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Abstract 

Developing quantitative relationships that link human-induced environmental 

change with changes in population dynamics for species of conservation concern is 

hindered by: (1) a limited understanding of the cumulative effect (and relative 

importance) of population regulation, spatial dynamics, and demographic processes, (2) 

issues with detectability for species-environment interactions owing to data 

characteristics and (3) the cumulative or confounding nature of multiple threats. Taking a 

single-species approach based on endangered Atlantic salmon, I have partially addressed 

these challenges in my four research chapters.  

In chapter two, I characterized the conditions under which metapopulation 

structure would be expected to benefit a population assemblage and found that straying 

can reduce abundance and heighten extinction risk when productivity is low. For species 

of conservation concern, I would expect that remediation actions designed to influence 

demographic rates (e.g. mortality rates) would be more beneficial than actions influencing 

spatial dynamics. In chapter three, I accounted for the effects of observation and 

measurement error when quantifying relationships between hydrological variation and 

survival. Beyond the potential to change our interpretation of ecological relationships, I 

was able to infer the types of threats affecting juveniles in specific watersheds. In chapter 

four, I used patterns of effective dispersal to surmise the behavioural mechanism leading 

to watershed choice among straying adult salmon as well as the relative importance of 

multiple concurrent threats. My conclusions contradict some current perceptions on 

threats and suggest new directions for future research. In chapter five, I was able to 
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develop a spatial tool that could inform management decisions or identify priority areas 

for restoration efforts. However, I was unable to fully characterize how environmental 

variation influences habitat utilization, distribution patterns, or population-level responses 

to human activities at multiple spatial extents.  

The relationships I describe are among the first to be developed for endangered 

Atlantic salmon in Nova Scotia at a population level. Several of the analyses represent 

novel applications to conservation questions and have the potential to be extended or 

more widely applied. Because freshwater fishes, including diadromous fishes, are 

collectively one of the most imperiled species groups in the world, such research 

represents a timely contribution to conservation biology.  
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Chapter one: Introduction and overview  

 The concept of a population is central to our understanding of patterns in ecology, 

evolutionary biology and conservation biology, and it is a natural unit for which to 

evaluate the consequences of environmental change. Populations are typically considered 

to be mid-way along successive levels of aggregation, from an isolated individual to all 

individuals of a particular species (e.g., individual, aggregation/family, sub-

population/deme, population, population aggregation/complex, sub-species, species). 

Most definitions of a population are largely qualitative and are based on the degree of 

similarity in either biological attributes or location/interactions in space and time, or on 

the potential for reproduction among individuals (see Table 1 in Waples & Giogotti 

2006). However, organisms that have highly specific habitat requirements for specific life 

stages tend to be grouped into populations using a landscape boundary. Examples would 

be diadromous fishes in fresh water, pond-breeding amphibians, or migratory birds and 

butterflies using specific habitat types such as alpine meadows and old growth forest 

(Opdam 1991, Marsh & Trenham 2001, Jones 2006). Although these groupings are 

functionally useful for monitoring, management and policy (Waples & Gaggiotti 2006), it 

is also important to recognize that dynamics at any level are influenced by variability that 

exists at both smaller and larger levels of aggregation. It is useful to consider the example 

of Atlantic salmon (Salmo salar) in Atlantic Canada, where populations exhibiting 

broadly similar life history (Chaput et al. 2006) and genetic characteristics (O’Reilly et al. 
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2012, Bradbury et al. 2014) have been identified and grouped into regional units for 

conservation and management (COSEWIC 2010) based on the idea that the dynamics of 

individual populations would be expected to be similar throughout each grouping. 

However, measurable differences in life history characteristics, biological attributes (e.g. 

maturation rates, freshwater residency; Gibson & Bowlby 2013) and genetic structure 

(O’Reilly et al. 2012) have been described among components of individual populations 

inhabiting a single river system, where each component would be expected to exhibit 

somewhat different dynamics. Thus to understand the dynamics of a salmon population 

within a specific watershed, it is important to place that population within a larger 

regional context, while at the same time, to consider the extent or potential effect of 

localized variability within the watershed. 

Evaluating how specific environmental factors and intrinsic life history 

characteristics culminate in changes in population size is central to understanding how 

populations are regulated (Shaub & Abadi 2011). The most basic description of the 

abundance of an open population at a given time is: 𝑁𝑡 = 𝑁𝑡−1 + 𝐵 − 𝐷 + 𝐼 − 𝐸; where 

current population size (𝑁𝑡) is jointly determined by population size in the previous year 

(𝑁𝑡−1) plus births (𝐵), minus deaths (𝐷), plus immigration (𝐼) and minus emigration (𝐸). 

Changes in the number of individuals born, dying, or moving are typically understood in 

terms of a rate, called a population vital rate. Variation of vital rates in space and time can 

result from intrinsic, localized interactions with habitat characteristics in terms of abiotic 

conditions, prey resources, competitors and predators (Wu & Loucks 1995), or can reflect 
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larger-scale environmental heterogeneity in terms of habitat size, quality, distribution or 

isolation (Harrison 1991, Hanski & Gilpin 1991). Throughout this thesis, I use an 

operational definition of habitat (Hall et al. 1997), where habitat is understood to 

represent any location with resources that enable individuals from a population to survive 

and/or reproduce. Describing changes in vital rates at a population level in relation to 

human activities can be thought of hierarchically: it would be based on an understanding 

of life history strategy, population regulation, behaviour, habitat requirements and spatial 

habitat structuring; next would be consideration of inter-relationships among these and 

how spatial and temporal variability may culminate as changes to abundance and 

distribution; and finally would be the attempt to characterize how anthropogenic activities 

have influenced variability in ecological processes, leading to population decline.  

Demographic vs. spatial perspectives of population dynamics 

Ecological inquiry on changes to population dynamics has gone in two general 

directions: the first being focused on factors affecting demographic processes 

(reproductive rates, stage-specific mortality and life history strategy), and the second 

being focused on factors influencing how organisms interact spatially with the landscape 

(primarily through immigration and emigration; e.g., Sutherland et al. 2013). It is 

expected that the overall influence of specific factors will vary depending on the system 

under consideration (Sutherland & Norris 2002, Kinnison & Hairston 2007, Nislow et al. 

2011, Kiernan & Moyle 2012). Explicit consideration of life history strategy, population 

regulation (i.e., compensatory density dependence), habitat requirements and 
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environmental stochasticity is fundamental to understanding population dynamics relative 

to demographic processes. In terms of life history, theory predicts that characteristics such 

as iteroparity have evolved as a mechanism to maximize reproductive success in variable 

environments, given that specific cohorts (i.e., offspring from a specific reproductive 

event) are exposed to different environmental conditions by being distributed over 

multiple years (Figge 2004, Moore et al. 2010). Similarly, individual investment in early 

reproduction relative to growth and delayed maturation varies with the timing of 

mortality, and reproductive allocation has been linked to the degree of environmental 

variation, organismal stress, and the availability of resources (references in Winemiller 

2005). In terms of population regulation, it is expected that species, populations, or life 

stages characterized by strong density dependence will partially attenuate sources of 

density-independent mortality through increases in survival or fecundity (Jonsson et al. 

1998, Rose et al. 2001, Nislow et al. 2011). Thus, there has been a substantial debate on 

the relative importance of density dependent versus stochastic environmental processes 

on population dynamics at various spatial and temporal scales (Benton et al. 2006, 

Kiernan & Moyle 2012).  

A spatial perspective to population dynamics views distribution and abundance 

patterns as resulting primarily from the size and geographical distribution of habitat as 

well as movement of organisms over the landscape (Hanski 1999, Bowler & Benton 

2005, Thornton et al. 2011, Kubisch et al. 2014). Natural selection would be expected to 

favour individuals that prefer, and can access and/or defend high quality habitat for 
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growth and reproduction (Fretwell & Lucas 1970, Bowler & Benton 2005). Although 

density would be expected to be higher in these habitats, the amount of area used or 

defended by individual animals is extremely variable (Kubisch et al. 2014). Organisms 

assess habitat suitability on the basis of characteristics that they can perceive, even though 

such secondary cues are imperfect and may result in individuals spending considerable 

time in suboptimal areas (Robertson & Hutto 2006, Johnson 2007). Such variability can 

obscure relationships between habitat quality and density at larger scales, particularly for 

generalist species that can profitably exploit a variety of conditions.  

Habitat quality and resource availability relative to inter- and intraspecific 

densities largely determine the relative strength of competition experienced within 

localized habitats, which in turn, influence emigration rates (Kinnison & Hairston 2007, 

Pfluger & Balkenhol 2014). In general, animals are more likely to leave habitats of lower 

quality and areas of high density (Lin & Batzli 2001, Matthysen 2005), but individual 

dispersal strategies can also be adjusted relative to habitat unpredictability, as well as to 

characteristics such as sex, age, or morphology (Bowler & Benton 2005, Bonte et al. 

2012). Successful immigration depends on the number of individuals reaching a habitat, 

habitat quality, current occupancy and carrying capacity, as well as the relative fitness of 

individual dispersers within the new habitat (i.e., reproductive success). Processes such as 

local adaptation would be expected to reduce effective dispersal (i.e., dispersal that results 

in successful reproduction; Pfluger & Balkenhol 2014), which is one reason that straying 

has been seen as partially maladaptive in species such as salmonids (Rieman & Dunham 
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2000). A comprehensive review of salmonids (Fraser et al. 2011) estimates local 

adaptation to occur in 55-70% of populations, with local populations having 1.2 times the 

average fitness advantage relative to foreign populations or relative to their performance 

in new environments. Fraser et al. (2011) found local adaptation to occur over a variety of 

spatial scales and to develop relatively quickly, within 6-30 generations. However, the 

majority of evidence for local adaptation in Atlantic salmon (the best-studied species) is 

indirect and comes from ecological correlates in fitness-related traits, the failure of many 

translocations, and the poor performance of domesticated stocks (Garcia de Leaniz et al. 

2007). Also relative to successful immigration, it is generally expected that 

geographically proximate habitats would be encountered more frequently by dispersing 

individuals and thus the costs associated with locating them would be lower (Bonte et al. 

2012). However, such a pattern might not be expected for migratory species where 

overall dispersal distances are much greater than the average distance between habitats 

used by a specific life stage (Guillot et al. 2009).  

Although a population is a natural unit for which to evaluate the consequences of 

environmental change, developing quantitative relationships first requires explicit 

consideration of underlying patterns which determine abundance, density or connectivity 

at a population level. Relative to changes in demographic rates, the information above 

suggests that: (1) on observational time scales, average population vital rates (e.g., 

mortality and maturation rates) will be largely determined by life history strategy, (2) 

anthropogenic activities would be expected to change environmental conditions in some 
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way, (3) annual variation in vital rates should be related to such environmental variation 

and thus may arise from anthropogenic activities, (4) density dependent processes 

occurring within localized habitats would be expected to partially attenuate any effect of 

environmental change, and (5) dispersal patterns could have an apparent dampening 

effect on stage-specific mortality rates owing to the re-distribution of individuals. Overall, 

measured abundance and density patterns are expected to be related to habitat quality, and 

environmental variation that reduces habitat quality is expected to also reduce localized 

abundance or density through changes to demographic rates. However, population 

dynamics would be further affected by the spatial characteristics of habitats, where 

environmental conditions within habitats could alter the propensity for and success of 

individual dispersal events. The way in which such processes would culminate in changes 

in abundance, density or genetic structure is poorly known, yet is expected to be scale-

dependent (Benton et al. 2006).  

Watersheds in the landscape 

The spatial structure and dendritic nature of watersheds regulates or modifies their 

ecological organization, where the physical and biological processes at small spatial 

extents are constrained and/or modified by processes occurring at larger spatial extents 

(Campbell Grant et al. 2007, Johnson et al. 2007). This hierarchical organisation is a 

result of convergence in the stream network, where water accumulates along the length of 

the network and transports multiple components from the upper tributaries to its 

confluence, such as nutrients, sediments, energy, or organisms (Huang et al. 2007). At a 
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catchment scale, precipitation patterns, geology, topography and land cover interact to 

influence hydrological conditions and landscape structure. At smaller spatial extents, 

factors such as the distribution and nature of riparian vegetation, or biotic community 

structure exert further influence on the characteristics of localized habitats as well as their 

realized variability (Johnson et al. 2007, Ugedal & Finstad 2011). For classification and 

comparison, this convergence can be represented multiple ways, such as Strahler order 

classes (Strahler 1957) that describe the relative positions of reaches within a stream 

network based on upstream confluences, or by using metrics such as upstream catchment 

area as a more universal descriptor of the relative size of specific reaches (Altermatt 

2013). One of the most important conceptual models with which to understand the spatial 

heterogeneity of streams resulting from convergence (Fausch et al. 2002) is the River 

Continuum Concept (RCC; Vannote et al. 1980). Averaged over space and time, the RCC 

predicts relatively gradual changes in geomorphological processes along a stream 

network resulting from changes in channel morphology as influenced by flow. Thus over 

large spatial extents, heterogeneity in habitats is associated with downstream decreases in 

channel slope, riffle development and substrate size, and with increases in stream width, 

depth and pool size (Schlosser 1991).  

Ecosystem function in river networks can depend on the interplay between three 

main factors: local environmental conditions (e.g., Woodward et al. 2012), the induced 

directionality (also called anisotropy) in the spread of abiotic or biotic inputs (Rodriguez-

Iturbe et al. 2009), and the topological network structure defined by stream reaches and 
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confluences (Benda et al. 2004, Brown & Swan 2010). As general patterns, within-

species and community-level diversity are predicted to be higher around confluences and 

in downstream reaches, largely due to increased habitat complexity (Altermatt 2013) and 

constraints on the distance and directionality of movement within the network (Kiffery et 

al. 2006), respectively. However, stream ecosystem dynamics are greatly influenced by 

disturbance arising from variability in ecosystem processes at multiple spatial and 

temporal scales (Stanley et al. 2010). One example of such variability is a natural flow 

regime, which is characterized by a cyclical seasonal pattern, punctuated by daily, 

seasonal and annual variability in the timing, duration and severity of floods, droughts 

and intermittent flows (Olden & LeRoy Poff 2003). Annual patterns of population 

distribution and abundance within the stream network reflect a species’ habitat 

requirements as well as any behavioural response to variability in ecosystem structure and 

function (Campbell Grant et al. 2007), and are expressed as changes in vital rates and 

overall population dynamics. 

The patchy nature and relative isolation of specific habitat types within a 

watershed would be expected to lead to multiple groupings of individuals that could 

exhibit differences in dynamics. Both the extent of isolation as well as the strength of 

spatial coherence in environmental conditions (i.e., the Moran effect) would partly 

determine the degree of similarity or synchrony among the different groups (Koenig 

2002). The value of this diversity relative to species abundance and persistence is 

currently understood using economic portfolio theory (Figge 2004), which posits that 
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asynchronous dynamics among a diversified aggregation of distinct groups buffers 

against temporal variability in an individual group, thereby increasing the overall stability 

and long-term performance of the aggregation (Moore et al. 2010, Schindler et al. 2010). 

Ecologically, this translates into lower inter-annual variations in abundance at the level of 

the population coupled with greater resilience to environmental change and lower risk of 

global extinction (Earn et al. 2000, Figge 2004).  

Considerations related to hypothesis testing 

Quantifying changes in population dynamics owing to environmental variability 

requires some type of statistical model, which can be as simple as a description of central 

tendency. Any model of population dynamics allows for the organization, 

conceptualization, and interpretation of ecological data, enabling researchers to form 

hypotheses and test predictions (Courchamp et al. 2008). By necessity, they are a 

simplification of the natural world, and conclusions arising from them are critically 

dependent on both their inherent assumptions as well as the characteristics of the data 

used in parameterization. There is a wealth of information about environmental processes 

that might be expected to be related to population dynamics. However, it is not 

immediately obvious how to aggregate environmental monitoring data into biologically 

meaningful indices (Mueter et al. 2002). For example, typical environmental monitoring 

takes place at a fixed location with a fixed sampling frequency (e.g., hourly flow 

measurements at a hydrological monitoring station), while population-level monitoring 

data often yields a single annual estimate for the life stages sampled (Levin 1992, 
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Schwarz & Seber 1999). In this instance, the environmental monitoring data would need 

to be aggregated into some type of annual estimate to be on an appropriate temporal scale 

for any comparison with changes in population dynamics. Annual variability in a 

hydrological flow regime can be expressed relative to average conditions, variation in 

means or medians, timing and duration of extreme conditions, skewness, or a multivariate 

approach, among others (Olden & LeRoy Poff 2003). Limited population monitoring 

data, where 20-30 data points are considered to be substantial, plus the large number of 

possible environmental predictors impose quite strong statistical limitations on hypothesis 

testing (Graham 2003, Zuur et al. 2010, Fredericksen et al. 2014). Thus, quantitative 

relationships can be difficult to describe due to issues related to scale and consequently, 

to detectability (Rose 2000, Fredericksen et al. 2014). 

Conservation of fish populations 

Freshwater and diadromous fishes are collectively one of the most imperilled 

species groups in the world (Dudgeon et al. 2006). Globally, they are vulnerable because 

they provide an abundant and easily accessed food source, occur in areas where human 

populations are concentrated, and inhabit an ecosystem that is particularly susceptible to 

damage through direct modification as well as by activities within catchments (Lake et al. 

2007, Olden et al. 2010). Human activities that impact upon watersheds often represent an 

assemblage of changes to fish and fish habitat. For example, infrastructure development 

such as roads can precipitate multiple alterations to the ecological, demographic or 

behavioural attributes of populations leading to reduced viability and consequently 



 

 

12 

 

 

reduced abundance (reviewed in Gucinski et al. 2001). Alternately, an assemblage of 

different types of human activities can affect the same ecological process in watersheds. 

For example, mining operations, urbanization, infrastructure development, agriculture, 

and forestry have all been linked to changes in hydrological flow patterns (Allan 2004, 

Broadmeadow & Nisbet 2004, LeRoy Poff et al. 2006), where the overall severity of 

anthropogenic effects are expected to be exacerbated by changing precipitation patterns 

due to climate change (Milly et al. 2005).  

Given the rate of population declines and species extinction, there is a pressing 

need to produce quantifiable predictions on the consequences of environmental change to 

aid in conservation and recovery efforts (Sutherland & Norris 2002, Palmer 2009, Olden 

et al. 2010). This directly depends on being able to identify the environmental and 

ecological factors limiting abundance (i.e., the threats) at a population level (Lawler et al. 

2002). It would be expected that population decline would be more likely to occur when 

threats arise that are outside of a population’s previous evolutionary experience (i.e., the 

variable is new, such as species invasions) or when change outpaces adaptation (e.g., 

increasing severity and frequency of extreme events or catastrophes) (Brook et al. 2008). 

For species in which the causes of decline are thought to result from multiple 

simultaneous threats, there is considerable debate on how individual pressures would 

culminate in changes to abundance. In general, effects on population dynamics might be 

expected to be non-linear and non-intuitive (Rose 2000), representing some combination 



 

 

13 

 

 

of cumulative, antagonistic, and threshold-type responses among agents of environmental 

change.  

Case study to assess practical implications 

A recent review of the status of anadromous Atlantic salmon (Salmo salar; 

Linnaeus, 1758) by the Committee on the Status of Endangered Wildlife in Canada 

(COSEWIC) grouped populations into 16 designatable units (DUs), representing 

evolutionary significant groupings below the species level. Each DU is considered to 

contain a distinct population assemblage on the basis of genetic data, life history 

characteristics, the general status of populations, and the geospatial characteristics of 

watersheds (COSEWIC 2010). Five of the DUs were designated as endangered, one as 

threatened, four as being of special concern, four as not at risk, one as data deficient and 

one as extinct (COSEWIC 2010). Four of the five DUs considered to be endangered are 

located in Atlantic Canada, including: the inner Bay of Fundy (iBoF), outer Bay of Fundy 

(oBoF), Southern Upland (SU), and Eastern Cape Breton (ECB) regions (Figure 1-1). The 

fifth was Anticosti Island in Quebec.  

Recent population dynamics modeling from monitored populations in the SU 

region (Gibson & Bowlby 2013) indicated that extinction risk is high, yet could be 

substantially reduced through relatively small increases to freshwater productivity (e.g., a 

20% increase in egg to smolt survival). Therefore, there is strong interest from multiple 

stakeholders to begin remediation projects to address threats affecting specific 

watersheds. To develop such remediation priorities requires a thorough understanding of 
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quantitative relationships between anthropogenic activities affecting watersheds and 

population-level changes in abundance and productivity.  

Overall research goals 

For many endangered species, there is a pressing need to advance our 

understanding of species-environment relationships, in order to guide recovery planning 

and maximize the potential that remediation actions will lead to population increase 

(Lawler et al. 2002, Scheurell et al. 2006, Driscoll & Lindenmayer 2012). I specifically 

chose my research questions to partially address three of the main issues related to 

developing these relationships. First, there is considerable debate on the cumulative effect 

and relative importance of population regulation, spatial interactions between organisms 

and the landscape, and localized demographic processes (e.g. Benton et al. 2006, Kiernan 

& Moyle 2012), yet using one perspective as a basis for recovery planning can lead to 

very different practical guidance relative to the alternate perspectives (Morales 2011, 

Driscoll & Lindenmayer 2012). Second, observational data collected at a population level 

tends to be quite noisy and limited by sample size, which can lead to issues with 

detectability when trying to describe species’ responses to environmental change (Rose 

2000, Allan 2004). And lastly, several different types of anthropogenic activities in 

watershed catchments can lead to cumulative and/or confounding changes to ecological 

processes in streams (Altermatt 2013, Jeffrey et al. 2015), many of which affect fish 

survival (LeRoy Poff et al. 2010). Thus at a population level, species responses to 

environmental change may be largely non-intuitive (Rose 2000).  
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For each analysis, I aimed to provide a critical evaluation of the applicability of 

various ecological ideas to conservation questions, to extend current statistical 

methodologies or propose alternatives, to establish quantitative links between land use or 

environmental characteristics and population dynamics, and to explicitly consider the 

practical implications of results for conservation and recovery planning relative to a case 

study: endangered Atlantic salmon populations. In chapter two, I developed a simulation 

model based on a simplified diadromous life history that I used to evaluate how spatial 

structure and demographic variability integrate to determine the dynamics of an 

assemblage of populations. As such, the analysis is a basis for a critical assessment of 

whether metapopulation theory should be used to develop remediation priorities for 

conservation and management for species such as diadromous fishes that exhibit 

substantial population structuring. In chapter three, I focused on quantifying the influence 

of environmental change, specifically hydrological variation, on survival in isolation from 

density-dependent processes using temporal data. By explicitly evaluating sources of 

uncertainty, I demonstrated how our ecological understanding of environmental change 

can be directly affected by decisions made prior to analyses, and explicitly consider how 

this would affect recovery planning. In chapter four, I focused on how individuals 

respond to environmental gradients through movement and use patterns of effective 

dispersal to infer the relative importance of specific types of threats. This relies on 

optimally characterizing expected patterns of genetic variability, and I proposed that these 

need to be understood relative to environmental rather than geographic gradients. In 
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chapter five, I evaluated the support for several ecological hypotheses on habitat 

utilization, distribution patterns within watersheds, and population-level responses to 

human activities using juvenile density data and landscape predictors developed at two 

spatial extents. Although results relative to theoretical predictions are inconclusive due to 

characteristics associated with data collection, they could be applied in a management 

context to predict effects on juvenile salmon productivity from proposed industrial 

development or other anthropogenic changes in watershed catchments. In my final 

chapter, I synthesized conclusions from my research relative to theoretical expectations, 

identify limitations and opportunities for further analyses, and discuss practical 

considerations for moving forward with recovery planning. 
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Figures 

 
Figure 1-1. Map showing the location of the inner Bay of Fundy (iBoF), outer Bay of 

Fundy (oBoF), Southern Upland (SU), and Eastern Cape Breton (ECB) regions of 

Atlantic Canada.  
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Co-authorship statement 

The research in this thesis was undertaken as a component of a dynamic research 

and assessment program for Atlantic salmon in Nova Scotia, conducted by Fisheries and 

Oceans Canada. For the manuscripts resulting from my thesis chapters, individuals who 

contributed greatly to their intellectual development and execution are included as co-

authors.  

 

(i) Design and identification of the research proposal.  

Many of the general ideas contained in this thesis were previously discussed between me 

and others; for example the idea that hydrological change or land use would likely be 

related to juvenile salmon survival. However, I was solely responsible for the design and 

identification of my research proposal. I did draw on the expertise of Dr. Jamie Gibson to 

structure how my ideas might best contribute to the goals of the larger salmon assessment 

program. I consider the main ideas explored in each chapter to have been identified and 

developed by me. For example, the idea that metapopulation structure may not benefit 

diadromous populations with low productivity (chapter two); the idea that robust 

regression might be useful to evaluate data with error (chapter three); the idea to use 

landscape genetics as a way to evaluate concurrent threats (chapter four); and the idea that 

spatial distribution patterns operating over multiple spatial extents may influence any 

understanding of threats (chapter five). 

 

(ii) Practical aspects of the research 

I used a wide variety of data sources. Some of these had been collected or developed by 

others as part of ongoing assessment activities for salmon (e.g. the microsatellite data 

used in chapter four). For others, I had been involved in collecting and archiving the data 

(e.g. the electrofishing data used in chapters three and five), or I had been responsible for 

overseeing their development (e.g. the landscape database used in chapter four). I 

independently developed the spatial predictors used in chapter five from a pre-existing 

landscape database. The data source that I made the most use of was the electrofishing 

data, which represents the culmination of eight years of work by Dr. Jamie Gibson to 

electronically archive. For chapter four, I offered authorship to Dr. Patrick O’Reilly in 

recognition of his work in developing the microsatellite data, but he declined. Also, I 

based the population dynamics model in chapter two on R code that was originally 

written by Dr. Jamie Gibson for a single population of a diadromous fish. Although I 

made use of the his novel idea and code development for tracking individuals using multi-

dimensional arrays, the simulations presented in chapter two represent substantial 

modifications to the original model.   

 

(iii) Data analysis 
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I both identified appropriate analyses and undertook them on my own. I regularly 

discussed results with my supervisors, and they provided guidance as appropriate on 

potential ways to think about specific problems. They also provided guidance on 

resources I could consider to broaden my understanding of specific topics or analysis 

issues. Chapter four was co-authored by Dr. Ian Fleming, because I drew on his expertise 

in ecological theory as related to population genetics throughout the development of the 

analyses.  

 

(iv) Manuscript preparation  

I prepared all manuscripts. However, they all went through substantial editing prior to any 

submission. All co-authors as well as my committee members made substantial 

contributions to this editing process. 
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Chapter two: Does metapopulation structure reduce extinction risk for 

diadromous species as productivity declines? 

 

Abstract 

Metapopulation structure (i.e., an aggregation of partially isolated populations 

interconnected by non-negligible dispersal rates) is typically thought to increase regional 

abundance, promote population persistence, and help in the re-establishment of extirpated 

populations. The effectiveness of recovery strategies for species of conservation concern 

can depend on the validity of these perceptions if finite resources become focused on 

population connectivity in exclusion of alternate actions. Given that the theoretical 

research supporting the benefits of metapopulations typically assumed high productivity 

(i.e. that individual populations could easily increase in size) when evaluating spatial 

dynamics, metapopulation structure may not be as beneficial when productivity is low. 

Here, I use a simulation model to compare the effect of among-population dispersal 

relative to within-population dynamics on the abundance trajectory and extinction 

probability of a population assemblage under five different productivity scenarios. My 

analyses demonstrate maximum abundance in the population assemblage at moderate 

levels of productivity. When productivity is extremely low, straying does not ensure 

persistence of non-viable populations or enable population re-establishment, yet it does 

increase extinction risk in viable populations. Combined, these effects lead to faster 
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declines in abundance in a population assemblage connected by straying (i.e. a 

metapopulation), relative to one composed of the same number of isolated populations. 

This result was robust to a wide range of alternate spatial and life history 

parameterizations of the simulation model. Thus, for endangered species characterized by 

low or very low productivity, changes to demographic rates appear to have a much larger 

effect on overall extinction risk relative to spatial dynamics and likely should be the focus 

of recovery planning. 

Introduction 

Applying ecological theory to practical conservation issues relies first on 

describing general patterns that can be used to predict the response of specific systems, 

and then using these predictions as the basis for management recommendations and 

applied remediation actions (Driscoll & Lindenmayer 2012). Metapopulation theory has 

been widely proposed as a basis from which to understand species’ responses to human-

dominated landscapes, specifically in terms of abundance and distribution patterns to 

assist in conservation (Hanski 2011, Eaton et al. 2014). For many species, maintaining 

metapopulation structure has been proposed (e.g., Morales 2011) or implemented (e.g., 

Gusset et al. 2008) as a way to promote conservation in situations of severe population 

decline. For example, recovery planning for diadromous fishes typically considers both 

abundance as well as distribution targets when defining conservation objectives (e.g., 

Ruckelshaus et al. 2002, Bowlby et al. 2014). For endangered Atlantic salmon (Salmo 

salar), justification for the distribution target was partially based on the perception that 
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individuals from extant watersheds would stray into surrounding watersheds and thus 

promote persistence or population re-establishment (Bowlby et al. 2014). However, these 

perceived benefits of straying could be disproportionate to the potential realized benefit, 

and could reduce effectiveness of recovery actions if limited resources become focused 

on maintaining or promoting population connectivity in exclusion of alternate actions. 

Thus perceived benefits of metapopulation structure become important when trying to 

qualitatively rank various remediation options for the conservation of a suite of 

populations.  

The idea of a metapopulation is strongly related to the theory of island 

biogeography put forward by MacArthur and Wilson (1967) to explain patterns of 

biodiversity, but shares similarities with any system that is considered to be a mosaic of 

islands or patches. Among aggregations of a single species, metapopulation theory begins 

from the premise that habitat area and isolation are the key determinants of abundance 

and distribution patterns at a regional level (Hanski 1999, Driscoll 2007) and the main 

ecological process assumed to govern the dynamics of metapopulations is dispersal 

(Clinchy et al. 2002, Harrison 1991). Thus, metapopulation structure is commonly 

understood to refer to an aggregation of partially isolated populations interconnected by 

non-negligible dispersal rates, while metapopulation dynamics refers to changes in 

abundance or distribution owing to the spatial configuration of habitat, habitat size and 

movement of individuals among habitat patches (Pellet et al. 2007). Relative to species 

conservation, metapopulation structure is perceived to confer resilience to environmental 
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variability or catastrophic habitat loss (e.g., Wilcox et al. 2006, Vuilleumier et al. 2007), 

thereby reducing overall extinction risk (Gyllenberg & Hanski 1997, Simberloff 1998). 

Furthermore, immigration into small habitat patches from large ones (called source-sink 

metapopulations (Harrison 1991)), is thought to maintain individual populations that may 

otherwise extirpate or help in the re-establishment of extirpated populations, thereby 

increasing overall persistence. This is commonly referred to as the rescue effect (Brown 

and Kodric-Brown 1977) or source-sink dynamics (Harrison 1991), even though it is 

movement from (rather than higher productivity in) the source populations that reduce 

extinction risk in the smaller sink populations. 

The majority of theoretical metapopulation models share the common 

characteristic that space is organized into discrete patches separated by an inhospitable 

matrix (Marsh & Trenham 2001, Bender & Fahrig 2005). Such models become spatially 

explicit when immigration rates are modeled as a function of distance among habitat 

patches (e.g., Moilanen 2004), incorporating the ecological assumption that there are 

energetic and evolutionary costs associated with movement (Bonte et al. 2012). 

Extinction probabilities or population size are typically modeled as a function of habitat 

area (e.g., Gyllenberg & Hanski 1992), reflecting the ecological assumptions that large 

habitats can support more individuals than small ones (i.e., have a higher carrying 

capacity; Kubisch et al. 2014) and that extinction probability is primarily a function of 

population size (Simberloff 1998). Because within patch dynamics are ignored in the 

majority of theoretical models (Baguette and Schtickzelle 2003, Pellet et al. 2007), life 
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history processes such as births and deaths are not explicitly accounted for. By excluding 

consideration of population dynamics, individual populations inhabiting individual 

patches are assumed to exhibit no life history variation (i.e., population vital rates are 

identical; Dennis et al. 2003). In addition, using patch area as a proxy for population size 

means that populations are assumed to be able to grow in size upon reaching suitable 

habitat, quickly (in lagged models; e.g., Ellner and Fussmann 2003) or instantly (e.g., 

Gyllenberg and Hanski 1997) reaching the carrying capacity of each habitat patch. 

Furthermore, because populations in these models increase quickly or instantly to 

carrying capacity, emigration is assumed to have no negative effect on populations in 

large habitat patches (i.e., on source populations; Gyllenberg & Hanski 1992).  

Although these assumptions are implicit in model structure, they are typically not 

stated as caveats of the results. Thus, the impression that metapopulation structure 

promotes regional persistence through source-sink dynamics or the rescue effect could be 

limited to situations in which population-level productivity is high. For species of 

conservation concern, population productivity may be substantially reduced from 

historical values. Deterministically, species or populations with a negative maximum per 

capita growth rate tend to decline over time, regardless of starting population size or 

habitat area (Lande et al. 2003, Hutchings et al. 2012a). Even if the maximum per capita 

growth rate is not predicted to lead to extinction, populations may have very little 

capacity to increase in size following stochastic declines (i.e., low resiliency). Often, 

endangered species are those that have undergone large declines in abundance over time 
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(Gibson et al. 2011, Gibson et al. 2015) and/or have not responded to the abatement of 

specific threats (Hutchings et al. 2012b). The former is consistent with reduced 

population productivity and the latter with low resiliency. Both characteristics suggest 

that demographic rates may have strong influence on population growth and extinction 

probabilities in a manner independent from habitat area and isolation (i.e., independent of 

metapopulation dynamics). Thus, metapopulation theory may be a relatively poor basis 

from which to describe populations with low productivity (i.e., many endangered 

species), and could even hinder conservation if the perceptions regarding metapopulation 

dynamics are false when productivity is low.  

In nature, considerable population structuring would be expected in species that 

have highly specific habitat requirements for specific stages, and it is not surprising that 

they have been described as having metapopulation structure (Marsh & Trenham 2001). 

Many consider diadromous fishes to be the quintessential example (Rieman & Dunham 

2000, Jones 2006, Schtickzelle & Quinn 2007) given that populations inhabit specific 

watersheds for reproduction and juvenile rearing (Thorstad et al. 2011), yet are not 

entirely isolated due to relatively low straying rates of adults to non-natal watersheds 

(Keefer and Caudill 2014). Such emigration would be expected to be a relatively constant 

percentage of population size, given that straying behaviour is thought to result largely 

from imprecise homing (Keefer and Caudill 2014) as related to environmental effects on 

imprinting (e.g., Westley et al. 2015). There is also some evidence that straying behaviour 

becomes more frequent when population sizes are small (Westley et al. 2015), in that 
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individuals from larger groups tend to be able to respond better to environmental signals, 

termed the Collective Navigation Hypothesis (Berdahl et al. 2014). Both imprecise 

homing and the potential for collective navigation suggest that metapopulation structure 

for diadromous fishes would not be expected to disappear, and may even become more 

prominent, as abundance declines. Thus, metapopulation structure has the potential to 

have greater or lesser influence on persistence of diadromous fishes at different levels of 

population productivity.  

 This chapter assessed whether the perceived benefits of metapopulation structure 

for diadromous fishes hold when population dynamics are explicitly incorporated into a 

spatial model, particularly as population productivity declines.  More specifically, the 

following two questions are addressed: (1) Does metapopulation structure always confer 

resilience to extinction or maintain greater regional abundance provided individual 

populations have some ability to grow in size? and (2) Does the rescue effect (movement 

from source populations to sinks) always reduce extinction risk as productivity declines? 

To answer these questions, I developed a life history-based simulation model in which the 

dynamics of individual populations were connected by dispersal. By simulating 

populations at progressively decreasing levels of productivity while keeping spatial 

structuring constant, I was able to evaluate the consequences of dispersal on overall 

abundance and extinction risk. By incorporating a contrast in habitat area among 

populations, I could evaluate the effect of source-sink dynamics on persistence. Results 

would have immediate practical application in terms of how recovery planning may be 
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approached for diadromous fishes of conservation concern; specifically, with regard to 

how much focus should be given to actions that maintain or facilitate population 

connectivity.  

Methods 

I extended a simulation model for a single population to consider multiple 

populations distributed in space, connected by emigration and immigration. For the 

individual populations inhabiting distinct habitat patches, I modeled local dynamics 

explicitly in terms of maturity schedules, mortality rates, and environmental variability 

(detailed in Appendix 2-1). Given that the model approximates a diadromous life history, 

the habitat patches can be thought of as individual watersheds. These simulations 

considered 50 watersheds, with large ones (N = 10) containing 200 dimensionless habitat 

units and small ones (N = 40) containing 40 units (80% smaller). I incorporated this 

contrast to both approximate the range of sizes that can exist among natural watersheds in 

a region (e.g., Bowlby et al. 2013) as well as to permit an evaluation of the rescue effect 

for the simulated metapopulations. I assumed that the individual populations within 

watersheds were either open with a 10% stray rate (i.e., 10% of adult abundance from a 

specific population emigrates per year; termed a metapopulation for the remainder of this 

chapter) or closed (i.e., an annual stray rate of 0; termed isolated populations for the 

remainder of this chapter). These are the two types of population assemblages (also called 

population aggregations) that I considered in the simulations. Modeling isolated 

populations can be thought of as the null hypothesis against which I assessed the effects 
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of straying. Large populations had higher carrying capacity and therefore had larger 

population sizes than small populations at the same level of productivity (see below). 

Given the spatial component of the model (i.e., the linear distribution of watersheds and 

dispersal following IBD), and in the absence of environmental variability, individual 

large populations would lose more individuals through emigration in a specific year than 

they would gain through straying (i.e. net loss through emigration); the opposite would be 

true for small populations (i.e. net gain through immigration), given that small 

populations outnumber large in these simulations. Thus, large populations were defined 

as sources and small populations as sinks in the projections, to represent a source-sink 

metapopulation. 

Diadromous fishes are thought to experience population regulation (i.e., 

compensatory density dependence) within freshwater environments, so I modeled 

freshwater production as a Beverton-Holt process (Gibson & Myers 2003, Gibson 2006, 

Bowlby & Gibson 2011) during the first year for each population. There can be 

considerable variability among populations or species in the time diadromous fishes 

spend in freshwater (e.g., less than one year for American shad (Hasselman et al. 2013) 

and one to four years for Atlantic salmon (e.g., Chaput et al. 2006)). Here I have assumed 

that individuals emigrate to the marine environment after one year, largely to limit the 

complexity of the simulation model. However, if I had incorporated variability in 

freshwater residency, I would have expected lower overall extinction probabilities in each 

specific productivity scenario, given that different components of a cohort would be 
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exposed to different annual conditions in fresh water (Figge 2004, Moore et al. 2010). 

Immature fish returned to spawn after one or two years at sea and were able to repeat-

spawn up to 3 times. Again, there is considerable variability among diadromous 

populations or species in the time spent in the marine environment prior to spawning as 

well as in the number of times an individual will spawn (e.g., Taylor 1991). Thus, my 

simulation model captures the unique characteristics of a diadromous life history while 

not being focused specifically on a particular species or population aggregation. More 

generally, this model structure would characterize any migratory life history in which: (1) 

individuals move between two distinct habitats over ontogeny, (2) density dependence 

affects the early life stages, (3) individuals vary in the timing of maturation, and (4) the 

species is iteroparous.  

 Since dispersal is the main process leading to metapopulation dynamics, the 

spatial component of this simulation describes immigration as a function of the distance 

among watersheds. I assumed that individuals immigrated into non-natal watersheds 

following an Isolation by Distance (IBD) model, which is a pattern thought to 

characterize population connectivity in multiple taxa (Guillot et al. 2009), including 

diadromous fishes (Palkovacs et al. 2013). This was accomplished through 

parameterizing a two-dimensional matrix of probabilities that an individual from a given 

population would enter any other population, where the probabilities are based on the 

relative distance among watersheds. To approximate a coastline, I assumed each 

watershed to be distributed along a line and separated by one unit of distance. Populations 
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1 and 2 are one unit of distance apart while populations 1 and 50 are 49 units apart. Note 

that the relative distances among rivers would be preserved regardless of the units that 

distance is given (e.g. m, km), so the probability of straying into a given watershed does 

not depend on knowledge of the distance units. 

The implicit assumptions about population dynamics in most metapopulation 

models (i.e., habitat area is a proxy for population size; populations increase quickly to 

carrying capacity; source populations are not negatively affected by emigration) are all 

related to a population’s ability to grow in size, its productivity. A useful metric to 

describe productivity or population growth over a species’ life cycle is the maximum 

lifetime reproductive rate (MLR; Myers et al. 1999): the maximum rate at which 

spawners can produce spawners at low population size. The MLR is related to the idea of 

the maximum per capita growth rate (rmax; Lande et al. 2003) but accounts for age 

structure in the calculation. For closed populations, it equates to the slope at the origin of 

a spawner-recruit relationship (α: the maximum rate at which spawners produce recruits; 

units: recruit/spawner) multiplied by the rate at which recruits produce spawners over 

their lifetime (the spawner-per-recruit relationship; SPR; units: spawner/recruit) (Myers et 

al. 1999, Gibson & Myers 2003). As such, the MLR is dimensionless and applies to any 

life stage (e.g., lifetime egg production per egg; number of spawners produced per 

spawner throughout its life). Here, smolts are defined as recruits given that compensatory 

density dependence takes place in fresh water (Gibson 2006, Jonsson et al. 1998). For 

open populations (i.e., a metapopulation), the SPR relationship for a particular river 
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would be affected by straying, in that the intercept could be shifted away from zero, 

representing a situation in which spawners could be present even if there were no natal 

recruits. Differences in the SPR among populations could occur provided at least one of 

the following differed: (1) stray rates, (2) immigration rates or (3) life history parameters. 

Even if none of these varied, changes to the intercept of the SPR relationship for 

individual open populations would be time-varying because the relative contribution of 

strays to each population would vary over time. However, for the entire metapopulation 

assemblage, the MLR would not vary over time and would equal that for the isolated 

populations (Table A2-1-2, Appendix 2-1), given that no mortality was associated with 

straying in the simulation. Thus, the productivity scenarios for metapopulations and 

isolated populations were comparable at the level of the population assemblage, but not at 

the level of the individual populations in the simulations. 

I considered five productivity scenarios: High, Medium, Low, Extreme Low and 

Not Viable, representing progressive declines in populations’ ability to grow in size (the 

MLR) as well as in the equilibrium size of adult populations in small and large 

watersheds (Table 2-1). Deterministically, the High scenario corresponds to a situation in 

which the population assemblage can easily grow in size, parameterized such that one 

spawner can produce a maximum of seven spawners throughout its lifetime at low 

population size (MLR = 7 spawners/spawner). In contrast, the Not Viable scenario 

corresponds to a situation in which the population assemblage has no ability to increase in 

size, given that one spawner can produce a maximum of one spawner throughout its 
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lifetime (MLR = 1 spawner/spawner). The Medium, Low, and Extreme Low scenarios 

have progressively lower MLR values between these two endpoints (Table 2-1). To aid in 

the evaluation of source-sink dynamics, I incorporated a quasi-extinction threshold into 

the simulation model to ensure that small populations acted as extreme sinks in the Not 

Viable scenario and to prevent biologically unrealistic population sizes (e.g., fractions of 

an individual) persisting in the projections. If total abundance in any given year was less 

than 20 spawners, I assumed future production from the cohort was zero; thus the Not 

Viable scenario leads to deterministic extinction for small isolated populations given that 

their equilibirum size is lower than the assumed quasi-extinction threshold. The graphical 

representation of each of these scenarios in the absence of environmental variation 

(Figure 2-1) shows the deterministic population sizes for small and large populations and 

how they decline with changes in productivity. 

To evaluate if metapopulation structure benefits a population assemblage as 

productivity declines, I summarized simulations in terms of median abundance (and 25
th

 

and 75
th

 quantiles), extinction probabilities, as well as percent difference among 

trajectories. At the level of the population assemblage, abundance becomes the sum of 

individual median population sizes in a given year and extinction probability is the 

probability that all populations are extinct in a given year. In addition, I quantified 

differences in the overall abundance trajectories of metapopulations relative to isolated 

populations by calculating a percent difference for each scenario. I subtracted the isolated 

population trajectory from the metapopulation trajectory, resulting in a 100 year-long 
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vector of differences, before taking the maximum value from this vector, dividing by 

median abundance in the metapopulation, and multiplying by 100 to get a percentage (%). 

This standardization gives a comparable metric for each level of productivity, one that is 

not affected by the rate of population decline or by differences in absolute abundance. 

Positive values represent situations in which abundance was higher in metapopulations 

than in isolated populations, and vice versa for negative values.  

To determine which populations were contributing to abundance or extinction 

trajectories of the population assemblage, I calculated median abundance at the level of 

individual populations, as well as the proportion of individual populations persisting (the 

inverse of extinction probability). Looking at the dynamics of individual watersheds was 

useful to determine which populations were ultimately contributing to the overall patterns 

described for each assemblage in terms of abundance or extinction, as well as to evaluate 

the potential for the rescue effect. I summarized individual watershed trajectories one of 

two ways, either by size (small or large) or by “fate” (extinct, recolonized or persisting). 

Separately for small and large, I calculated the proportion of individual populations that 

were persisting (the number of non-extinct populations at a given time step, divided by 

the original number of populations of that size: P) at decadal intervals for each scenario. I 

used a log linear model (Dick 2004) to calculate a rate of change in the proportion of 

populations of a particular size persisting per year. I used the log-transformed proportion 

as the response and the year of the simulation as the predictor. The slope coefficient gives 

the strength and direction of change in the proportion persisting per year. To evaluate if 
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the rescue effect was likely to facilitate persistence as productivity declined, I compared 

the abundance trajectories of populations that had different fates in the projections, 

standardized relative to their starting equilibrium size. If the trajectory remained centered 

around one, populations fluctuated around their equilibrium, both above and below. If the 

trajectory was substantially lower than one, populations had reduced capacity to grow in 

size following stochastic declines. This low resiliency would be related to how strongly 

individual populations would act as sinks in the projections.  

To ensure that my conclusions were not overly sensitive to the parameterization of 

the simulation model, I evaluated multiple alternatives and compared results to those 

from the parameterization described above. I have presented background information on 

eight alternative hypotheses as well as specifics on the resulting 11 alternate 

parameterizations of the simulation model in Appendix 2-2. In brief, I considered: (1) 

higher stray rates, (2) two different spatial models of immigration, (3) increased or 

decreased contrast in watershed size, (4) changes in the relative geographic position of 

watersheds, (5) less temporal autocorrelation in environmental variability, (6) changes to 

productivity in the freshwater or marine environment only, (7) a lower quasi-extinction 

threshold, and (8) a low mortality rate on strays. Again, I calculated the percent difference 

between metapopulations and isolated populations to quantify any benefit of 

metapopulation structure. One thing to note is that the alternate parameterizations had the 

potential to change the range of productivities over which metapopulation structure was 
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beneficial, which would be reflected by zero values for the higher productivity scenarios 

in particular.  

Results 

Does metapopulation structure benefit a population assemblage as productivity 

declines?  

 Comparing metapopulations and isolated populations in terms of total median 

abundance (i.e., the sum of median abundances in individual populations at each time-

step) suggests that straying has a differential effect on population trajectories as 

productivity declines. For the High scenario, there was little difference (a maximum of 

9%) between the abundance trajectories (Figure 2-2), indicating that metapopulation 

structure was unlikely to substantially increase abundance when populations were very 

productive. However, when productivity declined by essentially half, total abundance was 

progressively greater in a metapopulation than it was for isolated populations (c.f. the 

High, Medium, and Low productivity scenarios; Figure 2-2). However, further declines in 

productivity erode this benefit, where metapopulations and isolated populations had a 

more similar abundance trajectory in the Extreme Low scenario, and isolated populations 

remained larger than metapopulations in the Not Viable scenario (Figure 2-2). Comparing 

the percent difference between the two trajectories as productivity declines results in a 

dome-shaped pattern (Figure 2-3), showing the increasing positive effect of 

metapopulation structure on abundance from the High to Low scenarios (maximum 
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differences of 9%, 18% and 32%, respectively), the partial erosion of this benefit in the 

Extreme Low scenario (27%), and the reversal in the Not Viable scenario (-26%). 

Intuitively, this pattern suggests that the benefit to small populations from immigration 

counter-balances the negative effect of strays from source populations only at higher 

levels of population productivity. However, total extinction probability (i.e., the 

probability that all populations are extinct at a specific time) does not show any benefit 

from metapopulation structure, in that probabilities are essentially equal for the High and 

Medium scenarios, and are lower for isolated populations in the Low, Extreme Low, and 

Not Viable scenarios (Figure 2-4). Calculating the maximum difference in extinction 

probability between metapopulations and isolated populations results in progressively 

more negative values; -3%, -10%, -18%, and -19% from the High to Extreme Low 

scenarios, respectively. Although this may seem to contradict the patterns reported above 

for total abundance, it likely relates to which specific populations persisted in the 

simulations over time. 

The rate at which individual small populations go extinct in the projections was 

measurably higher for isolated populations than metapopulations when productivity 

declined from the Medium to the Not Viable scenario (Figure 2-5), as was also shown by 

the slopes coefficients from the log linear model (c.f. -0.001 and 0; -0.004 and -0.002; -

0.014 and -0.009 year
-1

 respectively, Table 2-2). For this to be true, the number of 

individuals immigrating had to have been greater than the 10% emigrating, leading to 

larger sizes as compared to isolated small populations. However, the reverse is true for 
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large populations, in that annual emigration from a specific large population (10% of 

population size) is not balanced by immigration from the other 49 populations, leading to 

smaller population sizes as compared to isolated populations. Therefore, extinction risk is 

lower for small populations and higher for large populations in the metapopulation at any 

level of productivity (Figure 2-5; Table 2-2). Given that the differences in total extinction 

probability are progressively more negative, persistence of the population assemblage 

must be primarily linked to the persistence of large populations. If total extinction risk for 

the population assemblage was primarily determined by the persistence of small 

populations, metapopulations would have had a lower overall extinction probability at 

some or all levels of productivity. The fact that all differences are negative also 

demonstrates that straying would always be expected to have a measurable negative effect 

on large (source) populations.  

By increasing the persistence of small populations, metapopulation structure can 

lead to substantial increases in total abundance as compared to isolated populations when 

productivity is moderately high (up to 32% in the Low scenario). However, as 

productivity drops, small populations tend to go extinct quickly in the simulations for 

both isolated populations and metapopulations (Extreme Low and Not Viable scenarios; 

Figure 2-5). In the Extreme Low scenario, this reduces the beneficial effect of 

metapopulation structure on total abundance and makes the trajectories more similar 

(maximum difference of 27%). In the Not Viable scenario, the difference between the 

abundance trajectories becomes strongly negative (-26%). Numerically this would mean: 
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(1) that straying into small populations is not sufficient to ensure that abundance remains 

above the quasi-extinction threshold and that small populations are lost at a similar rate to 

isolated ones, and (2) large populations are losing slightly less than the percentage of the 

population that emigrates in a given year by acting as sources, leading to faster declines 

relative to isolated populations.  

Is the rescue effect likely to facilitate persistence as productivity declines? 

Individual populations have one of two fates when isolated: they either persist in 

the projections or go extinct. Populations that persist in the projections tend to fluctuate 

around their equilibrium size for the High to Extreme Low productivity scenarios, while 

populations that go extinct do so relatively rapidly, within a median timeframe of 50 or 

fewer years (all scenarios; Figure 2-6). All populations experience autocorrelated 

variation in vital rates which would lead to annual variability in productivity relative to 

the deterministic MLR of the population aggregation (Appendix 2-1). Therefore, in the 

Not Viable scenario, populations can persist if they experience favorable environmental 

conditions (i.e., negative deviates on at-sea mortality rates coupled with positive deviates 

around the spawner-recruit relationship) enabling them to fluctuate above their 

equilibrium size. In the metapopulation simulations, the individual trajectories that persist 

or go extinct are very similar those of isolated populations (c.f. the red and black lines in 

the High to Extreme Low scenarios, Figure 2-6, Figure 2-7). However, looking at the 

trajectories of recolonized populations only (i.e., trajectories that have declined to zero 

and subsequently increased over the duration of the simulation) shows that they tend to 
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persist at progressively lower sizes relative to their equilibrium as productivity declines 

(c.f. the blue and black lines among scenarios in Figure 2-7). This demonstrates that 

populations have progressively less ability to increase in size; in other words, they have 

progressively lower resiliency to environmental variability. Once this capacity to increase 

in size reaches a critical value, which would be at a productivity between the Extreme 

Low and Not Viable scenarios considered here (i.e., around the zero-intercept in the top 

panel of Figure 2-3), any benefit to metapopulation structure in terms of total abundance 

is eliminated.  

Sensitivity analyses 

The sensitivity analyses included simulations parameterized with: (1) higher stray 

rates, (2) two different spatial models of immigration, (3) increased or decreased contrast 

in watershed size, (4) changes in the relative geographic position of watersheds, (5) less 

temporal autocorrelation in environmental variability, (6) changes to productivity in the 

freshwater or marine environment only, (7) a lower quasi-extinction threshold, and (8) a 

low mortality rate on strays (Appendix 2-2). Again, I summarized the results relative to 

the maximum percent difference between the overall abundance trajectories for isolated 

vs. metapopulations; where I took deviation from a dome-shaped pattern as evidence that 

these results were sensitive to the parameterization of the simulation. Because several of 

the alternate parameterizations changed the range of productivities over which 

metapopulation structure was beneficial, some of the positive deviations peaked in 

different scenarios (Figure 2-8). For example, when stray rates were 30%, the simulations 
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revealed essentially no benefit to metapopulation structure until the maximum lifetime 

reproductive rate was 3.6 (Low scenario). Then, the benefits changed rapidly, peaking in 

the Extreme Low scenario and becoming strongly negative in the Not Viable scenario 

(Figure 2-8). Negative deviations were not found before the Not Viable scenario in any of 

the sensitivity analyses, consistent with the results from the main simulation.  

Discussion  

 By explicitly accounting for population dynamics in a spatial metapopulation 

model, I could characterize the conditions under which metapopulation structure would 

be expected to benefit a population assemblage. Overall, my analyses suggest that the 

effect of straying on abundance or extinction probability is highly dependent on 

underlying productivity. Furthermore, the impression that metapopulation structure, 

source-sink dynamics, and the rescue effect will always reduce extinction risk for a 

population assemblage is not supported by my analyses, where such structure becomes 

increasingly detrimental as the potential for populations to increase in size approaches 

zero (i.e., when the maximum lifetime reproductive rate approaches one). Relative to the 

assumption that populations increase quickly to carrying capacity when recolonized, my 

results suggest that this becomes more severely violated as productivity declines. Source-

sink dynamics are unlikely to facilitate the persistence of the population assemblage when 

productivity is extremely low. Thus recovery plans that prioritize actions to maintain 

metapopulation structure at the expense of other objectives appear to be a poor basis for 

conservation of diadromous fishes. These simulations suggest that changes to population-
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specific vital rates have a much larger impact on overall extinction risk relative to spatial 

dynamics. Given that these conclusions are robust to a range of alternate ecological 

hypotheses, they might be expected to apply to other migratory species characterized by 

low productivity.  

Consistent with expectations from previous research on metapopulations (e.g., 

Hanski & Gilpin 1991, Fronhofer et al. 2012, Smedbol et al. 2002), source-sink dynamics 

led to substantially higher total abundance when small populations exhibited two 

characteristics: (1) a non-negligible probability of extinction and (2) the ability to increase 

to sizes approaching carrying capacity. Extinction probabilities for small populations 

progressively increased in the High to Low scenarios and the majority of small 

populations were recolonized at some point in the time series. However, these populations 

still had sufficient ability to increase in size, leading to substantially greater abundance in 

the population assemblage. In contrast, overall extinction risk was tied directly to the 

dynamics of the large source populations. In these same productivity scenarios (High to 

Low), straying reduced population size and made large populations in metapopulations 

slightly more vulnerable to extinction. As productivity declined further (the Extreme Low 

scenario), the numerical benefit from recolonization in small populations was reduced by 

approximately 20% (c.f. 32% difference vs. 27% difference); source-sink dynamics 

became less beneficial to the population assemblage overall. In the Not Viable scenario, 

populations had extremely low resiliency to environmental stochasticity and essentially 

could not recover if abundance declined. For the metapopulation, straying from sources to 
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sinks became doubly detrimental in that it simultaneously reduced population size in 

sources and did not result in viable populations in sinks, leading to swift declines to 

extinction.  

A prevalent theme in ecology is that higher diversity (at the level of the 

community, species, population or individual) is expected to contribute substantially to 

long-term persistence (e.g., Whittaker et al. 2005, Bolnick et al. 2011, Schindler et al. 

2010). Metapopulations are typically considered synonymous with diversity at the 

population level, so at first glance these results may appear contradictory to other well-

established ecological theories. A good example is the portfolio effect, where theoretical 

simulation studies have shown that the complementary (i.e., partially non-synchronous) 

dynamics of multiple populations can reduce inter-annual variability in total abundance 

relative to a single large population (summarized in Figge 2004). For actual populations, 

this reduced variability is expected to lead to greater sustainability of exploited 

populations (Schindler et al. 2010) as well as to reduced extinction risk overall (Figge 

2004, Moore et al. 2010). Recent research on threatened Atlantic salmon shows that 

declining diversity is positively correlated with population synchrony (Moore et al. 2010), 

which would be consistent with theoretical predictions that the portfolio effect gets 

weaker when components of the population aggregation are lost (Schindler et al. 2010). 

Although my simulations demonstrate how diversity may decline as population 

productivity is reduced, these results do not directly relate to the portfolio effect because 

the level of synchrony among populations as well as population diversity is the same in 
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each scenario. In other words, these results do not suggest that metapopulation structure is 

disadvantageous because of its diversity; rather that straying becomes disadvantageous 

among diverse populations as productivity declines. In relation to population synchrony, 

it would be possible to vary synchrony in the simulation model by reducing σ (currently 

set at 0.75) in the freshwater deviates as abundance declines. My expectation from doing 

this would be that metapopulation structure (i.e., dispersal from sources to sinks) would 

become detrimental to persistence at higher levels of productivity (e.g., when MLR > 1 

spawners/spawner), because extinction risk increases with synchrony (Moore et al. 2010, 

Mustin et al. 2013). However, the conclusion that declining productivity leads to a 

reduction in diversity (i.e., that a higher proportion of populations go extinct as 

productivity declines) would remain unchanged. 

Metapopulation theory as related to extinction risk 

If metapopulation theory were to be used as a basis for understanding extinction 

risk, the idea of population productivity must remain separate from the idea of population 

size. Although population size is recognized as being correlated with extinction risk 

within a given timeframe, the majority of ecological processes leading to extinction are 

not linked to population size per se, but rather to changes in population productivity or 

population vital rates with population size (Melbourne & Hastings 2008). Small or newly 

established populations do not have large sizes that limit inbreeding, any Allee effects or 

mal-adaptation to the new environment, or buffer against catastrophic events (Simberloff 

1998, Drake & Lodge 2006, Kinnison & Hairston 2007). Of these processes, only specific 
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types of catastrophic events could realistically influence population size in isolation from 

demographic rates; for example, poaching would reduce abundance without changing 

environmental characteristics linked to mortality or maturity rates. Demographic Allee 

effects (also called depensation or depensatory density-dependence in the fisheries 

literature; e.g., Myers et al. 1995, Courchamp et al. 2008) are commonly understood to be 

a decline in per capita population growth rates or in individual fitness as population sizes 

decline (i.e., reduced MLR). Similarly, genetic effects such as inbreeding or mal-

adaptation are defined in terms of changes to fitness, where fitness is generally 

understood to describe the ability of an individual, population, or species to survive and 

produce offspring (Oor 2009). Although such processes would be expected to have a 

proportionately larger influence on fitness when populations are small as when they are 

large, it does not necessarily follow that productivity is high when population sizes are 

larger or that productive small populations have an inherently higher extinction risk than 

large populations (Lande 1993). Simulated population sizes in excess of 80 times carrying 

capacity went extinct when productivity was extremely low (Not Viable scenario), while 

the extinction probability for individual populations within a metapopulation was 

essentially zero when productivity was high for these same watersheds. If metapopulation 

theory was derived relative to population productivity (e.g., Baguette & Schtickzelle 

2003) rather than the geographical size of habitat patches (Driscoll 2007, Pellet et al. 

2007), it is likely that it would more accurately characterize extinction dynamics and thus 

be much more useful when applied to conservation questions.  
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It is important to note that a higher probability of persistence of individual 

populations in the metapopulation projections does not indicate that extinction risk for a 

specific population is lower. Extinction and recolonization of specific watersheds 

occurred frequently in the metapopulation simulations, leading to a variable group of 

watersheds persisting in any given year. Consistent with the majority of theoretical 

metapopulation models, I treated both habitats as well as populations as interchangeable 

in these simulations, even though real diadromous species can exhibit substantial life 

history variation among populations within a region (Garcia de Leaniz et al. 2007, 

Palkovacs et al. 2013). Actual survival and spawning success (i.e., fitness) can be a 

function of the difference between populations, where individuals are expected to have 

higher mean fitness in watersheds similar to their natal watershed owing to local 

adaptation (Fraser et al. 2011, Pfluger & Balkenhol 2014). Accounting for such 

heterogeneity among watersheds would be expected to reduce median abundance as well 

as the probability of persistence of small populations, because individuals in recolonized 

populations would have progressively lower mean fitness relative to that in populations 

that have never gone extinct. In other words, metapopulation structure and the rescue 

effect would be less beneficial to sink populations than shown here, even at moderate 

levels of productivity. On the other hand, straying is also expected to maintain or increase 

genetic variability and thus adaptive potential, leading to populations that may be better 

able to respond to environmental change (e.g., Burke & Arnold 2001). Such hybridization 

would act in opposition to any mal-adaptation to the recipient environment. Furthermore, 
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a recent study by Fraser et al. (2014) indirectly suggests that productivity may increase in 

small populations relative to large owing to increased environmental variability 

maintaining greater genetic polymorphism in these small populations. Both of these 

effects would increase the overall viability of sink populations, and the rescue effect 

could be beneficial at lower levels of productivity (e.g., potentially in the Extreme Low 

scenario). Unfortunately, any increase to productivity in small populations relative to 

large, or any fitness benefits from straying, would have to be quite sizable to compensate 

for numerical declines in the population assemblage and to reduce extinction risk when 

productivity is low. 

Practical implications 

 To put these results in context, it is useful to consider their implications for 

conservation of an actual population assemblage. Atlantic salmon (Salmo salar) 

belonging to the Southern Upland (SU) region of Nova Scotia are an identified population 

assemblage containing 72 individual populations. Collectively, they have undergone 

extremely large declines in abundance over the last 40 years, and are presently considered 

to be endangered (Gibson et al. 2011). Population dynamics modeling from two 

populations suggests that maximum lifetime reproductive rates have declined from 

approximately 2.5 in the 1980s (similar to the Extreme Low scenario in this chapter) to 

essentially 1 in the 2000s (similar to the Not Viable scenario in this chapter), indicating 

extremely low and declining productivity (Gibson & Bowlby 2013). From assessment 

monitoring and historical tagging (Bowlby et al. 2013), straying has been observed 
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among populations, so the region would be expected to contain a metapopulation. Based 

on the simulations in this chapter, such metapopulation structure would have been 

expected to have benefitted individual populations by increasing persistence during the 

1980s for the smaller watersheds within the SU. Today, this same metapopulation 

structure could be acting as an additional source of mortality for the remaining 

populations (thought to be those inhabiting the larger watersheds), hastening overall 

population decline. In terms of recovery actions, maintaining a more widespread 

distribution throughout the SU would have been expected to promote the rescue effect in 

the 1980s, so concurrent small improvements to multiple watersheds (i.e., actions leading 

to small gains in productivity for many watersheds) were warranted. Today, these 

simulations suggest that it would be much more beneficial to focus on substantial 

increases in productivity to a limited number of populations (up to and including a single 

large watershed) in order to ensure that productivity remains high enough to prevent total 

extinction of the SU metapopulation. In addition, the propensity to stray could now be 

considered largely synonymous with mortality, because individuals that stray have little 

to no subsequent reproductive output. Our perception of harm from activities or threats 

that increase straying rates, such as chemical contaminants reducing olfactory imprinting 

and homing success (Lurling & Scheffer 2007) may need to be higher. In addition, 

actions to expand distributions, such as ensuring fish passage at barrier structures or 

remediating watershed fragmentation, could be given lower priority in that they would 

not be expected to benefit the remaining individuals as much as increasing productivity in 
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the habitat currently occupied. Adult abundance is currently so low that any density 

dependent constraints on freshwater productivity would be expected to be minimal. 

However, it is a practical reality that remediating the threats linked to declines in 

productivity (e.g., land use practices; Allan 2004, Foster et al. 2003) is much more 

difficult than those that limit distribution (e.g., fragmentation from road crossings) 

because their effects on the ecological structure and functioning of rivers are gradual, 

largely indirect and can be cumulative (Lake et al. 2007, Rose 2000).  

The main debate surrounding metapopulation theory as applied to single species 

has centered on the question of whether or not metapopulation structure exists in nature 

and can be empirically described (e.g., Fronhofer et al. 2012). There has been 

comparatively little debate related to the validity of theoretical assumptions as applied to 

real species (although see Dennis et al. 2003, Clinchy et al. 2002, and Hanski 2004), 

leading to population connectivity being perceived as unilaterally beneficial by 

conservation biologists and wildlife managers (Eaton et al. 2014). By using a spatially-

explicit population dynamics model of a commonplace life history strategy (diadromous 

fishes), I demonstrate how metapopulation structure would be expected to first benefit 

and then harm population assemblages as productivity declines. By comparing the 

simulation results to the characteristics of an actual population assemblage, I demonstrate 

why our current approach to recovery planning may need to be re-evaluated. Although the 

conclusions from my analyses follow very logically from an understanding of population 

dynamics, they have substantial implications for how we perceive population 
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connectivity, source-sink processes, and the rescue effect for species of conservation 

concern.
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Tables 

Table 2-1. Description of the scenarios considered in the simulations for metapopulations or isolated population assemblages, 

detailing the number of populations (N), starting population size (for small and large populations), the slope of the origin of the 

spawner-recruit relationship ( ), mortality rates for immature (
SeaM ) and mature (

AdultM ) adults, the stray rate (s), the 

spawner-per-recruit relationship (SPR), and the maximum lifetime reproductive rate in spawners/spawner (MLR = *SPR) 

corresponding to each. Scenarios were assessed from 500 simulations of 50 populations (40 small, 10 large) over 100 years. 

 

Scenario Productivity Type N small large   
SeaM  

AdultM  s  SPR MLR 

1 High  metapop 50 483 2413 10 0.5 0.5 0.1 0.703 7.0 

2 High  isolated 50 483 2413 10 0.5 0.5 0 0.703 7.0 

3 Medium metapop 50 366 1831 9 0.55 0.55 0.1 0.569 5.0 

4 Medium isolated 50 366 1831 9 0.55 0.55 0 0.569 5.0 

5 Low metapop 50 264 1319 8 0.6 0.6 0.1 0.455 3.6 

6 Low isolated 50 264 1319 8 0.6 0.6 0 0.455 3.6 

7 Extreme Low metapop 50 172 861 7 0.65 0.65 0.1 0.358 2.5 

8 Extreme Low isolated 50 172 861 7 0.65 0.65 0 0.358 2.5 

9 Not Viable metapop 50 6 30 5 0.75 0.75 0.1 0.208 1.0 

10 Not Viable isolated 50 6 30 5 0.75 0.75 0 0.208 1.0 
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Table 2-2. A comparison of the mean extinction percentages (%) as productivity declines for large (N = 10) or small (N = 40) 

watersheds at decadal intervals, as well as the slope of a log-linear regression representing the change in the proportion of 

populations persisting per year (P/year) (data plotted in Figure 2-5).  

 

   
Year of the simulation Log-

linear 

slope Size Productivity Type 10 20 30 40 50 60 70 80 90 100 

Large High Metapop 0 0 0 0.4 0.4 0.4 0.6 0.6 0.6 0.6 0.000 

Large High Isolated 0 0 0 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.000 

Large Medium Metapop 0 0.2 0.2 0.6 0.8 1 1.2 1.4 1.4 1.6 0.000 

Large Medium Isolated 0 0.2 0.2 0.6 0.6 0.8 1 1 1 1.2 0.000 

Large Low Metapop 0 1.6 3.2 5.8 6.4 8.2 9.8 10.2 10.4 10.7 -0.001 

Large Low Isolated 0 1.2 2.6 4.2 4.8 5.4 6.6 7.6 8 8.2 -0.001 

Large Extreme Low Metapop 0 5.8 10.6 15.6 19.8 25 29.8 33.2 37.6 41.2 -0.006 

Large Extreme Low Isolated 0 4.8 9.6 13.8 17 21.8 25.8 29.6 34 36.4 -0.005 

Large Not Viable Metapop 24.2 55.6 74.2 82.6 88.4 93.6 96.8 97.8 98.8 99.6 -0.052 

Large Not Viable Isolated 21.6 49.8 66.6 77.4 85.8 91.8 95 96.8 98.2 98.6 -0.046 

              

Small High Metapop 0 0.2 0.2 0.6 0.4 0.6 0.6 0.6 0.6 0.8 0.000 

Small High Isolated 0 0.2 0.2 0.6 0.8 1.0 1.2 1.2 1.2 1.4 0.000 
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Year of the simulation Log-

linear 

slope Size Productivity Type 10 20 30 40 50 60 70 80 90 100 

Small Medium Metapop 0 1.0 1.4 2.0 1.8 2.6 2.6 2.6 2.4 2.4 0.000 

Small Medium Isolated 0 1.2 2.2 3.2 3.6 4.4 5.6 6.4 7.0 7.2 -0.001 

Small Low Metapop 0 4.2 7.8 10.4 11.4 12.6 15.2 15.8 16.4 16.6 -0.002 

Small Low Isolated 0 4.6 8.8 12.6 15.8 19 23.2 26.4 30.8 32.6 -0.004 

Small Extreme Low Metapop 1.2 12.2 19.6 24.6 30.6 37.6 41.6 48.0 50.8 55.2 -0.009 

Small Extreme Low Isolated 1.4 12.8 22.2 31.0 38.8 48.4 55.4 61.4 66.2 72.2 -0.014 

Small Not Viable Metapop 97.8 93.4 94.4 96.8 97.8 98.4 99.4 100 100 100 NA 

Small Not Viable Isolated 100 100 100 100 100 100 100 100 100 100 NA 
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Figures 

 

Figure 2-1. Schematic of the productivity scenarios considered in the metapopulation 

simulations. For each panel, freshwater production for large (thick solid line) and small 

(thin solid line) isolated populations is shown relative to the replacement line that 

represents marine survival (dashed line). The point at which the lines intersect represents 

the deterministic population size (number of smolts or number of adults) for large and 

small populations; note that it is essentially zero in the last scenario. See Table 2-1 for a 

description of scenarios.  
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Figure 2-2. Median spawner abundance of the population assemblage (i.e., sum of 

individual population abundances) assuming metapopulation structure (solid black line) 

with 25
th

 and 75
th

 quantiles (dotted black lines) compared to isolated populations (dashed 

red line) with 25
th

 and 75
th

 quantiles (dotted red lines) for five productivity scenarios. 

Each scenario was assessed from 500 simulations of 50 populations over 100 years. Note 

the differences in the x- and y-axes among scenarios. 
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Figure 2-3. Maximum percent difference between total spawner abundance in a 

metapopulation versus in isolated populations for five productivity scenarios (described in 

Table 2-1). Metapopulation structure led to higher abundance relative to isolated 

populations when values were positive, which occurred in all scenarios except Not Viable 

for all parameterizations.  
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Figure 2-4. Probability of extinction for the population assemblage (i.e., all individual 

populations are extinct) per year as productivity declines, assuming metapopulation 

structure (black line) or isolated populations (red dashed line). Each scenario was 

assessed from 500 simulations of 50 populations (N = 25,000) over 100 years.  
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Figure 2-5. Proportion of populations persisting per year in the simulations by size, for 

large (thick black line) and small (thin black line) populations in a metapopulation, as 

well as large (thick red line) and small (thin red line) isolated populations. Each scenario 

was assessed from 500 simulations of 50 populations (N = 25,000) over 100 years. 

Proportions were calculated as the number of populations with non-zero abundance in a 

given year divided by the original number of populations of that size. 

  



 

 

58 

 

 

 

Figure 2-6. Median abundance of spawners as a proportion of equilibrium size (plus 25
th

 

and 75
th

 quantiles) for individual isolated populations that had one of two fates: extinction 

(solid plus dotted red lines) or persistence (solid plus dotted black lines). Note that 

populations persisting in the Not Viable scenario would have done so because of 

environmental stochasticity rather than input from straying. 
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Figure 2-7. Median spawner abundance as a proportion of equilibrium size (plus 25
th

 and 

75
th

 quantiles) for populations that had one of three fates in a simulated metapopulation: 

extinction (solid plus dotted red lines), recolonization (solid plus dotted blue lines) or 

persistence (solid plus dotted black lines). Note that the combined effects of 

environmental variation and straying would contribute to sizes in excess of the 

equilibrium for the populations persisting in the Not Viable scenario. 
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Figure 2-8. Maximum percent difference between total spawner abundance in a 

metapopulation and isolated populations for five productivity scenarios using 11 alternate 

parameterizations for the simulation model (described in Appendix 2-2). Metapopulation 

structure led to higher abundance relative to isolated populations when values are 

positive. When values remain on zero, there is no benefit to straying at that level of 

productivity, indicating that the parameterization changes the range of productivities over 

which metapopulation structure leads to higher abundance.  
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Chapter three: Environmental effects on survival rates: robust 

regression, recovery planning and endangered Atlantic salmon  

 

Abstract 

Describing how population-level survival rates are influenced by environmental 

change becomes necessary during recovery planning to identify threats that should be the 

focus for future remediation efforts. However, the ways in which data are analyzed have 

the potential to change our ecological understanding and thus subsequent 

recommendations for remedial actions to address threats. In regression, distributional 

assumptions underlying short time series of survival estimates cannot be investigated a 

priori and data likely contain points that do not follow the general trend (outliers) as well 

as contain additional variation relative to an assumed distribution (overdispersion). Using 

juvenile survival data from three endangered Atlantic salmon Salmo salar L. populations 

in response to hydrological variation, I compared four distributions for the response in 

lognormal and Generalized Linear Models (GLM). I investigated the influence of outliers 

as well as overdispersion by comparing conclusions from robust regressions with these 

lognormal models and GLMs. My analyses strongly supported the use of a lognormal 

distribution for survival estimates (i.e. modeling the instantaneous rate of mortality as the 

response), and would have led to ambiguity in the identification of significant 

hydrological predictors as well as low overall confidence in the importance of the 
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relationships if I had only considered GLMs. However, using robust regression to 

evaluate the effect of additional variation and outliers in the data relative to regression 

assumptions resulted in a better understanding of relationships between hydrological 

variables and survival that could be used for population-specific recovery planning. This 

chapter highlights how a systematic analysis that explicitly considers what monitoring 

data represents and where variation is likely to come from is required in order to draw 

meaningful conclusions when analyzing changes in survival relative to environmental 

variation to aid in recovery planning. 

Introduction 

Effective conservation of endangered species and the development of successful 

recovery plans rely on the identification of environmental and ecological factors limiting 

population abundance. Small-scale, mechanistic experiments are typically used to identify 

environmental variables that have significant influence on individual characteristics such 

as growth, habitat use, or physiology (e.g., Nislow et al. 2004, Kiernan & Moyle 2012); 

characteristics that are related to survival rates or population productivity. Subsequently, 

analyses of an observed time series of abundance data relative to the identified 

environmental factors is typically used to understand how these mechanisms culminate in 

changes in survival rates at a population level (Webster 2003, Lawson et al. 2004). 

However, analyses of temporal trends in data can lack statistical power and give 

conflicting, or non-significant results relative to theoretical predictions (Shenk et al. 

1998), resulting in the impression that a specific environmental factor is not meaningfully 
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related to population size (and thus should not be the focus of recovery efforts). 

Therefore, analyses should strive to maximize ecological relevance (in terms of choosing 

variables for analysis) and to appropriately characterize uncertainty or sources of error to 

minimize the possibility that significant environmental variation remains undetected 

(Zuur et al. 2010, Fredericksen et al. 2014). Although this is self-evident for any sound 

scientific inquiry, how one achieves it when describing species-environment relationships 

at a population level is equivocal at best (e.g., Hilborn & Walters 1992, Ver Hoef & 

Boveng 2007).  

The validity of conclusions from regression analyses depends in part on 

appropriately characterizing the distributional form of the response, given the parameters, 

because biased estimates can result from misspecification (i.e., modeling data arising 

from one distribution with alternate distributions), as is well-described in the theoretical 

literature (e.g., Dick 2004). Survival values arise from a binomial process: the sum of a 

sequence of Bernoulli trials where an individual is either alive or dead (Collett 2003). 

However, the measurement and process errors contributing to estimates of annual 

abundance also influence the distribution of the relative survival estimates, making it 

unknown how closely the mean-variance relationship characterizing relative survival 

matches the expectation from a binomial process. In many cases, ecological data exhibits 

overdispersion relative to a binomial or poisson process (Lande et al. 2003, Ver Hoef & 

Boveng 2007, Zuur et al. 2009). A common way to deal with overdispersion in regression 

models is to use Generalized Linear Models (GLM) and either the quasi-likelihood or 
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negative binomial family of distributions to estimate the regression parameters and the 

dispersion parameter affecting the variance jointly (e.g., Ver Hoef & Boveng 2007). 

However, this only accounts for situations in which the variance increases or decreases 

more quickly than the mean. An alternative would be to use a regression method that 

estimates the functional relationship between the predictors and response in situations 

where the underlying assumptions are violated to some extent (i.e., either the predictor or 

response contains outliers). Termed robust regression (e.g., Hampel et al. 1986, Heritier et 

al. 2009), these methods address a very specific problem; namely, to remain unbiased 

given uncertainty in sampling data and slight misspecification in the explanatory model 

relative to the data-generating process (Hampel et al. 1986). In doing so, they offer 

several distinct advantages over more commonly used regression techniques, including an 

increased ability to detect a subtle signal in noisy data as well as the ability to produce 

unbiased estimates of variance around a fitted relationship for overdispersed data 

(Cantoni & Ronchetti 2001). Starting from a parametric model (i.e., a particular model 

form as in a GLM), robust regression builds in protection against outlying behaviour in 

the data during the estimation process, by reducing the influence of outliers on the 

objective function (Hampel et al. 1986). As such, the robust counterpart to a GLM should 

not be considered a competing model per se, but rather a method by which to: (1) identify 

atypical values in a dataset (relative to what is assumed a priori by the model) and (2) to 

reduce bias in the estimated coefficients (particularly the variance) that result from these 
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values. However, the true power of robust regression is that all data are included in fitting 

and no subjective decisions are needed relative to the quality of specific data points. 

My primary goal in this chapter was to quantify changes in survival relative to 

environmental variation for use in recovery planning. In doing so, I explored the 

implications of common assumptions underlying Ordinary Least Squares (OLS) and 

Generalized Linear Models (GLMs) when attempting to describe relationships. I 

demonstrated how our understanding partially depends on the statistical technique and 

assumed distributional form of the response chosen prior to the analytical process. Using 

juvenile survival data from three populations relative to variation in hydrological flows, I 

found that population-level survival estimates did not match the expectation from a 

binomial process. I also demonstrated how restricting the analyses to Generalized Linear 

Models would have led to the identification of multiple significant hydrological 

predictors, yet low overall confidence in the importance of the relationships. However, 

using robust regression to evaluate the effect of outliers in the data relative to regression 

assumptions affirmed the selection of the lognormal model and resulted in a better 

understanding of the relationships between hydrological variables and survival; one that 

could be used for population-specific recovery planning. Although the conclusions were 

framed relative to a specific application, the methods are directly applicable to recovery 

planning for multiple species in which observational time series of abundances are 

available to estimate survival rates. 
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Case study 

For endangered Atlantic salmon populations, there is considerable interest from 

multiple non-government organizations, academics and government departments to 

implement remedial actions at a watershed scale to promote population increase. Many of 

the actions related to habitat enhancement (e.g., bank stabilization, digger logs, changing 

channel morphology) are proposed because of their influence on hydrological flows, with 

the assumption being that such changes will increase the productive capacity of 

freshwater environments for Atlantic salmon (Roni et al. 2002). Hydrological variation is 

thought to be a key factor controlling the population dynamics of freshwater fishes, in 

that flow levels influence the majority of physical factors (e.g., current velocity, water 

depth, temperature regime) and ecological interactions (e.g., competition, predation) 

experienced by fish in freshwater environments (Bunn & Arthington 2002, Kiernan & 

Moyle 2012). Five major components of flow are considered to be ecologically important 

across a diverse range of riverine ecosystems: extreme low flows, low flows, high flow 

pulses, small floods and large floods (Mathews & Richter 2007, LeRoy Poff et al. 2010). 

Under this categorization, low flows represent typical flow conditions which determine 

the amount and characteristics (e.g., temperature, connectivity, velocity) of aquatic 

habitat available for the majority of the year. The other flow categories are thought of as 

discrete events that typically trigger a behavioural response (Mathews & Richter 2007) 

and thus might be correlated with survival rates. Extreme low flows describe drought 

conditions, which are characterized by a decrease in surface area and water volume 
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causing extreme values of several physical and chemical water quality variables, such as 

temperature, flow velocity, oxygen concentration, or dissolved mineral content 

(Magoulick & Kobza 2003, Rolls et al. 2012). For aquatic species, droughts induce stress 

responses and typically increase mortality due to a reduction in habitat connectivity, 

availability and suitability (Lake 2003). Thus it might be expected that increased 

frequency or severity of drought conditions experienced by juvenile Atlantic salmon 

would result in measurable declines in survival rates at a population level. Conversely, 

high flow pulses (up to bankfull) are thought to recharge river systems by reducing water 

temperatures, flushing wastes, increasing oxygen availability, and delivering organic 

matter (Mathews & Richter 2007) and thus would be expected to be positively correlated 

with survival. However, large floods or quick changes in water level are considered to be 

less directly beneficial for individuals given that they can move significant amounts of 

sediment and large woody debris, transport organisms downstream, and alter the direction 

of the main channel. However, in the long term they also form new habitats and refresh 

water quality conditions in stagnant portions of the stream (Allan 2004). Given that a 

decline in survival related to flood conditions is predicted to come from sediment 

transport and displacement (Caissie 2006), the rise rate of the river could have a more 

direct influence on survival than flood conditions per se. Understanding how low or high 

water conditions influence juvenile survival in specific populations would be a first step 

towards identifying whether or not hydrological change should be a focus of recovery 
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efforts, as well as which specific components of the flow regime should be targeted in 

specific watersheds.  

Methods 

Data sources 

Time series of juvenile density estimates from the west branch of the St. Mary’s 

River, the LaHave River above Morgans Falls (both in Nova Scotia, Canada) as well as 

the Nashwaak River in New Brunswick, Canada (Figure 3-1) were used in this chapter. 

Of the Atlantic salmon populations considered to be endangered by the Committee on the 

Status of Endangered Wildlife in Canada (COSEWIC 2010), these rivers are the only 

three in the Maritime Provinces that: (1) have long-term monitoring programs which 

enumerate all freshwater life stages for at least a portion of the watershed, and (2) have 

hydrological monitoring stations gauging daily water flows in a location near to that for 

the population monitoring data. The annual egg deposition and juvenile density estimates 

used for analyses are the same as in recent assessments (Gibson & Bowlby 2013 (St. 

Mary’s and LaHave); and Gibson et al. 2016 (Nashwaak)). Annual egg depositions were 

estimated from the number and characteristics of adult spawners, and age 0 densities 

(N/100m
2
) were estimated from electrofishing surveys. Age 0 salmon were those sampled 

in the year of hatching as juveniles between June and September. A Poisson GLM 

(incorporating site and year effects) was used to estimate age 0 density values for all 

potential sites (from a random-stratified survey design) prior to calculating the annual 
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mean densities. This standardization was done to reduce annual estimation error and 

account for any directional biases related to changes in site selection (Gibson et al. 2009). 

For these populations, it has been shown to produce density estimates that are more 

consistent with data available for other life stages when analyzed in age- and stage-

structured population dynamics models (e.g., Gibson and Bowlby 2012). In other words, 

estimates can be considered to be representative of juvenile abundance at the population 

level when multiplied by a scalar representing the habitat area in each watershed. All data 

were analyzed relative to a specific egg cohort, with age 0 density lagged by one year 

relative to egg deposition for calculating survival. To make the population-level estimates 

for the two life stages comparable, age 0 density was multiplied by the habitat scalar to 

calculate population-level abundance in the watershed. Thus, egg deposition estimates in 

a given year and age 0 abundance estimates in the following year are integer values, and 

their ratio is an estimate of survival from the egg to the age 0 life stages for each egg 

cohort.  

 Environment Canada maintains hydrological gauging stations on the St. Mary’s 

River at Stillwater (45°10’27”N 61°58’47”W), on the LaHave River at West Northfield 

(44°26'50"N 64°35'28"W) and on the Nashwaak River at Durham Bridge (46°07’33”N 

66°36’40”W) (Figure 3-1). These stations have been in operation continuously from 1915 

on the St. Mary’s and LaHave Rivers and 1961 on the Nashwaak; historical flow data can 

be downloaded from the Water Survey of Canada’s HYDAT database of archived 

hydrometric data (http://www.ec.gc.ca/rhc-wsc/default.asp?lang=En&n=9018B5EC-1, 
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Accessed May 2013). As detailed in the metadata that accompanies the HYDAT 

database, daily discharge (in cubic meters per second) corresponds to averages of hourly 

flow recordings and values were estimated for days during which the station was not 

operational. From the discharge values identified as estimated rather than as measured, I 

calculated that 1.6%, 0.7% and 1.8% of the time series was estimated for the St. Mary’s, 

LaHave and Nashwaak Rivers, respectively; considering all years up to 2010.  

Hydrological variables describing flow conditions were calculated from the 

Environmental Flow Components module of the Indicators of Hydrologic Alternation 

software (Mathews & Richter 2007). This module categorizes daily flows into the five 

ecologically important components identified earlier (extreme low flows, low flows, high 

flows, small floods and large floods) based on user-defined thresholds. From these 

categories four annual variables were calculated: (1) the minimum flow value (i.e., the 

lowest flow value recorded), (2) the frequency of extreme low flows (i.e., the number of 

days categorized as having extreme low flows), (3) the timing of extreme low flows (i.e., 

the median ordinal date of all the days classified as extreme lows) and (4) the rise rate 

(i.e., the median of all positive differences between two daily flow measurements). This 

value represents how quickly water levels increase following precipitation events or 

snow-melt, and does not depend on the initial water conditions in the river (i.e., the 

classification of each flow measurement as extreme low, low, or high flows; small or 

large floods). The lowest 20% percentile (of all flow measurements regardless of year) 

was used as the cut-off between extreme low flows and low flows to ensure that a value 
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could be calculated for all variables for all years. For this to be true for high water 

conditions (i.e., to ensure a value could be calculated for all variables for all years) would 

have required combining all flows categorized as high flows, small floods and large 

floods, even though these would be expected to have opposing relationships with survival 

(e.g., positive for high flows and negative for large floods). Instead, the rise rate was used 

as an indicator of the flashiness of the river system and the potential for bedload transport 

(Caissie 2006), with the expectation that faster rise rates would negatively affect survival. 

Based on Kendall’s tau, correlations among predictor variables were less than 0.6. To 

ensure that the hydrological conditions corresponded to the time period between autumn 

egg deposition and juvenile sampling the subsequent summer, a year was considered to 

begin on November 1 and end at the start date of the summer electrofishing survey (July 

to September, depending on the year).  

Regression analyses 

Survival and mortality can be thought of multiple ways, leading to different 

response variables and model structures for regression analyses. Here, hydrological 

relationships with age 0 juveniles could be modeled directly, assuming a Poisson 

distribution for age 0 abundance (thought to be appropriate for count data), a log link, and 

including an offset for starting population size (egg deposition) in a GLM (McCullagh & 

Nelder 1989). A second alternative would be to model a binomial process using a logit 

link in a GLM (McCullagh & Nelder 1989) using the number of successes and number of 

failures (i.e. a two-part vector of 𝑎𝑔𝑒 0, (𝑎𝑔𝑒 0 − 𝑒𝑔𝑔)) as the input for the response 
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variable. A third option would be to model the instantaneous mortality rate assuming a 

normal error distribution as in a linear regression. Survival is related to mortality by 

ZteS  , so the instantaneous mortality rate (Z) is: )ln(SZ  (Ricker 1975). It is 

important to note that the lognormal model would be expected to have a slope estimate 

opposite in sign as compared to the other regressions. Starting from these three models 

(count data with Poisson errors, an odds ratio with binomial errors, and the instantaneous 

mortality rate with lognormal errors), I used two different methods to account for 

potential overdispersion in the GLMs. One was to substitute the quasibinomial and 

quasipoisson family into the GLMs described above, which estimates a dispersion 

parameter for the variance. The second was to assume a negative binomial distribution 

when modeling age 0 abundance (with an offset for the previous year’s egg deposition) in 

a GLM (Ver Hoef & Boveng 2007). The results in this chapter are presented for the 

lognormal, quasibinomial, quasipoisson and negative binomial models; as detailed in 

Table 3-1. For the two years in which estimated survival was > 1 on the St. Mary’s River, 

survival was set at 1 in order to be able to fit the quasibinomial, quasipoisson, and 

negative binomial models. 

 Atypical values (outliers) and points with high leverage are known to bias 

parameter estimation using maximum likelihood as in GLMs (Graham 2003). 

Additionally, the specific data points contributing to such biases as well as the magnitude 

and direction of the bias cannot be assessed statistically from the output of GLM 

regressions (Richards 2008, Zuur et al. 2010), although several ad hoc methods of 
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identifying outliers exist (e.g., visual examination of residual plots). Robust regression 

provides a statistical framework from which to both identify and limit the influence of 

extreme values or leverage points on parameter estimation. Depending on the specific 

method used, up to half of the data can take atypical values and still have limited 

influence on coefficient estimates (e.g., Yohai 1987, Hampel et al. 1986). Therefore, I 

used robust regression more as an extension of the traditional linear and GLMs, to both 

evaluate the presence of outliers and to obtain less biased estimates of regression 

coefficients for use in recovery planning.  

Robust regression uses Mallows or Huber-type robust estimators (typically called 

M-estimators; Jajo 2005, Cantoni & Ronchetti 2001) to estimate model parameters. 

Although the postulated model (i.e., the assumed distribution of the response and 

associated linear predictor) used in robust analyses is analogous to that used in traditional 

regressions or GLMs (Table 3-1), estimation of the   parameters proceeds in a different 

manner. As a simple example, it is useful to compare the familiar least-squares estimator 

with an M-estimator to appreciate the main differences among the two techniques. For a 

linear model, the least-squares estimator for   minimizes the objective function: 


n

i

ir
1

2
, 

where each residual (ri) is: 



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,0   for each value of the response 

variable, yi, and each value of p hydrological predictors (xi,j). An M-estimate of   
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minimizes the objective function: 


n

i

i sr
1

)/( , where s is an estimated scale parameter 

and   is called the psi-function. Note that if the weighting function )/( sri  is equivalent 

to ri
2
, the parameter estimates will be the same as from ordinary least squares (Jajo 2005). 

The influence of individual residuals on model fitting is controlled by the derivative of 

the psi-function:  . Multiple functions can be chosen for  , but each has the common 

characteristic of limiting the contribution of data points that deviate substantially from the 

fitted relationship. The scale parameter can be thought of as a multiplier on the error term, 

representing deviation from the assumed error distribution.  

A simple M-estimate (as above) was not appropriate for this application given that 

the levels of the predictor were not fixed a priori (Maronna et al. 2006). Here, I used 

MM-estimation in the lmrob function for fitting a robust lognormal model (Yohai 1987) 

and the Mqle method in the glmrob function for fitting robust binomial and robust 

Poisson models (Cantoni and Ronchetti 2001), as implemented in the readily available R 

package ‘robustbase’ (Rousseeuw et al. 2013). I followed recommendations for the tuning 

constants from Koller & Machler (2013) for the robust lognormal and robust binomial 

models (k = 4.685 for the redescending   used in lmrob; k = 1.345 for the Huber   in 

glmrob). I increased the tuning constant used for the robust Poisson model slightly (k = 

1.8) for both rivers. As in GLMs, the Mqle method uses the iteratively re-weighted least 

squares algorithm during fitting (Cantoni & Ronchetti 2001). Given that there are no 

robust counterparts to the quasi-family GLMs, I employed the newly available 
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‘glmrob.nb’ function (Aeberhard et al. 2014) to allow for overdispersion in the response 

for a robust model. Here I used the redescending Tukey’s biweight function for   in the 

M-estimates of the regression parameters and the same tuning constant as above (e.g., k = 

4.685).  

 In total, I evaluated 4 potential hydrological predictors using the 4 parametric 

models (Table 3-1) as well as the two different regression types (robust and traditional), 

and present the results from eight models (lognormal, quasibinomial, quasipoisson, 

negative binomial, robust lognormal, robust binomial, robust Poisson and robust negative 

binomial). Model selection proceeded in three general steps: (1) simplification of the 

initial multivariate model using traditional linear regression or GLMs, (2) evaluation of 

regression assumptions from diagnostic plots (all traditional models) and estimated 

overdispersion parameters (quasi- family models), and (3) evaluation of the effect of 

atypical values on the estimated coefficients using robust regression. Hydrological 

predictors were both sequentially added and dropped from each regression based on a 

comparison of nested models using ANOVA (for lognormal models), Likelihood ratios 

(for GLM models; Zuur et al. 2009) and the Robust Wald test (for robust lognormal or 

robust GLMs; Sommer & Huggins 1996). Each of these methods is appropriate for model 

selection among nested candidate models of the specific type for which they were 

applied. Although there are other methods that are appropriate, there is no single method 

that was possible for model selection across all model forms (i.e. lognormal, GLMs and 

robust models). This is discussed in more detail in the following paragraph. In all 
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regressions, the final model included a single predictor. Diagnostic plots of the residuals, 

quantiles and fitted vs. observed values were examined visually for each model to assess 

the appropriateness of model assumptions (Zuur et al. 2009, Zuur et al. 2010). If 

autocorrelation was detected in the residuals on the basis of diagnostic plots, I used AIC 

to compare the fit from a Generalized Least Squares (GLS) model with a residual first-

order correlation structure (ar1) to the GLM fit (Zuur et al. 2009) and repeated model 

selection.  

For the results presented, model diagnostics were similar (i.e., there was no 

compelling reason to reject individual models based on diagnostic plots), so the 

assumptions underlying each model appeared to be appropriate. This was not true for 

some preliminary model formulations that were evaluated yet not included in this 

Chapter. For example, modeling the relative survival rate as a Gaussian GLM with a log 

link had extremely strong patterns in the residual plots, indicating that the model structure 

was inappropriate.  

Traditionally, model selection for regression analyses uses an information 

theoretic approach such as the Akaike Information Criterion (AIC) or the Bayesian 

Information Criterion (BIC); both of which assess fit from maximum likelihood scores 

that are penalized for model complexity (Johnson & Omland 2004). This presents a 

problem when attempting to compare among the GLMs presented here (i.e., to compare 

the best-supported models for each distributional form of the response after variable 

reduction) because the quasi- family is characterized by a mean and variance but not a 
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specified distributional form, which means that the log-likelihood is not defined (Ver 

Hoef & Boveng 2007). Therefore, it is not possible to use a statistical criterion such as 

AIC to evaluate model fits from all 4 traditional regressions (lognormal, quasibinomial, 

quasipoisson, and negative binomial). However, the lognormal and negative binomial 

models could be directly compared with the Akaike Information Criterion for small 

samples (AICc), and the quasi- family models could be compared using a quasi-AIC for 

small samples (QAICc) (e.g., Young et al. 2009), even though both comparisons were 

between models with different response variables (Johnson & Omland 2004). Further to 

this, it is possible to assess the appropriateness of the quasi- family models via the 

variance inflation factor (model deviance divided by residual degrees of freedom) or the 

dispersion parameter (Collett 2003), where values are expected to be less than ~ 4 when 

the data structure is well-specified (Anderson et al. 1994). In relation to the robust 

models, the estimated coefficients would be essentially identical to those estimated from 

traditional regressions if model assumptions were met (i.e., provided that variation in the 

response conformed exactly to the assumed distribution and the predictors did not contain 

outliers). However, as compared to GLMs assuming the same distribution of the 

response, robust regressions have greater statistical efficiency (reduced variance) and can 

produce unbiased estimates of coefficients if assumptions are violated to some extent 

(Jajo 2005, Hampel et al. 1986, Heritier et al. 2009). Therefore, I considered the robust 

regressions to be way in which I could reduce the potential for non-detection of a subtle 

relationship with hydrological change and obtain better estimates of coefficients for use in 
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recovery planning, relative to the equivalent traditional model (c.f. lognormal with robust 

lognormal; binomial with robust binomial, Poisson with robust Poisson, and negative 

binomial with robust negative binomial).  

Results 

 For the St. Mary’s River, the lognormal and GLM regressions did not consistently 

simplify to the same hydrological predictor. Survival was found to be negatively 

associated with the frequency of extreme low water events (xlow.freq) from the 

lognormal and negative binomial models, while the quasipoisson model identified a 

positive relationship with the timing of extreme low water events (dist.low) and the 

quasibinomial model retained no predictors (Table 3-2). The lognormal model had much 

more substantial support on the basis of AIC as compared to the negative binomial (AICc 

= 64 and 147, respectively) using xlow.freq as the predictor. For the quasipoisson model 

of survival relative to dist.low, the estimated dispersion parameter (12.05) was 

substantially greater than 4, indicating that this model was not an adequate 

characterization of the data (Anderson et al. 1994), even though the predictor was 

retained in the optimal model. For a visual comparison among the different model forms, 

it was necessary to plot them relative to a standardized response variable. Here, I chose to 

use the relative survival rate of each egg cohort, a prevalence ratio between annual 

estimates of population-level age 0 abundance and the previous year’s egg deposition. 

This is standard output from the ‘predict.glm’ function in R for the quasibinomial, 

quasipoisson and negative binomial models. Re-calculating the response to be a survival 
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rate and comparing the fits of the 4 traditional regressions with xlow.freq revealed only 

minor deviations in the estimated mean slope (Figure 3-2). As above, the estimated 

dispersion parameters for the quasipoisson and quasibinomial models of survival relative 

to xlow.freq were unacceptably high (16.16 and 12.05, respectively). Overall, the 

lognormal model was considered to be the best model structure with which to describe the 

relationship between hydrological change and survival for the St. Mary’s River. When the 

data were re-examined in the robust analyses, all four robust models found the response 

to be negatively associated with the frequency of extreme low water events (Table 3-2). 

This suggests that the weak relationship with dist.low from the quasipoisson GLM was an 

artifact of outliers or points with high leverage in the data. The lognormal and robust 

lognormal models had identical slope estimates (c.f. 0.064 and 0.064; Table 3-2), 

indicating that atypical values had no influence on this parameter estimate. However, the 

95% confidence intervals (based on the normal approximation) are much smaller for the 

robust model, particularly at lower survival values (e.g., compare the lognormal and 

robust lognormal fits; Figure 3-2). The robust lognormal model identified three of 21 data 

points that were contributing substantially to this difference, in that they were given a 

weighting (a robustness weighting that corresponds to the )/( sri function of the residual 

divided by the residual) of less than 0.7.  

For the Nashwaak River, the different model forms were more consistent in that 

they all identified a negative relationship between the response and the rise rate of the 

river (Table 3-2). Slope estimates from the quasibinomial, quasipoisson and negative 
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binomial GLMs were very similar (-0.299, -0.247 and -0.256, respectively; Table 3-2). I 

recognize that the slope estimate from the quasibinomial GLM is not strictly comparable 

to the quasipoisson and negative binomial because the response is a log odds ratio. As 

was the case for the St. Mary’s River, the estimated dispersion parameters for the 

quasibinomial and quasipoisson models were quite high (8.10 and 7.68, respectively), 

again indicating that these models do not adequately describe the data. Based on AICc, 

there was substantially more support for the lognormal model as compared to the negative 

binomial GLM (AICc = 74 and AICc = 298, respectively) and was considered to be the 

most informative model structure with which to describe these data. Similar to the St. 

Mary’s, the robust weightings indicate that the data are approximately lognormal, given 

that only three of 39 points are down-weighted by more than 0.7 (Cantoni & Ronchetti 

2001). However, these outliers have a greater influence on the estimated coefficients in 

that the robust lognormal model resulted in a more negative slope relative to the 

lognormal model (Table 3-2; Figure 3-3).    

For the LaHave River, initial fits from the lognormal and GLM models found 

survival to be related to the frequency of extreme low water events (xlow.freq), but had 

strongly autocorrelated residuals at a lag of 1. Reanalysis in a Generalized Least Squares 

model with an ar1 residual correlation structure substantially reduced model AIC, but 

xlow.freq was no longer retained relative to an intercept-only model. Therefore, a 

relationship between egg to age 0 survival and hydrological change could not be 

described for the LaHave River population from these analyses. 
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Discussion 

Linkages between methodology and ecological inference 

Investigating changes in survival relative to environmental variation requires a 

systematic analysis that explicitly considers what the monitoring data represent and where 

variation is likely to come from in order to draw meaningful conclusions. It is particularly 

important in cases where the distributional assumptions underlying the methods cannot be 

investigated a priori (Ver Hoef & Boveng 2007, Zuur et al. 2010), as well as in situations 

where both predictors and response could contain variation that is unaccounted for with a 

particular model structure (Richards 2008). The relative popularity of GLMs stems from 

their ability to account for alternate mean-variance relationships and errors arising from 

certain types of biological processes (McCullagh & Nelder 1989). At first glance, GLMs 

may have been expected to be the most appropriate method for analyzing juvenile salmon 

survival relative to hydrological variation given that the observational time series derive 

from count data and survival is an inherently binomial process. However, my analyses 

suggest that the appropriate error distribution for the survival estimates deviates from 

theoretical expectations, likely due to the combined observation and measurement error 

associated with the population monitoring data.  

Simulation studies have demonstrated that violating regression assumptions can 

produce spurious correlations or can mask significant correlations when data contain 

additional errors in the predictors or response (Graham 2003). Both of these potential 

biases were demonstrated by the GLM models for the St. Mary’s River: with the 
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quasipoisson model showing a seemingly spurious correlation with the timing of extreme 

low flows, and the relationship between survival and the frequency of extreme low water 

events being masked in the quasi- family models. The most obvious outliers (i.e., the 

survival estimates > 1) occurred when the median timing of extreme low flows was later 

in the year (i.e., at higher values of dist.low) and would be expected to have high leverage 

on model fits. It is likely that dist.low was only retained as a significant predictor by the 

quasipoisson model because of characteristics of the estimation process. For example, 

quasipoisson regression gives greater weight to larger counts in the fit from iteratively 

weighted least squares as compared to alternatives such as the negative binomial (Ver 

Hoef & Boveng 2007) and the age 0 densities contributing to the survival estimates above 

one were an order of magnitude larger than the majority of the other values. Although the 

response values and offsets that would give relative survival values greater than one could 

have been removed because they were not biologically plausible, this would have been 

the equivalent of preferentially excluding data points when survival would be expected to 

be high. As an alternative, robust methods are a powerful way to analyze data that is 

subject to measurement and process error in that they do not require any a priori 

assessment of data quality (i.e., removal of biologically implausible values or other 

outliers). Because of the down-weighting imposed by the influence function during 

estimation, the response values or offsets that give relative survival estimates greater than 

one would have little influence on model fit. Therefore, the robust regressions should 

have also identified the relationship between survival and the timing of low water events 
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(dist.low) if it was unrelated to leverage points in the data. Similarly, the impact of 

outliers was found to be relatively small on the slope estimates for the St. Mary’s River 

(c.f. traditional and robust parameter estimates; Table 3-2), but larger on the standard 

deviation. This influences the significance of parameters in the model, and is likely why 

the quasibinomial and quasipoisson GLMs did not retain xlow.freq as a predictor.  

Practical implications for species of conservation concern 

The practical consequences of such statistical considerations can be quite large for 

this type of a research question. Restricting these analyses to GLMs (e.g., the 

quasibinomial, quasipoisson and negative binomial models) would have led to ambiguous 

results among candidate models for the St. Mary’s River as well as to slight confidence in 

the fitted relationships on the Nashwaak River. Furthermore, it would not be immediately 

obvious whether the assumed distribution was inappropriate, the underlying relationships 

were weak (i.e., not ecologically important), or if variability in the data (i.e., violations of 

assumptions) was adversely affecting parameter estimation. Taking this one step further 

for recovery planning, the GLMs would not form as convincing a basis to argue that 

remediation actions to alter hydrological flows should be included in a remediation 

strategy. Extending the analyses using both the lognormal model as well as robust 

regression enabled me to address all of these uncertainties, and to both identify the 

hydrological predictor best supported by the data (xlow.freq on the St. Mary’s River and 

rise.rate on the Nashwaak), as well as to reduce biases in the estimated coefficients. The 

latter was particularly important on the Nashwaak River, given that the estimated slope 
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increased from approximately 0.3 to 0.4, indicating closer to a four-fold rather than a 

three-fold change in the instantaneous mortality rate over the range of observed rise rates 

(Figure 3-3). 

The identification of population-level changes in survival in relation to 

hydrological variation gives indirect evidence for the specific threats that have resulted in 

population decline in these three rivers as well as the expected population response to 

recovery actions. Furthermore, it would be expected that changes in hydrological 

conditions that have resulted in increased contrast in the data (i.e., anthropogenic 

activities that cause more extreme flow values) would enhance our ability to detect 

relationships with flow (Fredericksen et al. 2014). The primary anthropogenic activities 

that have been linked to changes in hydrological flow patterns are related to land clearing 

(Allan 2004, Broadmeadow & Nisbet 2004, LeRoy Poff et al. 2006), which can result 

from mining operations, urbanization, agriculture or forestry, and the effects of which can 

be exacerbated by changing precipitation patterns due to climate change (Milly et al. 

2005). Extreme low water conditions can arise from a reduced capacity of the watershed 

to retain run-off owing to the removal of vegetation (Broadmeadow & Nisbet 2004) as 

well as to water extraction from surface water or aquifers (Allan 2004). Recovery plans 

that identify the specific location, extent and severity of such activities as well as 

remedial actions designed to alleviate these threats would be expected to have a positive 

influence on egg to age 0 survival on the St. Mary’s River. The speed at which water 

levels increase is related to geology and vegetation patterns which determine the capacity 
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of a drainage area to absorb run-off (Allan 2004, Jewett et al. 1995), as well as to channel 

morphology, where straighter, deeper streambeds enable faster water flow (Paul & Myer 

2001). Given that approximately 90% of the Nashwaak River watershed was clear-cut in 

1978-1979 (Jewett et al. 1995), our ability to detect the negative relationship between egg 

to age 0 survival and hydrological rise rate may represent the effect of a land-use legacy 

(Greenwood et al. 2012), by increasing the contrast in the data for this Atlantic salmon 

population. Remediation focused on riparian planting, minimizing erosion and sources of 

sedimentation, as well as increasing channel complexity would be expected to result in 

increased egg to age 0 survival in the Nashwaak River. For the LaHave River, 

autocorrelation in the residuals was the strongest signal found in the data, indicating a 

decline in egg to age 0 survival over the duration of monitoring that was not related to 

hydrology. These results do not preclude the possibility that a relationship between egg to 

age 0 survival and alternate hydrological predictors exist, nor that additional data 

collection and a longer time series would enable a relatively weak relationship to be 

described. However, in terms of guiding recovery planning, alternate threats that are not 

as strongly linked to hydrology, such as the effects of invasive smallmouth bass and chain 

pickerel (Wathen et al. 2011) or changes to water quality (Paul & Myer 2001) should be 

investigated. 

This chapter provides only one example of how our interpretation of ecological 

data changes as a result of the assumptions made during the analytical process, and 

highlights the implications that these assumptions can have for future recovery planning. 
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Given the declining trends in a large number of freshwater fish species (e.g., Dudgeon et 

al. 2006) as well as the limited time and resources available for remediation, the efficient 

identification of priorities for recovery planning is a pressing ecological issue.  
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Tables 

Table 3-1. Description of the lognormal and Generalized Linear Model (GLM) forms considered for analyzing egg to age 0 

survival data for Atlantic salmon from three populations, detailing the response variable, response distribution, parametric 

model and variance estimator. Terms used are: hydrological predictors (Xn,i), mean value (
i ), probability of being alive (

i ), 

age 0 density (
i ), egg density (ni), n and are the regression coefficients,   is an overdispersion parameter, and  is the 

scale parameter from a gamma distribution. 

 

Model 

Dependent 

variable 

Response 

Distribution  Parametric model Variance 
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
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)....exp(

,,110

,,110

inni

inni

i
XX

XX
n






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Table 3-2. Comparisons of coefficients from eight regression model forms describing egg to age 0 survival relative to the 

frequency of extreme low water conditions (xlow.freq) for the St. Mary’s River and the median rise rate (rise.rate) for the 

Nashwaak River. Coefficients from a model that retained an alternate hydrological predictor (the timing of extreme low water 

events; dist.low) for the St. Mary’s River are also shown. The annual survival rate is input into the quasibinomial regression as 

a two-variable vector of # alive, # dead. Note that the slope estimates for the models of mortality rates would be expected to be 

opposite in sign to those of survival rates or age 0 density. The slopes are interpreted as the rate of change in the response 

variable per unit change in the predictor variable; as such they are not directly comparable among all model forms. Results 

from the LaHave River are not included because no significant predictors were identified. 

 

River Model Dependent Variable 

Independent 

Variable Value S.E. P 

St. Mary's Lognormal Instantaneous mortality rate xlow.freq 0.064 0.027 0.030 

St. Mary's Quasibinomial Annual survival rate  xlow.freq -0.046 0.038 0.240 

St. Mary's Quasipoisson Age 0 abundance (offset pop size) xlow.freq -0.039 0.031 0.235 

St. Mary's Negative binomial Age 0 abundance (offset pop size) xlow.freq -0.054 0.021 0.010 

St. Mary's Robust lognormal Instantaneous mortality rate xlow.freq 0.064 0.020 0.005 

St. Mary's Robust binomial Annual survival rate  xlow.freq -0.055 0.007 << 0.001 

St. Mary's Robust Poisson Age 0 abundance (offset pop size) xlow.freq -0.048 0.003 << 0.001 

St. Mary's Robust negative binomial Age 0 abundance (offset pop size) xlow.freq -0.059 0.007 <<0.001 

St. Mary's Quasipoisson Age 0 abundance (offset pop size) dist.low 0.014 0.006 0.038 
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River Model Dependent Variable 

Independent 

Variable Value S.E. P 

Nashwaak Lognormal Instantaneous mortality rate rise.rate 0.326 0.114 0.007 

Nashwaak Quasibinomial Annual survival rate  rise.rate -0.299 0.138 0.037 

Nashwaak Quasipoisson Age 0 abundance (offset pop size) rise.rate -0.247 0.119 0.045 

Nashwaak Negative binomial Age 0 abundance (offset pop size) rise.rate -0.256 0.108 0.018 

Nashwaak Robust lognormal Instantaneous mortality rate rise.rate 0.401 0.137 0.006 

Nashwaak Robust binomial Annual survival rate  rise.rate -0.420 0.052 << 0.001 

Nashwaak Robust Poisson Age 0 abundance (offset pop size) rise.rate -0.294 0.046 << 0.001 

Nashwaak Robust negative binomial Age 0 abundance (offset pop size) rise.rate -0.460 0.109 <<0.001 
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Figures 

 

Figure 3-1. Location of the study area in Atlantic Canada showing the boundaries of the 

St. Mary’s, LaHave and Nashwaak watersheds as well as the locations of the hydrological 

monitoring stations (stars). 
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Figure 3-2. A comparison of the fits of seven different regression models to egg to age 0 

survival data (egg cohorts: 1989-2009) relative to the frequency of extreme low water 

events from the St. Mary’s River, showing the observed values (points), the fitted model 

(lines) and 2 s.e. (dashed lines). The response variable was standardized to be an annual 

survival rate to facilitate comparison. Although the preferred quasipoisson model retained 

an alternate predictor as significant (Table 3-2) and the quasibinomial model retained no 

significant predictors, the non-significant relationship with the frequency of extreme low 

flows is shown here. Observations that were identified as outliers by the robust lognormal 

model are identified by the filled points. To date, a predict function has not been 

developed for the newly available robust negative binomial model, which is why the 

results are not plotted (although see Table 3-2).
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Figure 3-3. A comparison of the fits of seven different regression models to egg to age 0 

survival data (egg cohorts: 1970-2009) relative to the rise rate (cms/day) from the 

Nashwaak River, showing the observed values (points), the fitted model (lines), and 2 s.e. 

(dashed lines). The response variable was standardized to be an annual survival rate to 

facilitate comparison. Observations that were identified as outliers by the robust 

lognormal model are identified by the filled points. To date, a predict function has not 

been developed for the newly available robust negative binomial model, which is why the 

results are not plotted (although see Table 3-2). 
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Chapter four: Applying landscape genetics to evaluate threats affecting 

endangered Atlantic salmon populations 

 

Abstract 

Landscape genetics affords a potential analysis framework to evaluate the effect 

of contemporary land use on endangered species at a population level. However, 

historical patterns of population connectivity need to be accounted for prior to testing for 

the contemporary effect of threats. I had two objectives for this chapter: (1) to optimally 

describe historical patterns in population connectivity for a diadromous fish species 

before (2) evaluating whether residual genetic variation was correlated with ecological 

changes arising from several types of land use. Using endangered Atlantic salmon 

populations as a case study, I evaluated whether historical patterns in population 

connectivity were more likely to result from dispersal limitation (Isolation by Distance; 

IBD) relative to habitat choice and reproductive success (Isolation by Environment; IBE). 

Second, I used Reciprocal Causal Modeling to identify the types of land use contributing 

to three threat indices, and subsequently Multiple Regression on Distance Matrices to 

evaluate the relative severity of each. Pairwise genetic distances were most highly 

correlated the Water Quality and Sedimentation indices; mean annual pH and abandoned 

mine density contributed equally to the negative correlation with Water Quality, and road 

density contributed to the positive correlation with Sedimentation. These results suggest 
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that straying Atlantic salmon avoid watersheds with reduced water quality (resulting from 

acidification and abandoned mines) and higher road density, yet are not responding to 

watershed fragmentation (from road-river crossings and dams) at a population level. This 

research is among the first to explicitly compare alternate behavioural hypotheses leading 

to dispersal patterns for diadromous fishes and to quantitatively assess freshwater threats 

for Atlantic salmon at a population level using landscape genetics. 

Introduction 

Anthropogenic changes to the environment, particularly in terms of land use, are 

one of the major causes of species decline worldwide (Foley et al. 2005, Dudgeon et al. 

2006, Venter et al. 2006). Effective recovery planning to address these declines relies on 

understanding the relative importance and severity of multiple threats in order to 

prioritize among potential recovery actions (Norris 2004). However, in many situations 

the quantitative links between population-level productivity and the specific land use 

activities identified as threats are not known (Lawler et al. 2002, Roni et al. 2002). For 

example, forestry, urbanization, agriculture, roads, industrial corridors or mining 

activities have all been shown to be related to processes governing sedimentation rates, 

hydrological flows, temperature regimes and other environmental characteristics of 

watersheds (Allan 2004, LeRoy Poff et al. 2010). The relationships between such 

environmental processes (e.g., sedimentation) and changes in freshwater fish survival or 

other vital rates are often understood quantitatively (e.g., Bunn and Arthington 2002), yet 

typically cannot be linked back quantitatively to the underlying threat (e.g., extent of 
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forestry activity; Lawler et al. 2002). This means that while it is possible to understand 

the relative severity of a single threat among watersheds, it is not currently possible to 

assess the relative severity of multiple threats affecting a single population within a 

watershed. Even when abundance time series are available, land use patterns and other 

types of spatial data on threats are typically aggregated over multiple years (due to the 

time and labour-intensive nature of data collection) thus preventing time series analyses 

with population abundance. Additionally, different threats can be measured in different 

units (e.g., proportions, counts, or densities), complicating direct comparison. For these 

reasons, alternate ways of evaluating multiple concurrent threats and their influence on 

populations are needed. 

One possibility is to use landscape genetics to investigate whether or not specific 

threats influence population genetic structuring. Measured variation at neutral markers 

such as microsatellites largely arises from within-population genetic drift causing 

divergence, tempered by the homogenizing effects of gene flow among populations 

(Allendorf et al. 2013). Threats that have fragmented populations or caused substantial 

reductions in abundance would be expected to reduce the rate of gene flow (fewer 

available migrants) while concurrently increasing the rate of genetic drift (increased 

isolation among small or declining populations) in a manner potentially dependent on the 

extent of the threat. One well-studied example is fragmentation of populations in response 

to roads, where roads have been found to increase genetic isolation of adjacent 

populations by acting as a barrier to movement (e.g., Epps et al. 2005, Arens et al. 2007, 
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Clark et al. 2010). Such population-level responses to contemporary threats are expected 

to be relatively rapid. Simulation studies have found that contemporary landscape 

changes leading to reduced population connectivity are detectable from microsatellite 

variation in as little as five generations (longer if dispersal rates are extremely low), 

provided dispersal distances are sufficiently large (Landguth et al. 2010) or population 

size is low (Dileo et al. 2013). This suggests that the influence of recent threats on 

populations would be detectable even if the threats had been acting for a relatively short 

period of time.  

Identifying contemporary threats relies on accurately characterizing historical 

patterns of gene flow (i.e., those existing prior to the advent of the threat), in order to 

prevent biased inference (Singh et al. 2013). Therefore, understanding how landscape 

elements influence the dispersal process becomes paramount to understanding expected 

patterns of population connectivity prior to the advent of threats. The majority of research 

questions in landscape genetics focus on the importance of landscape elements occurring 

between the locations or populations of interest (Pfluger and Balkenhol 2014). Resistance 

surfaces that describe the tendency or ability of individuals to move through this 

landscape matrix are compared to genetic variability when evaluating spatial genetic 

structure (Spear et al. 2010, Sawyer et al. 2011, Zeller et al. 2012). More geographically 

proximate habitats or populations are expected to be more genetically similar owing to a 

reduction in the number of migrants with increasing distance (Guillot et al. 2009). 

Ecologically, this Isolation by Distance (IBD) pattern is thought to result from cumulative 
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fitness costs associated with movement or dispersal limitation, thereby making long-

distance dispersal events rare (Bowler and Benton 2005, Bonte et al. 2012, Sexton et al. 

2013). For non-migratory species, where individual dispersal distances are small relative 

to the area occupied by the population, it might be expected that IBD would be a good 

approximation of historical population connectivity (Guillot et al. 2009). However, 

migratory species such as diadromous fishes are unlikely to be regulated by cumulative 

fitness costs associated with movement among spawning habitat, given that lifetime 

dispersal distances are orders of magnitude greater than the area occupied by breeding or 

reproducing individuals. An alternative model for historical patterns in gene flow could 

be an Isolation by Environment or IBE model, which posits that gene flow is greatest 

among similar environments owing to either non-random mating or local adaptation 

(Sexton et al. 2013, Wang et al. 2013). In this instance, genetic variability among 

populations would be expected to be related to the degree of similarity in recipient 

environments (promoting local adaptation) or possibly to the degree of difference 

(counter-gradient gene flow against local adaptation) (Sexton et al. 2013). To maximize 

reproductive fitness, dispersing individuals would be expected to respond to the 

environmental characteristics of recipient habitats through habitat selection (Kubisch et 

al. 2014) rather than to the characteristics of the environment between habitats.  

The overall goals of this chapter were to use a landscape genetics approach to: (1) 

evaluate the IBD and IBE hypotheses relative to population structuring in a diadromous 

fish species and (2) evaluate whether residual genetic variation could be explained 
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relative to the magnitude or importance of multiple contemporary threats. To achieve this, 

I used a case study of genetic variation among 11 endangered Atlantic salmon (Salmo 

salar) populations, where the results could be used directly to facilitate recovery 

planning. These analyses are structured into four main parts. The first part describes the 

methods used to obtain and summarize the genetic and landscape data sources, which 

were transformed into genetic and environmental distance matrices for subsequent 

analyses. The second component compares the relative support for the IBD and IBE 

hypotheses of gene flow. The third part explores whether residual genetic variation could 

be explained by anthropogenic threats, which relied on developing optimal indicators of 

three general categories of anthropogenic effects (those related to sedimentation, 

fragmentation and water quality). The fourth component evaluated the relative magnitude 

and significance of any correlation between residual genetic variation and each threat 

category. From a theoretical standpoint, the results potentially provide insight into the 

behavioural processes that may be leading to gene flow among watersheds for Atlantic 

salmon. From a practical standpoint, they also provide one of the first quantitative 

comparisons of the relative magnitude of threats among these populations, and can be 

used to facilitate recovery planning.  

Methods 

This chapter uses data from 11 Atlantic salmon populations in the Southern 

Upland (SU) region (Figure 4-1). These tend to inhabit the larger river systems and are 

well distributed throughout the region (i.e., they are not clustered geographically). As 
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such, they are thought to largely represent the range of variability that exists among 

populations in the SU. A total of 709 genetic samples from juveniles (fin clips from 

young-of-the-year, age 1 or age 2) were collected opportunistically during electrofishing 

surveys, with the timing of each collection and the number of samples varying slightly 

among rivers (Table 4-1). During data collection, individual samples were identified by 

the river of origin instead of by individual. Because the geographical coordinates 

representing individual sampling locations were unknown, the landscape genetics analysis 

described below had to be done at a population level. Older juveniles were sampled 

preferentially to minimize the likelihood of multiple sampling of individual families. 

Microsatellite amplification was carried out at 17 individual loci, where the methods used 

are detailed in O’Reilly et al. (2012).  

From the microsatellite dataset, the potential for null alleles (non-amplified alleles 

that result in apparent homozygotes), allele dropout (preferential amplification of short 

alleles) and scoring errors due to stuttering (failure to discriminate adjacent alleles) was 

assessed using Micro-checker version 2.2.3 (van Oosterhout et al. 2004). I used 8000 

Monte-Carlo randomizations of the observed data to calculate the p-values for the 𝜒2 test 

of observed vs. expected homozygote frequencies and heterozygote size differences. I 

also tested for Hardy-Weinburg (HW) equilibrium over loci in all sampled populations 

using the R package ‘adegenet’ (Jombart 2008). At each locus within each population, I 

used 8000 Monte-Carlo simulations to calculate p-values for the 𝜒2test of observed vs. 

expected gene frequencies. After Bonferroni correction, I assessed significant departures 
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and any patterns of departures over loci or within populations (Table A4-1-2, Appendix 

4-1). Finally, I assessed the potential for linkage disequilibrium (non-random association 

of alleles at multiple loci) using LinkDos (Garnier-Gere & Dillmann 1992) from GenePop 

4.2 (Raymond & Rousset 1995; Rousset 2008) (Table A4-1-3, Appendix 4-1). After the 

above, I calculated five within-population measures of genetic variability, averaged over 

loci, to better understand the characteristics of individual populations: allelic richness 

(i.e., the number of alleles), the effective number of alleles (allelic richness standardized 

to account for sample size), expected heterozygosity (the expected probability that an 

individual will be heterozygous at a given locus), observed heterozygosity, and Wright’s 

inbreeding coefficient (Fis) within the R package ‘gstudio’ (Dyer 2012).  

Watershed characterization 

These analyses required metrics from which the environmental characteristics of 

watersheds could be described (to parameterize an IBE model), and from which the extent 

of human activities within watersheds could be characterized (for the evaluation of 

threats). Freely available data sources describing the physical, geological and land use 

characteristics of the watersheds sampled for these analyses were combined and analyzed 

using ArcGIS (ESRI® ArcGIS 10.0 software service pack 3). A detailed description of 

the GIS methods and data layers is provided in Bowlby et al. (2014). These were used to 

calculate: (1) the proportion of catchment area composed of multiple geological features 

within a watershed (e.g., surficial geology types), (2) the proportion of watershed area 

affected by multiple land use types (e.g., forestry) or (3) the prevalence (i.e., a count) of a 
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specific type of threat (e.g., road/river crossings) in each watershed. In the case of counts, 

values used in these analyses were expressed as a density, scaled either by the area of the 

watershed or by the length of the stream network. The sources of geographic data that 

were used are provided in Table A4-2-1 of Appendix 4-2, while the calculated landscape 

variables describing the watersheds are provided in Appendix 4-2, Tables A4-2-2 to A4-

2-6 inclusive, and the land use activities (i.e., threats) are in Table A4-2-7.  

It was necessary to determine the environmental metrics that would be most likely 

to influence habitat quality for Atlantic salmon for inclusion in the IBE model. Given the 

hierarchical nature of watersheds, where landscape characteristics affect processes at 

successively smaller scales (Allan 2004), it is thought that the evolution of life history 

differences as well as population dynamics of salmon are primarily governed by large-

scale characteristics of watersheds (Ugedal and Finstad 2011). Therefore, the data types 

used in the IBE model included: area metrics (e.g., watershed area, length of stream 

network), surficial and bedrock geology, natural forest disturbance regimes, and 

topography (Appendix 4-2; Tables A4-2-2 to A4-2-6, respectively). To avoid weighting 

subsequent analyses due to different numbers of variables contributing to each 

information type (e.g., 4 variables describe natural disturbance regime while 14 describe 

surficial geology), each of the five data types were scaled to ensure comparability and 

then independently transformed into two non-metric multidimensional scaling (NMDS) 

axes (Bocard et al. 2011) using the metaMDS function of the R package ‘vegan’ 

(Oksanen et al. 2013). The Euclidean distance matrix representing landscape variation 
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among watersheds was calculated from these 10 NMDS axes (i.e., the sum of 2 axes 

representing each of five data types), as described below. 

Historical patterns of gene flow  

If dispersal limitation was the primary determinant of gene flow among 

populations (as predicted by the IBD hypothesis), it would be expected that the 

geographic distance among watersheds would be positively correlated with the degree of 

genetic difference among populations (Guillot et al. 2009). Alternately, if habitat 

selection and local adaptation to recipient environments was the primary determinant of 

gene flow (as predicted by the IBE hypothesis), a stronger correlation may exist between 

environmental similarity and genetic distance (Sexton et al. 2013). It would also be 

expected that the better model would have significant explanatory power after any 

correlation with the other hypothesis was accounted for. To evaluate these hypotheses, I 

first developed genetic, geographical and environmental distance matrices and compared 

those using Mantel tests and two-step Reciprocal Causal Modeling (Wasserman et al. 

2010). The Mantel tests evaluate whether a single model can explain a significant amount 

of genetic variation. The Reciprocal modeling (described below) is based on a 

comparison of partial Mantel tests and evaluates whether IBD or IBE can be considered 

significantly better than the other model. Looking forward, there are many exciting 

statistical techniques that are being proposed as more appropriate and rigorous 

alternatives to Mantel and partial Mantel tests for evaluating IBD relative to IBE as well 

as other questions in landscape genetics. These include Generalized Dissimilarity 



 

 

103 

 

 

Modelling of distance matrices (Ferrier et al. 2007, Fitzpatrick et al. 2015), spatial 

regression methods based on conditional or simultaneous autoregressive models of 

individual-based data (Wagner & Fortin 2016), and Bayesian methods such as 

BEDASSLE that model the covariance in allele frequencies from SNPs as functions of 

geographic or environmental data (Bradburd et al. 2013), among others. Unfortunately, 

none of these could have been applied here as they require a much more comprehensive 

data set than was available.  

To evaluate the strength of the correlation between genetic distance and either the 

IBD or IBE models relative to a null distribution of no association, I used Mantel tests 

calculated from 10,000 permutations of the data, where significance was assessed relative 

to the 95% quantile of the distribution of permutations (i.e., the test statistic would be 

significant only if it was greater than 95% of the permuted values). The genetic distance 

matrix was calculated from Nei’s pairwise Fst (Nei 1978) using the R package ‘gstudio’ 

(Dyer 2012). This distance is given by:  

𝐷̂ = −𝑙𝑛 [ √𝐺𝑥̂𝐺𝑦̂

𝐺𝑥𝑦̂

] 

where 𝐺𝑥̂, 𝐺𝑦̂ and 𝐺𝑥𝑦̂ represent the bias-corrected averages of allele frequencies over the 

r loci sampled (Nei 1978). The correction prevents overestimating distances based on 

observed gene frequencies when sample sizes are small. For this calculation, 

differentiation among populations is assumed to arise through constant mutation rates and 

genetic drift. The Euclidean matrix representing pairwise geographical distances (IBD 
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model) was calculated from the coastal straight-line distance between each pair of rivers, 

which represents a minimum distance over water; beginning and ending on the latitude 

and longitude between each pair of river mouths. Euclidean distance is merely a straight-

line distance between two points: 𝑑(𝑝𝑖, 𝑞𝑖) = √(𝑞𝑖 − 𝑝𝑖)2, where 𝑝𝑖  and 𝑞𝑖 represent the 

geographic coordinates (i.e., x and y co-ordinates) for each river (Oksanen et al. 2013). 

The Euclidean matrix representing pairwise environmental distances (IBE model) was 

calculated from the centroids in multivariate space using the NMDS axes described 

above. This Isolation by Environment (IBE) model explicitly did not include any 

positional information representing the geographical location of watersheds. The IBD and 

IBE distance matrices were highly correlated (Spearman correlation coefficient = 0.92), 

which was expected because environmental gradients tend to be spatially autocorrelated 

(Legendre 1993). Values for each distance matrix are given in Appendix 4-3.  

Second, I used the two-step Reciprocal Causal Modeling framework proposed by 

Wasserman et al. (2010), in which competing models (IBD or IBE) are compared directly 

to each-other using partial Mantel tests based on the same distance matrices as above. 

Reciprocal Causal Modeling has been advocated as a method for formal significance 

testing among highly correlated distance matrices (Cushman et al. 2006, Wasserman et al. 

2010). Previous evaluation of the technique using simulated data has suggested that it is 

efficient in identifying the correct model from a range of alternatives in individual-based 

landscape genetic analyses (Cushman et al. 2013). However, it suffers from elevated 

Type I error rates, as do most analyses on highly correlated data (Balkenhol et al. 2009, 
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Legendre 1993). The magnitude of Type I error can be related to the degree of second-

order autocorrelation (i.e., the covariance function between observations) in the matrices 

being compared (Guillot and Rousset 2013). Simulation testing by Cushman et al. (2013) 

suggests that inference on the optimal model relative to a range of highly correlated 

alternatives remains correct when based on a comparison of the relative magnitudes of 

partial Mantel r values, even when the potential for Type I error is high. Therefore, as 

advocated by Cushman et al. (2013), I have also used the relative magnitudes of the 

Mantel r values for assessing the comparative support among models (e.g., Castillo et al. 

2014), rather than the significance of individual models in isolation. Reciprocal Causal 

Modeling works by comparing a partial Mantel test of a given hypothesis after parcelling 

out the influence of a competing hypothesis and vice versa (e.g., comparing the r statistic 

of Gene~Model1|Model2 with Gene~Model2|Model1). The null hypothesis for these 

partial Mantel tests is that there is no additional variation captured in the second distance 

matrix relative to the first, indicating greater explanatory power for Model1. The 

expectation would be that a better model would have a large and significant r value 

relative to the alternate hypotheses in the first instance, while the r value would be small 

and non-significant in the second instance (although see comments related to Type I error 

above). In other words, competing models would not show a significant correlation with 

genetic structure after the influence of the chosen model was accounted for and vice 

versa. On the basis of the comparisons between p-values, the chosen model can be taken 

as significantly better than the competing models (Wasserman et al. 2010, Cushman et al. 
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2013). In an evaluation of Reciprocal Causal Modeling (RCM) using simulated landscape 

resistance hypotheses, Cushman et al. (2013) suggested that for a resistance model to be 

formally affirmed as the only hypothesis supported (i.e. significantly better than all 

competing hypotheses), the following pattern would be observed. First, all of the partial 

Mantel comparisons between the chosen model while controlling for the effect of each 

alternative model would be significant (p-values < 0.05). Second, all partial Mantel 

comparisons between the alternate models relative to the chosen had to be non-significant 

(p-values > 0.05). All Mantel tests and partial Mantel tests were carried out using the R 

package ‘vegan’ (Oksanen et al. 2013). 

Identification of variables contributing to threats indices 

In general, the land use activities identified as threats to Atlantic salmon have 

been linked to changes in the environmental processes governing watersheds, rather than 

to changes in population dynamics (Allan 2004). In addition, different types of threats are 

expected to have the same overall effect on environmental processes, as detailed in the 

Introduction. Therefore, to quantitatively assess the influence of threats on genetic 

connectivity among populations, it becomes necessary to first determine which 

environmental process a threat is most likely to contribute to, and then to assess the 

relative magnitude of effect from multiple environmental processes. Here I consider a 

suite of eight land use variables as potential threats and evaluate their independent 

contributions to three more general environmental processes: sedimentation (S), 

fragmentation (F) and water quality (WQ) (hereafter called the three threats indices; 
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Table 4-2; Table A4-2-7, Appendix 4-2). This was done both as a method for variable 

reduction and as a way to group activities that would be expected to influence populations 

in similar ways. Albeit indirectly, retention of a specific land use variable in a threat 

index provides support for both the hypotheses on how specific land use types influence 

populations as well as whether or not these activities can be considered to be substantial 

threats for these specific populations. A literature review was used to identify the manner 

in which specific land use types are thought to influence Atlantic salmon populations or 

their habitat characteristics. For example, agricultural activities, industrial sites (such as 

gravel quarries) and roads are considered to be chronic sources of sediments (Gilvear et 

al. 2002), where increased sedimentation has been linked to reduced habitat quality for 

salmonids as well as to acute mortality of eggs or juveniles (Soulsby et al. 2001, Julien 

and Bergeron 2006), particularly during storm events (Lisle 1989). Furthermore, the 

bedrock geology of the Southern Upland region has little buffering capacity (Watt et al. 

1983, Korman et al. 1994), which makes Southern Upland salmon particularly vulnerable 

acid deposition from either precipitation or land-based sources (Farmer et al. 1980, Watt 

1987). Atmospheric deposition in the form of acid rain has substantially reduced pH in 

many rivers throughout the Southern Upland (Watt 1987). Lastly, salmonids depend on 

unobstructed movement in a watershed to access spawning and rearing areas, avoid 

predators, and respond to changing environmental conditions such as temperature, flow, 

or inter- and intra-species competition (Poplar-Jeffers et al. 2009). Threats that fragment 

watersheds, such as road/river crossings containing culverts or impassable dams, would 
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be expected to reduce habitat productivity as well as accessibility for Atlantic salmon. 

Although other types of land use would be expected to influence freshwater environments 

(e.g., urbanization), the incidence of such threats in the Southern Upland region was very 

low (e.g., < 1% of watershed area affected) and quite similar among watersheds (data not 

shown), and so were not included. In terms of duration, each of the land use variables 

considered here would have become significant prior to the 1970s (Bowlby et al. 2014), 

which corresponds to more than five generations prior to genetics sampling for these 

populations.  

 The preferred model of each threat index was identified using the two-step 

Reciprocal Causal Modeling framework proposed by Wasserman et al. (2010), introduced 

above. A separate Euclidean distance matrix was calculated for each potential 

combination of the land use variables hypothesized to be contributing to each threat index 

(Table 4-2). Because land use variables were similarly scaled prior to calculating 

Euclidean distance, included land use types contribute equally in the model. As in Shirk 

et al. (2010), the model that had the highest correlation with genetic distance was initially 

identified using Mantel tests based on Spearman correlations (e.g., Gene~Model) and 

partial Mantel tests (Smouse et al. 1986) controlling for the influence of underlying 

genetic structure (e.g., Gene~Model|IBE). Here I used the IBE model only in order to 

avoid overestimating the effect of land use on gene flow, given that spatially correlated 

landscape features can mask or confound the independent contribution of contemporary 

land use effects on genetic distance (Dileo et al. 2013). However, I recognize that 
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essentially equivalent results could have been obtained in this study by controlling for 

IBD. Next, the relative support for the chosen model (which I will now call ‘Chosen’) 

was assessed using reciprocal comparisons with each competing threat model (which I 

will call an ‘Alternate’) following:  Gene~Chosen|Alternate vs. Gene~Alternate|Chosen. 

Again, the expectation would be that a better model would have a large and significant r 

value relative to all of the other hypotheses in the third test, while the r value would be 

small and non-significant in the fourth test. Using Reciprocal Causal Modeling to 

evaluate the contribution of land use variables to each of three threats indices necessitated 

two assumptions: (1) that the effects of land use were additive and (2) that specific types 

of land use contributed to one main threat index. By this I mean that road density (for 

example) would be mainly related to sedimentation, rather than having nearly equivalent 

contributions to the fragmentation and sedimentation indices. This assumption was 

evaluated a posteri by calculating the Spearman correlation coefficient among the threat 

indices as well as by substituting alternate land use variables into each threat index (e.g., 

considering road density rather than road crossings in the fragmentation index).  

 I have detailed the computational sequence followed in this section relative to a 

specific example to aid in interpretation (Appendix 4-4). 

Influence of anthropogenic land use 

 To evaluate if any of the threats indices explained significant residual genetic 

variation (over and above that explained by IBE), I used Multiple Regression on Distance 

Matrices (MRDM; Legendre et al. 1994, Lichstein 2007). The response was the genetic 
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distance matrix and the possible predictors were the three threat indices. MRDM works 

by transforming each distance matrix into a vector, calculating the linear regression 

coefficients, and then estimating significance by holding the predictors constant while 

randomly permuting the response (Lichstein 2007). For the retained predictors, a positive 

regression coefficient would indicate increased genetic isolation relative to that expected 

historically and would provide evidence that the variables contributing to the threat index 

have had measureable effects on population dynamics. Here, the relative support for 

various models was assessed using the Akaike Information Criterion for small samples 

(AICc; Burnham and Anderson 2002). Although individual data points in a distance 

matrix are not independent, this non-independence is the same in each model and thus 

does not affect model ranking, making information theoretic approaches (Johnson and 

Omland 2004) valid for model selection (Engler et al. 2014). 

Results 

Population genetic diversity 

 Meaningful comparisons of genetic diversity at neutral markers require that data 

are not biased by genotyping errors (e.g., null alleles), that all populations have been 

sampled representatively, and that the tested loci are not under selection (i.e., that they are 

in Hardy-Weinburg equilibrium (HWE); Allendorf et al. 2013). Round Hill River and 

Salmon River (Guysborough County) were unlikely to have been sampled 

representatively, given that juvenile salmon were only captured at one of the two sites 
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electrofished on either river. Clustering among genetically similar individuals would lead 

to a non-representative sample at the population level (Schoville et al. 2012) and would 

be expected given the population structuring exhibited by Atlantic salmon and the 

tendency to home to specific places within a watershed (Keefer & Caudill 2014). The low 

genetic diversity in Round Hill River relative to the other 10 population sampled (Table 

4-1) supports this conclusion, as does the prediction that one quarter of tested loci were 

out of HWE for Salmon River (Guysborough County) (Table A4-1-2, Appendix 4-1). 

Therefore, these rivers were removed from further analyses. The remaining rivers 

exhibited no systematic departures from HWE either within loci or populations. The 

tested loci and alleles appear to sort independently (i.e., do not exhibit linkage 

disequilibrium), given that correlations among alleles were extremely low (< 0.1) and 

significant results were not systematically distributed among samples (Table A4-1-3, 

Appendix 4-1). There was no evidence for scoring error or allele dropout, yet null alleles 

were found at locus 9 in five populations (Country Harbour, LaHave, Gold, Moser, and 

St. Mary’s) and at locus 7 in Salmon River (Digby County) (Table 4-1-1, Appendix 4-1). 

Although accounting for null alleles would slightly change the allele frequencies, the 

relative differences tend to be preserved (i.e., the frequencies all decline, rather than some 

increasing and some, decreasing). Therefore, null alleles would not be expected to bias 

analyses based on pairwise distances, an expectation that I confirmed by both including 

and excluding locus 9 in the analyses. The results I present are based on the unadjusted 

allele frequencies at all loci. Measures of within-population genetic variation were similar 
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(Table 4-1) and indicated relatively high levels of genetic diversity. Expected and 

observed heterozygosity were higher than have been previously reported for anadromous 

fishes (DeWoody and Avise 2000), but were consistent with estimates derived from 

microsatellite data from other salmon species (Jia et al. 2012, Khristaleva et al. 2014).  

Population genetic structure 

The Mantel test reveals a higher correlation (and one much less likely to have 

occurred by chance) between Nei’s pairwise Fst and the landscape distance matrix (r = 

0.392, p-value = 0.007) as compared to coastal geographic distance (r = 0.373, p-value = 

0.020) (Table 4-3). Comparing the IBD and IBE hypotheses using Reciprocal Causal 

Modeling suggests that the IBE model may be better supported by the data, given that the 

partial Mantel r correlation is substantially higher between genetic isolation and the 

landscape distance matrix after controlling for any correlation with geographic distance 

(Gene ~ IBE|IBD; r = 0.176), as compared to the reverse (Gene ~ IBD|IBE; r = <-0.001) 

although neither p-value is significant at a level of 0.05 (Table 4-3). However, relatively 

little (15.2%) of the permuted null distribution is larger than 0.176 in the Gene ~ IBE|IBD 

comparison, while half of the permuted null distribution is larger than the r value in the 

Gene ~ IBD|IBE comparison.  

Identification of variables contributing to threats indices 

Mantel and partial Mantel tests between genetic distance and a fragmentation 

index, F, (where each possible combination of road crossings (Rc), dams (D) and pH (pH) 
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was assessed independently) showed the largest correlation with the RcD model (road 

crossings and dams; Table 4-4). Comparisons of this model (‘Chosen’) to genetic distance 

while controlling for each of the other candidate models (‘Alternate’) had Mantel r values 

ranging from 0.229 to 0.283; although each of the p-values were greater than 0.05 (Table 

4-4). Conversely, none of the other models retained any significant correlation with 

genetic distance once the effect of the RcD model was accounted for, and the absolute 

values of the Mantel r correlations were substantially lower (< 0.135; Table 4-4). 

Although these results do not suggest that the RcD model can be considered significantly 

better than each of the other candidate models, the relatively large Mantel r correlations 

when the competing models are accounted for (and vice versa) suggests that this model is 

the best representation of the fragmentation index.  

The Mantel and partial Mantel tests relative to the water quality index (WQ) were 

unexpected, in that the correlations tended to be strongly negative, suggesting greater 

population connectivity among more dissimilar watersheds related to mine density, 

forestry or mean annual pH. The largest negative Mantel r correlation was with the MP 

model (mines and pH). Relative to the competing models, the MP model retained a large 

negative correlation with genetic distance (r values < -0.33; Table 4-4), while the 

competing models had smaller correlations with genetic distance when the effect of the 

MP model was accounted for. Based on a comparison of the p-values between 

Chosen|Alternate (expected to be significant) and Alternate|Chosen (expected to be non-
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significant), the MP model was significantly better than all of the competing models. It 

was chosen as the best representation of the water quality index. 

Unlike the water quality and fragmentation indices, there was no single model that 

clearly had the largest correlation with genetic distance for the sedimentation index. With 

the exception of the agriculture only model (A), the partial Mantel tests demonstrated 

correlations above 0.48 for each of the other candidate models (Table 4-4). The model 

that included industry, road density and agriculture (IRdA) had among the highest r 

values for both the Mantel and partial Mantel tests, and so was chosen as the best 

representation of the sedimentation index (S) for Reciprocal Causal Modeling. However, 

sensitivity to this choice was also assessed by evaluating the IRd, ARd, IA and Rd models 

using Reciprocal Causal Modeling (data not shown). The IRdA model had no additional 

explanatory power relative to the IRd model (c.f. r = 0.146 and 0.148; Table 4-4), the 

ARd model (c.f. r = 0.191 and 0.126; Table 4-4) and the Rd model (c.f. r = 0.174 and 

0.177; Table 4-4); there are essentially equivalent correlations with residual genetic 

variation in the reciprocal tests. In addition, there is still a correlation for the IRdA model 

after accounting for the influence of the IA model (r = 0.194) while there is not for the IA 

model after accounting for IRdA (r = 0.008; Table 4-4). Similar patterns are found when 

the IRd, ARd, IA and Rd models are evaluated. All models excluding Rd have essentially 

no additional explanatory power, while models including one or both of I and A (in 

addition to Rd) have essentially equivalent explanatory power in the reciprocal tests. 

Taken together, these results suggest to me that road density is the primary land use 
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variable contributing to the sedimentation index. Industry and agriculture have 

comparatively little contribution. Therefore, following the principle of parsimony, I chose 

the Rd model as the best representation of the sedimentation index, although I cannot 

discount the possibility that industry and agriculture have a lesser contribution. 

Influence of anthropogenic land use 

 The three threats indices were relatively uncorrelated, with Spearman correlation 

coefficients of < 0.4, and thus unlikely to violate assumptions regarding collinearity for 

inclusion in multiple regressions (Zuur et al. 2010). In isolation, the IBE model explained 

very little of the variation in genetic distances (R-square = 0.164, p-value = 0.005; Table 

4-5), even though the variable was significant in the regression. Results were very similar 

between the full model including all of the indices (IBE+S+F+WQ) and the model that 

excluded the fragmentation index (IBE+S+WQ), although the latter was selected as the 

preferred model on the basis of AICc; c.f. R-square = 0.547 and 0.536, p-values = 0.001 

and <0.001, AICc = -108.71 and -110.01, respectively (Table 4-5). As expected, the 

fragmentation index was not a significant predictor in the full model (slope = 0.11; p-

value = 0.529). All other candidate models had R-square values of less than 0.4 (Table 4-

5). It is important to remember that R-square values from MRDM regression (as well as r 

statistics from Mantel tests) cannot be interpreted as the proportion of variance in the 

response explained by the predictors, but only as a measure of the fit of a linear model to 

the paired sets of distances (Legendre and Fortin 2010). Given that each of the Euclidean 

distance matrices included in the MRDM models were similarly scaled, the slope 
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estimates from each regression model give a direct comparison of the relative magnitude 

of each threat index on genetic distance among watersheds. Absolute values of the slope 

estimates from the sedimentation (slope = 0.44, p-value = 0.012) and water quality (slope 

= -0.39, p-value = 0.013) indices were similar to those from the landscape distance matrix 

(slope = 0.41, p-value = 0.007).    

Discussion 

 My analyses do not provide significant support for the hypothesis that 

environmental variation is the primary determinant of gene flow in Atlantic salmon at a 

regional scale, as opposed to a pattern of movement determined by geographic isolation, 

but they do suggest that it is possible. In addition, the behavioural mechanism proposed 

here to lead to an Isolation by Environment (IBE) model is consistent with the 

interpretation of genetic variation arising from contemporary threats, while the IBD 

model is not. In relation to population-level responses to threats, findings are consistent 

with multiple experimentally-predicted behavioural or physiological changes, and suggest 

that straying behaviour and subsequent reproductive success are affected by 

anthropogenic land use in watersheds. Based on this result, landscape genetics could 

become a powerful basis from which to develop future research priorities and remediation 

strategies to address population declines in Atlantic salmon and potentially other 

endangered species. 
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Population genetic structure 

There is a strong theoretical basis by which to argue that Isolation by Distance 

may be insufficient to describe straying behaviour, effective dispersal and historical 

patterns of population connectivity in Atlantic salmon, and potentially other migratory 

species. This contrasts most research on population structuring in diadromous fishes, 

where IBD is taken to be the expectation or null model of gene flow (e.g., Palstra et al. 

2007, King et al. 2001, Bradbury et al. 2014). However, the theoretical concept of 

Isolation by Distance was developed to represent a specific type of dispersal process, one 

limited by the cumulative fitness costs associated with movement (Slatkin 1993, Guillot 

et al. 2009). Such a pattern is unlikely to describe movement among watersheds in 

Atlantic salmon and other diadromous fishes, given that oceanic migrations are vast 

relative to any separation among river mouths (Hansen and Quinn 1998, Ritter 1989). 

Alternatively, the evolution of homing behaviour as well as substantial life history 

variation among populations provides indirect evidence of local adaptation (Garcia de 

Leaniz et al. 2007, Fraser et al. 2011), which implies that individuals have higher 

reproductive success in environments similar to their natal environment (Pfluger and 

Balkenhol 2014) and could be motivated to seek out similar habitats (Bonte et al. 2012). 

Thus, among returning adults, habitat selection would be a more likely behavioural 

motivation for watershed choice while straying, where subsequent reproduction (i.e., 

effective dispersal) would also be expected to be higher in more similar recipient 

watersheds. Proximate cues to assess habitat quality could be olfactory (e.g., dissolved 
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mineral content, oxygen saturation) or environmental (e.g., flow rate, temperature); 

factors that are linked to landscape characteristics and environmental variation among 

watersheds (reviewed in Allan 2004). If straying adults are using such proximate cues, 

gene flow among watersheds should correlate with the environmental characteristics of 

watersheds. Although a marginally stronger correlation existed with IBE as IBD, my IBE 

model did not explain significantly more genetic variation. Variability in this relatively 

limited data set coupled with the low power of Mantel tests (Legendre et al. 2015) would 

hinder the description of any underlying relationship, as could strong spatial 

autocorrelation between environmental variation and geographic distance (here estimated 

at 0.92), making IBE closely approximate IBD. This latter pattern would be expected to 

break down under weak spatial autocorrelation, and could explain why IBD is both 

supported (e.g., Dionne et al. 2009, King et al. 2001) and not (e.g., Bradbury et al. 2014) 

in the literature for Atlantic salmon. Given the theoretical basis for the underlying 

assumptions, I propose that future research on gene flow among populations (i.e., among 

watersheds) in diadromous species should develop an IBE model in addition to IBD. The 

potential exists for environmental variation to affect the dispersal process directly, rather 

than acting exclusively on within population processes such as genetic drift or adaptation.  

The negative Mantel r correlation between genetic distance and the water quality 

index can only be explained if returning adults are actively assessing the characteristics of 

the watersheds they encounter (implicit in the IBE model) as opposed to incurring 

cumulative fitness costs associated with movement behaviour among watersheds (implicit 
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in the IBD model). Most landscape genetics questions dealing with a species’ response to 

threats test for the effect of barriers or some type of land use that increases resistance to 

movement (through degrading habitat quality) and thus reduces the ability or tendency to 

move through areas more heavily affected by the threat (e.g., Sawyer et al. 2011, Zeller et 

al. 2012). From these examples, IBD is predicted to become stronger than what would be 

expected historically and any Mantel correlation between genetic distance and the 

magnitude of the threat would be inherently positive (i.e., high levels of the threat would 

cause a greater reduction in movement among populations). However, if individuals have 

the ability to avoid areas more heavily affected by a threat (e.g., particular watersheds) 

while moving freely through the marine environment, negative correlations become 

possible, such as the one seen here between the water quality index and genetic distance.  

The negative correlation suggests increased gene flow among environmentally 

dissimilar watersheds (based on mines+pH), which would be consistent with individuals 

preferentially entering or experiencing higher spawning success in rivers that are less 

acidified or contain fewer contaminants relative to their natal watershed. One hypothesis 

is that observed patterns of genetic divergence could result from a combination of: (1) a 

reduced capacity to imprint using olfactory cues, leading to an increase in the proportion 

of a population that strays; and (2) relatively lower survival in watersheds with poor water 

quality, leading to higher survival of individuals straying to watersheds with good water 

quality. If chemical contaminants are in the watershed, it seems unlikely that they would 

influence behaviour in isolation of physiology and vice versa. Besides the potential for 
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acute mortality caused by low pH (e.g., Lacroix and Townsend 1987), acidification is 

known to interfere with chemosensory functions related to the detection and response to 

chemical signals (Leduc et al. 2010). One chemosensory function would be the olfactory 

imprinting that occurs during emigration to the marine environment and enables 

individuals to return to natal rivers (McCormick et al. 1998). Similarly, a range of 

chemical compounds (including insecticides used in forestry practices in Nova Scotia; 

Fairchild et al. 1999) as well as heavy metals (such as those typically present in acid rock 

drainage from old mine sites; Akcil and Koldas 2006) can have comparable effects on 

chemosensory function (reviewed in Lurling and Scheffer 2007). Preliminary tag-based 

research on sub-lethal exposure to an insecticide corroborates this hypothesis, in that 

homing success was lower for exposed Pacific salmon relative to controls (Scholz et al. 

2000). Similarly, higher straying rates among localized stream reaches have been 

observed when conditions at the natal site were less favorable (Dittman et al. 2010, Cram 

et al. 2013). A recent review of homing behaviour in anadromous salmonids indicates that 

environmental conditions influence attraction to non-natal sites and that any chemicals 

interfering with olfactory imprinting or sensory development would be expected to 

increase the incidence of straying as well as to influence adult habitat choice (Keefer and 

Caudill 2014). 

Practical implications 

 During recovery planning for endangered species, threats that tend to be well-

understood are often focused on for remediation at the expense of those that are not 
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(Lawler et al. 2002, Norris 2004). The specific threats identified as contributing to the 

sedimentation, fragmentation and water quality indices contradict some current 

perceptions on the optimal focus of recovery planning. It is generally accepted that pH 

has an extremely large influence on Atlantic salmon in the Southern Upland, where 

increases in acid precipitation from the 1950s have been implicated in population 

extirpations and severe population decline (Watt et al. 1983, Lacroix 1989). However, the 

influence of past mining activities on current water quality has never been identified as a 

pressing issue for mitigation, although it has been identified as a potential threat (e.g., 

Bowlby et al. 2014). The present analysis suggests that mining activities affect population 

connectivity (movement and spawning success) in the same manner and with the same 

severity as acidification. Similarly, road crossings and fragmentation have been identified 

as extremely important determinants of freshwater habitat accessibility for salmon, and 

many user groups are interested in culvert and dam removal or remediation as a method 

for improving habitat accessibility and presumably increasing population size for Atlantic 

salmon (Langill and Zamora 2002, Gibson et al. 2005). Here, the larger concern appears 

to be road density itself, given that the fragmentation index had no significant effect on 

population connectivity while the sedimentation index did. The presence of roads has 

been linked to a suite of ecological changes in watersheds beyond sedimentation: 

including changes in thermal regimes, constriction of channel movement, and changes in 

channel morphology, contaminants, as well as the spread of invasives in watersheds 

(Trombulak and Frissell 2000). It has been argued for a wide variety of taxa that the 



 

 

122 

 

 

effects of roads on natural populations are one of the most pressing current conservation 

issues (Forman and Alexander 1998, Clark et al. 2010). It is interesting that my analysis 

suggests that the presence of roads causes changes in population connectivity of a similar 

magnitude relative to changes in water quality (i.e., the slope estimate for the S index is 

comparable to that of the WQ index). However, I have not explicitly linked these results 

to a population dynamics model used to assess status, so it is unknown how the opposing 

effects of the two threats culminate in changes in abundance.  

Landscape genetics as a method to evaluate threats 

It is well-known that the influence of specific environmental factors on systems or 

populations can vary over different scales (e.g., Schneider 2001), which has implications 

for how well this population-level analysis can fully characterize the relative magnitude 

and influence of this suite of threats affecting adult Atlantic salmon populations, 

particularly the fragmentation index. In general, adult habitat choice can be considered to 

result from processes at two scales: first, the selection of a watershed to enter from the 

marine environment (large scale), and second, the selection of a spawning location within 

that watershed (small scale). Starting from the premise that adult salmon assess watershed 

characteristics when choosing a watershed for spawning (as suggested by IBE), only 

threats that influence the characteristics of the water being discharged from the river 

could be perceived by individuals at a large scale and used as proxies for habitat quality. 

Of the variables considered here, such threats would be contributing to the sedimentation 

and water quality indices; the two threat indices identified as significant predictors of 
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population structuring in the regression analyses. At smaller scales, the manner in which 

adults would be expected to interact with their environment changes, in that movement 

behaviour is now influenced by the spatial arrangement of suitable spawning substrate as 

well as the relative connectivity among stream reaches (Waples et al. 2008, Sabo et al. 

2010). Stated another way, gene flow within a population would be partially determined 

by an individual’s ability or motivation to move through the habitat mosaic, as well as by 

habitat suitability. It may be more appropriate to characterize threats such as full or partial 

barriers (e.g., road-river crossings) as well as localized habitat degradation caused by land 

use (e.g., an agricultural field adjacent to a particular stream reach) using resistance 

surfaces developed for a dendritic landscape (i.e., one in which animals are constrained to 

move along the stream network; Fagan 2002, Hopken et al. 2013).  

 Detectability, sublethal effects and cumulative effects (among others) all 

complicate attempts to quantify relationships between abundance and environmental 

variability or anthropogenic effects on fish populations (Rose 2000), undermining 

effective conservation and hindering timely recovery planning (Lawler et al. 2002, Norris 

2004). Using genetic variation (as opposed to abundance time series) to investigate 

population-level responses to threats addresses the latter two issues: multiple correlated 

hypotheses can be directly compared (assessing cumulative effects) and population-level 

responses can give indirect evidence of physiological change (sublethal effects), as seen 

here in relation to the water quality index. Secondary benefits are that these analyses can 

be done at the level most appropriate for recovery planning (i.e., for populations), can be 
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completed relatively rapidly in that they do not rely on the collection of time series data. 

Different threats measured in different units (e.g., proportions, counts, or densities) can be 

directly compared, with the caveat that relationships between genetic distance and 

environmental distance are assumed to be linear. Although landscape genetics would not 

be an appropriate method in situations where population decline was extremely rapid 

(given that there would not be adequate time for evolutionary effects to become 

detectable; Landguth et al. 2010, Dileo et al. 2013), it would be appropriate in the 

majority of situations where declines are observed for many years prior to their 

identification as a conservation concern, provided the same suite of threats are 

influencing populations over the entire time period. Although these analyses only provide 

a way to compare the influence and magnitude of threats relative to each-other among a 

group of watersheds (rather than developing predictive relationships between specific 

populations and a suite of threats), they appear to be a powerful basis from which to 

develop future research priorities and remediation strategies to address population 

declines. 
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Tables 

Table 4-1. River of origin (River), sample size (N), year of collection (Year), expected 

heterozygosity or genetic diversity (Hexp), observed heterozygosity (Hobs), Wright’s 

inbreeding coefficient (Fis), the effective number of alleles (Ae) and allelic richness 

standardized to a sample size of 26 individuals (A). Rivers are listed relative to 

geographic location along the coast of Nova Scotia (Refer to Figure 4-1). 

 

River Year N Hexp Hobs Fis Ae A 

Round Hill 2000 28 0.664 0.725 -0.090 3.677 7.392 

Salmon River 

(Digby County) 

2000 44 0.791 0.811 -0.021 7.346 11.511 

Tusket 1999 60 0.831 0.857 -0.034 7.846 11.619 

Medway 2001 83 0.824 0.828 -0.005 9.433 13.044 

LaHave 2000 49 0.814 0.809 0.009 7.543 11.971 

Gold 2001 84 0.827 0.804 0.033 8.549 12.042 

Musquodoboit 2000 53 0.834 0.859 -0.029 7.972 11.632 

Moser 2000 58 0.801 0.822 -0.027 7.332 11.899 

St. Mary's 2000 78 0.830 0.812 0.025 9.552 13.187 

Country Harbour 2000 42 0.834 0.828 0.011 8.407 12.092 

Salmon River 

(Guysborough 

County) 

2009 30 0.817 0.796 0.018 8.881 13.323 
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Table 4-2. Variable definitions for the Reciprocal Causal Modeling used to assess the 

contribution of various land use activities to three threat indices: Fragmentation, 

Sedimentation and Water quality. Values for each variable were scaled between zero and 

one, summed, and transformed into a single Euclidean distance matrix for analyses. 

 

Threat Variables Description 

Fragmentation
2 

RcPD Road crossings+pH+dams 

Fragmentation RcP Road crossings + pH 

Fragmentation RcD Road crossings + dams 

Fragmentation DP Dams + pH 

Fragmentation Rc 

Road crossings (# road crossings per 10 km of stream 

length) 

Fragmentation P pH (categorized mean annual value) 

Fragmentation D 

Dams (proportion of stream length above an 

impassable dam) 

Sedimentation IRdA Industry + road density + agriculture 

Sedimentation IRd Industry + road density 

Sedimentation IA Industry + agriculture 

Sedimentation ARd Agriculture + road density 

Sedimentation I Industry (proportion of watershed used for industry) 

Sedimentation Rd Road density (km of road/km
2
 of watershed) 

Sedimentation A 

Agriculture (proportion of watershed used for 

agriculture) 

Water quality
3
 FMP Forestry + mines + pH 

                                                 

2
 pH can vary substantially among tributaries within a watershed and can act as a barrier to movement as 

individuals will not enter nor will they experience high survival in low pH tributaries (Bowlby et al. 2014). 

 



 

 

127 

 

 

Threat Variables Description 

Water quality FM Forestry + mines 

Water quality FP Forestry + pH 

Water quality MP Mines + pH 

Water quality F Forestry (proportion of watershed used for forestry) 

Water quality M Mines (# abandoned mine openings per km
2
) 

Water quality P pH (mean annual pH) 

 

 

                                                                                                                                                  

3
 Industry was originally included in the water quality index, but was removed because it had a positive 

Mantel correlation while the rest were negative. 
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Table 4-3. A Mantel test assuming Spearman correlations between pairwise genetic distances (Nei’s F
st
) and two isolation 

models, as well as an assessment of the two isolation models relative to each other using Reciprocal Causal Modeling. The 

Isolation by Distance (IBD) model represents a distance matrix based on the coastal length (km) between river mouths 

(Euclidean), and the Isolation by Environment (IBE) model represents a distance matrix based on the landscape characteristics 

of the watersheds (Euclidean). Significance was assessed relative to the 95% quantile of the distribution of the permuted data. 

 

  

Mantel IBE|IBD IBD|IBE 

Isolation model Genetic metric r p-value r p-value r p-value 

IBE Pairwise F
st
 0.392 0.007 0.176 0.152 

  IBD Pairwise F
st
 0.373 0.020 

  

<-0.001 0.504 
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Table 4-4. Reciprocal Causal Modeling to assess the land use variables contributing to each of three threats categories: 

Fragmentation, Sedimentation, and Water quality. The best-supported model from the Mantel and partial Mantel tests is shown 

in bold (representing ‘Chosen’). Chosen|Alternate indicates the Mantel correlation between the best-supported model and 

genetic distance, parcelling out the influence of each of the other models. Alternate|Chosen indicates the Mantel correlation 

between each of the alternate models after parcelling out the influence of the best-supported model. 

 

  

Mantel Partial Mantel Chosen|Alternate Alternate|Chosen 

Threat Variables R p-value R p-value R p-value R p-value 

Fragmentation RcPD 0.202 0.229 0.091 0.411 0.258 0.169 0.135 0.336 

Fragmentation RcP 0.114 0.314 0.190 0.231 0.229 0.193 0.058 0.408 

Fragmentation Rc 0.165 0.183 0.204 0.140 0.233 0.180 0.114 0.261 

Fragmentation P 0.100 0.331 -0.079 0.640 0.283 0.144 0.100 0.346 

Fragmentation D -0.085 0.636 -0.052 0.635 0.280 0.156 0.012 0.567 

Fragmentation RcD 0.205 0.199 0.348 0.094 

    Fragmentation DP -0.025 0.541 -0.117 0.674 0.282 0.150 0.039 0.493 

          Sedimentation IRdA 0.425 0.028 0.558 0.007 

    Sedimentation IRd 0.438 0.043 0.528 0.019 0.146 0.310 0.148 0.312 

Sedimentation I 0.402 0.060 0.485 0.034 0.257 0.135 0.190 0.259 

Sedimentation Rd 0.482 0.017 0.488 0.015 0.174 0.282 0.177 0.276 

Sedimentation A 0.388 0.074 0.358 0.128 0.420 0.051 0.085 0.427 
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Mantel Partial Mantel Chosen|Alternate Alternate|Chosen 

Threat Variables R p-value R p-value R p-value R p-value 

Sedimentation IA 0.378 0.076 0.560 0.008 0.195 0.227 0.008 0.481 

Sedimentation ARd 0.438 0.027 0.523 0.008 0.191 0.265 0.126 0.332 

          Water quality FMP -0.090 0.264 -0.019 0.477 -0.405 0.020 0.080 0.714 

Water quality FM 0.118 0.787 0.063 0.676 -0.402 0.014 0.094 0.746 

Water quality FP -0.066 0.401 -0.182 0.231 -0.415 0.015 -0.180 0.244 

Water quality MP -0.383 0.015 -0.435 0.011 

    Water quality F -0.011 0.522 -0.348 0.106 -0.400 0.023 -0.084 0.391 

Water quality M -0.290 0.095 -0.202 0.174 -0.330 0.046 -0.069 0.379 

Water quality P 0.100 0.680 -0.097 0.349 -0.429 0.014 0.161 0.756 
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Table 4-5. Comparison of the results from the MRDM regressions between pairwise 

genetic distances (Nei’s Fst) and all combinations of predictors (expressed as Euclidean 

distance) to assess any relationship between population connectivity and threats. Distance 

matrices are: IBE = Isolation by Environment model, F = Fragmentation, WQ = Water 

quality, S = Sedimentation (refer back to Table 4-4). The chosen model is shown in bold. 

 

Model R-square p-value AICc 

Full 0.547 0.001 -108.71 

IBE+WQ+S 0.536 <0.001 -110.01 

IBE+WQ+F 0.377 0.011 -104.85 

IBE+S+F 0.399 0.009 -103.48 

IBE+S 0.387 0.003 -104.59 

IBE+WQ 0.316 0.005 -102.36 

IBE+F 0.232 0.050 -99.95 

IBE 0.164 0.006 -97.34 
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Figures 

 

Figure 4-1. Geographical boundaries of the watersheds (coloured) containing the Atlantic 

salmon populations and rivers sampled for this study as well as other watersheds (grey) 

within the Southern Upland region of Nova Scotia. There is a Salmon River in Digby 

County and a second one in Guysborough County.  
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Chapter five: How is juvenile Atlantic salmon density influenced by the 

landscape characteristics of watersheds? 

 

Abstract 

Remediating negative impacts from anthropogenic activities in watershed 

catchments first requires quantifying how abundance and distribution of species relate to 

spatial and temporal variability of landscape characteristics. For Atlantic salmon, 

questions remain about how the spatial organization of rivers influence ecological 

processes, how species respond behaviourally to variability, and how multiple types of 

land use interact to change the environmental conditions experienced in particular 

locations. Based on mixed effects modeling, I demonstrate how juvenile distribution 

patterns are consistent with predictions that geomorphological processes occurring over 

large spatial extents set the context for habitat selection at small spatial extents, and thus 

largely determine abundance and distribution patterns within rivers. However, I did not 

find a similar pattern in relation to threats, suggesting that the previous result could be 

confounded by differences in the efficacy of electrofishing surveys along the stream 

network. Nevertheless, the influence of human activities on juvenile salmon varied 

depending on the suite of coincident land use and land cover types. When the proportion 

of natural forest cover was high, populations appeared to be able to benefit from low 

levels of anthropogenic land use, declining with increasing human activity only once the 

average proportion of natural forest cover was low. For management and recovery 
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planning, I proposed that this separation in land use and land cover characteristics relative 

to population response could be used to develop a simple quantitative index to help 

evaluate the effects of future human development in the vicinity of rivers or to identify 

areas requiring remediation.  

Introduction 

Freshwater fishes inhabit an ecosystem that is particularly susceptible to damage 

through direct modification as well as by anthropogenic land use within catchments (Lake 

et al. 2007, Olden et al. 2010). Such land use directly affects the structure and function of 

stream ecosystems through modification of the geological, topographical, and/or 

hydrological characteristics of watersheds (Altermatt 2013, Jeffrey et al. 2015). Given 

that human modification is typically extensive and severe, expectations are that it reduces 

habitat quality or quantity for fishes (LeRoy Poff et al. 2010, Dudgeon et al. 2006) 

leading to reduced survival at a population level and declines in abundance. Developing 

models to quantify any functional relationship between survival and land use change is 

critical for recovery planning for endangered wildlife (Venter et al. 2006), particularly for 

freshwater fish (Lawler et al. 2002, Lake et al. 2007). Yet this relies on understanding 

how individual responses to spatial and temporal variability of in-stream habitat 

characteristics culminate in changes to vital rates and population-level abundance.  

It is relatively uncertain which landscape patterns reflect biologically meaningful 

environmental variability, particularly within riverine environments. Salmonid species 

have been extensively studied relative to habitat requirements (e.g., Gibson 1993, 

Heggenes 1990, McCormick et al. 1998) and responses to proximate habitat manipulation 
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(e.g., Roni et al. 2001, Bash and Ryan 2002), which can be used to identify environmental 

variables that potentially influence survival or abundance at a population level. However, 

the influence of spatial pattern on ecological processes is particularly strong in riverine 

environments (Wiens 2002). Their spatial network structure and dendritic nature (i.e., 

characterized by unidirectional flow) imposes a hierarchical structure to their ecological 

organization, where the physical and biological processes at small spatial extents are 

constrained and/or modified by processes occurring over larger extents (Campbell Grant 

et al. 2007, Johnson et al. 2007). The River Continuum Concept (RCC; Vannote et al. 

1980) is arguably one of the most important conceptual landscape models of stream 

networks, one that contextualizes this spatial heterogeneity (Fausch et al. 2002). The RCC 

predicts relatively gradual changes in ecosystem processes along a stream network 

(averaged over space and time) resulting from changes in channel morphology as 

influenced by flow. Thus at a large spatial extent, heterogeneity in habitats is associated 

with downstream decreases in channel slope, riffle development and substrate size, yet 

increases in width, depth and pool size (Schlosser 1991). Relative to salmon, the RCC 

predicts a longitudinal gradient in juvenile habitat suitability from the tributaries to the 

main stem of rivers, given that suitable flow and substrate characteristics for salmon 

would be predominantly found in headwaters (Heggenes 1990, Gibson 1993). Irrespective 

of spatial heterogeneity, relative position in the stream network could influence the ability 

of individuals to change their behaviour in response to localized changes in habitat 

suitability; for example, by limiting the potential for movement into refuge areas, 

particularly in an upstream direction (Brown & Swan 2010). Overall, fish distribution 
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patterns within a watershed would be expected to be related to the amount, distribution 

and suitability of habitat types, where these are expected to be primarily determined by 

stream geometry and flow characteristics. 

It is also relatively unknown how populations may compensate for spatial and 

temporal variability in environmental characteristics. Species living in variable 

environments might be expected to be similarly dynamic and able to respond effectively 

to environmental stochasticity through changes in growth rates, reproductive strategy, 

habitat use, or distribution (Pearman et al. 2008, Kubisch et al. 2014). Relative to threats, 

mobile organisms such as fishes would be expected to redistribute in response to local 

habitat degradation and thus localized abundance may reflect processes occurring within 

reaches, sub-catchments, or catchments, as opposed to localized variation (Semokorowski 

& Pratt 2007, Johnson et al. 2007). Also, population-level changes in mortality rates may 

not become measureable until substantial losses in productivity are realized. At the same 

time, compensatory behaviour could lead to threshold-type or non-linear responses to 

threats (Rose 2000, Benton et al. 2006). Potential synergistic and antagonistic interactions 

among multiple individual stressors would complicate any quantitative relationship 

between land use and population dynamics, leading to cumulative effects on populations 

that may be quite different from the sum of their independent effects (Darling & Cote 

2008, McCluney et al. 2014). Furthermore, ecological changes resulting from human 

activities within watersheds have the potential to culminate along the length of the stream 

network and have substantial impact on locations distant from their source (Fausch et al. 

2002, McCluney et al. 2014). In order to characterize how populations respond to 
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localized land use, it is thus necessary to consider not only the relative magnitude of and 

potential interactions among anthropogenic activities in watersheds, but also the extent 

over which they occur.  

 Questions and predictions 

 This chapter represents a first attempt to describe functional relationships between 

landscape characteristics of watershed catchments (particularly human activities) and 

endangered juvenile Atlantic salmon (Salmo salar) populations from the Southern Upland 

region of Nova Scotia, Canada. Given substantial uncertainty in how the spatial 

organization of rivers influence ecological processes, how species respond behaviourally 

to variability, and how multiple types of land use interact to change the environmental 

conditions experienced in particular locations, it became difficult to determine what 

patterns may exist as well as to develop optimal environmental predictors a priori. 

Therefore, I am presenting this analysis as a series of questions that may be used to 

inform future research. Throughout the analysis, I controlled for changes in population 

size over time, given that Southern Upland salmon populations have undergone extensive 

declines in abundance since the 1980s (Gibson et al. 2011). The five questions and some 

associated predictions that I evaluated in this chapter are: 

1. Do densities change longitudinally along the stream network? If juvenile habitat 

suitability varies longitudinally in relation to water flow accumulation (as 

predicted by RCC), juvenile densities might be expected to be negatively related 

to relative position in the watershed; given flow, depth and substrate preferences 

(Heggenes 1990).  
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2. Is habitat use related to flow characteristics? The physical properties of habitat 

types as well as their distribution within a stream network are largely determined 

by the flow regime (Altermatt 2013), which is closely related to the topographical 

characteristics of watersheds (LeRoy Poff et al. 2010). From this, I would predict 

a functional relationship between stream gradient and juvenile density. 

3. How might the hierarchical structure of rivers influence relationships? If mobile 

organisms such as fishes primarily respond to environmental processes or changes 

in such processes occurring in the catchment, sub-catchment or reach (Johnson et 

al. 2007, Hitt & Angermeier 2008), juvenile densities might be more strongly 

related to metrics describing the characteristics of tributaries or sub-catchments, 

rather than those describing specific sampling sites.  

4. How do populations respond to anthropogenic land use? The general perception 

is that essentially any human activity occurring within watershed catchments, be it 

forestry, agriculture, industry, or urbanization, negatively affects freshwater 

productivity and should be considered a threat to populations (LeRoy Poff et al. 

2010, Dudgeon et al. 2006, Venter et al. 2006). Thus, juvenile densities would be 

predicted to decline as the total proportion of human land use increases, 

potentially at or after a threshold value.  

5. What is the form of the population response to threats? Spatial heterogeneity 

caused by variation in the relative proportions of specific types of land use is 

expected to lead to complex and non-intuitive changes to the localized abiotic 

characteristics of rivers (Rose 2000) through synergistic and antagonistic 
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interactions among individual threats (Darling & Cote 2008). Thus, I would 

predict that changes in juvenile density from a specific type of land use would 

depend on the suite of coincident land use or land cover types. 

Methods 

Juvenile salmon density estimation 

For diadromous fishes, juvenile densities are often estimated at multiple sites 

within watersheds, offering the potential to use changes in density as a proxy for changes 

in mortality rates leading to changes in abundance when evaluating population-level 

responses to land use. Using density data as a proxy for abundance assumes that there is a 

predictable relation between the numbers of fish and the spatial dimensions of the 

sampled unit. In many salmonid species, relationships are positive, but have substantial 

variability due to factors other than habitat size, including inter-species interactions or 

food availability (Torgersen et al. 2012) as well as intra-species characteristics such as 

increasing territory size with body size (Grant et al. 1998). There is the potential that such 

factors may obscure any relationship between landscape characteristics and juvenile 

density; or that abundance, biomass, or a measure of habitat saturation (rather than 

density) becomes the appropriate metric for analysis (Torgersen et al. 2012). Given the 

variability in the electrofishing site characteristics included in this study (see below), I 

have kept density as a proxy for abundance, while recognizing the limitations of the 

approach. 
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Information on localized juvenile Atlantic salmon densities came from an 

extensive population monitoring data set of 12 rivers in the Southern Upland region of 

Nova Scotia collected by electrofishing (Figure 5-1). For comparability with the 

environmental data on land use, only sites (N = 134) sampled in the years 1995 to 2005 

were included, resulting in 452 sampling events (Table 5-1). During this timeframe, 

electrofishing survey methods were not standardized; single-pass surveys, depletion 

surveys and mark-recapture surveys were all used (Table A5-1-1, Appendix 5-1). Of 

these, single pass surveys as well as mark-recapture surveys had open sampling sites, 

where physical barriers were not used to prevent movement into or out of the site while 

sampling. Multi-pass surveys typically employed barrier nets. Multiple habitat types were 

sampled in each watershed as well as within the majority of individual sites (e.g., a single 

site could include riffle, run and pool habitat types). A typical survey sampled individual 

reaches (10
1
 m) or stream segments (10

2
 m; as defined in Frissell et al. 1986), which 

averaged over any preferential use of specific habitat features by age class (e.g., older 

juveniles that prefer faster water; Blanchet et al. 2006), or any variation in juvenile 

densities as related to specific habitat types (e.g. preferential use of riffles relative to 

pools; Gibson 1993). To calculate total juvenile densities (number/100m
2
), I summed 

catches of fry and parr during the first pass in each survey, multiplied by survey 

catchability, and scaled by site area (Bowlby & Gibson 2012). I estimated median capture 

efficiency (q) for open sites and depletion sites independently from the entire data set. 

The capture efficiency is defined as the proportion of total abundance captured on the first 

pass, where q = 0.34 for open sites and q = 0.56 for depletion sites (Appendix 5-1). Over 
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95% of the data derived from open-site electrofishing, so the standardization relative to 

catchability had very little effect on the analyses. A more substantial limitation of the data 

was the need to combine catches of fry and parr, even though the life stages would be 

expected to prefer slightly different habitat types (Heggenes 1990, Gibson 1993, Gibson 

et al. 2008). I did this to reduce the proportion of zeros in the data, but it was also 

necessary to be able to estimate the random effects distribution, which typically requires 

10 or more categories (Zuur et al. 2009).  

For the majority of sites (58%), the area sampled (in m
2
) as well as shocking time 

(in seconds) had been recorded in the data; however, there were instances where only the 

shocking time was recorded (16%) and where no effort measure was given (27%). To 

approximate sampling area when only shocking time was recorded, I developed a zero-

intercept linear regression, with area as the dependent variable and shocking time as the 

independent variable, and used the estimated slope coefficient to predict areas (in m
2
). 

For sites with no measure of effort, I applied the median area from all sites sampled on 

the particular river in which area was given or had been predicted from the linear model 

above.  

GIS analyses  

 To develop land use predictors, I intersected and/or summarized 6 main data 

layers in ESRI ArcGIS® 10.2: (1) the electrofishing site locations, (2) a hydrologically-

connected flow network for each watershed, (3) watershed boundaries, (4) a Digital 

Elevation Model (DEM) for Nova Scotia, (5) site-specific and sub-catchment-scale 

buffers, and (6) a layer detailing land use and land cover types for Nova Scotia (details on 



 

142 

 

1 and 5 to follow; details on 2,3,4 and 6 provided in Appendix 5-2). For the electrofishing 

sites, the precision and projection of the geographical coordinates recorded in the data 

varied considerably, with some listing only grid references (3-digit UTM coordinates 

corresponding to 100 m resolution from the NAD27 datum for Zone 20 North), some 

giving full UTM coordinates (but referenced to the NAD83 datum for Zone 20 North), 

and some listed in latitude and longitude (also using the NAD83 datum). I gave grid 

referenced sites more exact coordinates by locating them in Google Earth (Google Inc. 

2005), often based on qualitative site descriptions recorded in the original data. Once 

imported into ArcGIS, I projected all data (site locations as well as all other data layers) 

into UTM (NAD 83 datum for Zone 20 North) to ensure consistency and the ability to 

calculate distance and area metrics. As is common in data derived from different sources, 

most of the geographical locations of the electrofishing sites did not fall exactly on the 

stream network. Thus, I snapped all electrofishing site locations to the most proximate 

segment of the flow network; 91% of sites moved < 50 meters (median = 14.5 m; range = 

0.07, 735 m). I verified snapped locations a posteri with the site descriptions recorded in 

the electrofishing database to ensure that they were on the correct stream segment. 

Locations that were electrofished in multiple years often had slightly different coordinates 

corresponding to the same site name (typically within 50 m of each other). In these 

instances, I used the coordinates recorded from the most recent survey. 

 I developed two types of environmental predictors for comparison with the 

juvenile densities. The first was site-specific, corresponding to land use characteristics in 

the vicinity of the stream reaches sampled for juvenile density. To develop these, site-
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specific buffers were delineated assuming a 500 m radius around each point location for 

an electrofishing site, which gave a polygon area of 785,397 m
2
. I made the site-specific 

buffers so large in order to reduce the effect of uncertainty in the site location; given the 

qualitative descriptions of some of the sampling locations, the need to snap sites to the 

stream network, the fact that upwards of 100 m of stream length was fished at some sites, 

and that coordinates could have been taken at either the upstream or downstream end.  

The second type of environmental predictor represented sub-catchment variability, 

corresponding to land use characteristics along all tributaries upstream of each 

electrofishing site (example in Figure 5-2). I delineated one sub-catchment buffer for each 

electrofishing site individually and then saved them as unique feature layers (median 

buffer size = 15,198,221 m
2
; range = 1,495,113 to 583,214,860 m

2
). The length of the 

stream network contained in these buffers represented stream (10
2 

m) or segment (10
3 

m) 

systems (Frissell et al. 1986). To identify all segments upstream of a specific 

electrofishing site from the hydrologically-connected flow network previously developed 

for Southern Upland watersheds (Bowlby et al. 2014), I used the Trace Upstream tool 

from Network analyst toolbox in ArcGIS® 10.2. These segments were buffered at a 

distance of 500 m on either side of the stream and then dissolved into a single upstream 

polygon. For a small number of sites (N = 9), inappropriate upstream buffers revealed 

issues with connectivity in the flow network, so I selected the upstream segments at these 

sites manually. Because the tool calculates buffers around each stream segment 

individually, it was the possibility that the buffers for upstream sub-catchments would 

include area downstream of the actual electrofishing site (i.e., the buffer would include 
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the entire river segment that the electrofishing site was located on). Post-hoc evaluation 

revealed that this was a prevalent issue and in some cases nearly doubled the amount of 

area considered to be upstream of a given site, particularly for sites on smaller tributaries. 

Therefore, I clipped each sub-catchment buffer polygon at approximately a 90° angle 

through the electrofishing site and deleted any downstream area. All spatial analyses 

using the sub-catchment buffers were based on these clipped polygons. In some instances, 

unique electrofishing sites were very close together and had overlapping site-specific 

buffers. This lead to identical sub-catchment buffers being delineated for these specific 

sites. There was not enough data to be able to add site as an additional random effect in 

the model (Table A5-1-1, Appendix 5-1), which would have been done to account for 

repeated measurements of juvenile density in the same year relative to identical 

environmental predictors. Instead, I assumed that these sites were the same and averaged 

their site-specific environmental characteristics and juvenile densities.  

 Once I had delineated buffers, I used them as boundaries within which I 

summarized the topographic characteristics of the stream network, as well as the 

proportions of land use and land cover types surrounding the stream network. This means 

that the variables describing land use composition had the same spatial grain yet differed 

in spatial extent, where grain represents the spatial resolution of the data (e.g. pixel size in 

a raster layer) and extent refers to the overall size of the area being studied (Turner 1989, 

Gustafson 1998). I compiled a digital elevation model (DEM) for Nova Scotia from 20 m 

horizontal resolution and 1 m vertical resolution raster data available from GeoBase 

(Table A4-2-1, Appendix 4-2), before calculating the slope (in degrees) of each pixel 
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using the Spatial Analyst extension. Iterating over unique electrofishing sites, I used 

Zonal Statistics Analysis to calculate the mean and range of slopes for the site-specific 

and sub-catchment-specific buffers, also in ArcGIS® 10.2. Zonal Statistics Analysis takes 

values from a raster data layer (here slope values) and calculates statistics relative to a 

user-specified zone. For the sub-catchment buffers, I used the stream segment contained 

within them as a zone. For the site-specific buffers, I used 100 m of stream length 

upstream and downstream of each electrofishing point location (200 m total length) as the 

zone.  

To develop variables describing land use composition, I intersected both the site-

scale and sub-catchment buffers with land use and land cover data from the Forest 

Inventory Cycle 2&3 (Nova Scotia Department of Natural Resources, downloaded 

November 2011; Table A4-2-1, Appendix 4-2). These data are based primarily on aerial 

photography from 1995 to present and digitized from 1:10000 scale images (1 mm on the 

image represents 10 m on the ground) which ensured that the resolution was meaningful 

relative to my chosen buffer sizes. The spatial grain was of a similar magnitude between 

environmental metrics describing stream topography (20 m horizontal resolution) and 

ones representing landscape composition (10 m horizontal resolution). Finally, I 

calculated the amount of area (m
2
) corresponding to each type of land use (represented by 

a FORNON code) within each buffer and appended these into site-specific and sub-

catchment-specific data tables. To ensure repeatability and consistency, I programmed 

each of the analysis steps described above into the Model Builder component of ArcGIS® 

10.2. In the original data, FORNON represents a field name rather than an acronym. 
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There were multiple unique FORNON codes representing different human activity types 

(e.g., treated stands vs. Christmas trees for silviculture; hay fields and blueberries for 

agriculture), as well as stand characteristics (e.g., brush with 25%, 50% or 75% crown 

closure of alders). To reduce the number of variables considered, I re-categorized all 

areas from codes corresponding to similar types of land use or land cover and then 

calculated proportions for each category (Table A5-2-1, Appendix 5-2).  

Specifically related to the evaluation of human activities in watershed catchments, 

potential predictors included the proportions of clearcutting, forestry activity, industry, 

urbanization, corridors or agriculture in the site-scale or sub-catchment buffers (Table 5-

2). However, there were relatively strong correlations among many of these variables 

(Spearman correlations > 0.6). To reduce the potential for retention of spurious predictors 

arising from collinearity in multiple regressions (Dormann et al. 2013, Zuur et al. 2009) 

and to prevent focusing the analyses on threats perceived to be the most important (Norris 

et al. 2004), I summed the proportions of individual types of anthropogenic land use (e.g., 

industry, clearcutting, agriculture, etc.) at the site-scale and in sub-catchments when 

evaluating anthropogenic land use. However, I evaluated the relative contribution of each 

individual threat type a posteri using a Quadratic Disciminant Analysis (QDA; Borcard et 

al. 2011), based on the results of the multiple regression described below. 

Statistical analyses 

On the basis of diagnostic plots, I excluded points that took extreme values (i.e., 

falling orders of magnitude outside the range of the rest of the data) for salmon density or 

the environmental predictors from further analyses (N = 7 points, distributed over three 



 

147 

 

watersheds). For the rest of the data, I evaluated potential relationships between juvenile 

salmon density and the environmental predictors using a series of generalized linear 

mixed models (GLMM) implemented in the R package ‘glmmADMB’ (Fournier et al. 

2012, Skaug et al. 2012). For all models, I used a negative binomial distribution (log link) 

for the response, given that initial diagnostics suggested that the data were overdispersed 

relative to a Poisson distribution. A Poisson distribution in count data would only be 

expected to arise in situations where there is a constant probability of appearance of the 

target species in a given sampling event, and where all individuals present are observed 

and correctly identified. Variability in counts arising from differences in detection 

efficiency or a non-constant probability of appearance among sampling events are two 

common causes of overdispersion, and are better modelled using a negative binomial 

distribution (Linden & Mantyniemi 2011).  

Similarities among density estimates might be expected due to characteristics of 

the watersheds themselves; for example, more productive rivers or those with larger adult 

populations would be expected to have proportionately higher juvenile densities relative 

to other watersheds. In each model, I incorporated ‘watershed’ as a random effect to 

account for the lack of independence among data points sampled in the same watershed 

(Zuur et al. 2009). Although model selection was not done using frequentist methods (see 

below), allowing for a constant spatial correlation structure among data from the same 

watershed reduces the overall degrees of freedom in the model, which affects the critical 

values from the F-distribution against which parameter significance may be assessed (i.e. 

guards against Type 1 error). As fixed effects, I considered 12 candidate variables related 
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to my five original questions (Table 5-3), which were scaled between zero and one to 

ensure comparability. I followed the general approach of Albanese et al. (2009) to reduce 

the number of models considered in the analyses: starting from a global model 

incorporating all predictors, I constructed a subset of 13 candidate models, beginning with 

predictors that I considered to be important based on previous knowledge of these 

systems. This meant that the questions I originally outlined were not evaluated in 

isolation (i.e., one model formulation per question), but in conjunction. I used an 

information-theoretic approach for model selection (Johnson & Omland 2004) based on 

the Akaike Information Criterion (AIC) as well as Akaike weights representing the 

relative likelihood of each model (Albanese et al. 2009). The weights can be thought of as 

the probability that a specific model is the best given the data as well as the set of 

candidate models, expressed as a ratio (Wagenmakers & Farrell 2004).  

I also performed a post hoc evaluation of parameter variability and stability of the 

chosen model using Markov-Chain Monte-Carlo (MCMC) methods, based on 10,000 

MCMC iterations as implemented by the ‘glmmadmb’ function (Skaug et al. 2012), 

discarding the first 1500 iterations as the burn-in and retaining 8500 for inference. Here, 

convergence in the MCMC chains is suggestive of model stability, and credible intervals 

for parameters that do not span zero are indicative of reliability. I assessed convergence to 

the posterior distribution visually from traceplots (e.g. Gibson et al. 2015) as well as by 

the Geweke diagnostic using the R package ‘coda’ (Plummer et al. 2006). The Geweke 

calculation compares the standardized Z-score (i.e., the difference between sample means 

divided by the estimated standard error) of the first 10% and last 50% of the chain. 
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Absolute values less than 2 are often considered representative of convergence (Su et al. 

2001). For visualization of the fixed effects retained in the chosen model, I plotted partial 

regression fits, varying the predictor of interest while keeping others constant at median 

values.  

 When the site-specific proportion of human use (s.phuman) was below 

approximately 0.4, the regression analyses suggested a different relationship with juvenile 

density than when it was above 0.4 (see Results). To visualize individual variables 

potentially contributing to this grouping, I compared boxplots of the site-specific 

proportions of natural forest cover and each threat type for two categories of sites, ‘low’ 

(s.phuman ≤ 0.4) and ‘high’ (s.phuman > 0.4). It is important to note that the natural 

forest variable is not the inverse of the proportion of human use, but excludes other 

natural cover types such as wetlands (cover types defined as natural in Table A5-2-1; 

Appendix 5-2). The site-specific threats that I included were the proportions of 

clearcutting, forestry (silviculture), agriculture, industrial corridors, other industry and 

urban area. In addition to the individual comparisons, I used Quadratic Discriminant 

Analyses (QDA) to evaluate the combined suite of environmental characteristics for sites 

of each category. Here, the ‘low’ category would represent environmental conditions that 

would be expected to be beneficial to juvenile salmon populations, while the ‘high’ 

category would represent conditions that would be expected to lead to population decline 

(see Results). Although QDA is most commonly used to evaluate metrics contributing to 

differences between distinct ecological types (e.g., species presence/absence, Slater & 

Michael 2012; age classes, Fukuda et al. 2013), it has also been used in situations where 
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the categorization is related to the environmental metrics that were subsequently analyzed 

(e.g., niche overlap, Broennimann et al. 2012; habitat quality, Gordon et al. 2016). QDA 

works by projecting the input variables to a linear or quadratic axis that maximizes the 

separation between categories (Bocard et al. 2011). Note that this axis is dimensionless. 

Unlike Linear Discriminant Analyses, the within-group covariance matrix of the 

explanatory variables does not need to be homogeneous, which makes it more appropriate 

for these data. To calculate the misclassification rate that arose from the fitted 

discriminant axis, I used a jackknife (i.e., leave-one-out cross validation; Bocard et al. 

2011), iterating over sites.  

Results 

There was relatively strong support for the NB12 model on the basis of AIC and 

Akaike weights, with differences > 3.4 in AIC when compared to the majority of other 

models, and an overall evidence ratio of 0.594 (Table 5-4). As fixed effects, this model 

incorporated year, site position along the stream network (site.pos), average slope within 

the site buffer (s.degslope), the proportion of human use within the sub-catchment 

(phuman) and a quadratic term for site-specific human use (s.phuman+s.phuman
^2

) (see 

Table 5-2 for definitions; Figure 5-3). The next best model (NB13) had a second 

quadratic term for human use in the sub-catchment (phuman+phuman
^2

) and an evidence 

ratio of 0.239. However, the addition of the quadratic term did not change the log-

likelihood of the NB13 model relative to the NB12 model, although it did change the AIC 

value (Table 5-4). This suggests that the extra parameter did not explain any additional 

variation in juvenile densities and that the change in the AIC was entirely a result of the 
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penalty imposed for the extra parameter (Supplement C accompanying Evans & Davis 

2011). If the NB13 model was removed from consideration when calculating Akaike 

weights, the evidence ratio for the NB12 model increased to 0.78. All other models 

contributed less than 0.12 in Akaike weight. Even with combining age classes, there was 

some indication that the data were zero-inflated (10.3% of the juvenile density estimates 

were zero), as reflected by the estimated dispersion parameter for the negative binomial 

distribution being < 1 (theta = 0.908, s.d. = 0.07). However, re-analysis using a zero-

inflated model (as implemented by the glmmadmb function) had little effect on the 

estimated fixed or random coefficients other than increasing the estimate of theta, 

suggesting that zero-inflation did not bias parameter estimation.  

Based on maximum likelihood, the estimated variance for the random effects in 

the NB12 model was 0.381 (s.d. = 0.617). Based on the MCMC, there was good 

convergence for the posterior distributions, with the absolute values of the Geweke Z 

statistic being smaller than 2 for all parameters (range = -1.73, 1.49). For most fixed 

effects, 95% Bayesian credible intervals derived from MCMC did not include zero. The 

estimated slope for the fixed effect of year was negative (slope = -0.63, s.e. = 0.19; Table 

5-5), suggesting that average densities declined from 1995 to 2005 (Figure 5-3A). The 

model included a stronger negative relationship relative to position (slope = -1.90, s.e. = 

0.42; Table 5-5), indicating that juvenile densities were higher in habitats located in the 

tributaries relative to the main stem (Figure 5-3C). Model comparison indicated that the 

relative position of a sampling site (site.pos) was a better predictor than the area upstream 
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of the site (total.area) of this relationship (c.f. NB2 and NB3, AIC = 3327 and 3332, 

respectively; Table 5-4).  

Relative to localized habitat characteristics, the NB12 model retained the median 

slope of the site-specific buffer (s.degslope) as a fixed effect (Figure 5-3B). Juvenile 

density slightly increased with the median slope of the site (slope = 0.07, s.e. = 0.04; 

Table 5-5). The quadratic function for the effect of human activity at the site level 

(s.phuman + s.phuman
^2

) demonstrated modest increases in mean density until the 

proportion reached approximately 0.4; thereafter, mean density tended to decline, albeit 

with a high level of variability (Figure 5-3D). Relative to characteristics of sub-

catchments, the NB12 model retained the proportion of human use (phuman) as a 

significant fixed effect, yet the relationship was strongly positive (slope = 2.54, s.e. = 

0.78; Table 5-5). Similarly unexpected were the nearly identical slope estimates for site-

specific and sub-catchment-specific proportions of human use (s.phuman and phuman; 

c.f. 2.76 and 2.54, respectively; Table 5-5), suggesting increases in average juvenile 

density until the proportion of human use in a watershed reaches 0.4 (c.f. Figure 5-3D and 

Figure 5-3E). It is also worth noting that the model with the second-highest evidence ratio 

(NB13) included a quadratic term for the proportion of human use in a sub-catchment 

(phuman), similar to that for the site-specific proportion of human use (s.phuman) in the 

top model.  

The proportion of natural forest cover was substantially different for sites 

categorized as having low levels of human use (s.phuman ≤ 0.4) relative to high, but the 

distributions of the individual threats variables overlapped substantially (Figure 5-4). As 
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expected, the threats exhibited less variability for sites belonging to the ‘low’ category as 

well as consistently lower medians relative to the ‘high’ category, except for ‘Industry’ 

(Figure 5-4). However, proportions of industry at the site-scale were extremely low 

relative to the other types of threats (< 6% of site-specific area for 93% of the data). In 

general, sites with high proportions of human use were characterized by relatively little 

natural forest cover combined with substantially higher median proportions of 

clearcutting, forestry (silviculture), agriculture, roads and urban area (Figure 5-4). 

Looking at these individual variables in multivariate space suggested a strong separation 

of sites categorized as ‘low’ relative to ‘high’ along a quadratic discriminant axis (Figure 

5-5). Based on a jackknife (i.e., leave-one-out cross-validation) of the QDA, the 

misclassification rate was 2% for all sites (2 misclassifications relative to 107 data points 

for ‘low’ and 8 misclassifications relative to 334 data points for ‘high’).  

Discussion 

 The density of juvenile Atlantic salmon (Salmo salar) from endangered Southern 

Upland populations was functionally related to multiple characteristics of the landscape. 

Results conformed well to hypotheses that habitat suitability for juvenile salmon varies 

longitudinally in the stream network (Q1; Table 5-3). The identified relationship between 

juvenile density and position implies that suitable habitats for juvenile growth and rearing 

are concentrated in the tributaries of Southern Upland watersheds. Over smaller spatial 

extents, juvenile density was related to the mean gradient of electrofishing sites (Q2; 

Table 5-3), with higher densities occurring at higher gradients. It is possible that the 

hierarchical structure of rivers may influence these patterns (Q3; Table 5-3). Expected 
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juvenile densities decreased approximately 3-fold moving from the upper tributaries 

(site.pos = 0) to the main stem (site.pos = 1). Increases in expected juvenile density were 

essentially half this magnitude when the mean gradient of sites increased from zero to 

approximately seven degrees. These results are consistent with previous research on 

salmonids that suggested individuals concentrate primarily relative to geomorphological 

features and then select specific habitats within reaches based on localized characteristics 

(e.g., Baxter & Hauer 2000, Torgersen et al. 1999). If geomorphology sets the context for 

habitat selection at small spatial extents (Fausch et al. 2002), ecological processes 

occurring at larger spatial extents principally control habitat characteristics for fish (and 

consequently abundance and distribution) within rivers (e.g., Fausch et al. 2002, Thornton 

2011). Future research in the Southern Upland could focus on developing explicit links 

between geomorphological patterns and adult distribution or juvenile productivity, similar 

to those developed for populations in the Gaspe region of Quebec (e.g., Davey & 

Lapointe 2007, Kim & Lapointe 2011). In order to accomplish this, it would be necessary 

to re-design the electrofishing surveys to employ either a nested or high-frequency 

sampling design that would enable evaluation of habitat or landscape relationships at 

varying spatial extents (e.g. Bult et al. 1998, Deschenes & Rodriguez 2007, Le Pichon et 

al. 2016).  

 The relationships between juvenile density and human land use were somewhat 

unexpected in that they did not seem to change at different spatial extents. In situations 

where human activities affected up to 40% of buffer area, the slope estimates for the sub-

catchment and site-specific predictors were essentially identical. This is directly counter 
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to expectations that land cover within catchments (i.e., at larger spatial extents) primarily 

determines site-specific abiotic characteristics and ecological processes (Fagan 2002, 

Semokorowski & Pratt 2007, Johnson et al. 2007) or that fishes can largely compensate 

for site-specific habitat degradation by moving (Brown & Swan 2010, Hitt & Angermeier 

2008). Although it is possible that the site-specific buffers were too large to adequately 

characterize conditions at smaller spatial extents, this should have been true relative to 

distribution patterns as well (Q2; Table 5-3). If ecological changes resulting from human 

land use occurred primarily at larger spatial extents and culminated throughout a sub-

catchment, changes in juvenile densities as related to sub-catchment characteristics would 

have been expected to be proportionately greater, potentially showing a threshold 

response at lower values or having a steeper slope estimate than the site-specific response. 

Values of the phuman predictor represent much larger geographic areas (e.g., 40% of 1.5 

million m
2
 relative to 40% of 780,000 m

2
) with much greater potential for culmination, or 

synergistic effects (Darling & Cote 2008). However, the coefficients estimated for the 

site-specific and sub-catchment-scale predictors of human activity imply that low levels 

(ranging from 0 to 40% of area affected) have a positive effect on salmon density 

regardless of spatial extent and that culmination is minimal. This conclusion is unlikely to 

be an artifact due to correlation between the site-scale and sub-catchment predictors 

(Kendall’s tau = 0.38). It is also possible that a quadratic relationship with human activity 

at the sub-catchment scale could have been found if these data contained a larger range of 

values. Here, there were only 3 observations larger than 0.5; however, 80% (37 out of 47 

values) of the residuals for the fitted NB12 model were negative when phuman was 
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greater than 0.4, which suggests that a quadratic relationship is possible and might be 

detectable if the data contained a larger range of values.  

 Why would the response of juvenile salmon be consistent over multiple spatial 

extents in relation to anthropogenic land use, while it appears to differ with spatial extent 

in relation to distribution patterns? Unfortunately, the simplest explanation is likely 

related to limitations of the sampling methodology. The same variation in flow conditions 

predicted by RCC along the length of the stream network could markedly influence the 

efficiency of electrofishing surveys. Backpack electrofishing is most effective in shallow 

constrained areas (Speas et al. 2004), and catchability of salmon would be expected to be 

systematically lower at deeper and wider sites (Speas et al. 2004, McInerny & Cross 

2000), particularly when barrier nets are not used. This is indirectly supported by the 

overall lack of electrofishing sites with a relative position > 0.5 in Southern Upland rivers 

(10 unique sites out of 134). Although site-specific catchabilities were estimated for some 

of the locations electrofished in a given year (i.e., the mark-recapture and depletion 

surveys), these estimates were systematically distributed relative to position in the 

watershed because they tended to take place where the initial number of juveniles 

captured was high. Thus, catchability of juvenile salmon is relatively unknown for main 

stem locations from these data. The direction of bias would be indistinguishable from 

hypothesized changes in juvenile distribution owing to variation in ecological processes 

with spatial extent. Any future work on developing quantitative linkages between large-

scale geomorphological patterns and juvenile productivity would need to explicitly 

account for changes in catchability if it were to be based on electrofishing surveys.  
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Relationships between juvenile density and anthropogenic land use 

Systematic trends in catchability would not be expected relative to human land use 

predictors, so these analyses are still informative on the functional form and relative 

magnitude of population-level change resulting from human activity as well as the 

manner in which individual land use types interact to cause such change (Q4 & Q5; Table 

5-3). These analyses strongly support the prediction that the spatial arrangement of 

human activity exerts varying influence on the ecological processes in streams, leading to 

non-linear changes in population dynamics (Rose 2000, McCluney et al. 2014). In other 

words, specific land cover types do not have an intrinsic quality for juvenile salmon 

(being always good or always bad), and there appears to be no universal contrast between 

human-modified and natural landscapes when understanding change (Haila 2002, Fisher 

and Lindenmayer 2007). Results are consistent with evidence from regional and global 

studies in landscape ecology that large areas of native vegetation tend to benefit native 

species (reviewed in Fischer & Lindenmayer 2007). It is striking that the median 

proportion of natural forest cover at a site is more than 2.5 times higher and has an overall 

magnitude of 72% when localized human activity is positively associated with changes in 

juvenile salmon density (i.e., sites categorized as low in the QDA) than when it is 

negatively associated (i.e., sites categorized as high in the QDA). This difference is 

unlikely to be an artifact of the distribution of high and low sites among rivers, in that 

similar differences exist among high and low sites from the same river (data not shown). 

Previous research has found natural forest cover to be highly beneficial to various fish 

communities (Tanentzap et al. 2014, Allan 2004). The distinction here is that activities 
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typically considered harmful to freshwater fishes were associated with increases in 

juvenile salmon density when natural forest was the predominant land cover type. While 

it is likely that a high proportion of natural forest cover in watershed catchments confers 

resilience to perturbation from human activities (McCluney et al. 2014), these results also 

suggest that it can enable populations to benefit from low levels of anthropogenic land 

use. This non-intuitive result would be similar to the inverse patterns in abundance 

expected from a trophic cascade (Pace et al. 1999), where removal or substitution of a top 

predator in an ecosystem alters the resource base available to another species at a lower 

trophic level, leading to population increases rather than declines. Some level of 

eutrophication from fertilizer application would be expected from land use activities such 

as silviculture or agriculture (Broadmeadow & Nisbet 2004) and would be expected to 

increase primary production. Fertilization has been used in aquaculture operations to 

increase fish productivity (Chislock et al. 2013) and in natural watersheds to enhance 

sockeye salmon production (Hyatt et al. 2004). Similarly, low levels of riparian clearing 

would open the canopy, potentially increasing light penetration and stream temperature in 

a manner beneficial to primary production or to juvenile growth (Allan 2004, Nislow 

2005). Conversely, when juvenile density declines with increasing human activity (sites 

categorized as high in the QDA), the median proportion of natural forest is low (27%), 

while median proportions of clearcutting and other forestry activity approximately 

doubles (6% vs. 3% and 6% vs. 2.4%, respectively) and agricultural activity becomes 

substantial (24% vs. 0%). This suggests that there is a point above which changes in 

canopy cover, sediment and organic inputs, as well as hydrology lead to habitat 
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deterioration (Gilvear et al. 2002, Allan 2004) and become detrimental to juvenile 

salmon.  

Practical application 

A landscape approach to recovery planning is important because it enables the 

ecological consequences of human activities to be identified and predicted at scales 

relevant to resource managers (Fausch et al. 2002). Although this research did not 

develop quantitative relationships with specific land use types for juvenile Atlantic 

salmon, it could be useful in a practical context for prediction; particularly in Southern 

Upland rivers where Atlantic salmon populations are not assessed. Using the discriminant 

axis generated by the QDA, the landscape characteristics of an unknown site could be 

used to classify it as low or high with a relatively high degree of certainty (2% 

misclassification rate). This means that from readily accessible data on land use and land 

cover (i.e., the variables in Table 5-2-1, Appendix 5-2) managers would have a way to 

evalate whether potential development in the vicinity of rivers would be detrimental to 

juvenile salmon, or could identify areas requiring remediation. This would be a simple, 

quantitative way to use changes in landscape area as a basis for decision-making during 

recovery planning (Semokorowski & Pratt 2007). Relative to the status quo, having any 

data-based criterion is preferable in that risk to populations from new development can be 

reduced and limited financial resources can be more meaningfully allocated. 
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Tables 

Table 5-1. Summary of the number of sites electrofished for each river and year from which Atlantic salmon juvenile density 

was estimated. 

 

River 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 Row total 

East (Chester) 13 12 2 

 

1 2 

     

30 

Gold River 1 1 

   

1 5 

  

10 11 29 

LaHave River 30 

 

15 12 14 17 16 17 12 16 16 165 

Liscomb 

  

6 1 1 1 

     

9 

Medway River 

     

3 

 

5 

 

5 3 16 

Middle (Chester) 3 3 

   

2 

     

8 

Musquodoboit 

 

9 

  

8 2 

     

19 

Petite 

     

5 

     

5 

Salmon (Guysborough 

Co.) 

 

8 

    

9 

    

17 

Salmon (Port Dufferin) 

     

2 

  

5 1 

 

8 

St. Mary's River 15 8 12 12 12 10 11 12 11 11 10 124 

West (Sheet Harbour) 4 4 5 4 3 2 

     

22 

Column total 66 45 40 29 39 47 41 34 28 43 40 452 
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Table 5-2. Description of the types of data used in these analyses. Characteristics of the electrofishing surveys were specific to 

the site and year sampled (site-specific). The suite of possible environmental predictors developed from the spatial land use 

data at small (site) and large (sub-catchment) spatial extents are given. Variables that were considered in the regression 

analyses are identified relative to their type and others are left blank. Measures of area (area.est and total.area) as well as year 

were standardized to a unit interval [0,1] for analyses. 

Type Extent Name 

Variable 

type Description 

site-specific 

 

area.est  the amount of area that was electrofished at the site (m
2
) 

site-specific 

 

sal  the number of juvenile salmon caught (all ages combined)  

site-specific 

 

sal.den Dependent the estimated density of juvenile salmon (#/100m
2
) 

site-specific 

 

siteID  the site name 

site-specific 

 

watershed 

Random 

effect the watershed name 

site-specific 

 

year Independent the year(s) that the site was sampled 

site-specific  site.pos Independent 

position of the electrofishing site along the stream network  

(length upstream/total length) 

buffer site s.natfor  the proportion of natural forest in the site buffer 

buffer site s.clearcut  the proportion of the site buffer that was clearcut 

buffer site s.forest  

the proportion of the site buffer used for silviculture, including 

treated stands 

buffer site s.agri  the proportion of the site buffer used for agriculture 
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Type Extent Name 

Variable 

type Description 

buffer site s.urban  the proportion of the site buffer that is urbanized 

buffer site s.industry  the proportion of the site buffer used for industry 

buffer site s.corridor  the proportion of the site buffer used for industrial corridors 

buffer site s.natural  the proportion of the site buffer with natural cover types 

buffer site s.phuman Independent 

the proportion of the site buffer that has been modified by human 

activities (sum of s.clearcut, s.forest, s.agri etc.) 

buffer site s.degslope Independent the average slope of the site buffer 

buffer site s.rangeslope Independent the maximum difference in slope (max - min) in the site buffer 

buffer sub-catchment total.area Independent 

the size of the sub-catchment buffer (m
2
); represents the relative 

drainage area upstream 

buffer sub-catchment natfor  the proportion of natural forest cover in the sub-catchment buffer 

buffer sub-catchment clearcut  the proportion of the sub-catchment buffer that was clearcut 

buffer sub-catchment forest  

the proportion of the sub-catchment buffer used for silviculture, 

including treated stands 

buffer sub-catchment agri  the proportion of the sub-catchment buffer used for agriculture 

buffer sub-catchment urban  the proportion of the sub-catchment buffer that is urbanized 

buffer sub-catchment industry  the proportion of the sub-catchment buffer used for industry 

buffer sub-catchment corridor  

the proportion of the sub-catchment buffer used for industrial 

corridors 
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Type Extent Name 

Variable 

type Description 

buffer sub-catchment pnatural  

the proportion of the sub-catchment buffer with natural land 

cover types 

buffer sub-catchment phuman Independent 

the proportion of the sub-catchment buffer that has been modified 

by human activities (sum of clearcut, forest, agri etc.) 

buffer sub-catchment deg.slope Independent the average slope of the sub-catchment buffer 

buffer sub-catchment range.slope Independent 

the maximum difference in slope (max - min) in the sub-

catchment buffer 

 

 

Table 5-3. Summary of the ecological questions considered and the specific landscape predictors used in their evaluation. 

Predictors are defined in Table 5-2. Grey shading was added to aid in interpretability.  

 
Description of ecological question Predictors (site) Predictors (sub-catchment) 

Q1 Do densities change longitudinally along the stream network? site.pos total.area 

Q2 Is habitat use related to flow characteristics?  
s.degslope; 
s.rangeslope 

deg.slope; range.slope 

Q3 
How might the hierarchical structure of rivers influence 
relationships?  

s.degslope; 
s.rangeslope; 
s.phuman 

deg.slope; range.slope; 
phuman 

Q4 How do populations respond to anthropogenic land use?  s.phuman phuman 

Q5 What is the form of the population response to threats?  s.phuman+s.phuman^2 phuman+phuman^2 
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Table 5-4. Candidate models and model selection based on AIC and Akaike weights (𝑤𝑖(AIC)) relative to hypotheses on how 

juvenile Atlantic salmon distribute in watersheds and are affected by threats (see Table 5-2 for parameter definitions and Table 

5-3 for questions). Each model represents a regression fit assuming a negative binomial distribution of juvenile salmon density 

(#/100m
2
). The number of predictors (k), log-likelihood (Loglik) and delta AIC are also shown. The top model is identified in 

bold. 

 Predictors k Loglik AIC ΔAIC 𝑤𝑖(AIC) 

NB.full  

year,site.pos,s.degslope,s.rangeslope, 

deg.slope,range.slope,s.phuman,s.phuman
^2

,phuman,phuman
^2

 10 -1677 3357 46.3 <0.001 

NB1  Year 1 -1667 3342 31.6 <0.001 

NB2  year, site.pos 2 -1659 3327 16.4 <0.001 

NB3  year, total.area 2 -1661 3332 21.7 <0.001 

NB4  year,site.pos, s.degslope 3 -1656 3323 12.3 0.001 

NB5  year,site.pos, s.rangeslope 3 -1658 3328 17.1 <0.001 

NB6  year,site.pos, deg.slope 3 -1659 3329 18.4 <0.001 

NB7  year,site.pos, range.slope 3 -1656 3323 12.6 0.001 

NB8  year,site.pos,s.degslope, s.phuman 4 -1655 3325 13.9 <0.001 

NB9  year,site.pos,s.degslope, s.phuman,s.phuman
^2

 5 -1652 3319 8.2 0.009 

NB10 year,site.pos, s.degslope, phuman 4 -1650 3314 3.4 0.111 

NB11  year,site.pos,s.degslope, phuman,phuman
^2

 5 -1650 3316 5.2 0.043 

NB12 year,site.pos,s.degslope, s.phuman,s.phuman
^2

,phuman 6 -1646 3311 0 0.594 

NB13 

year,site.pos,s.degslope,area.est,  

s.phuman,s.phuman
^2

,phuman, phuman
^2

 8 -1646 3313 1.8 0.239 



 

165 

 

Table 5-5. Parameter type (fixed or random), slope estimates, standard error (s.e), and 

estimated significance based on Maximum Likelihood estimation (P), as well as the 

median and 95% credible interval based on MCMC for the NB12 model describing 

changes in juvenile salmon densities.  

 

 

type slope s.e. P 2.5% median 97.5% 

(Intercept) F 2.07 0.30 <<0.001 1.46 2.08 2.70 

year F -0.63 0.19 <0.001 -0.94 -0.62 -0.13 

s.degslope F 0.07 0.04 0.043 -0.01 0.08 0.19 

site.pos F -1.90 0.42 <<0.001 -2.68 -1.92 -0.79 

s.phuman F 2.76 1.02 0.007 0.77 2.69 4.91 

s.phuman
^2

 F -3.36 1.23 0.007 -6.06 -3.27 -0.82 

phuman F 2.54 0.78 0.001 0.88 2.52 4.11 

East River (Chester) R 

   

-1.63 -0.71 -0.02 

Gold River R 

   

-0.71 -0.11 0.56 

LaHave River R 

   

-0.43 0.26 1.12 

Liscomb River R 

   

-0.89 -0.34 0.21 

Medway River R 

   

-0.91 -0.35 0.26 

Middle River 

(Chester) R 

   

-2.11 -1.57 -0.92 

Musquodoboit River R 

   

0.31 1.03 1.79 

Petite Riviere R 

   

0.48 1.21 1.93 

Salmon River (Guys. 

Co.) R 

   

0.55 1.26 1.98 

Salmon River (P.D.) R 

   

-0.82 -0.34 0.17 

St. Mary's River R 

   

-0.71 0.23 1.07 

West River (S.H.) R 

   

-1.33 -0.57 0.02 
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Figures 

 

Figure 5-1. Map of the study area in Nova Scotia, Canada, showing the catchment areas 

of the sampled watersheds (coloured and labeled with the river name) as well as the 

electrofishing site locations (dots). All other watersheds are shown in grey with black 

outlines. 
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Figure 5-2. An example of the site-scale (purple circle) and sub-catchment (orange 

polygon) buffers for an electrofishing site (red point) on the Nelson tributary of the St. 

Mary’s River watershed (green). The land use and land cover polygons from the Forest 

Inventory data are shown as grey lines.
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Figure 5-3. Partial regression fits (lines) plus 95% confidence interval (grey shading) relative to the juvenile density data 

(points) for each of the fixed effects retained in the NB12 model. X-axes are as follows. Panel A: year of electrofishing survey 

(year), panel B: median slope of a site (s.degslope), panel C: relative site position (site.pos), panel D: site-specific proportion of 

human use (s.phuman+s.phuman
^2

), and panel E: proportion of human use in the sub-catchment (phuman). Multiple 

observations from the same year are off-set slightly along the x-axis in panel A in order to see all of the individual density 

estimates. See Table 5-2 for parameter definitions.
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Figure 5-4. Comparison of the distributions of site-scale land use variables between sites 

categorized as having low levels (blue bars) or high levels (red bars) of human impact. 

Horizontal lines represent the median and the lower and upper boundaries of the box are 

drawn at the 25
th

 and 75
th

 percentiles of the distribution, respectively.
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Figure 5-5. Distribution of observations along the discriminant axis separating sites with 

high proportions of human use (s.phuman > 0.4; top panel) from those with low 

(s.phuman ≤ 0.4; bottom panel), estimated using Quadratic Discriminant Analysis. 
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Chapter six: Conclusions and Synthesis 

Recovery planning and the effective management of endangered species requires 

understanding: (1) how ecosystem processes interact across spatial scales to create and 

maintain the habitats needed by species to complete their life history; (2) how 

demographic processes vary across space and through time in response to this habitat 

heterogeneity (Labbe & Fausch 2000); and (3) how spatially variable processes interact to 

determine the viability of a larger demographic unit. As such, what I have called 

quantitative recovery planning requires the integration of several fields of theoretical 

ecology with diverse analytical methodologies appropriate for observational data. It is 

similar in complexity to fields of inquiry such as landscape genetics, which integrate 

diverse ideas originating from landscape ecology and population genetics, coupled with 

analytical methods that merge quantitative genetics with spatial statistics (Balkenhol et al. 

2009, Schoville et al. 2012). From my perspective, there is no straightforward or simple 

approach to follow, which is reflected in the diversity of ideas and analytical methods 

included in my four research chapters. Environmental variability could be expected to be 

strongly related to both spatial and demographic factors influencing population-level 

abundance and distribution (Pearman et al. 2008, Schurr et al. 2012), particularly for 

species with a high degree of habitat specificity within patchy network environments 

(Baguette & Schtickzelle 2003). At the same time, populations might be expected to 

respond to environmental variability through changes in survival, growth, reproduction or 

behaviour (Rose et al. 2001).  
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Population responses to environmental variation 

Linking changes in population-level abundance and distribution directly to 

environmental metrics integrates over other life history and evolutionary responses (Sih et 

al. 2011), which has implications for how we understand population responses to threats. 

For example, species might respond to environmental variation through changes in 

growth rates, reproductive strategy, habitat use or distribution (Pearman et al. 2008). 

Thus, behavioural responses to environmental variation, in addition to the environmental 

variation itself, would be expected to change the potential for resource acquisition as well 

as inter- and intra-species interactions experienced by an individual (Bowler & Benton 

2005, Kubisch et al. 2014). A wealth of research suggests that individual behavioural 

strategies are context-dependent and vary with the environmental conditions encountered 

by individuals (Sih et al. 2011, Kubisch et al. 2014). For example, factors such as the 

strength of intraspecific or interspecific competition, and local habitat characteristics such 

as patch size or relative quality have been shown to influence the propensity of an 

individual to disperse (Bowler & Benton 2005, Poethke et al. 2010). Such context-

dependent behavioural strategies would contribute to the potential for resource acquisition 

or the relative fitness of individuals, and would be expressed at a population level as 

changes vital rates or dynamics (e.g., Rose et al. 2001), in addition to changes in 

distribution (Bowler & Benton 2005). If these responses promote a numerical increase at 

low density and result in reduced population growth rates at high density, they are 

compensatory and will dampen inter-annual variations in population-level abundance 

(Rose et al. 2001, Lande et al. 2003). As such, they would help to maintain large 
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population size (Simberloff 1998), and promote population increase following stochastic 

declines (i.e., improve population resilience, Hutchings et al. 2012b), thus reducing 

extinction risk.  

As I discussed in chapter three, any compensatory response would weaken 

relationships with environmental change (i.e., threats); reducing detectability (Rose 

2000), and having the potential to bias our ecological understanding of species-

environment relationships. As I suggested in chapters four and five, this would be similar 

to ignoring the influence of spatial variation or pattern on the life history dynamics of 

riverine fishes, which would be expected to bias our understanding of abundance and 

distribution patterns relative to landscape-level change. I did not directly evaluate the 

extent to which compensatory processes buffer environmental change in spatially and 

temporally variable environments, but the idea that these processes would affect both the 

strength and nature of population-level responses to threats is a re-occurring theme 

throughout my thesis. In addition, the correlations among threats and genetic distance 

from chapter four suggest that behavioural responses to environmental variation can be 

relatively strong, and thus could be a major contributor to demographic change or 

population dynamics.  

Individual behavior depends on the immediate conditions encountered, as 

constrained by life history characteristics (Kubisch et al. 2014), which means that 

behaviour is one step removed from the consequences of that behaviour in terms of 

survival and reproductive success (Robertson & Hutto 2006). To guard against false 

inference, I evaluated quantitative relationships with threats in the context of other 



 

174 

 

expected ecological patterns arising from changes in behaviour in chapters four and five. 

Using site-specific density as a proxy for habitat suitability, quality, or productive 

potential in chapter five (Kubisch et al. 2014), as well as changes in genetic 

characteristics as a proxy for population connectivity in chapter four, meant I was 

implicitly assuming that individuals are drawn to suitable habitat types, and that density 

patterns would elucidate the landscape characteristics necessary to maintain population 

productivity. However, it is well-known that human-perceived landscape patterns often 

do not correspond to functionally suitable habitat for specific species or groups of species, 

particularly when landscapes have been heavily modified (Fischer & Lindenmayer 2007). 

Individual behaviour can become mal-adaptive if human-induced environmental change 

uncouples the cues that individuals use to assess habitat quality from the true quality of 

the environment, making poor quality habitat relatively attractive (termed ecological or 

evolutionary traps; Schlaepfer et al. 2002, Gilroy & Sutherland 2007). Paradoxically, 

ecological restoration efforts themselves have been identified as a frequent cause of 

ecological traps, mainly because of their focus on a single life stage of a single species 

coupled with an imperfect mechanistic understanding of the ecological relationships 

being manipulated (Jeffres & Moyle 2012, Robertson et al. 2013). Relative to recovery 

planning, the unknown existence of ecological traps due to habitat modification or land 

use in watersheds would be expected to influence our ability to identify threats as well as 

to quantify population response.  

In addition to individual behaviour, it is increasingly being recognized that 

evolutionary processes can influence population responses to environmental change over 
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contemporary time scales (De Meester & Pantel 2014). Such contemporary evolution 

would be expected to increase the potential for populations to persist even at low 

abundance by maximizing the productive potential of the remaining individuals relative 

to novel environmental conditions and reducing the likelihood of stochastic extinctions 

(Kinnison & Hairston 2007, Cameron et al. 2013). Fitness is partially determined by the 

suite of adaptive traits possessed by an individual (Bolnick et al. 2011); where variation 

among individuals in phenotypic traits would be ultimately expressed as population 

productivity (Sih et al. 2011). Previous research has found that populations with relative 

high levels of genetic variation are less sensitive to environmental variation and can 

maintain more consistent population sizes because they maintain the ability to evolve 

(reviewed in De Meester & Pantel 2014). In addition, population assemblages 

characterized by higher rates of gene flow may be better able to maintain the ability for 

contemporary evolution, given the potential for immigrants to positively contribute to the 

local phenotypic distribution (Kinnison & Hairston 2007). Experimental research has 

demonstrated that adaptive responses to environmental change can reverse population 

declines, and thus have the potential for evolutionary rescue of endangered species 

(Cameron et al. 2013). However, despite theoretical advances, the degree to which eco-

evolutionary processes influence the dynamics of natural populations is relatively 

unknown, as are the specific conditions in which contemporary evolution would be 

expected to lead to population persistence (De Meester & Pantel 2014). 

Atlantic salmon populations in the Southern Upland still have considerable 

genetic variation (chapter four) and are linked through dispersal, so it is possible that 
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contemporary evolution might be occurring in response to environmental change. The 

simulations in chapter two did not allow for contemporary evolution, which may be 

expected to increase the productivity of individual populations over time. However, 

population dynamics modeling for salmon in the Southern Upland suggests that 

productivity is extremely low, such that the few remaining populations are close to being 

deterministically extinct (Gibson & Bowlby 2013). The observation that populations still 

persist in SU watersheds may reflect an extinction debt, where deterministically extinct 

populations may persist for a considerable amount of time in the landscape prior 

disappearing and in the absence of further environmental change (Tilman et al. 1994, 

Kuussaari et al. 2009). Critically endangered populations are often thought to be affected 

by mutually-enforcing detrimental changes to demographic, genetic, or behavioural 

processes resulting in population decline (Fagan & Holmes 2006), which can be 

exacerbated by synergistic interactions between multiple threats (Darling & Cote 2008). 

By studying the population dynamics of species that have actually gone extinct, Fagan & 

Holmes (2006) found that year-to-year rates of decline as well as year-to-year variability 

increased as the time to extinction decreased, two characteristics that are predicted by 

theory (Lande et al. 2003). However, without knowing that a population is actually 

destined for extinction, it is difficult to use such characteristics to approximate extinction 

risk, or to determine the ultimate fate of a population. Although Southern Upland Atlantic 

salmon populations are at critically low abundance (Gibson et al. 2011) and are presently 

characterized by extremely low productivity (Gibson & Bowlby 2013), there is still the 

potential to implement recovery actions for the remaining populations. Ideally, these 
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would slow or reverse population declines and maximize the potential for evolutionary 

rescue.  

Practical application for SU Atlantic Salmon 

Ecological theory developed in relation to conservation questions is very useful to 

contextualize the scope for population responses, yet it can have little immediate practical 

relevance to recovery planning for specific populations of endangered species (Driscoll & 

Lindenmayer 2012). When theoretical predictions are evaluated using data from natural 

populations, invariably there is evidence that supports as well as contradicts the 

hypothesis being tested; some examples are related to: ecological synergies (Brook et al. 

2008, Darling & Cote 2008), eco-evolution (Kinnison & Hairston 2007), species-area 

relationships and spatial pattern (Thornton et al. 2011), metapopulations (Fronhofer et al. 

2012), or ecological correlates with biodiversity patterns (Chase & Knight 2013). 

Typically and understandably, authors conclude that different processes are important in 

different systems, and often call for further refinement of the relative contribution of 

demographic, evolutionary, spatial or ecological factors affecting populations in order to 

better understand dynamics, demographic change or the extinction process. While this has 

led to a much better understanding of the range of potential population responses to 

environmental variability, it does not translate into specific practical guidance for 

conservation, unless the guidance is that recovery planning is case-specific. Furthermore, 

assuming that a particular theory describes a specific species or system a priori can 

constrain the focus of research programs to the exclusion of alternate hypotheses and can 

lead to inefficient or ineffective management or recovery strategies being applied (as 
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demonstrated in chapter two; Haila 2002, Driscoll & Lindenmayer 2012, Jeffres & Moyle 

2012, Stoll et al. 2016). 

From my perspective, the key questions for recovery planning for Atlantic salmon 

in the Southern Upland region include: (1) should a large or small number of watersheds 

be targeted for recovery simultaneously? (2) Which remediation actions would be 

expected to have the largest effect on productivity for each specific river? And (3) is our 

understanding of the relative severity of different types of threats accurate? Relative to 

question (1), the metapopulation simulations in chapter two suggest that recovery 

planning should focus on increasing productivity in the remaining populations in large 

watersheds. If there was a choice between distributing a low level of remediation effort 

among many watersheds relative to a higher level of effort in a smaller number of 

watersheds, the simulations in chapter two support the latter. Working in smaller 

watersheds might be more tractable in terms of the relative amount of the stream network 

and surrounding landscape that could be affected by remediation, yet would be expected 

to have little influence on regional persistence. Within these larger watersheds, the spatial 

landscape database and the quadratic discriminant axis detailed in chapter five could be 

used to identify areas that may be priorities for restoration, based on the proportion of 

human activity in the vicinity of the stream network. Although the hydrology analyses in 

chapter three suggests specific remediation actions that would be expected to lead to 

population increase for the St. Mary’s and Nashwaak Rivers, I was not able to quantify 

population responses to the magnitude of multiple threats at a regional level (question 2 

above). As such, these analyses do not provide substantial information on the specific 



 

179 

 

amount of a stream network or the specific remediation actions that would be expected to 

produce the greatest population response.  

 Relative to (3), results from chapters two, four and five challenge some of the 

current thinking on the importance or impact of specific types of threats affecting 

Southern Upland Atlantic salmon. If straying becomes detrimental to population 

persistence as productivity declines (as suggested by chapter two), threats that contribute 

to increased stray rates should have a higher perception of harm. This would not 

necessarily have been true when population declines started, in that productivity was 

substantially higher in the 1980s (Gibson & Bowlby 2013) and thus source populations 

would have been expected to better compensate for emigration. Such switches in the 

relative importance of specific threats over time are consistent with the general 

expectation that the original causes of population decline can become separated from the 

factors keeping populations at low abundance (Fisher & Lindenmayer 2007). Also 

counter to current perceptions, my landscape genetics analysis in chapter four implies that 

several previously unrecognized threats, such as historical mining activity, influence 

effective dispersal in a manner similar to well-described and substantial threats such as 

acidification (Watt 1987, Korman et al. 1994). However, I was not able to evaluate how 

attraction or avoidance behaviour by emigrating adults relative to watershed 

characteristics would culminate in changes to population dynamics in that analysis. 

Further evaluation or at least the consideration of relatively unstudied threats would be 

warranted during recovery planning; particularly because the analysis in chapter five 

suggests that all types of human activity in watersheds cause population decline once they 
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collectively reach a certain threshold. The analyses did not support the general perception 

that a specific practice such as clearcutting would exert the greatest influence on habitat 

distribution and quality in stream networks for juvenile salmon, relative to other types 

land use (Gilvear et al. 2002, Allan 2004). Unfortunately, this complicates recovery 

planning in that it becomes difficult to prioritize among remediation actions designed to 

address different types of threats, unless spatially-explicit restoration plans are developed 

for individual rivers.  

Methodological considerations 

Pattern does not equal process (Clinchy et al. 2002) and using observational data 

for ecological inquiry is inherently difficult. Similar time series can arise through multiple 

ecological mechanisms (Clinchy et al. 2002, Benton et al. 2006). Apparently strong and 

ecologically plausible environmental correlations often break down with the addition of 

new data (Myers 1998, Hilborn & Walters 1992). The sampling scheme itself or other 

study design issues have been found to be correlated with our general understanding of 

specific ecological relationships, such as species-area relationships (e.g., Drakare et al. 

2006, Mortelliti et al. 2010) or biodiversity patterns (Chase & Knight 2013), as well as 

questions of spatial scale and patterning in landscape ecology (Thornton et al. 2011). 

Throughout this thesis, I attempted to explicitly consider potential pitfalls in the data I 

had available, in the indices or environmental metrics evaluated, as well as in the 

analytical methods I used. For example, I included robust regression in chapter three to 

explicitly account for sampling errors and extreme values in the hydrological data that 

could lead to spurious relationships or could mask significant ones, particularly for such 
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short time series of egg to age 0 survival. When it was not possible to control for specific 

characteristics, such as the behaviour of electrofishing crews affecting the juvenile 

density data used in chapter five, I evaluated spatial grain relative to other apparent 

ecological patterns in the broader analysis. In all chapters, I looked for overall 

consistency as related to theory, which is why I proposed that Isolation by Environment 

(IBE) was more likely to characterize genetic patterns for Atlantic salmon relative to 

Isolation by Distance (IBD) in chapter four; the threats relationships could not be 

explained unless this was true. 

From my perspective, the largest potential pitfalls affecting the landscape genetics 

analysis in chapter four as well as the analysis of the electrofishing data in chapter five 

relate to (1) a potential temporal mis-match between data sources and (2) time lags 

between environmental change and population-level response. Although the land use data 

and electrofishing data used in chapter five were collected during similar timeframes, I 

was not able to ensure that both sources of data represented the same year for particular 

sites. Relative to population responses, landscape modification causes both acute and 

delayed changes to the spatial distribution and relative quality of stream habitats (Nislow 

2005, McCluney et al. 2014). Therefore, even if both data sources represented the same 

year, there could still be a time lag between changes in land cover and population 

response. Similarly, in order to evaluate threats using landscape genetics, a sufficient 

number of generations need to have passed since the threat originated for any effect to 

become measureable (Landguth et al. 2010). I was not able to directly test whether my 

results were sensitive to these temporal constraints due to data availability, although it is 
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likely that they would have had some impact on the relationships described (Graham 

2003). If these analyses were to be extended, there would be the potential to substitute the 

Nova Scotia Change Atlas: 1990 – 2007 (available from Global Forest Watch Canada; 

Cheng & Lee 2009) as an alternate characterisation of land cover. Although this would 

likely rely on using electrofishing data or genetic samples collected after 2007 (as 

opposed to those from 1995 to 2005 as used here), it might be one way to incorporate a 

temporal aspect into these analyses.  

 Summary 

In my thesis, I have taken a single-species approach to understanding population 

responses to environmental change and to recovery planning. This was largely because of 

the inherent complexity in developing quantitative relationships between landscape-level 

variation and population-level response. The relationships I describe are among the first 

to be developed for endangered Atlantic salmon populations in Nova Scotia (although see 

Watt 1987 relative to acidification).  

By developing a simulation model for a simplified diadromous life history in 

chapter two, I was able to evaluate how spatial structure and demographic variability 

integrate to determine regional abundance and extinction risk of a population assemblage. 

My results suggest that maintaining metapopulation structure should not be the primary 

focus for conservation and management of diadromous fishes when population 

productivity is low; demographic processes seem to be more important determinants of 

persistence relative to spatial processes. In chapter three, I demonstrated how our 

understanding of survival-hydrology relationships can be directly affected by decisions 
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made prior to analyses. Responses to hydrological change were population-specific and 

would necessitate population-specific remediation plans. In chapter four, I proposed that 

population connectivity in diadromous fishes should be evaluated relative to 

environmental patterns rather than geographic distance, particularly when using landscape 

genetic analyses to evaluate contemporary threats. Results suggested that straying 

Atlantic salmon avoid watersheds with reduced water quality and higher road density, yet 

were not responding to watershed fragmentation at a population level. In chapter five, I 

was able to develop a relatively simple tool that could inform management decisions or 

identify priority areas for restoration efforts, even though I was not able to fully evaluate 

theoretical predictions on the influence of environmental variation on habitat utilization, 

distribution patterns, or population-level responses to human activities at multiple spatial 

scales.  

This research was motivated by a single question from a long-time angler and 

conservation advocate: “What should we do to bring salmon back?” In trying to answer 

this question, I hope that this research, as well as the expertise I have gained, will 

substantially contribute to future recovery planning and remediation efforts for 

endangered species, particularly Atlantic salmon populations in the Southern Upland 

region of Nova Scotia, Canada. 
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Appendices 

Appendix 2-1: Details on the simulation model 

Projection Model 

 The core of the simulation was a life history-based population viability analysis 

(PVA; e.g., Morris & Doak 2002), which modeled the dynamics of 50 populations over 

100 years concurrently, assuming total isolation (i.e., no immigration or emigration) or 

metapopulation structure (i.e., populations were partially connected by straying). For each 

population, the initial number of one-sea-winter (1SW) and two-sea-winter (2SW) adults 

(Table A2-1-1) was calculated from smolt production at equilibrium, decremented by 

mortality in the marine environment prior to spawning (equations 1 and 2, Table A2-1-2). 

Using equilibrium smolt production (equations 15 and 16, Table A2-1-2) ensured that 

isolated populations as well as metapopulations were initialized at the same starting 

population sizes. The contribution from multi-sea-winter (MSW) repeat-spawning adults 

becomes the number of first-time spawners decremented by mortality that occurs between 

spawning events (equations 3 and 4, Table A2-1-2). For a metapopulation, the number of 

animals emigrating from each population in each year is a function of the total number of 

adults as well as the survival rate of strays (equation 6, Table A2-1-2). Immigrants (in the 

same year) are distributed among non-natal populations according to an assumed stray 

matrix (equation 7, Table A2-1-2). This is the spatial component of the model in that 

immigration probabilities were a function of the relative geographical position of 

populations (i.e., an isolation by distance (IBD) model; Guillot et al. 2009). The number 

of virgin 1SW and 2SW spawners in t+2 and t+3 years, respectively, becomes a density-
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dependent function of the total number of returns in year t (representing freshwater 

production) and the probability of maturing as 1SW as well as survival in the marine 

environment in years t+1, or t+1 and t+2, respectively (equations 9 and 10, Table A2-1-

2). In order to prevent a situation in which unrealistically small population sizes persist in 

the projection (e.g., spawner abundance of less than 1), abundance in year t was assessed 

relative to a quasi-extinction threshold (q = 20) and future production in years t+2 (1SW) 

and t+3 (2SW) was set to zero if population size was lower than the threshold. To 

account for individuals that spawn multiple times from a given cohort, the number of 

MSW repeats was calculated analogously to the initialization (equation 11, Table A2-1-

2).  

Model parameterization  

Life history parameter values for input into the PVA were chosen to realistically 

approximate the population dynamics of a diadromous fish (Table A2-1-1). For 

flexibility, the model was set up so that all parameters could be population-specific; 

however, most of them were kept constant in order focus the analysis and limit the total 

number of scenarios considered. One extension to these analyses could be to vary stray 

rates among populations, given that significant inter-population variation in dispersal has 

been observed for captively-reared individuals (Westley et al. 2015). I assumed that 10% 

of a population strayed (emigrated) in a year, given that empirical estimates of stray rates 

from mark-recapture experiments are in the range of 10% for many salmonid species, 

including Atlantic salmon (Keefer and Caudill 2014). Estimates from other diadromous 

species can to be lower (e.g., Melvin et al. 1985 for American Shad) or higher (see 
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discussion in Gahagan et al. 2012 for river herring). However, many of the higher 

estimates rely on discriminant analysis of microchemical or genetic signatures rather than 

actual positive identification of individual fish. Note that for the simulations of isolated 

populations, the stray rate was zero.  

Each habitat unit within a watershed was assumed to be able to produce 20 

juveniles ( asy

pR = 20) and the maximum rate at which spawners produced smolts (α) was 

10. Both of these values are realistic relative to observed freshwater production of 

juvenile Atlantic salmon in the Southern Upland (Gibson & Bowlby 2013). Areas and 

distances were all parameterized as relative values (e.g., 40 as compared to 200 habitat 

units) rather than geographical measurements (e.g., 40 km
2
 as compared to 200 km

2
). 

Half of the smolts produced matured as 1SW and the starting values for the annual at-sea 

mortality rates of immature and adult fish were 0.5. If more fish were assumed to mature 

as 1SW, the overall productivity of the populations would increase (because fewer 

individuals would forgo reproduction after one year in the marine environment). It is 

worth pointing out that the productivity scenarios considered in this chapter could be 

achieved multiple ways (i.e., by changing the input values for a combination of 

parameters leading to the same estimated maximum lifetime reproductive rate (MLR)). It 

is also worth noting that if the simulations were to be parameterized for a specific set of 

rivers, it would be simple to change any of the starting values to reflect measured 

conditions. Simulations used 500 iterations of each scenario and were projected over 100 

years.  
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I purposefully did not explicitly define the units for some of the parameters in the 

simulation model. This is because the results would not depend on the spatial or temporal 

scale of specific parameters, provided the combination of parameter values resulted in the 

same MLR productivity scenario. As an example related to time, I could have defined t = 

2 years rather than t = 1. This would double the temporal scale of freshwater residency 

and projections comparable to these results would have been made over 200 rather than 

100 years. However, the abundance in specific populations and the relative difference 

between the metapopulation and isolated population trajectories would remain the same, 

leading to the same conclusions when different levels of productivity were compared. As 

an example related to space, asymptotic juvenile density ( asy

pR ) is in numbers per habitat 

unit (as detailed in Table A2-1-1), where watershed size (h) or the number of habitat units 

is not explicitly defined.  It is possible to calculate juvenile abundance at carrying 

capacity in a river as asy

pR *h. If this value was 10,000; asy

pR could be 20 and h could be 

500. In a real river that has 10,000 km
2
 of habitat area, it would make the units for asy

pR  

smolts/km
2
 and h km

2
. Alternately, if our real river had 10,000 m

2
 of habitat, nothing 

would change in the parameterization but the units. Without making the parameterization 

of the model explicit to a real-world group of rivers, the units are not invariant.  

Incorporating environmental variability 

For greater biological realism in the population dynamics models, I incorporated 

autocorrelated variability into annual survival rates, following the general approach of 

Hilborn (2001). I assumed a log-normal distribution for the deviates around freshwater 

production ( fw

ptdev ,
) and a uniform distribution for marine mortality ( mar

tdev ) (equations 13 
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and 14, Table A2-1-2), constrained to be between zero and one. Instantaneous mortality 

in year t depended on the degree of autocorrelation ( d ) as well as the standard deviation 

of the residuals of the parameter value (
w ). Random deviation around the mean 

mortality rates at sea ( Sea

tM  or Aqult

tM ) came from a set of random draws from a uniform 

distribution. Populations were assumed to mix while at sea, which is the same as 

assuming that the deviation in mean mortality rates was the same for all populations in a 

given year. In contrast, individual watersheds would be expected to have weakly 

synchronous dynamics because in-river conditions would be influenced by large-scale 

climactic patterns as well as localized processes (Ruetz et al. 2005). Therefore, the 

deviates describing fresh water varied over time as described above, yet individual 

populations differed from each yearly value according to a normal distribution with a 

sigma of 0.75 (equation 13, Table A2-1-2). Therefore, the mean correlation among 

population abundances over time (i.e., strength of population synchrony) in each scenario 

was set at 0.25, a value which matches observed population-level correlations in an 

exploited Pacific salmonid species (Schindler et al. 2010).  
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Table A2-1-1. Description of the parameters describing population vital rates (and 

starting values), indexing subscripts (with range), spatial model (stray.matrix), 

environmental variation (deviates), and population sizes (for smolts and adults) used in 

the metapopulation simulation. The manner in which the parameter is treated in the 

equations is given as the parameter type. The starting values describe the High 

productivity scenario and were progressively decreased in the remaining scenarios (see 

methods and Table 2-1). The spatial model considered was an Isolation by Distance 

(IBD) model in which the probability of an individual entering a specific watershed was a 

function of the distance between watersheds. 

 

Model 

parameter Description Parameter type 

Starting 

value 

a Previous spawnings Indexing variable 0-3 

t Time Indexing variable 1-100 

p Population Indexing variable 1-50 

q  Quasi-extinction threshold Constant 20 

ptaN ,,  Abundance of adults for a given 

previous spawning history in a 

specific year and population 

Population-specific; 

Time-varying;  

Equilibrium 

( Adult

pE ) 

p  Maximum survival from 

spawner to smolt 

Population-specific 10 

asy

pR  Asymptotic juvenile density 

(# per habitat unit) 

Population-specific 20 

ph  Watershed size 

(# habitat units; dimensionless) 

Population-specific 200 (large) 

40 (small) 

Sea

tM  Mortality rate of immature 

salmon at sea 

Time-varying 0.5 

1m  Probability of maturing as 1SW Constant 0.5 

Adult

pM  Mortality rate of repeat 

spawners 

Population-specific 0.5 



 

 

216 

 

 

Model 

parameter Description Parameter type 

Starting 

value 

ps  Stray rate (proportion) Population-specific 0.1 

matrixstray.

 

Spatial model of immigration Hypothesized IBD 

fwd  Temporal autocorrelation in 

freshwater 

Constant 0.6 

mard  Temporal autocorrelation at sea Constant 0.6 

fw  Variation in freshwater survival Constant 0.3 

mar  Variation in at-sea survival Constant 0.5 

fw

ptd ,
 Deviate for freshwater 

environment 

Population-specific; 

Time-varying 

Random 

mar

tdev  Deviate for marine environment Time-varying Random 

Smolt

pE  Smolt abundance at equilibrium Constant Calculated 

Adult

pE  Adult abundance at equilibrium Constant Calculated 
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Table A2-1-2. Equations used in the metapopulation simulation, describing the model initialization (equations 1-4), straying 

among populations in a given year (equations 5-9), the projection of abundance in future years (equations 10-12), the manner 

in which random variability was added to freshwater and marine survival (equations 13 and 14), and equilibrium calculations 

for smolts and adults (equations 15-17). Parameter values, indexing subscripts and definitions are in Table A2-1-1. 

 

Description  Equation 

Model initialization   

Abundance in year 1 of 1SW 

spawners 
1  SeaSmolt

pp MmEN  11,1,0  

Abundance in year 2 of 2SW 

spawners 
2   21,2,0 11 SeaSmolt

pp MmEN   

Repeat spawners in year 1 3  Adult

papa MNN  1,1,,1,1  

Repeat spawners in year 2 4  Adult

papa MNN  1,2,,2,1  

Straying among populations   

Returns to natal river 5  
ppta

Homing

pta sNN  1,,,,  

Number of emigrants (strays) 6  ppta

Em

pta sNN ,,,,   

Total number of immigrants 

(combined over a) 
7  

a p

Em

pta

Imm

pt matrixstrayNN .,,,  

Number of 1SW immigrants 8       32
1111/ AdultAdultAdultImm

t,p

Imm

0,t,p MMMNN   
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Description  Equation 

Returns plus immigrants 9 

















0aif

0aif

,,

,,0

,,

pta

Homing

pt

Imm

0,t,pReturn

pta
N

NN
N  

Projection Model   

1SW virgin spawners 10 
 Sea

t

p

asy

p

Return

a,t,pp

Return

ptapfw

ptptpt Mm

hR

N

N
dNN 11

,,

,,2,0,2,0 1

1

 




















 

2SW virgin spawners 11 
   Sea

t

Sea

t

p

asy

p

Return

a,t,pp

Return

a,t,ppfw

ptpt MMm

hR

N

N
dN 211,,3,0 111

1

 




















 

Repeat spawners 12  Adult

pptapta MNN  1,,,1,1  

  

Incorporating random variability  

Autocorrelated annual 

mortality rate for fresh water 
13 

wtfwtt wdww *1  
  (0,1)~* Nwt

  

  2/exp 2

, dpt

fw

pt devwd   )75.0(0,~ Ndev p
  

Autocorrelated annual 

marine mortality  
14 

wtmart

mar

t wdwdev *1  
  ,1)1(~* Unifwt

 

mar

t

Sea

t devMM   



 

 

219 

 

 

Description  Equation 

Equilibrium calculations   

Spawner-per-recruit (SPR) 15 
   

   









a

aadultSea

SW

a

aadultSea

SW

SWSW

MmMN

MmMN

NNSPR

1)1(1

11

:where

1

2

2

11

21

 

Deterministic equilibrium for 

adults 
16 

 












 




 hRSPR
E

asy

Adult
1

 

Deterministic equilibrium for 

smolts 
17 

 
























hR

E

E
E

asy

Adult

Adult

Smolt





1
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Appendix 2-2. Analysis of sensitivity to the initial parameterization 

 Changes to the simulation model that substantially reduced extinction 

probabilities of small populations resulted in little or no benefit to metapopulation 

structure. Thus, the simulation results often showed small percent differences between the 

trajectories of metapopulations and isolated populations at higher levels of productivity; 

mainly in the High, Medium and Low scenarios (Figure 2-8). However, in all cases, there 

was a distinct positive peak in percent difference followed by a reversal in the Not Viable 

scenario, consistent with the main simulations. 

Assumption1: Stray rate  

Metapopulations are characterized by intermediate stray rates; those low enough 

to prevent synchrony among populations, yet high enough to prevent effective population 

isolation (Driscoll 2007). Estimates of stray rates for diadromous fishes vary depending 

on monitoring intensity, location, species, and monitoring method. Tagging estimates 

tend to be in the range of 5-10% (Keefer & Caudill 2014, Melvin et al. 1985) while 

estimates based on molecular techniques or elemental signatures tend to be higher (e.g., 

Gahagan et al. 2012). Although I used a value similar to tagging estimates for Atlantic 

salmon for the main simulations (10%), I used a rate that is 3x higher (30%) here. Median 

adult abundance over time as well as extinction rates for the metapopulation assemblage 

were very similar to scenarios assuming a 10% stray rate, in that the apparent benefit of 

metapopulation structure disappeared in the Not Viable as compared to the Medium to 

Extreme Low scenarios (30% stray rate; Figure 2-8). However, the conclusions related to 
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large populations in the Not Viable scenario become notably stronger, in that extinction 

risk increased substantially for a metapopulation as compared to an isolated group of 

populations, as indicated by the increased negative difference between the isolated and 

metapopulation trajectories.  

 At a zero stray rate, populations are isolated by definition. Here I have effectively 

profiled over increasing stray rates (0, 10% and 30%) and found that high levels of 

straying result in lower extinction risk to small populations at high levels of productivity, 

indicated by the extremely small positive percent differences in the High to Low 

scenarios (30% stray rate; Figure 2-8). However, the reversal in the Not Viable scenario 

becomes notably stronger as stray rates increase. Therefore, I did not show a sensitivity 

run to a lower stray rate or to stray rates that either increase or decrease with population 

size. My expectation would be that there would be smaller maximum differences between 

the isolated vs. the metapopulation trajectories (i.e., abundances would be more similar) 

when stray rates are lower as compared to the main simulation, corresponding to a slight 

shift in the peak of the function from the Low to Extreme Low scenarios. However, the 

negative difference in the Not Viable scenario should remain the same. 

Assumption 2: Immigration hypotheses 

 Several hypotheses have been proposed for what attracts individuals to enter non-

natal watersheds. An isolation-by-distance (IBD) model is based on the idea that 

proximity to natal watersheds determines the probability of immigration, where proximity 

is typically measured by geographic distance (Guillot et al. 2009). An alternate hypothesis 
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is that returning adults follow large aggregations of individuals or preferentially return to 

large watersheds (Keefer & Caudill 2014), where the probability of immigration would be 

related to population size or habitat area. To test the effect of this alternate hypothesis on 

these analyses, I developed a stray matrix in which the probability of entering a specific 

watershed was proportional to the recipient watershed’s size. Using this matrix essentially 

eliminated the benefit of metapopulation structure in terms of total abundance, although 

the values were still marginally positive from the High to Extreme Low scenarios and 

became negative in the Not Viable scenario (area-based spatial model; Figure 2-8). 

Assumption 3: Geographic position of watersheds 

 Using an IBD model to parameterize the stray matrix makes the simulation 

spatially explicit (Perry & Enright 2007), and the geographic position of watersheds 

relative to each-other becomes important. This could affect the simulations in one major 

way, in that results could become sensitive to the specific vector used to parameterize 

habitat area among populations. Here I used a repeating motif of 

‘large’,’small’,’small’,’small’,’small’(x10) to describe the habitat area of specific 

watersheds. In a spatially explicit model, this means that large populations are distributed 

equally (i.e., distributed with maximum distance from one another) throughout the region, 

since populations were assumed to positioned along a line. However, there also is the 

possibility that results are sensitive to how clumped or dispersed populations of different 

sizes are. This possibility was evaluated in two ways, first by making the stray matrix 

spatially implicit (Perry & Enright 2007) and then by changing the distribution of large 
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populations. A spatially implicit stray matrix is one in which the probability of 

immigration into any watershed is the same. If conclusions were a direct result of the 

geographic position of watersheds, the spatially implicit model removes any 

consideration of geographic position. Substituting this matrix into the simulations reduced 

the range of productivities over which metapopulations were beneficial relative to the 

simulations assuming IBD (spatially-implicit model; Figure 2-8), in a way that was 

virtually identical to increasing the stray rate. The second way of evaluating the 

sensitivity of results to the geographic position of watersheds was to change their 

distribution in the vector describing habitat area. Maximum clumping of populations of 

similar size would be achieved by making populations 1 to10 large and populations 11 to 

50 small. Again, this had no qualitative effect on the functional form of the percent 

differences as productivity declined (cluster large watersheds; Figure 2-8), yet the 

benefits of metapopulation structure were lower than in the main simulations.   

Assumption 4: Relative watershed size 

 The specific vector used to describe watershed size gave the area of large 

populations as 200 habitat units and small populations as 40 habitat units (80% lower). 

This was thought to be a sufficient level of contrast in order to demonstrate differences in 

dynamics relative to watershed size and to evaluate the rescue effect. Typical coastlines 

exhibit orders of magnitude difference among individual watershed areas, with larger 

systems (e.g., first or second order streams) interspersed with smaller, coastal systems 

(Bowlby et al. 2014). An alternative model parameterization would be to fully randomize 
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the starting vector for watershed size (i.e., for each iteration, the size of specific 

watersheds becomes a random draw from a distribution characterized by a specific mean 

and variance). However, in order to (1) evaluate the effect of environmental variability in 

isolation of variability in watershed size, as well as (2) to ensure a high level of contrast 

among watersheds to maximize the potential to detect a difference between the dynamics 

related to size (while keeping the number of simulations manageable), I did not do this. I 

did test the robustness of conclusions under situations in which the contrast between sizes 

of watersheds was greater (2 orders of magnitude; 1000 habitat units or 10 habitat units) 

and lesser (50% lower; 200 habitat units or 100 habitat units). As expected, when the 

contrast among watershed sizes is greater, the trajectories become dominated by the 

dynamics of large populations, resulting in small difference between total adult 

abundance in the High to Extreme Low scenarios (greater contrast (area); Figure 2-8). 

When the contrast in watersheds was smaller, the benefit of metapopulation structure to 

individual populations is maintained for longer as productivity declines due to increased 

persistence of small populations in the projections, as shown by the larger positive value 

in the Extreme Low scenario (less contrast (area); Figure 2-8). 

Assumption 5: Environmental autocorrelation 

 Two types of environmental autocorrelation were incorporated into these 

analyses: (1) temporal autocorrelation in freshwater and marine environments and (2) 

partial synchrony among populations in freshwater. Relative to (1), increasing temporal 

autocorrelation describes a situation in which good years are increasingly likely to be 
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followed by good years (and bad by bad). Such long-term cyclical patterns in climatic 

variables are well-described (Legendre 1993) and would be expected to influence fish 

mortality rates. Here I evaluated the influence of weaker temporal autocorrelation (d = 

0.3) in freshwater and marine environments on a metapopulation relative to a group of 

isolated populations. As expected, this reduced extinction probabilities in small 

populations and reduced the magnitude of the positive differences in the High to Low 

scenarios (less autocorrelation; Figure 2-8). The reversal in the Not Viable scenario was 

still apparent.  

Assumption 6: Environment-specific changes in productivity 

 In the original simulations, productivity among scenarios changed by adding a 

multiplier on both the parameters that describe freshwater production and at-sea mortality 

(i.e., both the number of animals produced in freshwater and then the number that return 

to spawn from the marine environment are reduced). However, it is possible that changes 

to productivity could result from threats to populations in either the marine or freshwater 

environment in isolation. For example, Atlantic salmon populations in rivers draining into 

the inner Bay of Fundy are characterized by extremely high at-sea mortality rates, 

estimated to be in excess of 95%. Population dynamics modeling predicts non-viable 

maximum lifetime reproductive rates and deterministic equilibrium sizes of zero related 

to these changes in at-sea mortality (Trzcinski et al. 2004). Alternately, threats such as 

impassable dams or acidification would be expected to substantially reduce the capacity 
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of freshwater environments to produce juveniles (Bowlby et al. 2014), independently of 

any conditions in the marine environment.  

 Here, I used the equilibrium calculations to determine the specific values of alpha 

(for freshwater) and at-sea mortality and mortality on repeat-spawners (for marine) that 

would lead to similar maximum lifetime reproductive rates as in the simulations 

presented. This is effectively a comparison of specific types of threats (either those 

affecting juveniles in freshwater or those affecting adults at sea) and whether or not 

metapopulation structure becomes more or less beneficial as related to the timing of 

changes in productivity. When threats affect populations exclusively in the marine 

environment, the qualitative pattern is essentially identical as in the main simulations 

(marine threats only; Figure 2-8). When threats only influence the capacity of spawners to 

produce recruits (i.e., alpha), overall extinction probabilities for small populations are 

reduced and any benefit of metapopulation structure to total abundance is very slight in 

the High to Extreme Low scenarios (freshwater threats only; Figure 2-8). This result 

would be related to equilibrium adult abundance for populations in each of these two 

sensitivity runs. For example: when only marine mortality increases, equilibrium 

abundance for adults in the Medium scenario remains comparable to the original Medium 

scenario (c.f. 1748 and 350 for large and small populations, respectively, with 1831 and 

366 from Table 1). When only freshwater production declines, equilibrium abundance for 

adults remains very high: 2410 and 482 for large and small populations, respectively. 

Biologically this suggests that straying becomes more influential to population 
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persistence when threats are affecting life stages characterized by density-independent 

survival.  

Assumption 7: Quasi-extinction threshold 

For natural populations, there is extensive debate on how true extinction is 

measured or characterized (e.g., Dulvy et al. 2004). The idea of an extinction threshold 

(the minimum amount of habitat area, connectivity and quality required for a species or 

population to persist; Kuussaari et al. 2009) would be closely related to the idea of a 

minimum viable population size (typically defined as a percentage of the original 

population size (e.g., 80%) persisting for a given number of years (e.g., 20 years); Traill 

et al. 2007). Below such thresholds, populations are thought to be functionally extinct 

(i.e., will decline to zero), although there may be a time lag between reaching these 

thresholds and actual extinction (Tilman et al. 1994). Empirical estimation is extremely 

uncertain and is context-dependent, both on the species and on localized environmental 

processes (Traill et al. 2007). Estimating the minimum number of individuals required in 

a population to ensure reproductive output would be a similar problem to the thresholds 

identified above, in that it would likely be extremely uncertain and context-dependent. I 

originally used a quasi-extinction threshold of 20 individuals to represent a population 

size below which spawning would not take place. Ideally this would represent 10 males 

and 10 females in the population, although demographic stochasticity could be significant 

at such small population sizes and could markedly skew the sex ratio (Simberloff 1998). 

Here, I have compared those results to ones using a quasi-extinction threshold of 2. 
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Biologically, only two individuals are required to produce offspring (one male and one 

female), although the chances of them successfully spawning in a large river system may 

be low. Changing the quasi-extinction threshold reduced the overall extinction risk of 

individual populations (similar to the autocorrelation sensitivity analysis above), and 

meant that metapopulation structure had maximum benefit in the Extreme Low scenario 

(low quasi-extinction; Figure 2-8). However, abundance in isolated populations was still 

higher than in a metapopulation in the Not Viable scenario. 

Assumption 8: Survival of strays 

To ensure that the structure of the simulation models for metapopulations and 

isolated populations were the same, reproductive output of strays and homing individuals 

was the same and no additional mortality affected individuals as they strayed. Given that 

there is the potential that some individuals leave the metapopulation due to imprecise 

homing (Keefer & Caudill 2014), that the additional energy strays expend during 

migration causes a low level of mortality (Bowler & Benton 2005, Bonte et al. 2012), or 

that individuals have slightly lower fitness in non-natal habitat (Rieman & Dunham 2000, 

Pfluger & Balkenhol 2014), I applied a low mortality rate (5%) to strays. The results from 

this sensitivity analysis very closely mirror the main simulation results in chapter two, 

although the actual values for the differences at each level of productivity are smaller; 

less positive or less negative as compared to the equivalent scenario in the chapter text 

(5% mortality; Figure 2-8).  
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Appendix 4-1: Evaluation of the microsatellite data relative to 

assumptions 

I used Micro-checker version 2.2.3 to test for null alleles, scoring error and allele 

drop-out (van Oosterhout et al. 2004). Null alleles are those that do not amplify at a 

specific locus, producing false homozygotes; scoring error can arise from PCR 

amplifications that produce stutter products which differ from the original allele by 

multiples of the repeated microsatellite sequence; allele drop-out relates to preferred 

amplification of small alleles (van Oosterhout et al. 2004, Pompanon et al. 2005). Any of 

these errors can cause apparent deviations from Hardy-Weinburg equilibrium (see 

below). At each locus and for each population, micro-checker did not find evidence for 

scoring error due to stuttering or large allele drop-out. Table A4-1-1 summarizes the 

evidence for null alleles at individual loci for each population analyzed. The rescaled 

gene frequencies, using the Brookfield 1 method to account for null alleles (van 

Oosterhout et al. 2004), show relatively small differences as compared to the un-corrected 

gene frequencies. Using the rescaled frequencies to calculate Fst had no measureable 

effect on the resulting distance matrix relative to using the observed data. Therefore, the 

observed data were used for the analyses presented in chapter four. 

I tested for Hardy-Weinburg (HW) equilibrium over loci in all sampled 

populations using the R package ‘adegenet’ (Jombart 2008). Hardy-Weinburg equilibrium 

stipulates that the amount of genetic variation in a population should remain constant in 

the absence of selection, which means that the expected gene frequencies for a locus with 
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two alleles equates to: 𝑝2 + 2𝑝𝑞 + 𝑞2 = 1. At each locus within each population, 8000 

Monte-Carlo simulations were used to calculate p-values for the chi-square test of 

observed vs. predicted gene frequencies. Significance was assessed relative to a 

Bonferroni-corrected critical p-value (0.05/17). Results are given in Table A4-1-2.  

Linkage disequilibrium occurs if there is non-random association of alleles at 

multiple loci. I tested for potential linkage disequilibrium using LinkDos (Garnier-Gere & 

Dillmann 1992) from GenePop 4.2 (Raymond & Rousset 1995; Rousset 2008). From the 

17 microsatellite loci, there are 136 unique combinations of loci pairs per population, or 

1496 comparisons in total from the 11 populations. At an alpha of 0.05, 75 comparisons 

might be expected to be significant due to chance. There were only 43 significant 

comparisons, which are given in Table A4-1-3. 
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Table A4-1-1. Loci and populations in which evidence for null alleles were found. Each instance is highlighted in yellow. 

 

Round 

Hill 

Salmon 

River 

(Digby 

County) Tusket Medway LaHave Gold Musquodoboit Moser 

St. 

Mary's 

Country 

Harbour 

Salmon 

River 

(Guys. 

County) 

Locus 1  no no no no no no no no no no no 

Locus 2  no no no no no no no no no no no 

Locus 3  no no no no no no no no no no no 

Locus 4  no no no no no no no no no no no 

Locus 5  no no no no no no no no no no no 

Locus 6  no no no no no no no no no no no 

Locus 7  no yes no no no no no no no no no 

Locus 8  no no no no no no no no no no no 

Locus 9  no no no no yes yes no yes yes yes no 

Locus 

10  no no no no no no no no no no no 

Locus 

11  no no no no no no no no no no no 

Locus no no no no no no no no no no no 
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Round 

Hill 

Salmon 

River 

(Digby 

County) Tusket Medway LaHave Gold Musquodoboit Moser 

St. 

Mary's 

Country 

Harbour 

Salmon 

River 

(Guys. 

County) 

12  

Locus 

13  no no no no no no no no no no no 

Locus 

14  no no no no no no no no no no no 

Locus 

15  no no no no no no no no no no no 

Locus 

16  no no no no no no no no no no no 

Locus 

17  no no no no no no no no no no no 
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Table A4-1-2. Loci that showed significant deviation from Hardy-Weinburg equilibrium (p-values highlighted in yellow) based 

on a permutation test. 

River L 1 L 2 L 3 L 4 L 5 L 6 L 7* L 8 L 9** L 10 L 11 L 12 L 13 L 14 L 15 L 16 L 17 

Round Hill 0.965 0.012 1 0.71 0.883 1 0.583 0.358 0.905 0.574 0.004 0.012 0.921 0.49 1 0.028 0 

Salmon River 

(Digby Co.) 0.815 0.175 1 0.886 1 0.961 0.006 0.869 0 0.056 0 0.278 0 0.632 0.118 0.935 0.41 

Tusket 0.498 0.921 0.305 0.615 1 0.782 0.895 0.932 0.191 0.999 0.531 0.639 0.671 0.884 0.479 0.214 1 

Medway 0.983 1 0.473 1 0.407 0.999 0.461 0.952 1 0.986 0.655 0.972 0.995 0.547 0 0.869 0.924 

LaHave 1 0 1 1 1 0.847 0.954 0.998 0.023 0.915 0.867 0.075 0.093 0.946 0.523 0.075 0.242 

Gold 0.833 0.514 0.792 0.999 0.991 1 0.632 1 0 0.464 0.967 0.988 0.2 0.963 0.804 0.834 0.251 

Musquo- 

doboit 0.015 0 0.432 0.129 0.98 0.816 0.987 1 0.736 1 0.832 0.726 0.873 0 0.301 0.902 1 

Moser 0.397 0.105 0.116 0.457 0.695 0.908 0.999 1 0 0.974 0.091 0 0 0.967 0.999 0.524 0.01 

St. Mary's 1 1 0.094 1 0.912 0.998 0.915 0.995 0.328 1 0.943 0.029 1 0.496 0.857 0.561 0.978 

Country 

Harbour 0.314 1 0.953 1 0.154 1 1 0.074 0.001 1 0.999 0.17 0.182 0.97 0.389 0.973 0 

Salmon River 

(Guys. Co.) 0.985 0 1 0.612 0.06 1 0.986 0.998 0.989 1 0.027 0 0 0.825 1 0.03 0 

* Salmon River (Digby County) also had null alleles at Locus 7 

** Country Harbour, St. Mary’s, Moser, Gold and LaHave Rivers had null alleles at Locus 9 
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Table A4-1-3. Non-random associations of alleles after Bonferroni correction (i.e., only 

significant results) from the 17 microsatellite loci for each of the 11 populations analyzed 

using LinkDos. 

Population Comparison P-Value S.E. 

Round Hill Loc5 Loc12 0.000015 0.000015 

Round Hill Loc10 Loc12 0.000055 0.000055 

Round Hill Loc9 Loc13 0 0 

Salmon River (Digby) Loc1 Loc2 0 0 

Salmon River (Digby) Loc4 Loc5 0 0 

Salmon River (Digby) Loc5 Loc6 0 0 

Salmon River (Digby) Loc6 Loc7 0 0 

Salmon River (Digby) Loc4 Loc10 0 0 

Salmon River (Digby) Loc5 Loc10 0 0 

Salmon River (Digby) Loc6 Loc11 0.00009 0.000066 

Salmon River (Digby) Loc1 Loc13 0 0 

Salmon River (Digby) Loc2 Loc13 0 0 

Salmon River (Digby) Loc10 Loc13 0 0 

Salmon River (Digby) Loc11 Loc16 0.000014 0.000014 

Salmon River (Digby) Loc11 Loc17 0 0 

Tusket Loc4 Loc5 0 0 

Tusket Loc1 Loc11 0 0 

Tusket Loc11 Loc12 0 0 

Tusket Loc11 Loc14 0.000263 0.000263 

Tusket Loc11 Loc15 0.000306 0.000142 

Tusket Loc8 Loc17 0 0 

Medway  Loc14 Loc16 0.000156 0.000102 

Gold Loc8 Loc12 0.000241 0.000241 

Gold Loc10 Loc13 0 0 

Musquodoboit Loc2 Loc10 0 0 

Musquodoboit Loc2 Loc12 0 0 

Moser Loc2 Loc5 0 0 

Moser Loc4 Loc5 0.000011 0.000011 

Moser Loc1 Loc6 0.000024 0.000024 

Moser Loc5 Loc6 0 0 

Moser Loc5 Loc7 0 0 

Moser Loc2 Loc10 0 0 

Moser Loc6 Loc10 0.000264 0.000201 

Moser Loc7 Loc10 0.000126 0.00009 

Moser Loc4 Loc11 0.000145 0.000145 

Moser Loc6 Loc11 0 0 
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Population Comparison P-Value S.E. 

Moser Loc10 Loc12 0.00016 0.00016 

Moser Loc8 Loc17 0 0 

St. Mary's Loc4 Loc12 0.000363 0.000248 

Country Harbour Loc2 Loc16 0 0 

Country Harbour Loc7 Loc16 0 0 

Salmon River 

(Guysborough) Loc11 Loc12 0 0 

Salmon River 

(Guysborough) Loc1 Loc14 0.000339 0.000268 
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Appendix 4-2: Spatial data and watershed characteristics 

The spatial and geographic data sources as well as data processing steps are fully 

described in the Appendices that accompany Bowlby et al. (2014). All geographic 

measurements made of spatial data used Universal Transverse Mercator projection, 

NAD83 datum for Zone 20 North. Tabular queries to aggregate information and generate 

basic statistical information (e.g., sum, mean) were carried out primarily using 

Microsoft® Access 2002 software (service pack 3). Important characteristics of the 

spatial data include: (1) calculated stream length includes inferred flow segments through 

all waterbodies large enough to be represented as polygons, (2) the bedrock geology types 

were aggregated into five general categories to give proportionately less weight to minor 

formations, while the surficial geology types were not aggregated, (3) the natural 

disturbance regimes were based on a wide variety of environmental data related to forest 

structure and composition, and are thus partially redundant with other data types included 

in the analyses (4) several of the land use codes in the Forest Inventory Data used to 

evaluate land use were reclassified to represent larger groupings of human activity types, 

and (5) data used to characterize dams as well as historic mining activities were known to 

be incomplete. The data sources are given in Table A4-2-1. River-specific values and 

variables for the five types of landscape data describing watersheds used in the NMDS 

analyses are given in Tables A4-2-2 to A4-2-6, inclusive. Values for each of the threats 

categories are given in Table A4-2-7.
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Table A4-2-1. Description and data sources of information used in the geographic analyses of watersheds of the Southern 

Upland. All on-line data accessed between October 15, 2011 and January 15, 2012, unless otherwise noted. 

 

Description Data Source / Data Credit 

Hydrology – rivers and water bodies  

GeoBase’s National Hydro Network (NHN), Level 1, Edition 1 / Natural Resources 

Canada  

Secondary Watersheds 

Custom Data Product derived from NSTDB
1
 obtained from Nova Scotia Department 

of Environment 

Digital Elevation Data (DEM) GeoBase’s Canadian Digital Elevation Data (CDED) 

Bedrock Geology, 

DP ME 43, Version 2, 2006 

Nova Scotia Department of Natural Resources – Mineral Resources Branch 

Surficial Geology 

DP ME 36, Version 2, 2006 

Nova Scotia Department of Natural Resources – Mineral Resources Branch 

Forest Inventory Cycle 2 & 3 Nova Scotia Department of Natural Resources – Forestry Branch 

Ecological Land Classification Nova Scotia Department of Natural Resources – Forestry Branch 

Roads GeoBase’s National Road Network, Edition 8.0 / Natural Resources Canada  

Dams – NHN  GeoBase’s National Hydro Network (NHN), Level 1, Edition 1 / Natural Resources 

http://www.geobase.ca/geobase/en/data/nhn/index.html
http://www.gov.ns.ca/snsmr/land/products/topographic2.asp
http://www.geobase.ca/geobase/en/data/cded/description.html
http://www.gov.ns.ca/natr/meb/download/dp043.asp
http://www.gov.ns.ca/natr/meb/download/dp043.asp
http://www.gov.ns.ca/natr/meb/download/dp036.asp
http://www.gov.ns.ca/natr/meb/download/dp036.asp
http://www.gov.ns.ca/natr/forestry/gis/webmaps.asp
http://www.gov.ns.ca/natr/forestry/gis/elcdata.asp
http://www.geobase.ca/geobase/en/data/nrn/index.html
http://www.geobase.ca/geobase/en/data/nhn/index.html
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Description Data Source / Data Credit 

Canada 

Dams – NSE 

Nova Scotia Department of Environment and Fisheries and Oceans Canada, 

Maritimes Region, Habitat Protection and Sustainable Development Division (pers. 

comm., DFO–HPSD March 2011) 

Hydro Power Generating Stations Nova Scotia Power Inc. ((pers. comm. NSPI, February 6, 2012) 

Aquaculture – licensed marine sites 

in Nova Scotia 

Nova Scotia Department of Fisheries and Aquaculture 

Nova Scotia Abandoned Mine 

Openings (AMO) Database 

Nova Scotia Department of Natural Resources – Mineral Resources Branch 

Fall and spring trout stocking 

distribution lists for 2010, 2011 

Nova Scotia Department of Fisheries and Aquaculture 

 
1
 NSTDB = Nova Scotia Topographic Database. 

http://www.gov.ns.ca/fish/aquaculture/aquamap.shtml
http://www.gov.ns.ca/fish/aquaculture/aquamap.shtml
http://www.gov.ns.ca/natr/meb/links/amolinks.asp
http://www.gov.ns.ca/natr/meb/links/amolinks.asp
http://gov.ns.ca/fish/sportfishing/stocked/
http://gov.ns.ca/fish/sportfishing/stocked/
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Table A4-2-2. Area metrics describing watershed characteristics. Perimeter, stream 

length, inferred flow and total flow are in km, others in km
2
. Inferred flow refers to 

straight-line distances through water features considered to be polygons in ArcGIS. 

Inland water refers to lake and stillwater area. 

River Perimeter Area 

Stream 

length 

Total 

Flow 

Inferred 

flow 

Inland 

water 

Round Hill 84.37 122.12 50.01 35.59 85.6 3.59 

Salmon (Digby) 108.06 234.07 88.2 113.61 201.82 29.13 

Tusket 307.15 1456.22 497.2 692.47 1189.67 133.41 

Medway 296.01 1519.14 559.84 698.72 1258.56 130.58 

LaHave 258.69 1524.16 648.41 515.37 1163.78 85.61 

Gold 130.7 386.19 145.65 117.77 263.42 16.89 

Musquodoboit 248.55 719.08 734.26 213.38 947.64 24.19 

Moser 92.62 177.3 92.87 78.84 171.7 10.23 

St. Mary's 365.04 1336.82 1025.32 297.99 1323.31 38.41 

Country 

Harbour 79.91 183.47 142.92 43.88 186.8 6.16 

Salmon (Guys.) 111.46 298.71 180.05 95.12 275.16 14.46 
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Table A4-2-3. Surficial geology types given as proportions of watershed area. Formations were not grouped because even rare 

ones could have a large impact on watershed characteristics; for example, by providing isolated locations of less acidified 

water. Columns are: A – Alluvial, B – Bedrock, G – Glaciolac, M – Morraine, K – Kame, Mar– Marine, N – None, O – 

Organic, Ow – Outwash, R – Residuum, SD – Silty drumlin, ST – Silty till, StD – Stony drumlin, StT – Stony till. 

River A B G M K Mar N O Ow R SD ST StD StT 

Round Hill 0.460 1.924 0.005 6.612 0.472 0.423 0.000 1.264 0.580 0.000 13.254 10.937 0.000 64.069 

Salmon (Digby) 0.000 0.000 0.000 15.776 0.655 0.000 0.000 4.191 0.000 0.000 5.094 0.000 9.47 64.815 

Tusket 0.081 0.000 0.000 7.859 0.328 0.000 1.459 4.523 0.000 0.000 1.711 0.000 3.99 80.049 

Medway 0.053 5.028 0.000 3.307 0.61 0.000 0.641 3.509 0.156 0.000 10.491 2.044 2.157 72.004 

LaHave 0.454 11.03 0.049 4.118 0.924 0.000 2.012 2.889 0.008 0.018 15.489 21.372 0.031 41.605 

Gold 0.078 9.496 0.000 4.131 0.815 0.000 0.973 2.236 0.164 0.000 7.560 29.658 0.000 44.889 

Musquodoboit 5.733 9.154 0.407 3.043 0.305 0.000 0.861 2.773 0.582 0.000 0.575 38.829 0.000 37.737 

Moser 0.000 16.248 0.000 0.000 3.929 0.000 1.118 1.195 0.000 0.000 10.439 36.945 0.000 30.125 

St. Mary's 2.864 6.538 0.000 1.691 2.497 0.000 0.501 1.217 0.000 0.061 2.828 24.224 0.000 57.578 

Country Harbour 0.937 0.620 0.000 0.000 0.464 0.000 0.000 1.418 0.000 0.000 2.722 41.870 0.000 51.969 

Salmon (Guys.) 0.403 19.834 0.000 4.714 1.565 0.000 1.858 1.75 0.000 0.000 1.314 37.738 0.000 30.823 
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Table A4-2-4. Bedrock geology types given as proportions of watershed area, grouped 

into five major categories. Undivided represents areas which were not divided into 

specific formations.  

River Granite Other Sandstone Slate Undivided 

Round Hill 0.9774 0 0.0226 0 0 

Salmon (Digby) 0 0.0894 0 0.9106 0 

Tusket 0.2715 0.0434 0 0.6851 0 

Medway 0.2680 0.0202 0 0.7117 0 

LaHave 0.4981 0.0524 0 0.4495 0 

Gold 0.7704 0.1624 0 0.0671 0 

Musquodoboit 0.1036 0.2848 0 0.6116 0 

Moser 0 0 0 1 0 

St. Mary's 0.0323 0.2624 0 0.1571 0.5482 

Country 

Harbour 0.1160 0.0608 0 0.1735 0.6497 

Salmon (Guys.) 0.0412 0.6850 0 0.1061 0.1678 
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Table A4-2-5. Natural disturbance regime given as proportions of watershed area. 

Definitions are as follows: Open seral: ecosystems where site conditions restrict or limit 

tree growth (e.g., flooding, extreme wind exposure); Frequent: ecosystems which result in 

the rapid mortality of an existing stand and the re-establishment of a stand of even age; 

Gap: ecosystems where areas are seldom exposed to disturbances, but are characterized 

by stands with multiple age classes; Infrequent: ecosystems where stand initiating events 

(e.g., disturbance) characterize the development of the forest, but the interval between 

such events is long.  

River Frequent Gap Infrequent Open 

Round Hill 36.91 8.43 48.12 2.53 

Salmon 

(Digby) 16.11 29.01 36.20 5.58 

Tusket 38.10 13.71 32.89 5.63 

Medway 34.74 21.10 32.10 3.05 

LaHave 22.89 25.07 43.79 2.38 

Gold 15.81 25.25 50.99 3.34 

Musquodoboit 31.87 29.56 30.67 4.27 

Moser 53.59 30.46 8.510 1.65 

St. Mary's 39.71 29.47 26.26 1.57 

Country 

Harbour 30.26 18.73 47.18 0.24 

Salmon 

(Guys.) 21.16 56.10 16.90 0.62 
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Table A4-2-6. Topographical characteristics of each watershed based on a Digital 

Elevation Model with 20 m horizontal and 1m vertical resolution. Mean slope is in 

degrees, elevations (maximum, mean and standard deviation) are given in meters, and 

roughness refers to the mean standard deviation of the slope within a 5x5 cell window 

(i.e. 100 x 100 m) of a watershed.  

River 

Mean 

slope 

Max. 

elevation 

Mean 

elevation 

SD 

elevation Roughness 

Round Hill 3.68 265 169.94 48.05 1.66 

Salmon (Digby) 2.15 97 43.97 15.47 1.04 

Tusket 2.05 208 80.13 42.57 1.03 

Medway 2.25 269 116.00 50.62 1.20 

LaHave 2.92 288 156.09 53.27 1.43 

Gold 3.13 276 157.50 54.29 1.50 

Musquodoboit 3.52 221 92.28 49.59 1.68 

Moser 3.12 176 97.25 37.32 1.57 

St. Mary's 3.01 311 134.57 52.48 1.43 

Country 

Harbour 4.07 203 96.51 39.75 1.94 

Salmon (Guys.) 3.46 240 126.11 33.83 1.69 
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Table A4-2-7. Summary of the land use variables considered in these analyses, their abbreviations, and the threat indices (F = 

fragmentation, S = sedimentation, WQ = water quality) that they were evaluated relative to (as in Table 4-4). Impassable dams 

ins the percentage of stream length that is inaccessible; road density is the length of road (km) per km
2
 of watershed area; road 

crossings are a count of the number per 10 km of stream length; pH categories are defined below; agriculture, forestry and 

industry are percentages of the watershed area affected; and mines is a count of the total number of abandoned mines per km
2
 

of watershed area.  

 

Impassable 

dams 

Road 

density 

Road 

crossings 

pH 

category
4
 

Agriculture Forestry Industry Mines 

Abbreviation D Rd Rc P A F I M 

Index F S F F, WQ S WQ WQ WQ 

Salmon (Digby) 11.00 0.81 2.87 3 1.54 10.40 0.96 0.000 

Tusket 94.50 0.55 0.99 2 0.66 8.45 0.37 0.036 

Medway 17.70 0.74 1.69 3 0.90 9.36 0.71 0.284 

LaHave 0.00 0.87 3.09 3 2.64 9.09 0.80 0.006 

Gold 0.00 0.67 2.58 3 1.12 9.73 0.60 0.339 

Musquodoboit 16.20 0.91 3.47 4 7.43 15.35 0.63 0.054 

Moser 0.00 0.46 1.22 3 0.00 8.27 0.06 0.000 

St Marys 0.00 0.85 3.29 4 1.74 30.25 0.57 0.028 

Country Harbour 0.00 1.10 3.75 4 2.42 23.95 0.82 0.229 

Salmon (Guys) 0.00 0.59 2.58 4 0.67 15.52 0.79 0.030 

                                                 

4
 Estimated mean annual pH: 2 = 4.7-5.0, 3 = 5.1-5.4, 4 = above 5.4. Means were determined from monthly measurements at multiple sites 

distributed in tributaries throughout each watershed. Note that the expectation is that Atlantic salmon mortality would decrease with 

increasing pH; therefore, in analyses, the categories were recoded so that higher values represented rivers thought to experience higher 

mortality (i.e., 4 became 2 and 2 became 4). Also note that ‘4’ is an assumed category for Salmon River (Guysborough) on the basis of 

known geological patterns in the region as well as the categorization of geographically proximate rivers. 



 

245 

 

Appendix 4-3. Distance matrices used in the landscape genetic analyses 

Genetic distance matrix 

The genetic distance matrix was calculated from Nei’s pairwise Fst (Nei 1978). 

 

Country 

Harbour Gold LaHave Medway Moser Musquodoboit 

Salmon 

(Digby) 

St. 

Mary's Tusket 

Country 

Harbour 0.0000 

        Gold 0.2617 0.0000 

       LaHave 0.2866 0.1943 0.0000 

      Medway 0.2744 0.1458 0.1871 0.0000 

     Moser 0.2786 0.3230 0.3423 0.2798 0.0000 

    Musquodoboit 0.2727 0.2533 0.2406 0.2178 0.3515 0.0000 

   Salmon 

(Digby) 0.3486 0.2307 0.3169 0.1344 0.3373 0.2893 0.0000 

  St. Mary's 0.2103 0.1495 0.2190 0.1329 0.2439 0.1905 0.2332 0.0000 

 Tusket 0.3214 0.2426 0.2433 0.1628 0.3064 0.2927 0.1891 0.2005 0.0000 
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Isolation by Distance model 

The Euclidean matrix showing pairwise geographical distances (IBD model) was calculated from the coastal straight-line 

distance between each pair of rivers, where coastal distance represented a minimum distance over water. 

 

Country 

Harbour Gold LaHave Medway Moser Musquodoboit 

Salmon 

(Digby) 

St. 

Mary's Tusket 

Country 

Harbour 0.00 

        Gold 821.60 0.00 

       LaHave 956.88 198.02 0.00 

      Medway 1034.06 325.75 147.01 0.00 

     Moser 302.82 604.15 760.23 855.61 0.00 

    Musquodoboit 523.28 375.30 543.74 651.05 264.23 0.00 

   Salmon 

(Digby) 1406.68 989.20 860.85 744.95 1336.23 1206.74 0.00 

  St. Mary's 168.03 717.87 865.17 952.72 153.12 395.25 1385.74 0.00 

 Tusket 1318.52 825.99 687.71 567.13 1218.14 1068.70 213.02 1280.75 0.00 
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Isolation by Environment model 

The Euclidean matrix showing pairwise environmental distances (IBE model) was calculated from centroids in multivariate 

space; where the environmental input variables that defined the centroids were calculated from five types of landscape data 

(Appendix 4-2; Tables A4-2-2 to A4-2-6, inclusive). 

 

Country 

Harbour Gold LaHave Medway Moser Musquodoboit 

Salmon 

(Digby) 

St. 

Mary's Tusket 

Country 

Harbour 0.00 

        Gold 35.00 0.00 

       LaHave 38.00 3.00 0.00 

      Medway 40.00 5.00 2.00 0.00 

     Moser 9.01 26.00 29.00 31.00 0.00 

    Musquodoboit 20.01 15.01 18.01 20.01 11.01 0.00 

   Salmon 

(Digby) 55.00 20.01 17.01 15.01 46.01 35.00 0.00 

  St. Mary's 3.02 32.00 35.00 37.00 6.01 17.00 52.00 0.00 

 Tusket 52.00 17.00 14.00 12.00 43.00 32.01 3.07 49.00 0.00 
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Appendix 4-4. An example of Reciprocal Causal Modeling 

  I developed this example in relation to the identification of the water quality index 

described in chapter four. I am also going to present data as well as equations directly in 

the text to try to clarify the method. The threats variables which are relevant to this 

example are the river-specific values for pH category, the percentage of each watershed 

affected by forestry activity, and the density of abandoned mine openings (#/km
2 

of 

stream length). I have taken these from Table A4-2-7 (Appendix 4-2), and they are shown 

below.   

 

pH 

category
5
 

Forestry Mines 

Abbreviation P    F M 

Index F, WQ    WQ WQ 

Salmon (Digby) 3 10.40 0.000 

Tusket 2 8.45 0.036 

Medway 3 9.36 0.284 

LaHave 3 9.09 0.006 

Gold 3 9.73 0.339 

Musquodoboit 4 15.35 0.054 

Moser 3 8.27 0.000 

St Marys 4 30.25 0.028 

Country Harbour 4 23.95 0.229 

Salmon (Guys) 
 

15.52 0.030 

 

                                                 

5
 Estimated mean annual pH: category 2 = 4.7-5.0, category 3 = 5.1-5.4, category 4 = above 5.4. 

Means were determined from monthly measurements at multiple sites distributed in tributaries 

throughout each watershed. Note that the expectation is that Atlantic salmon mortality would 

decrease with increasing pH; therefore, in analyses, the categories were recoded so that higher 

values indicated rivers thought to experience higher mortality (i.e., 4 became 2 and 2 became 4). 

Also note that ‘4’ is an assumed category for Salmon River (Guysborough) on the basis of known 

geological patterns in the region as well as the categorization of geographically proximate rivers. 
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 There are a total of seven possible tables that can be made from these variables, 

representing groupings of variables alone or in combination. The first two examples 

would be: FMP (i.e., all of the variables; the table shown above), FM (i.e., Forestry and 

Mines exclusively; the table shown below).  

 
Forestry Mines 

Abbreviation     F M 

Index     WQ WQ 

Salmon (Digby) 10.40 0.000 

Tusket 8.45 0.036 

Medway 9.36 0.284 

LaHave 9.09 0.006 

Gold 9.73 0.339 

Musquodoboit 15.35 0.054 

Moser 8.27 0.000 

St Marys 30.25 0.028 

Country Harbour 23.95 0.229 

Salmon (Guys) 15.52 0.030 

 

For analyses using Reciprocal Causal Modeling, each of the 7 potential threats tables 

needed to be turned into a distance matrix. To do this, I first scaled the values (𝑥𝑖) of each 

variable between zero and one, following the equation: (𝑥𝑖 − 𝑚𝑖𝑛(𝑥))/(𝑚𝑎𝑥(𝑥) −

𝑚𝑖𝑛(𝑥)). As discussed in chapter four, scaling the variables this way ensures that all 

threat variables contribute equally in the analysis. Although it would have been possible 

to try multiple alternate ways of weighting each variable (e.g., Cushman et al. 2006), I did 

not because of the complexity it would have added to the analysis.  
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Here, I have shown the scaled values for the Forestry variable: 

 
Forestry 

Abbreviation F 

Index WQ 

Salmon (Digby) 0.097 

Tusket 0.008 

Medway 0.049 

LaHave 0.037 

Gold 0.066 

Musquodoboit 0.322 

Moser 0.000 

St Marys 1.000 

Country Harbour 0.713 

Salmon (Guys) 0.330 

 

The above table shows the data which were used to calculate the ‘F’ threat model. From 

this table, the straight-line distance between each pair of points (𝑝𝑖, 𝑞𝑖) was transformed 

into Euclidean distance following:  

𝑑(𝑝𝑖, 𝑞𝑖) = √(𝑞𝑖 − 𝑝𝑖)
2 

As an example, the Euclidean distance between the Medway River and the LaHave River 

becomes:  

𝑑(𝑀𝑒𝑑𝑤𝑎𝑦, 𝐿𝑎𝐻𝑎𝑣𝑒) = √(0.049 − 0.037)2 = 0.012 

The entire distance matrix representing the F model is: 

  



 

251 

 

 

 

CH G LH MED M MUSQ SD SMR T 

Country 

Harbour 

(CH) 

0         

Gold 

(G) 

0.647 0        

LaHave 

(LH) 

0.676 0.029 0       

Medway 

(MED) 

0.664 0.017 0.012 0      

Moser 

(M) 

0.713 0.066 0.037 0.050 0     

Musquo- 

doboit 

(MUSQ) 

0.391 0.256 0.285 0.273 0.322 0    

Salmon  

Digby 

(SD) 

0.616 0.030 0.060 0.047 0.097 0.225 0   

St. 

Mary's 

(SMR) 

0.287 0.934 0.963 0.950 1.000 0.678 0.903 0  

Tusket 

(T) 

0.705 0.058 0.029 0.041 0.008 0.314 0.089 0.992 0 

 

I used this table, identified as the F model, as one of the candidates for Reciprocal Causal 

Modeling.  

 Two-step Reciprocal Causal Modeling as proposed by Wasserman et al. (2010) 

directly compares highly correlated models to each-other using partial Mantel tests. Such 

reciprocal comparisons have been applied in situations where the data being used in 

alternate models (e.g., distance matrices representing threats, environmental 

characteristics, landscape resistance, or geography) are derived from varying 

combinations of a specific suite of variables (e.g., Cushman et al. 2006). The method 

becomes two steps when Mantel and partial Mantel tests are first used to identify a 
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candidate model that is subsequently used in the reciprocal comparisons (Wasserman et 

al. 2010). This can substantially reduce the complexity of the analyses because reciprocal 

comparisons of each individual model with all other candidate models may no longer be 

necessary.  

For the first step in the analyses of threats contributing to the Water Quality index 

for chapter four, I identified a candidate model using Mantel and partial Mantel tests. As 

detailed in Guillot & Rousset (2013), Mantel tests derive from two distance matrices 

(𝐷𝑖,𝑗
𝑥 ) and (𝐷𝑖,𝑗

𝑦
), and the test statistic r becomes: = ∑ 𝐷𝑖,𝑗

𝑥 𝐷𝑖,𝑗
𝑦

 . To assess significance of 

the correlation, this test statistic is compared to a distribution of randomly permuted 

values of one of the matrices, where I calculated:  𝑟̃ = ∑ 𝐷̃𝑖,𝑗
𝑥 𝐷𝑖,𝑗

𝑦
 10,000 times. The p-

value becomes the proportion of permutations that lead to a higher correlation coefficient 

than the test statistic (Oksanen et al. 2013). Partial Mantel tests control for the effect of a 

third distance matrix when calculating the test statistic, but the permutation procedure is 

the same.  

 For the analysis in chapter four, the threat model with the highest correlation with 

genetic distances included abandoned mine density and pH category (MP), with r = -

0.383 (p-value = 0.015) in the Mantel test (i.e., Gene~MP), and r = -0.435 (p-value = 

0.011) in the partial Mantel test after controlling for any influence of IBE on genetic 

distance (i.e., Gene~MP|IBE; Table 4-4). The second step of the analysis was based on 

reciprocal comparisons (i.e., two sets of comparisons) among the threats models 

themselves. For the first set, I calculated the correlation between genetic distance and the 

MP distance matrix, after controlling for the effect of each alternate threat distance matrix 
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for the Water Quality index (columns labelled ‘Chosen|Alternate’ in Table 4-4). In the 

order that they are presented in Table 4-4, the partial Mantel tests became: 

Gene~MP|FMP, Gene~MP|FM, Gene~MP|FP, Gene~MP|F, Gene~MP|M, and 

Gene~MP|P. As discussed in the description of the method, the expectation is that a better 

model would have a larger and significant r value in each of these comparisons 

(Wasserman et al. 2010). For the second set of comparisons, I tested for residual 

correlations between genetic distance and the alternate threat distance matrices after 

controlling for the influence of the chosen model (columns labeled ‘Alternate|Chosen’ in 

Table 4-4). Here, the partial Mantel tests were: Gene~FMP|MP, Gene~FM|MP, 

Gene~FP|MP, Gene~ F|MP, Gene~M|MP, and Gene~P|MP. As discussed in the 

description of the method, the expectation is that none of the alternate models will 

demonstrate a significant correlation with genetic distance after the effect of the chosen 

model is accounted for (Wasserman et al. 2010). Both of these expectations are met 

relative to the Water Quality index (Table 4-4), so following Cushman et al. (2013), I 

considered the MP model to be significantly better than the competing threats models, 

with the caveat discussed in the methods that such tests can be prone to Type I error. 

However, even if I did not consider the difference to be significant, the simulations in 

Cushman et al. (2013) suggest that the relative magnitudes of the r values in the 

reciprocal tests can still be used to argue that the chosen model is the best representation 

of a threat index. 
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Appendix 5-1. Electrofishing methodology and data 

The electrofishing methods implemented on various rivers between 1995 and 2005 

were not standardized, differing relative to survey objectives and rivers. Open sites with 

an estimated catchability, depletion surveys and mark-recapture surveys were all used to 

estimate fry (age-0) and parr (age-1+) density. However, depletion surveys tended to be 

done on a limited number of sites within a watershed prior to 2000 (Table A5-1-1, 

Appendix 5-1), and the vast majority of the data used either open sites or mark-recapture 

(Table A5-1-1, Appendix 5-1). For both open site and mark-recapture surveys, sites were 

fished in an upstream direction and no barrier nets were used. For depletion surveys, 

barrier nets were often used to block off the lower and upper boundaries of a site, and 

then sites were fished either in an upstream or downstream direction. Between three and 

five passes were done at each site, where the last pass was one in which very few (e.g., < 

10) or no salmon were captured. Traditionally for salmon assessment, a Peterson estimate 

would be used to calculate densities at mark-recapture sites, and catches at open sites 

(from the same river and year) would be multiplied by mean capture efficiency and scaled 

by site area (e.g., Bowlby & Gibson 2012). The mean capture efficiency used for 

assessments in a specific year was averaged from that year’s and the previous year’s 

estimates at mark-recapture sites (Bowlby & Gibson 2012). Similarly for barrier sites, 

multiple pass depletion methods (e.g., Schwarz & Seber 1999) have been used to estimate 

juvenile densities by age directly for each site. Due to differences in survey methods 

throughout the dataset, and because I was interested in total juvenile density at each site 
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(not partitioned by age class), I did not follow the methods that had been used previously 

to calculate juvenile densities in annual assessments. 

For comparability among years, surveys and rivers, I calculated total juvenile 

density from the number of salmon captured in the first pass of each survey, multiplied by 

capture efficiency (q) and scaled by site area. Capture efficiency is defined as the 

proportion of the total abundance of juvenile salmon captured on the first electrofishing 

pass at a site. Thus it was necessary to account for differences in capture efficiency (q) 

among methods. Here, I used all mark-recapture surveys in all rivers and years to estimate 

a median capture efficiency (q = 0.34) that was applied to all open sites and mark-

recapture surveys (Table A5-1-1, Appendix 5-1). Capture efficiency for these two survey 

methods would be expected to be similar because of the way in which sites would have 

been sampled (i.e., fishing in an upstream direction without barrier nets). Similarly, I used 

all depletion surveys in all rivers and years to calculate a median capture efficiency for 

multiple pass surveys (q = 0.56). Because multiple pass sites typically used barrier nets, I 

expected that capture efficiencies from these surveys would have been higher.  
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Table A5-1-1. Summary of the electrofishing dataset, showing the rivers, the site numbers, which years they were 

electrofished, and which method was used (‘O’: open site, ‘MR’: mark-recapture, and ‘M’: multi-pass). Blank cells represent 

years in which no survey took place at a specific site. 

River Site 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 

East (Chester) EstCh001 O O 

         East (Chester) EstCh002 O O 

         East (Chester) EstCh003 O O 

         East (Chester) EstCh004 O O 

         East (Chester) EstCh005 O O 

         East (Chester) EstCh006 O O 

         East (Chester) EstCh008 O O 

         East (Chester) EstCh009 M O 

         East (Chester) EstCh010 O O 

         East (Chester) EstCh011 O O 

         East (Chester) EstCh012 M O 

         East (Chester) EstCh013 M 

 

O 

  

O 

     East (Chester) SU27B M M O   O O           

Gold River Gold001 

     

O 

   

O MR 

Gold River Gold002 M 

     

O 

  

O M 

Gold River Gold003 

 

M 

       

MR MR 

Gold River Gold004 

         

MR MR 

Gold River Gold005 

      

O 

  

MR MR 

Gold River Gold007 

      

O 

  

MR M 

Gold River Gold009 

         

MR MR 

Gold River Gold010 

      

O 

  

O MR 

Gold River Gold011 

         

O O 

Gold River Gold012 

         

O MR 

Gold River Gold014 

          

O 
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River Site 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 

Gold River Gold021             O         

LaHave River LHav001 

    

MR 

      LaHave River LHav002 MR 

 

MR 

 

O O O O O O O 

LaHave River LHav005 MR 

 

MR 

 

O 

      LaHave River LHav008 MR 

 

MR MR MR O MR MR 

 

MR MR 

LaHave River LHav009 MR 

          LaHave River LHav010 MR 

 

MR 

        LaHave River LHav014 O 

          LaHave River LHav016 MR 

          LaHave River LHav022 MR 

          LaHave River LHav028 MR 

          LaHave River LHav031 MR 

   

O O 

     LaHave River LHav032 O 

          LaHave River LHav036 MR 

          LaHave River LHav039 MR 

          LaHave River LHav040 O 

          LaHave River LHav042 MR 

          LaHave River LHav048 

       

MR 

   LaHave River LHav101 O 

  

MR MR O M MR MR MR MR 

LaHave River LHav102 

  

MR MR 

 

O MR MR MR MR MR 

LaHave River LHav103 MR 

 

MR MR 

 

O MR MR MR O MR 

LaHave River LHav104 MR 

 

MR 

  

O O O O O O 

LaHave River LHav105 MR 

   

MR O MR MR MR MR MR 

LaHave River LHav106 MR 

 

MR MR MR O MR MR MR MR MR 

LaHave River LHav107 MR 

 

MR MR 

 

O MR MR MR MR MR 

LaHave River LHav108 MR 

 

MR MR MR O MR MR MR MR MR 

LaHave River LHav109 MR 

 

MR MR MR O M MR MR MR MR 
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River Site 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 

LaHave River LHav110 MR 

 

MR MR MR O MR MR MR O MR 

LaHave River LHav111 MR 

 

MR MR MR O O O MR O O 

LaHave River LHav112 MR 

  

MR MR O M MR 

 

MR MR 

LaHave River LHav113 MR 

 

MR 

  

O M MR 

 

MR MR 

LaHave River LHav114 MR   MR MR MR O M MR   MR MR 

Liscomb Lisc001 

  

MR O O 

      Liscomb Lisc002   NA         

Liscomb Lisc005 

  

MR 

  

MR 

     Liscomb Lisc007 

  

O 

        Liscomb Lisc009   NA         

Liscomb Lisc013     O                 

Medway River Medw101 

      

O 

 

O 

 Medway River Medw104 

        

O 

 Medway River Medw108 

      

MR 

   Medway River Medw123 

      

O 

   Medway River SU20A 

     

O 

     Medway River SU20B 

     

O 

     Medway River SU20C           O   MR       

Middle (Chester) Midd003 O O 

         Middle (Chester) Midd004 M M 

         Middle (Chester) Midd008 O O 

         Middle (Chester) SU26A 

     

O 

     Middle (Chester) SU26B           O           

Musquodoboit MQ8811 

 

MR 

  

O 

      Musquodoboit MQ8812 

 

MR 

  

MR 

      Musquodoboit MQ8813.1 

   

O 
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River Site 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 

Musquodoboit MQ8815.1 MR 

         Musquodoboit MQ8819.2 MR 

         Musquodoboit MQ882 

    

MR 

      Musquodoboit MQ8820.1 MR 

         Musquodoboit MQ8821.6 MR 

         Musquodoboit MQ883.1 

    

O 

      Musquodoboit MQ884 

 

MR 

  

MR 

      Musquodoboit MQ888 

 

MR 

  

MR O 

     Musquodoboit MQ8883 

 

MR 

  

MR 

      Musquodoboit SU40A           O           

Petite SU21A 

     

O 

     Petite SU21B           O           

Petite SU21C      O      

Petite SU21D      O      

Petite SU21E      O      

Salmon (Guys. Co.) SrGuy005 

 

O 

    

O 

    Salmon (Guys. Co.) SrGuy008 

 

O 

    

O 

    Salmon (Guys. Co.) SrGuy010 

 

O 

    

O 

    Salmon (Guys. Co.) SrGuy011 

 

O 

    

O 

    Salmon (Guys. Co.) SrGuy014 

 

O 

    

O 

    Salmon (Guys. Co.) SrGuy015 

      

M 

    Salmon (Guys. Co.) SrGuy016 

 

O 

    

O 

    Salmon (Guys. Co.) SrGuy017 

 

O 

    

O 

    Salmon (Guys. Co.) SrGuy019   O         O         

Salmon (Port 

Dufferin) SalPD001 

        

O 

  Salmon (Port SalPD002 

        

O 
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River Site 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 

Dufferin) 

Salmon (Port 

Dufferin) SalPD004 

        

O 

  Salmon (Port 

Dufferin) SalPD006 

     

O 

  

O O 

 Salmon (Port 

Dufferin) SU50B           O     O     

St. Mary's River STMR8510.2 MR MR O MR O O MR O O O 

 St. Mary's River STMR8510.8 MR MR MR O MR O MR MR 

  

O 

St. Mary's River STMR853.2 MR 

 

MR MR MR O 

     St. Mary's River STMR854 MR MR MR MR MR O MR MR MR MR MR 

St. Mary's River STMR855.1 MR MR MR MR MR O 

 

MR M MR MR 

St. Mary's River STMR857.1 MR 

          St. Mary's River STMR858.1 O O O MR O O O O O O O 

St. Mary's River STMR859.4 

 

MR MR MR O O MR O O O 

St. Mary's River STMR863 MR 

 

MR MR MR 

 

MR MR MR MR 

 St. Mary's River STMR864 MR MR 

         St. Mary's River STMR865 MR 

          St. Mary's River STMR867 MR MR MR MR MR O MR MR MR MR MR 

St. Mary's River STMR922 MR 

          St. Mary's River STMR923 MR 

 

MR 

   

MR MR MR O MR 

St. Mary's River STMR924 MR 

 

MR MR MR O MR MR MR O MR 

St. Mary's River STMR925.1+2 

 

MR MR MR 

 

MR MR MR MR MR 

St. Mary's River STMR928 MR MR   MR MR O MR MR MR MR   

West (Sheet 

Harbour) SU47 O O O MR O O 

     West (Sheet 

Harbour) SU47C MR 

  

MR 

 

O 
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River Site 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 

West (Sheet 

Harbour) WestSH002 MR MR 

 

MR 

      West (Sheet 

Harbour) WestSH005 O O MR MR MR 

      West (Sheet 

Harbour) WestSH007 O 

 

O 

        West (Sheet 

Harbour) WestSH011 O O O               
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Appendix 5-2. Details on spatial data layers and analyses 

 The spatial data layers used in these analyses were originally compiled and 

analyzed at a watershed scale in Bowlby et al. (2014) as well as in chapter four. All 

geographic measurements made from these spatial data used Universal Transverse 

Mercator projection, NAD83 Datum for Zone 20 north.  

Watershed boundaries and flow network 

Watershed boundaries and the associated flow network formed the basis for my 

analyses of the electrofishing data relative to the physical and geological characteristics of 

watersheds, as well as the extent of human impact in freshwater environments. Because 

my research was an extension of that presented in Bowlby et al. (2014), I decided to use 

the same spatial data layers to characterize watershed boundaries and the flow network. 

Thus, I used the Secondary Watershed Layer developed by the Nova Scotia Department 

of the Environment to describe watershed boundaries as well as a flow network (Bowlby 

et al. 2014) derived from 1:50,000 scale data (from the National Hydrographic Network) 

to characterize stream networks. Relative to the original NHN data, the flow network 

from Bowlby et al. (2014) included: (1) inferred arcs through watershed features that 

were large enough to be represented as polygons to ensure that these components of the 

stream network could be identified as parts of specific rivers, and (2) topological 

connections to represent the direction of water flow within the network to enable analyses 

requiring upstream or downstream accumulation.  
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Digital elevation model 

I combined the individual raster data files available from GeoBase (20 m 

horizontal resolution and 1 m vertical resolution) into a Digital Elevation Model (DEM) 

for all of Nova Scotia using the merge tool in ArcGIS 10.2
©

. For the Zonal statistic 

analyses of the site-specific or upstream buffers at each electrofishing site, I used the 

Spatial Analyst extension in ArcGIS® to calculate mean, maximum and minimum slopes 

(in degrees) from the DEM, as well as the standard deviation of slope within the buffered 

area to calculate topographic roughness. 

Catchment land use and land cover 

The Forest Inventory Data (Forest Inventory cycle 2 & 3, downloaded in 

November, 2011) classifies areas relative to numerical codes (FORNON codes) and an 

associated description for each type of land use. To reduce the number of categories 

considered in my analyses, I aggregated those codes into more general categories that 

would represent similar types of land cover or land use (Table A5-2-1, Appendix 5-2). 

Total areas of each type of activity in the site-specific or sub-catchment buffers were 

calculated from these new categories. I considered wetlands, brush, natural forest, rocky 

and dead to be natural cover types and agriculture, clearcutting, forestry (i.e. silviculture), 

urban, industry and corridors to be human-impacted areas. 
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Table A5-2-1. Aggregation of the FORNON code classifications for the land use analyses, giving the original FORNON code 

and description, as well as the category and variable names corresponding to Table 5-2 and the type (either natural or human-

impacted). For the regression analyses, all areas within site-specific or sub-catchment buffers that were given a particular code 

were summed to calculate proportions (e.g. s.natfor would be the proportion of area classified as FORNON code ‘0’ in the site-

specific buffer for a particular electrofishing site).  

FORNON 

code Description 

New 

category Type 

Variable 

name 

0 

Natural stand, not treated, containing trees capable of reaching 3m at 

maturity 

Natural 

forest Natural 

s.natfor 

natfor 

71 Beaver flowage - an area occupied by beavers. Wetland Natural  

72 

Open bogs - any area that is wet all year and has less than 25% live tree 

cover and primarily ericaceous plants or mosses. Wetland Natural 

 

73 

Treed bogs - any area with primarily ericaceous plants or mosses with 

stunted softwood or hardwood species having 25% or more live tree cover. Wetland Natural 

 

74 Coastal habitat area - a wetland that lies in the ocean. Wetland Natural  

75 Lake wetland - a wetland that lies within freshwater (lake or river). Wetland Natural  

77 Inland waterbodies - lakes, rivers, reservoirs, canals, ponds. Wetland Natural  

78 Ocean Wetland Natural  

33 

Brush - areas containing less than 25% merchantable tree cover and 

contains at least 25% cover of non-merchantable woody plants Brush Natural 

 

38 Alders - less than 75% crown closure of alders. Brush Natural  

39 Alders - 75% or more crown closure of alders. Brush Natural  

83 

Brush - areas containing less than 25% merchantable tree cover and 

containing at least 25% cover of non-merchantable woody plants. Code 

being replaced with forested class. Brush Natural 

 

88 

Alders - any area with less than 75% crown closure of alders, dry land only. 

Being replaced with forested class. Brush Natural 

 

89 

Alders - 75% or more crown closure of alders, dry land only. Being 

replaced with a forested class. Brush Natural 
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FORNON 

code Description 

New 

category Type 

Variable 

name 

76 

Cliffs, dunes or coastal rocks - areas of land between the high tide mark 

and the forest or non-forest stand. Rocky Natural 

 

84 

Rock barren - areas covered by at least 50% exposed rock with less than 

25% live tree cover. Rocky Natural 

 

85 

Barren - any area with less than 25% live tree cover containing ericaceous 

vegetation with less than 50% rock outcrops and/or boulder cover and less 

than 50% other woody plant cover. Rocky Natural 

 

94 

Beach - land between the normal water live and the forest or non-forest 

category. Rocky Natural 

 

2 Burn - completely destroyed by fire leaving less than 25% crown closure Dead Natural  

6 

Wind throw - any stand where trees are pushed more than 45 degrees from 

vertical by wind action Dead Natural 

 

7 

Dead - a stand containing dead trees with less than 25% crown closure of 

residual live material with dead material standing or laying on ground and 

no evidence of regeneration Dead Natural 

 

8 

Dead - a stand containing dead trees with 25-50% crown closure of residual 

live material with dead material standing or laying on ground and no 

evidence of regeneration Dead Natural 

 

9 

Dead - a stand containing dead trees with 51-100% crown closure of 

residual live material with dead material standing or laying on ground and 

no evidence of regeneration Dead Natural 

 

13 

Dead - a stand with 26-50% of equivalent crown closure of dead material 

with evidence of regeneration. Equivalent crown closure being an estimate 

of what crown closure would be if the dead material were alive. Dead Natural 

 

86 

Agriculture - any hay field, pasture, tilled crop or orchard that contains no 

merchantable species. Agriculture Human 

s.agri 

agri 

91 

Blueberries - areas that appear to have been or are being used for blueberry 

production. Agriculture Human 

s.agri 

agri 

5 Old field - a field with indications of merchantable tree species growing in Agriculture Human s.agri 
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FORNON 

code Description 

New 

category Type 

Variable 

name 

with less than 25% crown closure and less than 1m in height. agri 

60 

Clear cut - a completely cut stand with any residuals making up less than 

35% crown closure and little or no evidence of regeneration. Clearcut Human 

s.clearcut 

clearcut 

1 Treated - treatment not classified but not Christmas trees Forestry Human 

s.forest 

forest 

3 Christmas tree cultivation Forestry Human 

s.forest 

forest 

4 Sugar bush cultivation Forestry Human 

s.forest 

forest 

10 

Research stand - treated stand which contains sample plots for the 

evaluation of response. Forestry Human 

s.forest 

forest 

11 Seed orchard - stands designated as areas reserved for seed production Forestry Human 

s.forest 

forest 

12 

Treated stand - an area where silviculture activity has occurred and the 

specific treatment has been identified by field data. Forestry Human 

s.forest 

forest 

20 Plantation - a group of artificially established trees. Forestry Human 

s.forest 

forest 

61 

Partial depletion - a cut stand where hardwood residuals make up 25% or 

more of crown closure; verified by photo interpreters or field data. Forestry Human 

s.forest 

forest 

62 

Partial depletion, not verified - a stand identified from satellite imagery as a 

partial cut. Forestry Human 

s.forest 

forest 

92 

Miscellaneous - non-forest area: old mill site, rifle range, tower site, 

observation site, lake shore bottom, quarry, mining activity, wharf, pier, 

causeway, dam, airstrips, etc. Industry Human 

s.industry 

industry 

93 Sanitary land fill - municipal garbage disposal. Industry Human 

s.industry 

industry 

95 Gravel pit - an active or non-active area used for extracting gravel. Industry Human 

s.industry 

industry 

96 Pipeline corridor - a 25 meter buffer around a defined linear feature of a gas Corridor Human s.corridor 
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FORNON 

code Description 

New 

category Type 

Variable 

name 

or oil pipeline route. corridor 

97 Powerline corridor - a corridor of land with limited use due to powerlines. Corridor Human 

s.corridor 

corridor 

98 Road corridor - polygons of varying widths for roads. Corridor Human 

s.corridor 

corridor 

99 Rail corridor - 20 m polygons around active and abandoned rail lines. Corridor Human 

s.corridor 

corridor 
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Appendix 5-3: Does sampling area influence our ecological 

understanding? 

The functional relationship between anthropogenic ecological changes and 

biodiversity patterns partially depends on the spatial grain (i.e., the size of sampling units) 

and extent of sampling used in the study (Chase & Knight 2013, Barton et al. 2013). In a 

single-species context, it is possible that sampling considerations could exert similar 

effects on our ability to describe changes in density relative to landscape metrics. Thus, 

the amount of area sampled may be an important variable to control for when evaluating 

other hypotheses. One way to do this would be to use electrofishing sampling area 

(area.est) as a predictor in the optimal model presented in chapter five. 

Incorporating area into the negative binomial mixed model introduces a 

mathematical relationship between a component of the response and the added predictor, 

in that area now appears on both sides of the regression equation (Blackburn & Gaston 

1996, Brett 2004). This situation has long been recognized to have the potential to 

produce spurious correlations (sensu Pearson 1896). However, there has been 

considerable debate in the literature over the issue of spurious correlation as related to 

appropriate ecological inference (summarized in Brett 2004). Two main issues have been 

identified: (1) the relative contribution of measurement error to total variability in the 

shared parameter (e.g. Prairie & Bird 1989), and (2) unequal variance between parameters 

(e.g. Brett 2004).  

In relation to (1): multiple authors suggest correlations between 𝑌 𝑋⁄  and 𝑋 can 

still be valid provided the shared measurement error term is likely to be small (Blackburn 
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& Gaston 1996, Prairie & Bird 1989, Brett 2004). I have no way of directly estimating 

measurement error in relation to sampling area for the electrofishing surveys. For sites at 

which sampling area was reported, measurement errors are likely to be small. 

Measurement errors could be more substantial for sites at which sampling area was not 

recorded and needed to be estimated, yet it is highly unlikely that measurement error is 

the main source of variation in sampling area. In relation to (2): simulation of linear 

regression between Y/X and X suggests that such regressions often produce spurious 

negative correlations, but also that their overall magnitude is strongly related to 

differences in variability (expressed as a CV) between the shared and non-shared terms 

(Brett 2004). In my dataset, the CV = 0.82 for census area and CV = 1.47 for salmon 

counts (CV calculated as the s.d./mean over all watersheds). This gives a ratio between 

the CV’s of X and Y of 0.56. Overall variability in the counts is substantially higher than 

variability in the sampling areas. Relative to the analysis done by Brett (2004), this would 

suggest that any spurious correlation due to having a common term on both sides of the 

equation would be low.  

Here, I have compared the optimal model from chapter five (hereafter called 

‘optimal’) with one that incorporates electrofishing site area (area.est) as a predictor 

(hereafter called ‘alternate’). I have evaluated the relative support for this increase in 

model complexity using model selection based on AIC (Johnson & Omland 2004) and 

AIC weights (Albanese et al. 2009) as in chapter five. I have also compared the parameter 

estimates that result from the alternate model in relation to the optimal model (Table A5-

3-1, Appendix 5-3) and have plotted the partial regression fits (Figure A5-3-1, Appendix 
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5-3). There was very strong support for the alternate model on the basis of AIC and 

Akaike weights, with a difference of seven in AIC as compared to the optimal model (c.f. 

3303 and 3303) and an Akaike weight of 0.97.  

There was a very strong negative relationship between juvenile density and the 

stream area that was electrofished at each site in the alternate model (Figure A5-3-1, 

Appendix 5-3). For these types of data, densities are typically considered to be more 

indicative of relative abundance as compared to raw counts because the influence of area 

is standardized among sites (Schwartz & Seber 1999, Chase & Knight 2013). In addition 

to any potential spurious correlation, a strong negative relationship with area (slope = -

1.05, s.e. = 0.34; Table A5-3-1, Appendix 5-3) could exist in situations where the amount 

of area being electrofished is not independent of the number of salmon being captured. In 

other words, small areas could have been sampled when juvenile salmon were abundant 

and larger areas may have only been fished when juveniles became scarcer. This could 

happen if electrofishing crews stopped fishing sooner if they were catching a lot of fish. 

Another explanation could be that the amount of area electrofished is largely dependent 

the position of the site in the watershed (i.e. dependent on a correlation between site.pos 

and area.est). This seems less likely for these data, given that the position of sites along 

the stream network is not strongly related to the areas electrofished (Kendall’s tau < 0.3; 

Figure A5-3-2, Appendix 5-3).  

If changes in behaviour on the part of an electrofishing crew contribute to the 

apparent correlation between juvenile salmon density and sampling area, this could have 

unintended consequences on other ecological inferences from the analysis in chapter five. 
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For example, sites that had large areas that were electrofished tended to be those with 

moderately low proportions (e.g., 0.2-0.4) of many of the threats predictors, including the 

proportion of human use at the site and sub-catchment scales (s.phuman and phuman, 

respectively). Incorporating the sampled area (area.est) as a fixed effect in the alternate 

model moderately decreases the slope estimates for the quadratic relationship with human 

land use from the optimal model (c.f. s.phuman = 3.1 and 2.9; s.phuman
^2

 = -3.9 and -3.6; 

Table A5-3-1, Appendix 5-3), and also slightly shifts the peak of the quadratic function 

(Figure A5-3-1, Appendix 5-3). It is worthwhile noting that this occurs irrespective of 

whether the correlation between juvenile density and sampling area is spurious. For future 

recovery planning, the results in this appendix suggest that observational data sources can 

contain unintended patterns that exert influence on the variables of interest (Prairie & 

Bird 1989, Rose 2000). New research using data collection methods specifically designed 

to evaluate population response relative to landscape changes could be a more powerful 

basis for inference.  
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Table A5-3-1. A comparison of coefficient estimates of the fixed effects from the optimal 

negative binomial Generalized Linear Mixed Model reported in chapter five with an 

alternate model incorporating sampling area of the electrofishing surveys as an additional 

predictor. 

 

 Optimal  Alternate  

 

Slope s.e.  slope s.e. 

(Intercept) 2.07 0.30  2.07 0.29 

year -0.63 0.19  -0.51 0.19 

s.degslope 0.07 0.04  0.10 0.04 

site.pos -1.90 0.42  -1.68 0.42 

s.phuman 2.76 1.02  2.90 1.01 

s.phuman
^2

 -3.36 1.23  -3.59 1.23 

phuman 2.54 0.78  2.69 0.79 

area.est    -1.05 0.34 
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Figure A5-3-1.  Partial regression fits (lines) plus 95% confidence interval (grey shading) relative to the juvenile density data 

(points) for the fixed effects of the negative binomial GLMM incorporating sampling area as a predictor.  X-axes are as 

follows: panel A: site-specific proportion of human use (s.phuman+s.phuman^2), panel B: year of electrofishing survey (year), 

panel C: area electrofished (area.est), panel D: relative site position (site.pos), panel E: median slope of a site (s.degslope) and 

panel F: proportion of human use within a sub-catchment (phuman). Multiple observations from the same year are off-set 

slightly along the x-axis in panel B in order to see all of the individual density estimates.  See Table 5-2 for parameter 

definitions.  
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Figure A5-3-2. A plot of site positions in a watershed relative to the amount of area 

sampled during electrofishing surveys for the data analyzed here and in chapter five. 
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