

UNDERSTANDING AND IMPROVING REQUIREMENTS DISCOVERY IN

OPEN SOURCE SOFTWARE DEVELOPMENT: AN INITIAL EXPLORATION

By

Jaison Kuriakose

A Dissertation submitted to the

School of Graduate Studies

In partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Faculty of Business Administration

Memorial University of Newfoundland

January, 2017

St. John’s, Newfoundland and Labrador

ii

 ABSTRACT

 In proprietary or closed source software (CSS) development, there is a formal

requirements engineering (RE) phase for discovering the requirements for an application.

The requirements engineering process in CSS development is comprised of many formal

practices (e.g., elicitation/generation). With the advent of the Internet and web-based

tools and technologies, a new and different form of software development has emerged –

globally distributed, typically volunteer driven, open source software (OSS) development.

OSS development largely occurs in an informal, ad hoc manner and often lacks the

formal developmental practices and processes of CSS development. The goal of this

research is to gain a better understanding of the current state of RE in OSS, to identify

potential directions for improving RE in OSS, and to empirically investigate the potential

of some specific RE practices to improve OSS development. In pursuit of the research

goal, in the initial phase of this research a web-based survey of practicing OSS

developers was conducted to explore the current state of RE in OSS. Results supported

the claims about informality of RE in OSS. as well as pointed towards potential directions

for improvement. In the second phase of the research, a web-based experiment was

conducted to investigate the actual benefits from a particular CSS development

requirements generation practice – requirements reuse (operationalized as the

availability of a library of reusable requirements within OSS development environment) –

for OSS development. Analysis of the experimental data revealed that that the

experimental treatment (availability of a library of reusable requirements) had a

iii

significant effect on the size of requirements message, requirements quantity and

requirements completeness after controlling for covariates, indicating usefulness of the

reusable library. The final phase of the research focused on OSS issue gathering

approaches, a source of requirements for OSS. In this phase, a qualitative study of OSS

developers explored how an OSS issue gathering approach, enforcing classification

(versus free-form OSS issue gathering), may contribute to the misclassification problem

(erroneous classification of OSS issues), and what can be done at the issue gathering

interface level to mitigate the misclassification problem. Insights from the analysis of

data from the final phase of the research shed light on the desirable characteristics that

OSS issue gathering interfaces should possess for mitigating misclassification.

iv

ACKNOWLEDGEMENTS

I want to express my gratitude to Dr. Jeffrey Parsons for his valuable guidance and

support during the entire course of my PhD program. I also want to thank Dr. Sherrie

Komiak and Dr. Jennifer Jewer for their valuable feedback and suggestions on my

dissertation research. I also want to thank Dr. Dennis Peters, Dr. Dale Foster and Dr.

Joseph Feller for their valuable feedback and suggestions on my thesis. I also want to

thank Faculty of Business Administration and Memorial University for the support

provided for my dissertation research.

v

TABLE OF CONTENTS

ABSTRACT .. ii

ACKNOWLEDGEMENTS .. iv

TABLE OF CONTENTS ... v

LIST OF TABLES ... viii

LIST OF FIGURES ... x

LIST OF ABBREVATIONS .. xi

CHAPTER ONE. INTRODUCTION .. 1

1.1 Background and Motivation .. 1

1.1.1 Open Source Software Development ... 1

1.1.2 Requirements Discovery in Open Source Software Development 6

1.2 Research Objectives and Design .. 12

1.3 Structure of the Research .. 21

CHAPTER TWO. BACKGROUND AND REVIEW OF RELEVANT LITERATURE . 24

2.1 Open Source Software (OSS) Development ... 24

2.2 Open Source Software Development versus Closed Source Software Development 26

2.3 Major Research Themes in OSS Literature .. 28

2.4 Requirements Discovery in OSS Development .. 30

2.4.1 Requirements and Requirements Engineering ... 30

2.4.2 What We Know about OSS Requirements Discovery ... 31

2.5 Importance of Requirements Discovery for OSS Projects ... 35

2.5.1 Ever Expanding OSS User Base .. 35

2.5.2 Good Requirements can Drive OSS Project Success ... 38

CHAPTER THREE. AN EXPLORATION OF THE CURRENT STATE OF

REQUIREMENTS DISCOVERY IN OPEN SOURCE SOFTWARE DEVELOPMENT

AND POTENTIAL DIRECTIONS OF IMPROVEMENT ... 41

3.1 Survey on the Current State of Requirements Discovery in OSS Development 41

3.1.1 Demographic Profile of Respondents ... 43

3.1.2 Descriptive Findings on Use of Formal Requirements Engineering Practices and

Informal Practices in OSS Development .. 44

3.1.3 Quantitative Evidence for Informality of Requirements Generation in OSS

Development .. 63

vi

3.2 Quantitative Findings on Perceptions of OSS Developers about the Usefulness of Formal

Requirements Engineering Practices from CSS Development for OSS Development 66

3.3. Problems and Challenges in the Context of Requirements Discovery in OSS Development

 ... 89

3.4 Conclusion .. 97

CHAPTER FOUR: AN INVESTIGATION OF THE USEFULNESS OF

REQUIREMENTS REUSE FOR OSS REQUIREMENTS DISCOVERY 100

4.1 Introduction ... 100

4.2 Literature Review: Requirements Reuse ... 103

4.3 Theoretical Background and Hypothesis Development .. 112

4.4 Research Methodology .. 121

4.4.1 Method.. 121

4.4.2 Experimental Design ... 122

4.4.2.1 Experimental Task .. 122

4.4.2.2 Experimental Groups ... 124

4.4.2.3 Procedure ... 126

4.4.2.4 Variables and Measures ... 127

4.5 Data Analysis and Results .. 130

4.5.1 Results: Requirements Size ... 130

4.5.2 Coding of Textual Requirements Data .. 135

4.5.3 Results: Requirements Quantity ... 136

4.5.4 Results: Requirements Completeness .. 139

4.6 Discussion and Conclusion ... 143

CHAPTER FIVE: RECOMMENDATIONS FOR TACKLING MISCLASSIFICATION

DURING OSS REQUIREMENTS GENERATION ... 146

5.1 Introduction ... 146

5.2 Issue Classification and Misclassification: Theoretical Underpinnings 152

5.3 Research methodology .. 159

5.4 Findings .. 160

5.5 Sentiment Analysis of Developers’ Comments .. 176

5.6 Discussion and Conclusion ... 180

CHAPTER SIX: THEORETICAL CONTRIBUTIONS, IMPLICATIONS FOR

PRACTICE AND RESEARCH AND LIMITATIONS .. 182

vii

6.1 Theoretical Contributions .. 182

6.2 Limitations .. 186

6.3 Implications for Research... 187

6.4 Implications for Practice .. 189

REFERENCES .. 194

APPENDIX 1: Survey questionnaire (requirements engineering practices in OSS

development) .. 210

APPENDIX 2: Holm-Bonferroni Correction ... 233

APPENDIX 3: Experimental task description ... 236

APPENDIX 4. Screenshots of Issue reporting interfaces in OSS development

environments .. 241

APPENDIX 5. Normality plot and Leven’s test .. 244

APPENDIX 6: Skewness and kurtosis (differences of paired observations; paired

samples t-test) .. 249

APPENDIX 7: OSS Issue reporting interfaces and misclassification questionnaire 251

APPENDIX 8. Demographics of participants in the experiment in phase two 255

APPENDIX 9. Examples of coding of developers’ comments 256

viii

LIST OF TABLES

Table 1. OSS research themes.. 29

Table 2. Major findings reported in existing literature on requirements discovery in OSS

development ... 33

Table 3. Demographic Profile of survey respondents ... 43

Table 4. Descriptive statistics: Usage of requirements documentation practices in OSS

Development .. 45

Table 5. Descriptive statistics: Usage of requirements elicitation practices in OSS

development ... 48

Table 6. Descriptive statistics: Usage of requirements analysis and negotiation practices

in OSS development .. 50

Table 7. Descriptive statistics: Usage of requirements describing practices in OSS

development ... 55

Table 8. Descriptive statistics: Usage of requirements modeling practices in OSS

development ... 56

Table 9. Descriptive statistics: Usage of requirements validation practices in OSS

development ... 58

Table 10. Descriptive statistics: usage of requirements management practices in OSS

development ... 60

Table 11. Descriptive statistics: usage of informal requirements generation activities in

OSS development ... 61

Table 12. Informal assertion versus formal elicitation of requirements 63

Table 13. Informal issue data generation versus formal elicitation of requirements 65

Table 14. Perceived usage versus usefulness: requirements documentation 70

Table 15. Perceived usage versus usefulness: requirements elicitation 73

Table 16. Perceived usage versus usefulness: requirements analysis and negotiation 77

Table 17. Perceived usage versus usefulness: requirements description 80

Table 18. Perceived usage versus usefulness: requirements modeling 82

Table 19. Perceived usage versus usefulness: requirements validation 84

Table 20. Perceived usage versus usefulness: requirements management 87

Table 21. Problems and challenges with OSS requirements discovery 90

Table 22. Findings of Von Krogh et al. and implications for reuse research in OSS

development ... 104

Table 23. Requirements patterns of Withall and related examples from EMR domain .. 125

Table 24. Requirements taxonomy (Pitts and Browne, 2007) ... 127

Table 25. Model parameters (Dependent variable: requirements size) 132

Table 26. Interactions ... 133

Table 27. Sample coding .. 135

Table 28. Model parameters (Dependent variable: requirements quantity)..................... 137

ix

Table 29. Interactions ... 138

Table 30. Model parameters (Dependent variable: requirements breadth) 139

Table 31. Interaction .. 140

Table 32. Model parameters (Dependent variable: requirements depth) 141

Table 33. Interactions ... 142

Table 34. Respondent perceptions on which interface best reduces issue

misclassification ... 160

Table 35. Supportive comments for insight one .. 161

Table 36. Supportive comments for insight two ... 163

Table 37. Supportive comments for insight three .. 165

Table 38. Supportive comments for insight four .. 167

Table 39. Supportive comments for insight five .. 169

Table 40. Supportive comments for insight six ... 170

Table 41. Supportive comments for insight seven .. 172

Table 42. Supportive comments for insight eight .. 175

Table 43. Negative opinions of OSS developers .. 177

Table 44. Positive opinions of OSS developers ... 179

x

LIST OF FIGURES

Figure 1. Requirements engineering process maturity levels (Sommerville and Swayer,

1997, p.22) ... 8

Figure 2. Example of a requirement existing as part of an informal message posted on

discussion forum .. 32

Figure 3. Example of a requirement submitted as a feature request through an issue

reporting artifact ... 33

Figure 4. Problems with issue data generated in OSS issue repositories 96

Figure 5. Example of a requirement pattern (Renault et al., 2009, p.10)......................... 108

Figure 6. GitHub issue reporting interface .. 150

Figure 7. Bugzilla issue reporting interface ... 151

Figure 8. Textual prompts in Gitlab issue reporting interface ... 174

xi

LIST OF ABBREVATIONS

OSS Open source software

RE Requirements engineering

CSS Closed source software

1

CHAPTER ONE. INTRODUCTION

1.1 Background and Motivation

1.1.1 Open Source Software Development

The term Open Source Software (OSS) refers to software whose source code can be freely

used, modified or redistributed (e.g., Linux, Mozilla Firefox). OSS development is an

umbrella term used for denoting the activities carried out to develop such software (e.g.,

Crowston et al., 2012). OSS development is a specific case of what Prikladniciki et al.

(2003) call multi-site, multi-cultural and globally distributed software development but

which has the particular goal of delivering freely usable software with no or minimal

license restrictions. OSS development can be characterized by several common features

(Dietze 2005):

 Collaborative development

 Geographically distributed actors with diverse capabilities and

qualifications

 Voluntary participation

 Interaction among actors entirely through web-based technologies

 Developmental activities carried out in parallel

 Dynamic releases

 Lack of centralized management

 Independent, crowd sourced peer-review.

2

There are several clearly observable differences between OSS development and

proprietary/closed source software development (CSS development) (Mockus et al.,

2002). While CSS development largely occurs in a centralized setting, OSS development

largely occurs in a decentralized setting (e.g., Feller and Fitzgerald, 2000; Scacchi, 2006;

Prikladniciki et al., 2003). CSS development involves salaried developers and project

members; sharing a common organizational culture; and having rich formal and informal

interactions, often facilitated by colocation working environments (e.g., Agerfalk et al.,

2005). On the other hand, OSS development is largely carried out by volunteer developers

and non-developer contributors who are often globally distributed and come from

different organizational and cultural backgrounds (Crowston et al., 2012). These

volunteering contributors, often working from arbitrary locations, collaborate almost

entirely over the Internet using different tools and technologies, such as communication

artifacts (e.g., discussion forums), source code management tools (e.g., Git, SVN), and

issue reporting artifacts (e.g., BugZilla) (Detienne et al., 2006, Crowston et al., 2012).

OSS developers are driven by different types of motivations, including the need for

functionality, learning opportunities, career development, fun and altruistic intentions

(Crowston et al., 2012; Feller and Fitzgerald, 2000; Shah, 2006; Hars and Ou, 2002).

Many developers leave after contributing for a certain period, and a small group of

developers remains to oversee the further evolution of the project (Shah, 2006). OSS

projects are largely dependent on volunteering developers and being able to continuously

attract and retain developers is important for their success (e.g., Crowston et al., 2003). In

CSS development settings, the developers and project members are paid for their

contribution to the project which can be expected to be a major motivation and the

3

leaving-joining process can be expected to happen at a much lower rate in comparison to

OSS projects. Also, CSS development projects are usually much more resource rich than

OSS projects, and the exiting of team members can be expected to have a lower impact in

comparison to OSS projects.

Distance between developers themselves and between developers and end-users is

a major differentiating factor between CSS development and OSS development (c.f.

Prikladniciki et al., 2003; Agerfalk et al., 2005). Distance involves not just the

geographical distance but also the socio-cultural distance which emerges because of

different individuals assigning different meanings to situations based on their socio-

cultural backgrounds (c.f. Agerfalk et al., 2005). Individuals from different cultures may

interpret and react to situations differently, and geographical distance contributes to the

increase in social or cultural distance (Agerfalk et al., 2005). For example, an email from

a sender belonging to a culture where communication is usually direct may be

misunderstood as abrupt or rude by a recipient belonging to a different culture

(Prikladniciki et al., 2003). Distance could also be temporal such as time zone differences

(Agerfalk et al., 2005; Prikladniciki et al., 2003). For example, time zone differences

between EU and India could mean very few overlapping hours between workers in EU

and their counterparts in India and subsequently, high temporal distance (Agerfalk et al.,

2005).

Geographical, temporal and socio-cultural distances give rise to many types of

problems and challenges that OSS development may find more difficult to tackle (e.g.,

synchronization). The geographical and temporal distance could make it difficult to

4

manage project artifacts (Agerfalk et al., 2005). Collocated environments (which are

common in CSS development) facilitate rich informal face-to-face communication (e.g.,

coffee talk; coordinating by peeking around the cubicle wall) between team members that

help build better-working relationships and allow better flow of project related

information (Agerfalk et al., 2005; Prikladniciki et al., 2003). The geographical and

temporal distance reduces chances of such communication; for example, time zone

differences can be a barrier to a quick phone call to clarify issues on the fly (Agerfalk et

al., 2005). Geographical distance can increase the effort needed to initiate contact which

can result in scenarios such as developers proceeding with implementation without

initiating contact with stakeholders, thus leading to errors (Agerfalk et al., 2005). The

need to depend on technology for communication because of geographical and temporal

distance can introduce its own problems; for example, different versions of tools posing a

challenge in collaborating; issues with networks connecting geographically distributed

locations (Agerfalk et al., 2005).

Temporal distance can lead to coordination problems (that OSS development may

find more difficult to manage) such as reduced hours of collaboration. For example,

individuals in US and Ireland can hope for at most three overlapping hours in a workday

(Agerfalk et al., 2005). When efficient information sharing mechanisms are not in place

(e.g., poor documentation) which is the case with a large number of OSS projects (Singh

et al., 2009), geographical, temporal and socio-cultural distance can be major barriers in

forming a shared understanding of situations at hand. For example, these distances could

lead to inadequate information dispersion about the overall architecture vision of a

5

project, which, in turn, could result in skewed perceptions about tasks to be done and

ineffective collaboration (Agerfalk et al., 2005; Prikladniciki et al., 2003). The distances

can also result in a lack of team spirit and awareness; for example, physical

separation/lack of face to face contact resulting in a lack of awareness about the work

activities of remote team members (Agerfalk et al., 2005). Also, it is more difficult to

build and maintain trust among globally distributed project members in comparison to

collocated project members (Agerfalk et al., 2005). These problems can be potentially

challenging to manage in the OSS domain, given its constraints (e.g., lack of resources in

comparison to CSS development).

OSS development largely occurs in an ad hoc, informal manner (Zhao and

Elbaum, 2003) and OSS development communities typically do not have any formal

organizational structure (Crowston et al., 2012). In contrast to CSS development, OSS

development is mainly driven by volunteers (Mockus et al., 2002), OSS contributors

often choose to do work that is of interest to them instead of work being assigned

(Mockus et al., 2002; Detienne et al., 2006,) and there is often lack of system-level

design, project plans, schedules and list of deliverables (Mockus et al., 2002; Detienne et

al., 2006). OSS development often lacks the processes followed in CSS development

(Mockus et al., 2002), and is marked instead by rapid development, frequent incremental

releases, and parallel development and debugging (Feller and Fitzgerald, 2000). There are

many web-based OSS development environments such as Sourceforge, Google Code,

CodePlex and GitHub within which the OSS developmental activities are usually carried

out. These development environments provide many types of tools (e.g., source code

6

management tools, issue reporting artifacts, discussion forums) to support OSS

development activities.

The often-observed lack of formal developmental practices in OSS domain is

characteristic of its general informality/ lack of a project structure. Such a lack of project

structure can potentially make many OSS projects less reliable and useful in comparison

to CSS projects (Aksulu and Wade, 2010). This research aims to investigate the current

state of and potential directions of improvement for requirements engineering in OSS

development.

1.1.2 Requirements Discovery in Open Source Software Development

OSS development largely occurs in an ad hoc, informal manner (Zhao and

Elbaum, 2003). In particular, requirements discovery in OSS development appears to be

informal and ad hoc (e.g., Scacchi, 2002). Requirements describe the features and

characteristics that software should possess and can be of type functional as well as non-

functional (Dennis et al., 2012). In CSS development, there is a formal requirements

engineering (RE) phase for discovering requirements. The RE process is comprised of

many formal practices, including: requirements generation/elicitation; requirements

analysis and negotiation; requirements validation; and requirements management

(Sommerville and Swayer, 1997; Browne and Ramesh, 2002). On the other hand, OSS

requirements discovery appear to be largely informal and devoid of any formal structure

(Scacchi, 2002; Crowston et al., 2012; Vlas and Vlas, 2011). Existing OSS development

environments such as Sourceforge, Google Code, CodePlex and GitHub also appear to be

7

largely code centric and lacking support for carrying out many of the RE practices used in

developing proprietary/closed source software.

Requirements in OSS projects often emerge informally as part of messages posted

on communication artifacts, such as discussion forums and issue data submitted through

issue reporting artifacts (Scacchi, 2002; Noll, 2008). Based on analysis of web-based

artifacts (e.g., posted discussions) of a few OSS projects, the OSS literature reports a

handful of informal requirements generation activities in OSS development, such as:

assertion by developers; requirements data (e.g., feature requests) submitted though issue

reporting artifacts by users; and deriving requirements from features appearing in other

software (Noll, 2008; Noll and Liu, 2010). Dietze (2005) has called for improvements in

requirements discovery practices in OSS development. There is an inherent tendency of

OSS developers to focus on implementation activities, often leading to insufficient

accomplishment of other developmental activities such as RE practices, an area needing

improvement (e.g., in the form of defining additional and supportive processes) (Dietze,

2005). The need for improvement also becomes evident when the requirements process

maturity model (Sommerville and Swayer, 1997) is used as a lens to analyze RE in OSS.

Recent research (e.g., Cox et al., 2009) has empirically validated this model in industry.

The model is shown below.

8

Figure 1. Requirements engineering process maturity levels (Sommerville and

Swayer, 1997, p.22)

The model has three levels. In level one, there is no defined requirements

engineering process, and there are many requirements related problems. There is no good

quality requirements document produced and requirements generation is dependent on

individual skills and experience. In level two, there are defined standards for requirements

document and description, policies, and procedures for requirements management and use

of some tools and techniques to support requirements engineering activities. In level

three, there is a well-defined requirements engineering process in place (Sommerville and

Swayer, 1997).

Requirements engineering in OSS development appears to be in level one, i.e.,

largely ad hoc. For example, as previously mentioned, requirements may originate and

exist informally as part of some message posted on a discussion forum, but there is often

no well specified formal requirements document (e.g., Scacchi, 2002). This informality

goes against the founding principles of the formal requirements engineering (RE) process

as stated by Bell and Thayer in 1976: “The requirements for a system do not arise

naturally; instead they need to be engineered and have continuing review and revision”

(p.5, Lamsweerde, 2000). Empirically, Hofmann and Lehner (2001) found that successful

software development teams had to perform on average, three iterations of requirements

Level 1 – Initial

Ad-hoc requirements engineering;

requirements problems are common

Level 2 – Repeatable

Defined standards for requirements

documents and process activities. Fewer

requirements problems, especially for well-

understood systems

Level 3 – Defined

Explicitly defined RE process based on best

practice. Process improvement program in

place.

9

engineering practices (e.g., identifying stakeholders, using modeling methods). As

requirements for OSS projects are often simply asserted by developers (e.g., Noll, 2008)

and there is a lack of formal elicitation of requirements information by analysts (Laurent

and Cleland Huang, 2009), the quality and usefulness of requirements information

generated for OSS projects may depend to a great extent on individual skills and abilities

of OSS developers (e.g., their domain knowledge). This dependence is characteristic of

level one in the RE maturity model. In fact, Rantalainen et al. (2011) report that, when

OSS developers develop OSS software for which they (the developers) are potential

users, they can be expected to have good domain knowledge but when the potential user

base expands to include users other than the developers, the OSS developers may be

lacking relevant domain knowledge (Rantalainen et al., 2011).

The RE process maturity model suggests that process improvement efforts should

be undertaken when requirements engineering is at level one. OSS researchers in the past

have mentioned the need for improvement in requirements discovery in OSS

development (e.g., Dietze, 2005). Any process improvement initiative should involve

efforts to understand existing processes and problems, identifying improvement goals and

investigating ways and means of incorporating the improvements in existing workflows

(c.f. Sommerville and Swayer, 1997). This research begins by investigating the current

state of requirements discovery in OSS development to identify problems and challenges

that exist in the context of requirements discovery in OSS. The RE process maturity

model suggests that a direction for RE process improvement is the incorporation of more

formal practices (e.g., defining a standard requirements document structure (Sommerville

10

and Swayer, 1997)). Based on an analysis of forty successful and forty unsuccessful OSS

projects, (Michlmayr, 2005) noted that OSS projects could benefit from the incorporation

of mature processes. In fact, Ciolkowski and Soto writes:

“It is a widespread belief that OSS communities operate in an essentially

chaotic way, and that, for this reason, no systematic development

processes can be taking place during OSS development. Consequently,

most casual observers would regard traditional maturity models as

completely inappropriate for OSS software. We disagree with the

previous idea. The main assumption underlying process assessment

approaches is that more mature processes consistently lead to higher

quality products, whereas for an organization with immature processes,

the capacity to deliver high quality products is unreliable and cannot be

predicted. There is no reason to believe this assumption is not valid for

OSS” (p.318, Ciolkowski and Soto, 2008)

This research follows the above line of thought and first carries out an exploratory

investigation of whether the formal RE practices are perceived by OSS developers to be

beneficial for OSS development. In doing so, this research attempt to uncover potential

directions of improvement for requirements discovery in OSS development. This is

important since recent research (Vlas, 2012) has found a positive association between

quality of requirements data generated in artifacts such as discussion forums and OSS

project success, indicating that good quality requirements can contribute to the success of

OSS projects. Most OSS projects have been developed by developers for their own use

(i.e., for the technical developet community (e.g., Foushee, 2013)). However, more

recently the user base of OSS projects has expanded beyond the technical community, and

taking the needs of non-developer users into account while developing OSS projects is

critical for OSS project success (Choi and Chengalur-Smith, 2009). OSS projects are fast

11

becoming components within IT infrastructure in various domains such as business,

education and government (Terry et al., 2010). Hauge et al. (2008), in their survey of

software companies, found that close to 50% of the companies surveyed integrated OSS

components into their products. Nikula and Jantunen (2005), in their survey of business

organizations, found that close to 50% of the surveyed organizations used OSS internally.

For such adoption to happen efficiently, it is important that the OSS cover a major part of

the requirements of the potential adopters (Ayala et al., 2013). Interestingly, such potential

adopters often have to perform risk reduction activities (e.g., hiring an expert) before

incorporating OSS (Ayala et al., 2013), and a large percentage of these potential adopters

involve non-critical applications (Nikula and Jantunen, 2005). Sohn and Mok (2008)

found that the capability of OSS software to provide functionality that met the stated and

implied needs of users positively influenced OSS utilization in firms. They also found

that OSS possessing non-functional requirements/characteristics (e.g., reliability,

usability, efficiency) had positive impacts on OSS utilization in firms. Many OSS projects

lack non-functional requirements, such as usability, with their developers not being aware

of the importance of usability and requirements of users (Raza et al., 2012). Fitzgerald

notes that, to support the needs of commercial organizations intending to adopt OSS,

more rigorous project management is needed to deliver a more professional OSS product

(Fitzgerald, 2006, p.591). Ad hoc approaches, such as OSS developers simply asserting

requirements, may not be able to capture the requirements of an ever-increasing user base

of OSS projects (e.g., Rantalainen et al., 2011). There is evidence for a large number of

OSS projects ending up as failures (Khondu et al., 2013; Kalliamvakou et al., 2014). A

potential contributor to such failures could be a lack of user interest (e.g., Stewart et al.,

12

2006). If OSS projects are not able to visualize their potential user base and,

subsequently, are not efficiently capturing the requirements of such a user base, then this

might contribute to user disinterest. For example, often OSS developers ignore feature

requests from users, causing user dissatisfaction (Laurent and Cleland-Huang, 2009).

With its focus on investigating OSS requirements discovery practices, this

research will also help address research gaps highlighted by other OSS researchers.

Crowston et al. (2012), in their review of the empirical work done on OSS development,

highlight that much research is needed on the use of CSS development practices (e.g.,

requirements engineering practices) in OSS development. Alspaugh and Scacchi (2013)

note that the answer to the question of whether OSS domain would benefit from

requirements engineering practices (from CSS development) is not clear and requires

further research.

The next section describes in detail, the objectives of this research.

1.2 Research Objectives and Design

Research is an activity that attempts to contribute to the understanding of some

phenomenon (Vaishnavi and Kuechler, 2015). The phenomenon of interest in the context

of this research is requirements discovery in OSS development. Requirements discovery

in OSS development occurs in an ad hoc manner (e.g., Scacchi, 2002; Noll, 2008), is

problematic and challenging (e.g., Kuriakose and Parsons, 2015), and needs improvement

(e.g., Dietze, 2005). Little research has investigated requirements related activities in OSS

development. As a result, we have a limited understanding of requirements engineering in

13

OSS and there is need for much research for furthering our understanding of it (e.g., Vlas

and Vlas, 2011; Alspaugh and Scacchi, 2013; Crowston et al., 2012). Thus, one objective

of this research is to gain an understanding of the current state of requirements

engineering in OSS development including areas of improvement. Well-established

theories such as the software development life cycle (SDLC) theory and the RE process

maturity model theory can shed some light in this direction. For example, SDLC theory

argues that requirements discovery, the initial phase of software development life cycle

should be disciplined and comprised of formal requirements engineering practices (e.g.,

Sommerville and Swayer, 1997; Walls et al., 1992). When observed from the lens of

SDLC, it becomes evident that OSS requirements discovery is largely ad hoc and

informal since the requirements engineering phase in SDLC is comprised of several

formal practices that appear to be largely missing during OSS development (e.g., Noll and

Liu, 2010). The RE process maturity model also suggests that OSS requirements

discovery is in an ad hoc and problematic state, as discussed in the preceding section. It

also suggests gradual incorporation of formal RE practices as a potential direction of

improvement. Requirements engineering is a complex process with a broad scope that

needs to take into account, not only the target software but also the environment (often

comprising of humans, devices, other software, etc.) surrounding it (Lamsweerde, 2000).

Contributing to the complexity is the fact that the RE process is comprised of several

intertwined activities, such as elicitation/gathering, negotiation, and documentation

(Lamsweerde, 2000). When analyzing a complex problem, an efficient approach to follow

is to decompose it into components (Simon, 1996; Burton-Jones and Meso, 2008). Given

the complexity of requirements engineering process, any attempts to improve RE in OSS

14

should ideally begin by focusing on one or more of the sub-processes within RE. This

research focuses on the requirements generation activity, which is responsible for

capturing and making available the requirements from potential sources (e.g., Arthur and

Groner, 2005). Thus, after reviewing the current state of RE in OSS and identifying areas

of improvement, this research addresses the specific objective of whether and how

requirements generation in OSS development could be improved.

The first phase of this research starts with an exploration of the current state of the

requirements engineering in OSS development. It is important to investigate, as part of

any research initiative on improvement opportunities for OSS requirements discovery, the

current state (e.g., what RE practices, formal and informal are used, if any) and the

different problems and challenges that may exist during requirements discovery in OSS

development. As suggested by the RE process maturity model, for the OSS development

domain, the set of formal RE practices is a potential solution space for tackling the

problems that arise from the informality of/ad hoc requirements discovery in OSS

projects. Hence, the initial phase of this research sets out to investigate the current state of

requirements engineering in OSS development, the problems, and challenges that may

exist during requirements discovery in OSS development, and the extent to which

incorporation of formal RE practices (from CSS development) may be beneficial for

requirements discovery in OSS domain. In OSS development, it is mainly developers who

are responsible for overseeing and managing the developmental activities (Crowston and

Howison, 2005). Hence, they are a valuable source for gathering information about the

15

current state of requirements discovery in OSS development and are used as the source of

data collection in the first phase of the research.

Analysis of data obtained from the survey provides evidence that requirements

discovery in OSS development is indeed ad hoc. While most of the formal RE practices

(from CSS development) have significantly low reported usage in OSS development, they

are largely perceived as beneficial for OSS development, thus highlighting many potential

directions of improvement for requirements discovery in OSS development. The next step

then becomes to empirically investigate the actual benefits from some of the formal RE

practices perceived as beneficial. Responding OSS developers also indicate several

problems and challenges with requirements discovery in OSS development, further

establishing the need for improvement initiatives. Given the complexity of RE process,

empirical investigation of all formal RE practices is not feasible within a scope of a single

research project. In this research, I focus on requirements generation activities in RE.

Requirements generation activities are used for discovering requirements about the

software from various sources (e.g., users), and usually form the first stage of the

requirements engineering phase in CSS development (Sommerville and Swayer, 1997;

Browne and Ramesh, 2002). Results from the initial research phase indicate that most of

the formal requirements generation practices (the practices under requirements elicitation

category) are perceived as beneficial for OSS development by OSS developers, in spite of

low usage.

In the second phase of this research, an empirical investigation of the benefits

from a specific requirements generation practice, requirements reuse for OSS

16

requirements discovery, is carried out. This particular practice is selected for further

investigation because it can be easily incorporated into the web-based OSS development

environments, for example, as a library of reusable requirements in the form of wiki

pages or a centralized repository within OSS development environments (e.g., a GitHub

repository). Moreover, the literature has reported OSS community reusing other artifacts

such as code (e.g., Von Krogh et al., 2005), a potential indicator of their general

willingness to reuse software development artifacts. It is potentially easier to incorporate

requirements reuse into existing OSS workflows compared to some other formal

requirements generation practices, such as analysts eliciting requirements from users

using interviews or scenarios, because of the distributed (geographical, temporal, and

socio-cultural distances) and ad hoc nature of OSS development and evolution, lack of

financial resources and time constraints of contributors. For example, in the OSS domain,

it is difficult for analysts to identify and bring together the right stakeholders for

requirements elicitation (Laurent and Cleland-Huang, 2009).

For the empirical investigation, a web-based experiment is designed with two

conditions, one in which a library of reusable requirements (specifically requirements

patterns) is made available within the web-based OSS development environment that

could be reused during requirements generation (experimental task) and a control

condition in which no such library is available. Requirements patterns are artifacts

containing reusable requirements knowledge, often as natural language descriptions,

making them easy to understand and use (e.g., Breaux et al., 2012). Analysis of the

experimental data reveals significant main effects of the availability of a library of

17

reusable requirements on requirements size, quantity, and completeness (potential

benefits) after controlling for covariates, and significant interactions between the

availability of a library of reusable requirements and covariates (specifically, their

technical and crowdsourcing experiences).

Different stakeholders of a software system have different perspectives about the

software due to their different skills, knowledge, and experience (Finkelstein et al., 1992;

Darke and Shanks, 1996). It is necessary to accommodate these various viewpoints during

requirements generation (Darke and Shanks, 1996; Pacheco and Garcia, 2012). This also

emerges from the initial survey where the requirements generation practice “collect

requirements from multiple viewpoints” is perceived as beneficial for OSS development

by OSS developers, in spite of low usage. To accommodate diverse views, it is important

that information is gathered from individuals independent of any form of classification

(Parsons and Wand, 2014). Imposing classification while gathering information reflects a

fixed, limited view that can be detrimental to accommodating diverse views (Parsons and

Wand, 2014). Interestingly in OSS issue repositories, which are a major source of

requirements for OSS projects (e.g., Alspaugh and Scacchi, 2013), both types of issue

gathering practices are popular, one that imposes classification and one that does not.

Recent research (e.g., Herzig et al., 2013) has reported misclassification (erroneous

classification of issue data) as an information quality problem with OSS issue data. For

example, Herzig et al. found that about 39% of issues that were classified as bugs were

not really bugs but rather enhancement requests, feature requests, and documentation

issues. Similarly, a large percentage of issues that were classified as feature requests and

18

enhancement requests were found to be actually of some other type (Herzig et al., 2013).

Such misclassification can be a major challenge to OSS requirements discovery.

The third and final phase of this research explores how the two different OSS

issue gathering approaches may differ in contributing to the misclassification problem

and how the OSS issue gathering interface should be, especially for mitigating the

misclassification problem. This final phase of the research uses a qualitative methodology

involving OSS developers and data is collected using a web-based survey. OSS

developers are often involved in both issue classification as well as issue reporting and

with their knowledge and experience, are a good source of information for the final

research phase. Many useful insights emerge from the analysis of data, for example, a

simple issue gathering interface that does not require issue reporters to perform any

classification/labeling at the time of submission of issues may be more effective in

tackling the misclassification problem in comparison to a complex interface that requires

issue reporters to perform classification/labeling at the time of submission. Based on the

obtained insights, recommendations are proposed for OSS issue gathering interfaces.

The research questions for the three phases of this research are summarized

below:

Main research objective: Understanding the current state of requirements engineering in

OSS development and whether and how requirements generation in OSS development

could be improved?

Research questions for phase one:

19

R1. What are OSS developers’ perceptions of the extent to which the formal

requirements engineering practices (from CSS development) and the informal

requirements generation practices reported in OSS literature are present in their

developmental activities?

R2. What are OSS developers’ perceptions of the extent to which requirements

engineering activities (from CSS development) are beneficial for OSS

development?

R3. What are OSS developers’ perceptions about some of the problems and

challenges that exist/could occur during requirements discovery in OSS

development?

Research question for phase two:

 R4. Does having access to a library of reusable requirements within OSS

development environment have any benefits for requirements generation in OSS

projects?

Research question for phase three:

R5. How do different OSS issue gathering approaches may differ in contributing

to the misclassification problem?

R6. What could be done at the issue gathering interface level to tackle the

misclassification problem?

This research makes theoretical contribution in the area of the design of web-based open

source software development environments by focusing on OSS requirements discovery,

20

an under-researched and problematic aspect of OSS development. Requirements

engineering process improvement is a design science contribution (e.g., Kabaale and

Nabukenya, 2011; Fernandez and Penzenstadler, 2015, Fernandez and Wieringa, 2013).

For example, Fernandez and colleagues (e.g., Fernandez and Penzenstadler, 2015;

Fernandez and Wieringa, 2013) analyzed existing RE processes in traditional

organizations such as Siemens and BMW, identified a need for improvement and

subsequently, and empirically evaluated an alternative RE approach in those

organizational contexts. They found that the alternative RE approach resulted in

improvements such as completeness and ease of use. This study follows a similar

approach for OSS domain by investigating the current state of requirements engineering

in OSS development, identifying problems and challenges, and identifying and

empirically investigating some potential directions for improvement for OSS

requirements discovery. New knowledge about potential improvements to the design of

IS artifacts is a design science contribution (Vaishnavi and Kuechler, 2015). Web-based

OSS development environments are largely code centric and lack support for many

formal requirements engineering practices (potential design deficiencies). Several

potential directions for improvement of OSS requirements discovery emerged from the

initial phase of this research many of which can also be potential design improvements if

adapted efficiently within existing web-based OSS development environments. In phase

two and three of the research, specific design improvements (availability of a library of

reusable requirements as a feature in web-based OSS development environments,

desirable characteristics for OSS issue gathering interfaces) are further explored. Results

from the second phase indicate that a design enhancement in the form of a library of well-

21

structured reusable requirements can bring in improved outcomes for web-based OSS

development (e.g., greater quantity of requirements). The final phase of the research

reveals new knowledge in the form of desirable characteristics in OSS issue gathering

interfaces (design suggestions) that can help reduce the misclassification of OSS

requirements artifacts. One way in which design knowledge can be output is in the form

of models, which are descriptions/representations about how things are/should be, often

representing the connection between problem and solution components which could then

enable further exploration of the potential effects of design decisions; a key focus of

models is often utility rather than truth (Vaishnavi and Kuechler, 2015; Hevner et al.,

2004; March and Smith, 1995). The knowledge obtained from this research is largely in

form of models, describing connections between problem and solution components in the

domain of OSS requirements discovery; for example, a design enhancement in form of

availability of a library of reusable requirements as a potential solution to incompleteness

of OSS requirements and design suggestions for OSS issue gathering interfaces that can

potentially help mitigate the misclassification problem. The theoretical contribution also

emerges from the second phase of the research in the form of knowledge about the

antecedents of requirements size, quantity, and completeness all of which are under-

researched variables in IS literature.

1.3 Structure of the Research

The research proceeds as shown in the flowchart below:

22

 Chapter two provides the background of the research and review of relevant

literature. Chapter three describes the findings from the analysis of survey data (e.g., the

findings about the current state of requirements discovery in OSS development, potential

directions of improvement). Chapter four describes the findings from the experimental

investigation of the potential benefits from the availability of a library of reusable

Review of relevant OSS literature, literature on OSS requirements discovery and formal

requirements engineering practices in CSS development

A web-based experimental investigation of the potential benefits from the availability of a

library of reusable requirements during requirements generation in OSS development

Survey of OSS developers to gain knowledge on the current state of RE in OSS development,

their perceptions about the usefulness of formal RE practices (from CSS development) for OSS

development, problems, and challenges existing in the context of requirements discovery in OSS

development

A qualitative analysis (involving OSS developers) of how the two different OSS issue gathering

approaches may differ in contributing to the misclassification problem and what can be done at

the issue gathering interface level to tackle the misclassification problem

Discussion of theoretical contributions, implications for practice and research, limitations, and

conclusion

23

requirements during requirements generation in OSS development. Chapter five describes

the insights from the analysis of qualitative data obtained from OSS developers on how

the two different OSS issue gathering approaches may differ in contributing to the

misclassification problem and suggestions about the desirable characteristics of issue

gathering interface for tackling the misclassification problem. Chapter six describes

theoretical contributions, implications for practice and research and limitations.

24

CHAPTER TWO. BACKGROUND AND REVIEW OF RELEVANT

LITERATURE

2.1 Open Source Software (OSS) Development

Perens (1999) describes the definition for open source to include the following:

 Free redistribution: can make any number of copies of software, give them to

anyone or even sell but no need to pay anyone for this privilege.

 Source code can be freely distributed.

 Modification of any sort is allowed and all modifications/derived works can also

be freely distributed.

 No restrictions against any person/group of persons; no restrictions against fields

of endeavour (anyone can use the software in any field of endeavour, for example

business or research).

In addition to the code, an OSS project usually provides open access to all its

development artifacts (e.g., issue data in issue repositories, data in mailing lists and

discussion forums) (Robbins, 2003). The domain of this research is OSS development, an

umbrella term that denotes the software development activities carried out to produce

such software.

OSS development is often carried out by organizationally and geographically

distributed developers and other contributors who voluntarily participate in the

development (Crowston et al., 2012). The volunteering contributors collaborate and carry

out developmental activities almost entirely over the Internet using tools such as mailing

25

lists, web forums, version control systems, issue reporting artifacts, real-time chats and

wikis (Robbins, 2003; Detienne et al., 2006; Rantalainen et al., 2011). OSS

developmental activities are often carried out within web-based collaborative

development environments (e.g., Source Forge, GitHub, Google Code and CodePlex) that

provide many tools to support the developmental activities (e.g., Robbins, 2003).

Crowston and Howison (2005) describe the social structure of OSS development

as largely comprised of core developers, co-developers, active users and passive users.

Usually, it is a small group of core developers who do most of the code contributions and

are responsible for overseeing the OSS project evolution. The co-developers contribute by

submitting code for review (which may or may not be accepted) by core developers.

Active users contribute by providing feature requests and bug reports and helping in

testing new releases whereas passive users are mainly observers who do not contribute

(Crowston and Howison, 2005). The core developers in OSS projects control code base

and create most of the functionality (Mockus et al., 2002).

The participation of volunteer developers and other contributors in OSS

development is often driven by different kinds of motivation, including: the need for

certain functionality; learning opportunities; career development; and fun (Shah, 2006;

Hars and Ou, 2002; Robbins, 2003). For example, many OSS developers participate in

development because of their need for some software functionality (Nichols and Twidale,

2003). Because of this, many OSS projects are self-driven, where the developers write the

code to meet their own needs (Rantalainen et al., 2011).

26

While the majority of contributing OSS developers leave after their needs are met,

a small group (the core developers) remains; for these developers, participation becomes

a hobby, and they oversee the further evolution of the project (Shah, 2006). A large

number of OSS projects have to rely on part-time efforts of these small number of core

developers for their continuous evolution (Robbins, 2003).

OSS development has evolved into a domain with characteristics that make it

distinct from the CSS development. This is elaborated in the next section.

2.2 Open Source Software Development versus Closed Source Software

Development

There are some clearly observable differences between the CSS development and OSS

development domains (Mockus et al., 2002; Godfrey and Tu, 2000; Aksulu and Wade,

2010). As Scacchi puts it: “This is a world that differs in many ways from traditional

software engineering, where it is common to assume centralized software development

locales, development work, and administrative authority that controls and manages the

resources and schedules for software development and maintenance” (p.5, Scacchi, 2006).

One major difference is in terms of the goals of the paradigms. CSS development

aims at filling some commercial void, while OSS development aims to create something

useful or interesting (Godfrey and Tu, 2000). In fact, often OSS projects have only

loosely defined objectives (Aksulu and Wade, 2010). CSS projects have an externally

defined lifespan whereas OSS projects do not have such defined life spans; they may

survive as long as at least one contributor is willing to maintain them (Aksulu and Wade,

27

2010). While CSS development occurs in a relatively uniform and stable organizational

environment, OSS development occurs in an open unstable environment that does not

have hierarchical processes or enforcement of technology policies and lacks standards

and regulations (Aksulu and Wade, 2010). Based on their review of OSS empirical work,

Aksulu and Wade (2010) conclude that the lack of project structure in OSS development

could make it less efficient than CSS development and result in non-reliable and non-

useful outputs

In contrast to CSS development, which is staffed and funded, OSS development is

mainly driven by unpaid volunteer developers and non-developer contributors (Mockus et

al., 2002; Godfrey and Tu, 2000). Baytiyeh and Pfaffman (2010) report that, while there

is a small percentage of OSS developers who are paid by organizations for their

contribution, payment does not have a significant impact on motivation to contribute;

developers are motivated primarily by altruistic intentions and desire to create and learn.

OSS contributors often choose to do work that is of interest to them (self-selection),

instead of work assigned to them (Mockus et al., 2002; Detienne et al., 2006; Robbins,

2003; Godfrey and Tu, 2000; Aksulu and Wade, 2010). This highlights the freedom that

OSS development provides, with no one having power over the contributors (Godfrey and

Tu, 2000; Aksulu and Wade, 2010). OSS developers’ self-selection of work can be

influenced to a great extent by their familiarity with the application domain and

developmental technologies (Robbins, 2003). The feedback from users and developers

(often termed peer review) is a critical resource for the evolution of OSS projects, while it

is a non-critical resource for CSS projects (Robbins, 2003). For example, a piece of code

28

submitted by some contributor may need to be reviewed and discussed by the community

before it is incorporated into the source code of the OSS project (Robbins, 2003).

OSS development is often ad hoc in nature (Zhao and Elbaum, 2003). OSS

projects often lack the formal processes followed in closed source software development

(Mockus et al., 2002); they are instead characterized by rapid development, frequent

incremental releases, and parallel development and debugging (Feller and Fitzgerald,

2000). CSS projects have economic concerns and contractual agreements, which is

generally not the case with OSS projects, facilitating “release early, release often” in OSS

development (Robbins, 2003). Frequent releases may be advantageous to OSS projects

for attracting volunteers (Robbins, 2003). OSS projects often lack system-level design,

project plans, schedules, and list of deliverables (Mockus et al., 2002; Detienne et al.,

2006). In particular, OSS development appears to lack formal requirements engineering

practices (Crowston et al., 2012; Robbins, 2003; Scacchi 2002).

The next section discusses some major research themes in OSS literature.

2.3 Major Research Themes in OSS Literature

Crowston et al. (2012) and Aksulu and Wade (2010) have reviewed a large number of

empirical OSS studies and identified major research themes in OSS domain. These are

listed in the Table 1. This research, centered on requirements discovery in OSS

development, can be put into OSS software development practices category in the

Crowston et al. taxonomy or the OSS production category in the Aksulu and Wade

29

taxonomy. Aksulu and Wade put into OSS production category research on issues such as

OSS methodology, design structures, architecture, work practices.

Table 1. OSS research themes

OSS research themes

(Aksulu and Wade, 2010)

Example categories (Aksulu and Wade, 2010)

Conceptual OSS benefits/drawbacks, OSS versus proprietary software,

Business/economic models, and strategies/policies for OSS

Performance metrics Software quality- testing and bug fixes, OSS security, Development

team performance, OSS success

Legal and Regulatory OSS licensing and legal issues, OSS standards, and regulation

OSS production Process, team formation, governance, collaboration and knowledge

sharing, users and developers’ motivation, Role of commercial

corporations

OSS applications Telecommunications, education, Imaging, supply chain, gaming,

academic, biomedical, natural sciences

OSS diffusion OSS adoption, OSS implementation

Beyond software Open paradigms, open innovation, open standards, open knowledge

flows

OSS research themes

(Crowston et al., 2012)

Example categories (Crowston et al., 2012)

Member characteristics Geographic location, motivation for participation

Project characteristics License types

Technology use Types of technology used in development

Software development

practices

Project management planning, requirements, coding, testing,

maintenance

Social processes Socialization, decision making, coordination and collaboration,

knowledge management

Firm involvement practices Adoption by firms, OSS commercialization

Social states Trust

Task-related states Roles, commitment levels, shared mental models

Software implementation OSS use in different contexts

Team performance Success measures, relationship between success and other variables

Software evolution Software evolution, OSS community evolution

An analysis of the abstracts of the studies in OSS production category by Aksulu

and Wade revealed that only one study (Scacchi, 2004) had looked at OSS requirements

discovery, indicating that OSS requirements discovery is an under-researched area in OSS

domain. This is also the case with the Crowston et al. review, which found only two

studies that looked at requirements discovery, leading to their main claim was that OSS

30

domain lacked traditional requirements engineering practices and that OSS requirements

discovery largely occurs in an ad hoc manner. Crowston et al. highlight the need for

research on OSS development practices, in particular, on the use of closed source

software development practices (e.g., requirements engineering practices) in OSS

development. Alspaugh and Scacchi (2013) make a similar call, and mentions that the

answer to the question of whether OSS domain would benefit from requirements

engineering practices (from CSS development) is unclear and awaits further research.

There has been a lack of work on requirements engineering in OSS since these reviews.

For example, a search with the keyword “requirements” in the OSS literature specific

database, flosshub (http://flosshub.org/biblio), indicated a lack of research on RE in OSS

since 2011.

This research aims to fill the above-mentioned gap with its specific focus on

requirements discovery in OSS development. This is elaborated in the next section.

2.4 Requirements Discovery in OSS Development

2.4.1 Requirements and Requirements Engineering

Requirements are statements about what features and characteristics software should have

(Dennis et al., 2012). Requirements could be functional: they describe what features

should be in software. An example of a functional requirement is the need for a software

to allow registered users to review order history. Requirements could be of a non-

functional type that describe what characteristics other than the functional features should

the software have. For example, there could be performance requirements (e.g., capacity

and reliability of the software) or cultural/political requirements (e.g., the need for

http://flosshub.org/biblio

31

software to be compliant with data protection laws) (Dennis et al., 2012). Requirements

can also describe how the software should be built (system requirements, such as the

hardware and software needed to support development), the business needs (business

requirements; such as reducing order processing time) and what tasks users perform (user

requirements; such as scheduling an appointment) (Dennis et al., 2012).

In CSS development, there is a formal requirements engineering phase comprising

of several sub-phases such as requirements elicitation, requirements documentation,

requirements validation, and requirements management (Sommerville and Swayer, 1997;

Browne and Ramesh, 2002). Requirements elicitation is the process of discovering

requirements for software from different potential sources, such as users and documents.

During this stage, analysts use different techniques such as interviews, observation, and

document analysis to elicit requirements from different sources (Sommerville and

Swayer, 1997; Browne and Ramesh, 2002; Dennis et al., 2012). During requirements

documentation, requirements are formally documented (e.g., software requirements

specification document) for the purpose of communicating with stakeholders such as

users and developers (Sommerville and Swayer, 1997). After the requirements have been

documented, they are formally validated with stakeholders to check for omissions,

conflicts and ambiguities (Sommerville and Swayer, 1997; Browne and Ramesh, 2002).

2.4.2 What We Know about OSS Requirements Discovery

For the most part, OSS development lacks the formal requirements engineering practices

from the CSS domain (e.g., Crowston et al., 2012; Scacchi, 2002). In fact, Crowston et al.

(based on their systematic literature review of 184 empirical works in OSS domain

32

shortlisted from 52 journals and 40 conferences) write: “FLOSS projects are often said to

not conduct formal requirements analyses” (p.17, Crowston et al., 2012). As a specific

example, there is often no formal requirements elicitation by analysts in OSS

development development (Laurent and Cleland-Huang, 2009). In OSS development,

requirements may exist informally as part of some message posted on communication

artifacts such as discussion forums, issue reporting artifacts, bulletin boards, project

wikis, and chat tools (Scacchi, 2009; Noll, 2008; Vlas and Vlas, 2011). Some examples

are shown in Figures 2 and 3.

Figure 2. Example of a requirement existing as part of an informal message posted

on discussion forum (https://sourceforge.net/p/squirrel-sql/mailman/squirrel-sql-

users/?viewmonth=200306)

33

Figure 3. Example of a requirement submitted as a feature request through an issue

reporting artifact (https://sourceforge.net/p/pspp4windows/feature-requests/2/)

Requirements may be simply asserted by developers based on personal experience

and knowledge, emerge as part of the bug reports and feature requests submitted through

issue reporting artifacts, or be ideas obtained from features in other commercial products

(Noll, 2008). Table 2 summarizes major findings reported in the existing literature on

requirements discovery in OSS development.

It appears from the findings reported in Table 2 that requirements engineering in

OSS development is largely informal and ad hoc. All the studies reviewed in Table 2 have

reported their findings based on qualitative analysis of project artifacts (e.g., data in

discussion forums, mailing lists and issue repositories) of a few OSS projects. To the best

of my knowledge, there have not been other types of studies (e.g. quantitative,

experimental). A search for other type of studies, including a search with the keyword

https://sourceforge.net/p/pspp4windows/feature-requests/2/

34

requirements in the OSS literature specific database flosshub (http://flosshub.org/biblio)

was unsuccessful (i.e., no results). For example, Noll (2008) analyzed archival data of

Firefox, an OSS project. whereas Noll and Liu (2010) analyzed archival data of

OpenEMR, an open source electronic medical record software.

Table 2. Major findings reported in existing literature on requirements discovery in

OSS development

Findings on requirements

engineering practices

reported in OSS literature

Scacchi

(2002)

Noll

(2008).
Ernst and

Murphy

(2012)

Llanos

and

Castillo

(2012)

Massey

(2002)

Noll

and Liu

(2010)

Requirements are asserted by

developers

 √

 √

 √

 √

 √

Requirements specification

mainly exists informally as part

of communication messages in

emails, discussion forums, and

such artifacts.

 √

 √

 √

Lack of formal requirements

elicitation

 √

 √

Lack of formal requirements

validation

 √

 √

Lack of formal requirements

prioritization

 √

Requirements are contributed by

users through bug reports and

feature requests

 √

 √

 √

A source of requirements is

features appearing in

commercial products

 √

 √

In OSS development, it is mainly the OSS developers who are responsible for

overseeing and managing the developmental activities (Crowston and Howison, 2005).

Hence, they would be a valuable source of information about the current state of

http://flosshub.org/biblio

35

requirements engineering in OSS development, as well as about potential directions for

improvement. Surprisingly, there is a lack of such an empirical study. To address this

omission, the first phase of this study (chapter three) reports a survey that was carried out

among OSS developers that sought to gather information from them about their usage of

requirements engineering practices during OSS development.

2.5 Importance of Requirements Discovery for OSS Projects

2.5.1 Ever Expanding OSS User Base

The user base of OSS projects is increasing significantly (Scacchi, 2007; Choi and

Chengalur-Smith, 2009), and OSS projects are fast becoming components within IT

infrastructure in various domains such as business, education, and government (Terry et

al., 2010). For example, companies such as Red Hat and Novell make use of OSS (Terry

et al., 2010). Foushee (2013) also found that the number of OSS projects written by

developers for themselves has decreased over the years from a high in 2001 to a low in

2011, whereas OSS projects written for non-developer users have increased over the

years. Choi and Chengalur-Smith (2009) also made similar observations. OSS developers

often carry out the development activities in an informal ad hoc manner (Mockus et al.,

2002). The informal ad hoc approach works fine for self-driven OSS projects as OSS

developers know the needs and can just implement those needs (Rantalainen et al., 2011).

The informal ad hoc approach becomes problematic when the user base of OSS projects

extends beyond the developers themselves, in which case the developers are no longer

domain experts (Rantalainen et al., 2011). For example, such an approach fails to take

into account end-user usability (Nichols and Twidale, 2003). OSS developers’ lack of

36

domain knowledge could contribute to observations such as that of Foushee (2013), who

found that OSS projects that were written by developers for themselves were much more

likely to be successful in comparison to OSS projects that were written for general users

(i.e., not for the developers themselves). Choi and Chengalur-Smith write that developing

OSS projects for general end-users is “critical factor for OSS success, yet critical issue

holding back the OSS movement” (p.1, Choi and Chengalur-Smith, 2009). In fact, Heppler

et al. (2016) found statistical empirical evidence that OSS developers tend to ignore

feature requests from non-developer users.

User interest in OSS projects is an indicator of OSS project success (Stewart et al.,

2006; Subramaniam et al., 2009). Stewart et al. found that for OSS projects to be

successful, they must signal to the users that they will provide a high level of utility.

They also found that user interest in OSS projects has a positive effect on OSS

development activity, which indicates that having an interested user base for OSS projects

motivates OSS developers to continuously carry out developmental activities (Stewart et

al., 2006). Chengalur-Smith et al. (2010) also mention that OSS developers may not be

motivated to work on OSS projects that only a few users are interested in. As noted by

one OSS developer in the study by Shah (2006, p. 1008): “why work on something that

no one will use? There is no satisfaction there” (p.1008) and by another, “it is rewarding

when you see that what you helped create is used by many people. I want to let many

people know about this software, and I want them to use it” (p.1008) (Shah, 2006). These

findings from the OSS development literature are in line with the literature on CSS

development, which has consistently found that user involvement is one of the most

37

important factors for project success (e.g., Verner et al., 2005). For example, a series of

surveys by Standish group consistently found that user involvement is the most important

factor for software project success (Standish group, 1995; Standish group, 1999). More

recent research (e.g., Bano and Zowghi, 2013) has made similar observations. If good

requirements are generated for OSS projects (for example, from users), they could

address some of the above-mentioned issues. For example, developers could be more

confident that they are working on things that are of interest to the user community and,

when users find that the developers are working on things that they desire, it could be a

signal to them about the utility of the OSS project.

Wixom and Todd (2005) empirically demonstrated that user satisfaction with an

information system positively influences user’s intention to use an information system. A

major antecedent of user satisfaction with an information system is information system

quality (e.g., information system having the functionalities needed by the user) (Wixom

and Todd, 2005). Lee et al. (2009) empirically demonstrated that OSS quality positively

influences OSS user satisfaction which in turn positively influence OSS use. This implies

that, if OSS software is capable of meeting the expectations, needs and wants of potential

users, then it is more likely to capture the interest of users and get them involved, which

should then have favorable outcomes for the OSS project. Sohn and Mok (2008) found

that the capability of OSS software to provide functionality that met the stated and

implied needs of users positively influenced OSS utilization in firms. They also found

that OSS possessing non-functional requirements/characteristics (e.g., reliability,

usability, efficiency) also had positive impacts on OSS utilization in firms. Thus,

38

generating good requirements can help OSS projects have functionality meeting user

needs and expectations, as well as have good non-functional characteristics.

2.5.2 Good Requirements can Drive OSS Project Success

A major reason for software not being able to do what the users want or expect is

problems with the software requirements gathered (Chakraborty et al., 2010). For

example, incomplete requirements and changing requirements are major factors

contributing to software project failures (Standish group, 1995; Kulk et al., 2008). An

example is that of Qantas, Australia’s national airline, which had to cancel a $40 million

software project after potential users (specifically union of aircraft mechanics) refused to

use it. A major reason for this was that management did not care about user perspectives

on the new software, but, rather, focused on implementing what the management thought

was appropriate (Dennis et al., 2012). In the OSS domain, there is evidence for a large

number of projects being abandoned soon after they start (e.g., Chengalur-Smith et al.,

2010; Khondu et al., 2013). Sourceforge (a web-based OSS development environment)

has over 150000 OSS projects but most of them become inactive soon after registration or

within the first year (Chengalur-Smith et al., 2010). Khondu et al. (2013) found that over

86% of projects in their analysis were inactive with no recorded activity during the last

year, and over 65% of projects had no activity within the last two years. In Sourceforge,

abandoned projects can be tagged as stale by developers to indicate that they have been

properly abandoned by original developers and need new volunteers and support to be

maintained. Khondu et al. (2013) found that over 60% of the inactive projects were

tagged as stale. Kalliamvakou et al. (2014) reported that the majority of GitHub projects

39

in their analysis were inactive. Clearly, having such a large number of unsuccessful OSS

projects is undesirable since it represents wasted time, effort and other resources that went

into development.

Vlas (2012) empirically demonstrated that there is an association between quality

of requirements data posted on OSS discussion forums and OSS project success. For

example, PHPMyAdmin is a successful OSS project analyzed in the Vlas study. It was

found that PHPMyAdmin had accumulated a rich set of meaningful requirements in its

discussion forums (requirements that were mainly about the application domain of

PHPMyAdmin software) (Vlas, 2012). The findings of Vlas in the OSS domain are

similar to findings reported in the literature on CSS development about the importance of

good quality requirements for software projects. For example, Kamata and Tamai (2007)

found evidence for good quality software requirements specification in successful CSS

development projects. Thus, the poor quality of requirements generated during the

evolution of OSS projects could potentially contribute to their failures.

The findings of Vlas indicate that, if OSS projects have access to better quality

requirements data, then they are in a better position to be successful over the long run.

This is in line with Chengalur-Smith et al. (2010), who found that OSS projects can

remain active and have continuous developmental activities if they can get good ideas

from users and developers. Such ideas can broaden the scope, purpose, and functionality

of the OSS projects. Chengalur-Smith et al. further found that even successful projects

(both OSS and industrial) require continuous developmental activities. They back up this

claim with examples of continuous new releases by Apple and Microsoft, and thereby

40

illustrate that good quality ideas, such as new features, are important even for successful

software projects (Chengalur-Smith et al., 2010). Thus, the generation of good quality

requirements is beneficial for OSS projects.

The first phase of this research focuses on exploring in depth, the current state of

requirements discovery in OSS development and identify areas and directions for

improvement. To begin with, an exploratory survey was carried out among OSS

developers. The survey and findings from it are discussed in greater detail in the next

chapter.

41

CHAPTER THREE. AN EXPLORATION OF THE CURRENT STATE OF

REQUIREMENTS DISCOVERY IN OPEN SOURCE SOFTWARE

DEVELOPMENT AND POTENTIAL DIRECTIONS OF IMPROVEMENT

3.1 Survey on the Current State of Requirements Discovery in OSS Development

As described in previous chapters, a handful of existing OSS literature (e.g., Scacchi,

2002; Noll 2008; Noll and Liu, 2010), based on qualitative analysis of web-based archival

data (e.g., messages in OSS discussion forums), have claimed that requirements discovery

in OSS development is ad hoc and informal. However, there is lack of direct data

involving the views of practitioners themselves – OSS developers and other contributors

– on requirements in OSS development. In fact, researchers (e.g., Alspaugh and Scacchi,

2013; Crowston et al., 2012) have mentioned that much research is needed for bettering

our understanding of requirements discovery in OSS development. Also, Dietze (2005)

has called for improvements in requirements discovery practices in OSS development,

and any such effort would need a detailed analysis of the current state of the practice of

requirements discovery in OSS domain.

In OSS development, it is mainly OSS developers who are responsible for

overseeing and managing developmental activities (Crowston and Howison, 2005) and,

hence, are a valuable source of information about different aspects of requirements

discovery. A web-based survey was developed from the review of RE and OSS literature

(Sommerville and Swayer, 1997; Noll, 2008; Noll and Liu, 2010; Damian and Zowghi,

2003; Schmid, 2014; Lintula et al., 2006) to gather information of interest from OSS

developers. The survey was developed using surveygizmo, a web-based survey

42

application. The survey software provided insights into the design of the survey (e.g.,

average time needed for completion). The survey had four sections. The first section

consisted of questions about the extent to which formal requirements engineering

practices (from CSS development) and informal practices (reported in OSS literature (see

Noll (2008)) were used during OSS development. The list of formal requirements

engineering practices was obtained from Sommerville and Swayer (1999). This list is

fairly comprehensive. There is empirical evidence for the usage of these practices in

industries (e.g., Cox et al., 2009). Each practice listed was accompanied by a detailed

description that could be view by placing the cursor over an * adjacent to the practice.

The second section asked about perceived usefulness of each formal requirements

engineering practice (from CSS development) for OSS development. The third section

asked about problems and challenges that exist /could occur during requirements

discovery in OSS development, and the fourth section asked for demographic

information. For each section and individual groups of questions of the survey,

participants could freely provide comments and any additional information that they

wished to provide. The survey questions and structure can be found in Appendix 1.

The university research ethics committee approved the survey questionnaire.

Subsequently, email invitations containing the link to the survey were sent to OSS

developers registered on the OSS development environments GitHub and Sourceforge.

Also, a link to the survey was posted on the webpages of online OSS communities such

as Mozilla and Apache. No incentives were provided for completion of the survey. It is

43

difficult to determine the exact number of OSS developers who received the survey link.

Eighty four usable (complete) responses were obtained.

3.1.1 Demographic Profile of Respondents

The demographic profile of survey respondents is shown in Table 3.

Table 3. Demographic Profile of survey respondents

AGE <20 20-29 30-39 40-49 50+

 7.1% 22.4% 41.2% 17.6% 11.8%

RESIDENCE North

America

South America Europe Asia and

rest of

the

world

 65.9% 4.7% 12.9% 16.5%

EDUCATION Non-

University

education

Undergraduate

or equivalent

Graduate

or

equivalent

Ph.D.

and

higher

 24.4% 36% 29.1% 10.5%

TASK PROFILE IN OSS

DEVELOPMENT

Includes

writing code

Does not include

writing code

 94.2% 5.8%

NUMBER OF OSS

PROJECTS WORKED ON

1-4 5-9 10-14 15+

 25.6% 29.1% 10.5% 34.9%

AVERAGE NUMBER OF

HOURS SPENT PER

WEEK ON OSS

DEVELOPMENT

1-4 5-9 10-19 20+

 20% 25.9% 20% 34.1%

44

The demographic question items, along with response categories (e.g., place of

residence and its four possible options), were obtained from Sojer and Henkel (2010). In

general, the data suggest that respondents were qualified OSS developers. The majority of

the participants were from North America, but there was also participation from other

parts of the world. This is illustrative of the globally distributed nature of OSS

development, with contributors coming from different locations across the globe. More

than 90% of the respondents participated in the coding tasks of OSS development. The

sample of respondents had a good mix of less experienced and highly experienced OSS

developers. Slightly more than 45% of the respondents had worked on less than ten OSS

projects while almost 55% of the respondents had worked on more than ten 0SS projects.

3.1.2 Descriptive Findings on Use of Formal Requirements Engineering Practices

and Informal Practices in OSS Development

The survey covered seven major categories of requirements engineering practices,

obtained from Sommerville and Swayer (1997): requirements documentation practices,

requirements elicitation practices, requirements analysis and negotiation practices,

requirements describing practices, requirements modeling practices, requirements

validation practices and requirements management practices. Within each category,

questions were asked about the use of several specific practices in OSS development.

Survey respondents were asked to indicate the level of usage of each practice by selecting

one of the following seven options: always used (coded as 5), mostly used, sometimes

used, rarely used, never used (coded as 1), not applicable and I do not know. Not

45

applicable and I do not know were coded as 0. There were very few responses in not

applicable, and I do not know categories.

Table 4 shows the means and standard deviations for respondents’ reported usage

for requirements documentation practices.

Table 4. Descriptive statistics: Usage of requirements documentation practices in

OSS Development

Requirements documentation practices (Sommerville et al, 1997) Mean Std. Dev.

Define a standard document structure 2.34

1.346

Explain how to use the document 2.17

1.404

Include a summary of the requirements 2.78 1.556

Make a business case for the software 1.99 1.329

Define specialized terms 2.63 1.299

Make document layout readable 3.09

1.565

Help readers find information 2.85

1.483

Make the document easy to change 3.27 1.707

Comments of survey respondents indicate low usage of formal requirements

documentation practices, for example: “I have never formally documented the

requirements in any of my open source projects: all have started as small apps/libraries

to scratch an itch and have grown from there more or less organically.” In Table four,

not surprisingly, the practice, “make a business case for the software” have the lowest

mean, which can be expected given the in-general non-commercial nature of OSS

development.

Many self-driven OSS projects (i.e., developers develop the projects for their own

use) (Rantalainen et al., 2011) could be experiencing this informality, as suggested by the

following comment of a respondent: “why would we bother writing a never used

46

document when we could just make what we need.” The narrow focus of developers (e.g.,

not visualizing a large user base, rather developing for themselves; OSS developers

simply asserting requirements (Noll, 2008)) might contribute to the informality as evident

from the following comment: “A lot of this survey may not apply to me. The open source

software I have released is technology made for companies I am involved with. I select

code I have written to be a candidate for making open source, consult with my colleagues

and then post it online.” Instead of a formal specification, developers may go with what

exists as knowledge inside their minds, as this comment from a respondent suggests:

“Very rarely worked with requirements document as far as I know. They are more of a

piece of knowledge living through maintainers, not explicit data.”

Large and successful OSS projects (e.g., Mozilla), could contribute to the

observed usage means as suggested by the following comment of a respondent:

“Honestly, only the largest OSS projects will take on the overhead of specification/design

documentation.” Some practices, such as including a summary of requirements, may be

used under certain conditions (e.g., project owners may want to give newcomers the

ability to participate in coding and influence project vision (Dabbish et al., 2012)), as

suggested by the following comment: “a written version of summary requirements often

appears in a project when lead/team developers feel comfortable enough with having

people contributing to their code. It works as a way of reducing people management

overhead. When a business case exists, it is often de-attached from the project in order to

allow anyone to contribute. Terms tend to be defined when the domain does not explain

them and as for technicality, almost nobody likes to write them.” Such occurrences could

47

contribute to the observed usage of these practices. The average OSS projects that are

often driven by hobbyist developers (e.g., Shah (2006)) may largely lack formal

requirements documentation practices, as indicated by the following comment of a

respondent: “Open source projects that I worked on were mostly hobbyist small

individual projects where I was the sole developer, or research grade software developed

in an academic setting where engineering methodologies were not applied or small tools

I developed during the course of other (commercial or academic work). Thus, there was

no formal engineering process or planning of any kind.”

There may be some ad hoc/ informal documentation, such as project read me files

having some screenshots about the project and some instructions (Begel et al., 2013).

Such ad hoc documentation would not constitute a formal requirements document as

suggested by a responding OSS developer: “I have never been involved in an open source

project that had a formal requirements document. For these small-scale projects,

requirements are intrinsically linked to purpose and features which are listed on the

project website (if available), or more commonly, the README.” Another respondent’s

comment makes a similar suggestion: “many open source projects that I have worked on

have a read me. Occasionally a wiki with ad hoc other documentation.” The practices

such as “make documents layout readable” and “make the document easy to change,” for

which usage means appear to be little higher compared to other practices, may indicate

the perceptions of responding OSS developers about documents such as README (e.g.,

making a README file easy to change).

48

Table 5 shows the means and standard deviations for respondents’ reported usage

for requirements elicitation practices.

Table 5. Descriptive statistics: Usage of requirements elicitation practices in OSS

development

Requirements elicitation practices (Sommerville et al, 1997) Mean Std.

Dev. Assess software feasibility 2.7

1.552

Be sensitive to political and organizational consideration 2.23

1.434

Identify and consult software users 2.84 1.338

Record requirement sources 2.48 1.468

Define the software's operating environment 3.62 1.411

Use business concerns to drive requirement elicitation 2.35

1.328

Look for domain constraints 2.7

1.504

Record requirements rationale 2.57

1.334

Collect requirements from multiple view points 2.61 1.245

Prototype poorly understood requirements 2.83 1.367

Use scenarios to elicit requirements 2.66 1.355

Define operational processes 2.35 1.501

Reuse requirements 2.6

1.411

The following comments of survey respondents indicate low usage of formal

requirements elicitation practices in OSS development: “These questions all imply a much

higher degree of formality than in projects I have worked on”; “Again these questions

assume a high degree of formality around requirements elicitation. This has not been my

experience” and “I had to think hard about some of these. These practices we do, we

certainly don’t think of in the terms you used. Our development is mostly informal, but

sometimes use some of those if they sound like a good idea, rather than as a conscious

decision to do so.”

Freedom of development and no one having any power over the contributing

developers are important characteristics of OSS development and this freedom also

49

means developers often ignoring formal developmental practices (from CSS

development) that may not be as exciting as writing code (Godfrey and Tu, 2000). Thus,

developers’ individual perceptions could contribute to the informality as illustrated from

the third comment above; if they don’t feel like using a formal practice, then it may not be

part of the OSS development.

Certain OSS project characteristics, such as being large and successful, could

contribute to the observed usage means in Table 5. Other characteristics, such as being

not-for-profit, could impede the usage of certain practices such as feasibility assessment

as suggested by the following respondent’s comment: “feasibility assessment: this is

rarely applicable as the basic premises assume ROI (return of investment) expectations

which are mostly non-existent, domain constraints are in my experience always used

since most of the times people move towards things that 1) they feel they have a constrain

[sic] and want to learn and they understand and want to improve.” It appears from the

preceding comment that, during the course of development, developers may obtain some

understanding of constraints in the application domain that may direct their subsequent

programming activities. This could be a potential informal manifestation of the practice:

looking for domain constraints that in turn could account for some of the reported usages.

The ad hoc nature of OSS evolution, where, for example, some developer(s)

driven by some vision or need, make an initial piece of source code openly available and

gradually many interested developers joining in (Nakakoji et al., 2002; Godfrey and Tu,

2000), might contribute to the informality, as is consistent with the following

respondent’s comment: “I have yet to work on or be a part of an open source project that

50

had a formal requirements gathering process. Open source projects seem to arise out of a

specific need and grow somewhat organically rather than through formal solicitation.”

In Table 5, reported usage of the practice define the software’s operating

environment was higher than for other practices. The operating environment of the

software includes the host computer and hardware and software with which the proposed

software would be interacting (Sommerville and Swayer, 1997). Developers are expected

to have an understanding of such technical aspects which in turn could contribute to the

observed usage. This is consistent with the following comment of a responding OSS

developer: “software environment is usually obvious, in my experience. Never built open

source for business yet, it’s mostly to get something done.” Note that the preceding

comment also points to low usage of the practice “use business concerns to drive

requirements elicitation,” potentially because of the general objective of OSS projects to

produce something useful/interesting for the community, instead of commercial goals as

in CSS development (e.g., Godfrey and Tu, 2000).

Table 6. Descriptive statistics: Usage of requirements analysis and negotiation

practices in OSS development

Requirements analysis and negotiation practices (Sommerville et al, 1997) Mean Std. Dev.

Define software boundaries 3.11

1.362

Use checklists for requirements analysis 2.36

1.293

Provide software to support negotiations 2.47

1.580

Plan for conflict and conflict resolution 2.11

1.352

Prioritize requirements 3.57

1.286

Classify requirements using a multidimensional approach 2.11

1.440

Use interaction matrices to find conflicts and overlaps 1.8

1.368

Assess requirements risk 2.34

1.364

51

Table 6 shows the means, and standard deviations for respondents’ reported usage

for requirements analysis and negotiation practices.

The usage of formal requirements analysis and negotiation practices appears to be

low during OSS development, as indicated by the following comments of responding

OSS developers: “Most of these actions are only required in a formal format, when taking

place within a corporate or business setting, as so many technically incompetent people

are generally involved in development” and “A lot of these are pretty heavyweight

processes that I would associate more with large slow moving software companies rather

than with free software projects.” The first of the immediately preceding comments is

indicative of the differences in the focus of OSS domain versus CSS domain. CSS

development gives much greater attention to the needs of the user base (“technically

incompetent people”) in comparison to OSS development; a large number of OSS

projects are developed primarily for developers (e.g., Foushee, 2013). This widespread

self-centeredness of OSS developers could contribute to the informality, as illustrated by

the following comments of responding OSS developers: “As an open source developer, I

rarely negotiate on my own projects with others as they are built by myself only. I do not

need to negotiate or compromise most of the time” and “Plan for conflict and conflict

resolution is used trivially; implementers make the final decision.” As evident from the

comments, OSS developers, potentially because of self-centredness, often do not feel the

need to engage in negotiation or conflict resolution. Practices such as assessing

requirements risk may be used only in certain situations (e.g., OSS projects having some

legal implications, for example, health care projects) as suggested by the following

52

respondent’s comment: “Assess requirements risk is mostly not applicable, however when

used are mostly to prevent legal implications.”

The average OSS project may be lacking these practices, while large and

successful OSS projects may use them, a potential contributor to the observed usage. This

is suggested by the following respondent’s comment: “It’s a small project. Our process

for conflict avoidance is ‘ask that guy or that guy,’ depending on domain or both. On

IRC.” This comment illustrates the simple, informal communication/discussions (on

mediums such as internet relay chat (IRC)) that may occur between developers over some

issue. This is in line with the observations of Noll and Liu who noted that brief

discussions might occur between developers, for example, to discuss the merits of some

feature; disagreements can occur during such discussions leading to additional

discussions (Noll and Liu, 2010). Many OSS projects are small in size (e.g., single

developer projects, projects having less than five developers) (e.g., Krishnamurthy, 2002)

and such projects may lack formal requirements analysis and negotiation practices, as

indicated by the following comment: “All my open source projects thus far been

primarily solo efforts (thus no conflicts); on rare occasions, users have requested new

functionality, but that rarely constitutes negotiation.”

The ad hoc nature of OSS evolution could make the usage of certain practices,

such as conflict resolution, a gradual emergence process. “Seriously? You are asking if

people use e-mail to talk to other people about software. Also, it’s not clear WHEN in the

development you are talking about. Many projects start out completely ad hoc and

develop conflict resolution plans if they become sufficiently large. Am I supposed to

53

answer this question as of a new open source project one guy is writing, or for Linux?”

For a large number of OSS projects, some developer(s) driven by a vision or need might

make an initial piece of source code openly available, and gradually many interested

developers and contributors join in (Nakakoji et al., 2002; Godfrey and Tu, 2000). With

the increase in the number of contributors, the likelihood of occurrence of conflicts and

disagreements can go up which, in turn, could result in the occurrence of some informal

or formal conflict resolution activity, as the preceding comment points out. The ad hoc

nature of OSS evolution and ad hoc emergence of requirements information could impede

usage of formal analysis and negotiation practices as the following comment stresses:

“Again important to note in our practice, requirements evolve alongside the software,

rather than being agreed to in advance of implementation.” Evolution of the OSS

software could go in any direction, being highly active with continuous developmental

activities or becoming dormant with much less activity (e.g., Khondu et al., 2013) which

could, in turn, facilitate or deter evolution of formal developmental practices including

RE practices. Linux is an example of an OSS project whose successful evolution led to

the subsequent emergence of formal developmental practices; Linus Torvalds wrote and

made available the initial version of source code of Linux and over time, it became a

successful OSS project by attracting and retaining many contributors, which resulted in

the emergence of new practices such as coordination practices (Iannacci, 2005).

From Table 6, it can be seen that the practice “prioritize requirements” has the

highest mean. Laurent and Cleland-Huang (2009) in their analysis of the discussion

forums of OSS projects, found that some prioritization techniques might be available,

54

such as using a voting button through which users could demonstrate their support for

some feature request, and in one project they found that users could specifically assign

priority to their feature request information. The issue reporting artifacts in OSS

development usually have a specific field labeled priority (see the screenshot in Appendix

4). Availability of such techniques could contribute to the observed usage of “prioritizing

requirements”. Laurent and Cleland-Huang also mention that these techniques have their

own problems and hence there is a lack of sophisticated support for requirements

prioritization.

In their analysis of OSS projects, Ernst and Murphy (2012), found that there was

no separate prioritization phase, but rather interests of developers were the important

deciding factor. The interests of developers being a critical factor in requirements

prioritization is also illustrated by the following comment of a responding OSS developer:

“Prioritize requirements mostly happen in the core team while others engage with the

project on their own rhythm.” Laurent and Cleland-Huang also found that prioritization

decisions are made by project administrators and they may use information provided by

users while making these decisions, but there was also evidence that administrators often

ignored user provided information. Thus, the self-prioritization of OSS developers about

requirements to implement could also contribute to the observed usage of requirements

prioritization practice.

Some informal discussions concerning requirements negotiation/agreement about

requirements may happen between OSS developers, for example on discussion forums

(Llanos and Castillo, 2012; Noll and Liu, 2010). For example, developers may discuss

55

feature implementation in development mailing lists (Guzzi et al., 2013). Such

discussions could contribute to the observed usage of the practice “define software

boundaries,” which is deciding what should be kept within the scope of software and

what should be outside (Sommerville and Swayer, 1997).

Table 7 shows the means and standard deviations for respondents’ reported usage

for requirements describing practices.

Table 7. Descriptive statistics: Usage of requirements describing practices in OSS

development

Requirements describing practices (Sommerville et al, 1997) Mean Std.

Dev. Define standard templates for defining requirements 2.2

1.401

Use languages simply and concisely 3.45

1.335

Supplement natural language with descriptions of requirement 3.05

1.264

Specify requirements quantitatively 2.49

1.308

Use diagrams appropriately 2.95

1.203

Responding developers’ comments indicate that code fragments may actually

serve as requirements description: “I will say simply writing a unit-test fits the description

of the first question, which is a very popular way of both defining and enforcing a

requirement” and “concise language may be hard (esp. if one is attached to a project/ or

one wants to let the code do the talking)” and “supplements exist more in the form of code

then math”

The practice “use languages simply and concisely,” has the highest mean.

Requirements may exist informally as part of natural language text descriptions found in

communication artifacts such as discussion forums within OSS development

environments (Vlas and Robinson, 2012; Scacchi, 2002). The emergence of natural

56

language artifacts as part of the evolution of OSS projects, such as messages posted in

discussion forums and issue data in issue repositories, could contribute to the observed

usage of the practice “use languages simply and concisely.”

Table 8 shows the means and standard deviations for respondents’ reported usage

for requirements modeling practices.

Table 8. Descriptive statistics: Usage of requirements modeling practices in OSS

development

Requirements modeling practices (Sommerville et al, 1997) Mean Std. Dev.

Develop complementary models of the proposed software 2.13

1.303

Model the software's environment 2.57

1.324

Model the software's architecture 2.93

1.376

Use structured methods for software modeling 2.26

1.421

Use a data dictionary 2.10

1.311

Document the links between user requirements and models 1.87

1.312

Comments of responding OSS developers indicate a low usage of requirements

modeling practices (which is in line with Badreddin et al. (2013) who, in their analysis of

twenty OSS projects, did not find any evidence for usage of modeling practices): “Rather

than model a large program, we typically modularize our stuff” and “We have separate

deploy scripts (called DevStack) for making a minimal working environment developers

can work against. Smaller than a typical production environment” (see additional

comments below). In the first of the immediately preceding comments, modularization

refers to a technique of programming that separates a large program into separate

independent modules, each module focusing on some particular functionality or a part of

it (e.g., https://en.wikipedia.org/wiki/Modular_programming). Both of the immediately

preceding comments illustrate the code-centric approach that is characteristic of OSS

https://en.wikipedia.org/wiki/Modular_programming

57

development, an approach different from that in a CSS development environment and a

potential contributor to the informality. In fact, OSS developers may use the code as a

substitute artifact for some of the modeling artifacts as suggested by a responding OSS

developer: “Is the code a data dictionary? I think the code is a data dictionary. It shows

model names inherently and does not support casual variations.” Such usage occurrences

could contribute to the observed usage.

The self-centeredness of OSS developers could contribute to the informality as

suggested by the following respondents’ comments: “If the project is in the head of one

developer, it is a waste of time to model the project out using UML” and “The engine guy

knew what he was doing and did it.” Large and successful OSS projects could be potential

contributors to the observed values in Table 8: “None of the open source projects that I

have worked on have been large enough or complex enough to demand requirements

modeling.” The ad hoc nature of OSS evolution could impede usage of certain modeling

practices as indicated by the following comment: “A data dictionary expects a large

group which is not true for most of the cases. When the group grows, there is either

enough base that it is no longer possible to break the convention or a list has been built

via documentation; is also worth noting that generally speaking new contributors consult

existing team for guidance on implementing their intended feature or fix.” As the

preceding comment suggests, the small size of many OSS projects could impede practices

such as a data dictionary that expect large team size but, interestingly, even if a small

OSS project manages to grow large through successful evolution, the existing

58

conventions and norms in the project may make it difficult to use practices such as a data

dictionary.

Table 9 shows means and standard deviations for respondents’ reported usage for

requirements validation practices.

Table 9. Descriptive statistics: Usage of requirements validation practices in OSS

development

Requirements validation practices (Sommerville et al, 1997) Mean Std. Dev.

Check that the requirements document meets your standards 2.23

1.551

Organize formal requirements inspection 1.96

1.427

Use multidisciplinary teams to review requirements 2.03

1.301

Define validation checklists 1.89

1.251

Use prototyping to animate requirements 2.51

1.373

Write a draft user manual 2.64

1.352

Propose requirements test cases 2.99

1.325

Paraphrase models 1.89

1.378

The usage of requirements validation practices appears to be low during OSS

development, as indicated by the following comment of a responding OSS developer:

“The standards met are ad hoc and non-explicit in most cases. Most open source projects

I worked on have been too small to bother or be able to afford domain experts and what

not, or even have sizeable teams.” This comment indicates that because of the ad hoc

nature of OSS development, there are often no explicit standards, potentially impeding

the usage of practice checking whether requirements have met standards or not. Also, the

comment indicates that the lack of resources (e.g., money) for many OSS projects can

mean a lack of domain experts, hindering the usage of practices such as formal

requirements inspection; the small size (e.g., small number of contributors) for many OSS

projects can hinder the usage of practices such as using multidisciplinary teams for

59

reviewing requirements. Another developer comment indicates that many OSS projects

are small in size, especially in the initial stages of evolution and even if they manage to

gain successful evolution and become large in size (e.g., many contributors), there may

still be a lack of organized development and developmental activities may be limited to

issue generation and submission of code fragments by contributors: “Again, most open

source projects start with one developer and an idea. If the project gains public

attention/motivation, public development is done in a less organized manner via issues

and pull requests on GitHub.” This again suggests low usage of formal requirements

validation activities. This is also in line with what Noll and Liu (2010) report based on

their analysis of OpenEMR, an OSS project. They found instances when no validation

happened; a requirement message would be posted by someone and after some time, an

implementation of it emerged. In other instances, some informal discussions about

validating some feature (e.g., its merits) happened among developers (Noll and Liu,

2010), a potential contributor to the observed usage in Table 9. In Table 9, it can be seen

that the practice, “propose requirements test cases”, has the highest usage mean. An

example of test cases associated with a requirement is: for the requirement store last

name, possible test cases can be regular length, maximum length, longer than allowed,

blank, etc.; for example, what would be the software behavior on entering last names of

these types (Zielczynski, 2007). The direct association of testing with coding (e.g., testing

code fragments to see if its behavior is as expected or not) could contribute to the

observed usage of the practice, proposing requirements test cases. This is also indicated

by the following developer comment: “We unit-test the living beans out of our software if

that counts.”

60

Table 10 shows means and standard deviations for respondents’ reported usage for

requirements management practices.

Table 10. Descriptive statistics: usage of requirements management practices in OSS

development

Requirements management practices (Sommerville et al, 1997) Mean Std. Dev.

Uniquely identify each requirement 2.6

1.431

Define policies for requirements management 2.05

1.342

Define traceability policies 1.83

1.350

Maintain a traceability manual 1.57

1.144

Use a database to manage requirements 2.28

1.509

Define change management policies 2.13

1.421

Identify global software requirements 2.52

1.460

Identify volatile requirements 2.27

1.415

Record rejected requirements 2.43

1.424

The usage of requirements management practices appears to be low during OSS

development as indicated by the following comments of responding OSS developers:

“Much of what is done is done in a non-formal manner” and “No formal requirements

management has been performed for this very small project.” The second of the

immediately preceding comments indicates the possibility that it may be the large OSS

projects that may have some of these practices, a potential contributor to the observed

usage in Table 10.

Issue tracker emerged as a potential substitute for a requirements database as

indicated through the following comments: “We are using the Google Code issue tracker

to keep track of requirements” and “I use a database to track requirements in so far as I

frequently use enhancement tickets in bug trackers to define functionality that needs

implementing.” Thus, issue tracker usage could be a potential contributor to the observed

61

usage for the practice: using a database to manage requirements. Some of the issue

trackers may have features for uniquely identifying each issue (e.g., issue id) which could

potentially contribute to the observed usage of the practice: uniquely identify each

requirement. This is indicated by the following comment: “The database is typically an

issue manager, e.g., GitHub issue tracker, Bugzilla or JIRA, which automatically includes

an identifier. Depending on the project, these may be individual work items, larger goals

or both (usually with links from the small items to the requirement item).” Version control

systems, such as Git, also emerged as a potential substitute for requirements database as

evident from the following comment: “Our blueprints (which generally outline

implementation strategy but could include requirements/rationale) are all stored in a git-

based repo. This would count as a DB and handle revision control/versioning.” Git

repositories allow storing and tracking revisions/changes to not only code but also any

text files or manuscripts (Blischak et al., 2016), thus facilitating the management of

requirements as well, as the preceding comment indicates.

Table 11. Descriptive statistics: usage of informal requirements generation activities

in OSS development

Informal requirements generation activities reported in OSS literature [see

Table2 in chapter two]

Mean Std.

Dev.
Requirements are asserted by an open source software developer based on his or her

personal experience

4.09 1.031

Requirements are asserted by an open source software developer based on his or her

personal knowledge of user needs

3.83 1.107

Requirements are contributed by users through bug reports 3.81 1.035

Requirements are contributed by users through feature requests 3.65 1.043

Requirements are derived from features found in some other software 3.36 1.143

62

Table 11 shows the means and standard deviations for respondents’ reported

usage for informal requirements generation activities.

It can be seen from Table 11 that the usage means are higher compared to the

means for most of the practices in Tables 4-10. The usage of informal requirements

generation activities in OSS development appears to be high as indicated by the following

comments of responding OSS developers: “sudden change in survey tone to include

directly applicable questions!”; “not very formal here either” and “it’s mostly what you

(dev) wants to build that determines the product- but kind of has to make it useful to

people, so that includes some reqs. That he/she may not have wanted to do.” The third of

the immediately preceding comments indicate how developers’ perceptions and interests

can be the dominant factor in OSS development, for example, developers’ personal views

about what is useful can determine what features get included in the software, as the

comment suggests.

Issue data such as bug reports and feature requests that are usually generated in

issue repositories of OSS projects are a major source of requirements, as results in Table

11 indicate and are consistent with existing literature (e.g., Crowston et al., 2012, Noll,

2008). The following comment of a responding OSS developer also suggests this:

“GitHub issues play a huge role.” In addition to issue data, contributed code fragments

may also serve as a source of requirements as the following comment indicates:

“Requirements are often contributed by users as fully formed patches (or GitHub pull

requests which can be merged into an existing codebase.” Here patches/pull requests

refer to code fragments submitted by contributors.

63

3.1.3 Quantitative Evidence for Informality of Requirements Generation in OSS

Development

Two informal practices associated with OSS developers are asserting requirements based

on personal experience and asserting based on personal knowledge of user needs.

Table 12. Informal assertion versus formal elicitation of requirements

Use of informal requirements generation practices versus

use of formal requirements elicitation practices

Mean

Std. Dev.

 Paired

samples t

Sig.

Requirements are asserted by an open source software

developer based on his or her personal experience (Informal)

4.09

1.031

Identify and consult software users (formal) 2.85

1.314

 8.609

.000

Collect requirements from multiple viewpoints (formal) 2.61

1.232

 8.991

.000

Use business concerns to drive requirements elicitation

(formal)

2.35

1.320

 9.735

.000

Use scenarios to elicit requirements (formal) 2.62

1.371

 7.749

.000

Requirements are asserted by an open source software

developer based on his or her personal knowledge of user

needs (informal)

3.83

1.107

Identify and consult software users (formal) 2.85

1.314

 6.998

.000

Collect requirements from multiple viewpoints (formal) 2.61

1.232

 7.502

.000

Use business concerns to drive requirements elicitation

(formal)

2.35

1.320

 8.422

.000

Use scenarios to elicit requirements (formal) 2.62

1.371

 6.270

.000

This assertive approach of requirements generation does not involve formal

elicitation of requirements from potential users, which is different from CSS

development, where analysts formally elicit requirements from users using different

methods such as interviewing and scenario based elicitation (e.g., Laurent and Cleland

64

Huang, 2009; Scacchi, 2002).A paired samples t-test was run between usage scores of the

two informal assertive practices and the usage scores of four formal requirements

elicitation practices that involve direct elicitation of requirements from users in order to

investigate if there were any statistically significant differences. Results are reported in

Table 12. As Table 12 shows, informal assertive approaches have significantly higher

reported usage in OSS development than the formal elicitive approaches of requirements

generation. This provides quantitative evidence for the general informality of

requirements generation in OSS development and also quantitative evidence for claims

about the assertion of requirements made in qualitative OSS literature. For example,

Scacchi writes: “We also observe the assertion of requirements that simply appear to

exist without question or without trace to a point of origination, rather than somehow

being elicited from stakeholders, customers, or prospective end users of open software

systems” (p.10, Scacchi, 2002). His observation is from qualitative analysis of web-based

artifacts of an OSS project.

The ad hoc generation/emergence of issue data (e.g., users may submit some bug

report or feature request randomly) in OSS issue repositories is another informal

requirements generation practice that can be observed in OSS development (e.g., Noll,

2008). This practice is non–elicitive; that is, there are no analysts formally eliciting the

requirements data from users on the web-based issue generation forums (c.f. Laurent and

Cleland Huang, 2009). A paired samples t-test was run between usage scores for the two

types of issue data, namely bug reports and feature requests as sources of requirements

65

and four formal elicitation approaches. Paired samples t test was used since the paired

scores came from the same respondents. The results are shown in Table 13.

Table 13. Informal issue data generation versus formal elicitation of requirements

Use of informal requirements generation practices

versus use of formal requirements elicitation practices

Mean

Std. Dev.

 Paired

samples t

Sig.

Requirements are contributed by users through feature

requests (Informal)

3.65

1.043

Identify and consult software users (formal) 2.85

1.314

 4.785

.000

Collect requirements from multiple viewpoints (formal) 2.61

1.232

 6.694

.000

Use business concerns to drive requirements elicitation

(formal)

2.35

1.320

 7.776

.000

Use scenarios to elicit requirements (formal) 2.62

1.371

 5.303

.000

Requirements are contributed by users through bug reports:

(informal)

3.81

1.035

Identify and consult software users (formal) 2.85

1.314

 5.921

.000

Collect requirements from multiple viewpoints (formal) 2.61

1.232

 8.355

.000

Use business concerns to drive requirements elicitation

(formal)

2.35

1.320

 8.900

.000

Use scenarios to elicit requirements (formal) 2.62

1.371

 6.768

.000

Table 13 indicates that the usage of issue data generated (bug reports, feature

requests) as sources of requirements in OSS development, is significantly higher than the

usage of formal elicitive approaches of requirements generation. This provides further

quantitative evidence for the general informality of requirements generation in OSS

development and also provides quantitative evidence for claims about the usage of issue

data (bug reports, feature requests) as sources of requirements in qualitative OSS

66

literature. For example, Alspaugh and Scacchi write: “Perhaps the most common

requirement-like OSS artifacts are isolated feature requests or bug reports submitted to

tracking systems like Bugzilla………., Each feature request or bug report can be taken to

imply a requirement but in themselves they rarely constitute a Classical Requirements

artifact” (p.3-4, Alspaugh and Scacchi, 2013).

3.2 Quantitative Findings on Perceptions of OSS Developers about the Usefulness of

Formal Requirements Engineering Practices from CSS Development for OSS

Development

The second section of the survey asked respondents to indicate what they thought about

the usefulness of adopting formal requirements engineering practices (from CSS

development) in OSS development. They were asked to indicate the usefulness of each

requirements engineering practice for OSS development by selecting one of the following

seven options: extremely useful (coded as 5), very useful (coded as 4), useful (coded as

3), not useful (coded as 2), harmful (coded as 1), not applicable (coded as 0) and I do not

know (coded as 0). To determine whether there was a statistically significant difference in

the perceptions of OSS developers about the usefulness of RE practices in OSS

development and their reported usage (measured as described at the beginning of section

3.1.2) of RE practices, a paired sample t-test was run between usage ratings and

usefulness ratings for each RE practice. Past research from other domains such as

healthcare has used a similar approach for analyzing rating data (e.g., Bruce and Ritchie,

1997; Chu and Choi, 2000).

67

One assumption of a paired sample t-test is that the differences of paired

observations are normally distributed. The tests of normality are many times not reliable

and an alternative approach for testing normality is the analysis of descriptive statistics

(Siau and Long, 2009). One rule of thumb that can be used to investigate whether there is

a serious violation of normality assumption or not is to see if absolute values of both

skewness and kurtosis are less than 1 (Siau and Long, 2009). If so, there is acceptable

normality (Siau and Long, 2009). For the data, most of the skewness scores (except for

two) are less than 1. If skewness is greater than 1 but less than 2, then also the distribution

is not highly skewed (Siau and Long, 2009). The two greater than one skewness scores

are 1.151 and 1.217. Many of the kurtosis values also have absolute values less than 1 and

many of the remaining ones having values greater than 1 but less than 2 (see Appendix 6).

West et al. (1995) mention that substantial departure from normality happens when

skewness > 2 and kurtosis > 7 whereas Kline mentions that skew with an absolute value

greater than 3 and kurtosis with an absolute value greater than 10 are problematic (c.f.

Stull, 2008). The skewness and kurtosis of the data are below all of these threshold

values.

Sawilowsky and Blair (1992) investigated the robustness of t-test with eight real

world non-normal distributions and different sample sizes. The t-test was found to

produce robust results with the different non-normal real world distributions (Sawilowsky

and Blair, 1992). Schmider et al. (2010) analyzed robustness of ANOVA (of which t-test

is a special case) with non-normal rectangular distribution (skewness = 0; kurtosis = 1.8)

and exponential distributions (skewness = 2; kurtosis = 9) and found ANOVA to produce

68

robust results. The findings of Sawilowsky and Blair and Schmider et al. show that

kurtosis values like 4 and 9 do not cause problems for parametric tests such as t-test and

ANOVA. Seven kurtosis values were between 2 and 3 and three kurtosis values were

greater than 3. The findings of Sawilowsky and Blair and Schmider et al. indicate that

these values should not be a hindrance in t-test producing accurate results for the

corresponding RE practices.

Bootstrapping is a method that can be used in the context of non-normal data

(Lumley et al., 2002). Bootstrapping was found to provide similar p-values and

confidence intervals as that of t-tests (Lumley et al., 2002). Kang and Harring (under

review) report that a bootstrap t-test has power advantages over a normal t-test with non-

normal data. SPSS provides the option to do bootstrapping in combination with

parametric tests such as t-test. Another alternative for non-normal data is using non-

parametric tests, which do not have normality assumptions (Nevo et al., 2012). One such

test is sign test which can be used to test whether there is a statistically significant

difference between scores in two conditions. To determine whether there were significant

differences in perceptions of OSS developers about the use and perceived usefulness of

RE practices, a paired samples t-test, bootstrap paired samples t-test and sign test were

run for use and perceived usefulness scores of each RE practice. The results for paired

samples t-test and sign test are presented in Tables 14 to 20. Running bootstrapped paired

sample t-test produced similar significance values as shown in Tables 14 to 20 and

confidence intervals that did not contain zero. This means that the true difference between

means cannot be zero, thus supporting the findings of normal paired samples t-test and

69

sign test. In addition, the Bonferroni correction method was also applied since this is a

case of multiple comparisons (discussed in detail at the end of this section; also Appendix

2).

In general, perceptions of OSS developers about the extent to which the formal

RE practices (from CSS development) could be advantageous for OSS development do

not match their reported usage of these practices. For most of the RE practices, their

perceptions about usefulness was significantly higher than their reported usage, indicating

a gap in their perceptions and practice. Thus, it appears that when it comes to

requirements related activities in OSS development, OSS developers may not be actually

practicing what they believe could be beneficial. Many potential reasons for this observed

gap emerged from responding developers’ comments; for example, limited size and scope

of OSS projects and limited project resources such as a small number of contributors

available and time constraints of volunteering developers. It appears that manifestations

of some of the formal RE practices within the existing OSS development workflows

could help account for these constraining factors while allowing the domain to pursue and

enjoy the benefits of these practices. A detailed discussion of the findings follows.

The results of the paired samples t-test and sign test for requirements

documentation practices are shown in Table 14.

70

Table 14. Perceived usage versus usefulness: requirements documentation

Requirements

documentation

practices (Sommerville

et al, 1997)

 Use

Mean SD

Usefulness

Mean SD

Paired samples

t-test (t value:

use - usefulness)

Sig. (2-

tailed)

Sign test (use -

usefulness) p-

value

Define a standard

document structure

2.34

1.346 3.18 1.106 -6.924 .000 .000

Explain how to use the

document

2.17

1.404 3.11 1.169 -6.154 .000 .000

Include a summary of

the requirements

2.78 1.556 3.5 1.033 -4.183 .000 .008

Make a business case

for the software

1.99 1.329 2.7 1.429 -4.925 .000 .000

Define specialized terms 2.63 1.299 3.33 1.245 -4.333 .000 .000

Make document layout

readable

3.09

1.565 3.77 1.210 -4.128 .000 .002

Help readers find

information

2.85

1.483 3.77 1.169 -5.795 .000 .000

Make the document

easy to change

3.27 1.707 3.79 1.204 -3.130 .002 .003

As evident from the test results, for all the requirements documentation practices,

the beliefs of OSS developers about the usefulness of these practices for OSS

development was higher than their reported usage of these practices during OSS

development, indicating a gap between their perceptions and practice.

The usefulness perceptions are also indicated by the following comments of

responding OSS developers: “I am in charge of keeping our software’s docs clean, and a

style template for it has been a huge help” and “Documentation whether of requirements

or implementation becomes more crucial as a project grows. For small projects, it can be

detrimental, but for larger ones, important.” The second of the immediately preceding

comments indicates that large OSS projects may find requirements documentation more

71

useful, a potential indicator that the variable OSS project size can influence requirements

documentation usefulness. OSS project documentation may help in the evolution of the

project, for example, Aggarwal et al. (2014) found a positive association between OSS

project documentation and OSS project popularity. Environmental cues can influence

perceptions of individuals (Baker et al., 2002) and thus the lack of documentation could

negatively influence perceptions of many potential users and contributors about the OSS

projects. Thus, the availability of documentation (e.g., requirements documentation)

could be potentially beneficial for the growth of small OSS projects.

Some potential reasons for the observed gap in perceptions and practice emerged

from responding developers’ comments. Having a small number of contributors and a

small project scope could potentially contribute to the observed gap as suggested by the

following respondent’s comment: “My answers assume some large, general use project

with many developers (who I assume would be the primary users of requirements docs).

Many projects are small in scope and targeted to a small subset of users and don’t

generally need requirements documentation.” The limited amount of time that many

volunteering OSS developers have available to contribute could be another potential

contributor to the observed gap as suggested by the following respondent’s comment:

“Useful or no, time constraints will likely prevent me from doing this. I am involved with

very small development houses, we try to turn out clean code as quickly as possible by

passing unnecessary steps whether they are useful or not.” Thus, any improvement efforts

involving requirements documentation in OSS development will have to take these

constraints into account.

72

Future research could explore additional reasons for the observed gap in

perceptions and practice. Efforts could be made to explore how some of the formal

requirements documentation practices perceived as beneficial for OSS development could

be incorporated into existing OSS development workflows. For example, requirements

may be specified as postings on discussion forums and such artifacts (Noll and Liu, 2010;

Scacchi, 2002). One possible research direction could be to evaluate whether some

standard structure could be enforced on the posting of requirements related messages on

such forums. Many OSS projects may have sort of informal documentation, such as

project README files (Begel et al., 2013); future research could look at whether and

how some standard structure could be brought into such informal documentation. The

requirements related messages may contain technical terms that may be difficult to

comprehend. For example, within posted messages, code fragments may be included

(e.g., Scacchi, 2002; Vlas and Robinson, 2013). Descriptions and explanations of such

technical information items could accompany a posted message, for example, as a pop-up

window, a potential adaptation of the practice, defining specialized terms.

The results of the paired samples t-test and sign test for requirements elicitation

practices is shown in Table 15. As can be seen from Table 15, for most of the

requirements elicitation practices, the perceptions of OSS developers about the usefulness

of these practices for OSS development are significantly higher than their reported usage

of these practices during OSS development.

73

Table 15. Perceived usage versus usefulness: requirements elicitation

Requirements

elicitation practices

(Sommerville et al,

1997)

Use

Mean SD

Usefulness

Mean SD

Paired samples t-

test (t value: use -

usefulness)

Sig. (2-

tailed)

Sign test: (use -

usefulness) p-

value

Assess software

feasibility

2.7

1.552 3.19 1.106 -6.924 .005 .013

Be sensitive to political

and organizational

consideration

2.23

1.434 2.73 1.221 -3.400 .001 .009

Identify and consult

software users

2.84 1.338 3.71 1.048 -5.932 .000 .000

Record requirement

sources

2.48 1.468 3.10 1.206 -4.063 .000 .000

Define the software's

operating environment

3.62 1.411 3.5 1.230 .691 .491 .203

Use business concerns to

drive requirement

elicitation

2.35

1.328 2.62 1.321 -1.888 .063 .298

Look for domain

constraints

2.7

1.504 3.18 1.308 -3.025 .003 .005

Record requirements

rationale

2.57

1.334 3.39 0.940 -5.397 .000 .000

Collect requirements

from multiple view

points

2.61 1.245 3.45 1.056 -6.185 .000 .000

Prototype poorly

understood requirements

2.83 1.367 3.51 1.185 -4.498 .000 .001

Use scenarios to elicit

requirements

2.66 1.355 3.13

1.350

-2.868 .005 .004

Define operational

processes

2.35 1.501 3.04

1.259 -4.586 .000 .000

Reuse requirements 2.6

1.411 3.1 1.168 -3.140 .002 .003

74

This indicates a gap between their perceptions and practice of requirements

elicitation. The perceptions about the usefulness of requirements elicitation practices for

OSS development is supported by the following comment of a responding OSS

developer: “I am not going to go through all of these, but they generally seem useful.”

There was no significant difference between perceptions of usefulness and use for the

practice: “Define the software’s operating environment”. The operating environment of

the software is often comprised of host computer, hardware, and software with which the

proposed software has to interact. Developers may naturally think about and work on

such technical issues as part of the implementation and thus the practice “Define the

software’s operating environment” may naturally become part of their developmental

activities, a potential reason for the lack of a significant difference.

Some potential reasons for the observed gap between perceptions and practice

also emerged from the comments of responding OSS developers. For example, small

project size (e.g., small number of contributors) may contribute to the observed gap, as

suggested by the following comment: “Those marked useful above would be, but only in

the context of a sufficiently large project. For small open source projects (i.e., the scale I

generally work at), requirements gathering is a personal thing because the project starts

to scratch the developer’s itch – hence there is no need for formalizing it. That said, I

rarely see a need to pander to political and organizational considerations.” The

preceding comment also illustrates the case of many small OSS projects being self-driven

with developers focused on their personal needs instead of the needs of the potential user

base and may be asserting requirements. Laurent and Cleland Huang (2009) report that

75

OSS users often got annoyed or perplexed because their feature requests were getting

ignored. Such experiences could lead to user disinterest in the project which, over the

long term, can negatively influence interest of the OSS developers in the project and OSS

project developmental activities (e.g., Subramaniam et al., 2009; Stewart et al., 2006). In

fact, user interest and developer interest can positively influence each other

(Subramaniam et al., 2009). There is evidence that a large number of OSS projects have

failed to deliver operational software, failed to attract volunteers or have become inactive

(Katsamakas and Georgantzas, 2007; Khondu et al., 2013). Incorporating some form of

formal requirements elicitation could potentially help small OSS projects expand their

scope and size, getting users interested when finding that their needs are getting attention

and getting contributors interested by providing them with a wider range of useful things

on which to work (e.g., user interest has a positive impact on OSS project activity levels

(p.579, Subramaniam et al., 2009)). Expanded project size and scope (e.g., higher OSS

project activity levels, number of users interested in OSS projects, number of developers

interested in OSS projects) are measures of OSS success (Subramaniam et al., 2009).

Other potential reasons for the observed gap between perceptions and practice of

requirements elicitation in OSS development could be limited time available for

developers to contribute, small team size and the geographically distributed nature of

OSS development as suggested by the following respondent’s comment: “Since, this is,

basically, a hobby for us, time is a very expensive resource. Being a small team, without

physical proximity to each other, some of these things would simply kill the project dead.”

76

Thus, any improvement effort involving requirements generation in OSS development

should take into account some of these potential constraining factors.

Future research could explore additional reasons for the observed gap in

perceptions and practice and the potential ways in which some of the formal requirements

elicitation practices could be incorporated into existing OSS development workflows. For

example, requirements reuse could be facilitated within web-based OSS development

environments by making available a library or repository of reusable requirements.

Geographically distributed contributors could then work with this central library or

repository in parallel, using and making modifications as needed. Moreover, requirements

reuse avoids the need to start from scratch thus saving a lot of time and effort (Hoffmann

et al., 2013) which fits well with the time constraints of OSS developers. The actual

benefits from some of the formal requirements elicitation practices perceived as useful for

OSS development could be investigated using methodologies such as a field experiment

with control and treatment conditions.

The results of the paired samples t-test and sign test for requirements analysis and

negotiation practices is shown in Table 16. As Table 16 indicates, for most of the

requirements analysis and negotiation practices, the perceptions of OSS developers about

the usefulness of these practices for OSS development is significantly higher than their

reported usage of them. This indicates a gap between their perceptions and practice of

requirements analysis and negotiation.

77

Table 16. Perceived usage versus usefulness: requirements analysis and negotiation

Requirements analysis

and negotiation

practices (Sommerville

et al, 1997)

 Use

Mean SD

 Usefulness

 Mean SD

Paired samples

t-test (t value:

use -

usefulness)

Sig. (2-

tailed)

Sign test:

(usefulness -

use) p-value

Define software

boundaries

3.11

1.362 2.99 1.329 -2.061 .042 .289

Use checklists for

requirements analysis

2.36

1.293 2.99 1.215 -4.770 .000 .000

Provide software to

support negotiations

2.47

1.580 2.78

1.498 -1.767 .081 .131

Plan for conflict and

conflict resolution

2.11

1.352 3.01

1.222 -6.279 .000 .000

Prioritize requirements 3.57

1.286 3.85 1.032 -1.863 .066 .077

Classify requirements

using a multidimensional

approach

2.11

1.440 2.67

1.449 -3.689 .000 .000

Use interaction matrices

to find conflicts and

overlaps

1.8

1.368 2.36

1.384 -4.487 .000 .000

Assess requirements risk 2.34

1.364 2.9 1.462 -4.223 .000 .000

The perceptions about the usefulness of requirements analysis and negotiation

practices is also supported by the following comment of a responding OSS developer: “It

is extremely important to define software boundaries, as developers that are not held by

deadline constraints (due to lack of management in open source projects) are prone to

creating code bloat and useless features that are fun to develop.”

Some potential reasons for the observed gap between perceptions and practice of

requirements analysis and negotiation emerged from the comments of responding OSS

developers. For example, small project size and scope could contribute to the observed

78

gap, as suggested by the following respondent’s comment: “Again much of this will vary

with project size and scope. Here multidimensional classification may be extremely

valuable for a large project, but trivial or needlessly complex for a smaller one.” Lack of

financial resources could be another contributor as suggested by the following

respondent’s comment: “Small team, small conflict. But money is a thing.” The largely

non-commercial nature of OSS development could also contribute to the observed gap for

practices such as assessing risk, as indicated by the following comment: “Risk to

schedules are rare enough in the open source projects that I worked on.” It would be

useful for any improvement effort involving requirements analysis and negotiation in

OSS development to consider these constraining factors as part of the analysis and

planning.

Future research could investigate other plausible reasons for the observed gap in

perceptions and practice and look at ways of efficiently incorporating some of the

requirements analysis and negotiation practices into existing OSS development

workflows. The responding OSS developers pointed out some informal ways of carrying

out some of the analysis and negotiation practices, and research efforts could focus on

how to improve them. For example, mailing lists and issue repositories could be potential

substitute artifacts for software supporting negotiation as suggested by the following

comment of a responding OSS developer: “Provide software to support negotiations:

mailing lists and bug tracking systems are often used for this as well via assignment and

debate.” Research effort could be directed at how to improve these artifacts to better

support requirements negotiation. For example, Schoop et al. (2003) have proposed a

79

categorization of messages sent between negotiators, based on speech act theory (request,

offer, counter-offer, accept, reject, question and clarification). These message categories

could be incorporated into mailing lists and issue repositories, for example as message or

issue headers.

Forking (creating a duplicate project that is a copy of parent OSS project and

which evolves in parallel and has a different development team (e.g., Robles and

Gonzalez-Barahona, 2012)) appears to be an informal conflict resolution practice in OSS

development. This is suggested by the following comment of a responding OSS

developer: “I would say fork is the natural conflict resolution method in open source:

typically an open source project will have some central authority (either individual or

group based) which will decide strategy for the project. If people disagree, they are free

to fork the project (assuming they feel that strongly about the conflict).” In fact, GitHub

has a “fork” feature with each OSS project repository that allows anyone to create a

separate copy of an existing OSS project along with its own infrastructures such as

versioning systems and mailing lists. The central authority in the preceding comment is

referring to core developers who may decide what to include or exclude. The diversity of

interests among OSS developers can give rise to conflicts (e.g., Joode and Vendel, 2004)

and subsequently to behaviors such as forking as the preceding comment points out.

Research efforts could be directed at investigating whether the method of forking could

be improved as a conflict resolution mechanism, for example, making features such as

forking more restricted and allowing it to proceed only if a list of identified conflicts

remains unresolved.

80

The results of the paired samples t-test and sign test for requirements description

practices is shown in Table 17.

Table 17. Perceived usage versus usefulness: requirements description

Requirements

description practices

(Sommerville et al,

1997)

Use

Mean SD

Usefulness

Mean SD

Paired samples t-

test (t value: use -

usefulness)

Sig. (2-

tailed)

Sign test (use -

usefulness) p-

value

Define standard

templates for defining

requirements

2.2

1.401 3.05

1.304 -5.154 .000 .000

Use languages simply

and concisely

3.45

1.335 3.89 1.018 -2.863 .005 .041

Supplement natural

language with

descriptions of

requirement

3.05

1.264 3.59 1.127 -3.990 .000 .000

Specify requirements

quantitatively

2.49

1.308 3.12 1.391 -4.234 .000 .000

Use diagrams

appropriately

2.95

1.203 3.79

0.984 -6.795 .000 .000

The results in Table 17 point towards a gap in the perceptions and practice of OSS

developers about requirements description, since their perceptions about the usefulness of

requirements description practices for OSS development do not match their reported

usage of these practices. For all the requirements description practices, the extent to

which OSS developers perceived them as beneficial for OSS development was

significantly greater than their reported usage of these practices.

The perceptions about the usefulness of requirements description practices are

also suggested by the following comment of a responding OSS developer: “Much of this

81

is already good practice, but it does not just live in a requirements document. It lives in

the project readme, in the software tests, in the project page, and GitHub issues.” The

preceding comment, while indicating the usefulness of requirements describing practices,

also points out some related informal OSS artifacts and practices. A comment from

another responding developer indicates how the practice using language simply and

concisely may be useful for code writing: “It is vital to use as little/simple code as

possible to accomplish goals/features in a software project.” This practice could be

potentially incorporated, for example as a documented guideline, especially when code

fragments become manifestations of some requirement. The guideline could also apply to

natural language messages (many of which may be informal requirements descriptions

(e.g., Scacchi, 2002)) posted in discussion forums and issue repositories.

Future research could look at whether and how the existing OSS artifacts and

practices could be improved to be adaptations of some of the formal requirements

description practices. For example, requirements information may exist informally as part

of the natural language text in the postings in discussion forums and issue repositories

(e.g., Vlas and Robinson, 2011). The practice “define standard templates for defining

requirements” could be potentially adapted by attempting to bring in some standards and

guidelines for construction of requirements messages. This is suggested by the following

comment of a responding OSS developer: “Standard templates for requirements are

useful, but assuming a bug tracker is used to track requirements the template can be

provided implicitly by the fields of the database.”

82

The results of the paired samples t-test and sign test for requirements modeling

practices is shown in Table 18.

Table 18. Perceived usage versus usefulness: requirements modeling

Requirements modeling

practices (Sommerville

et al, 1997)

Use

Mean SD

Usefulness

Mean SD

Mean SD

Paired samples t-

test (t value: use -

usefulness)

Sig.

(2-

tailed)

Sign test: (use -

usefulness) p-

value

Develop complementary

models of the proposed

software

2.13

1.303 2.74 1.377 -4.436 .000 .000

Model the software's

environment

2.57

1.324 3.10

1.292 -4.544 .000 .000

Model the software's

architecture

2.93

1.376 3.32 1.312 -3.327 .001 .000

Use structured methods

for software modeling

2.26

1.421 2.7

1.471 -2.881 .005 .001

Use a data dictionary 2.10

1.311 2.61 1.497 -3.358 .001 .000

Document the links

between user

requirements and models

1.87

1.312 2.76 1.393 -6.176 .000 .000

As indicated in Table 18, the extent to which OSS developers view requirements

modeling practices as beneficial for OSS development was significantly greater than the

extent to which they reported using these practices. This indicates a gap between their

perceptions and practice of requirements modeling.

Usefulness perceptions, as well as potential reasons for the observed gap, can be

gleaned from the comments of responding OSS developers. Small project size and scope

and limited time available for the OSS developers to contribute can contribute to the

observed gap as suggested by the following comments: “All the above might be useful,

83

but again only in large scale projects; for small projects, they are a waste of time” and

“This would again, take time away from development. Might make a more successful

product, though… But not at the moment, I don’t think it’s worth it for us.”

Characteristics of the software itself could be another potential constraining factor as

suggested by the following comment of a responding OSS developer: “More worthwhile

for the case where you have software that is all bundled together. Modularity is the way

to go though.” The practice, modeling the software architecture which shows how a

software system is decomposed into its sub-systems (Sommerville and Swayer, 1997) fits

well with the idea of modularity which is dividing a large program into separate

independent modules with each module providing a distinct functionality (e.g.,

https://en.wikipedia.org/wiki/Modular_programming). The different subsystems in the

architectural model could correspond to the different modules in the program. It is

interesting to note that the practice, modeling the software architecture, was rated highest

on the usefulness scale.

Future research could explore additional reasons for the observed gap in

perceptions and practice and also, potential ways in which some of the modeling practices

perceived as beneficial could be incorporated into existing OSS development workflows.

The source code is a naturally occurring model artifact in OSS domain. Source code

models some real world domain and contain knowledge about domain concepts and their

relationships (Ratiu, 2009; Offen, 2002). The following comment of a responding OSS

developer hints at this: “Code is the accurate model of itself. Maintaining or re-

presenting code in UML like environments is either an extra chore, a distraction or a new

https://en.wikipedia.org/wiki/Modular_programming

84

source of errors. Languages that are more expressive and readable improve the

readability of the code are good or a new source of errors, as are experimental

environments like LightTable that allow for contextual understanding of code.” Feature

support in OSS development environments for practices such as modeling software

architecture (that can be more directly associated with the source code) may be

welcomed by the OSS community, since they can improve the readability of the code.

Table 19. Perceived usage versus usefulness: requirements validation

Requirements

validation practices

(Sommerville et al,

1997)

Use

Mean SD

Usefulness

Mean SD

Paired samples

t-test (t value:

use -

usefulness)

Sig. (2-

tailed)

Sign test: (use

- usefulness)

p-value

Check that the

requirements document

meets your standards

2.23

1.551 2.94

1.215 -5.206 .000 .000

Organize formal

requirements inspection

1.96

1.427 2.54

1.302 -3.738 .000 .000

Use multidisciplinary

teams to review

requirements

2.03

1.301 2.97

1.396 -6.258 .000 .000

Define validation

checklists

1.89

1.251 2.77 1.120 -6.633 .000 .000

Use prototyping to

animate requirements

2.51

1.373 3.08

1.222 -4.488 .000 .000

Write a draft user

manual

2.64

1.352 3.38

1.095 -4.504 .000 .000

Propose requirements

test cases

2.99

1.325 3.73 0.983 -5.203 .000 .000

Paraphrase models 1.89

1.378 2.78 1.312 -6.095 .000 .000

New OSS specific modeling languages are emerging. For example, Badreddin et

al. (2013) proposed a modeling method known as Umple for OSS projects. Tools that

85

support conversion of models into the code and vice versa (e.g., StarUML) are also

emerging. Future research could investigate the usefulness of such tools.

The results of the paired samples t-test and sign test for requirements validation

practices is shown below in Table 19.

As evident from Table 19, there is a gap in the perceptions and practice of OSS

developers about requirements validation. For all of the requirements validation practices,

the extent to which OSS developers perceived these practices as beneficial for OSS

development was significantly greater than the extent to which they reported using them.

Usefulness perceptions, as well as potential reasons for the observed gap, emerged

from the comments of responding OSS developers. The practice proposing requirements

test cases was rated highest on the usefulness scale. A supportive comment from a

responding OSS developer was: “Unit-testing is extremely important.” Research can

focus on how to link effectively, requirements existing within OSS artifacts such as

mailing lists and issue repositories with the unit-testing that may be carried out by

developers. Limited project resources, such as only a small number of contributors

available, could contribute to the observed gap as suggested by the following comment of

a responding OSS developer: “We do not have enough people to do this teams’ thing,

although we do sometimes review our work with other individuals.” Another responding

developer called for the participation of users to support validation activities through the

use of tools such as Wikipedia: “Get people to participate by being open ala Wikipedia

this should not be hard for a user to start helping in open source.”

86

Because of the in general code-centric nature of OSS development, prototyping

may occur naturally in OSS development as the following comment of a responding OSS

developer indicates: “In open source, prototypes frequently become the implementations.”

Research can investigate how such coding activities can be more efficiently directed

towards requirements validation. A large percentage of coding activities in OSS projects

end up as failures; for example, in Linux Kernel, only about 33% of patches (code

fragments) submitted by volunteering developers get accepted to be part of the main

source code; the rest get rejected. For Apache and many other projects, only 40% get

accepted (Jiang et al., 2013). A major reason for these failures is that the submitted code

pieces do not implement some relevant, working feature or bug fix (Jiang et al., 2013).

These failures indicate a large percentage of wasted coding effort. Such effort wastage

can be potentially reduced through research investigating how to better focus the OSS

coding efforts on relevant requirements; for example, how to efficiently direct potential

contributors to requirements existing in discussion forums, issue repositories, and project

readme files.

The results of the paired samples t-test and sign test for requirements management

practices is shown in Table 20. Table 20 shows a gap in the perceptions and practice of

OSS developers about requirements management. For all of the requirements

management practices, the extent to which OSS developers perceived these practices as

beneficial for OSS development was significantly greater than the extent to which they

reported using them. Small project size and scope again emerged as a potential

contributor to the observed gap as suggested by the following comment: “I am using the

87

biggest projects to answer all these questions. Small FOSS projects I have been involved

in have all been very sketchy about documentation and policies.”

Table 20. Perceived usage versus usefulness: requirements management

Requirements

management

practices

(Sommerville et al,

1997)

Use

Mean SD

Usefulness

Mean SD

Paired samples

t-test (t value:

use - usefulness)

Sig. (2-

tailed)

Sign test: (use

- usefulness)

p-value

Uniquely identify each

requirement

2.6

1.431 3.48

1.141 -5.989 .000 .000

Define policies for

requirements

management

2.05

1.342 2.85

1.278 -5.527 .000 .000

Define traceability

policies

1.83

1.350 2.56

1.389 -5.487 .000 .000

Maintain a traceability

manual

1.57

1.144 2.32

1.378 -6.477 .000 .000

Use a database to

manage requirements

2.28

1.509 3.18

1.270 -7.337 .000 .000

Define change

management policies

2.13

1.421 3.01 1.242 -5.789 .000 .000

Identify global

software requirements

2.52

1.460 3.23

1.193 -5.834 .000 .000

Identify volatile

requirements

2.27

1.415 3.06

1.243 -6.712 .000 .000

Record rejected

requirements

2.43

1.424 3.3 1.079 -5.932 .000 .000

Future research could investigate other potential contributors to the observed gap

in practice and perceptions.

Additionally, research can also focus on how to efficiently incorporate some of

the requirements management practices into existing OSS development workflows. One

developer pointed out that the practice traceability could be incorporated into artifacts

88

such as OSS issue repositories through dependency links: “Traceability is trivial

assuming the database used to store the requirements permits dependency links (hence no

need for a traceability manual).” Dependency links between two artifacts (e.g.,

requirements) X and Y indicate that existence of Y is dependent on the existence of X and

changes in X will cause changes in Y (Winkler and Pilgrim, 2010). Winkler and Pilgrim

note that techniques such as traceability matrix and graphs can be used for representing

traceability. Research can look on how to incorporate such traceability representation

techniques into OSS artifacts such as issue repositories. The traceability knowledge itself,

i.e., whether two requirements or such artifacts are linked, could be made a

crowdsourcing task that interested contributors can contribute to, for example by having a

feature that allows users and developers to specify whether two bug requests or feature

requests are related or not. Change requests (e.g., request to fix a bug) frequently emerge

as OSS projects evolve (Schackmann and Lichter, 2009). Policies that state how such

change requests are to be handled (such as historical data on how some of the past change

requests were handled) could be made available in a documented form within OSS

development environments.

The tests in Tables 14 to 20 are a case of multiple comparisons, and hence the

Bonferroni correction method was also applied. When using the original, most

conservative Bonferroni correction, the new adjusted alpha is 0.05/57=0.0008772. By

using this adjusted alpha, most of the t-test results in Tables 11 to 17 remain significant.

A less strict but more powerful method is the Holm-Bonferroni stepwise method in which

the p-values are arranged from smallest to largest, and the adjusted alpha for the smallest

89

p-value is 0.05/57, the adjusted alpha for the second smallest p-value is 0.05/56 and so

on. The detailed Holm-Bonferroni computation is shown in Appendix 2. When using

Holm-Bonferroni correction, most of the results are found to be indeed significant, even

with the adjusted alphas. For example, the adjusted alpha for p-value 0.002 (the last row)

is 0.004. Since 0.002 is less than 0.004, the result is significant.

There could be many problems and challenges existing in the context of

requirements discovery in OSS development that could potentially contribute to the

observed gap in practice and perceptions of OSS developers in Tables 14 to 20. Some of

these are described further in the next section.

3.3. Problems and Challenges in the Context of Requirements Discovery in OSS

Development

The third section of the survey asked respondents to indicate problems and challenges

that exist or can occur during requirements discovery in OSS development. The list of

problems was obtained from Damian and Zowghi (2003), who identified them in the

context of a multi-site geographically distributed CSS development organization and also

Schmid (2014). Table 21 shows the percentage of respondents who reported each issue as

a problem for requirements discovery in OSS development.

Language barriers appear to be a major challenge for requirements discovery in

OSS development. This indicates that communication artifacts such as discussion forums

within OSS development environments need to provide support for different types of

languages for carrying out requirements discovery activities more effectively. OSS

contributors are often organizationally and geographically distributed (Crowston et al.,

90

2012). The geographically distributed nature of OSS development can result in many

problems and challenges for requirements discovery, as evident from the results. About

48% indicated geographical distance and time difference between countries and delays

caused from communication media such as email as a challenge.

Table 21. Problems and challenges with OSS requirements discovery

Potential problems and challenges during requirements discovery

(Damian and Zowghi, 2003; Schmid, 2014)

%

Differences in corporate culture (members being from different corporate

environments having different system usage characteristics)

63.9

Differences in educational background (e.g., high skilled and low skilled

members may have different expectations about how a system works)

59

Language barriers 56.6

Different members may use different standards 49.4

Geographic distance and time difference between countries as barriers in

interaction between members

48.2

Delay (e.g., Delayed email response) 48.2

Requirements being expressed using diverse terminologies and diverse level of

details by members making it difficult to analyze the requirements for

discovering conflicts and redundancies

39.8

Difficulty in achieving a common understanding of requirements 36.1

Difficulty in managing conflict and having open discussions of interest

(difficulty in managing conflicting interests of members during development

because geographical distance makes it difficult to openly discuss about

interests of members)

34.9

Diminished understanding of the working context of other members (members

do not have enough familiarity with/knowledge of activities of remote group

members and other background information thus leading to diminished

understanding of the work context of remote members; this, in turn, leads to

unwanted outcomes such as members in one region not being able to have

adequate understanding of the requirements of the members in other region)

34.9

Difficulty to achieve cohesion/form coalition with others 33.7

Difficulty in negotiating requirements and prioritizing requirements 32.5

Ineffective decision-making meetings (e.g., ineffective meetings because of

use of poor communication technologies)

31.3

91

Members from different language and cultural backgrounds may demand

different types of user interfaces

30.1

Difficulty in trusting others 28.9

Differences in national culture (requirements may be influenced by cultural

beliefs; members from different cultural background may have different

expectations about functionality, behaviour, and design)

25.3

It is difficult to identify and include relevant members in the communication

process for gathering requirements

25.3

Different laws and regulations in different countries 22.9

Communication artifacts used in OSS development have many limitations and

many proposed ideas of improvement have not been actually implemented (Rantalainen

et al., 2011). Thus, future research can look at ways of improving existing communication

artifacts such as discussion forums within OSS development environments in order to

better handle challenges such as geographical distance and time difference.

Differences in organizational/corporate culture were indicated as a challenge for

requirements discovery by more than 60% of the respondents. An example of two

different organizational cultures is corporate cultures that are supportive and unsupportive

of OSS development (Diamant and Daniel, 2010). An OSS supportive organization may

provide benefits such as flexible time and pay to its employees for participation in OSS

development (Diamant and Daniel, 2010), which could be beneficial for requirements

discovery. A challenge that is related to organizational culture is diminished

understanding of the working context of other members (indicated by 34.9%). It may be

useful to gather information from members about their organizational/working context

which may help in making better sense of the messages posted by them and discussions

that involve them. A large number of respondents (59%) indicated differences in

92

education background as a challenge for requirements discovery. This could mean

situations where developers with technical education and non-developer users with no

technical education may have difficulty interacting, which in turn could be a major

problem for requirements discovery. Research efforts could be directed at investigating

ways of facilitating efficient interaction between OSS developers and users. The design of

OSS communication artifacts based on theories of communication (e.g., Teeni, 2001)

could be a step in this direction.

A smaller percentage of respondents indicated differences in cultural backgrounds

(e.g., national culture) as a problem for requirements discovery. Diamant and Daniel

argue that cultural homogeneity involves being exposed to similar views and this

facilitate reinforcing and confirming views that an individual has adopted and things that

he/she know (Diamant and Daniel, 2010). Diamant and Daniel further argue that when an

OSS developer gets to interact with a culturally similar co-developer, this could help

reinforce the problem-solving approaches that he or she has been following. On similar

lines, it can be expected that culturally similar OSS community members may help

reinforce and may be better able to understand each other’s’ requirements. A related

finding is that about 30% of the respondents indicated that members from different

cultural backgrounds might demand different types of user interfaces which indicate that

OSS members from different cultural backgrounds may have difficulty understanding

each other’s user interface requirements. On the other hand, McLeod and Lobel (1992)

found that ethnically diverse groups generated higher quality ideas in comparison to the

ethnically homogeneous group which implies that different cultural backgrounds may

93

have some benefits for requirements discovery in OSS development. Future research can

look at how to efficiently utilize diversity and similarity of OSS contributors for the

benefit of requirements discovery in OSS development.

Network theories (e.g., Monge and Contractor, 2003) can inform the design of

features to support networking based on cultural (corporate or national) or educational

similarity or heterogeneity within OSS development environments. For example, the

theory of homophily argues that individuals tend to form ties with other individuals who

are similar to themselves (Contractor et al., 2006). This would imply that OSS community

members may be more interested in interacting with other similar OSS community

members. An example of a supportive feature could be displaying profile information of a

limited number of other similar OSS project members to a new member who registers.

Features based on network theory and knowledge may also be solutions for some other

problems reported, such as difficulty in achieving cohesion/ forming coalition with other

members (34%) and difficulty in trusting others (29%). For example, cohesion and

network density are concepts in network analysis which capture the extent of

connectedness in a network and can be computed using mathematical measures (Borgatti

et al., 2009). It is possible to compute such network analysis measures for larger OSS

projects. For example, one measure of cohesion is the number of OSS projects in which

two developers have worked together or working together as this indicates repeat

collaboration among the developers (Singh et al., 2011). A feature that displays cohesion

score for each pair of developers could potentially assist them in deciding whether to trust

each other or not.

94

About 25% of the respondents indicated that it is difficult to identify and include

relevant members in the communication process for requirements generation. This is

similar to the finding of Laurent and Cleland-Huang (2009) who found that OSS

development environments lacked support for bringing together, the right group of users

to discuss related requirements. Laurent and Cleland-Huang mention that support should

be provided within OSS development environments for placing users with similar

interests in similar discussion groups, and they suggest techniques such as creating a

predefined hierarchy of discussion topics for doing so.

About 23% of the respondents indicated that different laws and regulations in

different countries might be a challenge in requirements generation. For example, there

are many open source electronic medical record software (e.g., http://www.open-emr.org;

http://openmrs.org/). Since these are OSS, contributors can be from all over the world. In

the US, there is a strict health information law known as HIPAA that is applicable in the

context of electronic medical records (Miller and Catherine, 2009). Since this is a US

specific law, contributors from countries like India may be unaware of such laws. Thus, it

may be useful to have a description of such laws (e.g., as a separate webpage within the

OSS project website and links provided within communication artifacts such as

discussion forums).

About 32% of respondents indicated that difficulty in negotiating and prioritizing

requirements is a challenge for requirements generation in OSS development. Related

findings are difficulty in managing conflict and having open discussions of interest

(34.9%) and requirements being expressed using diverse terminologies and diverse level

http://www.open-emr.org/
http://openmrs.org/

95

of details by members making it difficult to analyze the requirements for discovering

conflicts and redundancies (39.8%). Conflicts can contribute to the difficulty in

negotiating and prioritizing requirements. Scacchi (2002) has pointed out the lack of tool

support within OSS development environments for RE activities such as analysis and

negotiation. This limitation can be addressed by future research by investigating different

possible feature supports within OSS development environments. The survey results on

the usefulness of requirements analysis and negotiation practice (Table 16) provides some

insights in this direction. For example, interaction matrix when implemented as a feature

within OSS development environments, could potentially assist in conflict detection.

OSS literature (e.g., Bettenburg et al., 2008, Lintula et al., 2006) has reported

some problems such as incompleteness with bug reports (a specific type of issue data

generated in OSS issue repositories). Other types of issue data (e.g., feature requests) also

gets generated in OSS issue repositories, and these issue data are a source of requirements

for OSS projects (e.g., Noll, 2008). In order to investigate about problems that may exist

in general with issue data irrespective of their specific type, respondents were asked to

indicate the problems that may exist the issue data generated in OSS issue repositories.

Figure 4 below provides results on some problems that can occur with issue data

generated in issue repositories of OSS projects.

96

Figure 4. Problems with issue data generated in OSS issue repositories

About 90% of the respondents indicated incomplete information as a problem with bug

reports and feature requests submitted by users and about 70% of the respondents

indicated invalid information and duplicate information as a problem with bug reports and

feature requests. These results are similar to the results by Bettenburg et al. (2008), who

surveyed only in the context of bug reports. Bettenburg et al. found that incomplete

information was the most commonly encountered problem, and invalid information was

also a significant problem (Bettenburg et al., 2008). Future research can look at ways of

mitigating these problems.

0

10

20

30

40

50

60

70

80

90

100

Incomplete or missing
information

Invalid information Duplicate information The bug could not be
fixed, or the requested

feature could not be
implemented

Problems

Problems

97

3.4 Conclusion

In general, the survey results provide evidence that OSS developers’ reported usage of

formal RE practices (from CSS development) do not match their perceptions about the

extent to which these practices could be advantageous for OSS development. Thus, when

it comes to requirements-related activities in OSS development, OSS developers do not

appear to be actually practicing what they believe could be useful. Also, OSS developers

indicated several problems and challenges that could exist in the context of requirements

discovery in OSS development which could be potential barriers as well as motivations

for usage of formal RE practices in OSS development. Most of the formal RE practices

were perceived as beneficial for OSS development, in spite of significantly low reported

usage. This indicates many potential directions for improving requirements discovery in

OSS development, especially if some of these practices could be successfully manifested

into existing OSS workflows. This would require additional research efforts focused on

investigating whether and how some of the formal RE practices could be efficiently

incorporated into existing OSS workflows and whether there would be any actual benefits

from such incorporation. Given the complexity of the RE process, empirical investigation

of all formal RE practices is not feasible within a scope of a single research project.

Because of this, the subsequent phases of this research focus on requirements generation,

one of the first stages of RE. Chapter 4 describes research investigating a specific

requirements generation practice – requirements reuse. Requirements reuse can be an

effective aid for facilitating more efficient and complete requirements generation while

substantially reducing the needed effort (Hoffmann et al., 2013). This could be useful for

OSS development considering problems such as incomplete requirements and limited

98

resource availability (e.g., limited time available for volunteering developers to

contribute). As the result in Table 15 indicate, requirements reuse was perceived as

beneficial for OSS development but had significantly lower reported usage. I posit that

this might be because of the lack of adequate support within OSS development

environments. It is potentially easier to incorporate requirements reuse into existing OSS

workflows compared to some other formal requirements generation practices, such as

analysts eliciting requirements from users using interviews or scenarios, given the

geographically distributed and ad hoc nature of OSS development and evolution and lack

of resources such as money and limited time availability of contributors. The ad hoc and

open nature of OSS development and evolution can make it difficult for analysts to

identify right stakeholders and elicit requirements (Laurent and Cleland-Huang, 2009).

Requirements reuse can be easily incorporated into OSS development

environments, in the form of the availability of a library of reusable requirements. For

example, Git repositories allow storing and tracking revisions/changes to not only code

but also any text files or manuscripts (Blischak et al., 2016). A library of reusable

requirements could be incorporated as a centralized repository that the geographically

distributed OSS community members can work with concurrently. The library of reusable

requirements could even be incorporated as wiki pages. Researchers (e.g., Von Krogh et

al., 2005) have reported the positive attitude of OSS contributors towards reusing

development artifacts such as code, especially if they are easily available (reduced search

efforts), for example, available within the development environments. A library of

reusable requirements available within OSS development environments can thus appeal to

99

OSS developers and other contributors since there is no search overhead and facilitate

reuse.

An experimental investigation is carried out to investigate the actual benefits from

this practice for OSS development when incorporated into a web-based OSS development

environment. This is the topic of the next chapter.

100

CHAPTER FOUR: AN INVESTIGATION OF THE USEFULNESS OF

REQUIREMENTS REUSE FOR OSS REQUIREMENTS DISCOVERY

4.1 Introduction

A major obstacle to getting a correct and complete set of requirements during

requirements gathering is the cognitive limitations of human participants; in other words,

the “constraints in humans as information processors and problem solvers” (Davis, 1982,

p.5). Davis describes three types of memories that humans can use for information

processing: external memory, short-term memory, and long-term memory. Short-term

memory has a limited capacity and can hold only a small number of items. This limitation

of working memory can negatively affect the output of requirements generation, resulting

in incomplete and incorrect requirements generation (Davis, 1982). Thus, the cognitive

limitations of the participants in OSS development can negatively affect their

requirements output. Researchers have reported incompleteness and invalidity as major

problems with OSS requirements sources such as issue data (e.g., Bettenburg et al., 2008)

– finding also evident from the first phase of this research (see Figure 4 in chapter three).

In fact, project developers of many OSS projects on GitHub got together and submitted

an open letter to the GitHub management listing the problems they faced. They requested

many enhancements, and one of the top problems listed was the poor quality of issues

submitted (a major source of requirements for OSS projects)1. The cognitive limitations

of OSS contributors could contribute to such problems, especially given the distributed

(geographical, temporal, and social-cultural distances between contributors) and ad hoc

1 https://github.com/dear-github/dear-github

101

nature of OSS development. The effects of the limitations of short-term memory can be

reduced by using external memory (e.g., something as simple as a pad of paper) (Davis,

1982). This phase of the research investigates whether the availability of an external

memory – specifically, a library of reusable requirements in OSS development

environments – is beneficial for requirements discovery in OSS development in the sense

of improving requirements quantity and completeness.

A potential external memory is a library of reusable requirements. In a survey of

requirements analysts in a traditional collocated software development setting,

respondents indicated that, with requirements reuse, the need to start from scratch was

eliminated, thus saving effort (Hoffmann et al., 2013). Respondents reported many

potential benefits, such as more efficient and complete requirements generation, better

quality requirements, better understandability of requirements and more complete

requirements specification (Hoffmann et al., 2013). Chernak (2012) conducted a web-

based survey of IT professionals to determine the state of practice of requirements reuse

in industrial settings. He found that, while the majority of the survey respondents (more

than 80%) believed that requirements reuse is beneficial, only about 59% reported

actually using it. The results from the survey of OSS developers reported in Chapter 3

revealed that the extent to which OSS developers perceived requirements reuse practice

as being useful for OSS development was significantly higher than the extent to which

they reported using this practice (mean perceived usefulness = 3.1, mean reported usage =

2.6, t= -3.140; p=.002), thus indicating a significant gap between thought and action with

respect to requirements reuse in OSS. The lack of adequate support within OSS

102

development environments for requirements reuse is a potential contributor to this

discrepancy. In OSS projects, requirements may exist informally as part of the textual

data posted in communication artifacts such as discussion forums (e.g., Scacchi, 2002).

Such poorly organized, ill-structured requirements information in OSS development

environments can hinder reuse (c.f. Chernak, 2012).

Requirements reuse can be easily incorporated into OSS development

environments in the form of a library of reusable requirements. For example, Git

repositories allow storing and tracking revisions/changes to not only code but also any

text files or manuscripts (Blischak et al., 2016). Hence, a library of reusable requirements

could be incorporated as a repository into popular OSS development environments such

as GitHub, which OSS contributors in different geographical locations can work with,

making additions, deletions, or updating as needed. Providing a library of reusable

requirements within OSS development environments could provide a well-organized,

easily accessible collection of requirements to the participants in OSS development.

Requirements can be efficiently organized within such a library through the use of

meaningful headings and standard formats. For example, a security-related requirement

can be stored under the heading Security, and the content can be organized according to

some standard format. Researchers (e.g., Von Krogh et al., 2005) have reported the

positive attitude of OSS developers towards reusing development artifacts such as,

especially if they are easily available (e.g., available within the development

environment) (see Table 22 in the next section). Sharif et al. (2015) report that while OSS

developers are implementation-centric, they often seek external documentation to gain

103

design knowledge that can inform implementation. Developers often face difficulty in

locating such knowledge sources. The availability of a library of reusable requirements

within OSS development environments, as a centralized repository or wiki pages, can

facilitate reuse because of the easy availability (no search effort needed) and well-

organized structure.

To the best of my knowledge, no prior research has experimentally investigated

the benefits from a library of reusable requirements for requirements generation, neither

in OSS development nor in CSS development (e.g., Hoffmann et al., 2013; also

elaborated further in literature review section). Motivated by this and the potential

benefits discussed above, the specific objective of this phase of the research is to

investigate whether access to a library of reusable requirements within OSS development

environment provides any benefits for requirements generation in OSS projects?

4.2 Literature Review: Requirements Reuse

Based on surveys and interviews with OSS developers, Von Krogh et al. (2005) reported

that the types of knowledge generally reused during OSS development were algorithms,

methods, and lines of code. Von Krogh et al. also note the lack of empirical work on

knowledge reuse in the OSS development domain. They did not report any evidence of

requirements reuse during OSS development. Also, a search using the keyword

requirements reuse in a database specifically containing OSS literature

(http://flosshub.org/biblio) returned zero results. This, combined with searches in other

databases such as Google Scholar, provided no evidence of any prior empirical work on

requirements reuse in OSS development domain.

http://flosshub.org/biblio

104

The qualitative study by Von Krogh et al. provides many insights for research on

requirements reuse in open source software development. These are discussed in Table

22.

Table 22. Findings of Von Krogh et al. and implications for reuse research in OSS

development

Quotes from OSS developers (Von

Krogh et al., 2005)

Findings by Von Krogh et al.

based on analysis of quotes

Implication for requirements

reuse research in OSS

development

“Most of the time, I am looking for

components that people have written

specifically for reuse……..” (p.6).

actually practicing/willing to

practice knowledge reuse (Von

Krogh et al., 2005)

“…..I downloaded the source code

……….you look at the code and use

that to understand how something

works” (p.5)

Often not reusing code itself but

rather knowledge obtained (e.g.,

knowledge about algorithms used)

through analysis of code (Von Krogh

et al., 2005)

“So, in this, we had a look at

publications, papers and things like

that. So we did not reuse a lot of

code in this part but reused

knowledge from academic

publications” (p.4)

OSS developers were spending large

amount of time analyzing scientific

publications and documentation of

other software projects with the goal

of obtaining reusable knowledge

(Von Krogh et al., 2005)

OSS contributors may be willing to

spend time analyzing and attempting

to reuse knowledge available in

form of reusable requirements

descriptions

I will post on the mailing list-the

developer list. I will ask everybody:

does anyone know about this”

(p.4)

“…….If you are looking for a

library, it can take between 4-8

hours……this is not worth looking

for one…..the overhead of

searching……” (p.5)

The effort needed to search for

reusable artifacts impacted

knowledge reuse by OSS developers

(Von Krogh et al., 2005). Discussion

forums and OSS development

environments such as source forge

were highly preferred places to

search for reusable knowledge (Von

Krogh et al., 2005).

A library of reusable requirements

made available within an OSS

development environment such as

Sourceforge and Google Code

would reduce the search efforts

needed to a great extent. This could

potentially be a preferable way for

OSS contributors to engage in

requirements reuse (requirements

knowledge reuse).

From the comments of the participants and interpretations of the authors as

described in the table, it appears that participants in OSS development can be expected to

have a favorable attitude towards requirements reuse (something that also emerged from

the survey results described in chapter three). But when it comes to actual practice, they

may prefer to expend minimal search effort to obtain reusable requirements artifacts,

while expecting the maximum possible usability from those artifacts. This expectation is

105

justified considering the voluntary nature of OSS development and the time constraints of

OSS contributors.

Subsequent sections review work done on requirements reuse within CSS

development and its potential implications for OSS development. Many of the works

described in this section were obtained by making a search in the requirements

bibliography provided by Alan M Davis (http://www.reqbib.com) with the keyword

“reuse”.

Lam et al. (1997) note that, although there was no documented empirical evidence

on requirements reuse benefits at the time of writing, logically it can be argued that

requirements reuse should lead to economic savings (Lam et al., 1997). Specifically, they

mention that, within engineering domains such as aero-engine control systems, the

possibility of even a small amount of reuse would mean large financial savings. Similar

application domains exist in OSS development (e.g., http://jsbsim.sourceforge.net/),

which could potentially experience benefits from reuse. Lam et al. also mention that

reusing requirements may lead stakeholders to trust such requirements more in

comparison to requirements generated from scratch. Requirements with proven

reusability may be thus good candidates to be in a library of reusable requirements within

OSS development environments as it may be easier for OSS contributors to trust their

usability.

Lam et al. make several suggestions for systematic reuse of requirements. One

suggestion is to identify a family of systems, which involves identifying similarities

between systems and identifying similar working patterns among different systems (Lam

http://www.reqbib.com/
http://jsbsim.sourceforge.net/

106

et al., 1997). A related suggestion by Lam et al. is to identify requirements patterns

through domain analysis. They stress that, while capturing requirements patterns, the

focus should be given to pattern content, pattern representation, and dealing with

exceptions, which may indicate the need to revise a particular pattern. Within the OSS

development domain, there are several subdomains (e.g., games, internet/web

infrastructure, astronomy, etc.) (Scacchi, 2002). Identifying similarities among projects

within these domains may be useful for requirements reuse in OSS development. For

example, similarities among different OSS game projects may provide insights about

reusable requirements/requirements patterns for that domain, especially if similar

characteristics are observed in a large number of projects.

Lam et al. (1997) warn against the narrow focus on specific reuse technologies

only, and advise to broaden the focus to the potential impact that a reuse technology can

have. This involves analyzing the current requirements engineering practices, how

requirements reuse would be implemented within the current circumstances, and how the

implementation of requirements reuse will change the current circumstances such as

processes used, organizational structure and finances. For OSS development, this would

mean analyzing the current requirements-related practices (which are largely ad hoc, as

described in Chapters 2 and 3), whether and how specific requirements reuse technologies

could be incorporated into existing OSS development workflows, and what impacts they

could have if incorporated.

Different requirements reuse techniques have been proposed, but remain untested

(Lam et al., 1997). Maiden et al. (1991) proposed the analogy technique for requirements

107

reuse. An analogy captures similarities between the problem domain of a reusable

requirements specification and the target problem domain. One example is an analogy

that captures similarities between a video rental system and an industrial production

planning system (for example, a video allocation list created by a video rental system is

analogous to job allocation list created by a production planning system) (Maiden et al.,

1991). Li et al. (2007) proposed a multiple ontology approach for requirements reuse. Li

et al.’s framework consists of multiple ontologies: top-level ontology (describing basic

concepts such as goals, tasks and events), domain ontology (describes concepts and

relationships between concepts for a given domain), task ontology (describes concepts

and relationships between concepts for a given task), and application ontology (describes

concepts and relationships between concepts for a given application).

Requirements patterns are another type of requirements reuse technique

(Palomares et al., 2014). Requirements patterns help avoid the need to build requirements

from scratch (Franch et al., 2011). Patterns contain knowledge (gained from real world

projects) about recurring situations (Lopez et al., 2013). An example of a requirement

pattern is shown in Figure 5:

108

Figure 5. Example of a requirement pattern (Renault et al., 2009, p.10)

A requirements pattern usually consists of many sections, such as shown in Figure

5. For example, one section could be metadata about the pattern such as goal, author

name, and description; another could be the different forms or types a requirements

pattern can have (Renault et al., 2009). After determining that a pattern is applicable to a

particular project, it can be used for requirements extraction (Renault et al., 2009). For

example, after it is determined that failure alerts provided form of failure alerts

requirement pattern is applicable for a project, the requirement can be stated by using the

form text section as “An alert in case of failure has to be provided, and the alert provided

as solution shall be an email” (Renault et al., 2009).

A well-known work in the area of requirements patterns is by Withall (2007), who

identified over thirty requirements patterns in real world organizational software projects.

The structure of each requirement pattern proposed by Withall consists of basic details,

109

applicability, different possible types, content, template for writing, possibly related extra

requirements, and suggestions for implementation and testing. An example of a

requirement pattern identified by Withall is the data type requirement pattern for which

applicability is where there is a need to display some piece of information. The

information piece can be in any form such as characters, numbers, and lists. The content

of the data type requirement includes data type name, form, display format and

constraints (Withall, 2007). Another example of a requirement pattern identified by

Withall is inter-system interface requirement pattern, which can be used to specify

requirements for an interface between proposed software and an external system or

component with which it has to interact.

The requirements patterns described by Withall appear to incorporate some of the

suggestions by Lam et al. (1997). For example, Lam et al. suggested that, while capturing

requirements patterns, the focus should be given to pattern content, pattern representation

and dealing with exceptions that may indicate the need to revise a particular pattern.

Another suggestion is to provide contextual information along with reusable requirements

(e.g., assumptions associated with a reusable requirements artifact) to prevent misuse of

requirements reuse (e.g., reusing a requirement in a non-applicable context) (Lam et al.,

1997). The requirements patterns described by Withall appear to follow these guidelines,

as each of them has a content description, a well-defined structure and applicability

description describing the context within which the pattern is applicable.

It appears that very little empirical work exists investigating the impacts of

requirements reuse, even in traditional software development domain. Chernak (2012)

110

conducted a web-based survey among IT professionals to determine the state of the

practice of requirements reuse. In that survey, the majority of respondents (more than

80%) believed that requirements reuse is beneficial and important. Two of the top

reported benefits were faster time-to-market and lower development cost (Chernak,

2012). Chernak reports that, even though a large majority of survey respondents believed

requirements reuse to be beneficial, only about 59% actually practiced it. Some potential

obstacles to requirements reuse were poor quality (e.g., incompleteness) of existing

requirements, poor structure of existing requirements (making it difficult to identify

reusable requirements), and existing requirements not being updated (Chernak, 2012).

These problems appear to be similar to problems with the informal sources of

requirements in OSS development. As described in Chapter 3, almost 90% of responding

OSS developers indicated incomplete or missing information as a problem and almost

70% indicated invalid information as a problem with the issue data submitted in issue

repositories. These obstacles could potentially pose challenges in reusing issue data such

as bug reports or feature requests. Requirements may also emerge informally as part of

some message posted on discussion forums (e.g., Scacchi, 2002), thus being poorly

structured. Also, as evident from survey results in Tables 4 and 11 (Chapter 3), the usage

of standard structure for requirements specification in OSS development was very low.

The poorly structured requirements information that may exist in OSS development

environments may not be easily reusable.

Hoffmann et al. (2013) conducted semi-structured interviews with five

experienced requirements analysts. Based on the opinions of interviewed analysts, they

111

report some potential benefits of using requirements patterns. Breaux et al. (2012) also

hypothesize about some similar benefits from requirements patterns usage. One is the

possibility of improvements in requirements elicitation. Hoffmann et al. mention that

requirements patterns could potentially reduce the effort needed for elicitation since

analysts don’t need to start from scratch. Requirements patterns could potentially

facilitate more complete elicitation and specification (e.g., facilitating thinking about non-

functional requirements in participants who may be focused only on functional

requirements, thus reducing the non-occurrence of non-functional requirements)

(Hoffmann et al., 2013). Both Hoffman et al. and Breaux et al. mention that requirements

patterns could potentially help improve requirements quality. For example, requirements

patterns descriptions often include important attributes of associated requirements that

can help structure requirements and mitigate the omission of important requirements

related information (Hoffmann et al., 2013). Because of their well-defined content and

structure, requirements patterns could potentially reduce ambiguities and inconsistencies

in the requirements generated using them (Breaux et al., 2012). The structure and pre-

defined templates in requirements patterns could potentially facilitate a better

understanding of associated requirements (Hoffmann et al., 2013).

While researchers have hypothesized about potential benefits from the usage of

requirements patterns, there is a lack of empirical evidence of the benefits from the usage

of requirements patterns. Hoffmann et al. call for such research. This chapter addresses

this gap by investigating the potential benefits from requirements reuse for requirements

generation in OSS development. A library of reusable requirements (specifically

112

requirements patterns) within OSS development environments could be an efficient way

to facilitate requirements reuse practice in the OSS domain. Because of their applicability

to a large number of application domains, requirements patterns could be ideal reusable

requirements artifacts. The availability of a library of requirements patterns within OSS

development environments fits well with the general desires of the OSS community

concerning reuse (see Table 22 above) to have reusable artifacts with maximum usability

while expending minimum search efforts. Note also that the availability of a library of

requirements patterns could encompass some other proposed requirements reuse

techniques such as the analogy technique. Analogy technique involves analyzing

similarities between an available requirements specification and target problem domain

(Maiden et al., 1991). This cognitive process occurs as OSS contributors go through the

library of requirements patterns and attempt to reuse them in the context of some OSS

project. Thus, the specific goal of this phase of the research is to experimentally

investigate the actual benefits from the availability of a library of requirements patterns

within OSS development environments for requirements generation in OSS projects.

The next section describes theoretical background and hypothesis development for

the study.

4.3 Theoretical Background and Hypothesis Development

Individuals rely on information available in memory or from some external source while

making judgments (Dixon, 1997). When an external database of reusable artifacts is made

available to individuals, this can be seen as an attempt to expand the available knowledge

to individuals without creating cognitive burden and, thus, will be an addition to the

113

reusable knowledge existing in the memory of individuals (Dixon, 1997). Benbasat and

Lim (2000) present a model of information availability that can provide insights on the

theoretical view of the access of OSS contributors to reusable requirements library as an

expansion of the available reusable knowledge they can utilize during OSS requirements

discovery. Benbasat and Lim define two aspects of information availability, namely

information search scope (ISS) and solution design scope (SDS).

Information search scope is the set of all relevant information available. For

example, when an individual is asked to access the risk of death from heart attack among

a population in comparison to other illnesses, the information search scope can be the set

of all recalled instances about diseases that may lead to death (Benbasat and Lim, 2000).

Solution design scope is the set of information items from the information search scope

that can generate solutions to the problem at hand. Careful evaluation of the information

items in the information search scope based on demands of the problem becomes the

basis for generating solution design scope; for example, solution design scope in the

example scenario could be generated by accessing the degree to which each identified

disease may or may not cause death in comparison to others (Benbasat and Lim, 2000).

Another example that illustrates ISS and SDS is that of a manager working on the

problem of how to make his organization more successful. The decision maker (manager)

first searches for a solution within a limited amount of information that becomes available

in mind (such as ideas of new innovations, ideas for increasing customer demands) and

this limited available information for decision-making is the ISS (Benbasat and Lim,

2000).

114

The size of ISS will significantly influence the size of the SDS. Smaller ISS leads

to smaller SDS which in turn leads to biased/less satisfactory solutions. More specifically,

smaller ISS implies that many potential solutions are not part of the initially generated

ISS. In turn, this means they are not part of the subsequently generated SDS as well, since

SDS is formed based on the initially generated ISS (Benbasat and Lim, 2000). Thus, to

avoid negative effects/biases arising from limited available information for problem

solving, the focus should be on the enlargement of ISS. Expanding the information search

scope (ISS) in the example scenario would mean recalling more examples of diseases that

may or may not be fatal (Benbasat and Lim, 2000). Providing external support tools can

facilitate enlargement of ISS and SDS (Benbasat and Lim, 2000). Benbasat and Lim

argued that the availability of support tools such as electronic brain storming (EBS) and

electronic mail (EM) should facilitate enlargement of ISS and SDS, and found supporting

empirical evidence in the form of generation of greater number of ideas and solutions in

the availability condition compared to the non-availability condition.

The notion of expanding information search scope (ISS); that is, expanding the

limited available information for decision making by providing support tools (Benbasat

and Lim, 2000), is in line with Dixon’s (1997) assertion that, in the context of reuse,

“provision of databases of reusable design solutions can be viewed as an attempt to

expand the knowledge that is available to designers without putting burden on cognitive

abilities of the designers” (p. 23, Dixon, 1997). When participants in open source

software development have access to a library of reusable requirements, this can be

viewed as an expansion of the reusable knowledge that is available to them during the

115

discovery of requirements for some proposed open source software. Having access to a

library of reusable requirements should increase the information search scope (ISS)

during requirements discovery for some proposed OSS development. The availability of a

database of reusable content means that the designers can reuse content that is available

both in the database as well as in their minds and also combine both (Dixon, 1997).

The cognitive phenomenon of anchoring and adjustment can also provide insights

on usage of a library of reusable requirements that is available in an OSS development

environment. In fact, Davis writes: “Information requirements from users will tend to be

a result of an adjustment from an anchor of the information currently available” (p.10,

Davis, 1982). When artifacts containing reusable knowledge become available, it

facilitates two things: a) expanding the currently available information b) enabling

individuals to anchor to this available information and make adjustments to it (e.g.,

modifying the available information) to make it usable in a new context (Dixon, 1997).

Similarly, when a library of reusable requirements becomes available within OSS

development environments, it expands the information available to OSS contributors to

which they can anchor, make adjustments and use during requirements generation for

OSS projects.

The theoretical arguments of Benbasat and Lim are in line with Newell and

Simon’s human information processing theory (See Benbasat and Lim, 2000;

Nagasundaram and Dennis, 1993). This theory argues that human information processing

system consists of short-term memory (STM) that has a limited capacity and contains a

small amount of information, and it is this small amount of information available in the

116

working memory that is available for immediate processing (Nagasundaram and Dennis,

1993). The limitations of short-term memory put constraints on human cognitive abilities.

For example, it can affect individual’s ability to define requirements; during a

requirements elicitation interview, a user without the aid of any external storage can hold

only a small amount of requirements related information in the short-term memory and

consequently, provide very limited requirements information (Davis, 1982). Providing an

external memory (e.g., electronic, or even a pad of paper) can increase the virtual capacity

of the short-term memory and help reduce its limitations (Davis, 1982; Nagasundaram

and Dennis, 1993). For example, providing external memory can increase productivity

during idea generation (Nagasundaram and Dennis, 1993).

From the above discussion, it can be argued that when a library of reusable

requirements becomes available to participants in OSS development, it can be thought of

as an external memory which should increase their information search scope (in line with

the discussion by Benbasat and Lim) and help overcome the limited capacity of human

working memory. This should facilitate generation of a greater quantity of requirements.

Researchers have found empirical evidence that individuals working alone without any

external support can generate only a tiny proportion of information from the potential

solution space (Connolly et al., 1993; Benbasat and Lim, 2000; Dennis et al., 1996), but

they tend to hold the faulty belief that they have generated a highly complete set of

solutions (Dennis et al., 1996). This implies that participants in OSS development who

are working on their own without any form of external cognitive assistance within an

online open source software development environment, such as Sourceforge, would be

able to generate only a small amount of requirements that forms only a small proportion

117

of the larger set of all possible requirements and they may even hold faulty beliefs about

the completeness of generated requirements. But when a library of reusable requirements

becomes available to them, it can be expected to increase their information search scope,

enabling them to generate a greater number of meaningful requirements.

Based on the above discussion, I hypothesize:

H1: Participants in OSS development who have a reusable requirements library

available within the OSS development environment in which they are working will

generate a significantly greater quantity of requirements than participants who do

not have a reusable requirements library.

Measuring the quality of requirements through accuracy is not feasible until the

much later stages of software development (Pitts and Browne, 2007). Therefore, an

alternative is to use a surrogate measure of quality – the completeness of gathered

requirements – measured through depth and breadth of the gathered requirements (Pitts and

Browne, 2007). Pitts and Browne define measures for breadth and depth of gathered

requirements based on the coding of the gathered requirements according to a context-

independent generic requirements categories’ taxonomy developed by Browne and Rogich

(2001). There are four main categories in the Browne and Rogich taxonomy: goal, process,

task, and information; each category may, in turn, have many subcategories. Goal level

requirements are organizational/strategic issues; sub-categories of requirements in this

category are the actual goals, factors that may prevent goal achievement, causes of the

current problem, and types of stakeholders. Process requirements are the processes required

to achieve goals; subcategories of requirements in this category are the steps in some

production process and factors that may impede the process. Tasks requirements are the

118

tasks associated with a process; subcategories of requirements in this category are actions,

assumptions, and rules of tasks, and roles and responsibilities. Information requirements

are data-related requirements; subcategories are data to be displayed and data to be entered.

Breadth is measured as the number of distinct requirements categories in the coded data,

and depth is measured as the number of requirements within in each category in the coded

data (Browne and Rogich, 2001; Pitts and Browne, 2007).

Research on idea generation holds the view that “quantity breeds quality.”

According to this view, when people express a large quantity of ideas, the chance of them

being of good quality also increases (Rietzschel et al., 2007). Rietzschel et al. note that the

underlying reasoning behind this is the view that each generated idea has an equal

probability of having good quality and by the law of chance, as more number of ideas are

generated, the number of good quality ideas generated should increase linearly. There is

empirical evidence that the quantity of ideas generated is a reliable predictor of overall

quality of the generated ideas (Dennis et al., 1996; Rietzschel et al., 2007). For example,

Diehl and Stroebe (1987) found that increase in the quantity of generated ideas was

associated with an increase in good quality ideas although it was also found to be associated

with an increase in poor quality ideas as well. Similarly, Dennis et al. (1996) found that the

experimental group that generated the greater quantity of ideas also had a higher total

quality of ideas.

Hypothesis 1 argues that participants in OSS development who have a library of

reusable requirements patterns available to them will generate a significantly greater

quantity of requirements. As described previously, the quantity of ideas generated is a

119

reliable predictor of total quality of ideas generated (Dennis et al., 1996; Rietzschel et al.,

2007). Thus, it can be expected that if the availability of a library of reusable requirements

can facilitate generation of a greater quantity of requirements, it can also facilitate

generation of a greater quality of requirements (for example, greater quantity could be

associated with greater number of requirements belonging to distinct categories, i.e., greater

breadth). Moreover, Gettys et al. (1987) found that unaided decision makers generated

incomplete solutions for ill-defined problems and suggested that aiding decision makers

with some interventions should lead to the generation of more complete solutions (Gettys

et al., 1987, p.43-44). Similarly, it can be argued that the completeness of requirements

generated by unaided participants would be low, whereas when participants who are aided

by external cognitive assistance such as availability of a library of reusable requirements,

it should enable them to generate a more complete set of requirements. Hence, I

hypothesize:

H2a: Participants in OSS development who have a reusable requirements library

available within the OSS development environment in which they are working will

generate a significantly greater breadth of requirements than participants who do

not have any reusable requirements library.

H2b: Participants in OSS development who have a reusable requirements library

available within the OSS development environment in which they are working will

120

generate a significantly greater depth of requirements than participants who do not

have any reusable requirements library.

The size of a message can influence the understanding of the message (Teeni,

2001), thus making the size of the requirements description an important variable,

especially in the context of web-based requirements generation. I expect that the more

detailed a message in a web-based medium is, better the chances of its understandability

by potential readers such as OSS developers and project members, which can lead to

desirable outcomes such as being processed or implemented. Laurent and Cleland Huang

report instances where OSS developers specifically requested well-described

requirements information, as indicated from the following advice listed on an OSS project

website: “Features are more likely to get implemented if the description of the feature is

clear. For a complicated feature, a link to a specification on the wiki is a great way to

help flesh out the idea” (p.250, Laurent and Cleland-Huang, 2009). As previously

described, external memory should increase the information search scope and

subsequently solution domain scope for each individual (Benbasat and Lim, 2000). Thus,

the availability of a library of reusable requirements within OSS development

environments should increase the information search scope for requirements discovery for

OSS projects. In the web environment, a textual message is a normal way of constructing

and conveying requirements information. The increased information search scope and

solution domain scope should facilitate the construction of more detailed textual

requirements messages since that is one practical way in which individuals could deliver

the increased/enhanced requirements information generated in their minds.

121

Hence, I hypothesize:

H3: Participants in OSS development who have a reusable requirements library

available within the OSS development environment in which they are working will

construct requirements messages of significantly greater size than participants who

do not have any reusable requirements library available.

The next section describes the research methodology for the hypotheses.

4.4 Research Methodology

4.4.1 Method

A web experiment methodology was used to investigate the above hypotheses. A web

experiment is an extension of computer-based laboratory experiment (Reips, 2002). A

Web experiment is a suitable methodology, considering the web-based, geographically

distributed nature of OSS development. In the current study, participants were recruited

from Crowdflower. They were paid a small incentive ($1 each) for their participation.

Crowdflower provides a geographically distributed workforce, a characteristic of OSS

development. Participants included individuals from both technical and non-technical

background. Contributors to real world OSS projects are comprised of individuals from

both technical and non-technical background (e.g., Crowston and Howison, 2005). The

experimental group of participants thus closely match the mixture of technical and non-

technical individuals that is characteristic of real world OSS development communities.

122

Both types of individuals are important for OSS projects. Individuals from technical

background can contribute code whereas individuals from non-technical background can

contribute issues and participate in discussions; in addition to such active contributors,

even the passive users who do not contribute but have a general interest in the OSS

projects are also important since their existence can attract potential active contributors

for whom the interest of these users is a reward (Ye and Kishida, 2003).

The experimental webpages (treatment and control) were constructed in an OSS

development environment - Google Code.

4.4.2 Experimental Design

4.4.2.1 Experimental Task

The experimental task was to generate requirements for a to-be-developed open source

electronic medical record that is to be integrated with IBM Watson technology. A real

world web-based open source software development environment, Google Code, was

used to conduct the experiment. The detailed experimental task description is provided in

Appendix 3.

One desirable characteristic of an experimental task used in an experimental

design for testing effectiveness of a requirements discovery support tool is novelty. For a

novel case, subjects will need to be imaginative while providing requirements, in addition

to relying on prior experiences and beliefs (Browne and Rogich, 2001). The application

of Watson to different domains such as health care and finance is new. Thus, it is

123

expected that the experimental task has a high level of novelty, requiring subjects to use a

high level of imagination. The demographics of participants are presented in Appendix 8.

It can be seen from Appendix 8 that they were largely new to open source software

development and hence a potential population of newcomers (Steinmacher et al., 2014).

Newcomers are important for OSS development since they form the pool of potential

future contributors that are vital to the long-term survival and growth of OSS projects

(Jensen et al., 2011).

Implementation of electronic medical records in developing countries is a real

research issue (Fraser et al., 2005). Fraser et al. mention that developing countries often

face health crisis such as HIV/AIDS and tuberculosis, that threaten millions of lives, but

for which lack of infrastructure often poses barriers to handling such crises. Efficient

information management (e.g., by using information systems such as electronic medical

record systems) can help eradicate many problems in health in developing countries

(Fraser et al., 2005). Open source electronic medical record development is a feasible and

efficient solution to managing many healthcare problems in developing countries since

there is a large-scale need for clinical data management, need for rapid response, but with

the challenge of adjusting with limited technical resources in developing countries

(Mamlin et al., 2006). Mamlin et al. note that collaborative open source electronic

medical record development can lay the foundation upon which other health information

systems and specific applications can be later built. Hence, the context of the

experimental task (development of an open source electronic medical record software to

be integrated with Watson technology) of this phase of the current research is realistic and

124

of practical significance. The requirements data that was generated as part of the

experiment can be expected to provide useful knowledge about the design of such

systems, and this should be an additional contribution of this study even though it is not

the main focus.

4.4.2.2 Experimental Groups

There were two experimental groups. The treatment group had access to a library of

reusable requirements (specifically the list of requirements patterns from Withall (2007).

Withall describes over thirty requirement patterns. These patterns are generic and recur

again and again in the context of systems development in a large number of domains

(Withall, 2007). Table 23 below lists many of the requirements patterns described by

Withall and connects them with examples of electronic medical record requirements

listed by Manitoba-eHealth (retrieved from http://www.manitoba-

ehealth.ca/commphysicians/files/emrreq.pdf). The control group did not have access to

any reusable requirements library and were simply asked to provide requirements for the

proposed open source electronic medical records software to be integrated with IBM

Watson technology. All experimental materials available to both groups (the case

description, Google Code project development environment) were the same except for the

library of reusable requirements available to the treatment group.

http://www.manitoba-ehealth.ca/commphysicians/files/emrreq.pdf
http://www.manitoba-ehealth.ca/commphysicians/files/emrreq.pdf

125

Table 23. Requirements patterns of Withall and related examples from EMR

domain
Generic Requirements patterns (Withall,

2007)

Specific examples of requirements from electronic

medical record (EMR) domain

(http://www.manitoba-

ehealth.ca/commphysicians/files/emrreq.pdf)

Inter-system interface requirement pattern:

can be used to describe some requirement about

interface between proposed software and some

external system or component with which the

proposed software needs to interact

EMR system needs to provide access to external

information resources such as health care literature.

Technology requirement pattern: can be used

to describe some requirement about technology

that should or should not be used in the

development or running of proposed software or

with which the proposed software needs to be

compatible

EMR system does not need local client application

functionality but needs web browser plugins.

Comply with standard requirement pattern:

can be used to describe some requirement about

standards that the proposed software needs to

comply with

EMR system must comply with industry acceptable

standards in areas such as clinical terminology and

messaging (e.g., HL7 V3)

Documentation requirement pattern: can be

used to describe some requirement about

documentation that the proposed software needs

to produce

EMR system needs to provide documentation of

prescribed medications and immunizations given.

Living entity requirement pattern: can be

used to describe some requirement about some

entity for which the associated information has

a lifespan, i.e., it is created, modified multiple

times and after some time terminated.

A patient record needs to be deactivated/archived

under conditions such as death.

Inquiry requirement pattern: can be used to

describe some requirement about displaying

specified information to the user.

EMR system needs to display context-specific

help/instructions to users.

Extendability requirement pattern: can be

used to describe some requirement about

extending some aspect of the proposed software

EMR system needs to be extensible, i.e., it should be

possible to modify and add features with minimal

economic burden and minimal impact on existing

functionalities.

Multiness requirement pattern: can be used

to describe some requirement about

accommodating multiple something

simultaneously.

The same patient data should be accessible from

multiple locations.

Authentication requirement pattern: can be

used to describe some requirement about

checking identities before allowing access

All communications with EMR system must be

authenticated and secure.

http://www.manitoba-ehealth.ca/commphysicians/files/emrreq.pdf
http://www.manitoba-ehealth.ca/commphysicians/files/emrreq.pdf

126

4.4.2.3 Procedure

The treatment and control conditions of the web experiment were two separate Google

Code web pages that were same in all aspects except for the availability of a library of

reusable requirements. Both web pages contained the same experimental task description

shown in Appendix 3. In the treatment condition, the library of reusable requirements was

available on the Google Code web page as wiki page links (on the side of the task

description) that participants could click to read the detailed description of individual

requirement patterns. The treatment and control condition web-pages were made

available as tasks on Crowdflower platform to which participants (individuals from the

Crowdflower workforce) were randomly assigned by the Crowdflower application.

Participants in each group were asked to read the description (on the Google Code web

page) of the proposed open source electronic medical record software that was to be

integrated with IBM Watson technology and to think about potential requirements for the

proposed open source software. In addition, participants in the treatment group were also

instructed that, if they wished, they could use the requirements from the reusable

requirements library as a starting point for thinking about the requirements for the

proposed open source electronic medical record software.

Participants were asked to submit the requirements they identified in textual

format using the text box on the Crowdflower platform. The task was designed such that

after providing the requirements information in the textbox, they were required to answer

the questionnaire items on technical background, prior usage of electronic medical record

systems/personal health record systems/other health information systems, and prior

experience with OSS development.

127

4.4.2.4 Variables and Measures

In line with the hypotheses, the dependent variables of interest were requirements size,

requirements quantity, and requirements completeness (depth and breadth). Requirements

size was measured as the number of words used to construct the requirements message.

Requirements quantity was the total number of requirements provided by a participant

(e.g., Browne and Rogich, 2001). In line with Pitts and Browne (2007), requirements

completeness was comprised of the measures of depth and breadth of requirements.

Breadth was measured as the number of distinct requirements categories (from the

Browne and Rogich requirements taxonomy shown below) provided by subjects. Depth

was measured as the number of requirements within each category (from the taxonomy)

provided by subjects. The taxonomy has been used in many studies to code requirements

data (e.g., Browne and Rogich (2001), Pitts and Browne (2007)). For the purpose of

analysis involving requirements quantity and completeness, a coding procedure (similar

to Browne and Rogich (2001)) for the textual requirements data was used (described

later).

The taxonomy (Pitts and Browne, 2007) is shown in Table 24.

Table 24. Requirements taxonomy (Pitts and Browne, 2007)

GENERIC REQUIREMENTS CATEGORIES

(Pitts and Browne, 2007, p.101)

DESCRIPTION (Pitts and Browne, 2007, p.101)

GOAL

Goal state specification Identifying the particular goal state to be achieved

Goal specification Comparing existing and desired states

Difficulties and constraints Identifying factors inhibiting goal achievement

Ultimate values and preferences Stating the final ends served by a solution

Difficulties and constraints Identifying factors inhibiting goal achievement

Ultimate values and preferences Stating the final ends served by a solution

Means and strategies Specifying how a solution might be achieved

Causal diagnosis Identifying the causes of the problematic state

Knowledge specification Stating facts and beliefs pertinent to the problem

Perspective Adopting appropriate point of view on the situation

128

Existing support environment Existing technological environment to support new

system

Stakeholders Organization units, customers, suppliers,

competitors

PROCESS

Process description Steps or tasks designed to produce a product

Process knowledge specification Facts, rules, beliefs, decisions required to perform

process

Difficulties and constraints Facts that may prohibit process completion

Roles and responsibilities Individuals/departments charged with performing

process

TASK

Task description Sequence of actions required to complete a task

Task knowledge specification Facts, rules, beliefs, decisions required to perform

task

Performance criteria Statement that link outcome with

condition/constraints

Roles and responsibilities Individuals/departments charged with performing

task

Justification Explanation of specific action to be/not to be taken

INFORMATION

Displayed information Data to be presented to users; paper/electronic

format

Interface design Language and format used for displayed

information

Inputs Data that must be entered in to system

Stored information Data saved by the system

Objects and events Physical entities and occurrences relevant to the

system

Relationship among object/event How one object/event is associated with another

object/event

Data attributes Characteristics of objects and events

Validation criteria Rules that govern the validity of data

Computations Information created by the system

Some control variables that were expected to be present in the context of

requirements generation in OSS development were also measured. The experience and

knowledge of software project team members and users can influence the outcomes of the

requirements capture stage of a software project (Chatzoglou and Macaulay, 1997).

Technical knowledge (e.g., knowledge about commonly occurring functional

requirements in the context of information systems development, general knowledge

about systems development such as commonly occurring implementation issues) can be

129

important knowledge sources during requirements determination for systems

development (Vitalari, 1985). Thus, one’s technical background (technical career and

technical education) can potentially influence requirements generation in OSS

development and were included as covariates in the analysis. Questionnaire items for

measuring for the extent to which the participants’ career and education were technical

were obtained from Enns et al. (2003).

Web-based requirements generation is different from the traditional face-to-face

setting of requirements elicitation, as web-based requirements generation is mediated by

the internet. Hence experience with the relevant web-based applications could be a

potential confounding variable. One such variable is the crowdsourcing experience of

participants, which is the number of crowdsourcing tasks (hosted on some crowdsourcing

platform) that participants had completed in the past. For the crowdflower platform, this

would be the total number of crowdflower tasks (tasks hosted on that platform) that a

participant has completed. This measure was obtained for each participant from their

Crowdflower profile. Crowdsourcing platforms, such as Crowdflower, are web-based

platforms/applications that support crowdsourcing tasks in a variety of domains (Doan et

al., 2011). Example categories of such crowdsourcing tasks are reviewing (e.g., books,

movies), tagging (e.g., webpages) and constructing/sharing textual knowledge (e.g.,

answering questions) (Doan et al., 2011). Participants who have successfully completed

many such crowdsourcing tasks could potentially gain knowledge of many different

application domains. They may become adept at common web-based activities such as

constructing online textual messages. Such knowledge could potentially play an

130

important role during requirements generation in OSS development. Hence,

crowdsourcing experience of participants was included as a covariate.

The prior experience of participants with medical software (e.g., personal health

record software) could also be a potential source of knowledge for them during

requirements generation; hence, it was also included as a covariate. Participants were

asked to indicate their usage experience with electronic medical record software systems,

personal health record software systems, and other health related software systems on a

Likert scale and the scores were aggregated and included in the analysis as the control

variable, experience with medical software.

4.5 Data Analysis and Results

4.5.1 Results: Requirements Size

Initial analysis focused on investigating the effect of experimental treatment (availability

of a library of reusable requirements) on the requirements size. Requirements size was

measured as the number of words used to construct the requirements message. This

particular dependent variable is a continuous variable. General linear model (GLM)

method in SPSS was used for the data analysis. GLM is suitable for situations where the

dependent variable of interest is a continuous variable, the focal predictor is categorical,

and confounding variables are expected to be present (e.g., Hawkins, 2014). The

confounding variables are controlled for by including them as covariates in the GLM. The

focal predictor for requirements size is the availability of reusable requirements library, a

categorical variable that takes values 1 (reusable requirements library available) and 0

131

(reusable requirements library not available). The covariates are experience of

contributing to crowdsourcing tasks, technical background – career, technical background

- education and experience with medical software. The covariates and their measures

were discussed in the preceding section.

The interaction between the predictor variable of interest, availability of a reusable

requirements library, and each of the covariates was also included in the model in order to

investigate whether the effect of the availability of reusable requirements library varied

significantly with the variations in the covariates.

Two assumptions of the general linear model approach are that errors are normally

distributed and have common variance across all values of predictor variables

(homogeneity of variance) (Rutherford, 2012; Hawkins, 2014). The checks for these

assumptions are presented in Appendix 5. The histogram of the standardized residuals

with normal curve imposed on it show approximate normality. West et al. (1995) mention

that substantial departure from normality happens when skewness > 2 and kurtosis > 7

whereas Kline mention that skew with an absolute value greater than 3 and kurtosis with

an absolute value greater than 10 are problematic (c.f. Stull, 2008). The skewness and

kurtosis, as shown in Appendix 5, were below all of these threshold values. For

homogeneity of variance assumption, Levene’s test should be non-significant. As can be

seen in Appendix 5, Levene’s test is indeed non-significant.

The equation for the general linear model is shown below:

Number of words used to construct the requirements = b1*X1 + b2*X2 + b3*X3 +

b4*X4 + b5*X5 + b6* X1* X2+ b7*X1*X3+ b8*X1*X4+ b9*X1*X5 + c

where,

132

X1 = Availability of reusable requirements library

X2 = Experience of contributing to crowdsourcing tasks

X3 = Technical background - career

X4 = Technical background - education

X5 = Experience with medical software

The results are shown in Table 25 below.

Table 25. Model parameters (Dependent variable: requirements size)

Source F Significance

Corrected Model 2.572 .012

Intercept 11.878 .001

Availability of reusable

requirements library

8.341 .005

Experience of contributing to

crowdsourcing tasks

2.288 .135

Technical background - career .465 .497

Technical background -

education

.308 .581

Experience with medical

software

.264 .609

Availability of reusable

requirements library* Experience

of contributing to crowdsourcing

tasks

5.509 .022

Availability of reusable

requirements library* Technical

background - career

7.470 .008

Availability of reusable

requirements library* Technical

background - education

3.421 .068

Availability of reusable

requirements library* Experience

with medical software

.764 .385

R square = .238 indicating that the model accounted for about 24 % of the

variance in the dependent variable, requirements size. According to Cohen’s criteria,

accounting for 2% of the variance is considered small, accounting for 13% of the variance

is considered medium and accounting for 26% of the variance is considered large (c.f.

133

Fritz and MacKinnon, 2007). By this criteria, the variance accounted for by the model

here is close to being large.

The main effect for the availability of a reusable requirements library is

significant, as well as the interactions between the availability of reusable requirements

library with crowdsourcing experience and Technical background - career. This provides

evidence for the significant effect of the availability of reusable requirements library on

requirements size after controlling for covariates. The effect of the availability of a library

of reusable requirements varies with varying levels of technical and crowdsourcing

experience of participants. It appears that during the construction of textual requirements

messages for web-based requirements generation, the availability of a library of reusable

requirements may be more useful to individuals with lower levels of technical and

crowdsourcing experience. The parameter estimates for the significant interactions are

provided below:

Table 26. Interactions

Parameter B Std. err. Sig.

[Availability of reusable

requirements library=0]*

Experience of

contributing to

crowdsourcing tasks

.044 .019 .022

[Availability of reusable

requirements library=1]*

Experience of

contributing to

crowdsourcing tasks

0

[Availability of reusable

requirements library=0]*

Technical background -

career

30.836 11.282 .008

[Availability of reusable

requirements library=1]*

Technical background -

career

0

134

Crowdsourcing experience has a stronger effect in the non-availability condition

in comparison to the availability condition. Similarly, technical background – career has a

stronger effect in the non-availability condition in comparison to the availability

condition. Consider the situation where a library of reusable requirements is not available.

Individuals who are new to crowdsourcing or individuals from a non-technical

background would have nothing to rely on while participating in requirements generation,

whereas individuals with higher levels of technical and crowdsourcing experience can

rely on the knowledge gained from those experiences. A library of reusable requirements

can be an aid to participants with low levels of technical and crowdsourcing experience

while constructing/submitting requirements messages in OSS development.

Posting messages on OSS discussion forums and submitting issue information

such as bug reports and feature requests in OSS issue repositories are also crowdsourcing

tasks. Non-developer users often participate in such activities that happen as part of the

evolution of OSS projects (e.g., Crowston and Howison, 2005; Crowston et al., 2012).

Non-developer participants in OSS development who are just starting off (e.g., interested

users who have never submitted an issue) could potentially benefit from reusable

requirements artifacts, for example in constructing more detailed requirements messages.

Steinmacher et al. (2014) report that newcomers to OSS development often face problems

such as finding a way to start. Newcomers’ lack of technical knowledge (e.g., lack of

knowledge of tools and technologies used in a project) and the large amount of learning

effort that may be needed in becoming familiar with OSS project aspects may pose a

significant barrier to their participation (Steinmacher et al., 2014). Reusable requirements

artifacts could potentially assist such newcomer users in their participation in OSS

135

requirements generation, for example, in submitting a new feature request through issue

repository, a potentially good way to start participating while making a useful

contribution.

4.5.2 Coding of Textual Requirements Data

For the purpose of analysis involving requirements quantity and completeness, the

requirements data collected from the experiment were coded independently by me and a

second independent coder (a graduate student in MIS) who was not involved in the study.

For the coding, the taxonomy proposed by Browne and Rogich (2001) was used. For the

coding, the textual requirements data from participants were segmented into smallest

substantive units, i.e., individual, distinguishable phrases and sentences (e.g., Curley et

al., 1995). Initially, in terms of requirements quantity, there was 66% agreement between

the initial coding between the two coders. Wherever disagreements occurred over the

categories assigned to requirements pieces, I resolved it through a careful analysis of the

definition of requirements categories and the requirements pieces to assign a final

acceptable category. A sample of the coded data is shown below:

Table 27. Sample coding

Requirements data Code

Must be usable by people with limited technical

knowledge
Must cater to the personal user's needs
Must be safe in terms of data protection
Must be affordable
Must be widely supported

Goal level specification (5)

136

4.5.3 Results: Requirements Quantity

Similar to Browne and Rogich (2001), the quantity of requirements was measured as the

total number of requirements generated by subjects. This is a continuous variable.

As before, general linear model (SPSS) was run with requirements quantity as the

dependent variable, the availability of reusable requirements library as the categorical

predictor variable and experience of contributing to crowdsourcing tasks, technical

background – career, technical background - education and experience with medical

software as covariates. The histogram of the standardized residuals with normal curve

imposed on it shows approximate normality (see Appendix 5). As per previously

mentioned rules of thumb, (West et al., 1995; Stull, 2008), the skewness and kurtosis

shown in Appendix 5 were well below all of the threshold values. For homogeneity of

variance assumption, Levene’s test should be non-significant. As can be seen in Appendix

5, Levene’s test is indeed non-significant.

The equation for the general linear model is shown below:

Requirements quantity = c1*X1 + c2*X2 + c3*X3 + c4*X4 + c5*X5 + c6* X1* X2+

c7*X1*X3+ c8*X1*X4+ c9*X1*X5 + d

where,

X1 = Availability of reusable requirements library

X2 = Experience of contributing to crowdsourcing tasks

X3 = Technical background - career

X4 = Technical background – education

X5 = Experience with medical software

The results from running the general linear model are shown in Table 28.

137

Table 28. Model parameters (Dependent variable: requirements quantity)

Source F Significance

Corrected Model 3.728 .001

Intercept 24.281 .000

Availability of reusable

requirements library

9.591 .003

Experience of contributing to

crowdsourcing tasks

3.912 .052

Technical background - career .570 .453

Technical background -

education

.720 .399

Experience with medical

software

2.867 .095

Availability of reusable

requirements library* Experience

of contributing to crowdsourcing

tasks

10.200 .002

Availability of reusable

requirements library* Technical

background - career

5.057 .027

Availability of reusable

requirements library* Technical

background - education

1.337 .251

Availability of reusable

requirements library* Experience

with medical software

.336 .564

R square = .312 indicating that the model accounted for about 31 % of the variance in the

dependent variable, requirements quantity. By Cohen’s criteria, the variance accounted

for by the model here is large.

The main effects for the availability of reusable requirements library and

crowdsourcing experience are significant, as well as the interactions of the availability of

reusable requirements library with crowdsourcing experience and Technical background -

career. This provides evidence for the significant effect of the availability of reusable

requirements library on requirements quantity after controlling for covariates. The above

results show that the effect of the availability of a library of reusable requirements on

requirements quantity varies with varying levels of technical and crowdsourcing

138

experience of participants. Specifically, during web-based requirements generation, the

availability of a library of reusable requirements may be more useful to individuals with

lower levels of technical and crowdsourcing experience. The parameter estimates for

significant interactions are provided in Table 29. Based on these results, it appears that

reliance on crowdsourcing experience and technical knowledge is significantly more

when the reusable requirements library is not available in comparison to when a reusable

requirements library is available.

Table 29. Interactions

Parameter B Std. err. Sig.

[Availability of reusable

requirements library=0]*

Experience of

contributing to

crowdsourcing tasks

.003 .001 .002

[Availability of reusable

requirements library=1]*

Experience of

contributing to

crowdsourcing tasks

0

[Availability of reusable

requirements library=0]*

Technical background -

career

1.094 .486 .027

[Availability of reusable

requirements library=1]*

Technical background -

career

0

Participants in OSS development who are from a technical background or who

have sufficient experience of contributing to OSS development (one type of

crowdsourcing experience) have the advantage that they can potentially utilize such

knowledge during requirements generation in OSS development. Individuals from a non-

technical background or who are new to crowdsourcing would have nothing to rely on

while participating in OSS requirements generation. For such participants, external aid

139

such as a library of reusable requirements can be beneficial for discovering requirements

that may otherwise be unavailable in their minds.

4.5.4 Results: Requirements Completeness

Similar to Browne and Rogich (2001), breadth was measured as the number of distinct

requirements categories provided by subjects. As before, general linear model (SPSS)

was run with breadth as the dependent variable, the availability of reusable requirements

library as the categorical predictor variable and experience of contributing to

crowdsourcing tasks, technical background – career, technical background - education

and experience with medical software, as covariates.

Table 30. Model parameters (Dependent variable: requirements breadth)

Source F Significance

Corrected Model 2.346 .022

Intercept 83.371 .000

Availability of reusable

requirements library

7.718 .007

Experience of contributing to

crowdsourcing tasks

1.300 .258

Technical background - career .052 .821

Technical background -

education

.042 .839

Experience with medical

software

1.438 .234

Availability of reusable

requirements library* Experience

of contributing to crowdsourcing

tasks

.510 .478

Availability of reusable

requirements library* Technical

background - career

9.119 .003

Availability of reusable

requirements library* Technical

background - education

2.227 .140

Availability of reusable

requirements library* Experience

with medical software

.003 .955

140

The interaction between the predictor variable of interest, availability of reusable

requirements library and each of the covariates was also included in the model. The

results are shown in Table 30. Levene’s test was again non-significant. R square = .222,

indicating that the model accounted for about 22 % of the variance in the dependent

variable, breadth of requirements. By Cohen’s criteria, the variance accounted for by the

model here is close to being large.

The main effect for the availability of reusable requirements library is significant

as well as the interactions of the availability of reusable requirements library with

technical background - career. This provides evidence for the significant effect of the

availability of reusable requirements library on requirements breadth after controlling for

covariates. The effect of the availability of a library of reusable requirements on the

breadth of requirements appears to vary with varying levels of the technical background

of participants. When it comes to generating more diverse requirements, it appears that

the availability of a library of reusable requirements may be more useful to individuals

with lower levels of technical experience. The parameter estimates for significant

interaction is provided in Table 31.

Table 31. Interaction

Parameter B Std. err. Sig.

[Availability of reusable

requirements

library=0]* Technical

background - career

.401 .133 .003

[Availability of reusable

requirements

library=1]* Technical

background - career

0

141

Similar to Browne and Rogich (2001) and Pitts and Browne (2007), depth is

measured as the number of requirements within each category (from the taxonomy)

provided by subjects. For the goals category, the result is shown in Table 32:

Table 32. Model parameters (Dependent variable: requirements depth)

Source F Significance

Corrected Model 2.318 .023

Intercept 16.299 .000

Availability of reusable

requirements library

4.306 .041

Experience of contributing to

crowdsourcing tasks

1.133 .291

Technical background - career .335 .565

Technical background -

education

.299 .586

Experience with medical

software

1.778 .186

Availability of reusable

requirements library* Experience

of contributing to crowdsourcing

tasks

7.967 .006

Availability of reusable

requirements library* Technical

background - career

3.058 .084

Availability of reusable

requirements library* Technical

background - education

.828 .366

Availability of reusable

requirements library* Experience

with medical software

.029 .864

Levene’s test was again non-significant. R square = .220, indicating that the

model accounted for about 22 % of the variance in the dependent variable, depth of

requirements. By Cohen’s criteria, the variance accounted for by the model here is close

to being large.

The main effect for the availability of reusable requirements library is significant,

as well as the interactions of the availability of reusable requirements library with

crowdsourcing experience. This provides evidence for the significant effect of the

142

availability of reusable requirements library on requirements depth after controlling for

covariates. The effect of the availability of a library of reusable requirements on the

number of requirements generated in goals category appears to vary with varying levels

of crowdsourcing experience of participants. When it comes to generating requirements

of type goal, it appears that the availability of a library of reusable requirements may be

more useful to individuals with lower levels of crowdsourcing experience. The parameter

estimates for significant interactions are provided in Table 33.

Table 33. Interactions

Parameter B Std. err. Sig.

[Availability of reusable

requirements library=0]*

Experience of

contributing to

crowdsourcing tasks

.002 .001 .006

[Availability of reusable

requirements library=1]*

Experience of

contributing to

crowdsourcing tasks

0

For the other requirements categories, there were largely no significant effects.

Thus, the effect of reusable requirements library appears to be largely on goals category

which could be because of the generic and non-functional nature of the requirements

patterns that were used in the experiment.

The results for requirements breadth and depth together provide evidence for the

significant effect of the availability of a library of requirements patterns on requirements

completeness. As with requirements quantity, the effect of the availability of a library of

reusable requirements on requirements completeness appears to vary with varying levels

of technical background and crowdsourcing experience of participants. During web-based

143

requirements generation, the availability of a library of reusable requirements could be

potentially beneficial to individuals with lower levels of technical and crowdsourcing

experience, for example, in generating more diverse requirements.

4.6 Discussion and Conclusion

The quantitative results show that there is a significant effect of the availability of a

reusable requirements library (after controlling for covariates) on the quantity, breadth,

depth, and size of requirements, thus providing support for hypotheses one, two and three.

The results provide evidence for the usefulness of the availability of a library of reusable

requirements in web-based OSS development environments. Such a library can

potentially help improve the size of requirements messages generated. Joyce and Kraut

(2006) found that there was a significant positive association between length (word count)

of the initial message posted by newcomers in the discussion forums of OSS projects and

getting a reply to it, indicating that there was greater likelihood of project maintainers

responding when newcomers wrote a longer initial message (Joyce and Kraut, 2006).

Receiving a reply, in turn, had significant positive effect on the subsequent participation

of newcomers (Joyce and Kraut, 2006). As the quantitative results indicate, a library of

reusable requirements can potentially help newcomers construct requirements messages

of greater size that in turn could facilitate rich communication between newcomers and

OSS project maintainers. Arguello et al. (2006) found that topic coherence (message topic

being related to the goal and purpose of an online community) significantly increases the

likelihood of getting a reply to a posting (Arguello et al., 2006). Steinmacher et al. report

that there is a high likelihood of OSS project administrators not responding to messages

144

that do not have meaningful content since they may not understand it (Steinmacher et al.,

2015). Such non-responsiveness may hinder subsequent participation by newcomers

(Steinmacher et al., 2015). A library of reusable requirements could be useful in

improving the quantity and completeness of requirements-related postings, especially by

novice contributors and contributors from a non-technical background. For example,

contributors from non-technical background may be unaware of non-functional

requirements; a good quality requirements library can be a useful external aid in

broadening their requirements related thinking and subsequently facilitating generation of

information rich and meaningful requirements messages. In a free and open access

medium such as web-based OSS development environments, a library of reusable

requirements can be easily incorporated, for example, as wiki pages that are not enforced

upon the potential contributors, but rather something that they can access by choice and

for convenience. Inexperienced newcomers who are interested in becoming potential

contributors to open source software projects could potentially go through such artifacts if

they wish before submitting any requirements information that they may have. As

previously described, both researchers and practitioners have noted incompleteness (e.g.,

missing of crucial information) and invalidity as major problems with OSS requirements

sources such as issue data. A library of reusable requirements could help broaden the

requirements-related thinking, especially for newcomers, and help reduce instances of

incompleteness and invalidity.

Just as incompleteness and invalidity are major information quality problems with

requirements information that gets generated in OSS development environments, so is the

145

erroneous classification of requirements information (misclassification) which, like

incompleteness and invalidity, can be a major hindrance to OSS requirements discovery.

The next chapter describes research investigating how two popular, but different, types of

issue gathering approaches may contribute to the misclassification problem and what can

be done at the issue gathering interface level to tackle misclassification.

146

CHAPTER FIVE: RECOMMENDATIONS FOR TACKLING

MISCLASSIFICATION DURING OSS REQUIREMENTS GENERATION

5.1 Introduction

Issue data generated in the issue repositories of OSS projects are a major source of

requirements for OSS projects (e.g., Crowston et al., 2012; Noll, 2008). Indeed, Alspaugh

and Scacchi (2013) write: “Perhaps the most common requirements like OSS artifacts are

isolated feature requests or bug reports submitted to tracking systems like Bugzilla”

(p.167). In OSS development environments such as Sourceforge, GitHub, and CodePlex,

users and developers can submit requirements information by using issue reporting

artifacts provided within the issue repositories of these development environment (e.g.,

Vlas and Robinson (2012)). Examples of such issue data are shown in chapter two (see

Figures 2 and 3). Screenshots of many OSS issue reporting artifacts are shown in

Appendix 4. There are many information quality issues with the issue data generated in

OSS issue repositories, such as incompleteness and invalidity (e.g., Bettenburg et al.,

2008). Cavalcanti et al. (2014), based on their review of the empirical work done on OSS

issue repositories, note the quality of issue data descriptions and issue data management

processes as major research issues (e.g., causes and impacts) requiring more attention.

Recently the developers and maintainers of many popular OSS projects on GitHub got

together and wrote an open letter to the GitHub management about the most frequent

problems they faced. Among the top problems was the absence of crucial information in

issues, leading developers to request the incorporation of a mandatory issue template with

147

custom fields into the GitHub issue reporting interface as a potential solution2. GitHub

currently uses a simple issue reporting interface with just a text box as shown in Figure 6.

Only project maintainers can add labels to a submitted issue. The requested enhancement

by developers of OSS projects on GitHub, a mandatory issue template with custom fields,

is similar to those provided by some other OSS issue repository platforms such as

Bugzilla and Jira. An example (Bugzilla issue reporting interface for open office) is

shown in Figure 7. The GitHub and Bugzilla issue gathering interfaces represent two

widespread, but different, approaches to gathering issues in OSS development. The first

approach does not impose any classification/labeling at the time of issue creation and

submission, examples of which are GitHub, GitLab and CodePlex. Issue classification is

the process of classifying issues according to some taxonomy or schema (e.g., Falessi et

al., 2014). The second approach imposes classification/labeling at the time of issue

creation and submission, examples of which are Bugzilla, Jira and Trac. The goal of this

chapter is to investigate whether these two different approaches of OSS issue gathering

could contribute to the misclassification problem and what can be done at the interface

level for tackling the misclassification problem.

Different stakeholders involved in software development have different

perspectives/perceptions/views about the software because of their different skills,

knowledge, and experience (Finkelstein et al., 1992; Darke and Shanks, 1996). It is

necessary to accommodate these various viewpoints during requirements gathering (Darke

2 Source: https://github.com/dear-github/dear-github ; http://www.infoq.com/news/2016/01/dear-
github-letter

https://github.com/dear-github/dear-github
http://www.infoq.com/news/2016/01/dear-github-letter
http://www.infoq.com/news/2016/01/dear-github-letter

148

and Shanks, 1996). Software usage is heterogeneous and it is important to gather

requirements information from all types of potential end users and stakeholders. In

addition, different types of requirements information need to be gathered, including

requirements about application domain, software environment, and the engineering – the

development itself (e.g., technology to be used in the development) (Sommerville and

Swayer, 1997b). Considering a single perspective about the software will not allow this,

instead requirements need to be collected from diverse viewpoints (Sommerville and

Swayer, 1997b). Results from the first research phase (chapter three) indicate that the

requirements elicitation practice “collect requirements from multiple viewpoints” is

perceived as beneficial for OSS development by OSS developers, in spite of low usage.

When requirements are collected from a restricted viewpoint, needs of many stakeholders

are not efficiently captured (Sommerville and Swayer, 1997). When requirements are

collected from multiple viewpoints, this can have many benefits (e.g., inferring priority).

For example, requirements suggested by many viewpoints could be potentially important

and, subsequently, of high priority (Sommerville and Swayer, 1997). Choi and Chengalur-

Smith (2009) note that it is critical to develop OSS projects for general end-users. OSS

developers can often lack domain knowledge in many areas (Rantalainen et al., 2011) and

often OSS projects written for end-users can end up as failures (Foushee, 2013). This makes

it important in OSS domain to gather requirements from multiple viewpoints, especially

from non-technical users.

To accommodate diverse views, it is important that information is gathered from

individuals independent of any form of classification (Parsons and Wand, 2014).

149

Classification of information is usually carried out according to some accepted taxonomy

or schema (e.g., Falessi et al., 2014). Imposing classification while gathering information

(a priori classification) reflects a fixed, limited view (e.g., of the decision makers in a

domain), which can be detrimental to accommodating diverse views (Parsons and Wand,

2014). Fixed views imposed by a priori classification may match with the views of only a

limited number of information contributors and prevent inclusion of the views of others

(Lukyanenko and Parsons, 2015; Lukyanenko et al., 2014b). The classification imposed

during OSS issue gathering (e.g., Bugzilla) reflects a fixed, limited view, usually of a few

project developers (this can vary from project to project), which can be a potential

obstruction to gathering OSS issues and requirements from diverse viewpoints (e.g., non-

technical users new to the specific OSS project).

Enforcing a priori classification during information gathering can have negative

impacts such as lower information quality and information loss (Lukyanenko et al.,

2014b). Recent research has reported a major information quality problem with the OSS

issue data, namely the misclassification (erroneous classification of issues) problem (e.g.,

Herzig et al., 2013). Herzig et al. found that about 39% of the issues that were classified

as bugs in the issue data set that they analyzed were not really bugs but, rather,

enhancement requests, feature requests and documentation issues. Similarly, a large

percentage of issues that were classified as feature requests and enhancement requests

were found to be actually of some other type (Herzig et al., 2013). It is important to

investigate whether and how the two different OSS issue gathering approaches contribute

to the misclassification problem.

150

Figure 6. GitHub issue reporting interface

Falessi et al. (2014) found empirical evidence that errors in issue classification can

decrease verification and validation effectiveness; for example, making it hard to find

issues of interest. Falessi et al. mention that such errors in issue data can decrease the

usefulness of developing and deploying data mining techniques, as well as technologies

(e.g., defect prediction models) that utilize issue data. Kochhar et al. (2014) provide an

example of this by empirically demonstrating that misclassification has significant

negative impact on bug localization (techniques that take as input an issue report and

process them to locate source code files that are likely to be related to the issue). Falessi

et al. call for research aimed at investigating support for decreasing human errors in issue

classification.

151

Figure 7. Bugzilla issue reporting interface

From the preceding discussion, it can be seen that the misclassification of issues

could be a major challenge for requirements discovery during OSS development. For

example, a feature or improvement request that has been misclassified as a bug may be

concluded as invalid by developers since they would not be able to reproduce it. It is

important to investigate potential sources and solutions of the misclassification problem.

In this chapter, I explore through a qualitative methodology involving OSS developers,

152

whether and how the two popular but different approaches of OSS issue gathering

contribute to the misclassification problem and what can be done at the issue gathering

interface level for tackling misclassification. The next section describes a theoretical

foundation for exploring the misclassification problem.

5.2 Issue Classification and Misclassification: Theoretical Underpinnings

Open information environments (OIE) are environments in which new sources and uses

of information emerge and where the users of information, while having access to

different sources of information, often have no control over them (Parsons and Wand,

2014). The stakeholders in OIEs are usually information contributors (sources),

information consumers (users) and OIE sponsors (Parsons and Wand, 2014). OSS issue

repositories are OIEs in which the sources of information (issue data) are the developers

and non-developer users who report issues, and the users are the specific project

developers/maintainers who use the issue data for implementation purposes. The sponsors

could be the management team of web-based OSS environments (e.g., GitHub) and

organizations interested in OSS development (e.g., Redhat), who may pay their

employees to participate in OSS development.

Parsons and Wand identify the need to accommodate semantic diversity and

ensuring information quality as key requirements for OIEs to be successful. Different

users and sources are likely to have different views/interpretations of the information

generated in OIEs; these different views can lead to different meanings being assigned to

the data generated or data available, and views can change over time (Parsons and Wand,

2014). Accommodating semantic diversity implies the need for OIE applications to have

153

mechanisms in place for accommodating the different and evolving views of sources and

users. The different contributors of OSS issue data (non-developer users and developers)

and users of these information (project developers, maintainers, and the interested

readers) come from diverse backgrounds (e.g., different organizations and nationalities),

and are geographically distributed (e.g., Crowston et al., 2012) and, therefore, can be

expected to possess diverse views about the issues concerning OSS projects. For example,

individuals from different countries could have very different views about user interface

(Schmid, 2014).

Individuals can observe some characteristics of objects in a domain and form their

individual perceptions about what they have observed; they could form different

conceptualizations about the same characteristics of an object (diverse views), and these

conceptualizations could even change over time for an individual (evolving views)

(Lukyanenko and Parsons, 2015). Issue data submitted by an individual issue reporter can

be viewed as information about some phenomena in the application domain of the

particular OSS project. Multiple issue reporters could observe the same issue, form

diverse perceptions about it, and report their individual descriptions about the observed

issue. This could result in issue information from different reporters being perceived as

duplicate by the project developers/maintainers. An example of duplicate issue

information is provided below:

Three different submitted bug reports perceived as duplicates of each other by

project developers (source: open office Bugzilla https://bz.apache.org/ooo)
[1] “The rows are way too small (in fact I can’t see a thing). I had to upsize the fonts to 22 to get a

decent view of the sheet.”

[2] “The default row height is set to 0.0 for all cells when first starting. I have been unable to find a

place to override this setting.”

https://bz.apache.org/ooo

154

[3] “Just installed 1.0 on redhat 7.2 with KDE 2.2. Open up a new spreadsheet. The rows are invisibly

tiny. I select all rows with ctrl-a, then go to menu format/row/height and the height is showing as 0.03

cm with the default checkbox checked on. I enter 0.5 cm in the edit box and the default checkbox turns

itself of. I close the dialog and the rows are now large enough to type in. Bug: The rows should not open

so small. Where did the default of 0.03 come from?”

In the above example, the three bug reports were submitted by different reporters

who observed the same issue, formed different individual conceptualizations of it (diverse

views) and reported their individual descriptions about the issue. Bettenburg et al. report

that OSS developers may not perceive duplicate issue information as a serious problem;

instead, they may add useful information about an issue (Bettenburg et al., 2008). Hence,

diverse individual descriptions about the same issue could potentially help enrich the

issue information content. Since different issue reporters may make observations about

some phenomenon related to an OSS project in different ways, some may make rich

observations/mental visualizations and subsequently provide rich, detailed issue

information, while others may end up providing incomplete or incorrect issue information

as perceived by the project developers/maintainers. Incompleteness and incorrectness are

commonly occurring problems with the issue data in OSS issue repositories (Bettenburg

et al., 2008). In the above example on duplicate bug reports, it can be seen that the third

bug report has detailed information content, whereas the first bug report has limited

information content, potentially illustrating the differences in the mental

conceptualizations of their reporters at the time of reporting.

 To support diverse and evolving views, that is, facilitate semantic diversity, a

desired property from OIE applications is that they should allow capturing and storing

information from contributors independent of any form of classification (Parsons and

155

Wand, 2014; Lukyanenko and Parsons, 2015). Classification is a human dependent

activity and can be greatly influenced by human characteristics such as experience and

knowledge (Lukyanenko et al., 2014b). The same thing may be classified differently by

different individuals or the same thing may be classified differently by an individual at

different times (Lukyanenko et al., 2014b). For example, one individual may classify a

passport as an identity document while another individual may classify it as a travel

document (Lukyanenko et al., 2014b). A priori classification presented in any IS artifact

reflects fixed views that cannot easily accommodate the multiple and rapidly evolving

views that are commonplace in OIEs (Parsons and Wand, 2014). Fixed views imposed by

a priori classification can bias user-generated content to the views of a limited set of

contributors and prevent the inclusion of views of others (Lukyanenko and Parsons,

2015). This is because individuals can widely differ in their conceptualizations of objects

in some domain and individual conceptualizations can vary over time as well. As a result,

the views of many potential contributors may not match with the limited view that an a

priori classification imposes (Lukyanenko and Parsons, 2015). When information

contributors are unfamiliar with the classes presented by an information system artifact to

them, the result is a forced choice which does not match with the perceptions of the

information contributors (Lukyanenko et al., 2014b). This can have negative impacts such

as lower quality of contributed information and information loss (Lukyanenko et al.,

2014b). As an example in the context of OSS issue repositories, comment 27 (Table 38)

points out issues that are edge cases; for example, issues that are both a bug and an

enhancement. Other combinations are possible like bug-documentation or bug-

enhancement-user interface (source: GitHub). A restrictive a priori classification provided

156

by issue gathering interface such as Bugzilla cannot accommodate such diverse cases and

may result in loss of such information.

In OSS issue repositories, this would mean that the issue reporters should be able

to specify their issue information as it is in their minds without having to worry about

assigning them to some a priori classes/labels that an issue gathering interface provides .

In other words, OSS issue gathering interfaces should capture issue information from

reporters without imposing the need to assign specific class labels to them while creating

and submitting issues. This can clearly support the diverse views of many different issue

reporters distributed across the globe. For example, consider the label issue type in the

Bugzilla issue reporting interface. If a reporter chooses enhancement as the type of his/her

issue, in order to be certain it is indeed an enhancement, he or she needs to be certain that

the requested characteristic is not already in the software which would mean having a

good knowledge of the current functionalities and characteristics of the software. It is

highly likely that often this is not the case. Consider the other label priority (severity is

similar to this). Prioritization of requirements often involves groups of requirements and

stakeholders, for example, high priority mould mean a requirement is likely to be

implemented much before several other requirements or that it is more important in

comparison to several other requirements to a group of stakeholders (Firesmith, 2004). A

lone issue reporter submitting a single issue at some time point may not have a very good

idea of priority and severity of the issue he or she is submitting. This is also indicated by

the following comment of a responding OSS developer in the second survey: #1:

“Reporters are very rarely able to accurately decide priority, severity or any of the other

fields presented in interface two. Only version is really valuable and that is easily

157

established with a quick back and forth with the reporter.” Hence, by asking the issue

reporter to assign such labels to their issue description, issue reporting interfaces such as

that of Bugzilla appear not to be accommodating diversity well in the views of issue

reporters (e.g., those issue reporters who do not have enough knowledge to provide all

labels). As a result, many issue reporters may provide incorrect labels (e.g., see developer

comment 18, Table 37), and the issue description gets stored along with those incorrect

labels. Thus enforcing a priori classification at the time of creation of issues is a potential

contributor to misclassification.

On the other hand, many OSS issue gathering interfaces (e.g., GitHub) provide a

simple interface that seeks to capture just the issue description from the issue reporter.

The issue reporters do not need to add any labels or classes to their issue information and

the issue information gets stored independent of any classes/labels. In GitHub, only

project developers/maintainers can assign labels to the submitted issues

(https://help.github.com/articles/creating-an-issue/). Thus, the decision makers (project

developers/maintainers) can infer the labels/classes (e.g., whether an enhancement,

feature request or a bug) for a particular issue from the issue description itself, provided

sufficient information has been provided in the description (c.f., Lukyanenko et al., 2014)

and the issue reporters are not forced to classify/label their issues at the time of creation

of their issues.

GitHub and Bugzilla issue gathering interfaces represent two popular, but

different, ways of capturing and storing issue information from reporters in OSS domain.

This is also indicated by the following comment of a survey respondent: #2: “IMHO both

https://help.github.com/articles/creating-an-issue/

158

these interfaces are widespread and need improvement. Specifically, the true goal is

getting the problem fixed. Therefore both interfaces would benefit by having a prominent

area to accelerate any fix….” Google Code, Gitlab and Codeplex are examples of OSS

development environments that use an issue reporting interface (shown in Appendix 4)

similar to that of GitHub whereas Jira is an example that is similar to Bugzilla.

Differences in how an information system captures information from contributors

can influence the quality of that information; for example, putting restrictions on

contributors can result in information loss (Lukyanenko et al., 2014). Therefore, it is

important to investigate how the two different approaches to issue data gathering in OSS

issue repositories may affect the information quality of issue data. This becomes even

more important considering the recent demands to GitHub management from some

GitHub developers for a complex issue reporting interface similar to that of Bugzilla.3 .In

this third phase of the research, I take a qualitative approach to explore how the two

different issue gathering approaches in OSS development may contribute to the

misclassification problem (an information quality problem with OSS issue data) and what

can be done at the interface level for mitigating the misclassification problem.

The next section describes in greater detail the research methodology.

3 See, for example: https://github.com/dear-github/dear-github/issues/59 ; https://github.com/dear-

github/dear-github/issues/72

https://github.com/dear-github/dear-github/issues/59
https://github.com/dear-github/dear-github/issues/72
https://github.com/dear-github/dear-github/issues/72

159

5.3 Research methodology

A web-based survey was used to gather OSS developers’ perceptions about how the two

different issue gathering approaches in OSS development could contribute to the

misclassification problem and what can be done at the interface level to tackle

misclassification. Email invitations containing the survey link were sent out to OSS

developers. OSS developers often participate in both issue reporting as well as issue

classification and, with their knowledge and experience, are a good source of information

for potential misclassification sources and solutions. Screenshots of GitHub and Bugzilla

issue reporting interfaces were shown to the participants, and they were asked to indicate,

based on their knowledge and experience, which interface was more capable of reducing

misclassification. The questionnaire is shown in Appendix 7. Eighty-six OSS developers

responded. In addition, participants were asked to provide their comments in text form in

order to capture their thoughts and perceptions about the two types of issue reporting

interfaces, especially in the context of misclassification problem. Fifty-seven comments

were obtained. The coding process for comments was carried out by me (researcher)

which is “sufficient and preferred” as suggested by experts (Bradley et al., 2007,

(p.1761); Morse, 1994; Morse and Richards, 2002; Janesick, 2000). In fact, Morse writes:

“The quantitative model of ensuring reliability and validity by using external raters is not

recommended for qualitative research” (p.231, Morse, 1994). A reason for this is the

violation of the process of induction that is characteristic of qualitative research (Morse,

1994). Card sorting technique [in which the comments are split into atomic parts (i.e.,

statements) and then put together and analyzed to identify common themes]

(Zimmermann et al., 2010) and NVivo software were used to analyze the comments.

160

Examples are provided in Appendix 9. Open coding (researcher identifying themes

emerging from the data (e.g., Hoepfl, 1997)) was matched with automatic coding by

NVivo (e.g., Auld et al., 2007) to identify commonalities. For example, automatic coding

indicated user as a theme and user misclassification, average user and allowing user as

some of the subthemes. This had commonalities with the coding incorrect classification

when users themselves classify issues by the researcher. The obtained insights are

described in detail in the findings section (next). In addition, sentiment analysis

(identifying positive and negative opinions in a text (e.g., Liu, 2012)) was also carried out

using NVivo (discussed in section 5.5). Examples are provided in Appendix 9.

5.4 Findings

Eighty-six OSS developers participated in the survey. The majority of the respondents

(61.6 %) indicated that the simple issue reporting interface of GitHub was more capable

of reducing misclassification/incorrect labeling. The results are shown in Table 34:

Table 34. Respondent perceptions on which interface best reduces issue

misclassification

GitHub

interface

Bugzilla interface that requires issue submitters to

provide many label values at the time of submission of

issues

Both

interfaces

Neither

interface

61.6% 24.4% 4.7% 9.3%

In general, OSS developers appear to perceive the simple interface as more

capable of reducing misclassification as it does not require issue submitters to

classify/label their issues in contrast to the complex interface. This is indicated by the

following comment: #3: “I think interface one is better to avoid misclassification because

it does not allow you to choose and the second one almost encourages choosing wrong

161

because it requires so many choices to be made that some will be mistaken.” (Others

examples: see comment 6 (Table 35), comment 19 (Table 37), comment 22 (Table 37))

The developers’ comments contained their opinions and perceptions about the

pros and cons of the two types of interfaces in the context of misclassification and their

views about how issue reporting interfaces should be for tackling misclassification. The

insights that were obtained from the analysis of developers’ comments are described.

Insight one: OSS developers appear to perceive themselves as more capable of

performing accurate classification of issues in comparison to users (supportive

comments in Table 35 below)

Table 35. Supportive comments for insight one

C.N. OSS developers’ comments My description of comments

4 “Usually the developers can choose labels that are

more accurate and useful”

Expressing confidence in OSS developers’

ability to assign labels with relatively high

accuracy to issue data

5 “In my experience, it is better to let

developers/admins triage the issues. Users can be

unreliable when it comes to this”

Expressing confidence in OSS developers’ and

project administrators’ ability to classify issues

and being skeptical of the users’ ability to

classify issues; appears to rely on past

experience

6 “An issue interface should not allow the reporter to

indicate the type of issue, as they are more likely to

give an incorrect classification than a developer who

reads the issue”

Expressing lack of confidence in issue

reporters’ ability to correctly classify issues and

expressing confidence in developers’ ability to

classify issues with relatively higher accuracy

7 “Leaving the classification, triage and de-duping to

the development team that knows the backlog, the

decisions made (and why) and reduces data issues”

Expressing confidence in the OSS project

development team’s ability to achieve better

classification of issues; reasons that the project

development team has better knowledge of what

has already been implemented and why and

what remains to be implemented; this

knowledge can help in issue classification, for

example, for assigning labels such as duplicate

162

8 “In my experience, the project maintainers have a

much higher accuracy rate”

Expressing confidence in project maintainers’

ability to classify issues with relatively higher

accuracy (in comparison to users); appears to

rely on experience

9 “Leave the analysis to the developers who are

familiar with the project”

Expressing confidence in OSS developers’

ability to classify issues; reasons that

developers’ familiarity with the project could

help in issue classification

10 “Classification probably should not be done by users

but rather by those trained in classifying the issue”

Being skeptical of the users’ ability to classify

issues; having the opinion that individuals with

some training in issue classification should

classify issues; this could be possibly

developers who would have higher likelihood of

having such training while pursuing their

education and while working on technical tasks

11 “Assuming that project owners are more effective at

classifying issues, it would appear self-evident that an

interface that requires all classification be completed

by project owners should deliver more accurate

classification overall. However, another way to look

at it is that interface two probably results in much

higher classification coverage, though at the expense

of some accuracy”

Being positive about project team’s ability to

achieve better issue classification; appears to

like the many label categories that are part of

the second interface

12 “Assuming that the developers are better assigning

labels and that the submitters make mis-classification,

not letting submitters label at all solves that, I guess”

Being positive about OSS developers’ ability to

achieve better issue classification; being

skeptical of the issue submitters’ ability to

classify issues

 OSS project developers/maintainers’ ability to better classify issues than issue

submitters (who are not themselves OSS developers/project maintainers) can be expected

because of reasons such as their familiarity with the application domain of the OSS

project (comment 9, Table 35), their knowledge of what has been implemented and what

remains to be done (comment 7, Table 35), and their overall technical knowledge and

experience (comment 10, Table 35). For an issue reporting interface, this could

potentially mean requiring the non-developer users to perform as little

163

classification/labeling as possible. The simple GitHub issue interface appears to achieve

this by not requiring any labeling from the issue submitters. After the issue has been

submitted, the project developers/maintainers can infer classes/labels as needed by

reading the issue description (e.g., comment 6, Table 35; comment 16, Table 36).

Insight two: OSS developers appear to perceive issue classification as a part of the

routine project management activities that they need to do (supportive comments in

Table 36 below).

Table 36. Supportive comments for insight two

C.N. OSS developers’ comments My description of comments

13

“Classification is a project management issue. Users

should not be required to perform that function to get

their issues addressed”

Expresses the view that issue classification is

just like any other project management task

that the project development team needs to do

and that users should be kept free of the

burden of classification during issue

submission.

14

“Bug versus feature is really a function of the

engineering team. Therefore, (interface one) from

GitHub is preferably simple because it allows the

engineers to manage assignment”

Expresses the view that issue classification is

a task that project development team needs to

do; positive opinion about interface one as it

is based on this philosophy

15 “It is not up to the user how to classify an issue. The user

should only be given a basic form to submit an issue”

Expresses strong opinion that issue

classification is not a task that users should

do; positive opinion about interface one as it

is based on this philosophy

16 “Labeling is not relevant in issue interface one, as labeling

is handled post submission by project maintainers, and

usually not by the issue submitter”

Considers issue classification by project

development team as the norm; expresses

belief that interface one is based on this

philosophy

17 “It seems far better to me to push issue tagging,

organization and pretty much anything and everything

that isn’t directly related to a user explaining their issue

in conventional language off onto the project maintainers

than to let the issue creator (provided they aren’t a project

maintainer) do all of that”

Expresses strong opinion that issue

classification should be handled by project

developers; expresses the view that only

responsibility on users should be to report

their issues in natural language

164

Classification of issues would have an important role to play in the

implementation activities of OSS projects especially since the implementation activities

that need to be done can differ greatly for different types of issues. For example, a bug

may need semantic changes to be made in the code to support corrective maintenance,

whereas a feature request may need implementing new methods and functionalities

(Herzig et al., 2013). Hence, an OSS development team may view issue classification as a

natural part of their project maintenance activities, (comment 13, Table 36), instead of

viewing it as a task that users should perform (comment 15, Table 36). For an issue

reporting interface, this could mean focusing on asking users only to provide the issue

description and not any classification information (e.g., comment 15, Table 36; comment

17, Table 36).

Insight three: Not requiring issue submitters to perform classification/labeling of

their issues can increase the workload of OSS project developers/maintainers but so

can misclassification (supportive comments in Table 37 below)

A simple issue reporting interface like that of GitHub defers classification/labeling to the

project developers/maintainers, meaning extra work for them (e.g., comment 18, Table

37; comment 21, Table 37), but misclassification by issue submitters can increase the

workload of developers as well, since they would need to relabel the misclassified issues

correctly (e.g., comment 18, Table 37; comment 19, Table 37). In both cases, developers

would have to read through the issue description to understand it. However, the first

scenario (leaving issue classification to project developers) may be more desirable since,

if developers choose not to classify, then issues remain unclassified but there is no error.

165

Table 37. Supportive comments for insight three

C.N. OSS developers’ comments My description of comments

18 “Maintainers of a project are in a better position to

triage issues. This requires a small amount of work

upfront on the part of the maintainer, but it’s

probably a wash given that users will end up

guessing at the complexity of choices in interface

two, and the maintainer will still need to clean

things up. Interface one is also more likely to be

used”

Expresses the view that when project developers

do issue classification, it will be some extra work

for them but much less when compared to the

work of cleaning up the misclassified data

generated by users. Expresses the view that project

developers would be able to achieve better issue

classification in comparison to users who may

simply end up guessing.

19 “In issue interface one, the issue remains

unclassified until a contributor assigns a label.

This reduces user misclassification to zero but

depending on the number of developers, there may

be disagreements over whether it is an

enhancement or a bug. With issue interface two, it

immediately asks a user to classify their issue, but

this is definitely open to users mischaracterizing

their issues, resulting in more developer time,

ensuring it goes to the right place”

Expresses the view that users classifying issues

(which is the case with interface two) can actually

increase developers’ workload by requiring them

to clean up the misclassification by users.

Expresses the view that issue interface one

drastically reduces chances of occurrence of

misclassification; the only thing that may happen

is some disagreements over issue classification in

case there are many developers in the development

team.

20 “I suppose interface one reduces misclassification

but does so by not classifying at all, it defers the

work of classifying to someone else. Presumably,

some who is better able to make classifications? Of

course, the question is, is there any one with the

time and temperament available to classify all the

tickets being filed”

Points out that interface one defers the issue

classification task to project team members who

can be expected to be better at issue classification,

thus reducing misclassification. The additional

workload should not be an issue if the project team

members have the time and motivation needed.

21 “Leaving the project maintainers or issue triagers

in charge of labeling reduces mislabeling but

increases their workload”

Expresses the view that classification of issues by

project team members would mean additional

workload for them but would reduce issue

misclassification.

22 “Interface two offers a lot more field to screw up.

The simpler interface one does not offer any way to

classify an issue, so the burden is on the project

maintainer to do so, but that will inherently reduce

mis-categorization”

Expresses the view that in the case of interface

one, project developers would have the additional

workload of issue classification but there would be

the advantage of a reduction in misclassification.

23 “One makes the developer or some other agent of

the developer responsible for triage. Two enables

the reporter to attempt to triage themselves, saving

developer time, but also more strongly enabling

mislabeling. Neither handles this correctly”

Expresses the view that with complex interface

two, issue reporters themselves classify issues

which mean there is a high likelihood of

misclassification which could offset developers’

time savings

 On the other hand, in the second scenario (issue reporters themselves classifying

the issues), if the developer does not reclassify an incorrectly labeled issue, the

misclassification stays, resulting in significant information quality issues. This can

166

happen in the second scenario, especially if the developers do not want to put in much

effort, as indicated by the following comment: #24: “This is not a strong bias since both

really come down to how much effort the development team puts into consistency. I have

seen GitHub projects which are well organized and Bugzilla projects where nobody looks

at the tags because it is seen as too much effort to clean them up” Thus, it appears that

many OSS developers may not be willing to take the effort to correct the misclassified

issues submitted by issue reporters, which means the misclassification stays. This may

explain the large percentage of misclassification in Bugzilla and Jira issue data reported

by Herzig et al.

Insight four: A simple issue reporting interface may better facilitate participation of

non-developer users in OSS issue reporting in comparison to a complex interface

(supportive comments in Table 38 below)

It appears that a simple issue reporting interface, such as that of GitHub, may better

facilitate participation of non-developer users who are often unfamiliar with OSS

development (e.g., comment 25; Table 38; comment 26, Table 38; comment 36, Table

40), and who may not have sufficient information about their issues in mind at the time

the issues are submitted (e.g., comment 34, Table 39). In spite of not having all needed

information, in a complex issue reporting interface users may be psychologically

pressured to provide incorrect label information just because of the presence of several

label fields in the issue reporting interface (e.g., comment 26, Table 38; comment 29,

Table38; comment 33, Table 39; comment 35, Table 39).

167

Table 38. Supportive comments for insight four

C.N. OSS developers’ comments My description of comments

25 “Interface one leaves classification to project

maintainers and has a lower barrier to entry for

reporting issues”

Expresses the view that it would be easier for

users to participate in issue reporting with the

simple interface in comparison to the complex

interface, one of the reasons being that they

don’t have to do any classification when using

interface one as it is left out to the project

development team

26 “Both have issues. I prefer first (looks like GitHub)

because it is so much simpler, which makes it more

likely an issue will actually be submitted. Two which

looks like Jira etc. is far, far too complex and is likely

to get people to mis-categorize or just give up. First

would work well if a simple categorization UI

component were added”

Expresses the view that issues are more likely

to get submitted when the simple interface one

is used. Points out that when the complex

interface two is used, there is a high likelihood

for both misclassification and as well as non-

participation.

27 “In addition to improper labeling, a complex UI can be

confusing to users and inflexible to edge cases (e.g.,

what if the issue is both a bug and a feature). Keeping

it simple with a message thread allows for flexibility

through the conversation itself”

Points out that a complex interface can lead to

misclassified issues, confuse users and not

flexible enough to allow reporting of special

case issues, for example, issues that can be

categorized as both bug and enhancement.

Suggests that a simple interface would allow

for more flexible issue reporting.

28 “I think that, if interface two is provided, then perhaps

issues would be better classified, but a huge

percentage of issues would not be filed at all. Faced

with that huge form, I would not open half the issues I

do at current. Perhaps I am answering this question

poorly as your question asked about classification, but

I think when the choice is between an interface with

marginally more poor classification is put against one

so complicated that the amount of issues is drastically

reduced I think the open source software development

process will suffer greatly”

Expresses the view that a complex interface

would drastically reduce issue submission.

29 “Tough decision, interface one is definitely more

attractive and approachable, but it does not capture

the complexity of the problem enough. The second

interface captures much more complexity, but it can

possibly intimidate bug-reporters with its many

options”

Points out that for many potential issue

submitters, the complex interface two can be

intimidating whereas the simple interface one

can be attractive and approachable

A complex interface such as that of Bugzilla may dissuade many potential issue

submitters from submitting their issues as they may feel that they cannot provide what all

information is being asked for (e.g., comment 28, Table 38).

168

Comment 27 (Table 38) brings up an interesting scenario – that of edge cases; for

example, issues that are both a bug and a feature or issues that are user interface issue and

a feature request. Clearly, the predefined label values in a complex interface such as

Bugzilla do not provide issue submitters with the flexibility to assign multiple categories

when the need arise, as comment 27 points out. This is another potential example of non-

accommodation of diverse views when reporters are forced to select from a predefined

label value for an issue that does not fit in, resulting in misclassification of their issues.

Insight five: A simple issue reporting interface would provide ease of use for

potential issue reporters (supportive comments in Table 39 below)

Ease of use is an important factor in the use of technology artifacts (e.g., Davis,

1989). Ease of use appears to be an important factor in the context of issue reporting

interfaces as well (e.g., comment 34, Table 39). The simple interface encourages users to

focus mainly on the content of the issue instead of the accompanying metadata (comment

32, Table 39; comment 35, Table 39), which can result in potential time savings for issue

reporters (comment 30, Table 39). Such factors can potentially make a simple issue

reporting interface easy to use and facilitate greater actual use. The complexity of the

second interface can frustrate/overwhelm the user (comment 33, Table 39; comment 35,

Table 39) and make it difficult to use (comment 31, Table 39). Thus, the complexity of

the second interface can be a potential barrier to its actual use.

169

Table 39. Supportive comments for insight five

C.N. OSS developers’ comments My description of comments

30 “Interface one, however, takes less time and is

often easier to move labels around afterward”

Expresses the view that issue submission process

using interface one would save time and that the

project development team can easily handle the

labeling process post submission

31 “Second form needs major streamlining to be

truly usable”

Points out that the complex interface two need to

undergo major changes

32 “One wins on human factors consideration. By

encouraging the user to describe the problem

rather than forcing them to tender non-

applicable details, the developer who receives

the issue is much more likely to get information

that is more useful to addressing the issue at

hand”

Expresses the view that when considering human

factors, especially for users, the simple interface one

is better since it does not demand anything from the

user other than the issue itself.

33 “The first (GitHub) is bit too simple. There is no

way to require any classification at all. The

second (Jira?) is a total mess and asks for too

much information. In the first case there is no

opportunity to gather any information and in the

second it is likely to be wrong because it asks

for too much and frustrates the user into picking

false options”

Expresses the view that the complex interface two

demands too much meta data from users which can

frustrate them and result in submission of incorrect

meta data along with the issue. Points out that issue

interface one is simple, probably very simple, for

users to use.

34 “Allows me to submit easier. Many times when I

am submitting issues, I do not know that much

information about what is happening- better to

be simpler and let the people debugging it worry

about specifics”

Points out that issue submitters may not have the

necessary information/knowledge for issue

classification at the time of submitting of issues;

suggests that it would be better if project

development team handles issues classification in

such circumstances

35 “I think that the average user submitting a bug

report will feel a bit overwhelmed by all the

choices in interface two and feel like they have

to provide input for every UI element shown

even if they are not sure what they should select

or input. In interface one, the focus seems more

like getting the raw bug information from the

user and letting the developer/project admin

determine the appropriate metadata that gets

attached to the bug submission”

Expresses the view that a complex interface such as

interface two that asks issue submitters to perform

several types of labeling for the issues being

submitted can leave the users feeling overwhelmed,

especially if they do not have the necessary

information/knowledge for the labeling. Appears to

suggest that simple interface one is not that way since

with interface one, the overhead of classifying issues

is on the project development team and the users have

to focus only on submitting the issue data.

Insight six: Only OSS developers/contributors with technical skills and experienced

users may be capable of doing good quality classification at the time of issue creation

(supportive comments in Table 40 below)

170

Table 40. Supportive comments for insight six

C.N. OSS developers’ comments My description of comments

36 “It depends on who is reporting. If it is an end

user, interface one is far preferable, as it

encourages reports even when they are not

familiar with open source development. If it is a

contributor reporting, then interface two alleviates

a lot of the responsibility for categorization on the

part of the repository owners”

Expresses the view that interface one would

encourage end users who are often not familiar

with OSS development to participate in issue

reporting. Also, suggests that a complex interface

such as interface two may be suitable only for

skilled reporters such as OSS developers who are

likely to be capable of achieving good quality issue

classification at the time of submission and thus

could help reduce the workload of the project

development team.

37 “It really depends on who is submitting the bug. In

either case, for open source projects that have

open issue tracking systems, issues submitted by

people that are unfamiliar with the project and

people that are less technical; for maximum

accuracy, I think a combination of either interface

and communication between the reporter, issue

tracker moderator (if they are different from the

project developers) and project contributors will

suffice. For experienced and highly technical

people, interface two combined with

communication between the reporter and project

contributor would probably produce the most

accurate results”

Expresses the view that the complex interface two

would be suitable only for experience individuals

and technically skilled individuals. Also points out

that communication between issue reporters and

project development team is important for the non-

technical reporters, reporters unfamiliar with the

project as well as technically skilled and

experienced reporters.

When project developers/maintainers (or other developers/individuals with good

technical knowledge or users experienced in issue reporting) report issues, they may have

the necessary knowledge and skill for providing issue classification information at the

time of issue creation/submission (e.g., comment 36, comment 37, in Table 40). Such

individuals could potentially achieve better quality issue classification at the time of issue

creation that, in turn, could help reduce some of the workload of the project

developers/work maintainers (comment 36, Table 40).

Factors such as prior experience and domain expertise can result in different views

of the same domain among different contributors and different views for the same

contributor at different time points (Lukyanenko and Parsons, 2015). Comments in Table

171

40 indicate that domain experts (project developers/maintainers) and experienced

individuals (developers/experienced users) can have views different from those of novice

users about the same OSS project for which they are submitting their issues. To

accommodate such diverse views, applications should allow for capturing information

from contributors mainly in a free form manner without imposing mandatory

classification (Lukyanenko and Parsons, 2015). Contributors can be encouraged (not

required) to provide classification information as attached to the focal information if they

wish to do so (Lukyanenko and Parsons, 2015). The mandatory classification imposed in

a complex issue reporting interface such as Bugzilla may be convenient for individuals,

such as domain experts, who have a higher likelihood of having that information in their

mind, but inconvenient for the average users who may not have that information (e.g.,

comment 34, Table 39). Hence the complex Bugzilla interface may not work for such

users. On the other hand, a simple interface such as that of GitHub, while convenient for

average users (e.g., comment 36, Table 40), can also accommodate the views of project

developers/maintainers, developers, individuals with technical knowledge, and

experienced users, since they can simply provide the classification information as

additional text data to the main issue content if they wish to do so.

Insight seven: OSS developers may prefer some meta-data from issue submitters

that would be useful in issue data classification.

(Supportive comments in Table 41 below)

172

Table 41. Supportive comments for insight seven

C.N. OSS developers’ comments My description of comments

38 “I think maintainers/developers of a project still need

to triage all issues that come into the system, but

allowing users to provide a starting point of where

they feel the issues belong, or their perceived severity

allows maintainers/developers to prioritize the

triaging”

Expresses the view that while project

developers should be largely responsible for

issue classification, it may be helpful for the

developers if they can get a sense of what the

issue reporters think about where the issue

being submitted fit in or how important it is.

39 “The more people who can contribute to the

classification, the better the classification would be

(generally speaking)”

Suggests that inputs from multiple individuals

to the classification of an issue can improve

the classification quality

40 “Option one is much cleaner, but if it had optional

things to add like assignee or category, it would be

nice”

Appears to like the simplicity of interface one;

suggests that some additional information

accompanying the issue can be useful; also

suggests that requests for additional

information should be optional, not mandatory

41 “Simple interface, some labeling, not all fields needed

from second screen though”

Appears to like the simplicity of interface one;

suggests that some additional information

accompanying the issue can be useful

42 “I wish GitHub had more fields. It is often useful to

know particular version of application associated with

a bug report and various other details”

Suggests that additional information

accompanying the issue can be useful

43 “Interface two has some nice features, such as

hardware and priority. Reminding the person that is

submitting the issue that things such as OS and version

are important for the bug. Those fields do not make

sense in a feature request. Generally, I feel one works

better, because if information is left out, it can just be

requested so that the users gets the correct data. You

would want android OS version, not just android,

which a novice user might submit, but a more

experienced user would most likely have “android

3.4.4, HTC 1, gen.2” listed anyways”

Expresses the view that in general, the simple

interface one would work better; An example

scenario is when a feature request is being

submitted, many of the label fields in the

complex interface two will not make sense.

Also, suggests that some additional

information accompanying the issue can be

useful; Reminders could be helpful for getting

such additional information, especially in the

case of novice users.

44 “I like allowing people to apply an initial label, but

that second form (is it from trac?)is too much detail

IMO”

Expresses the view that some additional

information accompanying an issue can be

useful but also points out that asking for as

much detail as interface two does is

undesirable

It appears that developers may prefer some classification information from issue

submitters if they can provide it, such as version number and hardware (e.g., comment 42,

comment 43, in Table 41). This could be a potential indicator of the desire of project

developers/maintainers to get some meta-data on a submitted issue. While the complexity

of an interface such as Bugzilla is acknowledged (e.g., Comment 33, Table 39), it is also

173

expected that more brains on a cognitive activity such as classification could potentially

improve it (e.g., comment 39, Table 41). Knowing issue submitters perceptions may be

useful for the project developers (e.g., comment 38, Table 41).

A simple interface such as that of GitHub could support OSS developers’ desire

for some issue meta-data as comment 43 points out. Issue reporters with rich

conceptualizations of the OSS projects could provide additional classification information

as text data accompanying the main issue content through the simple GitHub interface.

This can help avoid the dangers of misclassification through a complex interface, such as

that of Bugzilla, while allowing issue reporters to provide supportive information to the

project developers/maintainers. Some sort of reminder to the issue submitters for

additional information may be useful to remind, but not require, them to provide useful

classification information. In fact, Gitlab and Google Code provides a simple issue

reporting interface like that of GitHub but with simple textual prompts to the submitters

as shown in the Gitlab interface in Figure 8; this can be deleted if the submitter wants.

Such prompts have potential benefits such as improving the completeness of requirements

information elicited (e.g., Pitts and Browne, 2007).

174

Figure 8. Textual prompts in Gitlab issue reporting interface

Source: https://gitlab.com/gitlab-org/gitlab-

ee/blob/master/doc/customization/issue_and_merge_request_template.md)

Different types of textual prompts may be needed for different types of issues. In

fact, this is an active issue being considered by Gitlab (seeking different textual prompts

for different types of issues).4

Insight eight: In a complex interface that requires labeling issues and which

provides default label values, issue reporters could accidentally or because of lack of

knowledge stick with default values which could contribute to misclassification.

(Supportive comments in Table 42 below)

4 See https://gitlab.com/gitlab-org/gitlab-ce/issues/9088

https://gitlab.com/gitlab-org/gitlab-ee/blob/master/doc/customization/issue_and_merge_request_template.md
https://gitlab.com/gitlab-org/gitlab-ee/blob/master/doc/customization/issue_and_merge_request_template.md
https://gitlab.com/gitlab-org/gitlab-ce/issues/9088

175

Table 42. Supportive comments for insight eight

C.N. OSS developers’ comments My description of comments

45 “Interface one does not actually have any visible way to tag an

issue with anything at all. Interface two by default has

“DEFECT” selected as an issue type, which I can imagine

would cause confusion or cause the user to skip it by accident”

Points out that in the case of the

complex interface two, because of

confusion or by accident, issue

reporters may just stick with default

label values which can facilitate

misclassification

46 “Both have problems. Interface one gives no indication that

there is the ability to classify. Interface two gives a default

issue classification, which can be easily overlooked, and the

default can just be accepted. There are also too many elements

in interface two. Interface two is the better of the two, but it

should not give a default, it should have a drop down say, pick

classification, and have an indicator that it is a required field”

Point out that in the case of interface

two, issue reporters, by oversight, may

just stick with default label values,

which can facilitate misclassification.

It appears that, in a complex issue reporting interface such as Bugzilla, there is

often chances of issue submitters sticking with default label values either by

accident/confusion (comment 45, comment 46, Table 42), or because they may not have

the knowledge/information to provide accurate values and, instead, decide to go with

what is available, thus potentially contributing to the misclassification.

Insights one, two, four and five point out that enforcing classification at the time

of creation of issues can facilitate misclassification, decrease participation, especially of

non-technical users and decrease ease of use for issue reporters. Based on these insights,

it is recommended that:

Recommendation one: Issue gathering interface should not enforce

classification/labeling at the time of creation/submission of issues.

Insights three, six and seven point out that developers may prefer some meta-data

accompanying the issue description that would be useful in issue classification. In fact,

176

there is a good chance that issue descriptions from experienced reporters may contain

such meta-data, as comment 43 points out. Hence it is recommended that:

Recommendation two: Qualified issue reporters (developers, experienced users) can

provide useful meta-data that can assist project developers in issue classification as

text data (e.g., phrases, sentences) accompanying the main issue description, if they

wish to. The issue gathering interface should inform the issue reporter that they can

provide such meta-data if they wish to but that it is not mandatory.

The next section discusses sentiment analysis of developers’ comments.

5.5 Sentiment Analysis of Developers’ Comments

Sentiment analysis at the sentence level involves determining whether the

sentence expresses a positive or negative opinion (e.g., Liu, 2012). NVivo software was

used to carry out sentiment analysis at the sentence level for OSS developers’ comments.

Table 43 lists sentences from developers’ comments that were classified as containing

negative opinions and inferences from them. In the context of the first approach to issue

gathering in OSS issue repositories (which does not enforce classification at the time of

issue gathering), the negative opinions expressed by OSS developers include

disagreements that can arise among project developers over issue classification, limited

time availability of OSS developers, and increased workload.

177

Table 43. Negative opinions of OSS developers

Classified as negative Inference

“depending on the number of developers, there

may be disagreements over whether it is an

enhancement or a bug”

When developers themselves have to classify issues, a

challenge can be the disagreements that can arise over an

issue type, especially if there are many developers in the

project development team.

“Of course, the question is, is there any one with

the time and temperament available to classify

all the tickets being filed”

The limited time availability of OSS developers can be a

challenge when it comes to issue classification.

“Leaving the project maintainers or issue

triagers in charge of labeling reduces

mislabeling but increases their workload”

Issue classification by project developers would mean

reduced misclassification but increased workload.

“Interface two offers a lot more field to screw

up”

The many label fields in interface two mean a higher

likelihood of errors in the submitted issue data

“The second interface captures much more

complexity, but it can possibly intimidate bug-

reporters with its many options”

The many label fields in interface two can be

overwhelming to issue reporters

“Users can be unreliable when it comes to this”

Non-technical users can be unreliable when it comes to

issue classification

“An issue interface should not allow the reporter

to indicate the type of issue, as they are more likely

to give an incorrect classification than a

developer who reads the issue”

There is a higher likelihood of incorrect classification

when issue reporters submit classification information

along with issues than when project developers read

issues and then assign classification information to it.

“Two which looks like Jira etc. is far, far too

complex and is likely to get people to mis-

categorize or just give up”

The complexity of the second interface can facilitate

misclassification and deter participation

“In addition to improper labeling, a complex UI

can be confusing to users and inflexible to edge

cases (e.g., what if the issue is both a bug and a

feature)”

The complexity of the second interface can cause

confusion to users. It lacks flexibility to accommodate

issues that can be classified in multiple ways, for

example, issues that are both bug and feature.

“The second (Jira?) is a total mess and asks for

too much information.”

The second interface demands too much information

from issue reporters which can be undesirable.

“In the first case there is no opportunity to

gather any information and in the second it is

likely to be wrong because it asks for too much

and frustrates the user into picking false options”

The second interface demands too much information

from issue reporters which can cause frustration and

facilitate misclassification.

“Many times when I am submitting issues, I do

not know that much information about what is

happening”

Issue reporters may not have enough knowledge or

information in mind to provide all the information that

the complex second interface is asking for.

In the context of second approach to issue gathering in OSS issue repositories

(which enforces classification at the time of issue gathering), the negative opinions

expressed by OSS developers include the lower information quality of issue data (many

178

errors in submitted data largely due to incorrect classification/labeling), cognitive burden

in issue reporters, reduced participation especially of non-technical users, the lack of

flexibility in accommodating many types of issue reporters (e.g., those who do not have

sufficient information in mind to provide all the classification information) and the lack

of flexibility in accommodating many types of issues (e.g., issues that are both a bug and

a feature). (e.g., those who do not have sufficient information in mind to provide all the

classification information) and the lack of flexibility in accommodating many types of

issues (e.g., issues that are both a bug and a feature).

Table 44 lists sentences from developers’ comments that were classified as

containing positive opinions and inferences from them. In the context of first approach to

issue gathering in OSS issue repositories (which does not enforce classification at the

time of issue gathering), the positive opinions expressed by OSS developers include

higher information quality (e.g., fewer errors due to project developers classifying issues

instead of issue reporters), higher usability and greater control for project developers.

There was also positive opinion about multiple individuals contributing to issue

classification (e.g., getting useful metadata from experienced reporters), a potential goal

of the second approach to issue gathering.

179

Table 44. Positive opinions of OSS developers

Classified as positive Inference

“Leave the analysis to the developers who are familiar

with the project”

OSS developers’ familiarity with OSS projects can

be beneficial for issue classification.

“Assuming that project owners are more effective at

classifying issues, it would appear self-evident that an

interface that requires all classification be completed by

project owners should deliver more accurate

classification overall”

The first interface, by not asking any classification

information from issue reporters and deferring issue

classification to project developers, can improve the

accuracy of issue classification.

“Therefore, (interface one) from GitHub is preferably

simple because it allows the engineers to manage

assignment”

Not asking for classification information makes

issue interface one simple and (desirably) allows

project developers to control issue classification.

“By encouraging the user to describe the problem

rather than forcing them to tender non-applicable

details, the developer who receives the issue is much

more likely to get information that is more useful to

addressing the issue at hand”

The simple interface that does not ask for any

classification information can potentially encourage

issue reporters to focus entirely on the issue at hand

and subsequently, project developers getting more

useful information.

“It is often useful to know particular version of

application associated with a bug report and various

other details”

Meta data associated with issues can be useful.

“One wins on human factors consideration” When it comes to human use, the simple interface is

better.

“The more people who can contribute to the

classification, the better the classification would be

(generally speaking)”

More individuals contributing to issue classification

can improve the quality of issue classification.

“Option one is much cleaner, but if it had optional

things to add like assignee or category, it would be

nice”

The simplicity of first interface is desirable. Some

meta data accompanying issue description is

desirable as well.

“Simple interface, some labeling, not all fields needed

from second screen though”

The simplicity of first interface is desirable. Some

meta data accompanying issue description is

desirable as well.

“You would want android OS version, not just android,

which a novice user might submit, but a more

experienced user would most likely have “android

3.4.4, HTC 1, gen.2” listed anyways”

There is a high likelihood of issue data from

experienced users containing useful metadata such

as version related information.

From recommendation two, it can be seen that when using a simple interface (that

does not require classification), experienced users and OSS developers could include

metadata (that can be useful for project developers during issue classification) as text data

accompanying the main issue description. There could be textual prompts or similar

reminders that notify the issue reporter that they can provide such information if they

180

wish to, but that it is not compulsory. In this way, an issue gathering approach (that does

not enforce classification at the time of issue gathering) can accommodate reporters who

do not have sufficient knowledge/information to provide useful meta-data as well as

reporters who are capable and willing to provide such information.

5.6 Discussion and Conclusion

As previously described, in open information environments different contributors

are likely to have different views/interpretations about some phenomena and, in order to

accommodate the diverse and evolving views of information contributors, a desired

characteristic in OIEs is that they should allow the capturing of information from

contributors independent of any form of classification (Parsons and Wand, 2014). When

an information system enforces a priori classification on contributors of user-generated

content, it can have negative impacts such as information loss and lower information

quality (Lukyanenko et al., 2014). A similar picture emerged from the research discussed

in this chapter about OSS issue gathering approaches that enforce classification at the

time of issue creation. An OSS issue gathering approach that forces issue reporters to

classify their issues at the creation time can potentially lead to misclassification. It can

also lead to the loss of issue information, especially when contributors are novice non-

developer users. An issue gathering approach that does not force issue reporters to

classify their issues at the time of creation of issues could potentially reduce

misclassification and the potential loss of participation from such enforcement. An issue

gathering interface based on such an approach could still accommodate metadata useful

for classification from capable and willing contributors (e.g., OSS developers,

181

experienced users) who can provide such information as additional text data

accompanying the main issue description. Simple textual prompts (that can be deleted if a

contributor wants to) could potentially serve as efficient reminders for such contributors.

182

CHAPTER SIX: THEORETICAL CONTRIBUTIONS, IMPLICATIONS FOR

PRACTICE AND RESEARCH AND LIMITATIONS

6.1 Theoretical Contributions

This research makes theoretical contribution in the area of the design of web-based OSS

development environments by focusing on OSS requirements discovery, an under-

researched aspect of OSS development. Findings from the first and second phase of the

research provide potential design improvement knowledge for making web-based OSS

development environments friendlier towards requirements engineering. Findings from

the third phase of the research provide preliminary insights into the potential association

between OSS issue gathering approaches and the information quality of OSS issues (a

major source of requirements for OSS projects). Phase three also provides insights into

the desirable characteristics in OSS issue gathering interfaces for reducing

misclassification (potential design knowledge about OSS issue gathering interfaces). The

research also makes theoretical contribution by developing a model of the antecedents of

requirements size, quantity and completeness and empirically assessing the antecedents.

This research started with an exploration of the current state of the requirements

discovery practices in OSS development. Relevant OSS literature was reviewed. Few

works exist on OSS requirements discovery. These works have carried out qualitative

analysis of a few web-based OSS projects (e.g., analysis of their discussion forums) and

have claimed that requirements discovery in OSS development is informal and ad hoc.

The first phase of this research extended the existing work by conducting a survey of OSS

developers (described in chapter three) who are largely responsible for overseeing the

183

developmental and maintenance activities (e.g., Crowston and Howison, 2005). The

survey inquired about the usage of formal requirements engineering practices (from CSS

development) and informal practices during OSS development, the perceived usefulness

of formal requirements engineering practices for OSS development and the problems and

challenges that could occur during requirements discovery in OSS development. The

survey provided quantitative evidence for informality of requirements generation in OSS

development and revealed several problems and challenges that could occur during

requirements discovery in OSS development (e.g., incompleteness of requirements

information generated in OSS issue repositories). The quantitative analysis further

revealed that most of the formal requirements engineering practices (from CSS

development) were perceived as beneficial for OSS development in spite of having

significantly low usage, suggesting a significant gap in perceptions and practice when it

comes to OSS requirements discovery. This indicates potential design deficiencies in

web-based OSS development environments as well as potential directions for

improvement for requirements discovery in OSS development. For example,

incorporating feature support for some of the formal RE practices perceived as beneficial

within existing web-based OSS development environments can be a potential

improvement for the design of web-based OSS development environments as well as an

improvement in the OSS development methodology itself.

One of the potential improvement directions that emerged from the survey

(specifically requirements reuse) was selected for empirical investigation because it can

be easily incorporated into existing OSS development environments and also there is

some evidence for the positive attitude of OSS contributors towards reusing software

184

development artifacts (e.g., Von Krogh et al., 2005). A web-based experiment was

designed using Google Code, an OSS development environment in order to empirically

investigate the potential benefits from the availability of a library of reusable

requirements within a web-based OSS development environment for requirement

discovery during OSS development. What emerged from the analysis of experimental

data is that the availability of a library of reusable requirements can be useful during OSS

requirements discovery. For example, it can help individuals with low levels of technical

experience in constructing more detailed requirements messages. Examples of such

individuals could be non-developer users of OSS projects and newcomers to OSS

projects. Also, the analysis revealed potential antecedents of requirements size, quantity,

and completeness, namely availability of relevant information, technical background, and

crowdsourcing experience.

Finally, the research focused on exploring a specific problem in the context of

requirements discovery in OSS development, namely misclassification of OSS

requirements artifacts. A qualitative approach was used to collect data from OSS

developers about how the two main types of issue reporting interfaces used in OSS issue

repositories may contribute to the misclassification problem and what could be done at

the interface level for tackling the misclassification problem. Many issue reporting

interface related design suggestions emerged for tackling the misclassification problem.

For example, a simple interface that does not require users to perform any classification at

the time of submission of issues may be more efficient in tackling the misclassification

problem.

185

Different types of design knowledge contributions are possible. For example,

invention (new knowledge/solutions for new problems), improvement (new

knowledge/solutions for known problems), adaptation (non-trivial or innovative

adaptation of known knowledge/solutions for new problems) and routine design (applying

known knowledge/solutions to known problems) (Vaishnavi and Kuechler, 2015). The

knowledge contributions from this research are potentially of type improvement. The fact

that OSS requirements discovery is problematic and challenging have been noted by

researchers in past (e.g., Dietze, 2005) and further explored and expanded in the first

phase of this research (chapter three). New knowledge emerged about several potential

directions of improvement for requirements discovery in OSS development; specifically,

it was found that many formal requirements engineering practices if adapted efficiently

within existing OSS development environments, could potentially be beneficial for OSS

requirements discovery. One of improvement directions that emerged was empirically

evaluated in the second phase of the research, providing evidence for actual benefits. The

analysis also revealed how individual difference variables such as technical background

could be important factors that may need to be taken into account while planning for or

undertaking activities for improving OSS requirements discovery (new knowledge). In

the final phase of the research, the misclassification problem for OSS requirements

artifacts was explored. This is a newly identified problem that has not been investigated

much. This problem was explored by involving OSS developers, an authentic source for

determining whether misclassification has occurred or not. New knowledge emerged

about how issue reporting interfaces may contribute to the misclassification problem and

186

some of the things that could be done at the interface level to potentially reduce

misclassification problem (design suggestions).

Design knowledge can be manifested in the form of material artifacts

(instantiation) or abstract artifacts (constructs, models, frameworks, architectures, design

principles, methods, design theories) (Vaishnavi and Kuechler, 2015). Models can be

viewed as descriptions/representations about how things are/should be, often representing

the connection between problem and solution components which could then enable

further exploration of the potential effects of design decisions; a key focus of models is

often utility rather than truth (Vaishnavi and Kuechler, 2015; Hevner et al., 2004; March

and Smith, 1995). The knowledge obtained from this research is largely in the form of

models, describing possible connections/associations between problem components

(general informality/adhocness of OSS requirements discovery, requirements description,

requirements quantity, requirements completeness, misclassification of OSS requirements

artifacts) and solution components (formal requirements engineering practices,

availability of a library of reusable requirements artifacts within OSS development

environments, issue reporting interfaces).

6.2 Limitations

This study is based on the assumption/view that formal developmental practices from

CSS development are beneficial for OSS development, in line with others such as

Michlmayr (2005) and Ciolkowski and Soto (2008). This can be constrained by practical

challenges in OSS development domain, including lack of resources (e.g., financial

resources, volunteers) for many OSS projects, time constraints of existing volunteers, the

187

geographically distributed nature of OSS development, the ad hoc nature of OSS

evolution, and the design limitations of web-based OSS development environments.

Thus, benefits from formal requirements engineering practices for OSS development

would be constrained by the extent to which these practices can be successfully

incorporated into existing OSS development workflows.

This research used survey and experiment methodologies and quantitative and

qualitative data analysis methodologies. The limitations of these methodologies apply to

this research. For example, in experimental research, the artificiality of the setting can be

a limiting factor and when there is less control over extraneous variables that could be

another limiting factor (McLeod, 2012). The experimental setting for phase two of this

research was Google Code, a specific web-based OSS development environment which

could be potentially limiting. Future research could address this by replicating the

experiment in other web-based OSS development environments such as GitHub and

Sourceforge. The cross-sectional nature of the study is a potential limitation, and future

research could address this by incorporating some of the formal RE practices as part of a

longitudinal study involving the development of some real-world OSS projects and

analyze the outcomes.

6.3 Implications for Research

The first phase of this research (chapter three) indicated several potential directions of

improvement for requirements discovery in OSS development only one of which was

empirically evaluated in the second phase of the research. The other potential directions

provide a large number of possibilities of exploration for future research. For example,

188

formal requirements documentation practices, how could they be incorporated into

existing workflows of OSS projects and if incorporated, would they be able to yield any

actual benefit? One way in which many of the formal RE practices could be incorporated

in web-based OSS development environments is in the form of features within those

environments. One advantage of having such features within OSS development

environments is that they will not obstruct the freedom and flexibility of OSS developers

- developers can use such features if they wish to, but are not required to do so.

Investigating the design of such features and how the OSS characteristics (e.g., scope,

size) could influence their usage is a potential area for future research. For example, many

of the requirements modeling practices were perceived as beneficial for OSS

development and the practice “model the software architecture” was rated highest on the

usefulness scale. Kazman et al. (2016) found that the OSS community engages in

sufficient architectural discussion to support architectural thinking. Thus, a feature

supporting architectural modeling (e.g., UML diagrams such as component diagrams and

deployment diagrams that support architectural modeling (see Maksimchuk and Naiburg,

2004)) could be a potentially useful enhancement for web based OSS development

environments as well as a feature that could potentially have a higher likelihood of usage

by the OSS community. The survey identified several problems and challenges that could

occur during requirements discovery in OSS development. Future research could analyze

effective solutions for mitigating these problems, either in the form of some features or

tools or some other ways.

The second phase of the research indicated some actual benefits from the

availability of a library of reusable requirements (specifically requirements patterns)

189

within OSS development environments. Also, technical experience and crowdsourcing

experience were found to be important factors in the context of usage of the library of

reusable requirements artifacts. Many possibilities of exploration for future research

emerge. For example, whether and how, the requirements information existing in OSS

issue repositories, discussion forums, and mailing lists could be analyzed for finding

useful patterns. How could OSS projects plan for efficient usage of their reusable

requirements artifacts by their existing contributors and interested potential contributors

based on their experience and knowledge?

The third phase of the research provided many potential design suggestions for

OSS issue reporting interfaces for tackling misclassification problem. Each of the design

ideas that emerged could be empirically evaluated in future research. For example, one

suggestion that emerged was that a simple issue reporting interface (like that of GitHub)

would facilitate much greater participation of non-developer users while mitigating

misclassification of requirements information. This could be empirically evaluated to see

if that is the case, in the context of some real-world OSS project.

6.4 Implications for Practice

Requirements discovery is a challenging aspect of OSS development. Recent complaints

by practitioners (developers of many OSS projects on GitHub) to the GitHub

management provides evidence for this5, with incomplete and missing information as

major problems with OSS issue data (a major source of requirements for OSS projects).

Well-structured external aids, such as a library of reusable requirements, can potentially

5 https://github.com/dear-github/dear-github

https://github.com/dear-github/dear-github

190

assist existing and potential OSS contributors during requirements generation for

improving the quantity and completeness of their requirements information. Efforts could

be made to improve the reusability of informal requirements information that gets

generated during the evolution of OSS projects (e.g., messages in discussion forums). For

example, they could be made more structured, and better search facilities could be

provided.

The adoption of OSS by organizations is increasing (e.g., Spinellis and Giannikas,

2012), but there are several challenges including integration problems (lack of ability to

integrate with existing software systems), lack of technical and business knowledge to

implement, customize and use OSS software, lack of OSS products with needed

functionalities, questionable quality of existing OSS software, and hidden costs (e.g., time

consuming to evaluate existing OSS products, need for user training) (Nagy et al., 2010;

Hauge et al., 2010). Improving the quality of requirements generated during the evolution

of OSS projects can potentially be of help while trying to address some of the above

challenges. For example, if some of the requirements generated could match the

functionalities needed by organizations that are potential future adopters, this could help

reduce instances of missing functionalities. There is often need to customize OSS

software to fit them into the organizational context, but often, there is a challenge of the

lack of necessary knowledge within the organization to do so (Nagy et al., 2010; Hauge et

al., 2010). Taking steps to ensure that some of the requirements that get generated during

the evolution of OSS projects match with the needs of organizations that are potential

adopters (e.g., organizational employees could submit feature requests in OSS issue

repositories) can potentially help reduce customization and integration challenges and

191

associated costs. For example, if the requirements submitted by organizational employees

gets incorporated into the OSS software, this can potentially mean a lower burden on the

organization in trying to make the OSS product usable in the organizational context, and

lower costs arising from attempting to modify OSS software to fit the organizational

needs, etc. In fact, Purcell (2015) found some evidence that the involvement of

organizations in OSS development can be an efficient way to widen the representation of

the interests of non-developer users during OSS development. This is important, given the

valid concern that OSS development is largely represented by interests of developers

(Purcell, 2015). The preceding discussion indicates the practical usefulness of

incorporating external aids, such as a library of reusable requirements, that can potentially

assist in generating more meaningful and complete requirements. It also indicates the

usefulness of incorporating some of the formal requirements engineering practices into

OSS development since some of these practices can potentially help improve the quality

of OSS requirements.

Findings described in chapter five provide insights into improving the usability of

OSS requirements gathering interfaces. Enforcing classification at the time of

construction and submission of requirements can potentially reduce ease of use for

contributors and deter participation, especially of individuals from a non-technical

background. Such individuals could be employees of organizations (potential adopters)

wanting to communicate their needs to the OSS project development team. Insights

described in chapter five can shed light on the design of OSS requirements gathering

interfaces that are more usable from the contributors’ point of view.

192

Recently, there have been reports of usage of agile (development method targeting

shorter development cycle to support complex, fast moving, competitive markets)

requirements engineering practices in the industry (e.g., Ramesh et al., 2010). Ramesh et

al. identified six agile requirements engineering practices, namely face to face

communication over written specifications, iterative requirements engineering, greater

importance to requirements prioritization, management of requirements change through

constant planning, prototyping, and usage of review meetings and acceptance tests

(Ramesh et al., 2010). As can be seen, there is overlap between agile RE practices

identified by Ramesh et al. and the RE practices listed by Somerville and Swayer,

including prototyping, requirements prioritization, requirements management through

planning, review meetings and testing. These practices were perceived as beneficial for

OSS development in the initial phase of this research. The idea of agility or flexibility,

characteristic of the agile methodology, fits well with the flexibility that is characteristic

of OSS development. Hence, OSS practitioners can potentially find some of these agile

RE practices easy to incorporate in to their workflows. For example, in prototyping, a

piece of software containing some functionalities (the prototype) is created by

programmers and used as a way to communicate with users and to validate and refine

requirements (Ramesh et al., 2010). This practice can align well with the implementation

oriented focus of OSS developers and hence, potentially easy to incorporate in to their

developmental activities. Another agile RE practice is testing in which tests are written

(often for requirements validation, can be part of requirements specification too) to check

if a piece of code is behaving as expected (Ramesh et al., 2010). OSS developers can

193

potentially find this practice easy to incorporate in to their workflows since it is directly

associated with coding.

194

REFERENCES

Agerfalk, P, J., Fitzgerald, B., Holmstrom, H., Lings, B., Lundell, B., Conchuir, E, O.

(2005). “A framework for considering opportunities and threats in distributed software

development”. International workshop on distributed software engineering

Aggarwal, K., Hindle, A., Stroulia, E. (2014). “Co evolution of project documentation

and popularity within GitHub”. Proceedings of the 11th working conference on mining

software repositories. Pp.360-363

Aksulu, A., Wade, M. (2010). “A comprehensive review and synthesis of open source

research”. Journal of the association for information systems, 11, pp.576 – 656

Alspaugh, T, A., Scacchi, W. (2013). “Ongoing software development without classical

requirements” In Proc. Of IEEE RE pp. 165-174

Angst, C, M., Agarwal, R. (2009). “Adoption of electronic health records in the presence

of privacy concerns: the elaboration likelihood model and individual persuasion”. MIS

Quarterly, 33(2), pp.339-370

Antonellis, D, V., Vandoni, L. (1993). “Temporal aspects in reuse of requirements

specification”. Conference on advanced information systems engineering. Berlin.

Anvik, J., Hiew, L., Murphy, G, C. (2005). “Coping with an open bug library”.

Proceedings of the 2005 OOPSLA workshop on Eclipse technology. pp. 35-39

Appan, R., Browne, G, J. (2010). “Investigating retrieval induced forgetting during

information requirements determination”. Journal of the association for information

systems. 11(5). Pp.250-275

Arguello, J., Butler, B, S., Joyce, L., Kraut, R, E., Ling, K, S., Rosé, C, P., Wang, X.

(2006). “Talk to Me: Foundations for Successful Individual-Group Interactions in Online

Communities,” Proceedings of the 2006 ACM Conference on Human Factors in

Computing Systems, pp. 959-968.

Arthur, J, D., Groner, M, K. (2005). “An operational model for structuring the

requirements generation process”, Requirements engineering, 10, pp.45-62

Auld G, W., Diker, A., Bock, A., Boushey, C, J., Bruhn, C, M., Cluskey, M. (2007).

“Development of a decision tree to determine appropriateness of NVivo in analyzing

qualitative data sets”. Journal of Nutrition Education and Behaviour, 39(1), pp.37- 47

Ayala, C., Franch, X., Conradi, R., Li, J., Cruzes, D. (2013). “Developing software with

open source software components”. Finding source code on the web for remix and reuse,

pp.167-186

Badreddin, O., Lethbridge, T, C., Elassar, M. (2013). Modeling practices in open source

software development. In Open source software: Quality verification, E. Petrinja et al.

(Eds.) Springer, Berlin, 127-139

195

Baker, J., Parasuraman, A., Grewal, D., Voss, G, B. (2002). “The influence of multiple

store environment cues on perceived merchandise value and patronage intentions”.

Journal of marketing. 66(2). Pp.120-141

Bano, M., Zowghi, D. (2013). “User involvement in software development and system

success: a systematic literature review”. Proceedings of the 17th International Conference

on Evaluation and Assessment in Software Engineering, pp.125 – 130

Baytiyeh, H., Pfaffman, J. (2010). “Open source software: a community of altruists”.

Computers in human behavior, 26, pp.1345 - 1354

Begel, A., Bosch, J., Storey, M, A. (2013). “Social networking meets software

development: Perspectives from GitHub, MSDN, Stack Exchange and TopCoder”. IEEE

Software, 30(1), pp.52-66

Benbasat, I., Lim, J. (2000). “Information technology support for debiasing group

judgments: an empirical evaluation”. Organizational behavior and human decision

processes, 83(1), pp.167-183

Bettenburg, N., Just, S., Schroter, A., Weiss, C., Premraj, R., Zimmermann, T. (2008).

“What makes a good bug report”. SIGSOFT. Atlanta, Georgia, USA.

Blischak, J, D., Davenport, E, R., Wilson, G, A. (2016). “A quick introduction to version

control with Git and GitHub”. PLoS Computational Biology, 12(1), pp.1-18

Borgatti, S, P., Mehra, A., Brass, D., Labianca, G. (2009). “Network Analysis in the

social sciences”. Science, 323(5916), pp.892-895

Bradley, E, H., Curry, L, A., Devers, K, J. (2007). “Qualitative data analysis for health

services research: Developing taxonomy, themes and theory”. Health services research,

42(4), pp.1758-1772

Breaux, T, D., Hibshi, H., Rao, A., Lehker, J, M. (2012). “Towards a framework for

pattern experimentation: Understanding empirical validity in requirements engineering

patterns”. IEEE second international workshop on requirements patterns, pp.41-47

Breu, S., Premraj, R., Sillito, J., Zimmermann, T. (2010). “Information needs in bug

reports: improving cooperation between developers and users”. CSCW. Savannah,

Georgia, USA, pp.301-310

Browne, G, J., Ramesh, V. (2002). “Improving Information Requirements Determination:

A Cognitive Perspective.” Information & Management, 39, pp. 625-645.

Browne, G. J., Rogich, M. B. (2001). “An empirical investigation of user requirements

elicitation: Comparing the effectiveness of prompting techniques”. Journal of

Management Information Systems, 17(4), 223

Bruce, B., Ritchie, J. (1997). “Nurses’ practices and perceptions of family centered care”.

Journal of pediatric nursing. 12(4): pp.214-222.

Burton-Jones, A., Meso, P. (2008). “The effects of decomposition quality and multiple

forms of information on Novices understanding of a domain from a conceptual model”.

Journal of the association for Information Systems, 9(12), pp.748-802

196

Cabot, J., Izquierdo, J, L, C., Cosentino, V., Rolandi, B., AtlanMod team. (2015).

“Exploring the use of labels to categorize issues in open source software projects”.

SANER.

Canfora, G., Cerulo, L. (2005). “Impact analysis by mining software and change request

repositories”. Software metrics, IEEE international symposium.

Cavalcanti, Y, C., Silveira Neto, P, A., Almeida, E, S., Lucretius, D., Cunha, C, E, A.,

Meira, S, R. (2010). “One step more to understand the bug report duplication problem”.

Brazilian symposium on software engineering, IEEE. Pp.148-157

Cavalcanti, Y, C., Silveira Neto, P, A., Machado, I, C., Vale, T, F., Almeida, E, S., Lemos

Meira, S, R. (2014). “Challenges and opportunities for software change request

repositories: a systematic mapping study”. Journal of Software: evolution and process,

26(7), pp.620-653

 Chakraborty, S., Sarker, S., Sarker, S. (2010). “An exploration into the process of

requirements elicitation: a grounded approach”. Journal of the association for

Information systems. 11(4), pp.212-249

Chatzoglou P.D., Macaulay, L.A., 1997, “The Importance of Human Factors in Planning

the Requirements Capture Stage of a Project”. International Journal of Project

Management, 15 (1), pp. 39-53

Chengalur-Smith, I, N., Sidorova, A., Daniel, S. (2010). “Sustainability of open source

projects: A longitudinal study”. Journal of the association for Information Systems.

11(11).

Chernak, Y. (2012). “Requirements reuse: the state of the practice”. IEEE international

conference on software science, technology and engineering. Herzlia.

Choi, N., Chengalur-Smith, I. (2009). “An exploratory study on the two new trends in

open source software: end-users and service”. Hawaii International conference on system

sciences

Chu, R, K, S., Choi, T. (2000). “An importance performance analysis of hotel selection

factors in the Hong Kong hotel industry: a comparison of business and leisure

travellers”. Tourism management, 21(4): pp.363-377.

Ciolkowski, M., Soto, M. (2008). “Towards a comprehensive approach for assessing open

source projects”. Proceedings of Software Process and Product Measurement, pp.316-

330

Cleland-Huang, J., Dumitru, H., Duan, C., Castro-Herrera, C. (2009). “Automated

support for managing feature requests in open forums”. Communications of the ACM.

52(10). Pp.68-74

Coleman, E, B. (1992). “Facilitating conceptual understanding in science: a collaborative

explanation based approach”. PhD dissertation, University of Toronto

Condori-Fernandez, N., Pastor, O., Daneva, M., Abran, A., Castro, J. (2008).

“Quantifying reuse from object oriented requirements specifications”. Workshop on

requirements engineering.

197

Connolly, T., Routhieaux, R, L., Schneider, S, K. (1993). “On the effectiveness of group

brainstorming: Test of one underlying cognitive mechanism”. Small group research.

24(4). Pp.490-503

Contractor, N, S., Wasserman, S., Faust, K. (2006). “Testing multi-theoretical multilevel

hypothesis about organizational networks: an analytical framework and empirical

example”. Academy of Management review. 31(3), pp.681-703

Cox, K., Niazi, M., Verner, J. (2009). “Empirical Study of Sommerville and Sawyer’s

Requirements Engineering Practices”. IET Software, 3(5): pp. 339–355

Crowston, K., Annabi, H., Howison, J. (2003). “Defining open source software project

success”. Proceedings of the 24th International conference on information systems

Crowston, K., Howison, J (2005). “The social structure of free and open source software

development”. First Monday, 10(2)

Crowston, K., Scozzi, B. (2004). “Coordination practices for bug fixing within FLOSS

development teams”. 6th International conference on enterprise information systems.

Porto, Portugal.

Crowston, K., Wei, K., Howison, J., Wiggins, A. (2012). “Free/Libre open source

software development: what we know and what we do not know”. ACM computing

surveys. 44(2), pp.1-35

Curley, S, P., Browne, G, J., Smith, G, F., Benson, P, G. (1995). “Arguments in the

practical reasoning underlying constructed probability responses”. Journal of Behavioural

decision making, 8(1), pp.1- 20

Dabbish, L., Stuart, C., Tsay, J., Herbsleb. J. (2012). “Social coding in GitHub:

transparency and collaboration in an open software repository”. In Proceedings of the

ACM 2012 conference on Computer Supported Cooperative Work, pp.1277–1286

Damian, D, E., Zowghi, D. (2003). “RE challenges in multi-site software development

organizations”. Requirements engineering. 8, pp.149-160

Daneva, M. (2000). “Establishing reuse measurement practices in SAP requirements

engineering”. International conference on requirements engineering, IEEE. Los

Alamitos, CA.

Darke, P., Shanks, G. (1996). “Stakeholder viewpoints in requirements definition: a

framework for understanding viewpoint development approaches”. Requirements

engineering, 1(2), pp.88-105

Davidson, J, L., Mohan, N., Jensen, C. (2011). “Coping with duplicate bug reports in

free/open source software projects”. IEEE symposium on visual languages and human

centric computing. Pittsburg. Pp.101-108

Davis, F, D. (1989). “Perceived usefulness, perceived ease of use and user acceptance of

information technology”. MIS Quarterly, 13(3), pp.319-340

Davis, G, B. (1982). “Strategies for information requirements determination”. IBM

Systems Journal. 21(1). pp. 4-30

198

Dennis, A, R., Valacich, J, S., Connolly, T., Wynne, B, E. (1996). “Process structuring in

electronic brainstorming”. Information systems research. 7(2). Pp.268-278

Dennis, A., Wixom, B, A., Roth, R, A. (2012). “System analysis and design”. John Wiley

and sons, Inc. USA

Detienne, F. (1990). “Expert programming knowledge: a schema based approach”. In J,

M, Hoc, T, R, G, Green, R, Samurcay, D, Gilmore. (Eds.). Psychology of programming,

academic press, people and computer series. Pp.205-222

Detienne, F. (1995). “Design strategies and knowledge in object oriented programming:

effects of experience”. Human computer interaction, 10(2), pp.129-169

Detienne, F., Burkhardt, J, M., Barcellini, F. (2006). “Open source software communities:

current issues”. PPIG Newsletter, pp.1-7

Diamant, E, I., Daniel, S. (2010). “Learning in open source software development: how

organizational and national culture impact developers’ learning”. Thirty first international

conference on information systems. St. Louis

Diehl, M., Stroebe, W. (1987). “Productivity loss in brain storming groups: towards the

solution of a riddle”. Journal of personality and social psychology. 53(3). Pp.497-509

Dietze. (2005). “Collaborative requirements definition processes in Open Source

Software Development”. Requirements engineering for sociotechnical systems.

Dixon, L, A. (1997). “An anchoring and adjustment strategy for re-design”. PhD thesis.

Georgia institute of technology

Doan, A., Ramakrishnan, R., Halevy, A, Y. (2011). “Crowdsourcing systems on the

world wide web”, Communications of the ACM, 54(4), pp.86-96

Dou, W., Lim, K, H., Su, C., Zhou, N., Cui, N. (2010). “Brand positioning strategy using

search engine marketing”. MIS Quarterly, 34(2), pp.261-279

Enns, H, G., Huff, S, L., Golden, B, R. (2003). “CIO influence behaviors: the impact of

technical background”. Information and management, 40(5), pp.467-485

Ernst, N., Murphy, G. (2012) Case studies in just-in-time requirements analysis. IEEE

second International Workshop on Empirical Requirements Engineering. Chicago

Evermann, J., Wand, Y. (2005). “Ontology based Object-oriented Domain Modelling:

Fundamental Concepts.” Requirements Engineering, 10(2), pp.146-160

Falessi, D., Kidwell, B., Hayes, J, F., Shull, F. (2014). “On failure classification: The

impact of “getting it wrong”. ICSE companion

Feller, J., Fitzgerald, B. (2000). “A framework analysis of the open source development

paradigm” In Proc. of the 21st International Conference on Information Systems

Fernandez, D, M., Penzenstadler, B. (2015). “Artefact based requirements engineering:

the AMDiRE approach”. Requirements Engineering, 20, pp.405-434

Fernandez, D, M., Wieringa, R. (2013). “Improving requirements engineering by artefact

orientation”. 14th international conference on product focused software development and

process improvement

199

Finkelstein, A., Kramer, J., Nuseibeh, B., Finkelstein, L., Goedicke, M. (1992).

“Viewpoints: a framework for integrating multiple perspectives in system development”.

International Journal of Software Engineering and Knowledge Engineering, 2(1), pp.31-

58

Firesmith, D. (2004). “Prioritizing requirements”. Journal of Object Technology, 3(8)

Fitzgerald, B. (2006). “The transformation of open source software”. MIS Quarterly,

30(3), pp.587-598

Fitzgerald, C., Letier, E., Finkelstein, A. (2011). “Early failure prediction in feature

request management systems”. IEEE 19th international requirements engineering

conference

Foushee, B, D. (2013). “Prevalence of reflexivity and its impact on success in open

source software development”. MS Thesis. Brigham Young University

Fraser, H, S, F., Biondich, P., Moodley, D., Sharon, C., Mamlin, B, W., Szolovits, P.

(2005). “Implementing electronic medical record systems in developing countries”.

Informatics in primary care. 13(2), pp.83-96

Fritz, M, S., Mackinnon, D, P. (2007). “Required sample size to detect the mediated

effect”. Psychological science, 18(3), pp.233-239

G. Kulk, G, P., Verhoef, C. (2008). “Quantifying requirements volatility effects”.

Science of computer programming. 72. pp. 136-175

G. Robles., J. M. Gonzalez-Barahona, (2012). “A comprehensive study of software forks:

Dates, reasons and outcomes,” in ´ Open Source Systems: Long-Term Sustainability.

Springer, pp. 1–14

Gettys, C, F., Pliske, R, M., Manning, C., Casey, J, F. (1987). “An evaluation of human

act generation performance”. Organizational behavior and human decision processes, 39,

pp.23-51

Godfrey, M, W., Tu, Q. (2000). “Evolution in open source software: a case study”. IEEE

international conference on software maintenance. Pp.131-142

Guo, P, J., Zimmermann, T., Nagappan, N., Murphy, B. (2010). “Characterizing and

predicting which bugs get fixed: an empirical study of Microsoft windows”. ICSE. Cape

Town, South Africa.

Guzzi, A., Bacchelli, A., Lanza, M., Pinzger, M., Van Deursen, A. (2013).

“Communication in open source software development mailing lists”. 10th IEEE working

conference on mining software repositories. San Francisco. Pp.277-289

Hars, A., Ou, S. (2002). “Working for free? Motivations for participating in open source

projects”. International journal of electronic commerce. 6(3), pp.25-39

Hauge, O., Cruzes, D, S., Conradi, R., Velle, K, S., Skarpenes, T, A. (2010). “Risks and

risk mitigation in open source software adoption: Bridging the gap between literature and

practice”. Proceedings of 6th international IFIP WG 2.13 conference on open source

systems, open source software: new horizons.

200

Hauge, Q., Sorensen, C, F., Conradi, R. (2008). “Adoption of open source in the software

industry”. International conference on open source systems, pp.211-222

Hawkins, D. (2014). “Biomeasurement: a student’s guide to biostatistics”. Oxford

Heck, P., Zaidman, A. (2013). “An analysis of requirements evolution in open source

projects: recommendations for issue trackers”. Proceedings of the 2013 International

workshop on principles of software evolution. NY, USA.

Herzig, K., Just, S., Zeller, A. (2013). “It’s not a bug, it’s a feature: how misclassification

impacts bug prediction”. Proceedings of the international conference on software

engineering. USA. Pp.392-401

Hevner, A, R., March, S, T., Park, J., Ram, S. (2004). “Design science in information

systems research”. MIS Quarterly, 28(1), pp.75-105

Heppler, L., Eckert, R., Stuermer, M. (2016). “Who cares about my Feature Request”.

Open Source Systems: Integrating Communities: 12th IFIP WG 2.13 International

Conference, pp.85 - 96

Hoepfl, M, C. (1997). “Choosing qualitative research: A primer for technology education

researchers”. Journal of technology education, 9(1), pp.47-63

Hoffmann, A., Janzen, A., Hoffmann, H., Leimeister, J. M. (2013) “Success Factors for

Requirement Patterns Approaches - Exploring Requirements Analysts' Opinions and

Wishes”. Sozio-technisches Systemdesign im Zeitalter des Ubiquitous Computing

(SUBICO). Germany.

Hofmann, H, F., Lehner, F. (2001). “Requirements engineering as a success factor in

software projects”. IEEE Software, 18(4), pp.58-66

Iannacci, F. (2005). “Beyond Markets and Firms: The Emergence of Open Source

Networks”, First Monday, 10(5).

Janesick, V. (2000). “The choreography of qualitative research: Minuets, improvisations

and crystallizations”. In Handbook of qualitative research, Denzin, N., Lincoln, Y, S

(Eds.), pp. 379 – 399. Sage publications

Jensen, C., King, S., Kuechler, V. (2011). “Joining free/open source software

communities: an analysis of newbies’ first interactions on project mailing lists”. Hawaii

International conference on system sciences

Jiang, Y., Adams, B., German, D, M. (2013). “Will My Patch Make It? And How Fast?

Case Study on the Linux Kernel,” Proceedings of the tenth working conference on mining

software repositories, pp. 101–110.

Joode, V, D., Wendel, R. (2004). “Managing conflicts in open source communities”.

Electronic Markets. 14(2), pp.104-113

Joyce, E., Kraut, R, E. (2006). “Predicting continued participation in news groups”.

Journal of computer-mediated communication, 11, pp.723-747

201

Kabaale, E., Nabukenya, J. (2011). “A systematic approach to requirements engineering

process improvement in small and medium enterprises: an exploratory study”. Product

focused software process improvement, pp.262-275

Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German, D, M., Damian, D.

(2014). “The promises and perils of mining GitHub”. Proceedings of the 11th working

conference on mining software repositories. NY, USA, pp. 92-101

Kamata, M, I., Tamai, T. (2007). “How does requirements quality relate to project

success or failure”, 15th IEEE International Requirements engineering conference. Delhi,

pp.69-78

Kang, Y., Harring, J, R. (under review). “Reexamining the impact of non-normality in

two group comparison procedures”. Journal of experimental education.

Katsamakas, E., Georgantzas, N, C. (2007). “Open source software development: a

system dynamics model”. Conference of the system dynamics

Kazman, R., Goldenson, D., Monarch, I., Nichols, W., Valetto, G. (2016). “Evaluating

the effects of architectural documentation: A case study of a large scale open source

project”. IEEE Transactions on Software Engineering, 42(3), pp.222 - 247

Khondu, J., Capiluppi, A., Stol, K. (2013). “Is it all lost: a study of inactive open source

projects”, 9th International Conference on open source systems.

Ko, A.J., Chilana, P. (2010). “How Power Users Help and Hinder Open Bug Reporting”.

Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI),

New York, pp. 1665-1674

Kochhar, P, S., Le, B, T., Lo, D. (2014). “It’s not a bug, it’s a feature. Does

misclassification affect bug localization”. Mining software repositories.

Krishnamurthy, S. (2002). “Cave or community? An empirical examination of 100

mature open source projects”. First Monday. 7(6)

Kuk, G. (2006). “Strategic interaction and knowledge sharing in the KDE developer

mailing list”. Management science, 52, pp.1031-1042

Kuriakose, J., Parsons, J. (2015) a. How do open source software (OSS) developers

practice and perceive requirements engineering: an empirical study. 5th IEEE

international workshop on empirical requirements engineering.

Kuriakose, J., Parsons, J. (2015) b. An enhanced requirements gathering interface for open

source software development environments. IEEE RE.

Lam, W., McDermid, J, A., Vickers, A, J. (1997). “Ten steps towards systematic

requirements reuse”. Requirements engineering, 2(2), pp.102-113

Lamsweerde, A, V. (2000). “Requirements engineering in the year 00: A research

perspective”. International Conference on software engineering, pp.5-19

Laurent, P., Cleland-Huang, J. (2009). “Lessons learned from open source projects for

facilitating online requirements processes”. 15th International working conference

REFSQ, Amsterdam

http://www.mansci.uwaterloo.ca/~pchilana/koChilana-CHI2010.pdf

202

Lee, S, T., Kim, H., Gupta, S. (2009). “Measuring open source software success”.

Omega, 37, Pp.426-438.

Li, Z., Wang, Z, Yang, Y., Wu, Y., Liu, Y. (2007). “Towards a multiple ontology

framework for requirements elicitation and reuse”. International computer software and

applications conference, IEEE. Los Alamitos, CA.

Lintula, H., Koponen, T., Hotti, V. (2006). “Exploring the Maintenance Process through

the Defect Management in the Open Source Projects -Four Case Studies”. IEEE

International conference on software engineering advances.

Liu. B. (2012). “Sentiment analysis and opinion mining”. Morgan and Claypool.

Llanos, J, W, C., Castillo, S, T, A. (2012). Differences between traditional and open

source development activities. In Product-Focused Software Process Improvement, O

Dieste et al. (Eds.) Springer, Berlin, 131-144.

Lopez, T, R., Garrido, J, L., Supakkul, S., Chung, L. (2013). “A pattern approach to

dealing with NFRs in ubiquitous systems”. CEUR workshop proceedings, 998, pp.25-32

Lukyanenko, R., Parsons, J. (2015). “Principles for modeling user generated content”.

Conceptual modeling, pp.432-440

Lukyanenko, R., Parsons, J., Wiersma, Y, F. (2014). “The impact of conceptual modeling

on dataset completeness: a field experiment”. Twenty fifth international conference on

Information Systems.

Lukyanenko, R., Parsons, J., Wiersma, Y, F. (2014)b. “The IQ of the crowd:

Understanding and improving information quality in structured user generated content”.

Information systems research, 25(4), Pp.669-689

Lumley, T., Diehr, P., Emerson, S., Chen, L. (2002). “The importance of the normality

assumption in large public health data sets”. Annual review public health. 23, pp.151-169

Maiden, N, A, M., Sutcliffe, A, G. (1991). “Reuse of analogous specifications during

requirements analysis”. Proceedings of the sixth international workshop on software

specification and design. Pp.220-223

Mamlin, B, W., Biondich, P., Wolfe, B, A., Fraser, H, S, F., Jazayeri, D., Allen, C.,

Miranda, J., Tierney, W, M. (2006). “Cooking up an open source EMR for developing

countries: openMRS- a recipe for successful collaboration”. AMIA annual symposium

proceedings. Pp.529-533

March, S, T., Smith, G, F. (1995). “Design and natural science research on information

technology”. Decision support systems, 15, pp.251-266

Mason, W., Suri, S. (2012). “Conducting behavioral research on Amazon’s mechanical

Turk”. Behavioral research, 44, pp.1-23

Massey, B. (2002). “Where do open source requirements come from (And what we

should do about it)”, Second ICSE workshop on open source software engineering.

Orlando, Florida.

Maksimchuk, R., Naiburg, E. (2004). “UML for mere mortals”. Addison-Wesley

203

McLeod, P, L., Lobel, S, A. (1992). “The effects of ethnic diversity on idea generation in

small groups”. Academy of management proceedings. Pp.227-231

McLeod, S, A. (2012). “Experimental method”. Retrieved from

http://www.simplypsychology.org/experimental-method.html

Michlmayr, M. (2005). ”Software Process Maturity and the Success of Free Software

Projects” In: Zieliński, K., Szmuc, T. (Eds.), Software Engineering: Evolution and

Emerging Technologies. pp. 3–14

Miller, A, R., Tucker, C. (2009). “Privacy protection and technology diffusion: The case

of electronic medical records”. Management science, 55(7), pp.1077-1093

Mockus, A., Fielding, R, T., Herbsleb, J, D. (2002). “Two case studies of open source

software development: Apache and Mozilla”. ACM Transactions on software engineering

and methodology. 11(3). Pp.309-346

Monge, P, R., Contractor, N, S. (2003). “Theories of communication networks”. Oxford

University Press. New York

Morse, J, M. (1994). “Designing funded qualitative research”. In Handbook of qualitative

research, Denzin, N., Lincoln, Y, S (Eds.), pp. 220 – 235, Sage publications

Morse, J, M., Richards, L. (2002). “Read me first for a user’s guide to qualitative

methods”. Sage publications

Nagasundaram, M., Dennis, A, R. (1993). “When a group is not a group: the cognitive

foundation of group idea generation”. Small group research. 24(4). Pp.463-489

Nagy, D., Yassin, A, M., Bhattacherjee, A. (2010). “Organizational adoption of open

source software: Barriers and remedies”. Communications of the ACM, 53(3), pp.148-151

Nakakoji, K., Yamamoto, Y., Nishinaka, Y., Kishida, K., Ye, Y. (2002). “Evolution

patterns of open source software systems and communities”. Proceedings of the

international workshop on principles of software evolution. Pp.76-85

Nevo, D., Benbasat, I., Wand, Y. (2012). “The knowledge demand of expertise seekers in

two different contexts: knowledge allocation versus knowledge retrieval”. Decision

support systems. 53, pp.482-489

Nichols, D., Twidale, M. (2003). “The usability of open source software”. First Monday.

8(1)

Nikula, U., Jantunen, S. (2005). “Quantifying the interest in open source systems: Case

South-East Finland”. International conference on open source systems, pp.192-195

Noll, J., Liu, W. (2010). “Requirements elicitation in open source software development:

a case study”. Proceedings of the 3rd International Workshop on Emerging Trends in

Free/Libre/Open Source Software Research and Development, Cape town

Noll, John. (2008). “Requirements acquisition in open source development: Firefox2.0”.

In Open source development, communities and quality. B Russo et al. (Eds.), Springer,

Boston, 275, 69-79

http://www.simplypsychology.org/experimental-method.html

204

Offen, R. (2002). “Domain understanding is the key to successful system development”.

Requirements engineering, 7(3), pp.172-175

Palomares, C., Franch, X., Quer, C. (2014). “Requirements reuse and patterns: a survey”.

Requirements engineering: foundation for software quality, pp.301-308

Parsons, J., Saunders, C. (2004). “Cognitive heuristics in software engineering: Applying

and extending anchoring and adjustment to artifact reuse”. IEEE Transactions on

software engineering. 30(12). Pp.873-888

Parsons, J., Wand Y. (2008). “Using cognitive principles to guide classification in

information systems modeling”. MIS Quarterly, pp.839-868

Parsons, J., Wand, Y. (2014). “A foundation for open information environments”.

Proceedings of the European Conference on Information Systems. Tel Aviv

Passos, L., Czarnecki, K. (2014). “A dataset of feature additions and feature removals

from the Linux Kernel”. 11th working conference on mining software repositories. pp.

376-379

Pacheco, C., Garcia, I. (2012). “A systematic literature review of stakeholder

identification methods in requirements elicitation”. The Journal of Systems and Software,

85, pp.2171 - 2181

Perens, B. (1999). “The open source definition”. In: Open sources: voices from the open

source revolution, Sebastopol, O’Reilly and Associates, pp.171 - 188

Pitts, M, G., Browne, G, J. (2007). “Improving Requirements Elicitation: An Empirical

Investigation of Procedural Prompts.” Information Systems Journal, 17, pp. 89-110

Prikladniciki, R., Audy, J, L. N., Evaristo, R. (2003). “Global software development in

practice lessons learned”. Software process, improvement and practice, 8(4), pp.267-281

Purcell, M, W. (2015). “On the role of FOSS business models and participation

architectures in supporting open innovation”. 11th International symposium on Open

Collaboration, San Francisco, USA

Rantalainen, A., Hedberg, H., Iivari, N. (2011). A review of tool support for user-related

communication in FLOSS development. In Open source systems: grounding research, S

A Hissam et al. (Eds.) Springer, Berlin, 90-105

Ramesh, B., Cao, L., Baskerville, R. (2010). “Agile requirements engineering practices

and challenges: an empirical study”. Information Systems Journal, 20(5), pp.449 - 480

Ratiu, D. (2009). “Reverse engineering domain models from source code”. International

workshop on reverse engineering models from software artifacts. , pp.13-16

Raza, A., Capretz, L, F., Ahmed, F. (2012). “Users’ perception of open source usability:

an empirical study”. Engineering with computers, 28, pp.109-121

Reips, U. (2002). “Theory and techniques of web experimenting”. In B, Batinic et al.

(Eds.), online social sciences. Seattle, Hogrefe and Huber.

205

Renault, S., Mendez-Bonilla, O., Franch, X., Quer, C. (2009). “A pattern based method

for building requirements documents in call-for-tender processes”. International journal

of computer science and applications. 6(5). pp. 175-202

Rietzschel, E, F., Nijstad, B, A., Stroebe, W. (2007). “Relative accessibility of domain

knowledge and creativity: the effects of knowledge activation on the quantity and

originality of generated ideas”. Journal of experimental social psychology. 43(6). Pp.933-

946

Robbins, J, E. (2003). “Adopting open source software engineering practices (OSSE)

practices by adopting OSSE tools”. In J. Feller., B. Fitzgerald., S. Hissam., K. Lakham

(Eds.), Making Sense of the Bazaar: Perspectives on Open Source and Free Software.

Sebastopol, CA. O’Reilly & Associates

Robillard, P, N. (1999). “The role of knowledge in software development”.

Communications of the ACM. 42(1). Pp.87-92

Rousseau, D, M. (2001). “Schema, promise and mutuality: the building blocks of the

psychological contract”. Journal of occupational and organizational psychology. 74.

Pp.511-541

Rutherford, A. (2012). “ANOVA and ANCOVA: A GLM approach”, 2nd edition. Wiley

Sawilowsky, S, S., Blair, R, C. (1992). “A more realistic look at the robustness and type 2

error properties of the t-test to departures from population normality”. Psychological

bulletin. 111(2). Pp.352-360

Scacchi, W. (2002). Understanding the requirements for developing open source software

systems. IEEE Software, 149(1), pp.24–39.

Scacchi, W. (2004). “Free and open source development practices in the game

community”. IEEE software, 21(1), pp.59-66

Scacchi, W. (2007). “Free/Open source software development: Recent research results

and emerging opportunities”. Proceeding ESEC-FSE Companion ’07. Pp.459-468

Scacchi, W. (2009). “Understanding requirements for open source software”. In K.

Lyytinen et al. (Eds.) Design Requirements workshop. LNBIP. Pp.467-494. Springer

Scacchi. W. 2006. “Understanding Free/Open Source Software Evolution,” in Software

Evolution and Feedback: Theory and Practice. N. H. Madhavji, J. F. Ramil and D. Perry

(Eds.), John Wiley and Sons Inc., New York, pp.181-206

Schackmann, H., Lichter, H. (2009). “Evaluating process quality in GNOME based on

based on change request data”. 6th IEEE international working conference on mining

software repositories. Pp.95-98

Schmid, K. (2014). “Challenges and solutions in global requirements engineering- a

literature survey”. Software quality, Model based approaches for advanced software and

systems engineering, pp.85-99

Schmider, E., Ziegler, M., Danay, E., Beyer, L., Buhner, M. (2010). “Is it really robust?

Reinvestigating the robustness of ANOVA against violations of the normal distribution

206

assumption”. Methodology: European journal of research methods for the behavioral and

social sciences. 6(4). Pp.147-151

Schoop, M., Jertilla, A., List, T. (2003). “Negoist: a negotiation support system for

electronic business-to-business negotiations in e-commerce”. Data & Knowledge

Engineering, 47(3), pp.371-402

Shah, S, K. (2006). “Motivation, governance and the viability of hybrid forms in open

source software development”. Management science. 52(7). Pp.1000-1014

Sharif, K, Y., English, M., Ali, N., Exton, C., Collins, J, J., Buckley, J. (2015). “An

empirically-based characterization and quantification of information seeking through

mailing lists during Open Source developers’ software evolution”. Information and

Software Technology, 57, pp.77 - 94

Siau, K., Long, Y. (2009). “Factors impacting E-Government development”. Journal of

computer information systems. 50(1), Pp.98-107

Simon, H, A. (1996). “The sciences of the artificial”. 3rd ed.

Singh, P, V., Fan, M., Tan, Y. (2007). “An empirical investigation of code contribution,

communication participation and release strategy in open source software development: a

conditional hazard model approach”. Retrieved from

http://ifipwg213.org/system/files/singh_fan_tan.pdf

Singh, P, V., Tan, Y., Mookerjee, V. (2011). “Network effects: the influence of structural

social capital on open source project success”. MIS Quarterly, 35(4), pp.813-829

Singh, V., Twidale, M, B., Nichols, D, M. (2009). “Users of open source software-how

do they get help”. Hawaii International conference on system sciences

Sohn, S, Y., Mok, M, S. (2008). “A strategic analysis for successful open source software

utilization based on a structural equation model”. Journal of systems and software. 81(6),

Pp.1014-1024

Sojer, M., Henkel, J. (2010). “Code reuse in open source software development:

quantitative evidence, drivers and impediments”. Journal of the association for

information systems. 11(12). Pp.868-901

Sommerville, I., Sawyer, P. (1997). “Requirements engineering: a good practice guide”.

Wiley.

Sommerville, I., Sawyer, P. (1997b). “Viewpoints: principles, problems and a practical

approach to requirements engineering”. Annals of software engineering, 3(1), pp.101-130

Spinellis, D., Giannikas, V. (2012). “Organizational adoption of open source software”.,

Journal of systems and software, 85(3), pp.666-682

Spiro, R, J., Tirre, W, C. (1980). “Individual differences in schema utilization during

discourse processing”. Journal of educational psychology. 72(2), pp.204-208

Standish Group. (1995). “CHAOS report”. Retrieved from

https://www4.in.tum.de/lehre/vorlesungen/sw/SS2004/files/1995_Standish_Chaos.pdf

http://ifipwg213.org/system/files/singh_fan_tan.pdf
https://www4.in.tum.de/lehre/vorlesungen/sw/SS2004/files/1995_Standish_Chaos.pdf

207

Standish Group. (1999). “CHAOS report”. Retrieved from https://www4.informatik.tu-

muenchen.de/lehre/vorlesungen/vse/WS2004/1999_Standish_Chaos.pdf

Steinmacher, I., Conte, T, U., Gerosa, M, A., Redmiles, D, F. (2015). “Social barriers

faced by newcomers placing their first contribution in open source software projects”.

Proceedings of the 18th ACM conference on Computer supported cooperative work and

social computing, pp.1-13

Steinmacher, I., Conte, T., Gerosa, M, A., Redmiles, D., Wiese, I, S. (2014). “The hard

life of open source software project newcomers”. International workshop on cooperative

and human aspects of software engineering.

Stewart, K, J., Ammeter, A, P., Maruping, L, M. (2006). “Impact of license choice and

organizational sponsorship on user interest and development activity in open source

software projects”. Information systems research. 17(2). Pp.126-144

Stull, D, E. (2008). “Analyzing growth and change: latent variable growth curve

modeling with an application to clinical trials”. Qual Life Res, 17, pp.47-59

Subramaniam, C., Sen, R., Nelson, M, L. (2009). “Determinants of open source software

project success: A longitudinal study”. Decision support systems. 46(2). Pp.576-585

Teeni, D. (2001). “A cognitive-affective model of organizational communication for

designing IT”. MIS Quarterly. 25(2). Pp.251-312

Terry, M., Kay, M., Lafreniere, B. (2010). “Perceptions and practices of usability in the

Free/Open source software community”. CHI 2010, Atlanta, USA.

Vaishnavi, V., Kuechler, W. (2015). “Design science research in information systems”.

Retrieved from http://desrist.org/desrist/content/design-science-research-in-information-

systems.pdf

Verner, J., Cox, K., Bleistein, S., Cerpa, N. (2005). “Requirements engineering and

software project success: an industrial survey in Australia and US”. Australasian journal

of Information systems. 13(1).

Vitalari, N, P. (1985). “Knowledge as a basis for expertise in systems analysis: an

empirical study”. MIS Quarterly, 9(3), pp.221-241

Vlas, R, E., Robinson, W, N. (2012). Two rule based natural language strategies for

requirements discovery and classification in open source software development projects.

Journal of management information systems. 28(4), pp.11-38

Vlas, R. (2012). “A requirements based exploration of open source software development

projects: Towards a natural language processing software analysis framework”. PhD

dissertation. Georgia State University

Vlas, R., Robinson, W, N. (2013). “Applying a rule based natural language classifier to

open source requirements: a demonstration of theory exploration”. Hawaii International

conference on system sciences.

https://www4.informatik.tu-muenchen.de/lehre/vorlesungen/vse/WS2004/1999_Standish_Chaos.pdf
https://www4.informatik.tu-muenchen.de/lehre/vorlesungen/vse/WS2004/1999_Standish_Chaos.pdf
http://desrist.org/desrist/content/design-science-research-in-information-systems.pdf
http://desrist.org/desrist/content/design-science-research-in-information-systems.pdf

208

Vlas, R., Robinson, W. (2011). “A Rule-Based Natural Language Technique for

Requirements Discovery and Classification in Open-Source Software Development

Projects”. Proceedings of the 44th Hawaii International Conference on Systems Science

Vlas, R., Vlas, C. (2011). A requirements based analysis of success in open source

software development projects. Proceedings AMCIS, Detroit

Von Krogh, G., Spaeth, S., Haefliger, S. (2005). “Knowledge reuse in open source

software: an exploratory study of 15 open source projects”. Proceedings of the 38th

annual Hawaii international conference on system sciences. Big Island, HI, USA

Walls, J, G., Widmeyer, G, R., Sawy, O, A, E. (1992). “Building an Information system

design theory for vigilant EIS”. Information systems research. 3(1). Pp.36-59

Wang, D., Wang, Q., Yang, Y., Li, Q., Wang, H., Yuan, F. (2011). “Is it really a defect?

An empirical study on measuring and improving the process of software defect

reporting”. International symposium on empirical software engineering and

measurement, IEEE. Pp.434-443

West, S.G., Finch, J.F., Curran, P.J. (1995). “Structural equation models with non-normal

variables. Problems and remedies”. In R.H. Hoyle (Ed.). Structural equation modeling:

Concepts, issues and applications (pp. 56-75). Newbury Park, CA: Sage.

Winkler, S., Pilgrim, J. (2010). “A survey of traceability in requirements engineering and

model driven development”. Software and systems modeling. 9(4), pp.529-565

Withall, S. (2007). “Software Requirements Patterns”. Microsoft Press. Washington

Wixom, B, H., Todd, P, A. (2005). “A theoretical integration of user satisfaction and

technology acceptance”. Information systems research. 16(1). Pp.85-102

Franch, X., Guerlain, C., Palomares, C., Quer, V., Renault, S (2011). "Interested in

Improving Your Requirements Engineering Process? Try Requirement Patterns!"

Empirical Fair Track at REFSQ.

Ye, Y., Kishida, K. (2003). “Towards an understanding of the motivation of open source

software developers”. International conference on software engineering

Zahran, S. (2000). “Software process improvement: practical guidelines for business

success”. Addison-Wesley. New York

Zhao, L., Elbaum, S. (2003). “Software quality assurance under the open source model”.

Journal of systems and software. 66(1), pp.65-75

Zielczynski, P. (2007). “Requirements management using IBM Rational RequisitePro”.

IBM Press

Zimmermann, T., Premraj, R., Bettenburg, N., Just, S., Schroter, A., Weiss, C. (2010).

“What makes a good bug report”. IEEE transactions on software engineering. 36(5).

Pp.618-643

209

 APPENDICES

210

APPENDIX 1: Survey questionnaire (requirements engineering practices in OSS

development)

Based on your experience, please indicate whether/how the requirements

engineering practices listed in this page were used in the development of open source

software project(s) you have worked on.

If any of the listed practice is unclear, please place the cursor on the * symbol next to

it. A pop up will come up providing detailed explanation about the practice.

1) Please indicate whether/how the following requirements documentation practices were

used in the development of open source software project(s) that you have worked on *

alway

s used

mostl

y used

sometime

s used

rarel

y

used

neve

r

used

not

applicabl

e

I do

not

kno

w

define a

standard

document

structure *

() () () () () () ()

explain how

to use the

document *

() () () () () () ()

include a

summary of

the

requirement

s *

() () () () () () ()

Make a

business

case for the

software*

() () () () () () ()

define

specialized

terms *

() () () () () () ()

211

make

document

layout

readable*

() () () () () () ()

help readers

find

information

*

() () () () () () ()

make the

document

easy to

change*

() () () () () () ()

Comments:

2) Please indicate whether/how the following requirements elicitation practices were used

in the development of open source software project(s) that you have worked on *

alway

s used

mostl

y

used

sometime

s used

rarel

y

used

neve

r

used

not

applicabl

e

I do

not

kno

w

assess

software

feasibility *

() () () () () () ()

be sensitive

to political

and

organization

al

consideration

*

() () () () () () ()

identify and

consult

() () () () () () ()

212

software

users *

record

requirement

sources *

() () () () () () ()

define the

software's

operating

environment

*

() () () () () () ()

use business

concerns to

drive

requirement

elicitation *

() () () () () () ()

look for

domain

constraints *

() () () () () () ()

record

requirements

rationale *

() () () () () () ()

collect

requirements

from

multiple

viewpoints *

() () () () () () ()

prototype

poorly

understood

requirements

*

() () () () () () ()

use scenarios

to elicit

requirements

*

() () () () () () ()

213

define

operational

processes *

() () () () () () ()

reuse

requirements

*

() () () () () () ()

Comments:

3) Please indicate whether/how the following requirements analysis and negotiation

practices were used in the development of open source software project(s) that you have

worked on *

alway

s used

mostl

y

used

sometim

es used

rarel

y

used

neve

r

used

not

applicab

le

I do

not

kno

w

Define

software

boundaries *

() () () () () () ()

Use checklists

for

requirements

analysis *

() () () () () () ()

Provide

software to

support

negotiations *

() () () () () () ()

Plan for

conflict and

conflict

resolution *

() () () () () () ()

214

Prioritize

requirements*

() () () () () () ()

Classify

requirements

using a

multidimension

al approach *

() () () () () () ()

Use interaction

matrices to find

conflicts and

overlaps *

() () () () () () ()

Assess

requirements

risk *

() () () () () () ()

Comments:

4) Please indicate whether/how the following requirements describing practices were used

in the development of open source software project(s) that you have worked on *

alway

s used

mostl

y

used

sometime

s used

rarel

y

used

neve

r

used

not

applicabl

e

I do

not

kno

w

Define

standard

templates for

defining

requirements

*

() () () () () () ()

Use

languages

simply and

concisely*

() () () () () () ()

215

Use

diagrams

appropriatel

y *

() () () () () () ()

Supplement

natural

language

with

descriptions

of

requirement

*

() () () () () () ()

specify

requirements

quantitativel

y *

() () () () () () ()

Comments:

5) Please indicate whether/how the following requirements modeling practices were used

in the development of open source software project(s) that you have worked on *

alway

s used

mostl

y

used

sometime

s used

rarel

y

used

neve

r

used

not

applicabl

e

i do

not

kno

w

Develop

complementar

y models of

the proposed

software *

() () () () () () ()

Model the

software's

environment *

() () () () () () ()

216

Model the

software's

architecture *

() () () () () () ()

Use structured

methods for

software

modeling *

() () () () () () ()

Use a data

dictionary *

() () () () () () ()

Document the

links between

user

requirements

and models *

() () () () () () ()

Comments:

6) Please indicate whether/how the following requirements validation practices were used

in the development of open source software project(s) that you have worked on *

alway

s used

mostl

y

used

sometim

es used

rarel

y

used

neve

r

used

not

applicabl

e

I do

not

kno

w

Check that the

requirements

document

meets your

standards*

() () () () () () ()

Organize

formal

requirements

inspection *

() () () () () () ()

217

Use

multidisciplina

ry teams to

review

requirements *

() () () () () () ()

Define

validation

checklists*

() () () () () () ()

Use

prototyping to

animate

requirements *

() () () () () () ()

Write a draft

user manual*

() () () () () () ()

Propose

requirements

test cases *

() () () () () () ()

Paraphrase

models *

() () () () () () ()

Comments:

7) Please indicate whether/how the following requirements management practices were

used in the development of open source software project(s) that you have worked on *

alway

s used

mostl

y

used

sometime

s used

rarel

y

used

neve

r

used

not

applicabl

e

I do

not

kno

w

Uniquely

identify each

requirement*

() () () () () () ()

218

Define

policies for

requirements

management

*

() () () () () () ()

Define

traceability

policies *

() () () () () () ()

Maintain a

traceability

manual *

() () () () () () ()

Use a

database to

manage

requirements

*

() () () () () () ()

Define

change

management

policies *

() () () () () () ()

Identify

global

software

requirements

*

() () () () () () ()

Identify

volatile

requirements

*

() () () () () () ()

Record

rejected

requirements

*

() () () () () () ()

Comments:

219

8) Based on your experience, please indicate whether the following activities were used

for generating requirements during the development of the open source software

project(s) that you have worked on

alway

s used

mostl

y used

sometime

s used

rarel

y

used

neve

r

used

not

applicabl

e

I do

not

kno

w

requirement

s are

asserted by

an open

source

software

developer

based on his

or her

personal

experience

() () () () () () ()

requirement

s are

asserted by

an open

source

software

developer

based on his

or her

personal

knowledge

of user

needs

() () () () () () ()

requirement

s are

contributed

by users

through bug

reports *

() () () () () () ()

requirement

s are

contributed

() () () () () () ()

220

by users

through

feature

requests *

requirement

s are

derived

from

features

found in

some other

software

() () () () () () ()

Comments:

For each of the requirements engineering practice listed on this page, based on your

experience, please indicate how useful do you think, adopting each practice in the

development of open source software projects would be.

If any of the listed practice is unclear, please place the cursor on the * symbol next to it.

9) Please indicate what you think about the usefulness of adopting the following

requirements documentation practices in the development of open source software

projects would be *

extremel

y useful

very

usefu

l

usefu

l

not

usefu

l

harmfu

l

not

applicabl

e

I do

not

kno

w

define a

standard

document

structure *

() () () () () () ()

explain how

to use the

document *

() () () () () () ()

include a

summary of

the

() () () () () () ()

221

requirement

s *

Make a

business

case for the

software*

() () () () () () ()

define

specialized

terms *

() () () () () () ()

make

document

layout

readable*

() () () () () () ()

help readers

find

information

*

() () () () () () ()

make the

document

easy to

change*

() () () () () () ()

Comments:

10) Please indicate what you think about the usefulness of adopting the following

requirements elicitation practices in the development of open source software projects

would be*

extremel

y useful

very

usefu

l

usefu

l

not

usefu

l

harmfu

l

not

applicabl

e

I do

not

kno

w

assess

software

feasibility *

() () () () () () ()

222

be sensitive

to political

and

organization

al

consideration

*

() () () () () () ()

identify and

consult

software

users *

() () () () () () ()

record

requirement

sources *

() () () () () () ()

define the

software's

operating

environment

*

() () () () () () ()

use business

concerns to

drive

requirement

elicitation *

() () () () () () ()

look for

domain

constraints *

() () () () () () ()

record

requirements

rationale *

() () () () () () ()

collect

requirements

from

multiple

viewpoints *

() () () () () () ()

223

prototype

poorly

understood

requirements

*

() () () () () () ()

use scenarios

to elicit

requirements

*

() () () () () () ()

define

operational

processes *

() () () () () () ()

reuse

requirements

*

() () () () () () ()

Comments:

11) Please indicate what you think about the usefulness of adopting the following

requirements analysis and negotiation practices in the development of open source

software projects would be*

extremel

y useful

very

usefu

l

usefu

l

not

usefu

l

harmf

ul

not

applicab

le

I do

not

kno

w

Define

software

boundaries *

() () () () () () ()

Use checklists

for

requirements

analysis *

() () () () () () ()

224

Provide

software to

support

negotiations *

() () () () () () ()

Plan for

conflict and

conflict

resolution *

() () () () () () ()

Prioritize

requirements*

() () () () () () ()

Classify

requirements

using a

multidimension

al approach *

() () () () () () ()

Use interaction

matrices to find

conflicts and

overlaps *

() () () () () () ()

Assess

requirements

risk *

() () () () () () ()

Comments:

12) Please indicate what you think about the usefulness of adopting the following

requirements describing practices in the development of open source software projects

would be *

extremel

y useful

very

usefu

l

usefu

l

not

usefu

l

harmfu

l

not

applicabl

e

I do

not

kno

w

225

Define

standard

templates

for defining

requirement

s *

() () () () () () ()

Use

languages

simply and

concisely*

() () () () () () ()

Use

diagrams

appropriatel

y *

() () () () () () ()

Supplement

natural

language

with

descriptions

of

requirement

*

() () () () () () ()

specify

requirement

s

quantitativel

y *

() () () () () () ()

Comments:

13) Please indicate what you think about the usefulness of adopting the following

requirements modeling practices in the development of open source software projects

would be*

extremel

y useful

very

usefu

l

usefu

l

not

usefu

l

harmf

ul

not

applicabl

e

I do

not

226

kno

w

Develop

complementar

y models of

the proposed

software *

() () () () () () ()

Model the

software's

environment

*

() () () () () () ()

Model the

software's

architecture *

() () () () () () ()

Use

structured

methods for

software

modeling *

() () () () () () ()

Use a data

dictionary *

() () () () () () ()

Document the

links between

user

requirements

and models *

() () () () () () ()

Comments:

14) Please indicate what you think about the usefulness of adopting the following

requirements validation practices in the development of open source software projects

would be*

227

extremel

y useful

very

usefu

l

usefu

l

not

usefu

l

harmf

ul

not

applicab

le

I do

not

kno

w

Check that the

requirements

document

meets your

standards*

() () () () () () ()

Organize

formal

requirements

inspection *

() () () () () () ()

Use

multidisciplina

ry teams to

review

requirements *

() () () () () () ()

Define

validation

checklists*

() () () () () () ()

Use

prototyping to

animate

requirements *

() () () () () () ()

Write a draft

user manual*

() () () () () () ()

Propose

requirements

test cases *

() () () () () () ()

Paraphrase

models *

() () () () () () ()

228

Comments:

15) Please indicate what you think about the usefulness of adopting the following

requirements management practices in the development of open source software projects

would be*

extremel

y useful

very

usefu

l

usefu

l

not

usefu

l

harmfu

l

not

applicabl

e

I do

not

kno

w

Uniquely

identify each

requirement*

() () () () () () ()

Define

policies for

requirements

management

*

() () () () () () ()

Define

traceability

policies *

() () () () () () ()

Maintain a

traceability

manual *

() () () () () () ()

Use a

database to

manage

requirements

*

() () () () () () ()

Define

change

management

policies *

() () () () () () ()

Identify

global

() () () () () () ()

229

software

requirements

*

Identify

volatile

requirements

*

() () () () () () ()

Record

rejected

requirements

*

() () () () () () ()

Comments:

16) Please indicate which of the following challenges and problems have you faced or

expect to face during requirements discovery in open source software development?

(Please check all that apply)

[] language barriers (for example, members with English as second language may have

difficulty expressing, clarifying or understanding requirements in English)

[] members from different language and cultural backgrounds may demand different

types of user interfaces

[] differences in national culture (requirements may be influenced by cultural beliefs, for

example, members from some countries may prefer stability and prefer requirements from

prior releases whereas members from some other countries may prefer continuous

progress and hence new features; members from different cultural backgrounds may have

different expectations about functionality, behavior and design)

[] differences in corporate culture (different members may be from different corporate

environments that have different system usage characteristics)

[] differences in educational backgrounds (for example, low skilled members and high

skilled members may have different expectations about how a system works)

[] requirements being expressed using diverse terminologies and diverse levels of details

by members, making it difficult to analyze the requirements for discovering conflicts and

redundancies

[] geographical distance and time difference between countries as barriers in interaction

between members

230

[] diminished understanding of the working context of other members (members do not

have enough familiarity with/knowledge of activities of remote group members and other

background information thus leading to diminished understanding of the work context of

remote members; this in turn leads to unwanted outcomes such as members in one region

not being able to have adequate understanding of the requirements of the members in

other region)

[] Different members may use different standards

[] difficult to achieve cohesion/form coalitions with other members

[] difficulty in trusting others

[] difficulty in managing conflict and having open discussions of interests (difficulty in

managing conflicting interests of members during development because geographical

distance makes it difficult to openly discuss about interests of members)

[] difficulty in achieving a common understanding of requirements

[] ineffective decision making meetings (e.g., ineffective meetings because of use of poor

communication technologies; sometimes it is not even possible to know who have joined

the meeting late)

[] delay (e.g., delayed email response)

[] Different laws and regulations in different countries

[] It is difficult to identify and include relevant members in the communication process

for gathering requirements

[] Difficulty in negotiating requirements and prioritizing requirements

[] other: ___

Comments:

17) Which of the following issues have you faced while trying to use the information

provided by users through bug reports and feature requests?

[] duplicate information *

[] invalid information *

[] incomplete or missing information

[] the bug could not be fixed or the requested feature could not be implemented

[] Other; please specify: ___

Comments:

18) Please indicate the age group that you belong to

231

 1-19 20-29 30-39 40-49 50+

Age () () () () ()

19) Please indicate the continent you reside in

 North America South America Europe Asia and rest of the world

Residence () () () ()

20) Please indicate your highest education level

Non-university

education

Undergraduate or

equivalent

Graduate or

equivalent

PhD and

higher

Highest

education

level

() () () ()

21) Please indicate your role in the open source software projects that you have worked

on

includes writing

code

does not include writing

code

Task profile in open source software

projects

() ()

22) Please indicate the number of open source software projects that you have worked on

 1-4 5-9 10-14 15+

232

Number of open source software projects ever involved in () () () ()

23) Please indicate the approximate amount of hours that you spent per week working on

open source software projects

 1-4 5-9 10-19 20+

Hours spent working on open source software projects per week () () () ()

233

APPENDIX 2: Holm-Bonferroni Correction

p-values from smallest to largest Position in sequence Adjusted alpha Significant or not?

2.2154e-10

1 0.05/57=0.000877

significant

2.0674e-09

2 0.05/56=0.000893

significant

2.1781e-09

3 0.000909

significant

2.6085e-09

4 0.000926

significant

5.5024e-09

5 0.000943

significant

7.4062e-09

6 0.000962

significant

1.0159e-08

7 0.00098

significant

1.3709e-08

8 0.001

significant

1.5702e-08

9 0.00102

significant

2.7425e-08

10 0.001042

significant

3.2451e-08

11 0.001064

significant

4.0662e-08

12 0.001087

significant

7.3122e-08

13 0.001111

significant

1.2994e-07

14 0.001136

significant

2.2122e-07

15 0.001163

significant

2.3611e-07

16 0.00119

significant

4.0957e-07

17 0.00122

significant

4.6286e-07

18 0.00125

significant

4.7171e-07

19 0.001282

significant

8.6603e-07

20 0.001316

significant

1e-06

21 0.001351

significant

2e-06

22 0.001389

significant

2e-06

23 0.001429

significant

3e-06

24 0.001471

significant

7e-06 25 0.001515 significant

234

8e-06

26 0.001563

significant

1e-05

27 0.001613

significant

1.2e-05

28 0.001667

significant

1.3e-05

29 0.001724

significant

1.5e-05

30 0.001786

significant

1.7e-05

31 0.001852

significant

1.7e-05

32 0.001923

significant

2.6e-05

33 0.002

significant

2.6e-05

34 0.002083

significant

3.2e-05

35 0.002174

significant

7.3e-05

36 0.002273

significant

9.2e-05

37 0.002381

significant

0.000111

38 0.0025

significant

0.000127

39 0.002632

significant

0.000165

40 0.002778

significant

0.000256

41 0.002941

significant

0.000266

42 0.003125

significant

0.001

43 0.003333

significant

0.001

44 0.003571

significant

0.001

45 0.003846

significant

0.002

46 0.004167

significant

0.002

47 0.004545

significant

0.003

48 0.005

significant

0.005

49 0.005556

significant

0.005 50 0.00625

significant

0.005 51 0.007143 significant

235

0.005 52 0.008333

significant

0.042

53 0.01

no

0.066

54 0.0125

no

0.081

55 0.016667

no

0.491

56 0.025

no

0.63

57 0.05

no

236

APPENDIX 3: Experimental task description along with references [In the actual

experiment, the references were omitted and only the description was provided to

participants]

{An electronic medical record (EMR) system enables users to create, store and manage

patient data electronically. It stores information such as lab tests, medication and

diagnosis. It may have features such as allowing medical practitioners to analyze and

update patient data and generating graphs of patient’s lab tests.}

[http://www.google.com/patents/US5924074]. There are both commercial electronic

medical record software as well as open source electronic medical record software

[Webster, 2011]. Open source electronic medical record software can be freely

downloaded, used and modified. Some of the currently available open source electronic

medical record software are listed below:

VistA (http://www.ehealth.va.gov/VistA.asp)

OSCAR (http://oscarcanada.org/)

OpenEMR (http://www.open-emr.org/)

OpenMRS (http://openmrs.org/)

FreeMED (http://freemedsoftware.org/)

The video below give an overview of an open source electronic medical record

(specifically OSCAR EMR).

<Wiki: video url="http://www.youtube.com/watch?v=DGqDUcCNww0"/>

The short videos below further describe electronic medical records.

<Wiki: video

url="https://www.youtube.com/watch?v=MOwML1N3TpM&index=1&list=TLYoJAfw

XzPNG8ltGuqn6o6fm6gvdWBpWH"/>

<Wiki: video

url="https://www.youtube.com/watch?v=TiQ8c11dkU0&index=2&list=TLYoJAfwXzPN

G8ltGuqn6o6fm6gvdWBpWH"/>

The short video below describes how electronic medical record software may be used in

real world settings.

<Wiki: video

url="https://www.youtube.com/watch?v=97v5p9Nk2_I&list=PL48A96ACCA9486FC8&

index=15"/>

{The currently existing electronic medical record software are difficult to interact with

and inputting data into them is a difficult task. They are often incapable of providing

suggestions supported with strong evidence and they are incapable of guiding

237

practitioners about what to do next to help patients. They are incapable of identifying any

important missing information. Often their design and implementation are not based on

the latest medical knowledge available and they are often difficult to be updated. A major

demand of users of electronic medical record software such as physicians is ease of use.

For example, there should be minimal input requirements. Practitioners should be able to

ask direct natural language questions to the software.} [Ferrucci et al., 2013]. {For

achieving this, the software system must have a deep understanding of natural language

and its nuances. They need to be able to analyze and make sense of very large quantities

of different types of information sources. They should also be able to use contextual

information to make inferences about the intent of the individual seeking the information.

They should also be capable of providing evidence to support the information that they

are providing to the information seeker.} [Sudarsan, 2013]

{IBM’s Watson technology is a cognitive computing technology that can comprehend the

subtle nuances of human language, navigate through vast amounts of textual content, and

provide evidence-based answers to the questions of users. Watson technology processes a

question given to it in a way that is similar to how humans would do it. It does an in depth

analysis of the input question to determine what is being asked and then generate many

possible candidate answers, by analyzing large volumes of available textual content

(available in natural language form). Then Watson technology analyzes the available

textual content to find evidence for supporting or refuting each answer. Watson

technology has several reasoning algorithms embedded within it and by using these

algorithms, it analyzes the available evidence for each answer along different dimensions

such as time and geography. Watson technology finally produces a ranked list of

candidate answers. For each candidate answer, Watson technology produces confidence

scores indicating the degree of correctness of the answer and also displays links to

supporting evidence that Watson technology has found.} [Ferrucci et al., 2013;

Sudarsan, 2013]

{As an example, suppose that a user asks a question “In May 1898, Portugal celebrated the

400th anniversary of explorer A's arrival in India. Who is this explorer?” and a document

available for analysis to the Watson technology has two paragraph, first “In May, Gary

arrived in India after he celebrated his anniversary in Portugal” and second “On the 27th of

May, 1498, Vasco da Gama landed in Kappad beach”. A traditional keyword based search

technology would return the incorrect answer Gary since there are many matching words

in both paragraphs such as celebrated and anniversary. On the other hand, for the same

question, Watson technology runs multiple algorithms to conduct a deeper analysis of both

paragraphs. For example, Watson technology would run a temporal reasoning algorithm to

match dates and would run a geospatial reasoning algorithm to determine that Kappad

beach is in India and thus ultimately return the correct answer Vasco da

Gama.}[https://www.youtube.com/watch?v=1z2FX7FfHR4]

{Watson technology is capable of reading raw human writing, which is unstructured data.

For example, if a textual biography of a president is provided as input to Watson

technology, it will subsequently break down the language in the text to parts and attempt

https://www.youtube.com/watch?v=1z2FX7FfHR4

238

to infer different information within that large body of textual content. Watson

technology does not need the input information to be have a structured format to answer

questions from the input biography data. Once Watson technology is trained to answer

questions on one biography source, it can process other biographies effectively and

answer questions. The ability of Watson technology is evident from the fact that in 2011,

it was able to defeat two Jeopardy champions by using its natural language processing

capabilities to process more than a million pages of stored unstructured textual content.}

[Sudarsan, 2013]

The videos below describe Watson technology

<Wiki: video url="https://www.youtube.com/watch?v=DywO4zksfXw"/>

Below is a more descriptive video explaining the beginnings and underlying technology

of IBM Watson.

<Wiki: video url="https://www.youtube.com/watch?v=3G2H3DZ8rNc"/>

The capabilities of Watson technology can empower real world applications used in

different domains which can help users to perform tasks more efficiently. [Sudarsan,

2013]

The short video below describes perspectives on how Watson technology may be useful

to health care domain.

<Wiki: video url="https://www.youtube.com/watch?v=vwDdyxj6S0U"/>

{Electronic medical record software application can also be powered by Watson

technology. For example, Watson technology can utilize its ability to process and

understand knowledge available in natural language to effectively process information

available in electronic medical records. This can reduce the practitioners’ burden

associated with manually reading, synthesizing and making inferences from large

amounts of information available in electronic medical records. As another example,

Watson technology can analyze data in electronic medical record and generate diagnosis

and treatment related recommendations along with supporting evidence. Medical

practitioners often make cognitive errors in diagnosis. This is often because of erroneous

synthesis or erroneous processing of information available to practitioners. Practitioners

often make decisions quickly (e.g., quick diagnosis) and fail to consider plausible

alternatives. A major challenge for medical practitioners is to process the large volume of

information available in electronic medical records and the ever growing (and rapidly

changing) medical knowledge (e.g., medical journals). Watson technology can assist

medical practitioners in meeting these challenges through its different capabilities such as

doing automatic extraction and presentation of relevant information from electronic

medical records and providing a large variety of diagnosis related suggestions along with

associated confidence and evidence.} [Ferrucci et al., 2013]

The short video below provides an illustration of an electronic medical record system

integrated with Watson technology.

239

<Wiki: video url="http://www.youtube.com/watch?v=HZsPc0h_mtM"/>

{The Watson technology is available from IBM as a platform with all capabilities built

into it. The open source electronic medical record software can be developed as an app

that can be embedded with the Watson technology platform using application

programming interfaces provided by IBM. }. [Sudarsan, 2013]

The figure below illustrates the idea of embedding an application with Watson

technology.

http://i1376.photobucket.com/albums/ah10/surya1234/imagewatson_zps95704a50.jpg

[Sudarsan, 2013, p.5]

{By embedding an application with Watson technology, the application gains cognitive

capabilities. The developers have flexibility in the degree to which they embed Watson

capabilities with the application and this can be decided based on domain specific needs.

The application along with its cognitive capabilities could then be delivered to the end

users through different channels such as mobile, tablet and desktop.} [Sudarsan, 2013]

An open source electronic medical record software powered by Watson technology would

be highly beneficial for developing countries. {Developing countries have limited

resources. There is need for better management of clinical data in developing countries

and often there is need for rapid delivery of medical services while coping with limited

technical resources. An open source electronic medical record software powered by

Watson technology would be cheap and affordable to health care organizations in

developing countries.}[Fraser et al., 2005; Mamlin et al., 2006]. {For example, VistA

was the only EMR software that could be afforded by health care organizations in Mexico

and it cost them 40 times less than what a commercial EMR software implementation

would have cost.} [Webster, 2011]. {Open source EMR software powered by Watson

technology can assist in better management of clinical and health data in developing

countries (e.g., detecting errors) and also help practitioners make better decisions (e.g.,

more accurate diagnosis).} [Fraser et al., 2005; Mamlin et al., 2006]

The goal of this experimental task is to develop an open source electronic medical record

software embedded with Watson technology. At this initial stage, the requirements (what

the software must do; what characteristics it should have) [Dennis et al., 2012] for the

proposed open source EMR software embedded with Watson technology is being

collected.

By considering yourself as a potential user of the to-be developed electronic medical

record software embedded with Watson technology, please think about the following:

{1. What are the business needs/organizational needs for the proposed software, if any?

2. What are the needs that the users of the proposed software may have?

3. What features/functionality should the proposed software have? (For example, it

should display graphs of lab tests)

240

4. What characteristics/non-functional requirements does the proposed software needs to

have? (For example, security requirements)

5. How should the proposed software be built? (For example, hardware and software that

may be used in development)} [Dennis et al., 2012]

Please submit the requirements that you thought about for the proposed software in the

textbox in crowdflower. Also, please submit any other information that you think is

relevant for the development of the proposed software.

REFERENCES (Experimental task description)

Webster, P, C. (2011). “The rise of open source electronic health records”. The Lancet.

377(9778). Pp.1641-1642

Ferrucci, D., Levas, A., Bagchi, S., Gondek, D., Mueller, E, T. (2013). “Watson: beyond

jeopardy”. Artificial Intelligence, 199, pp.93-105

Sudarsan, S. (2013). “An ecosystem of innovation: creating cognitive applications

powered by Watson”. IBM Software white paper

Fraser, H, S, F., Biondich, P., Moodley, D., Sharon, C., Mamlin, B, W., Szolovits, P.

(2005). “Implementing electronic medical record systems in developing countries”.

Informatics in primary care. 13(2), pp.83-96

Mamlin, B, W., Biondich, P., Wolfe, B, A., Fraser, H, S, F., Jazayeri, D., Allen, C.,

Miranda, J., Tierney, W, M. (2006). “Cooking up an open source EMR for developing

countries: openMRS- a recipe for successful collaboration”. AMIA annual symposium

proceedings. Pp.529-533

Dennis, A., Wixom, B., Roth, R. (2012). “Systems analysis and design”. Wiley, USA

241

APPENDIX 4. Screenshots of Issue reporting interfaces in OSS development

environments

Issue reporting interface used in Sourceforge (https://sourceforge.net)

https://sourceforge.net/

242

Issue reporting interface used in Google Code (https://code.google.com)

https://code.google.com/

243

Issue reporting interface used in CodePlex (https://www.codeplex.com/)

https://www.codeplex.com/

244

APPENDIX 5. Normality plot and Leven’s test

Normality plot of standardized residuals: (Dependent variable: Number of words)

Skewness and Kurtosis (Dependent variable: number of words)

 Statistic Standard error

Skewness 1.838 .263

Kurtosis 5.105 .520

Levene’s test of equality of error variances: (Dependent variable: number of words)

 F Df1 Df2 Sig.

3.667 1 82 .059

245

Normality plot of standardized residuals: (Dependent variable: requirements

quantity)

Skewness and Kurtosis (Dependent variable: Requirements quantity)

 Statistic Standard error

Skewness .541 .263

Kurtosis .005 .520

246

Levene’s test of equality of error variances: (Dependent variable: requirements

quantity)

 F Df1 Df2 Sig.

.040 1 82 .843

Normality plot of standardized residuals: (Dependent variable: Requirements

Breadth)

Skewness and Kurtosis (Dependent variable: Requirements Breadth)

 Statistic Standard error

Skewness .817 .263

247

Kurtosis .088 .520

Levene’s test of equality of error variances: (Dependent variable: requirements

breadth)

 F Df1 Df2 Sig.

.736 1 82 .393

Normality plot of standardized residuals: (Dependent variable: Requirements

depth: goal category)

Skewness and Kurtosis (Dependent variable: Requirements depth: goal category)

248

 Statistic Standard error

Skewness .825 .263

Kurtosis .203 .520

Levene’s test of equality of error variances: (Dependent variable: requirements

depth: goal category)

 F Df1 Df2 Sig.

1.548 1 82 .217

249

APPENDIX 6: Skewness and kurtosis (differences of paired observations; paired

samples t-test)

Skewness Kurtosis

Statistic Std. Error Statistic Std. Error

-1.151 .263 2.601 .520

.230 .263 1.797 .520

-.802 .264 .615 .523

.101 .264 2.003 .523

.065 .266 3.041 .526

-.955 .264 1.008 .523

.124 .264 2.567 .523

-.017 .264 2.139 .523

-.590 .263 .966 .520

-.499 .263 .746 .520

-.700 .264 1.473 .523

.201 .263 2.314 .520

-.502 .264 2.192 .523

-.321 .264 -.136 .523

-.541 .263 1.347 .520

-.306 .264 -.230 .523

-.348 .264 1.128 .523

-.633 .266 -.069 .526

.017 .263 .598 .520

-.563 .266 .665 .526

-.325 .266 1.595 .526

-.714 .263 .757 .520

-.721 .263 1.715 .520

.003 .263 1.269 .520

-.356 .264 .701 .523

.100 .264 .952 .523

.153 .263 .204 .520

250

.150 .263 -.308 .520

-.015 .263 .546 .520

.063 .264 .859 .523

-.798 .264 1.537 .523

-.627 .266 1.547 .526

-.597 .266 2.507 .526

-.105 .264 1.603 .523

.418 .264 .764 .523

-1.217 .264 3.333 .523

-.421 .266 6.677 .526

-.040 .264 1.871 .523

.371 .264 1.698 .523

-.449 .264 .600 .523

-.492 .267 1.336 .529

-.649 .267 1.317 .529

-.309 .269 .843 .532

.081 .269 -.196 .532

-.034 .272 .183 .538

.132 .267 .488 .529

.019 .269 .098 .532

-.094 .267 -.440 .529

-.902 .263 .808 .520

-.720 .264 1.223 .523

-.340 .264 1.341 .523

-.288 .264 .832 .523

-.594 .263 .270 .520

.589 .264 1.464 .523

-.291 .263 .386 .520

-.477 .263 .465 .520

-.310 .263 1.110 .520

251

APPENDIX 7: OSS Issue reporting interfaces and misclassification questionnaire

A major problem with issues reported in the issue repositories of open source software

projects is mis-classification (assigning incorrect label to an issue). For example, an issue

labelled as a bug or a defect may not actually be a bug but rather an enhancement request,

a feature request or a request for some documentation. Another example of mis-

classification is when an issue labelled as a feature request may not actually be a feature

request but rather a bug. Mis-classification of issues can result in problems and

undesirable situations, for example, a valid bug that got mis-classified as a feature may

not get fixed.

Different types of issue reporting interfaces can be found in the issue repositories of open

source software projects. The goal of this survey is to find which interfaces are better at

reducing mis-classification/incorrect labeling of issues. There is one question on the next

page that shows two interfaces and asks which one is better at reducing

misclassification/incorrect labelling of issues. The survey would need only about two

minutes to complete. If you are interested in participating, please answer the question on

the next page.

This survey is part of a PhD dissertation research on requirements gathering in open

source software development. The survey is anonymous and no identifying information is

asked. The proposal for this research has been reviewed by the Interdisciplinary

Committee on Ethics in Human Research and found to be in compliance with Memorial

University's ethics policy. If you have ethical concerns about the research, such as the

way you have been treated or your rights as a participant, you may contact the

Chairperson of the ICEHR at icehr@mun.ca or by telephone at 709-864-2861.

Participants can send an email to jk5573@mun.ca for any questions or for results of the

survey.

A major problem with issues reported in the issue repositories of open source software

projects is mis-classification (assigning incorrect label to an issue). For example, an issue

labelled as a bug or a defect may not actually be a bug but rather an enhancement request,

a feature request or a request for some documentation. Another example of mis-

classification is when an issue labelled as a feature request may not actually be a feature

request but rather a bug. Mis-classification of issues can result in problems and

undesirable situations, for example, a valid bug that got mis-classified as a feature may

not get fixed.

Different types of issue reporting interfaces can be found in the issue repositories of open

source software projects. Two of them are shown below. In the first interface, issue

reporters cannot assign any label to the issue that they are reporting and it is the

developers/project administrators that assign the labels after they have been submitted.

mailto:icehr@mun.ca

252

In the second one, issue reporters can assign labels to the issues that they are reporting.

Please carefully analyze both of them. Based on your experience and knowledge, please

indicate which interface is more capable of reducing mis-classification/incorrect labelling.

Issue interface one is shown below:

253

Issue interface two is shown below:

 *

254

Issue interface one

Issue interface two

None of them

Both of them

2) Please provide any comments that you may have below.

255

APPENDIX 8. Demographics of participants in the experiment in phase two

Experimental participants’ experience with open source software development

No experience or

familiarity with open

source software

projects

General interest in open

source software projects

but never participated in

the development of any

Participated in open

source software

development by

reporting issues and/or

participating in

discussions

Participated in open

source software

development by writing

code

58% 24% 12% 6%

Geographical locations of experimental participants

Geographical location Percentage of participants

USA 21%

Canada 20%

Italy 8%

Germany 7%

Portugal 7%

Netherlands 7%

UK 6%

Spain 4%

Poland 4%

Belgium 2%

Ireland 2%

Denmark 2%

Estonia 2%

Sweden 1%

France 1%

Finland 1%

Australia 1%

New Zealand 1%

256

APPENDIX 9. Examples of coding of developers’ comments

257

Examples: sentiment analysis

