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ABSTRACT 

 

Concerns over the impacts of fishing practices, especially bottom trawling, on the 

ocean environment have been expressed at the local, national and international scale. 

While physical alterations of the seabed by bottom trawling are known to occur, the 

biological effects on benthic communities and their recovery rates depend on substrate 

types, depth, and natural disturbance in the fishing area, as well as how trawl gears are 

designed and operated. In this thesis, I investigate different key research aspects 

regarding the subject of development of seabed friendly bottom trawls, in particular 

shrimp trawling in Newfoundland and Labrador, Canada. The complementary use of 

different research approaches (e.g., underwater video observations, numerical modeling 

and simulation, flume tank testing, and at-sea experiments) were applied for each of the 

research questions.  

First, I investigated the behavioural interactions of individual snow crab in 

response to the rockhopper footgear of a traditional inshore shrimp trawl used in 

Newfoundland and Labrador, Canada. I found that snow crab were quickly overtaken 

under the footgear of the approaching trawl and over half of the snow crab (i.e., 54%) 

observed experienced an encounter with the rockhopper footgear components. The 

majority of the snow crab observed appeared to be aware of the trawl and were actively 

responding and/or reacting to the approaching threat. Second, the strengths and 

limitations of different commercially available trawl simulation software (i.e., DynamiT, 

SimuTrawl, and Trawl Vision PRO) in terms of design capability, simulation capability, 

and reliability of results, were investigated and interpreted. The study provides valuable 
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knowledge and reference for stakeholders (e.g., gear designers, researchers, and 

educators) who are considering using numerical simulation methods to optimize their 

gear design concepts during the early stages of development of seabed friendly bottom 

trawls (e.g., predict expected mechanical stresses of trawl components on the seabed). 

Next, I addressed the question of how well computer simulation and flume tank testing of 

scale engineering models actually predict full-scale at-sea performance of bottom trawls. 

The results demonstrated that the complementary use of two or three methods should be 

encouraged for assisting the gear development cycle given their own weakness and 

merits. For instance, the flume tank testing method was successfully utilized to estimate 

the percentage of contact area made by trawl footgear with the seabed, while at-sea 

experiments were not designed to measure such impacts. Moreover, I clarified that the 

precision and accuracy of the predictions depends on many factors. Thus, thoroughness 

and care must be emphasized in order to reduce bias in predicted performance. Finally, I 

examined the effectiveness of a reduced seabed impact footgear (i.e., drop chain) over a 

traditional rockhopper footgear on identical bottom trawls targeting northern shrimp 

(Pandalus borealis) in Newfoundland and Labrador, Canada. The results demonstrated 

that seabed impacts of shrimp trawling can be reduced if the trawl footgear is made 

lighter and/or designed to have less contact with the seabed. In particular, it was revealed 

that with the experimental drop chain footgear trawl we are able to reduce the interaction 

or encounter of snow crab. 

In summary, the knowledge presented in this thesis is believed to significantly 

contribute to the research and development of low-impact bottom trawls both in 
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theoretical and practical aspects. While the potential impact of bottom trawling activities 

on habitats and benthic communities is not easy to predict and characterize for various 

reasons, I do believe that further development and application of fishing gears and 

techniques that reduce impacts on seabed habitats and associated benthic communities 

will be essential to achieve ecosystem objectives. 
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Chapter 1. Introduction and Overview 

Bottom trawling is a common method of industrialized fishing throughout the 

world’s oceans. It is used widely in commercial fisheries that target species living on or 

near the seabed (Gabriel et al., 2005 and He, 2007), with an estimated 22% of the total 

fish production (Kelleher, 2005) harvested using bottom trawls. However, concerns over 

the impacts of fishing practices, particularly bottom trawling, on the ocean environment 

have been expressed at the local, national and international scale (Morgan and 

Chuenpagdee, 2003; Rice, 2006; Fuller et al., 2008). The growing demand for 

certification of fisheries by eco-labels such as the Marine Stewardship Council are a 

strong indication that consumers and seafood retailers are increasingly concerned with 

the sustainability of fisheries, especially those involving trawling (Washington and 

Ababouch, 2011; OECD, 2012; Foley, 2013). Bottom trawling uses numerous types of 

gear designs, sizes, rigging and operational methods. One of the key features is that the 

gear must remain physically in contact with the seabed for successful operation (i.e., 

provides mechanical spread and herding of target species), which can result in removal or 

damage of sedentary living communities and benthic habitats. Ecological impacts can be 

varied depending on the location and timing of the fishery (Edinger et al., 

2007). Documented effects are varied, including reductions in biomass of targeted and 

non-targeted species, reductions in biodiversity, changes in species richness, community 

structure, sediment resuspension, benthic perturbation, and loss of habitat (see review by 

Kaiser et al., 2003). Many countries have produced fishery management strategies to 



2 

 

mitigate and manage these effects, including identification of vulnerable marine areas, 

area closures, fishing effort reductions, gear modifications and restrictions, and limits on 

bycatch of particular species (e.g., Valdemarsen and Suuronen, 2003; Valdemarsen et al., 

2007; Gillett, 2008; He and Winger, 2010).   

The following chapter describes the characteristics of the main components of 

bottom trawls that affect the seabed and benthic communities, provides an overview of 

the current state-of-knowledge on the ecological impacts of bottom trawling, reviews 

development of low-impact bottom trawls, and provides a brief outline of the research 

presented in this thesis. 

 

1.1 Bottom Trawls 

1.1.1 Overview 

A bottom trawl is a towed fishing gear that is designed to catch fish, shrimp, or 

other target species that live on or in close proximity to the seabed. Bottom trawls can be 

classified into three separate catogories based on how their horizontal opening is 

maintained, including: 1) beam trawls (uses a beam to spread the trawl horizontally), 2) 

bottom otter trawls (uses a pair of otter boards or trawl doors to expand the trawl 

horizontally through hydrodynamic and ground sheering forces), and 3) bottom paired 

trawls (uses a pair of fishing vessels/trawlers to keep the trawl open horizontally) (FAO, 

1990). The otter trawl is the most common method of bottom trawling in the world for 

targeting demersal fish and shellfish species (He, 2007). For many shrimp and prawn 
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fisheries, it is the only method which is economically viable (Valdemarsen et al., 2007). 

This trawling method can be considered as a further development of beam trawls which 

first appeared in the late 1880s, but suffered the disadvantage of reduced mouth opening 

(Gabriel et al., 2005). The otter trawl was first introduced in 1894 by the engineer James 

Robert Scott who patented a spreading device to replace the awkward beam on a beam 

trawl (Watson et al., 1984). Today, otter trawling, more commonly referred to as bottom 

trawling, is practiced in nearly all of the world’s coastal states, and can be found to occur 

in estuaries, coastal regions and the high seas to depths of 2000 m or more. The term 

‘otter trawl’ has largely fallen into disuse, and so here forward, I will use the term 

‘bottom trawl’ throughout. 

A typical bottom trawl is designed and engineered as a system of parts, consisting 

of a pair of trawl doors, sweeps and bridles, and trawl net, all of which works together 

with predictable geometry, proper trawl performance, and capture efficiency (Figure 1.1). 

The trawl net is constructed of a series of tapered netting panels selvedged together to 

create a funnel-shaped bag. Common elements include wings, square, body, extension, 

and codend. A number of floats are distributed along the headline to provide positive 

bouyancy and open the trawl vertically. The footgear or groundgear is typically 

constructed of chain, rubber, or steel components and is designed to provide a sinking 

force, as well as protection for the net as the trawl is towed over the seabed. The 

following sections (1.1.2 to 1.1.6) characterize the main components of bottom trawls 

that could likely affect the seabed and benthic communities. 
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1.1.2 Trawl Doors  

Trawl doors are a well developed method for maintaining the horizontal opening 

of a bottom trawl (Gabriel et al., 2005). They are engineered to generate hydrodynamic 

and shearing forces that produce lift (i.e, horizontal spread) in order to spread the mouth 

of a bottom trawl. To maintain an optimum spread of the trawl, it is generally essential 

that there is good seabed contact with the trawl doors (FAO, 1974). Trawl doors are 

typically rigged at an angle of attack to the water flow, producing a sand or mud cloud 

that travels along the sweep and bridle toward the mouth of the trawl (Figure 1.1). This 

produces a strong visual stimulus that can assist in the herding of targeted species into the 

mouth of the trawl (Wardle, 1983; Lindeboom and de Groot, 1998; Winger et al., 2010). 

There is a wide range of trawl door designs in different forms (i.e., flat, V-shaped, 

cambered, or even oval) and sizes used today in commercial fisheries depending on 

targeted species, fishermen preference, and/or demand for mitigating impact on the 

environment (Valdermarsen et al., 2007). Historically, trawl doors were simple flat plates 

(i.e., rectangular and wooden), known as easy to store and handle, and relied heavily on 

ground sheer for spreading force, that were normally longer than their height or called 

low aspect ratio doors (the ratio of height to width). In contrast to flat doors, newer 

(modern) trawl doors are constructed of high-strength steel and contain various 

hydrodynamic features that maximize lift, performance, and stability. For some fisheries, 

there has been the development of high-aspect trawl doors (Sala et al., 2009). These door 

designs rely very little on seabed contact for spreading the trawl and in turn usually have 

smaller tracks or “footprint” and much less sand cloud, or even reduced trawl 
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resistance/fuel consumption (He and Winger, 2010 and Eayrs et al., 2012) compared to 

traditional (low-aspect ratio) doors which have a strong tendency to disturb the seabed 

and resuspend sediment in their wake (Goudey and Loverich, 1987; Gabriel et al., 2005; 

Valdemarsen et al., 2007). 

 

1.1.3 Trawl Warps 

Trawl warps are steel cables that connect the vessel to the trawl doors, extending 

from the surface to the seabed (Figure 1.1). Trawl warps usually do not contact the 

seabed during nornal operation. The length of the warps are typically 3-5 times the sea 

depth and account for an estimated 8% of total drag resistance (Folch et al., 2008). The 

warp-depth ratio is considered a key operational factor that is manipulated by vessel 

captains in order to control trawl performance, particularly when applying semi-pelagic 

trawling techniques (He et al., 2006; Sala et al., 2010; Rivierre et al., 2013), or being used 

in groundfish survey trawls to achieve and maintain stable bottom contact of the trawl 

doors (Walsh and McCallum, 1997). The amount of  trawl warp deployed (or differences 

between warp lengths) can affect trawl geometry/symmetry, performance, and its ability 

to maintain contact with the seabed, particularly for trawl doors, sweeps/bridles, and 

footgear. For survey trawls, it has been shown to affect variability in trawl capture 

efficiency, especially for flatfish species (Weinberg and Somerton, 2006), and the level 

of gear penetration and contact area on the seabed.  
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1.1.4 Trawl Bridles and Sweeps 

Bridles and sweeps are made from steel cables, which connect the trawl doors to 

the trawl net at the wingends (Figure 1.1). The length and angle of attack of these cables 

is carefully matched to the desired target species (Loverich and West, 1988). In many 

fisheries, target species that are outside the path of the net, but inside the path of the 

doors (known as the sweep zone), can be effectively herded into the path of the net (see 

Figure 1.2). The degree of bottom contact by these cables (bridles and sweeps) will 

depend upon rigging parameters (e.g., angle of attack) and target species, as well as the 

types of trawl doors used (high aspect-ratio vs. low aspect-ratio doors) (Goudey and 

Loverich, 1987 and West, 1987). Fisheries targeting flatfish tend to use longer cables 

(>200m) with broad angles of attack (Rose et al., 2010). Shrimp trawls and survey trawls 

by comparison, tend to use shorter (less than 40m) or non-existent bridles along with a 

narrow angle of attack (e.g., He, 2007 and Walsh et al., 2009). In some cases in order to 

improve the herding effectiveness as well as protect the bridles, rubber rollers - up to 

15cm diameter (known as cookies) may also be attached to the bridles. The evolution of 

the industry toward progressively longer sweeps, together with their direct seabed contact 

to increase herding fish into the path of the trawl (i.e., improve flatfish catches) has 

created negative ecological impacts in some fisheries. Recent studies conducted to 

minimize such seabed contact and effects on benthic communities by raising sweeps a 

short distance off the bottom, have proven effective (Guyonnet et al., 2008; Rose et al., 

2010; He et al., 2014).     
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1.1.5 Trawl Footgear 

The footgear or groundgear is one of the major components of a bottom trawl. It 

attaches to the fishing line through a number of toggle chains and tends to directly 

contact the seabed (Figure 1.1). Footgear is constructed from different elements including 

wires, chains, spacers, rubber discs/bobbins, wheels or sphericals and in a variety of 

designs and sizes according to the complexity of the habitat (e.g., bottom and sea 

conditions) on which the trawl is towed and the species targeted (Gilkinson, 1999; 

Løkkeborg, 2005, He, 2007). This component of the trawl ensures close contact with the 

seabed and enables fishing on complex grounds (e.g., rocks and corals) without damaging 

the more vulnerable parts of the trawl (i.e., netting) (Gilkinson, 1999). Rockhopper 

footgears have become increasingly common during the past few decades, particularly in 

areas of hard or rugged seafloor conditions (Gilkinson, 1999). This type of footgear 

consists of tightly packed rubber discs strung under tension so as to encourage ‘hopping’ 

over boulders. They are used widely in groundfish and shrimp fisheries and are 

considered a major cause of habitat destruction (West, 1987 and Raloff, 1996). However 

various forms of  what maybe considered “seabed friendly footgears” have been 

developed in order to reduce contact area, penetration depth, or suspension of sediment. 

Fishing gear technologists have developed innovative footgear components that roll over 

the seabed (Ball et al., 2003 and Murphy, 2014), align with the direction of tow (He and 

Balzano, 2009 and Munden, 2013), or simply reduce contact area/points (Brewer et al., 

1996, Sheppard et al., 2004; Nguyen et al., 2015). All of these innovations can have 

positve effects in reducing the negative effects of trawling on the seabed.  
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1.1.6 Trawl Net 

The trawl net is constructed of a series of tapered netting panels selvedged 

together to create a funnel-shaped bag (Figure 1.1). It may be two-sided (top and bottom) 

or four-sided (addition of sides) depending on the target fishery. Differences in design, 

shape, and dimensions of these panels contribute to defining the trawl shape and its 

engineering performance. The square provides an overhang on the top of the trawl, 

preventing fish from escaping over the headline. Side panels of the trawl are extended in 

front to form wings for herding fish into the opening of the net. The extension piece is 

added to improve stability of the codend immediately following it. Modern net designs 

are engineered to minimize seabed contact by cutting back or eliminating the lower wings 

and applying an upward taper for the lower bellies in order to raise themselves and the 

codend clear of the seabed, reducing trawl damage and seabed impact (Walsh et al., 

2009). The vertical opening of the trawl is generally maintained using positive buoyancy 

(floats and rope) or hydrodynamic kites attached to the headline (e.g., Beutel et al., 2008), 

together with hydrodynamic forces on the netting while towing. From a seabed impact 

perspective, the trawl net is the least destructive component of a bottom trawl. A codend 

with large catches, however, may bring the codend down and in contact with the seabed 

(West, 1987 and He, 2007). Therefore, a codend cover (i.e., chafing gear made by 

webbing or other material) is often used to protect the codend from damage and wear 

(He, 2007). 
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1.1.7 Summary 

Given their characteristics and features (see descriptions above) bottom trawls are 

widely recognized as one of the greatest potential gear types to negatively affect the 

seabed and benthic communities. In order to address this growing social concern, we 

must understand the negative impacts of trawling on the seabed and develop responsible 

harvesting strategies and gear types that minimize potential impacts. The following 

sections (1.2 and 1.3) review the state-of-knowledge in both regards. 

 

1.2 Environmental Impacts of Bottom Trawls 

1.2.1 Studies on Impacts of Bottom Trawling 

There have been increasing globally concerns about the ecological impacts of 

mobile bottom contacting fishing gears (e.g., bottom trawling and dredging) on habitat 

destruction and the sustainability of fish stocks, endangered species, and non-targeted 

bycatch species during the last few decades (e.g., Martin, 1991; Sahrage and Lundbeck, 

1992; Crowley, 1996; Kaiser, 1996; Berrill, 1997; Morgan and Chuenpagdee, 2003; 

Løkkeborg, 2005; Rice, 2006; UNGA, 2007; Fuller et al., 2008; Welsford et al., 2014). 

But the concern is not altogether new. Concerns over the use of mobile fishing gear (e.g., 

capture of juvenile fish and negative effects on benthic communitities) were expressed by 

fishermen in the United Kingdom and The Netherlands as early as the fourteenth century 

when the otter trawl was invented (de Groot, 1984 and Wardle, 1986). The first scientific 

impact study was carried out in the North Sea in 1938 regarding plaice fishing grounds 
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(Graham, 1955). However, the most comprehensive studies on the effects of towed 

fishing gear have been conducted in Europe since the 1970s (de Groot, 1984; Lindeboom 

and de Groot, 1998; Kaiser and de Groot, 2000). Of particular interest is an on-going EU-

funded project ‘Benthic Ecosystem Fisheries Impact Study’, known as BENTHIS, which 

includes a number of research institutes, fishing companies, and fishing gear 

manufactuerers from across Western Europe. Within the project, different fisheries are 

being investigated, including flatfish and shrimp fisheries with beam trawls, nephrops 

and roundfish fisheries with otter trawls, and shellfish fisheries with dredges. Major 

objectives of the project include: 1) study the vulnerability of different benthic 

ecosystems in European waters, 2) analyse the physical impact of the current fishing 

practices on benthic communitites and geo-chemical processes, and 3) study and promote 

technological innovations to reduce the negative impact of selected demersal fisheries 

(CORDIS, 2015).  In addition to these, there have been several impact-related studies and 

reviews conducted for fishing grounds in the Northwest Atlantic (e.g., Grand Banks and 

Georges Bank) (Auster et al., 1996; Collie et al., 1997; Gilkinson, 1999; Nguyen et al., 

2014), particularly after declines of major commercial stocks in the early 1990s (He, 

2007; Lilly, 2008; Fuller et al., 2008). Scientific literature reviews provide evidence that 

mobile bottom gears can harm benthic organisms, reduce habitat complexity, and reduce 

biodiversity (Kaiser et al., 2003; Valdemarsen and Suuronen, 2003; Valdemarsen et al., 

2007; Meenakumari et al., 2008; Pham et al., 2014). The concerns of trawling impacts 

have appeared in many popular media with increasing frequency (Gilkinson et al., 2006).  
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The impact of mobile bottom-contact gears (e.g., bottom trawling and dredging) 

on benthic communities and marine habitats has also been discussed in other forms. 

These include extensive reviews (Jones, 1992; Alverson, 1994; Jennings and Kaiser, 

1998; Auster and Langton, 1999; Kaiser and de Groot, 2000; Moore and Jennings, 2000; 

Dieter et al., 2003; Mueter, 2008; Meenakumari et al., 2008; Grant, 2012), books (Collie 

et al., 1997; Dorsey and Pederson, 1998; Hall, 1999; NRC, 2002; Sinclair and 

Valdimarson, 2003; Lokkerborg, 2005; Barnes and Thomas, 2005; He and Winger, 

2010), and workshops/symposiums (Anon, 2001 and ICES, 2014). Rather noteworthy, a 

number of working groups and study groups have been formed within the International 

Council for the Exploration of the Sea (ICES) in an attempt to scientifically understand 

and document the impacts of mobile fishing gears on the seabed and marine habitat 

(ICES, 1988, 1999, 2000, 2004, 2014).  

In summary, many scientific investigations have been completed and others are 

still ongoing. Several major questions continue to be asked, including: what are the 

effects of bottom trawling on the seabed and benthic communities? what are the direct 

and indirect effects of the trawling activity? and what are the short-and long-term effects 

on populations, community structure, and interspecific dynamics? While physical 

alterations of the seabed by bottom trawling are evident (Jones, 1992; Lokkeborg, 2005; 

Rice, 2006), the effects of alterations on the benthic communities and recovery rates 

associated with gear alterations depend on substrate types, depth, towing speed, and 

natural disturbance in the fishing area (Valdemarsen et al., 2007). The following sections 

(1.2.2 and 1.2.3) review physical and biological impacts of bottom trawling. 
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1.2.2 Physical Impacts of Bottom Trawling 

Studies on the effects of bottom trawling on the seabed (covering broad areas 

from the North Sea to the North Atlantic Canada to the Barents Sea and the 

Mediterranean Sea) tend to describe physical disturbances of the seabed as either “tracks” 

(up to 30cm deep) or “flattening of the seabed” (caused by sweeps, bridles, and footgear). 

These disturbances are typically documented using side-scan sonar and/or video 

observations (Krost et al., 1990; Service and Magorrian, 1997; Lindeboom and de Groot, 

1998; Schwinghamer et al., 1998; Tuck et al., 1998; Currie and Parry, 1999; Smith et al., 

2000; Smith et al., 2007; Humborstad et al., 2004; O’Neill et al., 2009; Lindholm et al., 

2015). The computational fluid dynamic (CFD) approach has also been used to 

investigate the penetration depth and sediment displacement associated with each gear 

component (Ivanović et al., 2011) or suspension of sediment in the wake behind different 

gear components (van Marlen et al., 2010;), in particular for trawl doors. Schwinghamer 

et al. (1998) described the immediate impacts created by the trawl doors on the 

topography of the sediment surface in the Grand Banks of Newfoundland (Canada). The 

physical disturbance from trawling in a Scottish Sea Loch also showed strong evidence, 

with footprints on the seabed made by the trawl doors lasting 18 months after trawling 

(Tuck et al., 1998). Similarly in the Barents Sea, clear visible tracks and smaller 

depressions caused by trawl doors and the groundgear were recorded by video camera 

observations, although these disturbances had disappeared after five months (Humborstad 

et al., 2004). Some other investigations also provide evidence of physical disturbance, 

including trawl furrows and berms on the seabed or a general flattening of bottom 
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features for instance ripples and irregular topography or even a reduction in bioturbation 

mounds and polychaete tubes caused by trawl gear components (e.g., trawl doors, wires, 

and groundgear) (Currie and Parry, 1996; Hall-Spencer et al., 1999; Sanchez et al., 2000; 

Smith et al., 2000). However, the physical impacts of bottom trawls are generally 

considered not uniform and depend on both the ecosystem (i.e., type of seabed, current, 

wave action, and biological activity) and how the fishing gear is designed and operated 

(Tuck et al., 1998; Smith, 2000; Humborstad et al., 2004; Rice, 2006, Valdemarsen et al., 

2007). Therefore, the consequences of these effects for the benthic community structure 

are not well known in reality (Gislason, 1994).  

 

1.2.3 Biological Impacts of Bottom Trawling 

Past studies on the biological impacts of bottom trawling on benthic communities 

for both soft and hard bottom habitats have shown evidence of effects such as the 

decrease in abundance of sponges, corals and some long lived benthic species (see van 

Dolah et al., 1987; Rumohr and Krost, 1991; Bergman and Hup, 1992; Kaiser and 

Spencer, 1996; Watling and Norse, 1998; Prena et al., 1999; McConnaughey et al., 2000; 

Kenchington et al., 2001; Edinger et al., 2007). However, the results from several such 

investigations on this topic should be considered with caution. Most trawl impact studies 

conducted to date have focused mainly on the immediate effects of short-term trawling 

(on soft or sandy bottoms) and several of these investigations provide clear evidence of 

the short-term effects with considerable decreases in abundance of some individual taxa. 

For instance, Prena et al. (1999) conducted a comprehensive experiment on the impacts 
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of bottom trawling on the Grand Bank of Newfoundland, demonstrating a 24 percent 

reduction in the total biomass of megabenthic species, while Kenchington et al. (2001) 

showed a 25 percent decrease in the total number of individuals (for the macrofauna, 

particularly polychaetes) immediately after trawling (on the Grand Bank), but likely 

recovered within a short period afterward. For the long-term effects of commercial 

trawling, only a few such studies have been conducted (due to the lack of appropriate 

control areas). Some of these studies have clearly shown that trawling results in reduced 

biomass of some benthic species such as erect sessile invertebrates, including sponges 

and corals (Engel and Kvitek, 1998 and McConnaughey et al., 2000). However, in some 

instances changes in biomass were more notable on control sites. Depending on the 

degree of seabed contact by the trawl gear components (i.e., groundgear, doors, and 

bridles) and habitat features, these effects can be significant (see van Dolah et al., 1987 

and Moran and Stephenson, 2000).  

In 2015, a noteworthy study published that bottom trawling had only a "negligible 

effect" on the seafloor and fish habitat in certain types of soft bottom (e.g., sand habitats) 

(Lindholm et al., 2015). The authors found that California's largely soft-bottom seafloor 

saw little lasting impacts with some smoothing of the seabed from trawling with a small-

footgear (20.3-cm-diameter discs). There were also no significant differences between 

trawled and untrawled plots with respect to structure-forming invertebrates (e.g., sea 

whips) and mobile invertebrates (e.g., sea stars).  

Coming from a different argument, Dutch scientists recently argued that there 

may actually be some unexpected benefits from bottom trawling (van Denderen et al., 
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2013). These surprising results were derived from modelling the effects of trawling on a 

simple ecosystem of benthivorous fish (flatfish species such as plaice and sole) and two 

food populations (benthos), susceptible and resistant to trawling. They demonstrated that 

the indirect-effects or side-effects of bottom trawling may result in higher fish 

abundance, and higher (maximum sustainable) yield or more productive in terms of food 

for fish that fishermen target. Such results will undoubtedly generate public and scientific 

debates, especially given evidence to date for other fisheries, coupled with a growing 

public ocean literacy and a need for long-term ocean sustainability.  

 

1.2.4 Summary 

The effects of mobile fishing gears (i.e., trawls and dredges) in general and 

bottom trawling in particular on the seabed and benthic communities have received 

increased attention over the last few decades. The potential impacts of bottom trawl 

fisheries have led to intense discussions and heated debates, both in academic/scientific 

forums and among many environmental NGOs, policy makers/fisheries managers, 

regulators, and the fishing industry. Based on the investigations of trawling impacts 

published to date, it can be said that the potential detrimental impacts of bottom trawling 

have been shown to be physical and biological. This includes the removal of major 

habitat features, reduction of structural biota and habitat complexity, changes in seabed 

structure and relative abundance of species, and increase in scavenger populations. 

However, these general statements should be taken into consideration and interpreted 

carefully before any relevant conclusions are made. Because the physical and biological 
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impacts of trawling disturbances vary in the magnitude and longevity of effects under 

different habitat types and trawl gear designs, modeling assumptions related to impact 

studies or even the operational choices by fishermen (e.g., warp to depth ratio, towing 

speed). In fact, knowledge of how impacts of bottom trawling activities actually affect 

benthic communities is still limited and in many cases conclusions are ambiguous. The 

lack of such knowledge may be explained by the complexity of marine habitats, as well 

as the methodological limitations of measuring these effects. Marine benthic habitats are 

believed to provide shelter and refuge for juvenile fish and associated organisms 

comprising direct and indirect important food resources for demersal species. While the 

ecological consequences of bottom trawling impacts on benthic habitats and communities 

contain uncertainty for various reasons (regarding gear design and operation, natural 

disturbance regime, variations in substrate types, and biologic structure), the development 

of innovative trawling systems that are more environmentally friendly, selective, and 

efficient would be advisable. 

  

1.3 Research and Development of Low-Impact Bottom Trawls 

1.3.1 Background 

Given environmental concerns, bottom trawling has been facing the challenges of 

increasing restrictions, area closures, as well as now being banned in many areas of the 

world. The United Nations, under the 2006 Sustainable Fisheries Resolution, called for 

closing certain areas to bottom contact fishing including seamounts, hydrothermal vents, 
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cold water corals, and areas where vulnerable marine ecosystems existed (UNGA, 2007). 

To date, several countries such as Canada, Norway, Australia, and New Zealand have 

prohibited bottom trawling in some ecologically sensitive areas within their jurisdictions. 

The entire global seafood industry is facing public pressure to amend its fishing practices, 

particularly bottom trawling, in an effort to reduce bycatch and negative impacts on the 

seabed and benthic communities. In addition, current consumer trends and the growing 

demand for certification by eco-labels such as the Marine Stewardship Council indicate 

that the public is increasingly concerned with the environmental impacts of fishing, in 

particular, bottom trawling (Washington and Ababouch, 2011 and OECD, 2012). 

Therefore, the development of fishery-specific trawling systems that maybe considered 

more seabed friendly (i.e., low-impact trawl gears) has become a priority research 

agenda. Such research could lead to significant contributions to the reduction in seabed 

impact and the levels of bycatch while maintaining acceptable commercial catch rates 

compared to traditional fishing systems. Development and application of low-impact 

fishing gears is likely to contribute to sustainable fisheries and sustainable marine 

ecosystems. Low-impact fishing gears can promote stock productivity through a 

reduction of unaccounted fishing mortality and potential impacts on the seabed habitat 

and communities. 

Many scientists have responded to the challenge of developing more 

environmentally friendly fishing gears with reduced seabed impacts. Along with the 

precautionary and ecosystem approaches to fisheries, recent literature has described, 

discussed, and proposed some mitigation measures to reduce the impact of mobile fishing 
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gears on the seabed (see reviews by Valdemarsen et al., 2007 and He and Winger, 2010). 

These approaches were mainly suggested based on improving the fishing efficiency (e.g., 

increased catch rate to reduce bottom contact time/area) (Valdemarsen et al., 2007) or 

gear modifications by reducing contact area/weight and penetration of gear components 

(e.g., doors, sweeps, bridles, and groundgear) on the seabed (Rose et al., 2000, 2006; Ball 

et al., 2003; Munden, 2013; Murphy, 2014; Nguyen et al. 2015). In addition, the use of 

pelagic trawls and semi-pelagic trawls to target demersal species have also been 

developed to lessen seabed impacts and reduce bycatch levels (DeLouche and Legge, 

2004; He et al., 2006; Sala et al., 2010; Rivierre et al., 2013). In some cases, there have 

been large EU funded projects (e.g., DEGREE) dedicated to measuring and addressing 

the topic of (van Marlen et al., 2010). While many of these initiatives have developed 

innovative technological solutions that reduce seabed impacts, the development of any 

one single ‘perfect comprehensive solution’ has not yet been achieved. Instead small 

scale discoveries and improvements has been more the norm. The result has been a slow 

evolution of small incremental changes in bottom trawl technology (Graham, 2006). No 

one would argue that bottom trawls are similar to those used 50 years ago. In fact they are 

dramatically different in many ways. But they are not perfect. For this reason, 

conservation engineering remains a hot discipline with many countries dedicated to the 

pursuit of more sustainable fishing practices. 
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1.3.2 Designing and Testing New Fishing Gears 

Trawl designs and developments have become more advanced and sophisticated 

over the last few decades. This trend can largely be explained by the need for 

improvements in energy efficiency, species and size selectivity, reduced bycatch, and 

reduced impact on the seabed and benthic communities (Winger et al., 2006). In addition 

to this, the “methods” by which scientists and technologists design and test new 

developments has also been improving. This is attributed to the high cost of evaluating 

new gear designs at sea together with major advancements in computer aided simulation 

and physical modeling techniques, both of which have been shown to reduce relevant 

expenses and potential risks for gear manufacturers and researchers (Winger et al., 2006; 

Prat et al., 2008; Queirolo et al., 2009).  

  The methods by which a new fishing gear such as a bottom trawl is designed and 

evaluated have been refined for several decades with various theoretical and experimental 

methods (Tauti, 1934; Dickson, 1961; Fridman, 1973, 1986; Priour, 2013). Historically, 

these experiments were carried out using either 1) working engineering models in tow 

tanks or flume tanks, or 2) full-scale prototypes at sea. Given the cost of evaluating new 

trawl designs at sea, as well as the recent rise in commercially available simulation 

software, today’s gear designers, researchers, and manufacturers prefer to begin with 

computer simulation and the testing of physical scale models, before testing at-sea (see 

Figure 1.3 for the commonly used fishing gear development cycle). This allows designers 

to optimize proposed trawl concepts in a “low-cost” environment, rather than 

immediately preceding to sea with every new idea (Winger et al., 2006). The use of 
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computer-based numerical modeling and simulation has significantly improved the speed 

and quality of design work, particularly during the early stages of design for validating 

simple design ideas (Ferro, 1988; Makarenko et al., 1998; Priour, 1999; Lee et al., 2005; 

Vincent and Roullot, 2006; Priour, 2013; Park et al., 2014). Parameters of interest 

typically include trawl geometry, mechanical stress on the seabed, and hydrodynamic 

drag or resistance (Vincent, 2000; Vincent and Roullot, 2006; Queirolo et al., 2009; 

Priour, 2013). With this step completed, refined trawl concepts can then be constructed in 

the form of scaled working engineering models. These models are then tested and 

evaluated using a flume tank (see Winger et al., 2006 for a list of available flume tanks 

worldwide). This is arguably the best approach for examining the effects of trawl rigging 

on hydrodynamic behaviour and performance, visually and in a direct way. This approach 

is also recommended for validating simulated values derived from previous numerical 

simulation work (Queirolo et al., 2009). Eventually, full-scale prototypes are constructed 

and evaluated under real fishing conditions for their mechanical performance and 

catchability. This often includes a wide assortment of underwater cameras and 

instrumentation in order to study animal behaviour and trawl performance in situ.  

In ideal cases, the fishing gear development cycle finishes with trawl innovations 

being introduced into the fleet and implemented by industry (Figure 1.3).  However, more 

often than not, the cycle is repeated in a repetitive manner until meaningful 

improvements are achieved. But is it that simple? Does developing and publishing new 

innovations necessarily affect change within the fishing industry? A recent article by 

Eayrs et al. (2014) highlights the fact that the fishing industry tends to be resistant to 
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change. The authors argue that conditioning, conservatism, and uncertainty are possible 

reasons as to why new innovations often sit on the shelf and are not “taken-up” by 

industry. They suggest that lessons learned from the business community, in particular 

the theory of “change management” could be applied to the field of conservation 

engineering (i.e., fishing gear development). This is opening new insights into how 

fishing gear is developed and implemented into industry, and it may require a 

revision/improvement to the fishing gear development cycle (Figure 1.3).  

 

1.4 Chapter Outlines 

 In Chapter 2, I study the behavioural interactions of individual snow crabs 

(Chionoecetes opilio) in response to the rockhopper footgear of a traditional inshore 

shrimp trawl used in Newfoundland and Labrador, Canada. The northern shrimp 

(Pandalus borealis) and snow crab fisheries are important contributors to the local 

economy of the province of Newfoundland and Labrador (DFA, 2015). The local fishing 

industry has been concerned about shrimp trawling as an important source of 

unaccounted mortality, negatively affecting the snow crab population and their habitat. 

Several attempts have been made to understand how shrimp trawling activities affect 

snow crab population and habitat in Canada (Schwinghamer et al., 1998; FDP, 2002; 

Gilkinson et al., 2006). Recent recommendations arose from the experiments conducted 

by Dawe et al. (2007), one of which was the need to conduct direct in situ video 

observations of snow crab interaction with trawl footgear. In this chapter, I record and 
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evaluate individual snow crab interactions in response to different footgear components, 

including their orientation, reaction behaviour (i.e., direction of movement), and nature of 

encounter (i.e., different types of encounters, duration, and fate of encounter). I also 

discuss the impacts of shrimp trawling on the snow crab resource and recommend further 

research to better understand the interactions between snow crab and bottom trawls, as 

well as potential gear modifications to reduce impacts. 

 In Chapter 3, I conduct an overview of different commercially available trawl 

simulation software packages used to evaluate their design capabilities and predictive 

capability and reliability. Three major software packages were selected for the 

comparison, including: 1) DynamiT (developed by the French Research Institute for the 

Exploitation of the Sea-IFREMER, France), 2) SimuTrawl (developed by the Marine 

Production System Laboratory-MPSL, Korea), and 3) Trawl Vision PRO (developed by 

the AcruxSoft, Uruguay). First, I conduct a literature review including an overview of 

trawl simulation software and any scientific studies using the software. I then use the 

Campelen 1800 trawl (a Canadian demersal survey trawl) to evaluate the 

design/simulation capabilities of each software using various criteria (e.g., user-friendly, 

ability to self-training/using, modeling assistance, design capability, simulation capability 

and reliability). In addition, I also use at-sea data on the performance of the Campelen 

1800 trawl to validate simulation results predicted by each software or to evaluate how 

each software replicates real-world performance. I discuss the strengths and limitations of 

each software and provide recommendations for the potential users.  
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In Chapter 4, I investigate how well computer simulation and flume tank testing 

of scale engineering models actually predict full-scale at-sea performance of bottom 

trawls. The use of computer simulation, physical modeling, and at-sea evaluations in a 

complementary manner and in a logical sequence of work is considered a major tenant of 

the fishing gear development cycle (Winger et al., 2006). In this chapter, I use a dynamic 

simulation software (DynamiT) to simulate the mechanical behaviour of the Campelen 

1800 trawl under different working scenarios (e.g., differences in door spread, depths, 

and towing speeds). A 1:10 scale model of the Campelen trawl was then built and tested 

in a flume tank at the Fisheries and Marine Institute of Memorial University of 

Newfoundland (Canada) where the performance of the model was evaluated under 

different towing speeds and rigging arrangements. Then I use the data obtained from 

dynamic simulation and the flume tank to compare with the full-scale observations of the 

Campelen 1800 in action that were collected during the fall 2011 multi-species survey 

aboard the research vessel CCGS Teleost. I also use the numerical simulation data to 

compare against scale model engineering performance under identical conditions. I 

discuss the weaknesses and merits of each method and provide suggestions how to use 

them to support the gear development cycle.  

In Chapter 5, I examine the effectiveness of a novel footgear for reducing the 

seabed impacts of shrimp trawls off the east coast of Newfoundland and Labrador, 

Canada. A “drop chain” footgear with reduced contact area was designed and tested using 

engineering models in a flume tank, as well as full-scale at-sea trials. I evaluate two 

experimental footgear designs, the 9-drop chain and 5-drop chain, in the Marine 
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Institute’s flume tank to estimate contact area with the seabed. I also conduct two 

comparative commercial fishing experiments to examine catch rates of shrimp and 

bycatch, trawl geometry, fuel consumption, and trawling resistance between the 

traditional and experimental trawls (i.e., rockhopper footgear vs. drop chain footgear). In 

addition, I collect underwater video observations to determine the performance of the 

drop chain footgear relative to the seabed and its herding effects on shrimp and bycatch 

species, in particular the interaction or encounter of snow crab with the drop chains. 

Finally, in Chapter 6 I provide an overall summary of the results and conclusions 

from each chapter. I discuss environmental concerns, gear research and development to 

reduce potential environmental impacts of northern shrimp trawling in Newfoundland 

and Labrador (Canada), as well as limitations of the approach and future research 

directions. 
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Figure 1.1: A schematic drawing of a bottom trawl in action (Adapted from He, 2007) 

 

Figure 1.2: Demonstration of flatfish behaviour in the herding zone. They react to the 

sweeps/bottom bridles at a 900 degree angle, swimming away and settling again until they 

once again interact with the footgear (Winger et al., 2004). 
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Figure 1.3: Fishing gear development cycle (Winger et al., 2006) 
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Chapter 2. Underwater observations of the behaviour of snow crab 

(Chionoecetes opilio) encountering a shrimp trawl off northeast 

Newfoundland  

2.1 Abstract 

Trawl-mounted video camera observations were conducted to understand how 

individual snow crab (Chionoecetes opilio) interact with the rockhopper footgear 

components of a traditional inshore shrimp trawl used in Newfoundland and Labrador, 

Canada. Observations of individual snow crab interactions with different footgear 

components were recorded and evaluated including their orientation, reaction behaviour 

(i.e., direction of movement), and nature of encounter (i.e., different types of encounters; 

duration of encounter, and fate of encounter). The analysis demonstrated that snow crabs 

were quickly overtaken by the approaching trawl and about 54% of the crabs observed 

were confirmed to experience an encounter with the footgear (either disc or 

spacer/chain). The study also revealed that the majority of the crabs observed appeared to 

be aware of the trawl and appeared to be actively responding and/or reacting to the 

approaching threat. I discuss the impacts of shrimp trawling on the snow crab resource, 

further research required to better understand the interactions between snow crab and 

bottom trawls, as well as potential gear modifications to reduce impacts. 
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2.2 Introduction 

The Newfoundland and Labrador snow crab (Chionoecetes opilio) fishery is the 

province’s highest value fishery, one of Canada’s most valuable fisheries, and has 

achieved Marine Stewardship Council (MSC) certification. The importance of the snow 

crab fishery to the economy of Atlantic Canada has increased significantly since the 

collapse of the Northern cod and other groundfish resources on the Canadian East coast 

in the early 1990s. The snow crab fishery in the province of Newfoundland and Labrador 

grew steadily since 1990s and currently has approximately 3,200 license holders under 

fishing enterprise allocation and annual landings of over 50,000 tonnes (Mullowney et 

al., 2012a and DFA, 2013). However, there are recent indicators of a resource decline in 

some areas, particularly in northern regions (e.g., NAFO Divisions 2HJ3K). Survey and 

fishery catch rates have decreased in each of these divisions in recent years (Mullowney 

et al., 2012a). Stakeholder members are deeply concerned about the situation and suspect 

multiple potential contributing factors, including poor recruitment, changing 

environmental conditions, increased predation, and interaction with the mobile gear 

sector (e.g., bottom trawling). Fisheries and Oceans Canada (DFO) has recently proposed 

and implemented new management measures to conserve and protect the snow crab 

resource, including reductions in total allowable catch (TAC), soft-shelled crab protocols 

to protect pre-recruit crabs, biodegradable twine to limit ghost fishing, voluntary gear 

modifications to improve selectivity, and closed areas (e.g., Winger and Walsh, 2011 and 

Mullowney et al., 2012a,b).  
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One of the primary concerns raised by industry is their contention that shrimp 

trawling represents an important source of unaccounted mortality, negatively affecting 

the snow crab population and habitat. Several recommendations arose from the 

experiments conducted by Dawe et al. (2007), one of which was the need to conduct 

direct in situ video observations of snow crab interaction with trawl footgear. Such work 

was not immediately conducted, however recent indicators of poor stock health in NAFO 

Division 3K renewed interest in this area of research. The objective of this study was to 

provide behavioural insights into how individual crabs react to trawls by conducting 

trawl-mounted video observations of the interaction. 

 

2.3 Materials and Methods 

2.3.1 Study Area 

The experiment was conducted in NAFO Division 3K on the northeast coast of 

Newfoundland, Canada with average water depths ranging from 373 to 393 m. More 

specifically, this area was chosen because the shrimp and crab fisheries are known to 

overlap in this location and were recently closed to crab fishing due to a high incidence 

(>20%) of soft-shelled crab. Choosing an area recently closed as a result of the soft-

shelled-protocol was not only expected to ensure the presence of soft-shelled snow crab 

but also absence of crab gear, facilitating the trawling experiment without the issue of 

gear conflicts. 
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2.3.2 Camera System and Operation 

A self-contained low-light underwater camera system owned by the Fisheries and 

Marine Institute of Memorial University was used for the experiment. The equipment, 

developed by JT Electric (Faroe Islands), was attached to the headrope and footgear of a 

traditional inshore shrimp trawl to collect close-up video footage of crab interactions with 

trawl footgear.   

 

2.3.3 Field Observations 

The experiment was carried-out onboard the commercial vessel Lynette Marie II 

on the northeast coast of Newfoundland in late June 2012. The vessel, registered in the 

province of Newfoundland and Labrador as part of the shrimp fleet in NAFO Division 

3K, was equipped with a traditional shrimp trawl with rockhopper footgear. The trawl 

was rigged with a 28.2 m rockhopper footgear comprised of 356 mm diameter rubber 

discs with a minimum spacing of 179 mm between the discs (Figure 2.1). Netting in the 

trawl consisted of 6.0, 4.0 and 1.8 mm diameter polyethylene twine varying in mesh size 

from 80-100 mm in the wings, the square and 50 mm in the bellies, extension, and 

codded.  

A camera unit was mounted directly to the fishing line at the centre of the 

footgear, close to the seabed (i.e., 0.6-1m). A lighting unit was also attached to the 

headline of the trawl aimed downward to illuminate the field of observation to improve 

the quality of video. Altogether, 15 tows were conducted resulting in five successful tows 

(Tow 11-Tow 15) yielding a total of 9.5 hours of usable video for detailed analysis.  
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2.3.4 Data Analysis 

Analysis of the video footage was conducted using AVS video editor software on 

a high definition monitor in order to measure specific objective parameters for individual 

crabs in response to the approaching rockhopper footgear components (i.e., disc, 

spacer/chain).     

The parameters measured included the numbers of snow crab observed, the 

position of each crab relative to the substrate (i.e., either on the surface or in the mud), 

the orientation and movement of each crab (i.e., walking, not walking, or unknown), the 

direction of movement, and nature of the encounter (i.e., type of encounter, duration of 

encounter, and fate of encounter). We assumed that crabs perceive an approaching 

bottom trawl in the same way that fish perceive an approaching bottom trawl. In making 

this assumption, we were able to build upon established predator–prey theory for animal-

trawl interactions (e.g., Ryer, 2008 and Winger et al., 2010). In particular, we assume that 

a crab under the threat of an approaching trawl will continually choose between two 

behavioural options, staying where it is (and perhaps continuing with an ongoing activity) 

or fleeing, as the distance between it and the trawl shrinks. 

The nature of each crab’s interaction with footgear components (i.e., discs, 

spacers, travel chain) was also investigated. We categorized each crab as either; a) 

experiencing a direct encounter with the disc, b) experiencing an encounter with the 

spacer/travel chain, c) passing between the discs with no apparent encounter, or d) 

unknown because either the crab or the footgear left the field of view and the actual 

interaction could not be determined.  
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The orientation and direction of movement of each crab relative to the direction of 

tow and the centre of the footgear were measured manually using a transparent protractor 

over-laid on the video monitor. The crab’s eyes were used to determine its orientation 

(e.g., a crab facing toward the approaching footgear was given a value of 180 degrees, 

whereas a crab facing the tow direction was assigned 0 degrees). The Raleigh statistical 

test using Oriana version 4.01 was used to test whether these parameters (orientation and 

direction of movement) were randomly distributed. 

 

2.4 Results 

A total of 1081 crabs were observed. The majority (93%) were on the surface of 

the substrate while 7% were in the mud. The numbers of crabs were found to be different 

between tows, depending on the quality of video. Other factors such as crab density and 

patchiness of the seabed substrate may have also played a role.  

The majority (87%) of the crabs observed were walking while 12% of crabs were 

categorized as not walking, and the remaining 1% were unknown.  

Of the crab observed, a total of 54% experienced an encounter with the footgear 

(either disc or spacer/chain), while 25% had no encounter (i.e., went between the discs), 

and 21% went outside the field of view (Figure 2.2). The vast majority of encounters 

were less than 1s in duration (approximately 90%), while approximately 8% were 

between 1 and 10s, and the remaining 2% were longer than 10s. Only in very rare cases 

was excessively long impingement (i.e., snagging) observed, with the longest 
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impingement lasting approximately 6 minutes.  For crabs involved in an encounter (n = 

583), 95% went under the footgear while 5% went over the footgear.  

The orientation of the crabs on or in the substrate relative to the centre of the 

footgear and direction of the tow was non-random (p < 0.001) (Table 2.1). The majority 

of crabs were oriented in the range of 75 deg. through 285 deg., with a mean of 193°deg 

(Figure 2.3). Very few individuals were oriented in a direction facing away from the 

approaching trawl, suggesting they appeared to be aware of the approaching threat.  

For individuals categorized as moving, the direction of movement relative to the 

centre of the footgear and towing direction was non-random (p < 0.001) (Table 2.1). The 

majority of crabs were moving in directions ranging from 270 deg. through 90 deg., with 

a mean of 1.9° deg. (Figure 2.4). Very few individuals were moving toward the 

approaching trawl, suggesting they were appeared to be actively avoiding the 

approaching threat. 

  

2.5 Discussion 

The results of this study suggest an effect of shrimp trawling on snow crab 

mortality, with approximately 54% of the crab observed were confirmed to experience a 

direct encounter with the footgear components. However it is important to note that we 

were unable to investigate the severity, degree of pain, or likelihood of mortality after 

passing under the footgear. Furthermore, our observations focused only on the center of 

the footgear thus limiting our ability to evaluate interactions in other regions of the trawl.  
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One of our major findings is that the majority of the snow crabs appeared to be 

aware of the approaching trawl and most were actively responding and/or reacting to the 

approaching threat (e.g., footgear components). This finding is consistent with Rose 

(1995) who documented Alaskan red king crab “running away” from approaching ground 

gear components. Similar to red king crab, snow crab in our study showed limited ability 

to avoid approaching trawls and were quickly overtaken, resulting in unintended 

encounters. These reaction behaviours remain poorly understood, but could be viewed 

against a backdrop of related studies investigating fish reactions to trawls. Recent 

literature suggests that fish respond to bottom trawls in a manner consistent with 

predator-prey theory, with the trawl constituting the predator (e.g., Ryer, 2008; Winger et 

al., 2010; Underwood et al., 2012).  If we assume this to be true for crabs, then it is 

logical to assert that individuals make behavioural tradeoffs that minimize risks and 

maximize benefits consistent with the economic or adaptive risk-assessment hypothesis 

(Ydenberg and Dill, 1986). In the case of vertebrate fish, hundreds of studies have been 

conducted since the 1960s to investigate the various intrinsic and extrinsic factors that 

affect fish behaviour in response to approaching trawls (see review by Winger et al., 

2010). Factors known to modify fish behaviour include: underwater light field (light 

level, contrast, and colour), water temperature, animal density, animal size, motivational 

state, physiological condition, learning and experience. The current experiment was not 

designed to investigate such effects, but does draw attention to the gulf of knowledge 

when comparing these two phyla.     
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Our observation that the majority of crabs were actively reacting to the trawl 

suggests that the individuals we observed were of hard-shelled condition. Though shell 

condition could not be determined from the video, we speculate that the crabs must have 

been of hard-shelled condition in order to demonstrate the behaviour observed. We 

suggest that truly soft- shelled individuals would probably be unlikely to actively respond 

to the trawl and could therefore be more susceptible to mortality or damage. Although 

further research is required to validate this hypothesis, in a precautionary measure, DFO 

extended the soft-shell protocol in NAFO Division 3K in 2013 to prohibit trawling (along 

with trap fishing) for the duration of the crab fishery in grids that were closed due to a 

high incidence of soft-shelled crab. In 2002, DFO established the 1,370 km2 Hawke Box 

exclusion zone which was expanded to 8,610 km2 in 2003. The Hawke Box is located off 

Southern Labrador in NAFO Subarea 2J (i.e., shrimp SFA 6). The Hawke Box was 

closed to shrimp trawling and groundfish fisheries in response to concerns that they were 

negatively affecting Atlantic cod and snow crab populations and habitat. Only trap 

fishing for snow crab is permitted inside the exclusion zone. A recent study demonstrated 

that the Hawke Box exclusion zone failed to protect pre-recruit crabs largely due to a 

redistribution and intensification of directed snow crab effort inside the Box in years 

following the closure (Mullowney et al., 2012b). A similar trawling closure (Funk Island 

Deep Closure) was established in offshore Division 3K in 2005 and similar to the Hawke 

Box, there is currently no evidence to suggest it has had any positive impacts on snow 

crab resource status, with fishery catch rates declining more inside the closed area than 

outside in recent years (Mullowney et al., 2012a).  
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The ability to detect individual crabs relative to the rockhopper footgear 

components was limited by murky water and low light penetration. This limitation is 

known as one of the common technological challenges when conducting species-specific 

behavioural observations in dynamic underwater environments (e.g., Hemmings, 1973; 

Graham et al. 2004; Underwood et al., 2012). Some particular consequences are that only 

a small portion of the area swept during trawling could be monitored, we were not able to 

determine the reaction distance of the crabs, and we were unable to determine size, shell 

condition, or sex of the crab.  

Artificial light is well known to modify animal behaviour as it alters the 

underwater light field (i.e., light level, colour, and contrast).  Its effect on fish reactions 

toward fishing gear has been well documented (Glass and Wardle, 1989; Walsh and 

Hickey, 1993; Engås et al., 1998; Olla and Davis et al., 2000). However, in this study we 

could not investigate snow crab response to the footgear components without the use of 

artificial (white) light due to the significant depth of the snow crab distribution. We 

recognize this was a limitation of our experiment and that the light may have altered crab 

behaviour and biased our results. Hence we suggest the results be interpreted with caution 

and recommend future research develop methods to observe the behaviour of snow crab 

without the use of white light.  

To better understand whether shrimp trawling negatively affects snow crab 

population and habitat, underwater observations of interactions between individual crabs 

and other components of the trawl (e.g., sweeps/bridle and wing-sections of the footgear) 

should be conducted. Rose et al. (2013) reported differential mortality rates depending on 
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the component of the trawl encountered, with significantly higher mortality in the wing-

sections of a trawl footgear relative to the centre. Such component-specific mortality 

should be further clarified and scientifically documented in order to help gear 

technologists and scientists develop less damaging footgear/sweeps to reduce crab 

encounters and potential mortality while sustaining capture rates of target species. 

Conducting trawl modifications (e.g., less- and/or non-bottom contact trawl 

doors/sweeps/bridles/footgear) is considered a potential approach to minimize encounters 

of snow crab with different bottom contact components of the trawl. For example, by 

raising the sweeps off the bottom, Rose et al. (2013) verified that such modification can 

help to reduce unobserved mortality of red king crab from 10% to 4%.  

In conclusion, this study revealed that the majority of snow crabs observed were 

aware of the footgear and were actively responding to the approaching threat. Crabs were 

quickly overtaken by the approaching footgear and generally unable to avoid an 

interaction. Approximately 54% of the crabs observed were confirmed to experience a 

direct encounter with the footgear, suggesting an effect of trawling on damage or 

mortality to snow crab. While the extent of this impact remains unquantified, the 

behavioural knowledge gained from this study should assist stakeholders toward the 

development of trawling systems with reduced impact.  
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Table 2.1: Basic statistical summary and Rayleigh test for the orientation and direction of 

movement of snow crab on or in the substrate relative to the centre of the footgear and tow 

direction. 

Variable   

Orientation  

Number of observations 1081 

Mean vector (µ) 193.° 

Length of mean vector (r) 0.207 

Median 190.0° 

Concentration 0.423 

Circular variance 0.793 

Circular standard deviation 101.8° 

95% confidence interval (-/+) for µ 181.5°-

204.6° 

 

Rayleigh Test (Z) 

 

46.253 

 

 

Rayleigh Test (p) < 0.001 

  

Direction of movement  

Number of observations 938 

Mean vector (µ) 1.9° 

Length of mean vector (r) 0.655 

Median 0.0° 

Concentration 1.759 

Circular variance 0.345 

Circular standard deviation 52.7° 

95% confidence interval (-/+) for µ 

 

358.4°-5.3° 

Rayleigh Test (Z) 402.987 

 

 

Rayleigh Test (p) < 0.001 
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Figure 2.1: Schematic drawing of a traditional rockhopper footgear used in the study 

 

 

 

   

Figure 2.2: Example images showing different types of encounter. (a) the crab got stuck 

into the disc; (b) the crab was snagged into the spacer/chain; (c) the crab went under the 

disc. 

(a) (b) (c) 
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Figure 2.3: The orientation of the crab on or in the substrate relative to the centre of the 

footgear and the direction of tow. The blue bars indicate percentage of individuals. The 

black line indicates the mean direction (193°) and the bar at the end indicates 95 
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Figure 2.4: The direction of snow crab movement on the substrate relative to the centre of 

the footgear and towing direction. The blue bars indicate percentage of individuals. The 

black line indicates the mean direction (1.9°) and the bar at the end indicates 95%. 
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Chapter 3. Numerical modeling method for simulating bottom trawls 

3.1 Abstract 

Numerical modeling and simulation has emerged as a new and powerful tool for 

understanding the dynamic behaviour of bottom trawls. Based on hydrodynamic theory 

and principles, a bottom trawl can now be mathematically modeled in order to predict its 

dynamic performance under different conditions. An increasing demand for the use of 

computer-based numerical modeling is reflected by the recent rise in trawl simulation 

software commercially available in the market, allowing users to conceptualize trawl 

designs and evaluate their performance from the comfort of a desktop computer. In this 

study, I present an objective evaluation of three widely used trawl simulation software 

packages: DynamiT, SimuTrawl, and Trawl Vision PRO. The Campelen 1800 (a 

Canadian demersal survey trawl) was used to examine strengths and limitations of each 

software including the ability in predicting downward forces of gear components on the 

seabed, and to compare different design and simulation capabilities. The precision and 

accuracy of the simulation predictions was also validated using the full-scale at sea 

observations of the Campelen 1800 trawl which were collected during the 2011 fall 

multi-species survey aboard the research vessel CCGS Teleost. The study demonstrates 

that each of the software packages have their own weakness and merits in terms of design 

and simulation capability and reliability of the predictions. Numerical modeling is 

essential for understanding and predicting the dynamic behavioural performance of 
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bottom trawls and should be used as complementary tool in addition to physical modeling 

method and full-scale experiments.  

 

3.2 Introduction  

The development of fishing gears for the commercial fishing industry has 

changed dramatically over the last few decades as a result of increasing regulations, the 

need for species- and size-selectivity, stringent bycatch restrictions, as well as the 

necessity to reduce fuel consumption and minimize ecosystem impacts. Bottom trawls 

used for commercial and scientific purposes have become increasingly complex in their 

design, material choice, and construction. Understanding the dynamic behaviour and 

performance of these flexible structures prior to expensive sea trials is a key step in the 

fishing gear development cycle (Winger et al., 2006). Numerical modeling, in particular, 

is becoming one of the popular methods of evaluating trawl designs and assessing their 

performance during the early stages of gear development (e.g., Fiorentini et al., 2004; Lee 

et al., 2008; Queirolo et al., 2009; Nguyen et al., 2015).  

Studies on the dynamic behaviour and performance of mobile fishing gear 

systems (e.g., bottom trawls) have been investigated for several decades using various 

theoretical and experimental methods (e.g., Tauti, 1934; Dickson, 1961; Fridman, 1973, 

1986). Historically, these experiments were carried out using either 1) working 

engineering models in tow or flume tanks, or 2) full-scale prototypes at sea. However 

during the last two decades, numerical modeling and simulation has emerged as a new 
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and powerful tool for understanding the dynamic behaviour of mobile fishing gear 

systems. Based on hydrodynamic theory and principles, a fishing gear system can now be 

mathematically modeled in order to predict its dynamic performance under the influence 

of various forces in the aquatic environment (e.g., external forces such as drag force, 

shearing force, sinking force, and buoyancy) and the properties of the materials used 

(e.g., elasticity and stiffness of twines). Numerical modeling of fishing gear systems has 

improved substantially in recent years given major advancements in mathematical theory, 

numerical simulation methods, and the computational power of modern desktop 

computers (Bessonneau and Marichal, 1998; Lee and Cha, 2002; Lee et al., 2005, 2008; 

Zhang et al., 2011; Priour, 2013; Li et al., 2015). An increasing demand for the use of 

computer-based numerical modeling is reflected by the recent rise in trawl simulation 

software commercially available in the market. With regard to bottom trawls, the market 

currently offers several trawl simulation software packages (e.g., DynamiT, Trawl Vision 

PRO, SimuTrawl, NETSIM simulator, and CATS II), allowing users to conceptualize 

trawl designs and evaluate their performance from the comfort of a desktop computer. 

The most common application has been the optimization of gear performance, including 

shape, geometry, drag, and seabed impact (e.g., Makarenko et al., 1998; Priour, 1999, 

2013; Freiria, 2012; Lee et al., 2005, 2008; Vincent and Roullot, 2006; Park et al., 2014; 

Nguyen et al., 2015). Today, many gear designers, researchers, and manufacturers prefer 

to begin with numerical modeling of early conceptual ideas, followed by physical testing 

of scale engineering models in a flume tank (Winger et al., 2006). Eventually, full-scale 

prototypes are constructed and evaluated under real fishing conditions for their 



71 

 

mechanical performance and catchability. While numerical and physical modeling have 

their respective advantages and limitations (Priour, 2013), both have been shown to be 

complimentary tools in predicting full-scale trawl performance (Nguyen et al., 2015).       

This study provides a review and evaluation of three commercially available trawl 

simulation software packages including: 1) DynamiT (version 2.1), developed and 

distributed by the French Research Institute for the Exploitation of the Sea (IFREMER), 

France; 2) SimuTrawl (version 14.0425 for the Design program and version 1.0331 for 

the Simulation program), developed and distributed by the Marine Production System 

Laboratory (MPSL), Korea; and 3) Trawl Vision PRO (version 1.2.8 for the Trawl Vision 

Designer-TVD and version 1.6.3 for the Trawl Vision Simulator-TVS), developed by 

AcruxSoft, Uruguay. These particular software packages were selected for evaluation as 

they are widely recognized by gear designers, net makers, researchers, and fishing 

industry. Most of these software packages have the ability to simulate the mechanical 

behaviour and effects of different materials and design features on trawl configuration 

and performance under different rigging and towing scenarios (e.g., Vincent, 1999; 

Freiria, 2012; Queirolo et al., 2009; Nguyen et al., 2015). The software can also be used 

to study how trawl gears impact the seabed or how a trawl can be modified in order to 

reduce the fuel consumption (van Marlen et al., 2010). Other simulation software such as 

the NETSIM simulator-real-time 3D simulation for the trawl fishing gear (Park et al., 

2014), and CATS II as an updated version of SINTEFs program (i.e., CadTrawl and 

CATS) for simulation of trawl performance (Hansen and Madsen, 2012), were not 

evaluated in this study as they were not considered fully commercialized products or not 
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widely recognized by trawl designers and net makers. Our study was not conducted to 

determine which trawl simulation software is “the best one”, but rather to identify 

strengths and limitations of each software, and to compare different features and 

functions regarding their capabilities and reliabilities. This study provides valuable 

knowledge for fishing companies, trawl designers, net makers, researchers, and educators 

who are considering purchasing software for numerical modeling and simulation.  

The following sections provide an overview and description of the three trawl 

simulation software packages used in this study (i.e., DynamiT, SimuTrawl, and Trawl 

Vision PRO). Much of this information is sourced from literature and manuals written 

and distributed by developers of the software, as well as scientific literature. 

 

 DynamiT 

DynamiT is a comprehensive trawl simulation software developed by IFREMER 

to perform dynamic trawl simulation in order to provide information related to geometry 

and forces. The simulation software uses a series of mechanical equations (structural and 

hydrodynamic) to characterize the shape and performance of a bottom trawl (Vincent and 

Roullot, 2006). This involves solving several equilibrium equations at the same time 

(e.g., equations of the dynamic mechanic balance, equations taking into account the 

elasticity of the bar, and equations describing hydrodynamic forces and other external 

forces due to water current). Each twine of the net is modeled by two rigid bars or more, 

to model the elasticity and rigidity of the twine. The bars are linked together with perfect 

knee joints (Vincent, 1999). The major strengths of the software lie in its ability to take 
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into account a number of parameters and elements of an actual trawling system. A 

number of design and simulation capabilities of DynamiT has described by Vincent 

(1999). 

DynamiT is considered one of the most well-documented simulation tools 

available. There are several examples in the scientific literature of applications of 

DynamiT. An introduction to DynamiT and its applications was presented by Vincent 

(1999). Vincent and Roullot (2006) demonstrated a series of examples of DynamiT 

applications to reduce the hydrodynamic drag (up to 30% in towing tension) of different 

trawl types (e.g., shrimp trawls, Cephalopod or squid trawls, twin-trawls, and pair trawls) 

with the goal of reducing fuel consumption. Queirolo et al. (2009) used the software to 

conduct numerical simulation of a new trawl design for Chilean crustacean fisheries. The 

software was also used to evaluate the mechanical impact of novel “seabed-friendly” 

trawl door concepts (see van Marlen et al., 2010). More recently, Nguyen et al. (2015) 

used the DynamiT software to assess the accuracy of numerical modeling and physical 

modeling approaches in predicting the full-scale at-sea performance (geometry and 

resistance) of the Campelen 1800 survey trawl. The authors also investigated the ability 

of the DynamiT to predict the performance of physical models in a flume tank.  

 

 SimuTrawl 

SimuTrawl is a comprehensive numerical and simulation software package that 

includes two separate programs: trawl gear design and simulation. It simulates most types 

of commercially important trawl types, including mid-water trawls, bottom trawls, multi-
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rig trawls, pair trawls, and Danish seines. Similar to DynamiT, SimuTrawl provides a 

tool to predict the engineering performance of a proposed trawl design. It also has the 

ability to predict estimated mechanical forces of gear components (e.g., trawl doors and 

footgear) on the seabed. The depth of seabed, the speed and direction of both wind and 

currents can be set for any fishing environment. The simulation program is also used for 

3D visualization of the fishing system for the purpose of checking the shape and the 

performance of the trawl. SimuTrawl is developed based on the application of a 

physically based mass-spring model (Lee, 2002; Lee and Cha, 2002; Lee et al., 2005). 

This model expresses the constituents of a virtual fishing gear system as mass points (i.e., 

the knots of its mesh are considered as mass points) having mass and mass-less springs 

(i.e., the bars of its mesh are considered as a spring without mass) connecting these 

points. In the case of trawls, the knots and bars of netting are transformed into knots and 

massless bars of virtual mesh (e.g., a small mesh trawl net may have several thousand of 

meshes) as mass points of a mathematical model. All the external forces such as drag, 

sheering force, sinking force, and buoyancy which work on the element are centered only 

on the mass points.  

There are several examples in the scientific literature describing the development 

and application of SimuTrawl. Lee and Lee (2000), Lee and Cha (2002), and Lee et al. 

(2005) described a physical modeling method (i.e., a physical based mass-spring model) 

which was used to develop the SimuTrawl. The authors demonstrated that the simulated 

results qualitatively agree with the field experiments (Lee and Cha, 2002 and Lee et al., 

2005). The software also permits the prediction of the shape and motion of the gear in 
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accordance with changes in operation and gear designing parameters (Lee et al., 2005). 

More recently, the software has been used to estimate and accurately predict the swept 

volume of survey trawls (Lee et al., 2011). In that study, generalized modeling methods 

were developed and described for simulating the shape and movement of the gear. The 

authors then applied this model to simulate and calculate trawl shapes and their 

corresponding swept volume in relation to different towing speeds. 

 

 Trawl Vision PRO 

Trawl Vision PRO is a new and rapidly growing simulation software developed 

and distributed by AcruxSoft, Uruguay. The software package includes two different 

programs: Trawl Vision Designer (TVD) and Trawl Vision Simulator (TVS). The TVD is 

a trawl design tool which allows the user to create their own trawl designs with a very 

user friendly interface based on existing net design templates (more than 150 available 

predefined templates). The Trawl Vision Simulator allows the user to create 3D 

visualizations using an extremely user friendly interface in which the dynamic behaviour 

of trawl designs can be viewed under various rigging, towing speed, and depth scenarios 

(AcruxSoft, 2012a). In addition to the design and simulation programs (i.e., TVD and 

TVS), AcruxSoft has developed and recently commercialized a trawl monitoring 

software, called Trawl Vision Instrumentation (TVI). This third program is designed to 

be installed on fishing vessels and integrated with any SIMRAD trawl monitoring system 

for simulating the real-time behaviour of the trawling system, including the catch 

performance (Mayans, 2011). Trawl Vision PRO is developed based on the application of 
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a number of mathematical models which were proposed by Fridman (1969, 1986), 

Nomura and Yamazaki (1975), Wileman and Hansen (1988), and Ferro and Hou (1984), 

in order to predict the geometric configuration and forces of a bottom trawl (Freiria, 

2012). Mathematical models are considered for the major elements and components of a 

bottom trawl, including doors, floats, cables, and the trawl net itself (Freiria, 2012). 

The very first version of Trawl Vision, named AcruxSoft 2.0, was developed and 

initiated in 1989 by Frank Chalkling (F. Chalkling, AcruxSoft, pers. comm.). More 

recently, Freiria (2012) described a numerical model with mathematical procedures 

which were used to calculate the resistance of the different components of a trawling 

gear, by deduction of the drag and lift components. The author also demonstrated a 

comparison between the simulation results predicted by the Trawl Vision software and at-

sea data provided by vessel-owners. The comparison revealed small differences (2.5 to 

4.5%) for the distance between doors, while larger differences were observed in the 

vertical opening of the trawl mouth (up to 20%). Although little scientific literature on 

the development and application of the software is available, Trawl Vision PRO is widely 

used as a tutorial for students learning about fishing gears, gear demonstration, and 

training for fishermen. Trawl Vision PRO also targets trawl manufacturers and 

researchers who want to improve the existing gears and design new gears (AcruxSoft, 

2012b).  
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3.4 Materials and Methods 

3.4.1 Trawl Design Identification 

The Campelen 1800 was selected as the trawl design for this study. This is the 

standard demersal survey trawl widely used by Fisheries and Oceans Canada on the east 

coast of Canada since 1995, replacing earlier versions of the Engel 145 otter trawl and the 

Yankee 41 shrimp trawl (Walsh and McCallum, 1997). This trawl design is known as a 

four panel design with cut-away lower wings and is rigged with three bridles and 4.3 m2, 

1,400.0 kg Morgère Polyvalent trawl doors. The Campelen 1800 trawl is rigged with a 

35.6 m rockhopper footgear and uses 356 mm diameter rubber disks. Trawl construction 

consists of 4.0, 3.0 and 2.0 mm diameter polyethylene twine varying in mesh size from 

80.0 mm in the wings to 60.0 mm in the square and the first bellies and 44.0 mm in the 

remaining bellies, extension, and codend (Figure 3.1). The design has changed very little 

over time as a result of stringent standardization of construction and operational protocols 

(Walsh et al., 2009). 

 

3.4.2 Data Requirements 

Prior to simulation, each software required input data for a number of parameters 

which were used to define the Campelen 1800 trawl. This included:  

 Data related to all the netting panels; 

 Data related to the strengthening ropes; 

 Data related to the floatation; 

 Data related to the footgear or footrope 
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 Data related to the riggings; 

 Data related to the doors; 

 Data related to the vessel; 

 Data related to the seams (e.g., assembling the netting panels together, connecting 

the trawl net to the strengthening ropes and wires). 

 

3.3.2 Design and Simulation Capabilities 

  The capability of each software package was evaluated using a number of criteria 

(see Table 3.4). This included the ability of the software to describe a variety of complex 

trawl designs (e.g., complicated riggings and multiple wingtips) and simulate these trawls 

under different fishing conditions (e.g., towing in a deep water or at different warp to 

depth ratio). This feature determines the flexibility and robustness of the software, which 

is especially valuable when complex real fishing systems are to be modeled. We also 

evaluated the ability of each software to optimize the process of design and simulation in 

terms of time saving and efficiency. This included data reusability (i.e., ability for 

designing reusable user defined elements), modeling assistance (i.e., libraries/database 

available, templates of modeling objects, warning messages, and undo/redo commands), 

design capabilities (number of elements in the model, templates requirements, ease of 

entering input, ability of cut, copy and paste of objects, and writing comments/notes in 

model building activity). We further evaluated each software’s simulation capability 

regarding visual aspects (3D-animator, real time simulation, ability for customizing the 

view of the model, zoom function, and multiple screen layout), efficiency (robustness, 
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changeable in riggings and simulation setup while carrying-out a simulation, alarm 

setting ability, and reliability), and testability (display output variables, change in 

simulation speed, multiple windows during simulation run, and user pause facility).  

 

3.4.4 Comparison between simulation results and at-sea observations 

  Each of the three software packages was utilized to simulate the mechanical 

behaviour of the Campelen 1800 trawl (i.e., geometric configuration and forces). We 

conducted a number of simulation tests to evaluate the effects of towing depth on the 

engineering trawl performance. The simulations were performed at a standardized towing 

speed of 3.0 knots for 7 different towing depths (250, 500, 750, 1000, 1250, 1500, and 

1600m). The results were analyzed with respect to key performance measurements, 

including: door spread (m), wing spread (m), headline height (m), and warp tension 

(MT).  

To evaluate the reliability/accuracy of the software, the simulation output data for 

trawl geometry and resistance were compared against the full-scale at sea performance of 

the Campelen 1800 trawl to evaluate how each software replicates real-world conditions. 

Full-scale observations of the Campelen 1800 trawl in action were collected during the 

fall of 2011 aboard the research vessel CCGS Teleost. Full-scale observations were 

collected for trawl geometry (i.e., door spread, wing end spread, and headline height) and 

trawl resistance (i.e., warp tension) at a standardized speed of 3.0 knots (speed over 

ground) and seven depths (250, 500, 750, 1000, 1250, 1500, and 1600 m) (see Gardner, 

2012 and Nguyen et al., 2015). This dataset was used for the purpose of comparing full-
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scale observations against predictions obtained by each simulation software under the 

same trawling conditions (i.e., towing depths and speeds).  

The results of the numerical simulations were examined to determine how well 

they predict (or simulate) the observed trawl performance at-sea. Several key 

relationships that describe the mechanical behaviour of the Campelen 1800 were 

examined, including: (1) towing depth and door spread, (2) towing depth and wing 

spread, (3) towing depth and headline height, and (4) towing depth and warp tension. 

Analysis of Covariance (ANCOVA) was used to statistically compare slopes of the 

relationships against at-sea observations, whereas paired t-tests were used to compare 

means. All of the statistical procedures were performed using the IBM SPSS Statistics 

software package. 

 

3.5 Results  

3.5.1 Data Requirements 

DynamiT and SimuTrawl generally required fairly extensive data collection and 

input prior to the design and simulation process. Both software required essentially the 

same type of information, including data on: 

 Netting panels of the trawl (e.g., material, runnage, mesh size and shape, 

diameter, yarn stiffness, and braiding factor); 

 Strengthening ropes (e.g., material, diameter, stiffness, and mass/apparent mass); 

 Floatation and footrope/footgear (e.g., material, volume, mass, and buoyancy); 
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 Rigging information-any combination of cables can constitute the rigging such as 

warp/sweeps/bridles (e.g., material, diameter, stiffness, and mass/apparent mass); 

 The trawler /vessel and trawl doors. 

 

Trawl Vision PRO required comparatively less intensive input compared to 

DynamiT and SimuTrawl. The software required information on: 

 Netting panels of the trawl (e.g., mesh size and shape, and knots). Information on 

material, runnage, and stiffness are not requested; 

 Strengthening ropes (e.g., length and diameter). Information on material, stiffness, 

and mass/weight are not requested; 

 Rigging information for length and diameter of warp/sweeps/bridles. The rigging 

of bridles and sweeps is limited (i.e., three different standard riggings are 

available). 

 

3.5.2 Design and simulation capabilities 

DynamiT and SimuTrawl allow the user to create and simulate any trawl design, 

including complex trawling systems involving complicated riggings and multiple 

wingtips, without the requirement of pre-defined trawl template which is an essential 

requirement for Trawl Vision PRO. We found that both DynamiT and SimuTrawl can 

provide users the opportunity to build their own database (information about fishing gear 

materials) or store elements used to define a trawl in a library in order to call them back 

in later use. This greatly simplifies the design process as well as saves input time 
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compared to the Trawl Vision PRO. The design and simulation capabilities of each 

software are described and discussed in more detail in the following sections. 

 

 DynamiT 

The process of designing and simulating a trawling system in DynamiT is 

described in Figure 3.2. The user initiates the Trawl Gear Document and inputs all data 

and parameters of the trawl gear in order to build a numerical model of the fishing 

system. The Simulation Document is initiated separately to select simulation parameters 

such as towing speed and fishing depth, to run a simulation and display the calculation 

results in a 3D interface. The Trawl Gear Document provides different modes for the user 

to input the trawl gear data (e.g., Geometry mode, definition of the trawl and its rigging; 

Seams mode, definition of the seams between panels and connections between the trawl 

and the rig; Numerical mesh mode, generation of a “numerical” trawl gear; and Layout 

printing mode, trawl design view). The Simulation Document is used to run, control a 

numerical simulation, and to analyze its output results (Figure 3.2). 

The Trawl Gear Document of DynamiT, which is also defined as a Trawl gear file 

(*.trg), is only a single window document. All objects and elements regarding the trawl 

system that are defined by the user are displayed in this trawl design window. An 

example of a design of the Campelen 1800 trawl in a single window is shown in Figure 

3.3a. Entering and defining all the trawl design components (e.g., entering all the netting 

panels and strengthening ropes/cables/other parts of the rigging, and the seams-

assembling the panels together and connecting the net to the rig; defining the netting 
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sections of the panel, the floatation and the footgear/footrope) are generally found to be 

very straightforward. For convenience and accuracy, the user is able to create 

symmetrical netting sections and strengthening ropes, rather than slowly duplicating 

components. These items can be stored in a library for later use, which speeds data entry 

and time to simulation. Inputting a trawl design into DynamiT is relatively simple for 

individuals with a knowledge of trawl design and have a basic knowledge of the 

Windows operating system (e.g., popup menu and context menu). The Trawl Gear 

Document in DynamiT also allows the user to define a virtual trawl or construct a 

“numerical” trawl gear that will be used by the Simulation Document to run calculations. 

However, understanding and learning how to build an efficient “numerical mesh” and 

generate a proper virtual trawl could be the most difficult part for the user depending on 

the trawl structure characteristics, but it is an important step to help optimize calculation 

time and improve reliability of the simulation.  

The Simulation Document in DynamiT, which is also defined as a Simulation file 

(*.sim), is a single window (Figure 3.3b) and divided into three sub-windows: 1) the 

main 3D view where the simulated trawl gear is drawn and visualized. Users can modify 

the view angle, zoom in/out, and access the context menu of the Simulation Document; 2) 

the sub-window views the intermediate results during calculation in the simulation 

output, the information about the selected bars and the current results; and 3) the sub-

window displays the number and date of result-files. In the Simulation Document, the 

user can run calculations and analyze the results. The numerical simulation provides 

global information relative to the trawl gear such as trawl geometry (e.g., door spread, 
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wing spread, headline height, and swept area) and forces (e.g., warp/bridle tensions and 

bottom contact forces produced by doors and footgear) across different towing speeds 

and depths (Figure 3.2). Pictures and video animations can also be produced inside this 

document. It also allows users to determine the bottom contact force of trawl gear 

components (e.g., doors and footgear) by selecting “bottom feedback” from within the 

Simulation Document. The 3D view will show vertical bars extending from the contact 

nodes, which are colour coded according to load in the same way the trawl is presented 

(Figure 3.3b). DynamiT also allows the user to optimize the design process by changing 

input parameters during the simulation. (i.e., modify simulation input and trawl design 

parameters/riggings from the design window to update a currently running simulation). 

DynamiT, however, has its shortcomings. The system is not truly able to represent 

all physical phenomena in detail (i.e., input all the data detailing the trawl). In fact, 

mathematical models of numerical simulation that are supposed to represent the actual 

phenomena have to be simplified so that the user can manipulate them to be solved by 

computers. Certain objects and gear elements are modeled and simulated assuming some 

approximations because of limitations in computational capability (e.g., desktop 

computers) and gear modeling scientific theory and knowledge. Numerical simulations 

are performed using certain assumptions regarding hydrodynamics (e.g., the trawl gear 

does not affect the flow field and is towed in still water, though current can be simulated 

in two different layers with any direction; the sea surface is not simulated though gear 

objects, for instance surface floats, at the sea surface can be simulated), dynamics (e.g., 

any change of parameter is taken into account instantaneously, the sea is quiet/no swell), 
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doors (e.g., the angles of doors are constant relative to the flow direction, lift and drag 

coefficients are constant), seabed (e.g., no relief on the ground, no door spreading effect 

due to its digging effect in the substrate), footgear (i.e., the diameter of bobbins/rubber 

discs are not taken into account), and catch (e.g., the catch is not simulated). 

 

 SimuTrawl 

The process of designing and simulating a trawling system in SimuTrawl is 

described in Figure 3.4. The user initiates the process by inputting all data and parameters 

of the trawl gear in Design Mode. The user creates netting panels for the trawl, including 

large mesh panels and small mesh panels using the actual parameters of a trawl. Like 

DynamiT, once all of the data relevant to the trawl gear are entered, SimuTrawl also 

needs a numerical mesh of the trawl in order to run the simulations. This step involves 

converting large mesh panels in the Design Mode into the Simulation Mode with the 

same properties. Similarly, the small mesh panels of the Design Mode which have the 

polygonal shape, must also be converted to large mesh panels for simulation which have 

the same shape and properties based on the approximation methods. The approximation 

function reduces the huge amount of meshes and mass points of a real trawl by merging 

many meshes into a numerical mesh. Unlike DynamiT which allows the user to create a 

trawl design, including its rigging configurations, in only a single window mode, 

SimuTrawl requires the user to complete the attachment of floats and footgear, as well as 

forward parts of the trawling system (e.g., trawler, trawl doors, and warp/sweeps/bridles) 

in another mode which is known as the Simulation Mode (Figure 3.4, 3.5a). From our 
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experience, the process of designing a trawl in SimuTrawl took longer than DynamiT. 

The time and effort required to make the connections between panels (assembly of the 

trawl net), especially for vertical connections (i.e., connecting all the upper and lower 

panels together manually) was not insignificant, while this is done automatically in 

DynamiT. Finally, once the design process completed, another step is further required to 

convert the design data in the form of a design file (*.trw) into the simulation data of a 

simulation file (*.trs) which will be used in the Simulation Program (see Figure 3.4). 

The Simulation Program of SimuTrawl is used for simulating and predicting the 

engineering performance of a trawl (Figure 3.4). There are no major differences in the 

procedures of running a simulation between SimuTrawl and DynamiT. They both have 

the ability to change navigation and calculation parameters during the simulation. They 

provide users with the same type of simulation output, including trawl shape (e.g., 

distance between doors, wing-ends, headline and fishing line, and swept area) and trawl 

resistance (e.g., tension on the warp, doors, bridles, and net) (Figure 3.4). Any noticeable 

differences were related primarily to different simulation capabilities between the 

software packages. The user of DynamiT can modify the numerical mesh of the trawl in 

the Design Document and force the calculation module to take it into account for the 

simulations. By comparison, a large mesh panel created for the SimuTrawl simulation is 

unable to be modified once created. Another difference between the two softwares is the 

ability to check and/or display the simulation output instantly or not. In DynamiT, the 

user is required to identify in the Design Document every parameter (e.g., horizontal and 

vertical openings of the trawl) that needs to be measured, whereas users of SimuTrawl 
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can simply check for any interesting simulation parameters immediately in the main 3D 

view where the trawl is drawn, which is very convenient (Figure 3.5b). However, 

SimuTrawl is unable to complete the calculations/simulations by itself. Instead the user 

has to complete a simulation based on looking at the vibration of the gear element 

suppressed state (i.e., behaviour of gear element is steady state is the time to finish the 

calculation). Whereas, the DynamiT is able to terminate (i.e., complete) a simulation 

once the calculation process is completed. Another major difference between the two 

software is that the DynamiT can calculate an initial shape where all the simulated trawl 

gear is spread on a single line. This feature can be used to optimize the calculation time 

which is not developed for the SimuTrawl. 

 

 Trawl Vision PRO 

The process of designing and simulating a trawling system in Trawl Vision PRO 

is described in Figure 3.6. The Trawl Vision Designer (TVD) allows the user to navigate 

through a library of trawl templates that have been pre-entered into the software. If a 

suitable trawl design cannot be found, the user can request the developer to produce a 

template, which we found was easy and straightforward. Once the user selects a trawl 

design, it is loaded into the Trawl Editor (Figure 3.7a) in which the user can modify 

parameters for netting panels (e.g., twine diameter, mesh size, number of meshes, and 

cutting/tapering ratio) and lacing ropes/cables (diameter and length). However, only 

limited rigging configurations are available to the user. Unlike DynamiT and SimuTrawl, 

the Trawl Vision PRO software has a highly simplified user interface that can 
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significantly reduce time and effort required by the user to design and simulate a trawl 

gear.  

A series of helpful coefficients (e.g., horizontal/vertical coefficients and angular 

coefficient) or rigging adjustment options (e.g., backstrops offset, warp offset, and bridle 

offset) are developed for the Trawl Vision Simulator which enable the user to control the 

simulation performance.  

However, unlike DynamiT and SimuTrawl, there does not appear to be a 

numerical mesh (virtual trawl) model within Trawl Vision PRO for the calculation of 

trawl shape and performance. The user is not really aware of how calculations are being 

performed or which assumptions are being made regarding the theory of trawl 

hydrodynamics. Trawl Vision PRO is not able to simulate the effect of side current acting 

on the trawl or the ability to predict downward forces of gear components on the seabed, 

whereas this capability is developed in both DynamiT and SimuTrawl. Given the lack of 

parameter input by users (see section 3.5.1 above) and the speed at which simulations are 

generated (< 1s), it would appear many assumptions are being made about trawl gear 

elements and their effect on the dynamic behaviour of trawls.  

The simulation program (Trawl Vision Simulator-TVS) is where the user can 

visualize the 3D view of the trawling system (Figure 3.7b). The graphic interface is 

exceptionally well engineered, creating a very user friendly experience. Users can even 

view the 3D vessel and other trawl gear components (i.e., trawl doors and vessel) as part 

of their simulation. The software comes with a library of vessels and doors pre-loaded.  

More can be requested by contacting the software developer, which we found was easy 
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and straightforward. Once the trawl, vessel, and doors are selected, the time to produce a 

simulation is very fast (< 1s). The speed of the simulation together with quality of the 

graphics make this software a very useful tool for demonstration and training purposes. 

 

3.5.3 Comparison between simulation results and at-sea observations 

Comparison of the DynamiT simulations against at-sea observations are shown in 

Figure 3.8 and Table 3.1. The simulations predicted that door spread increases linearly 

with increasing towing depth, and this showed good agreement with at-sea observations, 

with no statistical difference in slope (F=3.360; p=0.097) or mean (t=1.794; p=0.123) 

when comparing the two datasets. The mean wing spread produced using simulation was 

significantly lower than those observed at-sea (t=6.337, p<0.001), but not different in 

slope (F=1.526, p=0.245). Similarly, the mean headline height produced using simulation 

was significantly lower than those observed at-sea (t=16.016, p<0.001), but not different 

in slope (F=0.017, p=0.900). And finally, the mean warp tension produced using 

simulation was also significantly lower than those observed at-sea (t=7.415, p<0.001), 

but not different in slope (F=1.503, p=0.248). 

Comparison of the SimuTrawl simulations against at-sea observations are shown 

in Figure 3.8 and Table 3.2. The simulations predicted that door spread increases linearly 

with increasing towing depth, however the values differed significantly in both their 

mean (t=8.007, p<001) and slope (F=6.434, p=0.030) when compared against at-sea 

observations. Predictions of wing spread were statistically different in their mean (t=-
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6.543, p<0.001) and slope (F=95.098, p<0.001). Predictions of headline height showed a 

decreasing relationship with increasing towing depth, which was different in slope 

(F=28.402, p<0.001) when compared to at-sea observation, but not mean (t=-0.860, 

p=0.423).  And finally, the mean warp tension produced using simulation was 

significantly higher than those observed at-sea (t=-6.213, p<0.001) as well as different in 

slope (F=19.171, p<0.001) compared to our at-sea observations. 

Comparison of the Trawl Vision PRO simulations against at-sea observations are 

shown in Figure 3.8 and Table 3.3. The simulations predicted that door spread increases 

linearly with increasing towing depth, showing no difference in the slope of the 

relationship (F=0.390, p=0.546) compared to at-sea observation, however the mean value 

was statistically lower (t=-69.690, p<0.001). Predictions of wing spread were statistically 

different in their mean (t=14.378, p<0.001) and slope (F=6.384, p=0.030). The mean 

headline height produced using simulation was significantly lower than those observed 

at-sea (t=-6.008, p<0.001), but not different in slope (F=0.282, p=0.607). And finally, the 

mean warp tension produced using simulation was significantly lower than those 

observed at-sea (t=-8.090, p<0.001), but not different in slope (F=1.948, p=0.193). 

 

3.6 Discussion 

This study provides useful knowledge regarding the strengths and limitations, 

capabilities and reliabilities, for three commercially available trawl simulation software 

packages. I evaluated their ability to simulate the Campelen 1800 survey trawl at varying 
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towing depths and then compared these predicted values to full-scale observations of the 

trawl. As the authors are independent of the developers, I feel this evaluation was 

unbiased and objective. Every effort was made to learn and apply each software equally 

well. Table 3.4 provides a summary of our evaluations and impressions of each software. 

While we recognize that we may have missed subtle features of a particular software, I do 

believe we have made a valuable and objective comparison of the software. The goal is to 

inform potential users which software is best likely to meet their needs, and is not meant 

to be an endorsement of any of the software by the authors.    

With regard to DynamiT, we found the software to be well established among 

gear manufacturers and researchers, as well as scientific literature available to document 

its development and application. We attribute these observations to the fact that it has 

been commercially available for many years and was developed by a publically funded 

not-for-profit organization. One of the major strengths of DynamiT is that it allows users 

to input a large number of the actual parameters of a trawl gear and then uses this 

information to solve the momentum equations, taking into account the hydrodynamic 

forces applied on each part of the gear at the same time. However, like many other 

numerical modeling methods, the calculation method of DynamiT still relies on a number 

of modeling assumptions, reducing confidence of predicted values. The difference (-

22.3%) between simulated and full-scale values of warp tension observed in this study 

may be such an example. There are many factors that could contribute to this difference. 

In DynamiT simulation, it is assumed that there is no spreading effect of the trawl doors 

(due to its shearing effect with the substrate) because of modeling simplification reasons. 
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In addition, water current (either due to towing movement or natural conditions, e.g., tide, 

wind, and swell currents) are supposed to be independent of the trawl (i.e., the trawl does 

not perturb the water velocity). Moreover, the footgear height is not simulated with a high 

degree of fidelity (e.g., diameter and spacing of rubber disks). In fact the drag of trawl 

doors, netting, and footgear components are known to contribute significantly to the drag 

of the whole trawling system (Folch et al., 2008). However in real fishing conditions, 

drag measurements will contain uncertainty due to natural variation in oceanographic 

conditions (e.g., current, wind, and swell) (Fiorentini et al., 2004 and Sala et al., 2009). 

Therefore, the difference in warp tension observed between dynamic simulation and full-

scale observations in this study should be considered and interpreted with caution. In 

terms of reliability, we also demonstrated that the headline height of the trawl predicted 

by DynamiT was significantly lower than that observed at-sea. This finding is consistent 

with the results from Nguyen et al. (2015). Such differences have also been commonly 

recognized by other DynamiT users (K. Zachariassen, pers. comm. and J. Olsen, pers. 

comm.) as one of the limitations of this simulation software. Based on our evaluation, we 

recommend the software is most suitable for individuals with a good knowledge of trawl 

design and material for construction, while at the same time requiring accuracy and 

precision in simulated values. 

With regard to SimuTrawl, we found the software to be well documented in terms 

of its development, but only a few examples of its application by users in industry or the 

scientific community. We attribute this lack of literature to the relatively young age of the 

software and fully expect that this will expand over time. The software is considerably 
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useful for gear researchers, manufacturers, and trawl makers at the developing stage of 

trawl design and performance evaluation. Similar to DynamiT, the major strength of 

SimuTrawl is its ability to model a large number of the actual physical parameters of a 

trawl gear. However, this is also known as the most complex part of software 

development because of the large amount of parameters and elements of an actual 

trawling system. Hence, many modeling assumptions are made and some gear elements 

are not fully modeled, reducing confidence of the predicted values. Relevant assumptions 

are necessary and these create bias in predicted values compared to the real world 

performance. For example, SimuTrawl predicted a higher (25.4%) warp tension (i.e., 

drag force) than observed during full-scale at-sea fishing trials. This is attributed to the 

fact that the software assumes the same velocity throughout the entire trawling system (C. 

Lee, pers. comm.), whereas flume tank and field observations have shown there is 

significant turbulence, as well as a drop in water velocity within trawls (Winger et al., 

2010). Based on our evaluation, we recommend the software is most suitable for 

individuals with a good knowledge of trawl design and material for construction, while at 

the same time requiring accuracy and precision in simulated values. 

With regard to Trawl Vision PRO, we found the software is not well described in 

the scientific literature in terms of its development or its application by users for 

scientific research purposes. We attribute this lack of literature to the limited use of the 

software by the scientific community and fully expect that this will expand over time. 

Given the limited opportunity to define physical parameters of a trawl gear in this 

software, it stands to reason that a significant number of assumptions are being made 
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within the software about mathematical modeling, as well as rigging and material 

properties (e.g., elasticity or stiffness and resistance coefficient). Hence, the simulated 

results produced by the software are of low scientific confidence and should be 

considered carefully when used for scientific purposes. That said, the software is a very 

effective tool for teaching the principals of trawl hydrodynamics, particularly because of 

its high quality graphical interface and high speed (virtually real-time) simulations. Based 

on our evaluation, we recommend the software is most suitable for individuals with a 

basic knowledge of trawl design and a need for teaching/learning the mechanics or trawl 

behaviour.  It is especially well suited for educators and training institutes. The software 

also can be a useful tool for gear manufacturers and trawl makers to improve the existing 

gear and demonstrate trawl performance to fishermen (F. Rodriguez, pers. comm.). The 

capability on predicting downward forces of different trawl components (e.g., trawl 

doors, footgear) should also be developed for future development of Trawl Vision PRO 

software.  

In conclusion, each of the software packages evaluated in this study have their 

own strengths and limitations. In general, they each use simulation methods to predict 

trawl geometry (e.g., door spread, wing spread, and headline height) as well as 

hydrodynamic forces acting on the trawling system (e.g., tension on the rig, in the 

strengthening rope, net drag, and downward forces on the seabed). Potential benefits 

attributed to the use of the software include: 1) ability to explore the feasibility of 

preliminary concepts, 2) ability to examine the effect of alterations in design and rigging 

scenarios, 3) ability to examine the effect of towing speed and rigging changes on trawl 
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geometry, and 4) the ability predict forces acting on the trawl and gear components 

including the mechanical stresses on the seafloor by any part of the trawl. However, the 

precision and accuracy of the simulation predictions depends on many factors. Hence, 

whichever design and simulation software is used, thoroughness and caution must is 

advised in order to improve productivity of using the simulation method. The authors 

recommend the use of such software as complimentary tool in addition to flume tank 

testing and full-scale sea trials, particularly during the early stages of design for 

validating simple design concepts. 
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Table 3.1: Trawl geometry and trawling resistance for the Campelen 1800 survey trawl 

developed using numerical simulations with DynamiT software (DS), compared to full-

scale observations at-sea (FSO). Mean in meter (m) for door spread, wing spread, and 

headline height, metric tonnes for warp tension (MT), standard error of the mean (SE), 

percent change (% change), degrees of freedom (df), t-statistic, F-statistic, and p-values 

denoted in bold are statistically significant based on an alpha of 0.05. 
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 FSO DS FSO DS FSO DS FSO DS 

250 53.9 55.9 17.9 17.6 2.9 2.3 10.5 7.2 

500 58.4 57.1 18.6 17.9 3.3 2.3 11.4 9.2 

750 61.0 58.4 19.1 17.9 3.1 2.4 11.5 10.2 

1000 61.2 58.5 19.1 18.0 3.0 2.4 14.3 11.4 

1250 62.0 59.4 19.4 18.2 2.9 2.1 15.4 13.0 

1500 61.0 59.5 18.9 18.2 3.1 2.2 18.6 14.3 

1600 61.8 59.2 19.1 18.1 3.3 2.4 17.6 15.0 

Mean 978.6 59.9 58.3 18.9 18.0 3.1 2.3 14.2 11.5 

SE 191.8 1.1 0.4 0.2 0.1 0.1 0.1 1.2 1.0 

% change  -2.5 -4.8 -35.8 -22.3 

df  6 6 6 6 

t-statistic  1.794 6.337 16.016 7.415 

p-value  0.123 0.001 0.000 0.000 

F- statistic  3.360 1.526 0.017 1.503 

p-value  0.097 0.245 0.900 0.248 
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Table 3.2: Trawl geometry and trawling resistance for the Campelen 1800 survey trawl 

developed using numerical simulations with SimuTrawl software (STS), compared to full-

scale observations at-sea (FSO). Mean in meter (m) for door spread, wing spread, and 

headline height, metric tonnes for warp tension (MT), standard error of the mean (SE), 

percent change (% change), degrees of freedom (df), t-statistic, F-statistic, and p-values 

denoted in bold are statistically significant based on an alpha of 0.05. 
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250 53.9 42.2 17.9 20.1 2.9 3.8 10.5 11.8 

500 58.4 43.4 18.6 21.8 3.3 3.7 11.4 14.8 

750 61.0 45.7 19.1 22.9 3.1 3.5 11.5 17.0 

1000 61.2 47.8 19.1 23.7 3 3.3 14.3 18.9 

1250 62.0 49.1 19.4 24.4 2.9 3.1 15.4 21.5 

1500 61.0 52.2 18.9 25.9 3.1 2.9 18.6 23.7 

1600 61.8 57.3 19.1 26.5 3.3 2.5 17.6 25.4 

Mean 978.6 59.9 48.2 18.9 23.6 3.1 3.3 14.2 19.0 

SE 191.8 1.1 2.0 0.2 0.9 0.1 0.2 1.2 1.8 

% change  -24.2 +20.1 +5.3 +25.4 

df  6 6 6 6 

t-statistic  8.007 -6.543 -0.860 -6.213 

p-value  0.000 0.001 0.423 0.001 

F- statistic  6.434 95.098 28.402 19.171 

p-value  0.030 0.000 0.000 0.001 

 

 

 

 

 

 

 

 

 

 

 

 



103 

 

Table 3.3: Trawl geometry and trawling resistance for the Campelen 1800 survey trawl 

developed using numerical simulations with Trawl Vision PRO software (TVS), compared 

to full-scale observations at-sea (FSO). Mean in meter (m) for door spread, wing spread, 

and headline height, metric tonnes for warp tension (MT), standard error of the mean (SE), 

percent change (% change), degrees of freedom (df), t-statistic, F-statistic, and p-values 

denoted in bold are statistically significant based on an alpha of 0.05. 

 
Towing 

depth 

Door spread  Wing spread  
Headline 

height  
Warp tension  

T
ra

w
l 

V
is

io
n
 P

R
O

 

S
im

u
la

ti
o
n
  

v
s.

  

F
u
ll

-s
ca

le
 a

t 
se

a 

o
b
se

rv
at

io
n
s 

FSO 
TV

S 
FSO 

TV

S 
FSO 

TV

S 
FSO 

TV

S 

250 53.9 30.6 17.9 21.5 2.9 2.7 10.5 7.2 

500 58.4 34.4 18.6 24.2 3.3 2.7 11.4 8.7 

750 61.0 35.4 19.1 24.9 3.1 2.7 11.5 9.9 

1000 61.2 35.8 19.1 25.2 3 2.7 14.3 10.9 

1250 62.0 36.1 19.4 25.5 2.9 2.7 15.4 12.0 

1500 61.0 36.5 18.9 25.7 3.1 2.7 18.6 13.4 

1600 61.8 36.6 19.1 25.8 3.3 2.7 17.6 14.3 

Mean 978.6 59.9 35.1 18.9 24.7 3.1 2.7 14.2 10.9 

SE 191.8 1.1 0.8 0.2 0.6 0.1 0.0 1.2 1.0 

% change  -70.9 +23.6 -14.3 -29.9 

df  6 6 6 6 

t-statistic  -69.690 14.378 -6.088 -8.090 

p-value  0.000 0.000 0.001 0.000 

F-statistic  0.390 6.384 0.282 1.948 

p-value  0.546 0.030 0.607 0.193 
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Table 3.4: A summary of the evaluations and impressions of each software. 

Specifications Characteristics  

DynamiT 

 

 
 

 General 

Features 

Developers IFREMER MPSL ACRUXSOFT 

Initial release 1998 2004 2001 

Operating system Windows 7, 

Windows XP 

Pentium IV GHz 

Windows 7, 

Windows XP, 

Windows 2000 

Windows 7 or 

8, Windows 

Vista, 

Windows XP Lock System 

mechanism  

Provided Provided Provided 

Size 51.30 MB 3.92 MB 312.60 MB 

Available in English, French, 

and Spanish 

English and 

Korean 

Spanish, 

English, Italian, 

French, and 

Danish 
Type Trawl design and 

simulation 

software: bottom 

trawls, pelagic 

trawls, twin 

trawls, etc. 

Trawl design 

and simulation 

software: 

bottom trawls, 

pelagic trawls, 

twin trawls, etc. 

Trawl design 

and simulation 

software: 

bottom trawls, 

pelagic trawls, 

twin trawls, etc. 

License/costs (USD) 9,000.00 10,000.00 10,000.00 

Website http://wwz.ifreme

r.fr/dynamit_eng/ 

http://www.mpsl

.co.kr/home/eg/

products/p_01/s

ub02.php 

http://www.acru

xsoft.com.uy/en/

product.html 

Potential users Fishing 

companies, trawl 

designers and net 

makers, research 

institutes, fishing 

schools and 

training centers 

Fishing 

companies, 

trawl designers 

and net makers, 

research 

institutes, 

fishing schools 

and training 

centers 

Research 

institutes, 

fishing schools, 

training centers 

(for teaching 

and training), 

fishing 

companies 

Main purpose Research oriented Research 

oriented 

Education/training 
oriented 
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Table 3.4 (Continued) 

Specifications Characteristics  

DynamiT 

 

 
 

 
 Examples of 

application 

Study trawl 

geometry and 

forces of new or 

existing trawl 

gears, how trawl 

gears can impact 

the seabed or how 

a trawl can be 

modified to 

reduce the fuel. 

consumption.  

Study trawl 

geometry and 

forces of new or 

existing trawl 

gears, how a 

trawl can be 

modified to 

reduce the fuel 

consumption. 

Study trawl 

geometry and 

forces of new or 

existing trawl 

gears, how a 

trawl can be 

modified to 

reduce the fuel 

consumption. 

Lock System 

mechanism  

Provided Provided Provided 

User-friendly 

software 

User friendliness Medium Medium High 

Experience required 

for software use 

Medium High Low 

Ease of learning Moderate Tough Easy 

Ease of using Moderate Tough Very Easy 

Ability for 

new users to 

self-

training/using 

or user 

support 

Demo models  Available Not Available Not Available 

Run-time help Available Not Available Not Available 

User’s guide/manual Available Available Available 

Quality of tutorial 

documentation 

High Medium Medium  

Modelling 

Assistance 

Libararies and 

templates of 

simulations objects 

Average Average Good 

Warning messages Average Average Good 

Facility for designing 

resusable user 

denfined elements  

Good Good Poor 

Undo/redo 

commands 

Provided Provided Not Provided 

Design 

capabilities  

Templates 

requirement 

No No Yes 

Input requirement  Intensive Input 

Data 

Intensive Input 

Data 

Less Input Data 

Number of elements 

in the model 

Large Large Small 
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Table 3.4 (Continued) 

Specifications Characteristics  

DynamiT 

 

 
 

  Current control Possible Possible Not Possible 

Ground 

friction/seabed type 

control 

Possible Not Possible Possible (only 

for muddy 

seabed) Complex gear system 

design application 

Possible Possible Not Possible 

Data reusability Possible Possible Possible (only 

trawl 

doors/trawl 

design 

templates) 

Database available Not Available Available Available 

Ease of entering input Easy Moderate Very easy 

Numerical gear 

generation/assumptio

n 

Applicable Applicable Not Applicable 

Writing 

comments/notes in 

model building 

activity 

Possible  Not Possible Not Possible 

Cut, copy, paste of 

objects 

Possible Possible Not Possible 

Changeable in trawl 

gear scale  

Not Possible Not Possible Possible 

Simulation 

capabilities 

 

Visual 

Aspects 

3D- animator Good Good Very Good 

Facility for 

customizing the view 

of the model 

Provided Provided Provided 

Playback  Provided Provided Not Provided 

Zoom function Provided Provided Provided 

Multiple screen 

layout 

Not Possible Not Possible Possible 

Efficiency Robustness High Medium Low 

Reliability High Medium Low 

Level of details High Medium Low 

Time scale for model 

designing 

Medium Large Small 

Model status saving Possible Possible Possible 
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Table 3.4 (Continued) 

Specifications Characteristics  

DynamiT 

 

 
 

  Interactive handling 

of parameters during 

experimentation 

Possible Possible Possible 

Testability Display of variables Possible Possible Possible 

Define variables  Possible Possible Not possible 

Audible alarms Not Possible Not Possible Possible 

Multiple windows 

during simulation 

Not Possible Not Possible Possible 

User Pause facility Possible Possible Not Possible 

Towing speed control 

during simulation 

Possible Possible Possible 

Warp length control 

during simulation 

Not Possible Possible Possible 

Bridle/sweep length 

control during 

simulation 

Not Possible Not Possible Possible 

Doorlegs control 

during simulation 

Not Possible Not Possible Possible 
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Figure 3.1: Schematic netplan of the Campelen 1800 demersal survey trawl (Walsh et al., 2009) 
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Figure 3.2: Flowchart of the DynamiT design and simulation process.
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Figure 3.3: Examples of the graphic interface in the DynamiT software, including the trawl 

design window-Trawl Gear Document (a) and the simulation window-Simulation 

Document (b) of the Campelen 1800 trawl. 
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Figure 3.4: Flowchart of the SimuTrawl design and simulation process. 
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Figure 3.5: Examples of the graphic interface in the SimuTrawl software, including the 

trawl design mode (a) and the simulation mode (b) of the Campelen 1800 trawl. 

(b)
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Figure 3.6: Flowchart of the Trawl Vision PRO design and simulation process. 
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Figure 3.7: Examples of the graphic interface in the Trawl Vision PRO software, including 

the trawl design window (a) and the simulation window (b) for the Campelen 1800 trawl. 
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Figure 3.8: The Campelen 1800 door spread, wing spread, headline height and warp 

tension in relation with towing depth at towing speed of 3 knots. The best fit regression 

lines are shown for each scatter plot. 
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Chapter 4. Computer simulation and flume tank testing of scale 

engineering models: How well do these techniques predict full-scale at-

sea performance of bottom trawls? 

4.1 Abstract 

A Canadian demersal survey trawl (Campelen 1800) was used to investigate the 

differences in trawl geometry and resistance using dynamic simulation, flume tank 

testing, and full-scale at-sea observations. A dynamic simulation of the trawl was 

evaluated using DynamiT software. A 1:10 scale model was built and tested in a flume 

tank at the Fisheries and Marine Institute of Memorial University of Newfoundland 

(Canada). Full-scale observations of the Campelen 1800 in action were collected during 

the 2011 fall multi-species survey aboard the research vessel CCGS Teleost. The 

numerical and physical modeling data were assessed to determine their ability to predict 

full-scale at sea performance of the Campelen 1800 trawl. The numerical simulation data 

were also compared against scale model engineering performance under identical 

conditions. The study demonstrates that the ideal method with which to accurately predict 

full-scale at-sea performance of bottom trawls or used for designing a trawling system 

probably does not exist. Therefore, the importance of using two or three complementary 

tools should be encouraged as an ideal process for designing a trawling system and/or 

assisting the gear development cycle. 
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4.2 Introduction 

The method by which new fishing gears are designed and tested has dramatically 

changed and become more advanced and sophisticated over the last few decades. The 

major reasons for this continuing development in methodological process are rooted in 

the high cost of evaluating new gear designs at sea together with impressive 

improvements in the predictive abilities of computer simulation and physical models, 

both of which have been shown to reduce relevant expenses and potential risks for gear 

manufacturers and researchers (Winger et al., 2006; Prat et. al., 2008; Queirolo et al., 

2009). The driving forces of increasing regulations, bycatch restrictions, and concerns 

over ecosystem impacts of bottom trawls have also been cited for the need for significant 

improvements in the way new fishing gears are designed and tested (Winger et al., 2006). 

The cycle of gear development proposed today should include the use of 

computer simulation, physical model testing, and at-sea evaluations in a complementary 

manner and in a logical sequence of work, as the ideal process for designing a new 

fishing gear system (Winger et al., 2006). Most importantly, the use of computer-based 

numerical modeling and simulation is encouraged during the early stages of design for 

validating simple design ideas, as a fast and convenient method. The recent rise in 

commercially available trawl design and simulation software has significantly improved 

the speed and quality of design work. Today, several commercial software packages are 

available for purchase and use on desktop computers and tablets (e.g., DynamiT, 

SimuTrawl, Trawl Vision Designer and Trawl Vision Simulator, CadTrawl, and CATS). 

Most of these software packages have the ability to simulate the effects of different 
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materials and design features on trawl shape and performance under different rigging and 

towing scenarios, as well as calculate expected mechanical stresses on the seabed (e.g., 

Vincent, 2000 and Queirolo et al., 2009). By comparison, testing physical models in a 

flume tank, which is considered the de facto standard for evaluating new designs and 

forms the backbone of the modern fishing gear development cycle (Winger et. al., 2006), 

is recommended in order to validate simulated values derived in previous simulation 

work (Queirolo et al., 2009). Benefits attributed to constructing and testing physical 

models include the ability to 1) explore potential defects in design; 2) examine the effect 

of alterations in design and rigging; 3) examine the effect of speed and rigging changes 

on gear geometry and orientation; 4) measure forces acting on the gear or bottom contact 

area of gear components such as trawl doors or footgear; and 5) measure motions of 

fishing gear (see discussions by Dickson, 1959; Fridman, 1986; Winger et al., 2006). 

Finally, evaluation of full-scale prototypes at sea is always necessary for assessing the 

real fishing gear performance and identifying the most successful design features and 

trawl components of the new fishing gear system. The accuracy of measuring and 

predicting trawl geometry and performance of a new gear design plays an important role 

in gear development process. In real fishing conditions, trawl geometry and performance 

can vary from tow to tow and may be affected by various factors (e.g., towing speeds, 

water currents, and bottom type) and increasing error in accuracy of measurements. The 

use of acoustic trawl monitoring sensors (e.g., SCANMAR acoustic trawl monitoring 

instruments) have permitted researchers to improve their monitoring of trawl 
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performance at sea, detect any gear malfunctions and reduce variability in trawl geometry 

and performance (see, for example, Walsh and McCallum, 1995, 1997). 

Given the high cost of evaluating new gear designs at sea, many trawl 

designers/researchers and manufacturers proceed with computer simulation followed by 

the testing of physical scale models in flume tanks. However, some might be tempted to 

speculate whether computer simulation might someday replace physical models or others 

could raise a question about how well do computer simulation and physical modeling 

predict full-scale gear performance at sea? Interestingly, few studies have been conducted 

to evaluate the accuracy/precision of numerical and physical modeling techniques in the 

comparison with full-scale trawl performance during the last decade. In some cases, data 

from physical models have been compared to full-scale trawls (e.g. Morse et al., 1992; 

Fiorentini et al., 1991, 1992, 2004; Sala et al., 2009), and in other cases data from 

computer simulations have been compared to physical models (e.g., Queirolo et al., 

2009), but no clear studies exist in which all three techniques are compared, or any 

comparison between software, or between flume tanks. Hence, this study represents a 

unique and novel piece of research. 

The objective of this study was to assess the accuracy of computer simulation and 

physical modeling approaches in predicting the full-scale at-sea performance (geometry 

and resistance) of the Campelen 1800 trawl. In addition, this study also investigated the 

ability of computer simulation to predict performance of physical models. The results are 

discussed in relation to the commonly used methodological approach for fishing gear 

design described by Winger et al. (2006).  
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4.3 Materials and Methods 

4.3.1 Trawl design and scale engineering model specifications 

The Campelen 1800 was selected as the trawl design for this study. This is the 

standard demersal survey trawl widely used by Fisheries and Oceans Canada on the east 

coast of Canada since 1995, replacing earlier versions of the Engel 145 otter trawl and the 

Yankee 41 shrimp trawl (Walsh and McCallum, 1997). This trawl design is known as a 

four panel design with cut-away lower wings and is rigged with three bridles and 4.3 m2, 

1400 kg Morgère Polyvalent trawl doors. The Campelen 1800 trawl is rigged with a 35.6 

m rockhopper footgear and uses 356 mm diameter rubber disks. Trawl construction is of 

4.0, 3.0 and 2.0 mm diameter polyethylene twine varying in mesh size from 80 mm in the 

wings to 60 mm in the square and the first bellies and 44 mm in the remaining bellies, 

extension and codend (see Figure 4.1 for details). The design has changed very little over 

time as a result of stringent standardization of construction and operational protocols 

(Walsh et al., 2009). 

A linear scale of 1:10 was selected as the best balance between the limitations of 

the test facility (i.e., flume tank size), objectives of the test program, and the ability to 

extrapolate model results to full-scale performance. The majority of the components were 

custom ordered and/or fabricated in-house and the model was assembled by hand using 

standard trawl construction practices (see Winger et al., 2006). 
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4.3.2 Dynamic simulation tests 

Trawl simulation software (i.e., DynamiT) developed by the French Research 

Institute for the Exploitation of the Sea (IFREMER) was utilized to simulate the 

mechanical behaviour of the Campelen 1800 trawl. The software has the ability to 

calculate and simulate the dynamic behaviour of virtually any trawl type, commonly 

referred to as dynamic simulation (Vincent 2000 and Queirolo et al. 2009). For this study, 

the simulations were performed for different door spreads, depths, and towing speeds. 

Output parameters included door spread, wing-end spread, headline height, and towing 

resistance (i.e., warp/bridle tension). 

In order to facilitate comparison to the physical modeling, the dynamic 

simulations were conducted at the same door spreads as the flume tank tests in order to 

eliminate bias in trawl performance when comparing the two datasets. The simulations 

were constrained for the desired door spreads by deploying the appropriate warp and 

simply attaching a rope of diameter 0.0 mm between the trawl doors as a restrictor rope 

(referred to as restrictor rope based simulation). Specifically, we conducted a series of 

dynamic simulations for six different door spreads of 45.0, 50.0, 55.0, 60.0, 65.0, and 

70.0 m at four different towing speeds of 2.0, 2.5, 3.0, and 3.5 knots. The trawl geometry 

parameters (i.e., wing-end spread and headline height) and resistance (i.e., bridle tension) 

of each combination of treatments were obtained.  

To facilitate comparison with the full-scale observations of the Campelen 1800 

trawl, the dynamic simulations were performed at a standardized towing speed of 3.0 

knots and varying towing depths or we simply replicated all the tows as conducted aboard 
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the CCGS Teleost during the 2011 fall multi-species survey (referred to as depth based 

simulation). The trawl geometry parameters (i.e., door spread, wing-end spread, and 

headline height) and resistance (i.e., warp tension) of each combination of treatments 

were documented.  

 

4.3.3 Flume tank tests 

A 1:10 scale model was constructed by the Fisheries and Marine Institute of 

Memorial University of Newfoundland using mainly Froude scaling principals (Tauti, 

1934; Dickson, 1959; Fridman, 1973; Hu et al., 2001). The scaled model was constructed 

in a manner that approximates the geometric, kinematic, dynamic, and force laws of full-

scale trawls. The modelling laws may be summarized as: 

𝜆 =
𝐿𝑓

𝐿𝑚
   (1) 

𝐴𝑚 =
𝐴𝑓

𝜆2
  (2) 

𝐹𝑚 =
𝐹𝑓

𝜆3
𝜌𝑚

𝜌𝑓
       (3) 

where L, A, F and ρ are length, area, force and water density, the subscripts m and f refer 

to model and full-scale, respectively. To compensate for differences with respect to the 

full-scale trawl due to available twine diameter, an area scale and force scale are also 

used. The velocity scale is given by: 

𝜆1/2 =
𝑣𝑓

𝑣𝑚
       (4) 

where v is the towing speed. 
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Similar scaling theory has been applied by previous researchers for designing and 

testing the physical performance of trawl models in flume tanks (for details, see Morse et 

al., 1992; Fiorentini et al., 2004, Sala et al., 2009; Queirolo et al., 2009).  

To examine the performance of the scale physical model, the 1:10 model was 

deployed and tested at the Fisheries and Marine Institute’s flume tank, located at the 

Centre for Sustainable Aquatic Resources (Memorial University of Newfoundland), 

where different towing speeds and rigging scenarios (i.e., door spreads) were assessed.  

The experiments were conducted by connecting the trawl’s bridles directly to the 

flume tank masts. In this case, the measurements were carried out at six different mast 

spreads (corresponding to full-scale door spreads of 45.0, 50.0, 55.0, 60.0, 65.0, and 70.0 

m) and at four different towing speeds through water (corresponding to the full-scale 

range of 2.0, 2.5, 3.0, and 3.5 knots). For statistical comparison purposes, the physical 

modeling tests were repeated five times for each experimental scenario (120 runs). 

Estimates of the hydrodynamic performance of the model (e.g., wing-end spread, 

headline height, bridle tension-load ahead of the bridles) for each experimental 

combination of treatments (n = 120) were measured and recorded using the existing 

optical and data acquisition systems within the flume tank. 

 

4.3.4 Evaluation of the full-scale prototype 

Full-scale observations of the Campelen 1800 trawl in action were collected 

during the fall of 2011 aboard the research vessel CCGS Teleost. Trip 1 was conducted 

during September 01-08, 2011 to collect data related to towing resistance, in which 
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observations of trawl geometry and shaft torque were collected at two speeds (3.0 and 3.5 

knots speed over ground) and seven depths (250, 500, 750, 1000, 1250, 1500, and 1600 

m). Using a series of well-developed relationships, these data were used to develop 

estimates of total thrust for the different depths (see Gardner, 2012 for more details). This 

dataset was used for the purpose of comparing full-scale observations against estimates of 

trawl resistance (i.e., warp tension) obtained by the dynamic simulation under the same 

trawling conditions (i.e., towing depths and speeds).  

Trip 2 was conducted during November 29-December 09, 2011 as part of the fall 

multi-species survey aboard the same vessel. This included 48 tows at a standardized 

speed of 3.0 knots (speed over ground) and varying depths as determined by the survey 

design.  

The data related to trawl depth, headline height/trawl opening, door spread, and 

wing-end spread were obtained using SCANMAR hydroacoustic trawl monitoring 

sensors attached to the fishing gear (e.g., door spread sensors are placed on each trawl 

door, wing spread sensors are positioned on each of the upper wing tips, depth and 

opening/height sensors are attached on the centre of headline). Such data were 

automatically logged at 5 second intervals using the NAFC (Northwest Atlantic Fisheries 

Centre) SeaTrawl data acquisition software. At each fishing station, the scope ratio (trawl 

warp length divided by fishing depth) was prescribed according to the Scope Ratio Table 

(Walsh and McCallum, 1997) which helps to achieve and maintain stable bottom contact 

of the trawl doors during towing.   
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4.3.5  Data analysis 

The data regarding trawl geometry and resistance of the Campelen 1800 trawl 

obtained from the dynamic simulation, physical modeling, and evaluation of the full-

scale trawl were analyzed to investigate differences in trawl geometry and resistance 

separately based on each technique. In our first analysis, the dynamic simulations and 

physical modeling datasets were compared against the full-scale at sea performance of 

the Campelen 1800 trawl. In our second analysis, the dynamic simulation data were 

compared against the predictions of the 1:10 scale flume tank model when tested under 

the same conditions.  

The hypotheses that dynamic simulation and physical modeling accurately predict 

full-scale performance and secondly that dynamic simulation accurately predict physical 

modeling were statistically tested, requiring either parametric or non-parametric 

statistical test depending on the degree of homogeneity of variance within the datasets. 

To this end, the Analysis of Covariance (ANCOVA) and Kruskal-Wallis One Way 

Analysis of Variance were found to be appropriate statistical approaches to investigate 

these hypotheses. In addition, linear regressions and ANOVA’s were also applied to 

describe relationships in engineering trawl performance and compare slopes among 

different methods (dynamic simulation vs. physical modeling vs. at-sea observations). All 

of the statistical procedures were performed using the IBM SPSS Statistics software 

package. 

Different relationships that describe the mechanical behaviour of the Campelen 

1800 trawl were examined including 1) door spread and towing depth, 2) wing-end 
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spread and towing depth, 3) headline height and towing depth, 4) door spread and wing 

spread, 5) door spread and headline height, 6) towing depth and warp tension, 7) door 

spread and bridle tension, and 8) towing speed and bridle tension.  

 

4.4 Results 

4.4.1  Comparison between dynamic simulation and at-sea observations 

At sea observations of full-scale trawl performance revealed no obvious trend in 

either door spread or wing spread in relation to towing depth (Fig 4.2 a, b). By 

comparison, dynamic simulation predicted increasing door spread and wing-end spread 

with increasing towing depth. The regression analysis indicates that the towing depth 

explained 66 and 67% of the variation in door spread and wing-end spread for the 

dynamic simulation, respectively.  

Wing-end spread showed a predictable relationship with door spread for both 

depth based dynamic simulation and full-scale observations (Figure 4.3). The slopes of 

the relationships in the two methods were not significantly different (p>0.05). The 

regression model explained the variation in wing-end spread due to changes in door 

spread, with 98.9 and 99.8% from dynamic simulations and full-scale observations, 

respectively. The predictions of door spread and wing-end spread provided by the 

dynamic simulations were within 5% of the values observed by the full-scale at-sea 

performance (see Table 1 for details), but these differences were statistically significant 

(p<0.05, Kruskal Wallis test). 
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Headline height of the trawl showed little relationship with towing depth (Figure 

4.2c). Both the dynamic simulation and full-scale observations showed little trend 

(positive or negative) over the depth ranges that were evaluated. Headline height of the 

trawl was predicted to decrease with increasing door spread according to the depth based 

dynamic simulation (Figure 4.4). By comparison, our full-scale observations at-sea 

revealed little relationship between headline height and door spread. The variation in 

headline height was not properly explained by door spread and towing depth in both 

cases. The predictions of headline height provided by dynamic simulations were 

significantly lower than full-scale at-sea observations (p<0.001, ANCOVA test), 

averaging 1.6 m or approximately 46% less than full-scale at-sea observations (see Table 

4.1).  

Warp tension showed an increase with towing depth in both dynamic simulation 

and full-scale observations, but with different slopes in each case (Figure 4.5). 

Regression model results indicate that the towing depth explained approximately 99% of 

the variation in warp tension in both cases. The warp tension obtained from the dynamic 

simulation (i.e., 9.9 MT) was significantly lower (31%) than those obtained through the 

full-scale observations (i.e., 14.3 MT) (p<0.05, Kruskal Wallis test). 

 

4.4.2 Comparison between physical modeling and at-sea observations 

Wing-end spread increased linearly with increasing door spread in both physical 

modeling and full-scale at-sea observations (Figure 4.3). Comparison of the data sets 

revealed the slopes were not statistically different (p>0.05). In both cases, the linear 
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regression analysis explained approximately 98% of the variation in wing spread by 

changes in door spread. The differences in door spread and wing spread were not 

statistically significant in the two methods (p>0.05, Kruskal Wallis test). 

There was a strong predictive relationship between door spread and headline 

height in the physical modeling, while there was no clear trend of this relationship for the 

full-scale observations (Figure 4.4). The regression analysis explained adequately the 

variation in headline height due to changes in door spread for physical modeling (R2 = 

0.907), but not the case for the full-scale observations. The headline height predicted by 

physical modeling was significantly higher (i.e., 14.6%) than that observed during full-

scale observations (p<0.001, ANCOVA test). 

 

4.4.3 Comparison between dynamic simulation and physical modeling 

Wing-end spread increased linearly with increasing door spread in both the 

restrictor rope based dynamic simulation and physical modeling, with similar slopes in 

each case (Figure 4.3). However, the mean wing-end spread prediction based on the 

flume tank modeling was significantly higher (i.e., 6.8%) than the mean obtained from 

dynamic simulation at a standard speed of 3.0 knots (p<0.001, ANCOVA test). The 

regression analysis indicates that the door spread and towing speed explained 99% of the 

variations in wing spread in physical modeling. In dynamic simulation, the door spread 

explained 99.9% of the variations in wing spread while towing speed did not contribute 

significantly to the regression model.  
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Headline height decreased linearly with increasing door spread using both 

physical modeling and restrictor rope based simulation with the similar slopes in the two 

methods (Figure 4.4). However, the mean headline height predicted using dynamic 

simulation was substantially lower (i.e., 51.2%) than that which was predicted by 

physical modeling at 3.0 knots (p<0.001, ANCOVA test). The variation in headline 

height using the physical modeling was adequately explained by door spread and towing 

speed (R2 = 0.943) while the headline height was not properly explained by these 

variables in the dynamic simulation.  

Bridle tension showed an increase with door spread using both the restrictor rope 

based dynamic simulation and physical modeling, albeit with different slopes (Figure 4.6 

a). The fitted relationships intersected at a door spread of 62 m, with predictions of bridle 

tension diverging at the lower and higher door spreads. Both techniques adequately 

predicted increasing bridle tension with increasing towing speed (Fig 4.6 b), with no 

statistical difference detected between the methods (p>0.05, Kruskal Wallis test). 

Combined together, our regression analysis indicates that more than 98% of the variation 

in bridle tension can be explained by door spread and towing speed in the dynamic 

simulation and physical modeling (R2 = 0.980 and 0.992, respectively).  
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4.5 Discussion 

This study showed that the use of dynamic simulation and physical modeling 

provides valuable knowledge regarding the strengths and limitations of each approach 

and how they could be used to predict the full-scale at-sea engineering performance of 

bottom trawls. Specifically, we found there was a good agreement between the dynamic 

simulation and full-scale observations in predicting the main performance parameters of 

the Campelen 1800 trawl, such as door spread and wing-end spread, but not for headline 

height and resistance (i.e., warp tension). When comparing physical modeling and full-

scale observations, there were generally consistent predictions in terms of door spread, 

wing-end spread and headline height. Both the dynamic simulation and physical 

modeling had similar predictions in wing-end spread and resistance (i.e., bridle tension), 

but not for headline height.    

With regard to headline height, our results demonstrated that predictions provided 

by dynamic simulation (3.0 knots) were significantly lower than those predicted by 

physical modeling or observed at-sea. Such differences have been commonly recognized 

by the DynamiT users (K. Zachariassen, pers. comm. and J. Olsen, pers. comm.) as one 

of the limitations of this simulation software. In contrast, Queirolo et al. (2009) who 

conducted a comparison between dynamic simulation and model testing of a Chilean 

trawl design found that the headline height predictions based on the dynamic simulation 

are higher than values obtained by the flume tank modeling. We speculate that this 

difference may be related to a difference in the set-up of the simulation and/or a 

difference in trawl design (Fiorentini et al., 2004). In the current study, the simulations 
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were carried out in which the door spread was artificially constrained at desired distances 

similar to the way the flume tank operates. This was expected to eliminate biases in trawl 

geometry performance when comparing the simulation data against model data. The use 

of a restrictor rope to physically control door spread has been previously investigated for 

bottom survey trawls (e.g., Campelen 1800 trawl) as a method to reduce variability in 

door spread with towing depth in order to minimize wing spread variations (up to 25%) 

and hence reduce variability in resulting estimates of stock abundance (see Engås and 

Ona, 1991, 1993; Walsh and McCallum, 1996; Fréchet, 2000). In our study, it should be 

noted that the DynamiT software is normally intended to fully and freely simulate the 

whole trawling system (B. Vincent, pers. comm.). This is one of the strengths of the 

numerical approach in that it allows the effects of fishing depth, warps and doors to be 

simulated (M. Borstad, pers. comm.). Given such advantages of the simulation method 

compared to physical modeling (i.e., flume tanks do not normally simulate the full 

trawling system in its working environment), the headline height predicted by the 

DynamiT without constrained door spread was still seen to be significantly lower (i.e., 

approximately 45%) than it was predicted by the full-scale-at sea performance. By 

comparison, differences in headline height between physical modeling and at-sea 

observations were smaller (14%). We speculate that this difference may be attributed to 

scale effects, manifested as differences in trawl performance (Christensen, 1973; Hu et 

al., 2001; Fiorentini et al., 2004). Finally, our observation that the flume tank 

overestimated headline height compared to full-scale performance is not supported by 

Morse et al. (1992). The authors found that physical models underestimated headline 
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height observed from full-scale prototypes. This difference may be attributed to a 

difference in trawl models (Fiorentini et al., 2004). 

The tendency of door spread and wing-end spread to increase with towing depth 

has been recognized in other studies (see Walsh and McCallum, 1996, 1997; Fréchet, 

1996; McCallum and Walsh, 1999; Bertrand et al., 2002). The results from our dynamic 

simulation of the Campelen 1800 trawl support this phenomenon, however no such trends 

were observed for our full-scale observations. While the depth range was more than 

sufficient, we suspect our sample size may have been too small to statistically detect a 

relationship. This type of data has been shown to be inherently variable (e.g. Walsh and 

McCallum, 1997 and Bertrand et al., 2002) and increasing the sample size may have 

improved model fit.  

With regard to predicting the drag of a trawl, both dynamic simulation and 

physical modeling demonstrated good agreement in predicting the bridle tension (or net 

drag). This finding is not consistent with the results from Queirolo et al. (2009) who 

documented a considerable difference (i.e., 13-23%) using the two methods. The 

different results between these two studies may be explained by the differences in how a 

simulation was set up and conducted. In the case of warp tension (or total drag) in our 

study, a significant difference was observed between the simulation testing and full-scale 

observations. There are different factors that could be attributed to this difference. In real 

fishing conditions, drag measurements will contain uncertainty due to natural variation in 

oceanographic conditions (e.g., current, wind, and swell) (Fiorentini et al. 2004 and Sala 

et. al., 2009). By comparison, the resistance (i.e., warp tension) predicted by dynamic 
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simulation must be considered carefully with caution. For example, there is no spreading 

effect of the trawl doors due to its shearing effect with the substrate because of no relief 

of the seabed. In addition, the trawl gear does not affect the fluid flow and is towed in 

still water. Moreover, the footgear height is not simulated with a high degree of fidelity 

(e.g., diameter and spacing of rubber disks). In fact, the drag regarding trawl door and 

footgear components and/or their operational contact with the seabed (e.g., penetrating 

into the seabed) normally forms a significant drag component of the whole trawling 

system. These limitations of the dynamic simulation method could potentially explain 

why the drag measurements obtained in the dynamic simulation tended to be lower (or 

different) than of the full-scale observations at sea. 

In conclusion, all of the methods used in this study have their own weakness and 

merits. The ideal method with which to accurately predict full-scale at-sea performance 

of bottom trawls or for designing a trawling system probably does not exist. The 

precision and accuracy of the predictions depends on many factors. Whichever method is 

employed, thoroughness and care must be emphasized in order to reduce bias in predicted 

values. The choice of method will be largely determined by the specific purposes of a 

design/experiment and the financial and material resources available. For example, a 

simulation tool should be used for assessing the relative effect of a gear modification to a 

trawling system (e.g., modify a length, floatation, twine diameter, and mesh size, etc.) at 

an affordable cost. Whereas, physical modeling in a flume tank is best designed for 

investigating the effects of rigging and modification changes on gear behaviour and 

performance visually and in a direct way. Therefore, the importance of using two or three 
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complementary tools should be considered as the ideal process for designing a trawling 

system and/or assisting the gear development cycle. 
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Table 4.1: Summary statistics of trawl geometry and resistance parameters for the 

Campelen 1800 shrimp trawl under towing speed of 3.0 knots. 

Evaluation method Variable N Mean STDEV Min. Max. 

       

Restrictor rope based 

simulation  

(i.e., door spreads 

were constrained at 

desired distances) 

Door spread (m) 6 57.5 9.4 45.0 70.0 

Wing spread (m) 6 17.0 1.9 15.1 20.3 

Headline height 

(m) 

6 2.0 0.5 1.4 2.8 

 Bridle tension 

(MT.) 

30 5.6 0.6 5.0 6.6 

       

Depth based 

simulation  

(i.e., replicated the 

survey tows) 

Towing depth (m) 48 559.7 396.9 139.0 1422.0 

Door spread (m) 48 57.0 1.4 53.9 59.1 

Wing spread (m) 48 17.7 0.3 17.0 18.1 

Headline height 

(m) 

48 1.9 0.2 1.4 2.3 

Warp tension 

(MT.) 

6 9.9 1.5 7.8 11.5 

       

Physical modeling 

(i.e., door spreads 

were constrained at 

desired distances) 

Door spread (m) 30 57.5 8.6 45.0 70.0 

Wing spread (m) 30 19.0 1.7 15.8 21.5 

Headline height 

(m) 

30 4.1 0.5 3.5 4.9 

Bridle tension 

(MT.) 

30 5.8 0.1 5.6 6.1 

       

Full-scale 

observations 

(2011 fall multi-

species survey 

aboard the CCGS 

Teleost) 

Towing depth (m) 48 559.7 396.9 139.0 1422.0 

Door spread (m) 48 59.0 3.9 52.5 65.9 

Wing spread (m) 48 18.6 0.7 17.3 19.8 

Headline height 

(m) 

48 3.5 0.2 3.1 4.2 

 Warp tension 

(MT.) 

6 14.3 2.3 11.0 16.9 
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Figure 4.1: Schematic netplan of the Campelen 1800 demersal survey trawl.  See Walsh et al. (2009) for additional drawings. 
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Figure 4.2: Relationships observed between door spread and towing depth (a); wing spread 

and towing depth (b); and headline height and towing depth (c). The plots show the 

experimental data collected with dynamic simulation (plus), full-scale observations at sea 

(open circle). The best fit regression lines are shown for each scatter plot. 

 

 

(c) 
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Figure 4.3: Relationships observed between wing-end spread with respect to door spread. 

The plots show the experimental data collected with depth based dynamic simulation 

(plus), full-scale observations at sea (open circle), restrictor rope based dynamic simulation 

(triangle), and physical modeling (star). The best fit regression lines are shown for each 

scatter plot. 
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Figure 4.4: Relationships observed between headline height with respect to door spread. 

The plots show the experimental data collected with depth based dynamic simulation 

(plus), full-scale observations at sea (open circle), restrictor rope based dynamic simulation 

(triangle), and physical modeling (star). The best fit regression lines are shown for each 

scatter plot. 
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Figure 4.5: Relationships observed between warp tension with respect to towing depth. 

The plots show the experimental data collected with depth based dynamic simulation (plus) 

and full-scale observations at sea (open circle). The best fit regression lines are shown for 

each scatter plot. 
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Figure 4.6: Relationships observed between bridle tension and door spread (a); bridle 

tension and towing speed (b). The plots show the experimental data collected with 

dynamic simulation (triangle), and physical modeling (star). The best fit regression lines 

are shown for each scatter plot. 

(a) 

(b) 
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Chapter 5. Assessing the effectiveness of drop chain footgear at 

reducing bottom contact in the Newfoundland and Labrador shrimp 

trawl fishery 

5.1 Abstract 

This study compared the effectiveness of a reduced seabed impact footgear versus 

a traditional rockhopper footgear on identical bottom trawls targeting northern shrimp 

(Pandalus borealis) in Newfoundland and Labrador, Canada. The experimental trawl 

used in this study was designed to be low seabed impact through the reduction of contact 

area of the footgear by replacing traditional heavy rockhopper footgear with only a few 

drop chains lightly in contact with the seabed (i.e., drop chain footgear). Two variants of 

the experimental drop chain footgear (9-drop chain and 5-drop chain) were designed, 

evaluated in a flume tank to estimate contact area with the seabed, and then briefly 

tested at sea for engineering performance and catchability. Results from the flume tank 

tests were encouraging, demonstrating that the traditional and experimental trawls were 

similar in performance, but with the experimental drop chain footgears producing 

substantial reductions in the predicted contact area with the seabed. Comparative 

commercial fishing trials were then subsequently made with a total of five pairs of tows 

(10 tows) for the 9-drop chain and six pairs of tows (12 tows) for the 5-drop chain. 

Though only briefly tested at sea, the results revealed that the drop chain footgears were 

promising in both engineering, but less so in the catch of target species. Underwater 

video observations demonstrated that the drop chain trawling system, with greatly 

reduced bottom contact on the seabed, could help reduce potential disturbance of marine 

ecosystems, in particular minimizing encounters with snow crab (Chionoecetes opilio).  
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5.2 Introduction 

Concerns over the impact of fishing practices on the ocean environment have been 

expressed at the local, national, and international scale (Morgan and Chuenpagdee, 2003; 

Rice, 2006; Fuller et al., 2008). The entire global seafood industry is facing public 

pressure to amend its fishing practices, particularly bottom trawling, in an effort to reduce 

bycatch and negative impacts on the seabed. Evidence although at times ambiguous that 

towed fishing gears harm benthic organisms, reduce habitat complexity, and reduce 

biodiversity has appeared in scientific literature (Kaiser et al., 2003; Valdemarsen and 

Suuronen, 2003; Valdemarsen et al., 2007; He and Winger, 2010; Pham et al., 2014) and 

popular media with increasing frequency (Gilkinson et al., 2006). Current consumer 

trends and the growing demand for certification by eco-labels such as the Marine 

Stewardship Council indicate that the public is increasingly concerned with the 

environmental footprint of fisheries, particularly for bottom trawling. While physical 

alterations of the seabed by bottom trawling and dredging are evident (e.g., Jones, 1992; 

Løkkeborg, 2005; Rice, 2006; He and Winger, 2010), the effect of the alterations on the 

benthic organisms and recovery rates associated with gear alterations depend on substrate 

type, depth, and natural disturbance in the area.  

The northern shrimp (Pandalus borealis) and snow crab (Chionoecetes opilio) 

fisheries are important contributors to the local economy of the province of 

Newfoundland and Labrador, Canada (DFA, 2014). However, snow crab and shrimp 

fishing grounds are known to overlap considerably from the southern Labrador shelf to 

the northern Grand Bank, particularly in northern regions such as Northwest Atlantic 
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Fisheries Organization (NAFO) Divisions 3KL (Dawe et al., 2007). Recent underwater 

video camera observations of snow crab encountering the traditional footgear (i.e., 

rockhopper) of a shrimp trawl demonstrated that snow crab are quickly overtaken by the 

trawl, with approximately 54% of individuals observed confirmed to experience an 

encounter with the footgear (Nguyen et al., 2014). Rose et al. (2013) demonstrated that 

the mortality of decapod crabs in response to such encounters with trawl footgear can 

range from 10-31% depending on the species and region of the footgear they encounter. 

Subsequent work by Hammond et al. (2013) showed that simple modifications to trawl 

footgear (i.e., rubber disk footgear with off-bottom sweeps/bridles) achieved a 36% and 

50% reduction in mortality levels for Tanner crab (Chionoecetes bairdi) and snow crab 

(C. opilio), respectively. These findings suggest that minimizing potentially negative 

encounters through the use of trawl modifications is a valuable research agenda as it can 

promote stock productivity through the reduction of unaccounted fishing mortality.  

The primary objective of this study was to examine the effectiveness of a novel 

footgear for reducing the seabed impacts of shrimp trawls off the east coast of 

Newfoundland and Labrador, Canada. This footgear, referred to as a drop chain footgear, 

consists of only a few drop chains in contact with the seabed. The use of drop chain 

footgear technology has been previously investigated or adopted in different fisheries in 

Australia (Ramm et al., 1993 and Brewer et al., 1996) and the United States (Hannah and 

Jones, 2000; Pol, 2003; Sheppard et al., 2004). In this study we conducted two 

comparative fishing experiments, evaluating catch rates of target and non-target species, 

trawl geometry, fuel consumption, and trawling resistance (i.e., warp tension) to 
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determine the differences between the traditional and experimental trawls (i.e., 

rockhopper vs. drop chain). 

 

5.3 Materials and Methods 

5.3.1 Fishing Gear 

In the current study, the trawl design used for the traditional (control) and 

experimental trawls was the 4-seam, Vónin 2007-1570 shrimp trawl with 33.8 m headline 

and 32.9 m fishing line (Figure 5.1 a). The traditional and experimental trawls were 

identical in every way, except for modifications to the footgear and four fewer floats on 

the fishing line of the experimental trawl. The traditional trawl was rigged with a 32.9 m 

rockhopper footgear commonly used throughout the fishing fleet. The rockhopper 

footgear, with a weight of 354 kg, is constructed from different components including 

wires, travel chains, spacers, bobbins, and rubber discs/wheels. This consisted of 28 

rockhopper disks with a diameter of 356 mm, 38 disks with a diameter of 305 mm, and 

two 356 mm diameter steel bobbins linked together by a 13 mm long-link footgear chain, 

a 10 mm long-link travel chain, and a 10 mm long-link weight chain (Figure 5.1 b). 

Flotation was provided using 203 mm trawl floats, with 100 floats on the headline, 18 

floats on the fishing line, and five floats on each of the upper selvedges. The trawls were 

constructed with 25-100 mm mesh and were equipped with two 5.0 m2 Injector Scorpion 

steel trawl doors (1,350 kg each) made by Injector Door Limited™ and high-density 

polyethylene Nordmøre grids. 
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We tested two experimental footgear designs; the 9-drop chain and 5-drop chain. 

Both drop chain footgear arrangements were devoid of all rockhopper components and 

consisted of nine or five drop chains spaced from wing to wing. Each chain was 1.0 m in 

length, 25.6 kg in weight, and was constructed of 22 mm long-link steel chain (Figure 5.1 

c). The total footgear weight of the 9-drop chain and 5-drop chain was 334 and 223 kg, 

respectively. This weight included the weight of a secondary fishing line which was a 

combination of chains, spacers, and 100 mm diameter of rubber disks and attached 

directly to the original fishing line by quick links (Figure 5.1 c). 

Scaled engineering models (1:8) of both the traditional and experimental trawls 

were constructed and evaluated using a flume tank (Winger et al., 2006). The percentage 

of contact area with the seabed was estimated visually by filming the models while under 

test in the flume tank.  

 

5.3.2 Comparative Fishing Experiments  

Prior to sea trials, we followed the quality-control protocol outlined in DFO 

(1998) to ensure the trawl nets did not differ in size or shape, with the exception of the 

footgear (i.e., rockhopper vs. drop chain). The comparative fishing experiments were 

conducted aboard the F/V Nautical Legend, a 20 m commercial trawler, from July 25 to 

August 1, 2014. Fishing experiments were conducted on the northeast coast (i.e., NAFO 

Division 3K) of Newfoundland, Canada, with average water depths ranging from 357-

390 m (Figure 5.2).  
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Prior to the comparative fishing experiments, we conducted engineering trials 

with an opened cod-end. This was to verify that all instrumentation and equipment used 

to monitor trawl performance, geometry, resistance, and footgear rigging were 

functioning properly.  

We conducted two separate fishing experiments. Experiment 1 consisted of a 

comparison of the traditional footgear trawl against the experimental 9-drop chain 

footgear trawl. A total of 10 tows (five pairs) were successfully carried out and included 

in the analysis. Experiment 2 consisted of a comparison of the traditional footgear trawl 

against the experimental 5-drop chain footgear trawl. A total of 12 tows (six pairs) was 

successfully carried out and included in the analysis. The alternate tow method (DFO, 

1998) was used to compare catches among paired tows. Paired tows were fished in the 

same direction to minimize variation in environmental conditions. The warp length was 

appropriately adjusted for the experimental 5-drop chain footgear trawl to maintain a 

stable footgear contact with the bottom. Towing speed was approximately 2.3 knots and 

towing order followed the ABBA-BAAB protocol (DeAlteris and Castro, 1991). ABBA-

BAAB protocol is a comparative study by which a control net and experimental net are 

fished and compared using an alternating, paired methodology. In this case, A = 

control/traditional net; B = experimental gear). Tow duration varied between one and two 

hours.  
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 5.3.3 Data Collection and Analysis 

Trawl monitoring equipment, including a combination of E-Sonar™ and 

Netmind™ technology, was used to record measurements of trawl net geometry during 

sea trials. Trawl geometry parameters measured included door spread (m), wing spread 

(m), and headline height (m). Hand-held tension meters (i.e., VTM 502 10K developed 

by Cooper Instruments & Systems) were installed on the warps aft of the winches to 

measure warp tension (kilogram-force, kgf) for both trawl types. Vessel fuel consumption 

(L h-1) was also documented for each tow using the vessel’s fuel meter located on the 

bridge. Differences in engineering trawl performance (i.e., trawl geometry, 

resistance/warp tension) and fuel consumption between the traditional rockhopper and 

experimental drop chain footgear trawls were compared using paired t-tests. 

The number of bags of shrimp captured from each tow, with an average weight of 

13.6 kg per bag, was recorded. These data were used to compare the differences in catch 

rates of shrimp (kg min−1) caught by the traditional and experimental footgear trawls 

using paired t-tests. Power analysis was performed to determine the statistical power and 

the extent to which the proposed sample size (number of paired tow comparisons for our 

future experiments) would be adequate to detect the differences in the catch rates of 

shrimp between the experimental and traditional trawls. We based our power calculations 

on the assumption of power level (0.95), significant level (0.05), and the population 

effect size as obtained in the current study. Sub-samples of shrimp were also taken back 

to the laboratory to estimate the number of individuals per kg (an assessment of average 

body size). 
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For each tow, the number and cumulative weight of each major fish species 

representing at least 2.5% of total catch captured incidentally (bycatch) were recorded 

and individual body lengths were obtained. Miscellaneous bycatch species captured 

infrequently and in low abundance were only counted and weighed. Differences in catch 

rates (numbers per hour, N h-1) of each major bycatch species between the traditional and 

experimental footgear trawls were analyzed using paired t-tests. The proportion of catch 

at each length class for major bycatch species from the control and experimental trawls 

was analyzed using the Generalized Linear Mixed Models (GLMM) with fish length as 

the explanatory variable (fixed effect) and individual tow as the random effect, following 

the technique described by Holst and Revill (2009).  

Underwater video footage was recorded during the experiments using a low-light 

TrawlCamera manufactured by JT Electric. The camera was attached to the fishing line 

of the trawl in the manner similar to Nguyen et al. (2014) (see also Chapter 2). The video 

footage was used to determine the performance of the drop chain footgear relative to the 

seabed and its herding effects on shrimp and bycatch species; in particular, the interaction 

or encounter of snow crab with the drop chains.  

All of the statistical procedures regarding paired t-tests were performed using the 

IBM SPSS Statistics software package. The GLMM was implemented using the 

glmmPQL function in the MASS package (Venables and Ripley, 2002) of R statistical 

software (R Development Core Team, 2014), which used a penalized quasi-likelihood 

approach (Breslow and Clayton, 1993). Statistical power analyses were conducted using 

G*Power 3.1 (Faul et al., 2009). 
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5.4 Results 

5.4.1 Flume Tank Tests 

Results from the flume tank testing demonstrated that the traditional and 

experimental trawls were similar in net geometry and performance, but the experimental 

drop chain footgear trawls had substantial reductions in contact area with the seabed, as 

expected. The footgear (rockhopper) of the traditional trawl consisted of 68 contact 

points with the seabed (Figure 5.3 a). This produced a footprint that made contact with an 

estimated 69% of the seabed in the path of the trawl. The experimental footgear (9-drop 

chain and 5-drop chain) (Figures 5.3 b and c) produced footprints that made contact with 

only 11 and 6%, respectively, of the seabed in the path of the trawl.  

 

5.4.2 Engineering Trawl Performance 

Mean door spread, wing spread, and headline height recorded in Experiment 1 

were significantly different between the experimental trawl (9-drop chain footgear) and 

the traditional rockhopper footgear trawl, but the differences were generally less than 

10% (Table 5.1). Whereas, the warp tension (kgf) and fuel consumption (L h-1) were not 

significantly different between the trawl types (Table 5.1). In Experiment 2, mean door 

spread of the experimental trawl with 5-drop chains was on average 4% higher than that 

recorded for the traditional footgear trawl and this difference was statistically significant 

(Table 5.1). Mean wing spread, headline height, warp tension and fuel consumption were 

not significantly different between the experimental and traditional footgear trawls in 

Experiment 2 (Table 5.1).  
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We observed some unexpected technical challenges during fishing operations for 

the experimental footgear trawls. On two occasions the trawl net body of the 

experimental 9-drop chain trawl was damaged resulting in significant tears in the netting 

of the first and second side panels. Repairs were completed at sea and fishing operations 

were resumed. An operational issue regarding the drop chains causing tangles during the 

trawl shooting away or hauling back was also observed. 

  

5.4.3 Catch Comparison Results 

 Shrimp catch 

In Experiment 1, there was no difference in the mean catch rate for shrimp 

between the traditional footgear trawl and experimental 9 drop-chain trawl (t-

statistic=0.646, df=4, p=0.553) (Table 5.2). However, the statistical power to detect this 

effect was low (0.25) (Table A1 in Appendix) given low number of paired tow 

comparisons and the highly variable shrimp catch rates observed for the 9-drop chain 

footgear. For Experiment 2, mean shrimp catch rates decreased approximately 52% from 

the traditional footgear trawl (6.84 kg min-1) to the experimental 5-drop chain footgear 

trawl (3.29 kg min-1), and this difference was statistically significant (t-statistic=5.162, 

df=5, p=0.004) (Table 5.2). 

In both experiments, there were no differences in the size of shrimp caught 

between the traditional and experimental trawls. In Experiment 1, the mean (+ 1 S.E.) 

number of shrimp per kilogram was 151.9 + 6.27 individuals kg-1 in the traditional trawl, 

and 163.3 + 3.10 individuals kg-1 in the experimental trawl (t-statistic=1.497, df=21, 
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p=0.149). In Experiment 2, the numbers of shrimp per kilogram were: 183.9 + 2.12 

individuals kg-1 in the traditional trawl, and 179.2 + 3.34 individuals kg-1 in the 

experimental trawl (t-statistic=-1.099, df=32, p=0.280) (Figure 5.4). 

 

 Bycatch 

The predominant bycatch species caught by the traditional and experimental 

footgear trawls was turbot (Reinhardtius hippoglossoides), comprising 82.1 and 87.1% of 

the total bycatch on average by count, respectively (Table 5.3). Atlantic cod (Gadus 

morhua) and American plaice (Hippoglossoides platessoides) were also frequently 

caught by both the experimental and traditional trawls. These species accounted for 10.1 

and 3.6% of the total bycatch on average respectively for the traditional footgear trawl, 

4.8 and 3.9% respectively for the experimental 9-drop chain footgear trawl, and 6.4 and 

2.6 % respectively for the experimental 5-drop chain footgear trawl (Table 5.3). In 

Experiment 1, differences in the mean catch rates (numbers per hour) of major bycatch 

species were generally less than 10% between the traditional footgear trawl and 

experimental 9-drop chain footgear trawl and these differences were not statistically 

significant (Table 5.2). The observed proportions at length of the total catches of each of 

the major bycatch species in the experimental 9-drop chain footgear trawl were found to 

be independent of fish length, owing to the fact that length was not a significant factor in 

the curve fitting of the GLMM procedure (Table 5.4, Figure 5.5). In Experiment 2, the 

experimental 5-drop chain footgear trawl had statistically lower bycatch catch rates for 

American plaice (69.1%) compared to the traditional trawl rigged with rockhopper 
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footgear (t-statistic=2.834, df=5, p=0.036). The experimental 5-drop chain footgear trawl 

produced a lower average catch of cod (22 vs. 73) and turbot (297 vs. 394) but neither 

difference was statistically significant (cod: t-statistic=1.392, df=5, p=0.223; turbot: t-

statistic=2.039, df=5, p=0.097) (Table 5.2). The results from the GLMM analyses showed 

that the experimental trawl (5 drop-chain footgear) was less efficient in catching turbot, 

Atlantic cod, and American plaice (Table 5.4 and Figure 5.6). The relative efficiency of 

the experimental trawl was approximately 0.10 to 0.50, depending on fish length. For 

Atlantic cod and American plaice, the shape of the curve (i.e., bowl shaped) indicates that 

the experimental trawl was less efficient at catching fish in the middle of the size 

distribution but was nearly equal to the traditional trawl for fish at the ends of the 

distribution (i.e., very small and very large fish).  

Miscellaneous bycatch species captured infrequently by the traditional and 

experimental footgear trawls accounted for approximately 4.6% of the total bycatch 

(Table 5.3). Differences in overall mean catch rates of miscellaneous species were not 

statistically significant (Table 5.2). 

 

 Underwater observations 

A total of 125 minutes of underwater video was recorded on the experimental 9-

drop chain footgear in Experiment 1, but only 60 minutes of video was usable for 

analysis; the rest was too cloudy or the trawl was not on bottom. Video observations 

revealed the drop chain, which was attached directly to the secondary fishing line at the 

centre of the footgear, was in stable contact with the seabed. Shrimp, snow crab, 
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American plaice, and turbot were observed distributed near or on the seabed (Figure 5.7). 

A total of 64 crabs were observed. In all cases, snow crab easily passed under the fishing 

line of the experimental trawl and out of the path of capture (see video in Appendix). The 

majority (92%) of the crabs observed had no direct encounters (i.e., collisions) with the 

drop chain (i.e., went under fishing line and between the drop chains). The remaining 8% 

came into contact with the chain. 

 

5.5 Discussion 

Results from our flume tank testing and comparative fishing experiments 

demonstrated the promising engineering features of drop chain footgears. Compared to 

the traditional bottom trawl equipped with rockhopper footgear, we found that 

experimental trawls equipped with drop chain footgears had substantial reductions in the 

predicted contact area with the seabed and only minor differences in trawl geometry and 

resistance. 

One of our interesting findings was that both of the experimental footgear trawls 

had a greater mean door spread and wing spread compared to the traditional trawl. With 

this additional spread came a corresponding reduction in headline height, which is known 

to have an inverse linear relationship with door spread and wing spread (Godø and Engås, 

1989). Such trawl geometry differences were unexpected results as the trawls were the 

same design, with the exception of the footgear components (drop chain vs. rockhopper). 

In addition, the flume tank testing did not provide evidence for large differences in trawl 
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geometry. Previous authors have suggested that increased horizontal opening should 

result in increased catch rate of shrimp (SINTEF, 2004 and Munden et al., 2013); 

however, this effect was not observed in this study. Functional explanations for why the 

drop chain trawls experienced greater spread during sea trials are speculative at this point. 

We hypothesize that the removal of the large rockhopper footgear may have reduced 

friction with the seabed, which reduced the inward pull on the doors and wings, allowing 

them to spread to a greater extent. 

Our results revealed that the catch rate for shrimp by the experimental 9-drop 

chain footgear trawl used in Experiment 1 was not significantly different from the catch 

rates of the traditional rockhopper footgear trawl, despite a mean difference of 23%. This 

non-significant finding may be explained by the highly variable shrimp catch rates 

observed at sea together with the low number of paired tows, which led to low statistical 

power necessary for detecting a difference. Therefore, further commercial fishing trials 

are recommended to provide sufficient paired tows (30-40 paired comparisons, see Table 

A1 in Appendix) for demonstrating whether the real-world differences in shrimp catch 

rates between experimental and traditional trawls are statistically different. 

Our underwater video observations revealed that shrimp and bycatch species were 

distributed near the seabed, providing easy opportunity for escape underneath the fishing 

line and between the drop chains (see video in Appendix). While this study did not 

measure the height of the fishing line off the seabed under fishing conditions, previous 

studies have shown that this parameter can significantly affect the overall catchability of 

shrimp and bycatch species (Beardsley, 1973; Hannah and Jones, 2003; He et al., 2006; 
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Hannah et al., 2011; Hannah and Jones, 2013). Given the reduced catch rates of shrimp 

and bycatch observed in Experiment 2, we hypothesize that reducing the number of 

chains caused the trawl to operate further from the seabed.  

Developing and ultimately implementing footgears with reduced bottom contact 

remains a desirable goal for stakeholders. One of the primary concerns raised by the 

fishing industry is their contention that shrimp trawling represents an important source of 

unaccounted mortality, negatively affecting the snow crab population and habitat (Monty 

Way, pers. comm.). In a previous study we found about 54% of the crabs observed were 

confirmed to experience an encounter with the rockhopper (either disks or spacer/chain) 

(see Nguyen et al., 2014; Chapter 2 herein). By contrast, our trawl-mounted video camera 

observations in this study demonstrated that, at least around a single drop chain, only 8% 

of the crabs observed were found to experience an encounter with the drop chain. This 

suggests that the likelihood of snow crab mortality in relation with drop chains is 

expected to be low or minimized. Admittedly, these video observations were focused 

only on the centre of the footgear (one drop chain was in the field of view) thus limiting 

our ability to evaluate interactions in other regions of the trawl. 

Assessing any fishing gear requires that researchers study the impact of the gear 

on target and non-target species, as well as the practicality of the gear for use in a fishery. 

While our study focused on the former, we did identify several pathways for further 

improvement of this gear. First, the drop-chain-equipped trawl net experienced two tear-

ups over the course of the study. It is unclear whether these tear-ups were due to the 

footgear or chance alone. The application of drop chain footgear to reduce bycatch in the 
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ocean shrimp (Pandalus jordani) trawl fishery off the west coast of the United States has 

been investigated and no tear-ups reported (Hannah and Jones, 2000), suggesting that the 

drop chain footgear is not fundamentally flawed. Second, operational safety issues may 

exist as crews grow accustomed to using this gear. Specifically, when shooting the gear 

and during haulback, the drop chains swing off the drum in a manner that could impact 

fishers on deck. From a safety point of view, it is likely that vessel crew would require a 

certain period of time to adjust to or become comfortable with the drop chain operations.  
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Table 5.1: Tow-by-tow comparison of trawl geometry, trawling resistance and fuel 

consumption. Mean in meter (m) for door spread, wing spread and headline height, 

kilogram force for warp tension (kgf) and liter per hour (liter hr-1) for fuel consumption, 

standard error of the mean (SE), percent change (% change), degrees of freedom (df), t-

statistic, and p-value denoted in bold are statistically significant based on an alpha of 0.05. 

 Pair Door spread Wing spread Headline height Warp tension Fuel consumption 

    Control D. chain Control D. chain Control D. chain Control D. chain Control D. chain 

X
P

E
R

IM
E

N
T

 1
 

1 58.47 58.43 19.16 21.54 5.04 4.70 6945 6793 64.75 67.25 

2 59.52 61.19 19.45 20.87 5.02 4.38 6713 6733 67.13 69.50 

3 59.71 61.97 19.48 na 5.32 4.68 5888 6368 54.38 58.63 

4 58.53 62.28 19.74 21.85 4.87 na 6293 5861 67.75 64.25 

5 58.68 60.75 19.09 21.05 4.79 na 6491 6663 65.62 65.00 

Mean 58.98 60.92 19.36 21.32 5.12 4.58 6466.00 6483.60 63.92 64.93 

SE 0.3 0.7 0.1 0.2 0.1 0.1 180.9 171.9 2.4 1.8 

% 

change 
+3.2 +10.1 -9.4 -0.3 +1.6 

df 4 3 2 4 4 

t-statistic -3.195 -9.734 5.4 -0.115 -0.728 

p-value 0.033 0.002 0.033 0.914 0.507 

E
X

P
E

R
IM

E
N

T
 2

 

6 60.61 62.77 na 21.63 5.16 na 5790 5885 58.00 56.75 

7 60.38 62.9 19.46 21.06 5.13 4.63 5960 5800 56.75 58.00 

8 60.91 63.7 19.48 21.75 5.21 5.06 5580 5450 53.75 50.50 

9 63.48 65.97 20.37 23.25 5.13 na 5735 5900 52.25 53.25 

10 60.84 63.55 20.06 na na na 6185 6085 63.50 65.25 

11 61.61 64.72 19.96 22.61 na na 6245 6030 55.75 55.00 

Mean 61.31 63.94 19.87 22.06 5.16 4.85 5915.83 5858.33 56.67 56.46 

SE 0.5 0.5 0.2 0.4 0.0 0.2 107.1 91.9 1.6 2.1 

% 

change 
+4.3 +11.0 -6.1 -1.0 -0.4 

df 5 5 1 5 5 

t-statistic -20.073 -0.339 1.857 0.928 0.269 

p-value 0.000 0.748 0.314 0.396 0.799 

Note: na is meant the data was not available as the sensors were communicate improperly.    
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Table 5.2: Tow-by-tow comparison of N. shrimp, major bycatch species and 

miscellaneous species. Total catch mean in kilogram per minute (kg min-1) for N. shrimp, 

number of individuals per hour (N hr-1) for turbot, Atlantic cod, A. plaice, and 

miscellaneous species, standard error of the mean (SE), percent change (% change), 

degrees of freedom (df), t-statistic, and p-value denoted in bold are statistically significant 

based on an alpha of 0.05.  

 Pair N. shrimp Turbot Atlantic cod A. plaice Miscellaneous 

    Control D. chain Control D. chain Control D. chain Control D. chain Control D. chain 

E
X

P
E

R
IM

E
N

T
 1

 

1 3.29 10.09 85 272 34 1 50 0 60 9 

2 7.03 5.67 143 585 29 24 46 9 23 25 

3 3.74 1.36 246 65 29 77 5 74 16 59 

4 9.53 7.14 838 472 23 27 9 34 33 29 

5 11.11 2.49 1195 1381 50 27 7 3 55 39 

           

Mean 6.94 5.35 501.40 555.00 33.00 31.20 23.40 24.00 37.40 32.20 

SE 1.5 1.6 219.3 224.8 4.6 12.4 10.1 13.9 8.7 8.3 

% change -22.9 +10.7 -5.5 +2.6 -13.9 

df 4 4 4 3 4 

t-statistic 0.646 -0.371 0.128 -589 0.343 

p-value 0.553 0.729 0.904 0.597 0.749 

E
X

P
E

R
IM

E
N

T
 2

 

                      

6 6.58 2.72 773 445 23 12 17 3 14 32 

7 5.44 1.59 786 664 21 5 5 0 19 22 

8 7.03 1.81 473 481 16 6 6 2 19 8 

9 7.03 3.86 209 129 19 5 4 5 5 3 

10 5.44 4.99 0 20 330 93 24 11 20 5 

11 9.53 4.76 162 34 30 8 25 4 7 19 

                      

            

Mean 6.84 3.29 393.83 297.17 73.17 21.50 13.50 4.17 14.00 14.83 

SE 0.6 0.6 131.4 110.7 51.4 14.3 4.0 1.5 2.7 4.6 

% change -51.9 -24.5 -70.6 -69.1 +6.0 

df 5 5 5 5 5 

t-statistic 5.162 2.173 1.392 2.834 -0.159 

p-value 0.004 0.082 0.223 0.036 0.88 
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Table 5.3: Catch composition of non-target species caught by the traditional and 

experimental footgear trawls. 

Species group Species included Scientific name % of total catch 

    
Major bycatch  Turbot Reinhardtius hippoglossoides 82-87 

 Atlantic cod Gadus morhua 5-10 

 American plaice Hippoglossoides platessoides 2.5-4 

    

Miscellaneous  Redfish Sebastes fasciatus 0.3-0.5 

 Capelin  Mallotus villosus 0.5-0.7 

 Sandlance  Ammodytes spp. 1.3-1.7 

 Eelpout  Zoarces spp. 0.5-0.7 

 Sculpin  Myoxocephalus octodecimspinosus 0.4-0.6 

 Grey sole  Glyptocephalus cynoglossus 0.1-0.2 

 Alligator fish  Aspidophoroides monopterygius 0.1-0.3 

 Snow crab  Chionoecetes opilio 0.1-0.2 

 Wolf fish  Anarhichas denticulatus 0.1-0.4 

 Skate Family rajidae 0.2-0.4 
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Table 5.4: Generalized linear mixed model parameters for: turbot, Atlantic cod, and 

American plaice; where model and parameter are the chosen model (either constant, linear, 

quadratic, or cubic), estimate is the value of the slope or intercept, SE is the standard error 

of the mean, df is the degrees of freedom, t-statistic, and p-value denoted in bold are 

statistically significant based on an alpha of 0.05. 

 

 Species Model Parameter Estimate SE df t-value p-value 

E
X

P
E

R
IM

E
N

T
 1

 Turbot Constant β0 0.163 0.468 73 0.348 0.728 

        

Atlantic cod Constant β0 62.545  32.063 22 1.950 0.063 

        

A. plaice Constant β0 11.288   6.559   9 1.721   0.119 

          

E
X

P
E

R
IM

E
N

T
 2

 

Turbot Cubic β0 -9.524   3.718 69 -2.562  0.012 

  β1 1.602   0.667 69 2.215 0.019 

  β2 -0.089  0.039 69 -2.090  0.024 

  β3 0.001   0.000 69 1.923   0.035 

        

Atlantic cod Cubic β0 41.743 14.551 20   2.869  0.009 

   β1 -8.689 3.210 20 -2.706   0.013 

  β2 0.568 0.231 20 2.460 0.023 

   β3 -0.012 0.005 20 -2.228 0.037 

        

A. plaice Quadratic β0 43.944 10.682  6 4.113  0.006 

  β1 -4.451   1.074 6 -4.143   0.006 

  β2 0.110   0.026  6 4.115   0.006 
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Figure 5.1: Schematic netplan of the Vónin 2007-1570 shrimp trawl (a), rigged with a 

traditional rockhopper footgear (b), and experimental drop chain footgear (c). 
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Figure 5.2: The experimental study area in NAFO Division 3K (SFA6) on the northeast 

coast of Newfoundland, Canada. Black box denotes the towing area. 
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Figure 5.3: Schematic of the estimated percentage of seabed contact for a traditional 

rockhopper footgear (a), experimental 9-drop chain footgear (b), and experimental 5-drop 

chain footgear (c). The colour coding of seabed contact is described for different footgear 

components/sections. For traditional footgear which made 69% of seabed contact: Bobbin 

(Green), Wingtip sections (Black), Wing sections (Blue), Bunt wing sections (Red), Bosom 

section (Purple). For experimental footgears which made only 11% (9-drop chain) and 6% 

(5-drop chain) of seabed contact: Drop chains (Red). 
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Figure 5.4: Number of individuals per kilogram (N kg-1) for northern shrimp caught by 

the traditional rockhopper and experimental drop chain footgear trawls. Error bars 

represent ± 1 S.E. 
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Figure 5.5: Experiment 1-Pooled length frequency and observed proportions 

(experimental / (experimental + control)) of the total catches caught in the experimental 9-

drop chain footgear trawl (a). Generalized linear mixed model (GLMM) modelled 

proportion of the total catches caught in the experimental 9-drop chain footgear trawl. 

Interpretation: a value of 0.5 indicates an even split between the two trawls, whereas a 

value of 0.25 indicates that 25% of the total fish at that length were caught in the drop chain 

footgear trawl and 75% were caught in the traditional rockhopper footgear trawl. The 

shaded areas around the mean curves (bold lines) are the 95% confidence regions (b). 
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Figure 5.6: Experiment 2 – Pooled length frequency and observed proportions 

(experimental / (experimental + control)) of the total catches caught in the experimental 5-

drop chain footgear trawl (a). Generalized linear mixed model (GLMM) modelled 

proportion of the total catches caught in the experimental 5-drop chain footgear trawl. 

Interpretation: a value of 0.5 indicates an even split between the two trawls, whereas a 

value of 0.25 indicates that 25% of the total fish at that length were caught in the drop chain 

footgear trawl and 75% were caught in the traditional rockhopper footgear trawl. The 

shaded areas around the mean curves (bold lines) are the 95% confidence regions (b). 
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Figure 5.7: Images from an underwater video camera attached to the fishing line of the 

experimental-9 drop chain footgear trawl. Images show shrimp (a), turbot (b), and snow 

crab (c) in response to the approaching drop chain footgear. 
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Appendices 

Video 5.1: Video demonstrating snow crab and bycatch in response to the approaching 

experimental 9-drop chain footgear. This is an engineering clip which was glued together 

(not a raw video). (To view video, see open access paper online at www.thejot.net (V10N2) 

Table A5.1: Statistical summary of power analysis for shrimp catch in Experiment 1 (9-

drop chain footgear vs. rockhopper footgear). 

t tests - Means: Difference between two dependent means (matched pairs) 

Analysis: Post hoc: Compute achieved power  

Input: Tail(s) = Two 

 Effect size dz = 0.4554976 

 α err prob = 0.05 

 Total sample size = 10 

Output: Noncentrality parameter δ = 1.4404099 

 Critical t = 2.2621572 

 Df = 9 

        Power (1-β err prob)       =   0.2518603 

 

 

t tests - Means: Difference between two dependent means (matched pairs) 

Analysis: A priori: Compute required sample size  

Input: Tail(s) = Two 

 Effect size dz = 0.4554976 

 α err prob = 0.05 

 Power (1-β err prob) = 0.95 

Output: Noncentrality parameter δ = 3.6723391 

 Critical t = 1.9977297 

 Df = 64 

 Total sample size = 65 

        Actual power                   =   0.9512130 
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Chapter 6. Summary and Conclusions 

This thesis addressed different key research aspects regarding the subject of 

development of what may be considered more seabed friendly bottom trawls. First, I 

investigated the behavioural interactions of individual snow crabs in response to the 

rockhopper footgear of a traditional inshore shrimp trawl used in Newfoundland and 

Labrador, Canada (Chapter 2). Second, I conducted an overview of three widely used 

trawl simulation software packages (i.e., DynamiT, SimuTrawl, and Trawl Vision PRO) 

and evaluated their design, simulation, and predictive capabilities (Chapter 3). I then 

examined how well computer simulation and flume tank testing of scale engineering 

models actually predict full-scale at-sea performance of bottom trawls (Chapter 4). 

Finally, I investigated the effectiveness of a novel footgear for reducing the seabed 

impacts of shrimp trawls off the east coast of Newfoundland and Labrador, Canada 

(Chapter 5). The following sections provide an integration of the major aspects of the 

results from these four research-based chapters. I also discuss limitations of the 

approaches used and future research directions.    

 

6.1 Environmental Concerns Associated with the Northern Shrimp 

Trawling in Newfoundland and Labrador, Canada 

The Newfoundland and Labrador’s northern shrimp fishery makes a substantial 

contribution to the province’s seafood industry and local economy with over 71 thousand 

tonnes harvested with a landed value of over $210 million dollars in 2014 (DFA, 2015). 
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Bottom trawling has been used exclusively as the only economically viable method to 

capture northern shrimp in the region. However, similar to many other bottom trawl 

fisheries around the world, the Newfoundland and Labrador shrimp fishery has been 

facing public pressure to amend its fishing practices to be more environmentally friendly 

and selective. Some sectors of the fishing industry in particular, have been raising 

concerns about the potential for unaccounted (unobserved) mortalities of snow crab 

which are exposed to shrimp trawling given the overlap in their fishing grounds (CCFI, 

2013).  

The findings from Chapter 2 demonstrate that snow crab were quickly overtaken 

under the footgear of the approaching trawl and a high number of the snow crab observed 

experienced an encounter with the rockhopper footgear components. I also found that the 

majority of the snow crab observed appeared to be aware of the trawl footgear and were 

actively responding and/or reacting to the approaching threat. However, I was unable to 

investigate the severity, degree of pain, or likelihood of mortality after passing under the 

footgear. In addition, my observations focused only on the centre of the footgear thus 

limiting the ability to evaluate interactions in other regions of the trawl. Given high 

number of encounters of snow crab with the rockhopper footgear, I qualitatively 

speculate that shrimp trawling should injure and/or damage snow crab, causing 

unobserved mortalities of snow crab. Past investigations are both consistent and 

inconsistent with this conclusion. An initial joint study between industry and both levels 

of government found no impacts of trawling on the snow crab resource (FDP, 2002). 

Gilkinson et al. (2006) similarly found no evidence that shrimp trawling imposes a 
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substantial level of damage or mortality to snow crab in a study encompassing a broad 

depth range of 93-428 m and the entire range of bottom types encountered in the northern 

shrimp fishery. More recently, in the most comprehensive study on the issue, Dawe et al. 

(2007) concluded that shrimp trawling is not a major source of snow crab mortality but 

did conclude that there is a low incidence of leg loss (i.e., 10%) for crabs exposed to 

trawling at intensities higher than those that occur in the Newfoundland shrimp fishery. 

They found no significant increase in new leg loss in hard-shelled male crabs as a result 

of encountering the main footgear but reported significantly higher new leg loss (up to 

30%) after repeated trawling (i.e., 6 times). Sightings of dead snow crab lying in the path 

of a bottom trawl have also been observed in some Newfoundland studies 

(Schwinghamer et al., 1998) but not others (Dawe et al., 2007). Other studies conducted 

by American scientists supported that there is a low incidence of damage to crabs caused 

by bottom trawls or the effects were varied by species for different gear components. For 

instance, Rose (1999) carried out an experiment with secondary trawls on Alaskan red 

king crab (Paralithodes camtschaticus) and found that only 5-10 % of crabs experienced 

damage of any kind resulting from contact with various trawl footgear types, including 

rockhopper gear.  In a more recent study, Rose et al. (2013) studied crab mortalities after 

their escapes under the different components of a commercial groundfish trawl by using 

small recapture nets attached behind the sweeps, wings and central footgear. The authors 

concluded that immediate and delayed mortality rates of crabs varied significantly by 

species for the different trawl components they encountered, with red king crab (P. 
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camtschaticus) being more vulnerable than snow crab (C. opilio) or southern Tanner crab 

(C. bairdi).  

So a new synthesis of the findings would strongly suggest that yes, bottom 

trawling off the coast of Newfoundland and Labrador (in every likelihood) kills snow 

crab, and we now have underwater video to document potentially damaging encounters 

what can lead to immediate long-term mortality. But the extent of mortality on a 

population remains uncertain. Some contend it is not a major source of mortality and 

there is no evidence to suggest ecosystem function is negatively altered as a result of 

trawling activity. Others contend any harm is to too much harm in the context of a 

precautionary approach. 

Given the controversial nature of the issue, it is arguably only scientific studies 

that can provide facts regarding the situation. Personal livelihoods are on the line and 

emotions can be over-heated and deeply personal.  It is into this situation, that we must 

show leadership and inject additional research and development in support of scientific 

knowledge. Further research should be conducted to better understand the interactions 

between snow crab and bottom trawling in Newfoundland and Labrador. See Section 6.5 

for a list of recommended future research needs. 

 

6.2 Research and Development of Fishing Gears 

The development of fishing gears for the commercial fishing industry has 

improved dramatically over the last few decades. Concerns over ecosystem impact, 
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bycatch restrictions, increasing regulations, and fuel costs are the major reasons for much 

of the improvements in fishing gear research and development occurring worldwide. The 

major advancements in computer simulation, physical modeling methods, and gear 

monitoring/controlling systems (e.g., underwater cameras, acoustics, and trawl-mounted 

sensors) have made fishing gears more sophisticated, enabling the fishing industry to 

harvest more efficiently and selectively, and in turn reduce ecological impacts in many 

fisheries.   

 The findings from Chapters 3 and 4 demonstrate the advantages and 

disadvantages of using numerical modeling and simulation, testing physical models in a 

flume tank, and conducting at-sea experiments of full-scale prototypes. The strengths and 

limitations of different commercially available trawl simulation software in terms of 

design capability, simulation capability, and reliability of results, were investigated and 

interpreted (Chapter 3). The study represent a unique and novel piece of work which has 

never been done before. Rather noteworthy, the study provides valuable knowledge and 

reference for stakeholders (e.g., gear designers, researchers, and educators) who are 

seeking advice about the features and accuracy of simulation software and who are 

considering using software for numerical modeling and simulation of fishing gears. The 

findings are believed to be greatly beneficial for the software developers to improve their 

products. This knowledge would also be a useful contribution to the fisheries research 

literature as numerical modeling is becoming one of the popular methods of evaluating 

trawl designs and assessing their performance during the early stages of gear 

development. In addition, I addressed the question of how well computer simulation and 
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flume tank testing of scale engineering models actually predict full-scale at-sea 

performance of bottom trawls (Chapter 4). The results demonstrated that the 

complementary use of two or three methods should be encouraged for assisting the gear 

development cycle given their own weakness and merits. Moreover, I clarified that the 

precision and accuracy of the predictions depends on many factors. Thus, thoroughness 

and care must be emphasized in order to reduce bias in predicted performance.  

 The methods by which a new fishing gear (e.g., bottom trawls) is designed and 

tested will continue to be improved. Specifically, I predict that advanced mathematical 

modeling used in numerical simulation methods will be developed and applied in order to 

improve the current computational simulation capability, in particular the capability of 

predicting physical impacts associated to different bottom contact gear components (e.g., 

trawl doors, footgear/groundgear). Model scaling, construction, and evaluation of 

physical models in flume tanks will also continue to be improved and updated (i.e., 

improving flume tank testing capability with precision). In particular, increasingly 

modern instrumentation (e.g., optical, acoustical, and laser-scanning technology) will be 

used to evaluate (with greater precision) the performance of fishing gear in flume tanks 

(e.g., characterizing the location and downward forces of trawl components relative to the 

seabed). On the other hand, underwater applications (e.g., underwater cameras, acoustics, 

and trawl-mounted sensors, as well as active trawl/auto-trawl systems or “smart trawling 

technology”) for direct observation is expected to improve the evaluation of gear 

performance at sea, in particular the use of these advanced technologies to investigate 

potential impacts of bottom trawling on benthic communities and marine habitats. 
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Finally, I hypothesize that the use of computer simulation and testing of physical models 

in flume tanks or in tow tanks/wind tunnels will become, not only wise and prudent, but 

also the de facto standard before proceeding to full-scale comparative fishing 

experiments at sea.  

 

6.3 Reducing Environmental Impacts of Northern Shrimp Trawling 

in Newfoundland and Labrador, Canada 

This thesis recognizes that bottom trawling can be brilliant in its engineering, and 

at the same time, detrimental to marine benthic communities and habitats if conducted in 

an unsustainable manner. Finding the right balance of sustainable harvesting practices is 

a global challenge in every fishery. While the potential impact of bottom trawling 

activities on habitats and benthic communities is not easy to predict and characterize for 

various reasons, I do believe that development and application of selective fishing 

techniques that are more environmental friendly, selective, and efficient, would be 

advisable. 

 The findings from Chapter 5 demonstrated seabed impacts of shrimp trawling in 

Newfoundland and Labrador can be reduced if the trawl footgear is made lighter and/or 

designed to have less contact with the seafloor. In particular, it was revealed that we are 

able to minimize the interaction or encounter of snow crab with the experimental drop 

chain footgear. As a result, I hypothesize that the likelihood of snow crab mortality in 

relation with drop chains is expected to be low or minimized. The advantage of this 
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innovative footgear is believed to be beneficial for the sustainable development of the 

snow crab fishery which is the province’s highest value fishery and one of Canada’s most 

valuable fisheries with Marine Stewardship Council (MSC) certification. However, I 

admit that the results were only derived from a low number of paired tow comparisons 

and our video observations focused only on the centre of the footgear in which one drop 

chain was in the field of view. These limitations of the study have reduced my confidence 

of the catch rate comparison as well as the ability to evaluate interactions of snow crab 

with the drop chain footgear. I therefore recommend that additional work is needed to 

further improve the performance of drop chain footgear for the Newfoundland and 

Labrador’s shrimp fishery. 

 Encouraging the introduction of more environmentally friendly bottom trawls into 

the fishing fleet is essential not only for the sustainability of the northern shrimp fishery, 

but also for the sustainability of the snow crab fishery (i.e., reduced potential 

unaccounted mortalities of snow crab which are exposed to shrimp trawling) in the 

Newfoundland and Labrador region. Bottom trawling is one of the most important 

components of the Canadian fishing industry (especially in the Atlantic region), 

representing approximately 35% of the total commercial catch in 2008 (DFO, 2011). A 

complete ban on existing mobile bottom trawl fisheries would lead to a loss of millions of 

dollars to Atlantic Canada’s fishing industry as well as displacement of thousands of 

fishermen and plant workers. 
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6.4 Limitations of My Approaches  

Several major limitations were identified during this thesis. The following section 

discusses them so as to inform the reader.   

There have been considerable efforts in recent years to scientifically understand 

both direct and indirect effects of bottom trawling on decapod crab species (see 

Donaldson, 1990; Schwinghamer et al., 1998; Rose 1995, 1999; Gilkinson et al., 2006; 

Dawe et al., 2007; Rose et al., 2013). Underwater observations of the behaviour of snow 

crab encountering a shrimp trawl (Chapter 2) is a novel piece of research and to my 

knowledge it has never been done before. However, the experiments were not designed to 

investigate the severity, degree of pain, or likelihood of mortality of the crab either 

immediately or after passing under the footgear. This was a major limitation of my 

experiment. Another limitation was that my ability to detect individual crab (or for 

substrate types) relative to the rockhopper footgear components was limited by murky 

water and low light penetration, even when the camera system was attached to the fishing 

line to observe very close to the seabed with an additional lighting unit attached on the 

headline. However, this limitation is known as one of the common technological 

challenges when conducting species-specific behavioural observations in dynamic 

underwater environments (Hemmings, 1973; Bublitz, 1996; Underwood et al., 2012). The 

final limitation relates to artificial light which is well known to modify animal behaviour 

as it alters the underwater light field (i.e., light level, colour, and contrast) (Glass and 

Wardle, 1989; Walsh and Hickey, 1993; Engås et al., 1998; Olla et al., 2000). I recognize 

this was a limitation of the experiments and that the white light used may have altered 
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crab behaviour and biased the results. Future studies should include this consideration in 

the investigation, such as carrying out the experiment with infra-red lighting to evaluate 

effect of white light. Or perhaps alternative technology, such as the newly developed Aris 

Sonar (Sound Metrics Inc.), could be used. This “acoustic camera” does not require 

artificial light and works well in turbid water. 

Regarding my comparative study of different simulation software (Chapter 3), 

one of the major limitations of my approach was the limited number of software packages 

I was able to consider and evaluate. This limitation may limit our knowledge about the 

global development and application of numerical modeling and simulation method for 

fishing gear design and evaluation. A second limitation of the approach is that some of 

my evaluations about capabilities of design and simulation of each software, could be 

viewed as subjective. However, given I am neither a developer nor a seller of the 

software, I do believe I am independent in my analysis.  But could I be biased?  Because I 

may have more experience using one particular software (i.e., DynamiT) over the others, 

I was concerned I might be biased in my evaluations. However, I have made my best 

effort to judge each software equally fair. The approach used was systematic in nature, 

with data presented in figures and tables. I should also mention the work was conducted 

with full transparency with the developers. They were contacted in advance of the study, 

during the study, and after the study. Each was forwarded an electronic copy of the 

manuscript for their comment and review. So none of this has been done behind closed 

doors. This gives me added assurance that what I have created is a true representation of 

the software and can be published with scientific integrity. 
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Finally, there were (of course) limitations relating to my development of an 

environmentally friendly bottom trawl (i.e., drop chain footgear) for the Newfoundland 

and Labrador northern shrimp fishery. One of the major limitations of my approach is 

that the experimental results were only based on a limited number of paired tow 

comparisons. This limitation was believed to render the statistical conclusions 

questionable, especially with regard to the findings of non-significant difference on the 

catch rates of northen shrimp and bycatch between the experimental and traditional trawls 

(drop chain vs. rockhopper). For this reason, the manuscript had to place increased 

emphasis on the effectiveness of the engineering, and less emphasis on the catchability of 

the trawls. This limitation is clearly described in the chapter’s discussion section.  

Therefore, I suggest further experiments with more tow comparisons are needed to 

statistically detect differences in catch rates of shrimp and bycatch. Another limitation 

that our video observations of snow crab interactions with the drop chain were limited to 

the centre of the footgear with only a single drop chain in the field of view. This 

limitation reduced my ability to investigate the real drop chain perforamnce and its 

potential herding effects on shrimp and bycatch species, especially the interaction (i.e., 

nature of encounters) between snow crab and the drop chains. Collection of more 

underwater video for other trawl components would greatly benefit future evaluations of 

the experimental drop chain trawl in comparison to the traditional rockhopper footgear 

trawl.          
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6.5 Future Directions 

Scientifically understanding and documenting the impacts of bottom trawls on the 

ocean environment as well as development and application of more environmentally 

friendly bottom trawls still remains a hot research agenda that requires further efforts to 

address outstanding issues. The following parts provide some key interests for future 

research initiatives in order to support sustainable development of the northern shrimp 

fishery, as well as the snow crab fishery in the Canadian Atlantic, in particular 

Newfoundland and Labrador.           

I recommend the following list of future research needs toward the goal of better 

understanding whether shrimp trawling negatively affects the snow crab population and 

their habitats:  

1) Develop a method to estimate trawl-induced damage and/or mortality (i.e., 

estimate the force of footgear components on snow crab in situ and further, 

simulate the effects of this force on snow crab in laboratory experiments). 

2) Repeat the experiment in Chapter 2 to evaluate the effect of white light on 

snow crab behaviour. This would involve instrumentation capable of “seeing 

in the dark” – perhaps infra-red light which is not visible to crab, or high 

frequency sonar (e.g., Aris Sonar) which does not require artificial light 

whatsoever. 

3) Conduct more video observations of snow crab behaviour in response to other 

gear components, including trawl doors, wires/bridles, and wing-sections. 
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4) Conduct more video observations of snow crab behaviour in response to trawl 

components on different sediment types and on snow crab of various shell 

conditions, or at higher snow crab densities. 

5) Conduct more video observations of crab behaviour with different footgear 

designs (i.e., bobbins) 

6) Increase basic biological knowledge about snow crab visual acuity and 

sensory systems toward the goal of better understanding reaction behaviour. 

 

I recommend the following list of future research needs with regard to the 

application of numerical modeling and simulation methods for fishing gear design and 

evaluation: 

1) Continue to review and evaluate additional simulation software from different 

developers/providers. This is necessary because in a competitive capitalist world, 

there is a constant updating of existing software and the release of new software 

products. 

2) Compare the performance of different simulation software in their ability to 

simulate other trawl types/designs (e.g., commercial trawl designs, twin trawls, 

pelagic trawls, outrigger trawl systems).  

3) Conduct comparisons of different simulation software for their abilities and 

capabilities to predict/estimate the seabed impacts of different gear components or 

for the purposes of reducing fuel consumption or gear resistance.    
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I recommend the following list of future research needs toward the goal of 

developing environmentally friendly shrimp trawls for Newfoundland and Labrador, in 

particular, the refinement of the drop chain trawl concept:  

1) More comparative fishing experiments with larger sample size (i.e., more paired 

tows) are essential to clarify the effectiveness of the drop chain footgear trawl 

over the traditional rockhopper footgear trawl.   

2) Collect more underwater video observations of drop chain footgear performance 

for other parts of the footgear (e.g., bunt and wing-sections) to understand its 

herding effects on shrimp and bycatch species, in particular the 

interaction/encounter of snow crab with the drop chains. 

3) Further engineering is needed to determine how to minimize the snagging of 

chains caused during rolling on net drums as well as tear-ups while fishing. In 

addition, instrumentation for monitoring contact chains and the height of fishing 

line off the seabed would also be of benefit. 

4) Other gear modifications (e.g., semi-pelagic trawling or off-bottom doors, floating 

bridles) should also be investigated for developing low-bottom impact shrimp 

trawls. 
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