………………………………………………………………………… 1 

 1.2  Literature survey……………………………………………………………………. 4 

 1.3 Problems and solutions…………………………….…………………………….. 6 

 1.4 Thesis outline…………………………………………………………………………. 14 

2 Image processing.………………………………………………………………………. 16 

 2.1  Related work…………………………………….……………………………………. 16 

 2.2  Image processing approach……………………………………………………… 19 

  2.2.1 Color-based detection…………………………………………………. 23 

  2.2.2 Edge and center extraction………………………………………….. 24 

  2.2.3 Correction for perspective distortion……………………………. 26 

  2.2.4 Affine transformation…………………………………………………. 28 

 2.3 Improvements of the algorithm for a UAV and a platform rolling, 

pitching, and yawing………………………………….…………………………… 

 

30 

 2.4 Conclusion……………………………………………………………………………… 35 

3 Visual servoing approach………….……………………………………………. 36 

 3.1 Related work………………………………………………………………………….. 36 

 3.2 IBVS scheme…….………………………………………………………………....... 39 

 3.3  Kinematic effects on a closed-loop visual feedback system.......…… 44 

 3.4 Dynamic effects on a closed-loop visual feedback system…………… 49 



vi 

 

 3.5 Conclusion…………………………………………………………………………….. 56 

4 Discrete-event supervisory control………………………………………….. 59 

 4.1 Related work…………………………………………………………………………. 59 

 4.2 Modeling of a timed discrete-event vision-based landing……………. 62 

 4.3 Supervisory control strategy…………………………………………………… 70 

  4.3.1 System specification……………………………………………………. 70 

  4.3.2 Supervisor synthesis……………………………………………………. 72 

 4.3 Conclusion……………………………………………………………………………. 76 

5 Experimental results…….………….…………………………………………… 78 

 5.1  Simulation platform……………………………………………………………….. 79 

  5.1.1 Robot operating system…………………………………………....... 79 

  5.1.2 V-REP robotics simulator………………………………………....... 80 

 5.2 Simulation results………………………………………………………………….. 81 

  5.2.1 Simulation with static targets………………………………………. 81 

  5.2.2 Simulation with moving targets…………………………………… 86 

 5.3  Data gathering test with EPP-FPV……………………………………………. 89 

 5.4 Experimental platform……………………………………………………………. 93 

  5.4.1 AR Drone 2.0…………………………………………....................... 93 

  5.4.2 S500 Hobbyking UAV…………………………........................... 94 

  5.4.3 Odroid U3 setup………………………………………….................. 95 

  5.4.4 Pixhawk autopilot………………………….................................. 96 

 5.5 Real-time landing experiments………………………………………………… 98 



vii 

 

  5.5.1 Static platform experiments with AR Drone 2.0...…………. 98 

  5.5.2 Moving platform experiments with S500........................... 100 

 5.6 Conclusion……………………………………………………………………………… 105 

6 Summary and future work ……………………………………………………….. 106 

 6.1  Summary of results.……………………………………………………………….. 106 

 6.2  Future work………….……………………………………………………………….. 113 

 References…………………………………………………………………………………... 116 

A Flow chart of the software…………………….…………………………………… 129 

B Input and output files for  “far field”…..…..…………………………........ 130 

C Timed transition graphs for “far field”…………………………………….. 131 

D Input and output files for  “near field”……………………………………... 133 

E Connections between hardware components ………………………  134 

 

 

 

 

 

 

 

 

 

 

 



viii 

 

List of Tables 

 

1.1 List of publications……………………………………………………………………….. 13 

4.1 Supervisor’s control data for “far field”………………………..…………………. 74 

4.2 Supervisor’s control data for “near field”………………………..………………. 75 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 

 

List of Figures 

1.1 “Hybrid” system for a UAV automated landing………………………………… 9 

2.1 Overall approach to the automatic landing system…………………………… 18 

2.2 The pattern of red targets on board a moving platform…………………….. 20 

2.3 Aiming point depending on the number of detected red targets………… 20 

2.4 Proposed image processing algorithm…………………………………………….. 21 

2.5 Correction for perspective distortion………………………………………………. 28 

2.6 Affine transformation…………………………………………………………………… 29 

2.7 UAV motion frames………………………………………………………………………. 31 

2.8 Camera image and virtual orthogonal image for 

radrad UAVshipUAVship 02.0,01.0   ……………………….. 

 

33 

2.9 Yaw correction: a) case when 5 targets are in the FoV; b) case when 3  

or 4 targets are in the FoV…..…………………………………………………………. 

 

34 

3.1 Overall approach to the automatic  landing system………………………….. 38 

3.2 Correlation between image coordinates and correction angles………….. 41 

3.3 Dependency of the desired velocity vector from correction angles……… 41 

3.4 Control diagram of the suggested IBVS approach…………………………….. 43 

3.5 Control diagram of a closed-loop system………………………………………… 46 

3.6 Control diagram of the suggested approach…………………………………….. 47 

3.7 Control diagram of the suggested approach after simplification………… 48 

3.8 Visual feedback control system for auto-landing………………………………. 50 



x 

 

3.9 Visual feedback control system for auto-landing (Expanded)……………. 52 

3.10 Response of the system with proportional control 

( ,6.0K ms1.0Ts  )………………………………………………………………….... 

 

53 

3.11 Bode plot of an open-loop transfer function……………………………………. 55 

4.1 Overall approach to the automatic  landing system…………………………. 61 

4.2 Activity transition graph for “far field”……………………………………………. 66 

4.3 Activity transition graph for “near field”…………………………………………. 69 

4.4 Specification for the system in “far field”………………………………………… 71 

4.5 Specification for the system in “near field”……………………………………… 71 

5.1 Simulation and flight tests of the developed system………………………… 78 

5.2 V-REP scene modeled for auto-landing…………………………………………… 81 

5.3 RQT-graph of the simulation software……………………………………………. 83 

5.4 Diagram of passing image from “vision sensor” to processing module.. 84 

5.5 V-REP simulation of the algorithm with static targets. Sequence of 

captured frames during simulation………………………………………………… 

 

85 

5.6 Simulation of landing on a moving platform……………………………………. 87 

5.7 Quadcopter’s position change relative to the DPT …………………………… 88 

5.8 Fog affecting pattern detection ………………………………………………………. 88 

5.9 Perturbations during landing mission: a) gust affecting the UAV 

trajectory; b) wind affecting the UAV trajectory……………………………….. 

 

89 

5.10 Experimental setup, EPP-FPV UAV….…………………………………………….. 90 

5.11 Day-time image data from Raspberry Pi………………………………………….. 91 



xi 

 

5.12 Night-time image data from Raspberry Pi……………………………………….. 92 

5.13 AR Drone 2.0……………………………………………………………………………… 94 

5.14 S500 Hobbyking UAV with a developed auto-landing system…………… 95 

5.15 Odroid image processing unit………………………………………………………… 96 

5.16 Pixhawk autopilot…………………………………………………………………………. 97 

5.17 Pixhawk in HIL with jMAVsim and QGroundcontrol……………………….. 98 

5.18 AR Drone 2.0 correctly aligns with the static targets………………………… 99 

5.19 Map of the experiment………………………………………………………………….. 100 

5.20 Onboard images: a) actual; b) processed…………………………………………. 102 

5.21 Experimental results: a) view from the side; b) view from the front….. 104 

5.22 

6.1 

Example of exceptions during “near field” flight……………………………… 

Overall approach to the automatic landing system…………………………… 

105 

107 

 

 

 

 

 

 

 

 

 

 

 



xii 

 

List of Acronyms 

AVO   air vehicle operator 

AP   Autopilot 

DES   discrete-event system 

DPT   desired point of touchdown 

EP         external pilot 

FoV      field of view 

FPV       first-person view 

GCS       ground control station 

GPS       global positioning system 

GUI       graphical user interface 

HIL       hardware-in-the-loop 

IBVS      image-based visual servoing 

IMU inertial measurement unit 

LADAR  laser detection and ranging 

LIDAR  light detection and ranging 

LSD  

M&S 

line segment detector 

modeling and simulation  

PIC  pilot-in-command 

PBVS  position-based visual servoing 

RC  radio control 



xiii 

 

ROS 

SFOC  

robot operating system 

special flight operations certificate 

SNR  signal to noise ratio 

SIFT 

SVD 

SWaP  

TDES  

UAV  

UAS  

V-REP  

scale-invariant feature transform 

singular value decomposition 

size weight and power 

timed discrete-event system 

unmanned aerial vehicle 

unmanned aerial system 

virtual robotics experimentation platform 

 

 

 

 

 

 

 

 

 

 



1 

 

Chapter 1 

Introduction 

1.1  Why UAVs? 
 

Unmanned aerial vehicles (UAVs) are gaining popularity and traction in civil, 

commercial, and military applications (Nex & Remondino, 2014; Saggiani & 

Teodorani, 2004; Valavanis & Vachtsevanos, 2014). They have been applied in 

search and rescue, information support during fire containment, the inspection of 

infrastructure, e.g. power transmission lines (Whitworth, Duller, Jones, & Earp, 

2001), and environmental monitoring (Elfes, Bueno, Bergerman, & Ramos, 

1998). In military applications, the absence of people on board enables higher g-

force combat maneuvering than a human pilot can tolerate. Powerful onboard 

processors and long-range radio extend their uses far beyond visual line of sight 

operations when permitted. 

An unmanned aerial system (UAS) is composed of a UAV, communications 

link and a Ground Control Station (GCS). A UAS operation consists of three 

phases: take-off, mission performance (flight), and landing. Manual UAV 

operations are done by an external pilot (EP), who remotely controls the aircraft; 

in an automated flight, an AVO (air vehicle operator) monitors the Ground 
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Control Station.  The EP can obtain information about the state of aircraft with 

his eyes – radio control (RC), or using an onboard camera - first-person view 

(FPV). Both manual methods require an experienced pilot due to the expert 

situational awareness of the airspace required around the UAV (Stevenson, 

O’Young, & Rolland, 2015).  

UAV sizes can be classified as: micro aerial vehicles (MAVs), small or 

typically under 35 kg, tactical, medium-altitude long-endurance, and high-

altitude long-endurance UAVs (Nonami, Kendoul, Suzuki, Wang, & Nakazawa, 

2010). The current research is related to small UAV operations and is motivated 

by their potential civil and commercial applications in different fields, e.g. for 

wildlife research, environmental monitoring, parcel delivery, police operations 

and building inspections. However, maximum takeoff weight and power 

restrictions prevent the use of existing sensor and control technologies to meet all 

the operational requirements.  Novel and “lean” solutions are needed.  

UAV types can be classified within four categories: fixed-wing, rotary-

wing, airship (balloons), and flapping-wing (Nonami et al., 2010). The most 

widely used are fixed-wing and rotary-wing UAVs. Fixed-wing UAVs generate lift 

based on the aircraft’s forward airspeed and the shape of the wings. Rotary wing 

aircraft have wings which form a rotor mounted on a spinning shaft (Kendoul, 

2012). This research is related to rotary UAVs, since they have many advantages 

over fixed-wing unmanned aircraft. These advantages are hovering, low-speed 

flight, and high maneuverability, which make rotary UAVs an ideal option for 

inspection and surveillance of industrial objects, icebergs, ice drift, and oil and 
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gas rigs observation. When a UAV flight is performed over the sea or ocean, after 

the multi-rotor finishes its mission, it is often landed on the water (Bird, 2013) 

and then retrieved from the water by a human. To remove the risk to the person 

tasked with retrieving the UAV, the multi-rotor should land automatically on the 

ship deck. However, even a small error during landing on the ship can lead to 

damaging of the UAV or the ship’s gear or the UAV ditching into the water. The 

reliable landing of a multi-rotor UAV on a moving platform, such as a ship, is 

important and is the focus of this thesis. 

During landing on a moving vessel the multi-rotor should have a 

predefined glide-slope and has to align with the moving platform in both the 

horizontal and vertical directions. Approaching the moving ship at a certain angle 

is important, since vertical landing of the multi-rotor can result in it hitting the 

ship’s superstructure (e.g. masts and wires). However, autopilots with a non-

differential Global Positioning System (GPS) do not provide the desired position 

accuracy and landing with an accurate glide-slope. Differential GPS, or the 

addition of acoustic, laser, or radar altimeters is expensive and does not fit within 

the Size Weight and Power (SWaP) requirements of a small multi-rotor machine. 

In this research, the SWaP restrictions are determined by the regulations for 

operating a UAV under a 2 kg maximum take-off weight under exemption rules 

(Transport Canada, 2014).  

In addition to its high cost, differential GPS would have difficulties when 

used for a UAV landing on a moving platform, since it uses a fixed ground-based 

reference station to improve a UAV’s position estimation. Machine vision could 
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become an alternative to differential GPS in terms of accuracy, because cameras 

are small, light-weight, and inexpensive compared to other sensors such as 

LIDAR/LADAR (light/laser detection and ranging). Therefore, a vision-based 

method is proposed to assist the landing of a multi-rotor on a moving platform. 

 

1.2 Literature survey 
 

A “high-level” survey of the literature on visual servoing and camera-guided 

navigation is given here to give context to the overall thesis.  The detailed “low-

level” literature surveys will be given in subsequent chapters specific to the 

technology used in the chapter. 

  Cameras are widely used for object detection, tracking, and mapping 

(Chamberlain, Scherer, & Singh, 2011; Kamate & Yilmazer, 2015). One of the 

most important applications is vision-aided navigation (Silveira, Carvalho, 

Madrid, Bueno, & Rives, 2001) in order to replace a human pilot (the RC pilot 

“sees” and makes decisions; camera captures images, and an onboard computer 

sends commands).  They are used for the vision-based control of micro aerial 

vehicles (MAVs, Ruffier & Franceschini, 2004); under-actuated rigid body 

systems control applied to helicopter stabilization (Hamel & Mahony, 2002); and 

UAS navigation and obstacle avoidance (He, Iyer, & Chandler, 2006). Several 

existing vision-based methods such as visual model feature tracking and line 

following with complementary sensors are suggested by Mondragon et al. (2007) 
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and Silveira et al. (2003). Teuliere et al. (2011) described a method to track a 

moving target through color-based detection. The authors used a multi-part 

object representation to solve a known problem of color-based detection – the 

loss of spatial information. Ding et al. (2006) and Lee et al. (2012) described real-

time object tracking algorithms from the air based on feature extraction.  The 

drawbacks of feature-based algorithms are that they are sensitive to noise, 

changes in the object’s appearance and blur. They are also computationally 

intensive and demand powerful onboard processors; this leads to increasing the 

cost and weight of the final system. 

The combination of image processing methods and control algorithms 

form a number of approaches that have been developed to solve the problem of 

automated landing. Current methods use lines as visual features that are detected 

by an image processing algorithm. Bourquardez and Chaumette (2007) developed 

a method to detect a runway location from image data (two border lines and the 

centerline). Meng et al. (2006) proposed a template matching algorithm to detect 

and track the runway. Dusha et al. (2007) used morphological image processing 

and Hough Transforms to detect the horizon and estimate the attitude of a UAV. 

Liu and Li (2012) used a Line Segment Detector (LSD) to detect the main line 

features. The obvious drawback of these methods is that they cannot be applied to 

landing in an environment that does not have a runway or line markers (e.g. 

landing on a moving boat). 

Fitzgerald et al. (2005) consider forced landing site selection. This 

approach uses canny edge detection, followed by a line-expansion algorithm. 
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However, their method considers general landing sites such as paddocks and does 

not consider precise landing on a moving platform. Sanches-Lopez et al.  (2014) 

developed a vision-based algorithm to control a UAV during auto-landing on a 

moving ship. Their approach uses a downward looking camera to estimate the 

ship’s movement, and applies a Kalman filter together with the vision-based 

method to ensure the accuracy of estimates. Zhou and Zhou (2015) developed a 

method to predict a ship’s movement using a six degrees of freedom ship module. 

The authors recommend their method to assist in the take-off and landing of a 

ship-borne helicopter; however, they did not consider automatic landing on a 

moving ship. Jabbari et al. (2014) presented an image-based visual-servoing 

scheme to track a moving target based on perspective image moments of a flat 

object. Their approach uses a linear observer to solve the problems associated 

with depth uncertainty. Continuation of their work (Jabbari & Bolandi, 2014) 

improves the method for the design of robust translational and yaw controllers. 

Olivares Mendez et al. (2014) developed a method for the fuzzy-logic control of a 

multi-rotor machine during landing on both a static and a moving platform. 

However, these approaches used a downward looking camera and are not 

applicable for a multi-rotor descent. 

 

1.3 Problems and Solutions 
 

The literature review shows that the majority of vision-based methods for multi-

rotor landing use downward-looking cameras, which makes them not applicable 
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for multi-rotor descent (joining the glide-slope while aligning horizontally with a 

moving target). Approaching the moving ship at a certain angle is important, 

since vertical landing of the multi-rotor can result in it hitting the ship’s 

superstructure (e.g. masts and wires). Joining the glide-slope has another 

advantage: the same approach to landing could be further extended to land the 

fixed-wing UAV after modifying the control scheme to account for inner-loop 

(pitch/roll) and outer-loop (bearing/altitude) interactions within the autopilot.   

The most popular image processing techniques are detecting lines, colors, 

or recognizing specific markers using feature descriptors. Line markers are not 

always available to use while landing on the moving ship; color-based methods do 

not provide spatial information about the object; and feature-based detection is 

computationally complex, and requires powerful onboard processors.  

The drawback of any vision-based method is that wind gusts or controller 

detuning can lead to undesirable situations such as losing markers from the field 

of view.  Maintaining large alignment error when the controller is not tuned to 

wind can lead to hitting the ship’s superstructure and damaging the UAV or the 

ship’s gear. Vision-based methods are also sensitive to changes in lighting 

conditions, which affect object detection. The problems mentioned above can lead 

to exceptions when the next control input cannot be calculated by the visual 

servoing algorithm, because the visual marker is missing from the image or 

cannot be recognized. Since autopilots require a minimum data rate coming from 

the onboard processor to control the UAV, undefined control input leads to the 

multirotor crashing into the water. 



8 

 

Problem statement.  Develop a vision-based automatic landing system 

that ensures descent with an accurate glide-slope, such that the UAV comes to the 

desired point of touchdown within +/- 1.5 m or better in both horizontal and 

vertical directions, and is robust against wind-gust perturbations, changes in 

lighting conditions, and controller detuning. 

The desired accuracy of the auto-landing system, +/- 1.5 m, is  stated 

under the assumption of landing on a representative moving vessel, e.g. an 

icebreaker without a helideck, with a lack of free space on board the ship, and the 

possibility of hitting other superstructures e.g. masts or wires.  

Technical challenges: 

1) Complexity of the image processing algorithm. 

2) Possible rolling, pitching, and yawing of the moving platform and the 

UAV. 

3) Precision descent within a pre-specified glide-slope and alignment 

horizontally with the moving vessel. 

4) The control system should handle the exceptions, e.g. losing visual 

markers from the field of view, changes in lighting conditions, the possibility of 

hitting the ship’s superstructure, and battery life limitations. 

Stepped approach to overcoming the technical challenges: 

The vision-based approach to solving the stated problems is depicted in 

Fig. 1.1; it consists of the paradigm of methods developed in 3 areas: “Sense” 

(“interpret” information from the camera image),  “Control” (send servo-

commands to autopilot), and “Discrete-event supervision” (handle exceptions).  
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Figure 1.1 – “Hybrid” system for a UAV automated landing 

 

Technical Challenge 1 is solved in the part “Sense” (Fig. 1.1) by applying 

color-based detection to the geometric pattern. This way, the algorithm can 

provide all the necessary information while having low computational complexity 

compared to feature-based methods. Technical Challenge 2 is solved in the part 

“Sense” by projecting the camera image to the virtual image plane using known 

roll/pitch angles of the moving vessel and the UAV at a certain moment. 

Roll/pitch angles of the moving vessel can be obtained from the Inertial 

Measurement Unit (IMU) located on the moving ship and sent from the Ground 

 “                                  ” 
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Control Station to the UAV. Related work and solutions to overcome these 

technical challenges are described in Chapter 2. 

Technical Challenge 3 is solved in the part “Control” (Fig. 1.1) by using a 

front-facing camera instead of a down-facing camera, while applying an image-

based visual servoing scheme that is based on the correction angles. This control 

strategy ensures the UAV joining the glide-slope while being aligned with the 

moving target in the horizontal direction. Related work and solutions to overcome 

this technical challenge are described in Chapter 3. 

Technical Challenge 4 arises in the following scenarios: 

1) “Can’t see”: The pattern is not in the FoV of the camera. 

2) “Can’t detect”: The change in lighting conditions affects the detection 

threshold.  

3) “Can’t follow”: If the inner controller is not tuned to the wind/gust 

conditions, the UAV will maintain alignment error or lose targets from the FoV. 

It is assumed that the pattern is within the FoV of the camera while 

starting the auto-landing mission, since according to the developed method, the 

UAV uses a GPS for initial alignment.  Exceptions 2 and 3 of Technical Challenge 

4 are solved by adding a “Discrete-event supervisor” to the continuous control 

system (Fig. 1.1), which is described in Chapter 4. The discrete-event supervisor 

sends timely warnings to the PIC (pilot-in-command) to expedite certain control 

actions. Such a system is decoupled in a sense that the pilot has absolute 

authority in performing desirable maneuvers. Since the states of the supervisor 
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are derived from the continuous vision-based control system, and synchronized 

with its timing, the overall landing system is considered to be hybrid-like.  

A human pilot-in-command is overseeing all the landing phases, and is 

able to abort the landing mission if an exception occurs. The PIC is the human 

operator who is in charge of the overall safety of the aircraft. Different operators 

could assume the PIC role depending on the phases of the mission. The AVO 

usually assumes the PIC role during automatic operations, and the EP could be 

the PIC during manual operations, e.g. take-off and final touch-down during 

landing.   In fact, the AVO was the PIC in the “far field” phase, and the EP was the 

PIC in the “near field” phase during the landing experiments as presented in 

Chapters 4 and 5. 

Because of the PIC oversight at all phases of the landing, the proposed 

landing process is deemed to be “automatic” and not “autonomous”. The term 

“automatic” means autonomy is permitted, e.g. way-point following, as long as 

there is a PIC override. Transport Canada regulations, at the time of this thesis 

(Transport Canada, 2014), do not permit (fully) autonomous systems because the 

technology is new and unproven. Limited autonomy without PIC override while 

satisfying the required safety level may be permitted as the industry matures. 

The novelty and the main contribution of this thesis is a creative 

combination of incremental advances in three fields: image processing, controls, 

and discrete-event supervisory, as applied to a UAV automatic landing.   

The field-specific advances are summarized: 
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Image processing: 

- The image processing method was developed to estimate the DPT 

location on the image. This method uses color-based detection applied to a 

geometric pattern. It accounts for the rolling, pitching, and yawing of the UAV 

and the platform and has lower complexity compared to other known methods.  

Control: 

 - An IBVS scheme to control a UAV during landing was developed. This 

approach does not require estimation of the 3D UAV position or calculation of the 

distance to the objects.  

Discrete-event supervisory control: 

- The landing phase was modeled as a timed discrete-event system (TDES). 

            - An optimal discrete-event supervisor was synthesized; the applied control 

mechanism is based on expediting certain control actions to avoid an 

unrecoverable error.  

- The discrete-event layer on top of the continuous controller forms a 

hybrid-like system. This system is robust to wind/gust, controller detuning, and 

changes in lighting conditions. 

Validation: 

- The simulator for a vision-based multi-rotor landing on a static and a 

moving platform was developed. This simulator models wind and gust 

perturbations, changes in lighting conditions, and visibility constraints.  

- The prototype vision-based landing system was developed; it is small 

(100 x 100 mm), light-weight (100 g), and highly accurate (25 cm from the DPT). 
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The auto-landing method was tested indoors and outdoors for landings on both 

static and moving platforms. 

Publications: 

The list of publications with respect to solved technical challenges is given 

in Table 1.1. The results of this thesis were presented at two conferences 

(Borshchova, 2014; Borshchova, 2015), and documented in three journal papers 

(Borshchova and O’Young, 2017 a; Borshchova and O’Young, 2017 b; Borshchova 

and O’Young, 2017 c). This work was presented at the Student Paper Competition 

Unmanned Systems Canada, 2014, where it was named one of the top three 

student papers across Canada.  

 

Table 1.1 - List of publications 

 
Borshchova, 

2014 

Borshchova, 

2015 

Borshchova and 

O’Young, 2017 a 

Borshchova and 

O’Young, 2017 b 

Borshchova and 

O’Young, 2017 c 

Technical 

Challenge 1 
         

Technical 

Challenge 2 
      

Technical 

Challenge 3 
         

Technical 

Challenge 4 
      
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A full design cycle has been completed: starting from theoretical design, to 

modeling and simulation (M&S), then to implementation over two platforms and 

ending by validating the M&S predictions through first indoor and then outdoor 

field trials. 

 

 

1.4 Thesis outline 
 

 

The approach to a multi-rotor UAV landing on a moving platform is described in 

Chapter 2. This approach is based on using a single front-facing camera to detect 

the pattern of red objects on the image. This detailed description of the image 

processing method that was developed to detect the pattern and determine the 

desired point of touchdown/aiming point from the image data is presented.   

It is shown in Chapter 2 that the unique pattern structure, color-based 

detection, edge and center extraction, correction for perspective transformation, 

and affine transformation are combined to form a novel technique that can be 

applied to process an image taken from an onboard camera to land the UAV. 

Finally,  this image processing method accounts for a UAV and a platform rolling, 

pitching, and yawing using a projection of the image to the virtual plane. 

 In Chapter 3, an image-based visual servoing approach to control the UAV 

during automatic landing is described. According to this approach, the controller 

will calculate the reference velocities that will be fed to the autopilot based on the 
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determined correction angles. The suggested approach relies on the simplification 

that the inner loop of the flight controller (velocity loop) is tuned to a certain 

configurational setup.  The suggested control strategy is analyzed from both 

kinematic and dynamic points of view considering the delay in the control system 

due to image processing. Notional analysis of the control system is provided, 

which demonstrates that tracking without a steady-state error and closed-loop 

stability is viable. 

 The timed discrete-event layer on top of the continuous controller is 

modeled in Chapter 4. The discrete-event system (DES) is formally described as a 

finite automaton represented by a 5-tuple in which the state evolution depends on 

the occurrence of discrete events over time. The optimal supervisor synthesis is 

done automatically using timed discrete-event software. The suggested supervisor 

makes “high-level” decisions and gives instructions to the EP and the AVO to 

abort the mission when an exception occurs.  

The practical aspect of this research is highlighted in Chapter 5. The 

constraints of the simulation platform and the details of the hardware 

components are given. The simulation experiments were conducted with both 

static and moving platforms, using a simulated sensor on board the multi-rotor 

model. Real-time flight tests were performed both indoors and outdoors for a 

UAV landing on static and moving platforms. Quantitative and qualitative 

performance analysis for every scenario are covered in this chapter. 

 In Chapter 6, a summary of the thesis and discussion on potential 

directions for future work are presented.  
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Chapter 2 

Image processing 
 

2.1 Related work 
 

The most common methods for object detection are color-based detection and 

feature-based detection.  Using feature-based detection, even a single object can 

be used to determine a pose. These feature-based methods can be classified as 

distribution-based descriptors, spatial-frequency techniques, and differential 

descriptors (Mikolajczyk & Schmid, 2005).   

Distribution-based descriptors represent different appearance or shape 

characteristics. Lowe (2004) developed an algorithm for matching individual 

features to a database of features using a fast nearest-neighbor algorithm. His 

method is robust to object rotation and scale. Mondragon et al. (2007) developed 

an approach to track an object using salient points; their algorithm is robust to 

noise and helicopter vibration. Frequency methods usually apply Fourier 

transform, Gabor transform, and wavelets to analyze the texture of the image. 

Differential descriptors compute derivatives to approximate the neighbourhood 

of the point. Freeman and Adelson (1991) give an example of designing steering 

filters based on Gaussian derivatives. The authors applied their filters to 

determine orientation and detect contours.  Se et al. (2001) apply feature tracking 
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to the localization of robots using visual landmarks. The authors use a Kalman 

filter to track the 3D features and scale-invariant feature transform (SIFT) is used 

to build a 3D map. The drawback of feature-based detection is that it is 

computationally intensive and may require large databases; moreover, it is 

sensitive to changes in object appearance, blur, etc.  

Color-based detection is known to be less computationally complex 

compared to feature-based detection.  Azrad et al. (2010)  presented an approach 

to track an object from MAV using color-based detection. The authors use 

integral-image and color probability distribution to detect the target. Watanabe et 

al. (2010) developed a tracking method based on the assumption that the target’s 

gray-level is significantly higher than the background. Perez et al. (2002) 

suggested a method to use the Monte Carlo technique and multi-part color 

modeling.  The main drawback of color-based detection is the loss of spatial 

information, which leads to difficulties with tracking other movements besides 

the translational motion. 

This chapter pertains to solving the issue of the computational complexity 

of image processing algorithms (Technical Challenge 1, described in Chapter 1.3) 

by applying color-based detection to a geometric pattern positioned on the 

moving platform. This way, the algorithm complexity is lower than that of feature 

tracking methods; the necessary information needed for alignment is obtained 

from the geometric position of targets on the image.  

The problem of the rolling, pitching, and yawing of the moving platform 

and the UAV affecting the camera image (Technical Challenge 2, described in 
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Chapter 1.3) is solved in this chapter. A novel approach to camera-based landing 

is presented; it highlights the “Sense” part of the overall automatic landing system 

as a bolded box in Fig. 2.1. 

This method was documented in (Borshchova and O’Young, 2017 a; 

Borshchova and O’Young, 2017 b; Borshchova and O’Young, 2017 c) and 

presented at  conferences (Borshchova, 2014; Borshchova, 2015). 

 

                                 

Figure 2.1 – Overall approach to the automatic  landing system 

 

 

 “                                  ” 
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2.2 Image processing approach 
 

Landing a multirotor on a moving target can be divided in 3 stages:  

1) Initial positioning using a GPS. 

2) Descent – when the multirotor joins the glide-slope to hit the desired 

point of touchdown. 

3) Touchdown itself.  

In this work, the part of landing between descent and touchdown is called 

the “alignment stage”. In this stage, a multirotor lines up horizontally and 

vertically with the pattern of red objects located on a moving platform. 

Touchdown, after the alignment stage, is not considered in this work. The 

multirotor will hover above and in the vicinity of, e.g. within 1.5 m or better, the 

DPT. It will then be landed by the external pilot as prompted by the audio alert 

described in Chapter 4 because of operational safety requirements. 

The auto-landing system uses five red visual markers positioned on a 

moving vessel: four of the markers are located in a square, and a fifth marker is 

positioned at the end of the landing area in such a way that together with the 

other two markers in a square it makes up an equilateral triangle. The 

intersection of the square created by the first four markers is the desired point of 

touchdown (DPT, Fig. 2.2). 

At the early stages of the flight when all five targets are in the field of view 

of the camera, the next control input is calculated using a perspective 

transformation technique. In this case, the aiming point is DPT. 
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Figure 2.2 - The pattern of red targets on board a moving platform 

 

When getting close to the targets, the first one or two markers will be lost 

from the FoV; the inner controller will use an equilateral triangle and affine 

transformation to align with the pattern. The aiming point in the case of three or 

four targets is the middle of the base of the equilateral triangle (Fig. 2.3).  

 

 

 

   Figure 2.3 – Aiming point depending on the number of detected red targets 
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The overall image processing algorithm is depicted in Fig. 2.4. The 

developed software was written in C++ and used OpenCV 2.4.12.1 library (Baggio, 

2012; Bradski & Kaehler, 2008; Laganière, 2014). 

 

 

Figure 2.4 – Proposed image processing algorithm 
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The developed image processing algorithm consists of color-based 

detection, edge and contour detection, and perspective/affine transformation to 

estimate the aiming point on the image depending on the number of detected red 

objects.  

The 5-point pattern used in the developed auto-landing approach has 

many advantages over other feasible patterns: 

1) The possibility of extension of the developed approach to land a UAV in 

a GPS-denied environment. When having no GPS to perform initial alignment, it 

is difficult to determine the correspondence of the points in the pattern due to the 

distortion of the image. The asymmetric structure of the pattern could become a 

solution for the robust and computationally effective object pattern recognition in 

case of a large initial alignment error. 

2) The possibility to calculate the complete desired velocity vector  (3 

rotational and 3 translational velocities) without singularities. When applying to 

land a fully actuated multi-rotor (the number of degrees of freedom is equal to the 

number of the controllable variables), or a fixed-wing UAV, the 5-point pattern 

can be used to calculate the complete desired commanded velocity vector  without 

singularities, while 3 or 4 coplanar points that form a pattern could lead to 

ambiguities.  

3) For the developed image processing approach, the chosen pattern uses 

the minimum number of points needed to align with the moving platform. Since 

the developed image processing algorithm first uses perspective transformation, 4 

points in a square is the minimum number of the points needed to estimate the 
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DPT location on the image. After losing 2 targets from the FoV and applying 

affine transformation, 3 points is the minimum number of points needed  to 

determine the aiming point. 

Using a pattern with more points could be beneficial, since in a case when 

several targets are lost from the FoV such patterns could provide additional 

positioning reference. This might not be possible because of space limitations, e.g. 

the maximum beam width at the stern. The design tradeoffs of adding more 

points to the pattern could be investigated in future works. 

 

2.2.1 Color-based detection  

To maximize the signal-to-noise ratio (SNR) of detecting visual targets on the 

background like a ship deck (grey or brown), runway (grey), and grass field 

(green) (
backgr

t
SNR



 arg
 , where argt - average signal value of target, backgr - standard 

deviation of a background), the targets were chosen to be a distinct red color. The 

developed algorithm detects a certain shade of “red” to distinguish between the 

target and the “false alarm”. When landing on a vessel with a different color 

background, the various shades/colors of the targets in the pattern could be used 

to serve the purpose of effective and robust object pattern detection. 

 Color-based detection of the red targets was implemented in the following 

way. In RGB representation, a pixel at image coordinate ),( yx  has three 

integers, brg III ,, , varying from 0 to 255, respectively.  The pixels that belong to 
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the red visual markers vary depending on the lighting conditions, noise, etc. 

According to the suggested method, a pixel is determined to be red, if: 

                            ),(),( yxIsyxI rg  and ),(),( yxIjyxI rb  ;                                (2.1) 

where js,  - are thresholds that are found experimentally for certain lighting 

conditions. 

  As shown by Vinukonda (2011), the total complexity of the SIFT algorithm 

for an image with dimensions MN   is 

))3)(((
2

2  
s

x
wsMN , where  ,,  - feature fractions, 

w  - Gaussian window, xx 22   - neighborhood of a point, and 1s . In comparison 

with the high computational complexity of SIFT, color-based detection has 

complexity )( MN  . This allows the suggested approach to be implemented on 

less powerful processors, thereby reducing the cost of the overall system. 

 

 

2.2.2 Edge and center extraction  

 

After red pixels are detected on the image, the edges of the red objects are 

determined using a Canny edge detector.  The Canny edge detection algorithm 

(Canny, 1986) can filter noise, but keep the same level of valid information, while 

ensuring precise positioning on the image.  
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After the edge detection, the morphology operation of dilation is applied 

(Gonzalez & Woods, 2007). Assuming A as a binary image, and B as a structural 

element, the operation of dilation can be expressed by: 

                                                                         
Bb

bABA


 .                                                         (2.2)     

Dilation reduces the possibility of getting open contours which could create 

problems in further contour detection.  

The image processing algorithm extracts the contours of each of the red 

objects, using the method of edge approximation that compresses horizontal, 

vertical, and diagonal segments and leaves only their end points. The software 

calculates moments 
i

m  of each contour, and obtains the centers of each object 

using Equation 2.3: 

                                                        ,
m

m

00i

10i


icx ;
m

m

00i

01i


icy                                       (2.3) 

where
2 2

1 1

p qx y F(x,y)i pqm dxdy
 

 
    . 

After the centers of each contour are calculated, the points are sorted from 

the top to the bottom of the image. Since the UAV uses a GPS for the initial 

alignment, the fifth point is always the one on the top of the image, while the 

other four points that make up a square are located lower on the image. Having 

separated the fifth point from the rest of the points, and going clockwise from the 

top to the bottom of the image, the developed software distinguishes between the 

points. Such an approach does not require any feature tracking algorithms or 
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methods to solve the correspondence between the points in a pattern, which 

significantly simplifies the computations. 

 

2.2.3 Correction for perspective distortion 

 

In a case when 5 targets are detected, the coordinates of the DPT on the image are 

estimated using the perspective transformation technique.  

Given the image coordinates of four points that make up a square: 

),(),,(),,(),,( 44332211 yxyxyxyx . Since the shape is known, the coordinates of these 

points after correction for perspective distortion are also known and 

are ),(),,(),,(),,( 44332211 yxyxyxyx  . The suggested method estimates the 33  

perspective transformation matrix T such that: 

                                               ;

1i11

33











































































i

i

i

i

x

i

i

y

x

hg

led

cba

y

x

Twy

wx

                               (2.4) 

where ),( ii yx  are corrected coordinates of the point on image, ),( ii yx  - actual 

coordinates of the point on the image, index 4,3,2,1i  indicates the numbering of 

the points that make up a square, and w - non-zero scalar which is needed to 

express the transformation in homogenous coordinates. 

After solving ii yx , from Equation 2.4: 
i




ii

ii
i

yhxg

cybxa
x and 

i




ii

ii
i

yhxg

fyexd
y . 

This gives Equation 2.5: 
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







.0i

;0i

iiiiiii

iiiiiii

yyhyxgyfyexd

xyhxxgxcybxa
                                 (2.5) 

Generalizing for 4-point correspondence, Equation 2.5 can be written in 

matrix format as 0h iA  for 4..1i , where Thgfedcba ]i[h   is a 

19 vector of unknown coefficients, and iA  is a 92 matrix of known coordinates 

for thi  point given as:  

                           







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yyyxyyx

xyxxxyx
A

1000

0001
.                         (2.6) 

After inserting all 4 matrixes iA into one equation (Geetha & Murali, 2013):  
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The solution for four points is obtained using Singular Value Decomposition 

(SVD), where the solution is given as Taaaaaaaaa ),,,,,,,,(h 33323123222113121191 
. 

Since there are 8 linear equations and 9 unknowns, it was necessary to add a 

constraint 1a 33  . 

After calculating the transformation matrix, the algorithm extracts the 

coordinates of DPT (Point 6) on the corrected image, and projects it back to the 

original image, as is shown in Fig. 2.5: 

                                                       ;

11

6

6

33

6

6






































y

x

Twy

wx
x                                                    (2.8) 



28 

 

where ),( 66 yx  are corrected coordinates of the DPT on image, ),( 66 yx  - estimated 

coordinates of the DPT on the image 

 

 

Figure 2.5 - Correction for perspective distortion 

 

 

2.2.4 Affine transformation 

 

The current research considers losing targets from the field of view (a case when 

three or four targets are detected), which will happen as the UAV comes closer to 

the moving platform. In this scenario, alignment is completed using the 

remaining equilateral triangle after applying affine transformation. The aiming 

point in this case is the middle of the base of the equilateral triangle (Fig. 2.6).  

Given the image coordinates of 3 points that make up an equilateral 

triangle: ),(),,(),,( 332211 yxyxyx , since the shape is known, the coordinates of these 

points after correction for affine transformation are also known and 
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are ),(),,(),,( 332211 yxyxyx  . The affine transformation matrix 32x  is calculated 

based on three-point correspondence so that: 

                                       ;
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where ),( ii yx  are coordinates of the thi point on the image, ),( ii yx   - the corrected 

coordinates of the thi point on the image, index 3,2,1i  indicates the numbering 

of the points that make up an equilateral triangle. 

After solving ii yx , from Equation 2.9:  
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Generalizing for three-point correspondence, this equation can be written 

in matrix format as ],[h iii yxC   for 3,2,1i , where Tfedcba ][h   is a 

vector of unknown coefficients, and iC  is a matrix of known coordinates given as 
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Figure 2.6 – Affine transformation 
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The solution is Taaaaaa ][h 232221131211 that allows to obtain the 

affine transformation matrix. The coordinates of the aiming point on the image 

are found by: 
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where ),( 44 yx  are the corrected coordinates of the aiming point on image, and 

),( 44 yx  are the estimated coordinates of the aiming point on the image. 

 

 

2.3 Improvements of the algorithm for a UAV and a 

platform rolling, pitching, and yawing 

 

The UAV motion can be expressed in the inertial frame  iiii ZYXOI ,,, , body 

frame  bbbb ZYXOB ,,, , and camera frame  cccc ZYXOC ,,, (Fig. 2.7). 

bc OO  is assumed for the simplicity of modeling. Since the camera image is 

affected by the rolling, pitching, and yawing of the UAV and the platform, the 

“virtual camera” approach is used to account for these movements.  

Compared to Jabbari et al. (2014) who used virtual projection of a 

downward looking camera image to eliminate couplings of roll-horizontal, and 

pitch-forward movement of the under-actuated UAV, the current research 
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extends this approach to account for both a UAV and a target rolling and pitching 

which affect the front-facing camera image. While the virtual plane described in 

(H Jabbari Asl, Oriolo, & Bolandi, 2014) was parallel to the target plane, in this 

work the “virtual image plane” is perpendicular to the pattern/moving vessel 

plane (further referred to as “virtual orthogonal image plane”), but is rotated with 

a yaw angle with respect to the centerline of the pattern; the origin of the virtual 

camera coincides with the origin of the actual camera.  

 

 

 

 

Figure  2.7 - UAV motion frames 
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Let point P  have coordinates ),,( zyxi iiip  in the inertial frame. The 

coordinates of this point in the camera frame ),,( zyxc cccp can be determined by 

the Pinhole camera equation (H Jabbari Asl et al., 2014). 

The coordinates of P  in the orthogonal camera frame are calculated using 

Equation 2.13:  
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where UAVshipUAVship   , - roll/pitch of the ship relative to the UAV 

roll/pitch, respectively, 
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,R  - rotation 

matrix of relative roll and pitch. The roll/pitch of the UAV can be obtained from 

the Inertial Measurement Unit (IMU) of the autopilot, and the roll/pitch of the 

platform can be transmitted to the UAV from the Ground Control Station (GCS) 

located on the moving platform. 

 The relationship between the image coordinates ),( cc yx of the point P and 

coordinates of this point on the orthogonal image ),( oo yx can be described as 

follows (Jabbari et al., 2014):  
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where  f - focal length of camera, zxczxc cfcycfcx /,/  - image coordinates of 
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the point on camera plane,  
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 Fig. 2.8 demonstrates the example of transition from the camera frame to 

the virtual orthogonal camera frame for a simulated front-facing camera on board 

the quadcopter model taken in the V-REP scene (further described in Chapter 5). 

The images were taken during the simulation of realistic actual roll/pitch angles, 

which are small in a landing scenario on a moving boat and appear to be 

identical. However, the difference between the 2 images is evident from the black 

borders on the right side and the bottom corner of the virtual orthogonal image, 

as affected by the rotation. 

 

 

     

Figure 2.8 – Camera image and virtual orthogonal image for 

radrad UAVshipUAVship 02.0,01.0    

 
 



34 

 

After coming to the orthogonal frame from the actual camera frame, the 

image processing is done using the techniques described in Chapter 2.2. The 

orientation of the UAV relative to the pattern can be determined as: 

                                                     )arccos(
21

21

ll

ll




 ;                                            (2.15) 

where 1l  - horizontal perpendicular that passes through DPT/aiming point, 2l - 

horizontal centerline of the pattern that passes through DPT/aiming point (Fig. 

2.9).  

The flow chart of the software developed to account for the UAV and the 

target rolling, pitching, and yawing is given in Appendix A. 

 

 

Figure 2.9 – Yaw correction: 
a) case when 5 targets are in the FoV;   b) case when 3 or 4 targets are in the FoV 
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2.4 Conclusion 
 

The image processing approach for the multi-rotor landing on the moving target 

is described. The auto-landing system uses a GPS for the initial positioning, then 

switches to visual servoing. The developed image processing method accounts for 

the UAV and the platform rolling, pitching and yawing. The contribution of the 

proposed method is that a color-based detection, applied to detect a geometric 

pattern, makes the algorithm complexity lower than complexity of feature 

tracking methods. Compared to the complexity of the SIFT algorithm 

( ))3)(((
2

2  
s

x
wsMN ), color-based detection applied to 

the geometric pattern has a complexity of )( MN   and is able to provide all the 

spatial information. This allows the suggested approach to be implemented on 

less powerful processors, thereby reducing the cost of the overall system. 
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Chapter 3 

Visual servoing approach 

3.1 Related work 
 

Visual information extracted by the onboard camera and used for the control of 

robot motion, is known as visual servoing (Agin, 1979; Chaumette & Hutchinson, 

2006; Peter I Corke & Hutchinson, 2000). There are two basic approaches to 

visual servoing: position-based visual servoing (PBVS), and image-based visual 

servoing (IBVS).  In PBVS, image data is used to calculate the 3D pose of the 

object of interest with respect to the robot. Overall error is calculated in the 3D 

workspace and translated into control commands (Lippiello, Siciliano, & Villani, 

2007; Shademan & Janabi-Sharifi, 2005; Thuilot, Martinet, Cordesses, & Gallice, 

2002; Wilson, Hulls, & Bell, 1996).  

Garcia Carrillo et al. (2011) developed a full-state control method for 

quadrotor stabilization and trajectory tracking; their approach demonstrated 

successful performance in quadrotor stabilization indoors. Park et al. (2012) 

developed a PBVS method using a concept of a 3D visible set. Their method was 

tested using a six-degrees-of-freedom robot-manipulator; it ensures robust global 

stability.  The advantage of PBVS is that the control laws are designed in the 
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Cartesian frame, which infers reliable motion control. However, the control law 

depends on the parameters of the camera and is sensitive to calibration errors. 

In IBVS, the control law is derived based on the error that is directly 

extracted from the location of features on the image (Corke & Hutchinson, 2001; 

Malis & Rives, 2003; Mariottini, Oriolo, & Prattichizzo, 2007; Park & Chung, 

2003). Hashimoto et al. (1991) suggested an IBVS scheme for manipulators with 

cameras on their hands. The authors used time-variant state feedback to track a 

moving object. De Luca et al. (2008) developed an IBVS approach that uses a 

non-linear observer to estimate the depth. Their approach can be used to 

calculate the focal length of the camera; it is effective in scenarios where the robot 

is controlled in an unknown environment.  

The advantage of IBVS is that it is relatively insensitive to calibration 

errors. Palmieri et al. (2012) demonstrated that for “dynamic look-and-move” 

systems, when the vision system provides an external input to the joint closed-

loop control of the robot (such as a current auto-landing system), IBVS exhibits 

better behavior in terms of accuracy. Moreover, in such a case, PBVS gives 

redundant information, which implies performing unnecessary computations. As 

compared to PBVS, IBVS does not need as many calculations, since the IBVS 

method does not reconstruct a 3D pose. This is why to control a multi-rotor 

during landing on a moving platform, image-based visual servoing was applied.  

This chapter pertains to solving the  problem of controlling the multi-rotor 

in order to correctly join the glide-slope, and maintain a near-zero alignment 

error on a horizontal plane (Technical Challenge 3 described in Chapter 1.3). The 
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problem is solved by developing an IBVS scheme that is based on correction 

angles. This IBVS scheme forms the part “Control” of the overall automatic 

landing system as a bolded box in Fig. 3.1. This approach was documented in 

(Borshchova & O’Young, 2017 a; Borshchova & O’Young, 2017 b) and presented at 

(Borshchova, 2014; Borshchova, 2015). 

 

 

 

Figure 3.1 – Overall approach to the automatic  landing system 

 

 

 

 

 “                                  ” 
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3.2 IBVS scheme 
 

In IBVS, the control is designed as a function of image error e : 

                                                        ;dp ppe                                                                (3.1) 

where dp is the desired location of the image feature; p - actual location of the 

feature on the image. 

In the suggested control approach, an image feature is a DPT (aiming 

point). The desired location of the aiming point on the image is described by 

angles, since this allows a convenient transition from obtained image data to 

determine if the UAV is following the glide-slope and is aligned horizontally with 

the moving platform. In this case, the IBVS scheme can be written as follows: 

                                                                 








;

,

dv

dh

e

e




                                                   (3.2) 

where d , d - desired horizontal angle (angle to align with the centerline of the 

pattern), desired vertical angle (angle to align to a glide-slope), respectively; 

 ,  actual angles.   

The developed control approach automates the technique called the “circle 

of action” that is commonly used by military pilots to land their aircraft. 

According to this approach, the desired point of touchdown should always remain 

the center of the aircraft window (stationary point) to maintain the correct slopes. 

When automating such an approach to land the UAV, this infers that the aircraft 

should be controlled in such a way that the aiming point always remains the 
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center of the image taken by the front-facing camera. When the aiming point is 

located at the center of the image, the horizontal and vertical angles, determined 

by the camera, are zeros. This means that desired alignment angles should always 

be zero to maintain correct slopes. 

Prior to angle calculation, the camera was calibrated as described in 

(Heikkila & Silvén, 1997; Kannala, Heikkilä, & Brandt, 2008) using MATLAB 

Camera Calibration Toolbox. Using a Pinhole camera model, the horizontal 

correction angle is calculated by: 

                    






 








 


f

x

f

x
e dcorh arctan0arctan .                                 (3.3) 

Vertical correction angle using the Pinhole camera model is given as: 

                     






 








 


f

y

f

y
e dcorv arctan0arctan ;                              (3.4) 

where ),( yx   - coordinates of the DPT (aiming point) on the image plane; 

f focal length of the camera (Fig. 3.2).  

Note that for implementation when the target is rolling, pitching, and 

yawing, these correction angles are calculated from virtual image data as shown 

in the flow chart in Appendix A. 
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            Figure 3.2 – Correlation between image coordinates and correction angles 

`  

Desired linear velocity vector v  for the UAV control is calculated based on 

the correction angles (Fig. 3.3). 

                                          
 

Figure 3.3 – Dependency of the desired velocity vector from correction angles 
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From Fig. 3.3, the desired velocities can be found using Equation 3.5:  

                                                   














;sin

,cossin

,coscos







rezy

rezx

rezz

vv

vv

vv

                                                   (3.5) 

where rezv is the speed of the multirotor, zv  the multi-rotor’s forward velocity, 

xv  the multi-rotor’s horizontal velocity, and yv  the multi-rotor’s vertical 

velocity; all the velocities are represented  in a body frame. 

It is assumed for this method that the velocity of a moving platform is 

known and is obtained from the Ground Control Station located on the moving 

platform. To account for the movement of the platform, the forward velocity of 

the multirotor zv  has to be larger than the speed of the moving platform in order 

to catch up with it. In a real-time setup zv has to account for the limitation of the 

quadrotor’s maximum speed that will vary for different UAVs. Simplifying 

Equation 3.5 for the already chosen zv : 

                                                              








;tan

,tan





ry

zx

vv

vv
                                                    (3.6) 

where cos/zr vv  . 

Finally, the system is controlled with a proportional controller: 

                            ;
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~ 

where 22
~

, KK p diagonal matrices. For small   and  , the matrices can be 

considered to be diagonal: 


















zp

zp

p

p

p vK

vK
K

K

K
K

v

h

v

h

0

0~
,

0

0
. 

 The overall control system is depicted in Fig. 3.4. 

 

 

 

Figure 3.4  - Control diagram of the suggested IBVS approach 

 

Fig. 3.4 shows that actual (horizontal/vertical) angles are measured by the 

image data from camera C , and are compared to the desired angles (considered 

zero to ensure following the slopes). The error e  (difference between actual and 

desired angles) is called a correction angle, which is given as an input to 

controller K
~

. Output of the controller is the desired velocity vector which is sent 

to the UAS.  
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3.3 Kinematic effects on a closed-loop visual feedback 

system 

 

Consider the image plane to be a projection of the 3D features of the scene. This 

allows the use of circles, lines, points, etc. as elementary features that will change 

their position in the camera frame with the change of position of a multi-rotor. 

Kinematic effects on the closed-loop vision-based system consider how the UAV 

should move with respect to the image feature perceived by the camera.  

Consider a point on an image as a desired image feature, and define a set 

of points on the image needed for alignment as ),,( amss  where m pixel 

coordinates of points, a camera intrinsic parameters. For a 3D point with 

coordinates ( ZYX ,, ) after projection on the image plane (Chaumette & 

Hutchinson, 2006): 

                                                     








;/

,/

h

u

chZfYy

cuZfXx
                                                   (3.8) 

where ),( hum   - coordinates of image point in pixels, hu ccf ,, focal length and 

coordinates of the principal point, ),,( hu ccfa   - intrinsic camera parameters, 

),( yx  - image coordinates of the point.  

Since a UAV has six degrees of freedom – three rotational and three 

translational – the UAV velocity matrix relative to a moving target 

frame 61V can be expressed as follows: 
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                                                            ];,,,,,[ zyxzyx wwwvvvV                                    (3.9) 

where 
zyx vvv ,, - horizontal, vertical, and forward velocities, respectively, and 

zyx www ,,  - angular velocities with respect to the zyx ,, axis. 

The relation between the change of point parameters s ( 1 ks ) on the 

image and the UAV motion V  can be expressed with an interaction 

matrix 6 kL , where k number of parameters that represent image features 

(Silveira et al., 2001): 

                                                                     ;VLs T                                                      (3.10) 

where a single point is represented by 2 parameters ).,( yxs     The relationship 

between a multi-rotor velocity and time change of error e can be expressed as 

follows: 

                    ;VLe
T

e                                                      (3.11) 

where 
d

sste )( , ds  - desired location of the image feature on image, s - actual 

location of the image feature on the image, and 
T

e

T LL  from Equations (3.10) 

and (3.11). Matrix L  can be derived from the optical flow 

equation:
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where iZ distance to the thi point, ),( ii yx   - coordinates of the thi point on the 

image, ni ..3,2,1 , n  ℕ  - number of the reference points, and  ℕ   - a set of                           

positive integers. 

Considering a case when the dynamics of the inner loop of the system is 

much faster than the dynamics of the outer loop, the assumption can be made 

that multirotor velocity will always go to the desired value. Considering V as a 

desired commanded velocity of the multirotor, to ensure exponential decoupled 

decrease of an error ),( ee   the desired velocity vector can be calculated as:  

                                                                   ;eLV e


                                                    (3.12) 

where k

eL 
 6 , 

T

ee

T

ee LLLL 1)( 
 , and eL is of full rank (Chaumette & 

Hutchinson, 2006). When 6k and 
16s  then it is possible to invert 

e
L  

making the desired commanded output velocity eLV e

1
  .  

It is assumed that this output velocity V  can be commanded by a well-

tuned autopilot (inner-loop controller) with sufficiently fast dynamics and servo-

precision. A control diagram of this approach can be seen in Fig. 3.5.  

 

 

Figure 3.5 – Control diagram of a closed-loop system 
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If assuming insignificant rolling, pitching, and yawing of the platform (as 

in Chapter 5.5), and insignificant rolling/pitching of the UAV, considering slow 

motion during landing in low-wind conditions, using small movement 

approximation with Zf / as a dominant term, the interaction matrix could be 

simplified to 













Zf

Zf
L

/0

0/
, where f - focal length of the camera, and Z - 

distance to the DPT. Thus, the implementation in Fig. 3.6 becomes a simplified 

special case of the diagram in Fig. 3.5 for the developed IBVS approach that uses 

correction angles in Fig. 3.4. 

 

 

 

Figure 3.6 – Control diagram of the suggested approach 

 

If the autopilot is well-tuned, then *VV  ; the integrator in the diagram is a 

part of the physics of the camera system. After simplifying the diagram in Fig. 3.6, 

we will get the diagram in Fig. 3.7. 

 



48 

 

 

Figure 3.7 – Control diagram of the suggested approach after simplification 

 

Consider a closed-loop transfer function with s  as a complex number frequency 

parameter of Laplace transform (Ogata, 1970), for a decoupled horizontal/vertical 

control structure: 1
/

/

/)/()/1(1

/)/()/1(
*












ZvK

ZvK

ZfvKf

ZfvKf

s

s

zp

zp

zp

zp

ss

s
, as t , which 

shows that current approach can be used for both regulatory and servo-control 

systems. Thus, the closed-loop system has zero steady-state error and a time-

constant of 
zpvK

Z
 . Multi-variable control should be considered for future 

works. 
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3.4 Dynamic effects on a closed-loop visual feedback 

system 

 

This section analyses dynamic constraints such as inner and outer loop autopilot 

configurations and camera frame rates as needed for the outer loop performance. 

The robustness of the controlled system to the delays due to image processing and 

sampling constraints affecting the performance of the system are considered in 

the design. The control analysis is represented as applied to a discrete-time  

continuous system to highlight the aforementioned aspects. In this section, we 

will use z -transform to conduct control system analysis with ssT
ez  , where s  is 

a complex number frequency parameter of Laplace transform, and sT the 

sampling interval. 

For the convenience of using a control system with negative feedback (as 

compared to the positive feedback representation used in Chapters 3.2 and 3.3), 

horizontal and vertical errors are defined as: 

                                                             








;

,





dv

dh

e

e
                                                      (3.13) 

where d , d - desired horizontal angle (angle to align with the centerline of the 

pattern), desired vertical angle (angle to align to a glide-slope), respectively; 

 ,  actual angles. Then, the horizontal and vertical correction angles are 

calculated by: 
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                                






 





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

 


f

x

f

x
cor arctanarctan0 .                                    (3.14) 

                               ;arctanarctan0  

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

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




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

 


f

y

f

y
cor

                                    (3.15) 

where ),( yx   -coordinates of the aiming point on the image plane; f focal 

length of camera.  

The system is controlled with a proportional controller (Fig. 3.8), which  is 

given as: 
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where cos/zr vv  , zv multi-rotor’s forward velocity, xv multi-rotor’s 

horizontal velocity, yv multi-rotor’s vertical velocity, and 22, KK p diagonal 

matrices, such that 

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Figure 3.8 - Visual feedback control system for auto-landing 
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Since the real-time setup described in Chapter 5.5 is capable of processing 

10 frames per second, the delay due to image processing is 100 ms. The decision 

was made to choose the sampling time sT  to be equal to the image processing 

time, since oversampling does not give any advantage (sending the same value is 

not beneficial), and sampling at a lower rate than image processing capabilities is 

undesirable due to the required data rate to stream to the autopilot.   

In classical visual feedback control, the camera is represented as a unit 

delay (Peter Ian Corke, 1994) with transfer function
z

zH
1

)(  . The image error 

)()()( zXzXzX td  is the difference between the desired and current location of 

the aiming point on the image. Image error )(zX is an input to the proportional 

controller, which calculates the velocities using Equation 3.16. The UAV transfer 

function is represented as a discrete integrator that transforms velocity into 

position )(zXUAV , and has a transfer function
1

1
)(




z
zG .  

In the real-case scenario, the UAV transfer function consists of the transfer 

function )(zAp  that represents the dynamics of the multirotor controlled by the 

autopilot velocity controller. However, if the autopilot is tuned, this block of the 

diagram is approximately equal to 1 for a closed-loop system (Fig. 3.9).  

Since the landing system was implemented as a cascade control with 

multiple inner loops (sending commands to the outer loop of the autopilot – 

velocity loop), the control loop with image processing can be slower than the 

autopilot’s velocity loop. The velocity loop of the Pixhawk autopilot (described in 
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Figure 3.9 - Visual feedback control system for auto-landing (Expanded) 
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Chapter 5.4.4) runs on 50 Hz. The developers of the Pixhawk recommend that the 

velocity set-point commands should be sent to the autopilot at least at 4 Hz. Since 

the developed camera system was capable of 10 Hz, this was enough to achieve a 

satisfactory performance control system for automatic landing. 

The main requirements for such a control system are:  

a) Stability; and  

b) Tracking without a steady-state error. 

Fig. 3.10 shows a typical response of the system in Fig. 3.9 with a 

proportional controller gain 0.6,K   done in Simulink, Matlab, for a decoupled 

horizontal/vertical control system structure. 

 

Figure 3.10 - Response of the system with proportional control 

( 0.6,K  1.0Ts  ms) 

 

x(t) 
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Consider a closed-loop transfer function that describes the response of the 

UAV position )(zX UAV to the target position )(zx : 

                                                         .
)()(1

)()(

)(

)(

KzGzH

KzGzH

zx

zXUAV


                                   (3.17) 

After substituting the transfer functions of blocks, this closed-loop transfer 

function can be written as: 

                                           .
6.0)1(

6.0

6.0

6.0

)(

)(
2 





zzzzzx

zXUAV                             (3.18) 

Closed-loop poles are located at iz 6.05.01  , iz 6.05.02  and indicate a 

stable closed-loop system (Ogata, 1995). To show that the steady-state error is 

near-zero, 1
6.0)1(

6.0

)(

)(





zzzx

zXUAV as the discrete time step ,n   which 

ensures that the UAV will come to a target without steady-state error. 

The open-loop transfer function of this system is
)1(

6.0
)()(




zz
KzGzH . The 

typical bode plot in Fig. 3.11 shows the phase margin of 38 with a gain margin of 

6.4)7.1log(20  dB can be achieved.  

Consider another closed-loop transfer function that describes the response 

of the image plane error )(zX to the target motion )(zx : 

                                                          .
)()(1

)(

)(

)(

KZGzH

zH

zx

zX


                                    (3.19) 

After substituting the transfer functions of blocks, this closed-loop transfer 

function can be written as: 
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as ,n  meaning that as the target moves, the image error is going to 

zero (Type 1 system), which ensures tracking without a steady-state error.  

As can be seen from Fig. 3.10, the closed-loop system has a time constant 

of the order of 2 seconds. Since the flying time during the outdoor landing 

experiment (Chapter 5.5.2) was approximately 10 seconds ( sTk s  1.0,100  ), the 

step-response shows that a near zero steady-state error can be achieved with this 

configuration. 

 

Figure 3.11 - Bode plot of an open-loop transfer function 
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Diagram 3.9 does not consider wind disturbance. However, the well-tuned 

autopilot can handle small wind perturbations during flight. High-wind 

disturbances can cause exceptions such as losing markers from the camera FoV, 

and are considered in Chapter 4. To prevent losing visual markers from the FoV 

in high-wind operations, future work should consider using a gimbaled camera to 

compensate for the UAV and a target rolling and pitching.   

The multi-rotor dynamics are simplified for the analysis by assuming a 

closed-loop autopilot controller will maintain zero steady-state error. Not relying 

explicitly on the modeled dynamics of a particular UAV helps to generalize the 

applicability of the developed control scheme to the entire category of the UAVs. 

However, higher order dynamics could lead to instabilities. Future work should 

examine the influence of a wide range of disturbances, and parametric variations 

on the closed-loop stability, considering nonlinearities in the multi-rotor’s 

dynamics, multi-variable control and couplings within IBVS laws. 

 

 

3.5 Conclusion 

 

An image-based visual servoing scheme was described to control a multi-rotor 

during automatic alignment with a moving platform. An IBVS scheme was chosen 

over PBVS as it does not require calculating the 3D UAV position, and is less 

sensitive to camera calibration errors. Since IBVS derives the control laws in the 
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image space, the targets are more likely to stay within the FoV, unless affected by 

unexpected wind-gust. 

The closed-loop visual feedback system is analyzed from two points of 

view: kinematic and dynamic, considering the delay due to image processing, 

sampling constraints, and target motion disturbance. The controller design 

follows a linear controller design, which has limitations to be applied only for 

small deviations from the desired path. However, according to the developed 

landing method, the UAV initially aligns with the help of a GPS, thus large 

deviations from the desired track are not likely. Nonlinear controller design, with 

potentially applying an adaptive control strategy during a UAV landing on a 

moving target in a GPS-denied environment, is considered as future work. 

To compensate for the delay due to image processing, several methods of 

dynamical optimization (e.g. Kalman filter) could be used. However, Kalman 

filtration applied to the sequence of camera images to predict the location of the 

aiming point at a certain time would lead to increasing the number of operations 

on the image. For the case of the chosen Odroid processor (details are given in 

Chapter 5), the image rate was reduced from 10 frames per second to 4-5 frames 

per second. Additional analysis was needed to determine the trade-offs between 

increasing the computational complexity and impact of the delay due to image 

processing on the control system performance. Since the developed auto-landing 

system operates at the rate of 10 frames per second, a delay of 100 ms is 

considered to have little impact on the performance of the visual closed-loop 
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system because the dominated dynamics of the aircraft are at least 5 times slower 

than the camera frame rate. 

Even though control system analysis is notional, it demonstrates that 

tracking without a steady-state error and closed-loop stability through a visual 

feedback landing system is viable. As shown experimentally in Chapter 5, the 

prototype system provided reasonable accuracy: 15 cm from the DPT, for landing 

on a static target, and 25 cm from the DPT, for landing on a moving platform.  
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Chapter 4 

Discrete-event supervisory 
control 
 

 

4. 1 Related work 

 

Discrete-event systems represent dynamical systems where signals take values in 

a discrete set. Examples of such systems are traffic lights (“red”, “amber”, 

“green”), elevator (“waiting”, “going up”, “going down”), mechanisms for opening 

gates (“door opened”, “door closed”), etc.  

Discrete-event systems can be timed and untimed. Untimed DES considers 

logical behaviour of the state evolution; it does not account for timing constraints, 

such as how long the system can stay in a certain state, or when it should enter 

another state. Timed DES combines both logical and timing details, and thus is 

more complex.  Theory of discrete-event systems is generally based on the 

concepts of states, events, and languages. 

Ramadge and Wonham (1989) developed a supervisory control strategy for 

a DES. Their control mechanism refuses actuation requests in order to achieve 

desired system behaviour; the supervisor’s design is “language-based”. Brave and 
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Heymann (1988) suggested a control strategy using a counter, which is described 

with an update map. Brandin and Wonham (1994) developed a timed transition 

model; the authors generalized the existence of maximally permissive supervisory 

control. The limitation of their modeling framework is that controllable events 

should always have an infinite upper time bound, which does not always coincide 

with processes in the real world. The modeling framework described in this thesis 

does not have this limitation: when the upper time bound is taken to be infinity, 

then delay can be made indefinite; this special case corresponds to Wonham and 

Brendin’s disablement mechanism. The delay technology described in this thesis 

allows disablement to be either time-limited, or indefinite. 

In this chapter, the landing phase is modeled as a timed discrete-event 

system. The  problems with possible exceptions that can occur during a landing 

mission (Technical Challenge 4 described in Chapter 1.3) are solved by adding a 

discrete-event supervisor to the continuous control system. The current modeling 

framework follows the semantics of O’Young (1991), where the supervisor takes 

an active role in sending timely warnings to the system for expediting and/or 

delaying certain control actions. These semantics also model time persistency, 

which is essential to account for the battery discharge over the sequence of states 

during landing. 

This discrete-event layer forms the part “Discrete-event supervisory 

control” of the overall automatic landing system as a bolded box in Fig. 4.1. This 

approach was documented in (Borshchova & O’Young, 2017 c). 
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Figure 4.1 – Overall approach to the automatic landing system 

 

 

 

 

 “                                  ” 

 



62 

 

4. 2 Modeling of a timed discrete-event vision-based 

landing 

A discrete-event system is a discrete-state, event-driven system in which the state 

evolution depends on the occurrence of discrete events over time. An untimed 

discrete-event system can be formally described as a finite automaton 

represented by a 5-tuple  

                                                            ),,,,( 0 mAaAG  ;                                          (4.1) 

where A - finite set of activities (states),  - finite set of symbols (events), also 

called “alphabet”,  - transition function, so that AA : , Aa 0  - start 

activity, which is the activity before any input was processed, AAm   - set of 

accept activities (marker activities, Wonham & Ramadge, 1987).  

Automaton reads a finite string of symbols n ...321  where 
i

 , which 

is called an input word. Denote * - set of all finite words, then 

AA  *: (Lin, Vaz, & Wonham, 1988). Events are thought to be 

instantaneous and occurring at quasi-random moments of 

time }.0|{ 


 tt  

Let 21,GG be two DES. The synchronous product of 
1

G and 
2

G denoted 

by 
21

|| GG is another DES with the initial activity of 
21

|| GG being a pair 

),( 2

0

1

0
aa , where 

2

0

1

0
,aa are initial activities of 

1
G and

2
G , respectively. An activity 
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),(
21

aa is a marker activity when 
1

a is marked w.r.t. 
1

G and 
2

a is marked w.r.t. 

2
G . 

 Let ℕ denote the set of nonnegative integers, and 


Z be a set of positive 

integers. Each event  will be equipped with a lower time bound l  ℕ   

and an upper time bound  Zu  such that


ul  . The lower bound is 

considered to be a delay, and the upper bound is considered to be a deadline. Let 

., Zul  Possible types of events according to these semantics are:  

1) ];0[ u , which has only a deadline; 

2) ),;[ l which has only a delay; 

3) ],;[ ul which has both a delay and a deadline; and 

4) ),;0[  which has neither a delay nor a deadline, and is considered to be 

untimed.  

The passage of time is measured by counting the tick of a global clock 

which updates every


 . The lower time bound dictates that the system must 

wait in a state until 

l ticks have been counted before the event can occur; event 

 must occur before )1( 


u ticks, unless another event    occurs before it.  

Timing constraints are able to persist over the state transition (the timing 

constraints of event   may not be affected by the occurrence of ). Such a 

persistency rule helps to describe an evident timing constraint such as a battery 

discharge time over the sequence of states during an automated landing. The 
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timer is assigned to each event label, and the enablement of the counting 

coincides with the enablement of the corresponding event.  

Let 


 


.,

;,
:

otherwisel

uu
r




   Then, the integer range ],0[


r  will represent all 

possible assignments of local timers associated with the 

transition . Let ),..,(:
21 n

L  , where n  - the cardinality of . Thus, timed 

DES can be represented as: 

                                                               ),,,,( 0 mp YyYP  ;                                       (4.2) 

where   ],0[1 rAY n

i  is a finite set of timed states capable of expressing infinite 

upper time bounds; 
p

 - alphabet and   - transition function, so that 

YY p : with Yy 0 as an initial state, and YYm   - the subset of marker 

states (states that complete a task or a sub-task).  

Let UAV states during automatic alignment be partitioned using the 

method of Millan (Millan, 2006) with functional lDF  . This partitioning 

allows the alignment stage to be divided into two fields – “near field” )0( F and 

“far field” ),0( F where D  - distance from the UAV to the desired point of 

touchdown in meters. This distance D can be estimated from the GPS location of 

the UAV relative to the moving platform position. 

 Considering the landing phase starting at the distance of 60 m away from 

the moving platform, it is reasonable to divide “far field” and “near field” with the 

proportion of 5/6 and 1/6, respectively, while “near field”  is separated from  “far 
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field” with a distance ml  10 . For a small multi-rotor UAV moving with a speed 

of 3 m/s during its automatic alignment, the update time is chosen to be 0.5 s. 

  Since in the case of large distance D  the targets appear close to each other 

on the image, the algorithm at “far field” can either detect the whole pattern, or 

cannot detect the pattern at all. This situation can be short-term (due to an image 

processing error, blur, etc.) or long-term (due to a change in the lighting 

conditions).  

The DES states are defined:   

Forbidden (Blocking): Let p  be a finite event set, Y - a set of states, 

mY - set of marker states. State Yy f  is called forbidden if there is no marker 

state reachable from .
f

y  

Since a forbidden state is a blocking state, this state will be avoided in the 

synthesis of a non-blocking DES supervisor. 

Normal: Let be a set of detected red targets on a particular virtual 

orthogonal camera image. The state is called normal if the cardinality of  is 

equal to 5. 

Note. The state is called abnormal if the cardinality of  is greater or 

lower than 5. If the cardinality of  is greater than 5, this infers that the 

detection threshold is too low for current lighting conditions (“false positive”); if 

the cardinality of  is lower than 5, this infers that the detection threshold is too 

high for current lighting conditions (“false negative”). 

The activity transition graph for “far field” is given in Fig. 4.2. 
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Fig. 4.2 represents the State “normal” (pattern detected), “abnormal”- 

cannot detect the pattern; State “reset” – when the detection threshold is tuned 

by the AVO, and State “forbidden” - crashed; Events “lose” targets, “regain” 

targets, “stop_mission”, “restart_mission”, and “crash”. Markings “×” and “∕ ” are 

related to the control mechanism, which will be explained in Chapter 4.3. 

 

 

Figure 4. 2 - Activity transition graph for “far field” 

 
The UAV starts the landing mission in the initial state “normal” (marked 

with an arrow in Fig. 4.2), which is also a marker state. If Event “lose” occurs, and 

the pattern cannot be detected (State “abnormal”) the UAV will crash due to the 

absence of control input to the autopilot. This Event “crash” will occur if the 

control input stays undefined longer than 6 ticks. Event “stop_mission” occurs 

when the UAV receives a command from the AVO to change “landing” mode into 

“hovering” mode. The detection threshold is updated in the State “reset”, after 

which the alignment with the moving platform is set to start again (Event 

“restart_mission”). 
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Aligned: Let ),(
mm oo yxm  be the fifth blob and ),(

nn oo yxn  - aiming point on 

the virtual orthogonal image plane. The state is called aligned, if


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where ),(
00 oo yx  - actual center of the orthogonal image,   - acceptable pixel error 

specific to the configuration chosen, e.g. a 10-pixel tolerance was used in the 

“near field” implementation.     

Note. The state is called not aligned if 



















.

;

,

0

0

0







oo

oo

oo

yy

xx

xx

n

n

m

 

When aligned with the pattern, the projection of the centerline of the 

pattern on the orthogonal image would coincide with the vertical centerline of the 

orthogonal image (property of perspective projection). Also, the aiming point 

would be located at the actual center of the orthogonal image to ensure correct 

slopes. To avoid the situation when, for example, the error of 1 pixel marks the 

camera state as “not aligned”, some acceptable error level   is allowed as 

described above. 

Dangerous: Let be a set of detected red targets on a particular virtual 

orthogonal camera image. The state is called dangerous, if cardinality 3 . 

State “dangerous” can be entered only if the UAV is following the wrong 

trajectory (controller is not tuned to wind/gust). It is assumed if the “near field” 

zone is entered, the detection threshold is tuned to the lighting conditions. 
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 An activity transition graph to illustrate the discrete-event UAV behavior 

in “near field” is given in Fig. 4.3. 

Fig. 4.3 represents the States “aligned”, “not_aligned”, “dangerous”, 

“forbidden” (crashed), State “EP_control”, when the UAV is manually controlled 

by the external pilot, and State “landed” – marker state; Events “lose” targets 

from FoV, “regain” targets,  “misalign”, “come_back” to aligned,  “crash”, 

“hit_the_ship_gear”, “auto_finished” – which indicates the alignment stage is 

over, “abort” – switching to manual control,  and “land”. The markings “×” and “∕” 

are related to the control mechanism, which will be explained in Chapter 4.3. 

The UAV can enter the “near field” zone in either of the initial states 

(marked with an arrow in Fig. 4.3): “aligned”, or “not_aligned” (when the 

controller is not tuned to the wind). If  the mission is started in the State 

“aligned”, the UAV can transit to the State “not_aligned” (Event “misalign”) if an 

unexpected gust affects the UAV trajectory. If there is enough time/gain for the 

controller to align the UAV with the moving platform, the UAV will return to the 

State “aligned” (Event  “come_back”). The UAV can also lose targets from the 

FoV when following the wrong path, and transit to the State “dangerous” (Event 

“lose”). If the targets are not regained within 1.5 s (3 ticks considering an update 

time of 0.5 s), the UAV will crash due to the absence of control input to the 

autopilot. 

Considering a distance to the DPT of 10 m when entering the “near field” 

zone, the multi-rotor’s velocity of 3 m/s, update time of 0.5 s, and the velocity of a 

moving platform of 1 m/s (as was implemented in the set of experiments 
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Figure 4.3 - Activity transition graph for “near field” 
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described in Chapter 5), the automatic alignment in “near field” is assumed to last 

for 10 ticks.  

If the controller gains are not tuned to the wind, and the UAV remains in 

the State “not_aligned” when being close to the ship (assume 9 ticks for the 

current configurational setup), the UAV might hit the ship’s gear and crash into 

it. Event “auto_finished” can occur after 10 ticks, which is the time when the UAV 

will be located over the DPT. The pilot can abort the auto-landing mission and 

take over the control of the UAV during the “near field” phase at any state. Event 

“land” can occur from [2; 10] ticks, which depends on the location of the UAV 

when exceptions happen. 

 

4. 3 Supervisory control strategy 

4.3.1 System specification 

 

Let S be a DES that represents a set of dynamical constraints on a plant P , whose 

dynamics are represented as TDES. This set of constraints is called specification. 

In this case, S constrains plant P to synchronize all transitions labeled by a 

shared event in
ps

  . The synchronous product of SP || is called a 

specified system. 

The specification for the landing system in the “far field” is given in Fig. 

4.4. The main requirement of the specification is to allow the UAV enter any state 
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except for forbidden (“crashed”). Technically, this “crash” transition is not needed 

since the “forbidden” state will be avoided automatically by the non-blocking 

supervisor; it is added here for clarity. 

 

 

Figure 4.4 - Specification for the system in “far field” 

 
The specification for the system in “near field” is given in Fig. 4.5. The 

requirement of the flight in “near field” is to ensure the UAV is coming to the 

marker state “landed” considering the battery life limitations (assume 60 s (120 

ticks) for the current configurational setup). 

 

 

Figure 4.5 - Specification for the system in “near field”  

 
Note that the dynamics of the systems under design (Fig. 4.2 and 4.3) have 

been abstracted in the formulation of the specifications (Fig. 4.4 and 4.5), making 
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it possible for another person, e.g. a client, with no or little knowledge of the 

system to specify, declaratively, the desirable outcomes. 

 

4.3.2 Supervisor synthesis 

 

The supervisory control strategy follows the semantics of O’Young (1991), and 

differs from the control strategy of Brandin and Wonham (1994). The supervisor 

in this work is state-based, and takes an active role in sending timely warnings to 

the system for expediting and/or delaying certain control actions. This way, the 

supervisor can ensure that specified tasks are performed within a specified time. 

This expediting mechanism can be regarded as a timed version of the forcing 

mechanism developed by Golaszewski and Ramadge (1987). The idea behind 

expediting events is to avoid an unrecoverable error.  

Let P be a timed DES, which is synchronized with constraints S , so that a 

specified system is given as SP || . Let 
~

be a reachable discrete-event sub-

system of a specified system , and
pp

YyYy 

,~~ . The supervisory control 

pattern is defined as: 

              







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ytickyticktick

yy

p

pp





                               (4.3) 

The pattern   is controllable if   is a delayable event (an event that can 

be delayed until at least next clock tick).  At “far field” delayable events are the 
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Events “stop_mission” and “restart_mission”, at “near field” delayable events are 

the Events “abort” and “land”. These labelled transitions are marked as “/” in Fig. 

4.2 and 4.3. 

If the tick is  , there must exist an expeditable event 
e

  defined in 

~y  that 

can be forced to occur before the next clock tick. At “far field”, expeditable events 

are Events “stop_mission” and “restart_mission”, at “near field” expeditable 

events are the Events “abort” and “land”. These labelled transitions are marked as 

“×” in Fig. 4.2 and 4.3.   

An empty control pattern is trivially controllable because no control action 

is needed. A reachable discrete-event sub-system of a specified system  is 

controllable if the control pattern  at each reachable state of the sub-system.  

The largest controllable and non-blocking sub-system exists and is unique; it is 

called the least-restrictive and non-blocking supervisor as in (Brandin & 

Wonham, 1994). 

  The least-restrictive supervisor synthesis for the models developed in 

Chapter 4.2 was done in OTCT software (O’Young, 1992). OTCT is a suite of C++ 

routines, implemented in an object-oriented style, for the design and simulation 

of logical and timed discrete-event systems. OTCT handles both deterministic and 

non-deterministic structures, and accepts composite transition structures built 

from a mixture of timed and untimed components. Control data in OTCT after 

synthesis by the specification are displayed in a *.txt file where delaying and/or 
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expediting occur together with the events which must be delayed or expedited 

there.   

The supervisor in “far field” automatically designed by OTCT software has 

21 transitions and 8 states. The control data is given in Table 4.1. 

 
Table 4.1 - Supervisor’s control data for “far field” 

PLANT: [abnormal,[crash,5]] 

SUPER: [[abnormal,[crash,5]],allowed] 

EXPEDITE:  stop_mission 

 

The object-oriented structure of OTCT lists the plant state 

([abnormal,[crash,5]]),  followed by the supervisor’s state 

([[abnormal,[crash,5]],allowed]). The plant state listed by the software implies 

that the UAV will be in the State “abnormal” with the timer on the Event “crash” 

having counted five ticks from the global clock. The supervisor’s state is a 

synchronization of the state of the plant ([abnormal,[crash,5]]) and specification 

([allowed]). When coming to such a state, the supervisor will give an audio 

warning to the AVO to expedite the Event “stop_mission”. The input and output 

files to the OTCT software for “far field” are given in Appendix B. Timed 

transition graphs for both UAV and a supervisor are given in Appendix C. 

The conclusion, made from the data displayed by the optimal supervisor, 

infers that AVO has to stop the landing mission and tune the detection threshold 

at the last moment to prevent the UAV crashing. 
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The supervisor designed in OTCT for “near field” has 6,312 states and 

17,283 transitions, which takes  nearly 2 hours for a (Intel Core i7, 2 GHz, 6Gb 

RAM) PC to calculate. Since it is not possible to present all the control data due to 

space limitations, the input and output files to the software are given in Appendix 

D, so that the user can reproduce the result.  Several examples of the required 

control actions are shown in Table 4.2.  

 
Table 4.2 - Supervisor’s control data for “near field” 

 
1. PLANT: [EP_control,[land,3]] 

    SUPER: [[EP_control,[land,3]],[inAir,[timeout,120]]] 

    EXPEDITE:  land 

2. PLANT: [aligned,[auto_finished,5]] 

    SUPER: [[aligned,[auto_finished,5]],[inAir,[timeout,118]]] 

    EXPEDITE:  abort 

3. PLANT: [not_aligned,[hit_the_ship_gear,8]] 

    SUPER: [[not_aligned,[hit_the_ship_gear,8]],[inAir,[timeout,116]]] 

    EXPEDITE:  abort 

4. PLANT: [dangerous,[crash,0],[hit_the_ship_gear,8]] 

    SUPER: [[dangerous,[crash,0],[hit_the_ship_gear,8]],[inAir,[timeout,57]]] 

    EXPEDITE:  abort 

5. PLANT: [dangerous,[crash,2],[hit_the_ship_gear,2]] 

    SUPER: [[dangerous,[crash,2],[hit_the_ship_gear,2]],[inAir,[timeout,94]]] 

    EXPEDITE:  abort 

6. PLANT: [dangerous,[crash,0],[hit_the_ship_gear,2]] 

    SUPER: [[dangerous,[crash,0],[hit_the_ship_gear,2]],[inAir,[timeout,118]]] 

    EXPEDITE:  abort 
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Control data displays that the supervisor will expedite the Events “abort” 

or “land” at the last moment to prevent the UAV crashing (Example 5), hitting the 

ship’s gear (Examples 3 and 4), or violating the restrictions of battery life 

(Examples 1, 2, and 6). The persistency of the time, previously mentioned in 

Chapter 4.2, can be traced through the event “hit_the_ship_gear”, which can 

occur after coming to the States “not_aligned” and “dangerous”, and the Event 

“timeout”, which can occur at any state. This time persistency plays a key role in 

the suggested timing of expediting events in least-restrictive supervisory control.  

 

 

4.4 Conclusion 

The vision-based automatic landing system was modeled as a timed discrete-

event system.  The states of the DES are derived from the continuous control 

system, and are synchronized with its timing. The landing phase is partitioned 

into two fields: “far” and “near”; the states for each field are defined according to 

continuous or discrete-event logics. 

A supervisory control strategy for the automatic landing of a multi-rotor 

machine on a moving target is developed; the specifications for the system 

performance generalized the desired system behavior. The designed discrete-

event supervisor that is implemented as a high-level controller prompts the 

human pilot-in-command to take over the control at the last moment after the 

exception occurs. If there is more than one eligible expeditible event, the warning 

sent from the supervisor to the PIC (Fig. 4.1) is non-deterministic in the sense 
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that the supervisor is indifferent to a particular choice of an expeditible event as 

long as the plant is taken out of the unsuitable state before the pending tick. Thus, 

the least-restrictive solution allows the PIC to have maximum freedom in 

controlling the landing without the violation of safety constraints.   

The discrete-event supervisor was synthesized for the system configuration 

as it was implemented in a real-time setup in Section 5, where the speed of the 

multi-rotor during landing was 3 m/s, and velocity of a moving target - 1 m/s. 

“Online” supervisor synthesis, accounting for the detailed dynamics in the 

continuous model, is considered as future work. 
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Chapter 5 

Experimental results 

 

The validation of the landing performance predicted by the theoretical design 

given in Chapters 2-4 is provided. The implementation was first in the simulation 

and followed by indoor and outdoor flight tests (Fig. 5.1).   Indoor flight tests were 

done for landing on a static target; auto-landing on a moving platform was not 

conducted due to space limitations. The outdoor tests were conducted for both 

static and moving platforms under different lighting conditions and levels of wind 

gusts.  

 

     

Figure 5.1 – Simulation and flight tests of the developed system 

“                       ” 
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5.1 Simulation platform 
 

5.1.1 Robot operating system 

 

Robot operating system (ROS) is a group of software packages for the design and 

development of robot applications (Quigley et al., 2009). The main advantage of 

ROS is that it is open-source and provides the opportunity to use modeled 

sensors, as well as real sensors. The fundamental concepts of ROS are nodes, 

messages, topics, and services.  

Another advantage of using ROS is that it provides operating system-like 

functionality. Communication between ROS processes is represented in an RQT 

graph (Qt-based framework for GUI development for ROS) that shows the 

connections between nodes that send or receive messages. Although ROS is not a 

real-time operating system, it is possible to integrate ROS with real-time code. 

This way, the same code that is used in the simulation could be applied for a real-

time performance by modifying only the name of the topic, as was implemented 

in Chapters 5.2.1 and 5.5.1.  

The main ROS libraries are C++ and Python. Altogether, ROS is built 

around a Linux for the reason that it has a large collection of open-source 

software.  
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5.1.2 V-REP robotics simulator 

 

V-REP (Virtual Robotics Experimentation Platform) is a robotics simulator which 

can be used to create applications for a robot without depending physically on the 

actual machine (Rohmer, Singh, & Freese, 2013). The main advantage of using 

such a simulator is that the applications can be transferred on the real multi-rotor 

without major modifications.  

The robot simulator V-REP uses a distributed control architecture, such 

that each model can be individually controlled via a script or a ROS node. 

Controllers can be written in C, C++, LUA, Python, etc.  In a lot of current 

research, V-REP is used for algorithm development, prototyping and method 

verification. 

V-REP was chosen as a 3D robot simulator because it provides more 

realistic graphics than other available environments, e.g. Gazebo (Koenig & 

Howard, 2004).  V-REP includes many different modules to model robots, their 

kinematics, dynamics, path planning, etc.  Using V-REP, a developer can model a 

scene that approximates the real world by adding different objects to the 

simulation. V-REP is convenient to use as it allows the user to see all the 

interactions within the environment, the influence of disturbance, and robot 

position change during the algorithm performance. 

The V-REP graphical interface and the scene developed for auto-landing 

simulation, including the moving platform, multi-rotor, vision sensor, and object 

pattern, are depicted in Fig. 5.2. 
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Figure 5.2 – V-REP scene modeled for auto-landing 

 

  

5.2 Simulation results 
 

5.2.1 Simulation with static targets 

 

The current simulation setup included a quadcopter model with a fixed front-

facing vision sensor (512 x 256 pixels resolution), and 5 red visual markers, 

modeled in a V-REP scene. The visual markers were static in this experiment. The 

algorithm calculated corrections to control horizontal and vertical deviations 

based on visual data, and sent commands to the quadcopter to align with visual 

markers. The developed software included: 
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- LUA quadcopter script to receive ROS commands to control the 

velocity vector; 

- LUA vision sensor script to send an image to the ROS node for further 

processing; and  

- ROS node to process the image and send commands to a quadcopter. 

The RQT-graph of the simulation software is depicted in Fig. 5.3. 

The connections between different pieces of software are clearly seen from 

the graph:  

1) V-REP accepts (“subscribes to”) velocity commands from the main node 

“quad_simulation” through the ROS topic “quad_velocity_control”. 

2) V-REP sends (“publishes”) the vision sensor data and the UAV/ 

platform roll and pitch angles to the main node “quad_simulation” through the 

topics “/vrep/visionSensorData”, “/vrep/uav_pose”, and “/vrep/ship_pose”, 

respectively. 

3) The main node accepts joystick commands for the manual quadcopter 

control through the built-in ROS “joy_node” and sends audio warnings through 

the “soundplay_node”. 

    In the current implementation, the images from the camera were accepted 

in ROS “/sensor_msgs/Image” format. CvBridge module (Bradski & Kaehler, 

2000) was chosen to pass the images to OpenCV library for further processing 

(Fig. 5.4). 
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Figure 5.3 – RQT-graph of the simulation software 
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Figure 5.4 – Diagram of passing image from “vision sensor” to processing module 

 
The V-REP simulation window is shown in Fig. 5.5.  Since this simulation 

experiment was performed for landing on a static target without wind 

disturbance, the image processing was done as described in Chapter 2.2 without 

projecting the actual image to the virtual plane. The simulation results show that 

the algorithm correctly directs the quadcopter to align with visual markers based 

on the image data. From the following sequence of images it is seen as we pass 

from Image 1 to Image 5 that the quadcopter aligns with the intended static target 

both horizontally and vertically with an accuracy of 10 cm from the DPT. This 

accuracy was measured for the UAV location from the DPT, over which the UAV  

hovered before the external pilot performed the final touchdown. 
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Figure 5.5 – V-REP simulation of the algorithm with static targets. Sequence of captured frames during simulation 
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5.2.2 Simulation with moving targets 

 

In the following experiment, 5 red targets were located on the platform, which 

was moving forward as well as rolling/pitching and yawing with respect to the 

UAV. Roll and pitch angles of the moving platform, as well as the UAV roll and 

pitch were passed from V-REP scripts to the main ROS node for further usage by 

the image processing algorithm. The markers in this simulation were separated 

by a 3 m distance to make up a square and an equilateral triangle. The 3 m 

separation between the targets was chosen for simple visual estimation of the 

landing performance. Since the problem formulated in Chapter 1 stated that the 

system should come to the DPT with an accuracy of +/- 1.5 m or better, after 

separating the targets by 3 m from each other, one can visually identify if the 

system is capable  of the minimum specified performance. If the UAV ends 

automatic alignment within the square formed by the red targets, then the 

minimum required performance is achieved; if the UAV ends automatic 

alignment outside of the square, then the minimum required performance is not 

achieved.  

This simulation included wind and gust perturbations. Since V-REP does 

not simulate wind environment, wind/gust was artificially modeled as air 

particles and force vectors.  

The image processing method in this simulation was implemented as 

described in Chapter 2.3, accounting for the UAV and a platform rolling, pitching, 

and yawing. It can be seen from Fig. 5.6 that if the controller is tuned to certain 
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wind conditions, the system is capable of 10 cm error when coming to the DPT.  

This accuracy was measured for the UAV location from the DPT over which the 

UAV hovered before the external pilot performed the final touchdown. This 

accuracy was established as an average value after running about 200 

simulations. 

 

 

Figure 5.6 – Simulation of landing on a moving platform 

 
The graph of the quadcopter’s position change relative to the DPT is 

depicted in Fig. 5.7. In this figure, Z  indicates forward direction, X – horizontal 

direction, and Y – vertical direction. From this graph it is seen that the 

quadcopter aligns with the targets horizontally and vertically and the alignment 

errors go to zero. 

The discrete-event supervisor for both the “far” and “near” fields was 

tested in this simulation. In the experiment for “far field”, the detectability of the 

pattern was affected by fog which was added to the scene. In this case, the image 

processing algorithm could not detect a pattern (Fig. 5.8). 

Trace of the 

UAV trajectory 

Air particles 
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The system sent an audio message using a ROS “sound_play” node that 

indicated when to restart the mission.  

 

 

Figure  5.7 – Quadcopter’s position change relative to the DPT 

 

 

Figure 5.8 – Fog affecting pattern detection 
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The supervisor for “near field” was tested in the simulated scenarios when 

the controller was not tuned to wind/gust. The system sent audio messages to the 

pilot indicating when to abort the mission using the ROS “sound_play” node in 

the timings suggested by the discrete-event supervisor. The pilot controlled the 

multi-rotor model using a joystick after the exception occurred. A practical 

example of these exceptions is shown in Fig. 5.9.  

 

 

Figure 5.9 – Perturbations during landing mission: 
a) gust affecting the UAV trajectory; b) wind affecting the UAV trajectory 

 
 
 
 

5.3 Data gathering test with EPP-FPV 
 

The experiment for data gathering and analysis was held at Argentia Airport, 

Placentia, NL. These experiments were held under Special Flight Operations 

Certificate (SFOC) for project RAVEN II. For the current experiment, five red 

targets were set on the runway. Red safety cones of 12” height were used as visual 

markers. EPP-FPV fixed-wing UAV was manually controlled by the pilot to record 

image data for further processing. This setup is depicted in Fig. 5.10. 

Gust affected here 
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During the flight tests, six manual RC flights were held, and 15 GB of image 

data were collected. The first prototype landing system was developed using a 

Raspberry Pi camera-board and Raspberry Pi (model B) processor (Richardson & 

Wallace, 2012). The set of images taken during the day-time data gathering 

experiment is depicted in Fig. 5.11. This experiment was conducted at 1 pm in 

August 2013. 

 

 

                    Figure 5.10 – Experimental setup, EPP-FPV UAV  
 

The images collected in this experiment were 1280 x 960 resolution and 

were saved in BMP format to obtain the best processing result. The developed 

algorithm and processing software were able to detect the visual markers from a 

distance of 150 m.  

Another set of experiments was done at 7 pm to collect night-time data. 

The red targets were equipped with red LEDs on top to ensure pattern detection 

in the dark.  The current setup used a Flight Site Scene Safety kit as a prototype, 
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which was tested for helicopter landings. The experimental results are depicted in 

Fig. 5.12. 

Analysis of the onboard data can be summarized: 

1) The image processing system was not fast enough to provide the 

necessary speed for the data to stream to the autopilot (only 3 frames per second 

was achieved due to the delay for image processing and additional time to save an 

image). 

 

 

Figure 5.11 – Day-time image data from Raspberry Pi 
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Figure 5.12 – Night-time image data from Raspberry Pi 

 

2) The visual markers were too small to be reliably detected on the image; 

the detection threshold had to be tuned depending on the distance to the targets. 

3) The LEDs used in the experiment were not powerful enough to allow a 

successful night-time landing. 

4) After improving 1-2, the system could potentially provide successful 

pattern detection for a day-time landing from a distance of 150 m. 

Based on the data gathering results, the decision was made to use red 

targets that are 28” that could be reliably detected on the image. It was decided 

that the Raspberry Pi processor would be replaced with a faster onboard 

computer – Odroid U3 (further described in Chapter 5.4.3).  
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5.4 Experimental platform 
 

5.4.1 AR Drone 2.0 

 

The AR Drone 2.0 (Fig. 5.13) is a multi-rotor UAV designed by Parrot, which is 23 

x 0.5 x 23 inches, and weighs 4 lbs (Krajník, Vonásek, Fišer, & Faigl, 2011). In 

current research it is used as an indoor UAV; however, it could be flown outside 

in low-wind conditions. The flight time of the battery is about twelve minutes, 

which is acceptable for testing the auto-landing strategy indoors.  

The AR Drone 2.0 is equipped with a front-facing camera with a 640 x 360 

pixels sensor resolution capable of 30 frames per second. The advantage of using 

the AR Drone 2.0 is that it has a built-in ROS driver called “ardrone_autonomy” 

(Hamer, 2012); this allowed the use of the same code for both the AR Drone 2.0 

landing and simulated landing as was described in Chapter 5.2.1.  

Similar to the simulation setup described in Chapter 5.2.1, the AR Drone 

2.0 can be controlled with a joystick connected to the Ground Control Station 

computer that runs the ROS driver. The image taken by the front-facing camera 

was transmitted from the UAV to the Ground Control Station, after which  the 

designed ROS node sent commands to the AR Drone 2.0 through Wi-Fi from the 

Ground Control Station. 
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Figure 5.12 – AR Drone 2.0 

 
 

5.4.2 S500 Hobbyking UAV 

 

The S500 Hobbyking multi-rotor UAV is built from glass fiber and polyamide 

nylon. The frame weighs 405 g, and is 170 mm in height. Another advantage of 

the S500 is that the arms have a slight up sweep, which gives the S500 a dihedral 

effect. This dihedral effect helps the S500 to stabilize when descending from 

altitude, which is important while testing an auto-landing system. The S500 has 

an adjustable battery mount to achieve the desired weight distribution when 

installing auto-landing hardware on board. The arms of the S500 are ridged and 

have a carbon fibre rod through the center, making it resilient to shock and crash 

due to landing experiments. 
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The S500 Hobbyking UAV together with the auto-landing gear is depicted 

in Fig. 5.14. 

 

 

Figure 5.14 – S500 Hobbyking UAV with a developed auto-landing system 

 

 

5.4.3 Odroid U3 setup 

 

The Odroid U3 was chosen as it is a relatively powerful onboard computer 

(1.7 GHz Quad-Core processor and 2 GB RAM), that is convenient to use for 

programming, as it runs on XUbuntu 13.10. The Odroid U3 has 3 high speed Host 

USB-ports that were used to connect the camera and send commands to the 

autopilot. It is light-weight and small in size (83 x 48 mm, 48 g). The Odroid web-

camera has a high-speed CMOS sensor, 1.0 Megapixel (1280 x 720 HD 

resolution), capable of capturing 30 frames/second with an FOV of 68 degrees. 

All together, the Odroid camera and processor make a viable setup for the 
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prototype development of a vision-based auto-landing system that meets the size, 

weight, and power restrictions for operating a small multi-rotor UAV under a 2 kg 

maximum take-off weight under exemption rules (Transport Canada, 2014). 

Considering the delay due to image processing, the Odroid camera system is 

capable of capturing 10 frames per second, which is enough for efficient multi-

rotor control.  

The Odroid U3 processor and web-camera used in the auto-landing 

experiments are depicted in Fig. 5.15. 

  

 

Figure 5.15 – Odroid image processing unit 

 

5.4.4 Pixhawk autopilot 

 

The Pixhawk is a high-performance autopilot suitable for fixed wing, multi rotors, 

helicopters, and any other robotic platforms. It consists of a PX4-FMU controller 

and a PX4-IO integrated on a single board. It has a safety switch, audio indicator, 

and multi-color LED module, which increase the reliability of the performance 
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and allow easy understanding of any potential issue.  The Pixhawk can use both 

Ardupilot and PX4 firmware, providing a lot of options for the user.  

The Pixhawk autopilot used for the landing experiments is depicted in Fig. 

5.16. 

 

 

Figure 5.16 – Pixhawk autopilot 

 

Another advantage of the Pixhawk is that it allows easy communication 

from the processor through Mavlink protocol (Meier et al., 2013). Together with 

QGroundControl (Ground Control Station software, Meier et al., 2013) the 

control algorithms for multi-rotors could be tested in hardware-in-the-loop (HIL) 

simulations with a jMAVsim library (Fig. 5.17). This HIL test was conducted prior 

to an actual flight to ensure the commanded maneuver was performed correctly.  

During the HIL experiment, the developed Odroid software sent velocity set-point 

commands of a different value range to the Pixhawk autopilot. The developed 

test-cases indicated that when the autopilot is tuned, the multi-rotor’s velocity 
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goes to the desired value, proving the possibility of effective control for visual-

based automatic landing according to the developed approach. 

 

 

 Figure 5.17 – Pixhawk in HIL with jMAVsim and QGroundcontrol 

 

 

5.5 Real-time landing experiments 
 

5.5.1 Static platform experiments with AR Drone 2.0 

 

The developed algorithm was tested indoors with an AR Drone 2.0. The test was 

conducted with static targets on the ground. The image processing software was 

running on the Ground Station computer, which was connected to the quadcopter 

through Wi-Fi; an AR Drone front-facing camera was used for taking images. 

Since the platform was static, and the experiment was held indoors in no-wind 

conditions, this experiment did not use virtual projection of the image.  

The results of the successful implementation of the algorithm with the AR 

Drone 2.0 are depicted in Fig. 5.18. In this set of experiments, the red, 10-cm-in-

diameter spheres were chosen as targets in the pattern. Due to the lack of space 
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indoors, the targets were separated with 1.5 m distance from each other to make 

up a square and an equilateral triangle. This lack of space could create difficulties 

in object pattern detection when coming close to the targets. This is why the small 

and low-height targets were chosen for this set of experiments.  

The deviation from the desired point of touchdown was about 15 cm in 

both the horizontal and vertical directions. This accuracy was measured for the 

UAV location from the DPT, over which it would hover before the external pilot 

performed the final touchdown. The average accuracy value was established 

among 35 indoor trials. 

 

    

Figure 5.18 – AR Drone 2.0 correctly aligns with the static targets 

 
The discrete-event supervisory control strategy for “far field”  was tested 

with the AR Drone 2.0 a during set of experiments for landing on a static target. 

The AVO was obtaining audio warnings from the Ground Control Station 

computer to stop the mission when the pattern could not be detected for longer 

than 5 ticks (2.5 seconds). These audio messages were sent using the ROS 

“sound_play” node at the timing suggested by the supervisor.  

 

 

1 2 3 
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5.5.2 Moving platform experiments with S500  

 

The experiment for auto-landing on a moving platform was held at Witless Bay 

Line, St. John’s, NL at around 1 pm with wind conditions of approximately 10 

km/hour. The concept of operation for this set of experiments met the Transport 

Canada Exemptions rules (Transport Canada, 2014) for operating a UAV under 2 

kg maximum take-off weight. The S500 multirotor was set to take off to Waypoint 

1 at an altitude of 8 m (Fig. 5.19), and to continue to Waypoint 2 at the same 

altitude and speed of 3 m/s.  

 

 

                                   Figure 5.19 - Map of the experiment 

 
Between these waypoints, the system was switched to the “Offboard” 

autopilot control for vision-based automatic alignment with the platform. The red 

targets (28” red safety cones) were separated by a distance of 3 m from each 

other, and were attached to a wooden frame that was moving with a walking 

speed of approximately 1 m/s. The 3 m separation between the targets was chosen 

Waypoint path  

Corrected path  
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for simple visual estimation of the landing performance. Since the problem 

formulated in Chapter 1 stated that the system should come to the DPT with an 

accuracy of +/- 1.5 m or better, after separating the targets by 3 m from each 

other, one can visually identify if the system is capable of the minimum specified 

performance. If the UAV ends automatic alignment within the square formed by 

the red targets, then the minimum required performance is achieved; if the UAV 

ends automatic alignment outside  of the square, then the minimum required 

performance is not achieved. 

The vision feedback system was correcting the horizontal and vertical 

errors between initial path and desired path of the multirotor to align with the 

pattern. 

The current experiment used the auto-start C++ script, which executed the 

image processing application after powering the Odroid board. When the targets 

were detected, Odroid streamed velocity set-point commands to the Pixhawk; the 

Pixhawk accepted the commands when the “Offboard” mode was enabled from 

the Ground Control Station.  

After the UAV came to the DPT, all the targets (except the fifth point) were 

lost from the FoV. In this case, no set-point commands were streaming from 

Odroid; the Pixhawk went to the Position Control mode and the human pilot took 

over the control. 

 Onboard data recorded by the Odroid processor shows that the UAV was 

following the instructions correctly (Fig. 5.20). Since the platform was moving 
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Figure 5.20 - Onboard images: a) actual; b) processed 
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only in the forward direction, this experiment did not use projection of the image 

to the virtual plane; image processing was done as described in Chapter 2.2.  The 

first image indicates the offset to the left between the desired and initial path. 

However, the controller corrected the horizontal and vertical error and ensured 

accurate alignment with the pattern, which is seen in the sequence of images 

depicted in Fig. 5.20. The intersection of the lines on the processed images 

indicated the targeting point. The view of the landing experiment taken by the 

side and front cameras is depicted in Fig. 5.21. The connections between 

hardware components for the developed auto-landing  system are given in 

Appendix E. 

The system was tested with different wind and lighting conditions to verify 

the performance of the “near field” supervisory control strategy. When the targets 

were lost from the FoV due to inner controller detuning, the UAV would go to the 

Position Control mode and the system would send audio warnings instructing the 

pilot to take over the control at the timings suggested by the supervisor. The 

example of the exception when the targets are lost from the FoV is depicted in 

Fig. 5.22. 

The experimental results show,  however, that if the image processing 

algorithm and controller are tuned, the prototype system can provide an accuracy 

of about 25 cm from the location of the DPT.  This accuracy was measured from 

the UAV location to the DPT, over which the UAV hovered before final 

touchdown was performed by the external pilot. The average accuracy was 

established among 16 outdoor trials. 
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Figure 5.21 - Experimental results: a) view from the side; b) view from the front 



105 

 

 

 

Figure 5.22 - Example of exceptions during “near field” flight 

 

 

5.6 Conclusion 
 

As shown by the experimental results, the suggested visual servoing approach 

allows an accurate landing of a multi-rotor on a moving target. Simulation 

experiments of landing on a moving target demonstrated an average accuracy of 

10 cm from the desired point of touchdown; indoor flight-tests with no wind 

conditions ensured 15 cm error on average; and outdoor field tests demonstrated 

an accuracy of the prototype landing system of 25 cm from the desired point of 

touchdown on average.  The errors were measured after performing 35 indoor 

trials, 16 outdoor tests, and nearly 200 simulations. The experimental results 

show that this system is robust to controller detuning, wind (gust) perturbations, 

and changes in lighting conditions. 
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Chapter 6 

Summary and future work 

6.1 Summary of results 
 

 

A novel approach has been presented to solve the problem of an automatic 

landing of a multi-rotor UAV on a moving target (Fig. 6.1). Compared to existing 

methods the developed approach has low computational complexity. The 

designed IBVS scheme allows the multi-rotor to join the glide-slope and 

accurately align with the moving platform in a horizontal direction. Approaching 

the moving ship on a certain angle is important, since vertical landing of the 

multi-rotor can lead to hitting the ship’s superstructure (e.g. masts and wires). 

The developed method was tested in a series of simulations, indoor and 

outdoor flight tests. The prototype landing system developed according to the 

suggested method provided an error in excellent agreement (25 cm from the 

DPT). The verified method is robust to wind/gust, controller detuning, changes in 

lighting conditions, and battery life limitations.  

The problem of automatic landing is challenging due to the following 

constraints: 
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- Possible rolling/pitching/yawing of the UAV and the platform (Technical 

Challenge 2 described in Chapter 1.3);  

- High complexity of existent image processing techniques, which are 

almost impossible to implement  in real-time due to SWaP restrictions for a small 

UAV (Technical Challenge 1);  

- Requirement for the landing system to be controlled in such a way that 

the multi-rotor joins the glide-slope, and accurately aligns with the moving 

platform in a horizontal direction (Technical Challenge 3); and 

- Possible exceptions that can occur during a landing mission, e.g. 

wind/gust perturbations, battery life limitations, and losing targets from the FoV 

(Technical Challenge 4).   

 

 

Figure 6.1 – Overall approach to the automatic  landing system 

 “                                  ” 

 



108 

 

A new image processing approach has been developed in Chapter 2 to 

overcome Technical Challenges 1 and 2. Compared to other known methods, the 

suggested image processing approach has low computational complexity 

))(( MN  , which makes it possible to implement using low-cost general-

purpose hardware. This algorithm also accounts for the roll, pitch, and yaw of the 

UAV and the moving vessel, which is essential for actual deployment. 

Chapter 3 pertains to solving Technical Challenge 3. Compared to other 

known methods that use a down-facing camera, the current research uses a front-

facing camera. The IBVS scheme is based on correction angles to ensure that the 

UAV follows the slopes; this method does not require 3D pose reconstruction or 

depth estimation, and is simple in implementation (the option of sending velocity 

set-point commands is available in the majority of current autopilots). Since the 

control laws are derived in the image-space, the developed IBVS scheme is less 

sensitive to camera calibration errors and is robust to the variations in cameras.  

Kinematic and dynamic effects on the vision-based closed-loop control 

system, considering the influence of target motion and delay due to image 

processing, are analyzed in Chapter 3. It is shown that tracking without a steady-

state error and closed-loop stability for the current vision-based system design is 

viable. As is shown by the experimental results in Chapter 5, the prototype 

system, based on such a control approach, provided 25 cm of an average error for 

landing on a large moving target. 

In Chapter 4, the solution to Technical Challenge 4 by adding a discrete-

event layer on top of the continuous control system is developed. A vision-based 
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landing system is modeled as a timed DES; it accounts for unpredictable 

situations like wind, gust, controller detuning, changes in lighting conditions, and 

battery life limitations. After an exception occurs, the developed discrete-event 

supervisor will give instructions to the AVO and EP about when to abort or restart 

the landing mission, providing maximum freedom in performing the desirable 

maneuvers.  

The theoretical results developed in Chapters 2-4 are validated in Chapter 

5. The details of the simulation software to test vision-based landing, using V-

REP and ROS, are described. This simulator can be modified to verify the landing 

performance of the variety of multi-rotor machines; it models wind, gust, changes 

in lighting conditions, and target rolling/pitching/yawing. The experimental work 

includes landings on both static and moving platforms. The developed method 

was validated using an AR Drone 2.0 indoors; the prototype landing system was 

developed for the landing of an outdoor quadcopter.  

It is clear from Chapter 5 that the simulation results provided better 

accuracy than the prototype landing system.  The simulation results indicated an 

average error of 10 cm from the DPT in both the horizontal and vertical directions 

after running 200 simulations. The deviation from the desired point of 

touchdown was 15 cm on average for the indoor static-target test with the AR 

Drone 2.0 in no-wind conditions after 35 indoor trials. An average error of 25 cm 

was obtained during the outdoor moving-platform flight test after performing 16 

experiments. During these experiments, the accuracy was measured as the 



110 

 

deviation from the DPT, over which the UAV would hover before the external 

pilot performed the final touchdown.  

The difference in performance between the simulations and real-time 

experiments is connected with the idealized UAV and sensor models used in the 

simulation. For example, in the simulated scenario the  intensity of the targets 

does not change with distance. This is why in the scenario of full visibility during 

the simulated landing, all the targets were reliably recognized on the image 

without detecting false alarms. Since the simulation described in Chapter 5 used 

idealized equations to describe the UAV motion, the performance of the 

simulated landing was of higher accuracy. 

Chapter 5 experimentally validates that a solution to the problem stated in 

Chapter 1.3 has been achieved. The developed prototype landing system is low-

cost ($60), small (100 x 100 mm), light-weight (under 100 g), and highly accurate 

(25 cm from DPT). It is robust to wind/gust perturbations, changes in lighting 

conditions, and inner controller detuning. The implementation of discrete-event 

logic in real life helps the crew to make “high-level” decisions without being 

burdened with lower-level system performance limitations, and reduces the 

impact of the human factor in making errors during a critical landing mission.  

The novelty and the main contribution of this thesis is a creative 

combination of incremental advances in three fields: image processing, controls, 

and discrete-event supervisory, as applied to the UAV automatic landing.   

The field-specific advances are summarized: 
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Image processing: 

- The image processing method was developed to estimate the aiming 

point on the image using color-based detection applied to a geometric pattern. 

This method has lower complexity compared to other known methods. It 

accounts for losing targets from the field of view (FoV) when coming close to the 

moving platform, as well as the rolling, pitching, and yawing of the UAV and the 

platform.  

Control: 

 - An IBVS scheme to control a UAV during landing using correction angles 

was developed. This approach does not require estimation of the 3D UAV position 

relative to the pattern, or calculation of the distance to the objects. This method is 

simple to implement; it provides satisfactory performance for landing on both 

moving and static platforms. 

Discrete-event supervisory control: 

- The landing phase was modeled as a timed discrete-event system (TDES), 

considering possible exceptions and flight time limitations. This modeling 

framework allows the modeling of the battery discharge over the sequence of 

states, since the events are able to persist over the state transitions.  

- An optimal discrete-event supervisor was synthesized for the developed 

timed discrete-event landing system. The applied control mechanism is based on 

expediting certain control actions to avoid an unrecoverable error. According to 

the supervisor’s control data, the EP and AVO have to take over the UAV control 
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at the last moment after the exception occurred; this approach gives maximum  

freedom to a PIC in performing desirable maneuvers. 

- The discrete-event layer on top of the continuous controller forms a 

hybrid-like system. This system is robust to wind/gust, controller detuning, and 

changes in lighting conditions. 

Validation: 

- A simulator for a vision-based multi-rotor landing on a static and a 

moving platform was developed. This simulator allows to test the landing 

performance of  a wide range of different multi-rotor platforms after adjusting 

model parameters. The simulator models wind and gust perturbations, changes in 

lighting conditions, and visibility constraints. In this simulator, the platform is set 

to roll, pitch and yaw relative to the UAV to approximate a real-case landing 

scenario. 

- The prototype vision-based landing system was developed; it is small 

(100 x 100 mm), light-weight (100 g), and highly accurate (25 cm from the DPT). 

The auto-landing method was tested indoors and outdoors for landings on both 

static and moving platforms. 

A full design cycle has been completed: starting from theoretical design, to 

modeling and simulation (M&S), then to implementation over two platforms and 

ending by validating the M&S predictions through first indoor and then outdoor 

field trials. 

The results of this thesis were presented at two conferences (Borshchova, 

2014; Borshchova, 2015), and documented in three journal papers (Borshchova 
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and O’Young, 2017 a; Borshchova and O’Young, 2017 b; Borshchova and 

O’Young, 2017 c). This work was presented at the Student Paper Competition 

Unmanned Systems Canada, 2014, where it was named one of the top three 

student papers across Canada.  

 

6.2 Future work 
 

 

The possible future extensions of the current work are: 

1) Improvements of the image processing method to eliminate false 

alarms. 

A potential solution could be to use lights beyond human vision to provide 

reliable pattern recognition. The lights could be set to flash with a certain 

frequency, which can help to automatically distinguish between the “target” and 

the “false alarm”. The detection part of the image processing algorithm should be 

further modified according to this proposition. 

2) Developing a night-time vision-based automatic landing system. 

The first experiment was held at Argentia Airport, and is described in 

Chapter 5.3. This idea could be extended to using powerful LEDs, compared to 

the LEDs used during the data gathering experiment. To complete night-time 

landings, further  improvements of the image processing method are required. 

3) Fixed-wing UAV landing. 
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The developed image processing method could be applied to land any 

rotary UAV or a fixed-wing UAV. Since fixed-wings are less stable compared to 

rotary wings, a different control strategy, rather than controlling the velocity 

vector, might be essential to compete the control part of landing. To land a fixed-

wing, the control approach should consider inner autopilot loop (roll, pitch) and 

outer autopilot loop (bearing, altitude) interactions while landing the UAV. 

4) Modification of the landing system for a GPS-denied environment. 

Current research uses a GPS for the initial alignment. However, 

recognition of the asymmetric pattern of objects, such as a suggested pattern, can 

be potentially used to land the UAV in a GPS-denied environment, giving full 

control to visual servoing. The asymmetric structure of the suggested pattern 

allows to find a unique solution to estimate the UAV pose and orientation.    

5) Comparison of the landing behaviour using different control strategies. 

The current approach uses a proportional controller; however, it is useful 

to research and compare the reliability of landing using different control 

strategies. The controller tuning during flight tests of the prototype system was 

done manually. Future work should conduct the theoretical design of an optimal 

controller that provides the desired behavior under a wide range of disturbances, 

considering the nonlinear dynamics of a multi-rotor and couplings within IBVS 

control laws. 

6) Extend the developed landing approach to use a gimbaled camera. 

The developed methods use a fixed, nose-mounted single camera. To 

improve the continuous system performance during landing in high-wind 
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conditions, a gimbaled camera could be considered to correct for large roll/pitch 

deviations to prevent losing targets from the field of view. 

7) Flight test of landing on a moving boat. 

The developed prototype system was tested for automatic landing on a 

platform that was only moving forward. Future work should extend to automatic 

landing on an actual moving ship, while accounting for the platform rolling, 

pitching, and yawing using the virtual orthogonal camera approach described in 

Chapter 2.3. 

8) Fixed-wing UAV and PIC modeling. 

A general solution to the problem of automatic landing is given in Fig. 6.1. 

This thesis included a theoretical design and practical results in the areas “Sense”, 

“Control”, and “Discrete-event supervision”. Future work should cover the 

remaining blocks, which are fixed-wing UAV modeling, and modeling of human 

factor (PIC). 
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Appendix A 

Flow chart of the software 
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Appendix B 

Input and output files for “far field”* 

  
 

UAV.ttm 
initial. 
[normal]. 
marker. 
[normal]. 
tran. 
[[normal,  lose, abnormal], 
[abnormal, regain, normal], 
[abnormal, stop_mission, reset], 
[abnormal,  crash, forbidden], 
[reset,  restart_mission, normal]]. 
timer. 
[crash, 6, inf]. 
forcible. 
[[stop_mission], 
[restart_mission]]. 
controllable. 
[[stop_mission], 
[restart_mission]. 
 
Spec.fsm 
initial . 
[allowed]. 
marker. 
[allowed]. 
tran. 
[allowed,  crash, not_allowed]. 
 
 
Run.txt 
plant = ttm(uav.ttm) 
spec = fsm(Spec.fsm) 
sup = supfcBySync(plant,spec) 
condat(plant,sup,control.txt) 
printWithMap(spec,spec.pri) 
printWithMap(sup,sup.pri) 
printWithMap(plant,plant.pri) 
printAsPDF(spec, spec.pdf) 
printAsPDF(plant, uav.pdf) 
printAsPDF(sup, sup.pdf) 

Control.txt 
PLANT: [abnormal,[crash,5]] 
SUPER: [[abnormal,[crash,5]],allowed] 
EXPEDITE:  stop_mission 
 
tct.log 
EXECUTING: plant = ttm(uav.ttm) 
Started at: Sun Aug 13 10:32:45 2017 
Working Set Size: 4055040 
EXECUTING: uav1 = fsm(uav.fsm) 
Started at: Sun Aug 13 10:32:45 2017 
Working Set Size: 4079616 
EXECUTING: printWithMap(plant, plant.pri) 
Started at: Sun Aug 13 10:32:45 2017 
Working Set Size: 4128768 
EXECUTING: spec = fsm(Spec.fsm) 
Started at: Sun Aug 13 10:32:45 2017 
Working Set Size: 4136960 
EXECUTING: printWithMap(spec, spec.pri) 
Started at: Sun Aug 13 10:32:46 2017 
Working Set Size: 4145152 
EXECUTING: condat(plant, sup, control.txt) 
Started at: Sun Aug 13 10:32:46 2017 
Working Set Size: 4354048 
EXECUTING: printWithMap(sup, sup.pri) 
Started at: Sun Aug 13 10:32:46 2017 
Working Set Size: 4370432 
EXECUTING: printAsPDF(uav1, uav1.pdf) 
Started at: Sun Aug 13 10:32:46 2017 
Working Set Size: 5017600 
EXECUTING: printAsPDF(spec, spec.pdf) 
Started at: Sun Aug 13 10:32:48 2017 
Working Set Size: 5029888 
EXECUTING: printAsPDF(plant, uav.pdf) 
Started at: Sun Aug 13 10:32:49 2017 
Working Set Size: 5066752 
EXECUTING: printAsPDF(sup, sup.pdf) 
Started at: Sun Aug 13 10:32:49 2017 
Working Set Size: 5111808 
 
 

 
* Run.txt is a batch file used by OTCT to obtain the least-restrictive non-blocking supervisory solution for a modeled system. It 
specifies the input files: 
1 ) model file (UAV.ttm);  
2) specification file (Spec.fsm).  
Run.txt executes functions for obtaining the largest controllable sublanguage of the plant according to the specification 
(supfcBySync), printing the control action of the supervisor (condat), and printing the transition structure (printWithMap, 
printAsPDF). 
Each of the input file consists of the initial and marker states, set of transitions between the states, labeled by an event, timers for 
each event, and set of forcible and controllable events. The output file control.txt lists the plant’s state followed by the supervisor’s 
state where disabling and/or forcing occur, together with the events which must be disabled or forced there. 
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Appendix C 
  

Timed transition graphs for “far field” 

 
a) UAV  
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b) Supervisor 
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Appendix D 

Input and output files for “near field”* 

Uav.ttm 
initial. 
[[aligned], 
[not_aligned]]. 
marker. 
[landed]. 
tran. 
[[aligned,  misalign, not_aligned], 
[not_aligned, lose, dangerous], 
[dangerous, crash, forbidden], 
[not_aligned, come_back, aligned], 
[dangerous,  regain, not_aligned], 
[dangerous,  abort, EP_control], 
[not_aligned, abort, EP_control], 
[not_aligned, hit_the_ship_gear, forbidden], 
[dangerous, hit_the_ship_gear, forbidden], 
[aligned, abort, EP_control], 
[aligned, auto_finished, EP_control], 
[EP_control, land, landed]]. 
timer. 
[[crash, 3, inf], 
[hit_the_ship_gear, 9, inf], 
[auto_finished, 10, inf], 
[land, 2, 10]]. 
forcible. 
[[abort], 
[land]]. 
controllable. 
[[abort], 
[land]].  
 
Spec.ttm 
initial. 
[[inAir]]. 
marker. 
[landed]. 
tran. 
[[inAir,  land , landed], 
[inAir, timeout, battery_dead]]. 
timer. 
[timeout, 120, 120]. 
 
Run1.txt 
uav1 = fsm(uav.fsm) 
spec1 = fsm(Spec.fsm) 
printAsPDF(uav1, uav.pdf) 
printAsPDF(spec1, spec.pdf) 
plant = ttm(uav.ttm) 
spec = ttm(Spec.ttm) 
sup = supfcBySync(plant,spec) 
condat(plant,sup,control.txt) 
printWithMap(sup,sup.pri)  

 
tct.log 
Batch Command File: run1.txt 
EXECUTING: uav1 = fsm(uav.fsm) 
Started at: Mon Mar 20 09:48:57 2017 
Working Set Size: 3809280 
EXECUTING: spec1 = fsm(Spec.fsm) 
Started at: Mon Mar 20 09:48:57 2017 
Working Set Size: 3829760 
EXECUTING: printAsPDF(uav1, uav.pdf) 
Started at: Mon Mar 20 09:48:57 2017 
Working Set Size: 3792896 
EXECUTING: printAsPDF(spec1, spec.pdf) 
Started at: Mon Mar 20 09:48:59 2017 
Working Set Size: 3805184 
EXECUTING: plant = ttm(uav.ttm) 
Started at: Mon Mar 20 09:49:00 2017 
Working Set Size: 3817472 
EXECUTING: spec = ttm(Spec.ttm) 
Started at: Mon Mar 20 09:49:00 2017 
Working Set Size: 3829760 
EXECUTING: sup = supfcBySync(plant, spec) 
Started at: Mon Mar 20 09:49:00 2017 
Working Set Size: 83095552 
EXECUTING: condat(plant, sup, control.txt) 
Started at: Mon Mar 20 11:28:29 2017 
Working Set Size: 77901824 
EXECUTING: printWithMap(sup, sup.pri) 
Started at: Mon Mar 20 11:29:08 2017 
Working Set Size: 120504320 
 
Control.txt (abridged ) 
PLANT: [EP_control,[land,3]] 
    SUPER: [[EP_control,[land,3]],[inAir,[timeout,120]]] 
    EXPEDITE:  land 
 PLANT: [aligned,[auto_finished,5]] 
    SUPER: [[aligned,[auto_finished,5]],[inAir,[timeout,118]]] 
    EXPEDITE:  abort 
 PLANT: [not_aligned,[hit_the_ship_gear,8]] 
    SUPER: [[not_aligned,[hit_the_ship_gear,8]],[inAir,[timeout,116]]] 
    EXPEDITE:  abort 
PLANT: [dangerous,[crash,0],[hit_the_ship_gear,8]] 
    SUPER: [[dangerous,[crash,0],[hit_the_ship_gear,8]],[inAir,[timeout,57]]] 
    EXPEDITE:  abort 
PLANT: [dangerous,[crash,2],[hit_the_ship_gear,2]] 
    SUPER: [[dangerous,[crash,2],[hit_the_ship_gear,2]],[inAir,[timeout,94]]] 
    EXPEDITE:  abort 
PLANT: [dangerous,[crash,0],[hit_the_ship_gear,2]] 
    SUPER: [[dangerous,[crash,0],[hit_the_ship_gear,2]],[inAir,[timeout,118]]] 
     EXPEDITE:  abort 
 

                                                                   
* Graphical files for the activity transitions at the “near field” are included in Chapter 4. Timed structures are not presented due to 
the limitation of space, but the result can be reproduced after executing the given input files.
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Appendix E 

Connections between hardware components 

 
                                                       
                                                          
                                                 

 


