
ar
X

iv
:1

70
2.

07
26

2v
1

 [
m

at
h.

A
C

]
 2

3
Fe

b
20

17

Computing and Using Minimal Polynomials

John Abbott

Dip. di Matematica, Università degli Studi di Genova, Via Dodecaneso 35, I-16146 Genova, Italy

Anna Maria Bigatti

Dip. di Matematica, Università degli Studi di Genova, Via Dodecaneso 35, I-16146 Genova, Italy

Elisa Palezzato

Dip. di Matematica, Università degli Studi di Genova, Via Dodecaneso 35, I-16146 Genova, Italy

Lorenzo Robbiano

Dip. di Matematica, Università degli Studi di Genova, Via Dodecaneso 35, I-16146 Genova, Italy

Abstract

Given a zero-dimensional ideal I in a polynomial ring, many computations start by finding
univariate polynomials in I . Searching for a univariate polynomial in I is a particular case
of considering the minimal polynomial of an element in P/I . It is well known that minimal
polynomials may be computed via elimination, therefore this is considered to be a “resolved
problem”. But being the key of so many computations, it is worth investigating its meaning, its
optimization, its applications.

Key words: Minimal polynomial
1991 MSC: [2010] 13P25, 13P10, 13-04, 14Q10, 68W30, ???

Email addresses: abbott@dima.unige.it (John Abbott), bigatti@dima.unige.it (Anna Maria
Bigatti), bigatti@dima.unige.it (Elisa Palezzato), robbiano@dima.unige.it (Lorenzo Robbiano).
1 This research was partly supported by the “National Group for Algebraic and Geometric Structures,
and their Applications”(GNSAGA – INDAM)

Preprint submitted to Elsevier February 24, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Genova

https://core.ac.uk/display/154912656?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1702.07262v1

1. Introduction

In linear algebra it is frequently necessary to use non-linear objects such as mini-
mal and characteristic polynomials since they encode fundamental information about
endomorphisms of finite-dimensional vector spaces. It is well-known that if K is a field
and R is a zero-dimensional affine K-algebra, i.e. a zero-dimensional algebra of type
R = K[x1, . . . , xn]/I, then R is a finite-dimensional K-vector space (see Proposition
3.7.1 of [6]). Consequently, it not surprising that minimal and characteristic polynomials
can be successfully used to detect properties of R.

This point of view was taken systematically in the new book [7] where the particular
importance of minimal polynomials (rather greater than that of characteristic polynomi-
als) emerged quite clearly. The book also described several algorithms which use minimal
polynomials as a crucial tool. The approach taken there was a good source of inspiration
for our research, so that we decided to dig into the theory of minimal polynomials, their
uses, and their applications.

The first step was to implement algorithms for computing the minimal polynomial
of an element of R and of a K-endomorphism of R (see Algorithms 3.1, 3.2, 3.4). They
are described in Section 3, refine similar algorithms examined in [7], and have been
implemented in CoCoA (see [3] and [2]) as indeed have all other algorithms described in
this paper.

Sections 4 and 5 constitute a contribution of decisive practical significance: they ad-
dress the problem of computing minimal polynomials of elements of a Q-algebra using
a modular approach. As always with a modular approach, various obstacles have to be
overcome (see for instance the discussion contained in [4]). In particular, we deal with
the notion of reduction of an ideal modulo p, and we do it by introducing the notion of
σ-denominator of an ideal (see Definition 4.4 and Theorem 4.6), which enables us to over-
come the obstacles. Then ugly, usable, good and bad primes show up (see Definition 5.5
and 5.6). Fortunately, almost all primes are good (see Theorem 5.8 and Corollary 5.9)
which paves the way to the construction of the fundamental Algorithm 5.10.

Section 6 presents non-trivial examples of minimal polynomials computed with CoCoA,
and Section 7 shows how minimal polynomials can be successfully and efficiently used
to compute several important invariants of zero-dimensional affine K-algebras. More
specifically, in Subsection 7.1 we describe Algorithms 7.7 and 7.8 which show how to
determine whether a zero-dimensional ideal is radical, and how to compute the radical of
a zero-dimensional ideal. In Subsection 7.2 we present several algorithms which determine
whether a zero-dimensional ideal is maximal or primary. The techniques used depend
very much on the field K. The main distinction is between small finite fields and fields of
characteristic zero or big fields of positive characteristic. In particular, it is noteworthy
that in the first case Frobenius spaces (see Section 5.2 of [7]) play a fundamental role.

Finally, in Section 7.5 a series of algorithms (see 7.20, 7.23, 7.24, and 7.25) describe
how to compute the primary decomposition of a zero-dimensional affine K-algebra. They
are inspired by the content of Chapter 5 of [7], but they present many novelties.

As we said, all the algorithms described in this paper have been implemented in CoCoA.
Their merits are also illustrated by the tables of examples contained in Sections 6 and at
the end of Section 7. The experiments were performed on a MacBook Pro 2.9GHz Intel
Core i7, using our implementation in CoCoA 5.

2

2. Notation, First Definitions, and Terminology

Here we introduce the notation and terminology we shall use and the definition of
minimal polynomial which is the fundamental object studied in the paper.

Let K be a field, let P = K[x1, . . . , xn] be a polynomial ring in n indeterminates, and
let Tn denote the monoid of power products in x1, . . . , xn. Let I be a zero-dimensional
ideal in P ; this implies that the ring R = P/I is a zero-dimensional affine K-algebra,
hence it is a finite dimensional K-vector space. Then, for any f in P there is a linear
dependency mod I among the powers of f : in other words, there is a polynomial g(z) =
∑d

i=0 λiz
i ∈ K[z] which vanishes modulo I when evaluated at z = f .

Definition 2.1. Let K be a field, let P = K[x1, . . . , xn], and let I be a zero-dimensional
ideal. Given a polynomial f ∈ P , we have a K-algebra homomorphism K[z] → P/I given
by z 7→ f mod I. The monic generator of the kernel of this homomorphism is called the
minimal polynomial of f mod I (or simply “of f ” when the ideal I is obvious), and is
denoted by µf,I(z).

Remark 2.2. The particular case of µxi,I(xi), where xi is an indeterminate, is a very
important and popular object when computing: in fact µxi,I(xi) is the lowest degree
polynomial in xi belonging to I, that is I ∩ K[xi] = 〈µxi,I(xi)〉. It is well known that
this polynomial may be computed via elimination of all the other indeterminates xj

(see for example Corollary 3.4.6 of [6]). However the algorithm which derives from this
observation is usually impractically slow.

Remark 2.3. For the basic properties of Gröbner bases we refer to [6]. Let σ be a term
ordering on Tn, and let I be an ideal in the polynomial ring P . For every polynomial
f ∈ P it is known that NFσ,I(f), the σ-normal form of f with respect to I, does not
depend on which σ-Gröbner basis of I is used nor on which specific rewriting steps were
used to calculate it (see Proposition 2.4.7 of [6]). If I is clear from the context, we write
simply NFσ(f).

Definition 2.4. Following convention, for 0 6= δ ∈ N we use the symbol Zδ to denote
the localization of Z by the multiplicative set generated by δ, i.e. the subring of Q

consisting of numbers represented by fractions of type a
δk

where a ∈ Z, k ∈ N.
Observe that Zδ depends only on the radical Rad(δ), i.e. the product of all primes

dividing δ. Furthermore, if δ1, δ2 ∈ N+ then Rad(δ1) divides Rad(δ2) if and only if Zδ1

is a subring of Zδ2 .
If p is a prime number we use the symbol Fp to denote the finite field Z/pZ. Note

that some authors write Zp to mean the field Fp: this is clearly ambiguous.

3. Algorithms for Computing Minimal Polynomials

Let K be a field, let P = K[x1, . . . , xn], let I be a zero-dimensional ideal, and let f ∈ P .
A well-known method for computing µf,I(z) is by elimination. One extends P with a new
indeterminate to produce R = K[x1, . . . , xn, z], then defines the ideal J = IR+ 〈z − f〉
in R, and finally eliminates the indeterminates x1, . . . , xn. Here we give a refined version
of Algorithm 5.1.1 of [7].

3

Algorithm 3.1. (MinPolyQuotElim)

notation: P = K[x1, . . . , xn]

Input I, a zero-dimensional ideal in P , and a polynomial f ∈ P

1 create the polynomial ring R = K[x1, . . . , xn, z]

2 define the ideal J = I · R+ 〈z − f〉
3 return the monic, minimal generator of J ∩ K[z]

Output µf,I(z) ∈ K[z]

Another way to compute µf,I(z) is via multiplication endomorphisms on P/I. Let

f ∈ P then we write ϑf̄ : P/I → P/I for the endomorphism “multiplication by f̄ ”.

There is a natural isomorphism between P/I and K[ϑf̄ | f̄ ∈ P/I] associating f̄ with ϑf̄

(see Proposition 4.1.2 in [7]). The minimal polynomial of f with respect to I is the same

as the minimal polynomial of the endomorphism ϑf̄ . Thus, if the matrix A represents ϑf̄

with respect to some K-basis of P/I, we can compute the minimal polynomial of A (and

thus of ϑf̄) using the following algorithm which is a refined version of Algorithm 1.1.8

of [7].

Algorithm 3.2. (MinPolyQuotMat)

notation: P = K[x1, . . . , xn] with term ordering σ

Input I, a zero-dimensional ideal in P , and a polynomial f ∈ P

1 compute GB, a σ-Gröbner basis for I;

from GB compute QB, the corresponding monomial quotient basis of P/I

2 compute A, the matrix representing the map ϑf̄ w.r.t. QB

3 let B0 = A0 (= Id) and L = {B0}
4 Main Loop: for i = 1, 2, . . . , len(QB) do

4.1 let Bi = A · Bi−1 (hence Bi = Ai)

4.2 is there a linear dependency Bi =
∑i−1

j=0 cjBj , cj ∈ K?

yes return µf,I(z) = zi −
∑i−1

j=0
cjz

j

no append Bi to L

Output µf,I(z) ∈ K[z]

Remark 3.3. Note that in step MinPolyQuotMat-4.2 a linear dependency among the

matrices Ai is equivalent to a linear dependency among just their first columns. The

reason is that the first column contains the coefficients of f̄ i · 1 = f̄ i assuming that the

monomial 1 appears as the first element of QB.

There is a still more direct approach. It comes from considering the very definition

of minimal polynomial: we look for the first linear dependency among the powers f̄ i in

P/I. Here we give a refined version of Algorithm 5.1.2 of [7].

4

Algorithm 3.4. (MinPolyQuotDef)
notation: P = K[x1, . . . , xn] with term ordering σ

Input I, a zero-dimensional ideal in P , and a polynomial f ∈ P

1 compute GB, a σ-Gröbner basis for I;
from GB compute QB, the corresponding monomial quotient basis of P/I

2 let f = NFσ,I(f)

3 let r0 = f0 (= 1) and L = {r0}
4 Main Loop: for i = 1, 2, . . . , len(QB) do

4.1 compute ri = NFσ,I(f · ri−1); consequently ri = NFσ,I(f
i)

4.2 is there a linear dependency ri =
∑i−1

j=0 cjrj , cj ∈ K?

yes return µf,I(z) = zi −
∑i−1

j=0
cjz

j

no append ri to L

Output µf,I(z) ∈ K[z]

Remark 3.5. Notice that MinPolyQuotMat and MinPolyQuotDef essentially do the
same computation: the first using a matrix (dense) representation, and the second a
polynomial (sparse) representation.

Remark 3.6. These two algorithms, MinPolyQuotMat and MinPolyQuotDef, are indeed
quite simple and natural, but we want to emphasize that a careful implementation is
essential for making them efficient. The reward is performance which is dramatically
better than the well known elimination approach (see the timings in Section 6.1).

There are two crucial steps for achieving an efficient implementation. The first is
when computing the powers of Ai (in step MinPolyQuotMat-4.1) and NFσ,I(f

i) (in
step MinPolyQuotDef-4.1): the incremental approach we give, using the last computed
value, is very important.

The second is the search for a linear dependency (in steps MinPolyQuotMat-4.2 and
MinPolyQuotDef-4.2). We implemented it creating a C++ object called LinDepMill.
This object accepts vectors one at a time, and says whether the last vector it was given is
linearly dependent on the earlier vectors; if so, then it makes available the representation
of the last vector as a linear combination of the earlier vectors. Internally LinDepMill

simply builds up and stores a row-reduced matrix and the linear relations as new vectors
are supplied.

4. Reductions of Ideals modulo p

The topic of Section 5 is to show how to compute the minimal polynomial of an
element of a zero-dimensional affine Q-algebra using a modular approach. In this section
we describe the necessary tools to achieve such goal.

Given an ideal I in Q[x1, . . . , xn] what does it mean to reduce I modulo a prime
number p ? Since there is no homomorphism from Q to Fp, there is no immediate answer
to this question. In this section we let P = Q[x1, . . . , xn], investigate the problem, and
provide a useful answer. We shall also assume that P comes with a term ordering σ.

We start with the following lemma (recall the notation in Remark 2.4).

5

Lemma 4.1. Let δ ∈ N+, let I be a non-zero ideal in P , let G be its reduced σ-Gröbner
basis, and let f ∈ P . Assume that f and G have all coefficients in Zδ.
(a) Every intermediate step of rewriting of f via G has all coefficients in Zδ.
(b) The polynomial NFσ(f) has all coefficients in Zδ.

Proof. If f = 0, the result is trivially true. So we now assume f 6= 0. If f can be reduced
by G then there exists τ ∈ Supp(f) such that τ = t · LTσ(g) for some g ∈ G and some
power-product t ∈ Tn. Let c be the coefficient of τ in f ; by hypothesis c ∈ Zδ. Then the
first step of rewriting gives f1 = f − c · t · g which has all coefficients in Zδ. We can now
repeat the same argument for rewriting f1, and so on. Using Remark 2.3, we deduce that
the final result, when no further such rewriting is possible, is the normal form of f . It is
reached after a finite number of steps. These considerations prove both claims. ✷

The following example illustrates the lemma.

Example 4.2. Let P = Q[x, y], let I = 〈f1, f2〉 where f1 = 3x3 − x2 + 1, f2 = x2 − y,
and let σ = DegRevLex. The reduced σ-Gröbner basis of I is G = {g1, g2, g3} where

g1 = y2 + 1
3x − 1

9y + 1
9 , g2 = xy − 1

3y + 1
3 , g3 = x2 − y. We let f = y3 so that

f, g1, g2, g3 ∈ Z3[x, y]. We have NFσ(f) = − 1
27x− 17

81y +
8
81 , and it is easy to check that

the explicit coefficients in the equality

f = NFσ(f) + (xy + 1
9x+ 1

3y − 8
27) g2 − (y2 + 1

9y) g3

are the coefficients of a sequence of rewriting steps from f to NFσ(f). As shown by the
lemma, they all lie in Z3.

The following easy example shows that the number δ introduced in the above lemma
depends on σ.

Example 4.3. Let P = Q[x, y, z], let I = 〈f〉 where f = 2x + 3y + 5z. Depending on
the term ordering chosen, the number δ can be 2, 3 or 5.

Definition 4.4. Let δ be a positive integer, and p be a prime number not dividing δ.
We write πp to denote both the canonical homomorphism Zδ −→ Fp and its natural “co-
efficientwise” extensions to Zδ[x1, . . . , xn] −→ Fp[x1, . . . , xn]; we call them all reduction
homomorphisms modulo p.

Now we need more definitions.

Definition 4.5. Let P = Q[x1, . . . , xn].
(a) Given a polynomial f ∈ P , we define the denominator of f , denoted by den(f),

to be 1 if f = 0, and otherwise the least common multiple of the denominators of
the coefficients of f .

(b) Given a non-zero ideal I in P , with reduced σ-Gröbner basis G, we define the
σ-denominator of I, denoted by denσ(I), to be the least common multiple of
{den(g) | g ∈ G}.

The following theorem illustrates the importance of the σ-denominator of an ideal.

6

Theorem 4.6. (Reduction modulo p of Gröbner Bases)

Let I be a non-zero ideal in Q[x1, . . . , xn] with reduced σ-Gröbner basis G. Let p be a

prime number which does not divide denσ(I).

(a) The set πp(G) is the reduced σ-Gröbner basis of the ideal 〈πp(G)〉.
(b) The set of the residue classes of the elements in Tn\LTσ(I) is an Fp-basis of the

quotient ring Fp[x1, . . . , xn]/〈πp(G)〉.
(c) For every polynomial f ∈ Q[x1, . . . , xn] such that p 6 | den(f) we have the equality

πp(NFσ,I(f)) = NFσ,〈πp(G)〉(πp(f)).

Proof. We start by proving claim (a). Every polynomial g in G is monic, so πp(g) is monic

and LTσ(πp(g)) = LTσ(g). Next we show that πp(G) is a reduced σ-Gröbner basis. So

assume G = {g1, . . . , gs}, let 1 ≤ i < j ≤ s and let f0 = tjgi−tigj be the S-polynomial of

(gi, gj). It rewrites to zero via a finite number of steps of rewriting: fk+1 = fk−ck · tk ·gik
for k = 1, 2, . . . , r − 1. Let δ = denσ(I), then f0 and every gi have all coefficients in Zδ.

Lemma 4.1 implies that each ck is in Zδ and that all coefficients of each fk are in Zδ.

We now show that the S-polynomial of the p-reduced pair (πp(gi), πp(gj)) rewrites to

zero via the set πp(G). First we see that πp(f0) = tjπp(gi) − tiπp(gj). Now applying πp

to each rewriting step we get πp(fk+1) = πp(fk) − πp(ck) · tk · πp(gik). If πp(ck)6=0,

this is a rewriting step for πp(fk), otherwise “nothing happens” and we simply have

πp(fk+1) = πp(fk).

This shows that all the S-polynomials of πp(G) rewrite to zero, and hence that πp(G)

is a σ-Gröbner basis. Finally we observe that Supp(πp(gi)) ⊆ Supp(gi) for all i = 1, . . . , s,

hence πp(G) is actually the reduced σ-Gröbner basis of the ideal 〈πp(G)〉.
As already observed, we have LTσ(gi) = LTσ(πp(gi)) for all i = 1, . . . , s, hence

claim (b) follows from (a).

For part (c) we let δ = LCM(den(f), denσ(I)). We use the same method as in the proof

of part (a) but starting with f0 = f . Once again all rewriting steps have coefficients in Zδ,

and applying πp to them we get either a rewriting step for πp(f) or possibly a “nothing

happens” step. Therefore the image of the final remainder πp(NF(f)) is the normal form

of πp(f). ✷

The following example illustrates some claims of the theorem.

Example 4.7. We continue the discussion of Example 4.2. We choose p = 2 and get

〈y2 + x + y + 1, xy + y + 1, x2 + y〉 as the (p, σ)-reduction of I. From Theorem 4.6 we

know that {y2+x+ y+1, xy+ y+1, x2+ y} is the reduced σ-Gröbner basis of 〈πp(G)〉.

Theorem 4.6, in particular claim (c), motivates the following definition.

Definition 4.8. If p is a prime number which does not divide denσ(I), then the ideal

generated by the πp(G) = {πp(g1), . . . , πp(gs)} in the polynomial ring Fp[x1, . . . , xn] is

called the (p, σ)-reduction of I, and will be denoted by I(p,σ). Observe that if I is

zero-dimensional so is I(p,σ).

The following example shows the necessity of considering the reduced Gröbner basis

in Theorem 4.6.

7

Example 4.9. Let P = Q[x], let a be the product of many primes, for instance the
product of the first 106 prime numbers, and let I = 〈ax, x2〉. The set S = {ax, x2} is a
Gröbner basis of I, while the set G = {x} is the reduced Gröbner basis of I. Reducing S
modulo p where p | a produces the ideal 〈x2〉, while reducing G produces the ideal 〈x〉.

More investigation about (p, σ)-reductions is done in [5].

5. A Modular Approach to the Computation of Minimal Polynomials

The topic of this section is to show how to compute the minimal polynomial of an
element of a zero-dimensional affine Q-algebra using a modular approach. Modular reduc-
tion is a very well-known technique, however there is no universal method for addressing
the specific problems of bad reduction arising in every application. Our problem is no
exception as we shall explain shortly. For more details on this topic we recommend read-
ing Section 6 of [4].

For this entire section the ideal I will be zero-dimensional, and since in Theorem 4.6.(b)
we have seen that the set of power-products Tn\LTσ(I) can be mapped both to a basis of
Q[x1, . . . , xn]/I and also to a basis of Fp[x1, . . . , xn]/I(p,σ), we are motivated to provide
the following definition.

Definition 5.1. Let P = Q[x1, . . . , xn] with term ordering σ. Let I be a zero-dimensional
ideal in P . Let d = dimK(P/I) and let B = (1, t2, . . . , td) = Tn\LTσ(I) with elements in
increasing σ-order. So the natural image of B in P/I is a Q-basis of monomials for P/I.
We denote the natural image of B in Q[x1, . . . , xn] by BQ and the natural image of B in
Fp[x1, . . . , xn] by Bp.

Given f ∈ P we denote by MBQ
(f, r) the d × (r + 1) matrix whose j-th column (for

j = 1, . . . , r + 1) contains the coordinates of NFσ,I(f
j−1) in the basis BQ. Similarly, we

denote by MBp
(πp(f), r) the d×(r+1) matrix whose j-th column contains the coordinates

of NFσ,I(p,σ)
(πp(f

j−1)) in the basis Bp. We observe that these matrices depend on both σ
and the corresponding ideals.

The following proposition contains useful information about reduction of matrices.

Proposition 5.2. Let f ∈ P be a polynomial and let δ = den(f)· denσ(I).
(a) For every r, all the entries of the matrix MBQ

(f, r) are in Zδ.
(b) For every r, we have πp(MBQ

(f, r)) = MBp
(πp(f), r) for any prime p 6 | δ.

Proof. Claim (a) follows from Lemma 4.1 applied to f j , and claim (b) follows directly
from Theorem 4.6.(c). ✷

5.1. Usable and ugly primes

We start this subsection with an elementary result which is placed here for the sake
of completeness.

Lemma 5.3. Let f, g ∈ Q[z] be monic polynomials such that g divides f , and let δ ∈ N+.
If f has coefficients in Zδ then also g has coefficients in Zδ.

8

Proof. By hypothesis we have a factorization f = gh in Q[z]. Set Df = den(f), Dg =
den(g) and Dh = den(h); so each of Dff , Dgg and Dhh is a primitive polynomial
with integer coefficients. By Gauss’s Lemma (Dgg)(Dhh) = DgDhf is a primitive poly-
nomial with integer coefficients. Hence Df = ±DgDh; in particular Dg|Df , and con-
sequently Rad(Dg)|Rad(Df). Since f ∈ Zδ[z] we have Rad(Df)|Rad(δ), hence also
Rad(Dg)|Rad(δ) which implies that g ∈ Zδ[z]. ✷

We now give a proposition which tells us which primes could appear in the denominator
of a minimal polynomial.

Proposition 5.4. Let f ∈ P , and let δ = den(f) ·denσ(I). Then the minimal polynomial
µf,I(z) has all coefficients in Zδ.

Proof. Let ϑf̄ be the Q-endomorphism of P/I given by multiplication by f̄ . It is known
that µf,I(z) = µϑf̄

(z) (see Remark 4.1.3.(a) of [7]). Let χϑf̄
(z) be the characteristic

polynomial of the endomorphism ϑf̄ ; by definition χϑf̄
(z) = det(z id − ϑf̄). Next, let

d = dimQ(P/I), let B = (1, t2, . . . , td) = Tn \ LTσ(I), let Id be the identity matrix of
size d, and let MB(ϑf̄) be the matrix which represents ϑf̄ with respect to the basis B.
Then we have det(z id − ϑf̄) = det(z Id − MB(ϑf̄)). The entries of MB(ϑf̄) are the
coefficients of the representations of NFσ(tif) in the basis B for all ti ∈ B. They are
in Zδ by Lemma 4.1. So we have proved that χϑf̄

(z) ∈ Zδ[z]. From the Cayley-Hamilton
Theorem we deduce that µϑf̄

(z) is a divisor of χϑf̄
(z). It follows from Lemma 5.3 that

also µϑf̄
(z) ∈ Zδ[z]. ✷

The conclusion of the proposition above motivates the following definition.

Definition 5.5. Let f ∈ P be a polynomial, and let p be a prime number. Then p is
called a usable prime for f with respect to (I, σ) if it does not divide den(f)·denσ(I).
If I and σ are clear from the context, we say simply a usable prime. A prime which is
not usable is called ugly. It follows from the definition that, for a given input (f, I, σ),
there are only finitely many ugly primes, and it is easy to recognize and avoid them.

5.2. Good and bad primes

In this subsection we refine the definition of usable.

Definition 5.6. Let p be a usable prime for f with respect to (I, σ); consequently,
by Proposition 5.4, πp(µf,I(z)) is well-defined. We say that p is a good prime for f if
µπp(f),I(p,σ)

(z) = πp(µf,I(z)), in other words if the minimal polynomial of the p-reduction
of f modulo the (p, σ)-reduction of I equals the p-reduction of the minimal polynomial
of f modulo I over the rationals. Otherwise, it is called bad.

The following simple example illustrates how a prime can be bad even if it is usable.

Example 5.7. Let P = Q[x, y], let I = 〈x2, y2〉, and let f = x + y. The set {x2, y2}
is a reduced Gröbner basis of I for every ordering, B = (1, x, y, xy) is a quotient basis
of Q[x, y]/I regardless of ordering. Moreover we have den(f) · denσ(I) = 1 regardless of

ordering, and thus every prime number is usable. Over Q we have MB(f, 3) =
(1 0 0 0

0 1 0 0
0 1 0 0
0 0 2 0

)

.

9

Whence we deduce that µf,I(z) = z3. If we change the base field to the finite field F2,

we get MB(π2(f), 3) =
(1 0 0 0

0 1 0 0
0 1 0 0
0 0 0 0

)

which shows that µf,I = z2. It is easy to see that 2 is

the only bad prime in this case.

Next we show that there are only finitely many bad primes.

Theorem 5.8. (Finitely many bad primes)
Let P = Q[x1, . . . , xn], let I be a zero-dimensional ideal in P , let σ be a term ordering
on Tn, let f ∈ P , and p be a usable prime.
(a) Then πp(µf,I(z)) is a multiple of µπp(f),I(p,σ)

(z).
(b) There are only finitely many bad primes.
(c) The prime p is good if and only if deg(µπp(f),I(p,σ)

(z)) = deg(µf,I(z)).

Proof. To simplify the presentation we let µ(z) = µf,I(z) and µp(z) = µπp(f),I(p,σ)
(z).

Let µ(z)=zr+cr−1z
r−1+ · · · c0, and set δ = den(f) ·denσ(I). By Proposition 5.4 we have

µ(z) ∈ Zδ[z]. By the definition of minimal polynomial we have f r + cr−1f
r−1 + · · · c0 ∈ I.

Therefore we have an equality f r + cr−1f
r−1 + · · · c0 =

∑

higi for certain hi ∈ P where
{g1, . . . , gs} is the reduced σ-Gröbner basis of the ideal I. By Lemma 4.1 we know that
each hi ∈ Zδ. Since p is a usable prime, it follows from Proposition 5.4 that we can
apply πp to get

πp(f)
r + πp(cr−1)πp(f)

r−1 + · · ·+ πp(c0) =
s

∑

i=1

πp(hi)πp(gi)

which shows that πp(µ(f)) ∈ I(p,σ), and hence that πp(µ(z)) it is a multiple of µp(z). So
claim (a) is proved.

To prove (b) and (c) it suffices to show that only a finite number of usable primes are
such that πp(µ(z)) is a non-trivial multiple of µp(z), and we argue as follows. Since r is
the degree of µ(z) we deduce that the matrix MBQ

(f, r−1) has rank r, hence there exists
an r×r-submatrix of MBQ

(f, r−1) with non-zero determinant; moreover this determinant
lies in Zδ, so can be written as a

δs
for some non-zero a ∈ Z and some s ∈ N. For any prime p

not dividing aδ, the matrix πp(MBQ
(f, r − 1)) has maximal rank: by Proposition 5.2 we

have πp(MBQ
(f, r− 1)) = MBp

(πp(f), r − 1). Hence for these primes the degree of µp(z)
is r, and the conclusion follows. ✷

We do not have an absolute means of detecting bad primes but, for two different
usable primes p1 and p2 we can compute the minimal polynomials of πpi

(f) with respect
to I(pi,σ), and by comparing degrees we can sometimes detect that one prime is surely
bad, though without being certain that the other is good.

Corollary 5.9. (Detecting some bad primes)
Let p1, p2 be two usable primes, and let µ1 = µπp1(f),I(p1,σ)

(z) and µ2 = µπp2 (f),I(p2,σ)
(z)

be the minimal polynomials of the corresponding modular reductions.
(a) If deg(µ1) < deg(µ2) then p1 is a bad prime.
(b) If deg(µ1) = dimK(P/I) then p1 is a good prime.

Proof. Claim (a) follows from parts (a) and (c) of Theorem 5.8. Claim (b) follows from
Theorem 5.8.(c) since dimK(P/I) is an upper bound for the degrees of the minimal
polynomials. ✷

10

Combining these results we get the following algorithm.

Algorithm 5.10. (MinPolyQuotModular)
notation: P = Q[x1, . . . , xn] with term ordering σ

Input I, a zero-dimensional ideal in P , and a polynomial f ∈ P

1 compute the σ-reduced Gröbner basis of I

2 choose a usable prime p — see Definition 5.5.

3 compute fp = πp(f) and I(p,σ).

4 compute µp = µfp,I(p,σ)
∈ Fp[z], the minimal polynomial of fp.

5 let µcrt = µp and pcrt = p.

6 Main Loop:

6.1 choose a new usable prime p.
6.2 compute the minimal polynomial µp ∈ Fp[z].
6.3 if deg(µcrt) 6= deg(µp) then

6.3.1 if deg(µcrt) < deg(µp) then let µcrt = µp and pcrt = p.
6.3.2 continue with next iteration of Main Loop

6.4 let p̃crt = p ·pcrt, and let µ̃crt be the polynomial whose coefficients are obtained
by the Chinese Remainder Theorem from the coefficients of µcrt and µp.

6.5 compute the polynomial µcalc ∈ Q[z] whose coefficients are obtained as the
fault-tolerant rational reconstructions of the coefficients of µ̃crt modulo p̃crt.

6.6 were all coefficients “reliably” reconstructed?
yes if µcalc 6= 0 and µcalc(g) ∈ I return µcalc

no let µcrt = µ̃crt and pcrt = p̃crt.

Output µcalc ∈ Q[z], the minimal polynomial µf,I .

Proof. The correctness of this algorithm follows from Theorem 5.8 and the termination
from Corollary 5.9. ✷

Remark 5.11. Termination of the Main Loop depends on the test µcalc(g) ∈ I in step
MinPolyQuotModular-6.6(yes); however evaluating µcalc(g) modulo I is typically com-
putationally expensive compared to the cost of a single iteration. For this reason, in step
MinPolyQuotModular-6.5 we use the fault-tolerant rational reconstruction implemented
in CoCoA (see [1]) which gives also an indication whether the reconstructed rational is
“reliable” (i.e. heuristically probably correct). This is a computationally cheap criterion
which surely indicates “reliable” almost as soon as p̃crt becomes large enough to allow
correct reconstruction, while also almost certainly indicating “not reliable” before then.

Once µcrt has the correct degree, the degree check in step MinPolyQuotModular-6.3
ensures that only results from good primes are used; in this situation our fault-tolerant
reconstruction is equivalent to Monagan’s MQRR [8].

Remark 5.12. A disadvantage of Algorithm 5.10 is that it needs a Gröbner basis over Q,
requiring a potentially costly computation. We can make a faster heuristic variant of the
algorithm by working directly with the given generators for I. Let G′ be the set of given
generators. We shall skip all “ugly” primes which divide den(G′).

In steps MinPolyQuotModular-3 and 4 we use the ideal 〈πp(G
′)〉 instead of I(p,σ). In

the Main Loop we skip step MinPolyQuotModular-6.3, since there are no guarantees on

11

the degrees of bad µp. In other words, we keep all the µp but when using the chinese
remainder theorem to combine, we take only those polynomials having the same degree
as the current µp. In step MinPolyQuotModular-6.6(yes) we return directly µcalc skipping
the check that µcalc(g) is in I (since we want to avoid computing its Gröbner basis).

This heuristic algorithm may sometimes give a wrong answer: e.g. if given as input
the generators in Example 4.9 — in this instance the answer would be obviously wrong
since it is reducible.

There are only finitely many primes giving a bad µp. We can see this by picking some
term ordering σ, and tracing through the steps to compute the reduced σ-Gröbner basis
from the generators G′. Any prime which divides a denominator or a leading coefficient
at any point in the computation may give a bad µp; to these we add the (finitely many)
bad primes for that reduced Gröbner basis. All remaining primes will give a good µp.

6. Timings

In this section we illustrate the merits of the algorithms explained in the paper. Each
example is described by introducing a polynomial ring P , an ideal I in P , and a polyno-
mial f in P which is denoted either by ℓ if it is linear or by f if it is not linear. The task
is to compute µf,I(z), the minimal polynomial of f̄ in P/I.

6.1. Computing Minimal Polynomials in Finite Characteristic

In this subsection we present some timings for the computation of minimal polynomials
of elements in zero-dimensional affine Fp-algebras.

The column Example gives the reference number to the examples listed below. The
column GB gives the times to compute the Gröbner basis (in seconds); the columns Def,
Mat, Elim give the times (in seconds) of the computation of the algorithms 3.4, 3.2,
and 3.1 respectively. The column deg gives the degree of the answer, as an indication of
the complexity of the output.

Example GB MinPoly

Def Mat Elim deg

6.1 f1 0.38 7.00 9.28 50.54 500

6.1 f2 0.38 21.50 13.75 ∞ 500

6.2 0.00 11.73 23.82 ∞ 720

6.3 0.17 9.34 14.15 ∞ 590

6.4 0.01 3.47 6.28 ∞ 462

6.5 0.00 18.00 42.31 ∞ 880

Example 6.1. The following is an example in characteristic 101.
Let P = F101[x, y, z, t]. Let g1 = xyzt+ 83y3 + 73x2 − 85z2 − 437t, g2 = y3zt+ z − t,

g3 = t4 + zt2 − 324z3 + 94x2 + 76y, g4 = x11z + 26t3 + 625y.
Let I = 〈g1, g2, g3, g4〉, f1 = x5 − 3y4 + 5z − t and f2 = x16 + 12y20 − z30.

12

Example 6.2. This is an example which uses the defining ideal of the splitting algebra
of a polynomial of degree 6.

We let P = F101[a1, a2, a3, a4, a5, a6], and for j = 1, . . . , 6 let sj be the elemen-
tary symmetric polynomial in the indeterminates a1, a2, a3, a4, a5, a6. Then the ideal
I = 〈s1, s2, s3, s4, s5 − 7, s6 − 1〉 is the defining ideal of the splitting algebra of the
polynomial x6 − 7x+ 1. We let ℓ = a1 + 2a2 + 3a3 + 4a4 + 5a5 + 6a6

Example 6.3. This is an example in characteristic p = 32003.
Let P = Fp[x, y, z, t], let g1 = xyzt5 + x3 + 73y2 − z2 − 2t, g2 = x6zt + z − t,

g3 = zt2 + 7xy2 − 34z3 − 2t4, g4 = y4z + x + 26t3. Let I = 〈g1, g2, g3, g4〉 and
f = xt2 + 5z.

Example 6.4. This is an example in characteristic p = 101.
Let P = Fp[x, y, z], let f1 = (x7 − y− 3z)2, f2 = xy5 − 7z2 − 2, f3 = yz6 − x− z +14.

Then let J1 = 〈f1, f2, f3〉, let J2 = 〈x, y, z〉2, let I = J1 ∩ J2, and let f = x2 − 3xy − z.

Example 6.5. This is an example in characteristic p = 23.
Let P = Fp[x, y, z], let g1 = x16 + 8x15 − 6x14 − 8x13 + 4x12 − 4x11 + 5x10 + 8x9 +

5x8 − 4x7 + 5x6 + 2x5 − 7x4 + 4x3 + 10x2 + 3x+ 8, g2 = y5 − 7y4 + 2y3 + 11y2 − y+ 5,
g3 = z11 + 9z10 − 9z9 + 7z8 − 8z7 − 4z6 + 9z5 + z4 − 5z3 + 7z2 + z + 10.

Let I = 〈g1, g2, g3〉 and ℓ = 3x− 2y + 5z.

6.2. Computing Minimal Polynomials in Characteristic Zero

In this subsection we present some timings for the computation of minimal polynomials
of elements in zero-dimensional affine Q-algebras.

The column Example gives the reference number to the examples listed below. The
column GB gives the times to compute the Gröbner basis (in seconds); the columns
(MinPoly) Q, and Modular give respectively the times (in seconds) of the computation
of the MinPolyQuotDef over Q, and MinPolyQuotModular (using MinPolyQuotDef for
the modular computations). The columns (#p), coeff, and deg give an indication of the
complexity of the output: the first is the number of primes used to reconstruct the answer,
the second expresses the maximum magnitude of the numerators and denominators of
the coefficients, and the third is the degree.

Remark 6.6. CoCoA also offers RingTwinFloat arithmetic, an implementation of heuris-
tically guaranteed floating point numbers (see [1]). We have also tried our algorithms using
this representation of Q, but the modular approach gave us better timings.

Example 6.7. This is an example with no particular structure.
Let P = Q[x, y, z, t], let g1 = xyzt + 83x3 + 73y2 − 85z2 − 437t, g2 = x3zt + z − t,

g3 = zt2+76x+94y2−324z3−255t4, g4 = y2z+625x+26t3, and let I = 〈g1, g2, g3, g4〉.
Let f = t2 + 5z.

The following two examples use ideals which are complete intersections; their reduced
Gröbner basis are straightforward to compute.

13

Example GB MinPoly

Q Modular (#p) coeff deg

6.7 0.15 ∞ 26.86 130 10
389, 10188 116

6.8 ℓ1 0.00 47.86 1.29 24 10
93, 100 107

6.8 ℓ2 0.00 226.34 3.77 50 10
210, 100 108

6.9 0.00 ∞ 12.29 77 10
330, 100 144

6.10 0.00 ∞ 1.43 17 10
64, 100 120

6.11 0.00 ∞ 1513.09 118 10
503, 100 720

6.12 1.50 134.44 5.92 59 10
246, 101 87

6.13 0.00 233.24 2.41 9 10
29, 104 230

6.14 0.42 ∞ 14.76 60 10
234, 1019 149

6.15 0.33 5.33 0.85 31 10
108, 1012 55

Example 6.8. Let P = Q[x, y, z, t], let g1 = x4+83x3+73y2−85z2−437t, g2 = y3−x,
g3 = z3 + z − t, g4 = t3 − 324z2 + 94y2 + 76x. Let I = 〈g1, g2, g3, g4〉 and ℓ1 = x,
ℓ2 = 2x+ 3y − 4z + 12t.

Example 6.9. Let P = Q[x, y, z, t], let g1 = x4 + 83x3 + 73y2 − 85z2 − 437t, g2 =
y3 − z − t, g3 = z3 + z − t, g4 = t4 − 12z2 + 77y2 + 15x. Let I = 〈g1, g2, g3, g4〉 and
ℓ = x− 3y − 12z + 62t.

Example 6.10. This is an example which uses the defining ideal of the splitting algebra
of a polynomial of degree 5.

We let P = Q[a1, a2, a3, a4, a5], and for j = 1, . . . , 5 let sj be the elementary sym-
metric polynomial in the indeterminates a1, a2, a3, a4, a5. Then we introduce the ideal
I = 〈s1, s2, s3, s4 + 1, s5 − 2〉 which is the defining ideal of the splitting algebra of the
polynomial x5 − x− 2. We let ℓ = a1 + 2a2 + 3a3 + 4a4 + 5a5.

Example 6.11. This is an example which uses the defining ideal of the splitting al-
gebra of a polynomial of degree 6 (see also 6.2) We let P = Q[a1, a2, a3, a4, a5, a6],
and for j = 1, . . . , 6 let sj be the elementary symmetric polynomial in the indeterminates
a1, a2, a3, a4, a5, a6. The ideal I = 〈s1, s2, s3, s4, s5−7, s6−1〉 is the defining ideal of the
splitting algebra of the polynomial x6−7x+1. We let ℓ = a1+2a2+3a3+4a4+5a5+6a6.

Example 6.12. We take as I the vanishing ideal of 87 random points with integer
coordinates x, y, z (each with absolute value < 10000). Then we let ℓ = 44x+ 3y − z.

Example 6.13. In this example we let g1 = x7 − y − 3z, g2 = xy5 − 5057z2 − 2,
g3 = yz6 − x− z + 14, and I = 〈g1, g2, g3〉. Finally we let ℓ = x.

Example 6.14. In this example we let f1 = x5 − y − 3z, f2 = xy5 − 5057z2 − 2,
f3 = yz5−x−z+14 and J1 = 〈f1, f2, f3〉. Then we let g1 = x2−y−3z, g2 = xy−5z2−12,
g3 = z3−x−y+4 and J2 = 〈g1, g2, g3〉. Then we let I = J1∩J2. Generators of I have very
large coefficients, so we do not give them explicitly here. Finally we let ℓ = 7x− 5y+2z.

14

Example 6.15. This is a simplified version of Example 6.14, in the sense that J2 and ℓ
are the same. Instead we let g1 = x3−y−3z, g2 = xy3−5057z2−2, g3 = yz4−x−z+14
and let J1 = 〈g1, g2, g3〉.

7. Uses of Minimal Polynomials

In this section we let K be a field of characteristic zero or a perfect field of characteristic
p > 0 having effective p-th roots, and let I be a zero-dimensional ideal in the polynomial
ring P = K[x1, . . . , xn]. We start the section by recalling a useful definition.

Definition 7.1. Let f ∈ P be a non-zero polynomial with positive degree. We define
the square-free part, sqfree(f), to be the product of all distinct irreducible factors of f
(which are defined up to a constant factor). Equivalently, sqfree(f) is a generator of the
radical of the principal ideal generated by f . If f is univariate, and the coefficient field has
characteristic zero then sqfree(g) is g

GCD(g,g′) up to a constant factor; if the characteristic

is positive then we can use the algorithm described in Proposition 3.7.12 of [6].

In the next proposition we collect important results which will be used throughout
the entire section.

Proposition 7.2. Let K be a perfect field, let P = K[x1, . . . , xn], let I be a zero-
dimensional ideal in P , and let R = P/I.
(a) Let K be infinite.

(a1) If I is radical, the generic linear form ℓ ∈ P is such that we have the equality
deg(µℓ,I(z)) = dimK(P/I).

(a2) If I is maximal, the generic linear form ℓ ∈ P is such that ℓ̄ is a primitive
element of the field P/I.

(b) Let K be finite. If I is maximal, there exists f ∈ P such that f̄ is a primitive
element of the field P/I.

Proof. To prove claim (a) we observe that (a2) is a special case of (a1), hence we prove
(a1). Since I is radical and K is infinite, the Shape Lemma (see Theorem 3.7.25 of [6])
guarantees the existence of a linear change of coordinates which brings I into normal xn-
position, hence after the transformation the last indeterminate has squarefree minimal
polynomial of degree dimK(P/I). Equivalently, the generic linear change of coordinates
yields a situation where the minimal polynomial of the last indeterminate is squarefree
and has degree dimK(P/I). If I is maximal then this polynomial is necessarily irreducible.
This is exactly what Algorithm 7.13 tries to achieve via randomization in step IsMaximal-
5 (the Second Loop).

The proof of claim (b) follows from the well-known fact that the multiplicative group of
a finite field L = P/I is cyclic, so that if a is a generator of L\{0} we have L = K[a] which
implies that deg(µa,I(z)) = dimK(P/I). We then choose f ∈ P such that f̄ = a. ✷

The following example shows that if K is finite, and I is radical but not maximal then
it is possible that no element f ∈ P exists such that deg(µℓ,I(z)) = dimK(P/I).

Example 7.3. Let K = F2, let P = K[x, y], I = 〈x2 + y, y2 + y〉. Then we have
I = M1 ∩ M2 ∩ M3 ∩ M4 where M1 = 〈x, y〉, M2 = 〈x, y + 1〉, M3 = 〈x + 1, y〉,

15

M4 = 〈x+1, y+1〉. Whatever element f ∈ P we choose we have deg(µf,I(z)) ≤ 2 while
dimK(P/I) = 4.

7.1. IsRadical and Radical for a Zero-Dimensional Ideal

The goal of this subsection is to describe algorithms for checking if I is radical, and
for computing the radical of I. We need the following results.

Proposition 7.4. Let K be a perfect field, let P = K[x1, . . . , xn], let I be a zero-
dimensional ideal in P , let fi(xi) be such that I ∩K[xi] = 〈fi(xi)〉 for i = 1, . . . , n, and
let gi = sqfree(fi(xi)). Then we have the equality

√
I = I + 〈g1, . . . , gn〉.

Proof. By Proposition 3.7.1 of [6], the polynomials fi(xi) are non-zero. Since the ideal
J = I + 〈g1, . . . , gn〉 satisfies I ⊆ J ⊆

√
I, we have

√
J =

√
I. By Proposition 3.7.9

of [6] we have GCD(gi, g
′
i) = 1 for all i = 1, . . . , n, hence the conclusion follows from

Seidenberg’s Lemma (see Proposition 3.7.15 of [6]). ✷

Since I ∩K[xi] = 〈µxi
(xi)〉, the above proposition can be rewritten as follows.

Corollary 7.5. Let K be a perfect field, let P = K[x1, . . . , xn], let I be a zero-dimen-
sional ideal in P , and let gi = sqfree(µxi

(xi)). Then we have
√
I = I + 〈g1, . . . , gn〉.

The following proposition shows that in some cases it is particularly easy to show that
an ideal is radical.

Proposition 7.6. Let K be a perfect field, let I be a zero-dimensional ideal in the
polynomial ring P = K[x1, . . . , xn], and let f ∈ P . If the polynomial µf,I(z) is squarefree
and deg(µf,I(z)) = dimK(P/I), then I is a radical ideal.

Proof. Consider the map αf : K[z]/〈µf,I(z)〉 → P/I defined by z̄ 7→ f̄ which is injective
by definition. Since dimK(K[z]/〈µf,I(z)〉) = deg(µf,I(z)) = dimK(P/I), then αf is also
surjective and hence an isomorphism. By assumption, the polynomial µf,I(z) is squarefree
and hence P/I ∼= K[z]/〈µf,I(z)〉 is a reduced K-algebra which means that I is a radical
ideal. ✷

The following algorithm determines whether a zero-dimensional ideal is radical.

Algorithm 7.7. (IsRadical0Dim)
notation: K a perfect field and P = K[x1, . . . , xn]

Input I, a zero-dimensional ideal in P

1 compute d = dimK(P/I)

2 Main Loop: for i = 1, . . . , n do

2.1 compute µ = µxi,I

2.2 if µ is not square-free then return false

2.3 if deg(µ) = d then return true

3 return true

Output true/false indicating whether I is radical or not.

16

Proof. Clearly, the algorithm ends after a finite number of steps and its correctness
follows from Corollary 7.5 and Proposition 7.6 ✷

Similarly, we can describe an algorithm which computes the radical of a zero-dimen-
sional ideal.

Algorithm 7.8. (Radical0Dim)
notation: K a perfect field and P = K[x1, . . . , xn]

Input I, a zero-dimensional ideal in P

1 let J = I and compute d = dimK(P/J)

2 Main Loop: for i = 1, . . . , n do

2.1 compute µ = µxi,J

2.2 if µ is not square-free then

2.2.1 let µ = sqfree(µ)

2.2.2 let J = J + 〈µ(xi)〉
2.2.3 compute d = dimK(P/J)

2.3 if deg(µ) = d then return J

3 return J

Output J : the radical of I

Proof. Clearly, the algorithm ends after a finite number of steps and its correctness
follows from Proposition 7.6 and Corollary 7.5. ✷

One can imagine a fast, randomized heuristic version of this algorithm: we replace the
Main Loop by the following steps: pick a random linear form ℓ, and set µ = sqfree(µℓ,J);
update J = J + 〈µ(ℓ)〉. The following example shows that picking a single random linear
form is not sufficient in some cases; in fact, in this example n linearly independent linear
forms must be used before the correct result is obtained.

Example 7.9. Let K be a field, let P = K[x1, . . . , xn] with n ≥ 2, and let the ideal
I = 〈x1, . . . , xn〉2. Now let ℓ ∈ P be any non-zero linear form. Clearly µℓ,I(z) = z2. Hence
2 = deg(µℓ,I(z)) < dim(P/I) = n+ 1, and adding 〈ℓ〉 to I does not yield 〈x1, . . . , xn〉.

7.2. IsMaximal, and IsPrimary for a Zero-Dimensional Ideal

In this subsection, we describe methods for checking if a zero-dimensional ideal is
primary or is maximal. To do this we use different strategies depending on the character-
istic of the base field. In particular, when K is a finite field with q elements we can use
a specific tool, namely a K-vector subspace of R = P/I, called the Frobenius space
of R and denoted by Frobq(R). The main property is that its dimension is exactly the
number of primary components of I. For the definition and basic properties of Frobenius
spaces we refer to Section 5.2 of [7]. For convenience, we recall the definition here.

17

Definition 7.10. Let K be a finite field with q elements and let R = P/I be a zero-

dimensional K-algebra.

(a) The map Φq : R → R defined by a 7→ aq is a K-linear endomorphism of R called

the q-Frobenius endomorphism of R.

(b) The fixed-point space of R with respect to Φq, namely the set {f ∈ R | f q−f = 0},
is called the q-Frobenius space of R.

The following proposition describes some features of minimal polynomials when the

zero-dimensional ideal I is primary or maximal.

Proposition 7.11. Let I be a zero-dimensional ideal in P = K[x1, . . . , xn].

(a) If I is primary then for any f ∈ P its minimal polynomial µf,I(z) is a power of an

irreducible polynomial.

(b) If I is maximal then for any f ∈ P its minimal polynomial µf,I(z) is irreducible.

Proof. We use the same argument as in the proof of Proposition 7.6, so that we get an

in injective K-algebra homomorphism K[z]/〈µf,I(z)〉 → P/I.

Now we prove claim (a). If I is primary then the only zero-divisors of P/I are nilpotent,

hence the same property is shared by K[z]/〈µf,I(z)〉 which implies that µf,I(z) is a power

of an irreducible element.

Analogously, if I is maximal then P/I is a field, hence K[z]/〈µf,I(z)〉 is an integral

domain which concludes the proof. ✷

We have a sort of converse of the above proposition.

Proposition 7.12. Let I be a zero-dimensional ideal in P = K[x1, . . . , xn], and let

f ∈ P be such that deg(µf,I(z)) = dim(P/I).

(a) If µf,I(z) is a power of an irreducible factor then I is a primary ideal.

(b) If µf,I(z) is irreducible then I is a maximal ideal.

Proof. As in the proof of Proposition 7.11 we have an injective K-algebra homomorphism

K[z]/〈µf,I(z)〉 → P/I. The assumption that deg(µf,I(z)) = dim(P/I) implies that this

endomorphism is actually an isomorphism. Now if K[z]/〈µf,I(z)〉 has only one maximal

ideal, the same property is shared by P/I which implies that I is a primary ideal and

claim (a) is proved. Analogously, if K[z]/〈µf,I(z)〉 is a field, then also P/I is a field which

means that I is a maximal ideal. ✷

7.3. IsMaximal

Our next goal is to check whether an ideal I in P is maximal, and the following

algorithm provides an answer. Note that is a true algorithm when K is finite, whereas

the termination is only heuristically guaranteed when K is infinite.

18

Algorithm 7.13. (IsMaximal)
notation: K a perfect field and P = K[x1, . . . , xn]

Input I, an ideal in P

1 if I is not zero-dimensional, return false

2 compute d = dimK(P/I)

3 First Loop: for i = 1, . . . , n do

3.1 compute µ = µxi,I

3.2 if µ is reducible, return false

3.3 if deg(µ) = d then return true

4 if K is finite then

4.1 compute s = dimK(Frobq(P/I))

4.2 if s = 1 return true else return false

5 (else K is infinite) Second Loop: repeat

5.1 pick a random linear form ℓ ∈ P

5.1 compute µ = µℓ,I

5.2 if µ is reducible, return false

5.3 if deg(µ) = d then return true

Output true/false indicating the maximality of I.

Proof. Let us show the correctness. In step 3.2, if µ is reducible, we conclude from
Proposition 7.11.(b). In step 3.3, since µ is irreducible, if deg(µ) = d then we conclude
from Proposition 7.12.(b). If the First Loop completes without returning an answer, all
polynomials µxi,I(xi) are irreducible and belong to I, hence I is radical by Seidenberg’s
Lemma (see [6], Proposition 3.7.15 and Corollary 3.7.16). Now we know that I is radical,
we examine the two cases below.

First we consider the case when K is finite. Then the ideal I is maximal if and only
if dimK(Frobq(P/I)) = 1 (see [7], Theorem 5.2.4.(b)). Therefore, when K is finite, steps
4.1 and 4.2 show that the algorithm is correct and terminates.

Now we consider the case when K is infinite. In step 5.2 if the minimal polynomial µ
is reducible, Proposition 7.11.(b) tells us that I is not maximal. In step 5.3 we know
that the polynomial µ is irreducible, so if deg(µ) = d, Proposition 7.12.(b) tells us that I
is maximal. We conclude that also in this case the algorithm is correct. Its termination
follows heuristically from Proposition 7.2.(a). ✷

Can we make this into a proper deterministic algorithm when K is infinite? The
following remark answers this question.

Remark 7.14. If K is infinite, we can substitute the Second Loop with a check that
in the ring P/I there are only trivial idempotents. How to do this is explained in Sec-
tion 5.1.B of [7]. Although using that method would give us a deterministic algorithm,
it is computationally very expensive.

Remark 7.15. Since the computation of the Frobenius space in step IsMaximal-4.1
might be costly, one could be tempted to first try a few random linear forms (as in the
Second Loop). However, our experiments show that computing the minimal polynomial

19

for a random linear form has a computational cost very similar to that for the Frobenius
space, while potentially furnishing less information. In summary, there is no benefit from
inserting such a “heuristic step” just before IsMaximal-4.1.

7.4. IsPrimary for a Zero-Dimensional Ideal

The goal of this subsection is to check whether a zero-dimensional ideal I in P is
primary. The structure of the following algorithm is very similar to the structure of
Algorithm 7.13. In particular, it is important to observe that also in this case it is a
true algorithm when K is finite, whereas the termination is only heuristically guaranteed
when K is infinite.

Algorithm 7.16. (IsPrimary0Dim)
notation: P = K[x1, . . . , xn]

Input I, a zero-dimensional ideal in P

1 let J = I and compute d = dimK(P/J)

2 First Loop: for i = 1 to n do

2.1 compute µ = µxi,J

2.2 factorize µ
2.3 if µ is not a power of an irreducible factor return false
2.4 if deg(µ) = d then return true
2.5 if µ is not square-free then

2.5.1 let µ = sqfree(µ)
2.5.2 let J = J + 〈µ(xi)〉
2.5.3 compute d = dimK(P/J)
2.5.4 if deg(µ) = d then return true

3 if K is finite then

3.1 compute s = dimK(Frobq(P/I))

3.2 if s = 1 return true else return false

4 (else K is infinite) Second Loop: repeat

4.1 pick a random linear form ℓ ∈ P

4.2 compute µ = µℓ,J

4.3 if µ is reducible return false

4.4 if deg(µ) = d then return true

Output true/false indicating whether I is primary or not.

Proof. Let us show the correctness. In the First Loop we work with an ideal J such
that

√
J =

√
I, because of the change we might perform in step 2.5. In particular J is

primary if and only if I is primary. Moreover, at the end of the First Loop, J =
√
I by

Seidenberg’s Lemma (see the proof of Algorithm 7.13).
In step 2.3, if µ is not a power of an irreducible, we conclude from Proposition 7.11.(a).

In step 2.4, if deg(µ) = d and µ is a power of an irreducible we conclude from Proposi-
tion 7.12.(a).

20

If the First Loop completes without returning an answer, we know that J is radical,

and now examine the two cases.

First we look at the case when K is finite. As in the case of Algorithm 7.13, steps 3.1

and 3.2 guarantee the correctness and termination.

Now we look at the case when K is infinite. Since J is radical, checking that I is

primary is equivalent to checking that J is maximal. Now, step 4 does exactly the same

thing as step 5 of Algorithm 7.13 and the proof of the correctness is the same. Finally,

the termination follows heuristically from Proposition 7.2.(a). ✷

Remark 7.17. When K is infinite, to turn this heuristically terminating algorithm into

a true algorithm we can repeat the observations contained in Remark 7.14.

Remark 7.18. When K is finite, it would suffice to do simply steps IsPrimary0Dim-3.1

and IsPrimary0Dim-3.2 and conclude. However, our experiments suggest that nonetheless

it is often faster to perform the First Loop, as it is quick and frequently determines the

result.

Let us see an example which shows that the property of being primary strongly depends

on the base field.

Example 7.19. Let K be a field, let P = K[x], let f(x) = x4 − 10 x2 + 1, and let

I = 〈f(x)〉. Now, if K = Q we know that f(x) is irreducible, hence we deduce that I

is a maximal ideal. Conversely, if K = Fp it is known that f(x) is reducible for every

prime p, and hence I is not a primary ideal.

7.5. Primary Decomposition for a Zero-Dimensional Ideal

The theoretical background used in this paper for computing primary decompositions

of zero-dimensional ideals in affine K-algebras is explained in Chapter 5 of [7]. The main

aim of this approach is to exploit the efficient algorithms for computing minimal polyno-

mials. Here we describe the algorithms implemented in CoCoA. In particular, we remark

that the algorithm for characteristic 0 (or big characteristic) and for finite characteristic

have the same structure except for the choice of a partially splitting polynomial.

First we show how the partially splitting polynomial is chosen. The function looking for

a splitting polynomial has a First Loop over the indeterminates; if no splitting polynomial

was found, it then calls the characteristic-dependent algorithm.

In particular, if the input ideal I is primary, it returns a polynomial f such that µf,I

is a power of a single irreducible factor (together with the token TotalSplit). Otherwise

it returns a polynomial f such that µf,I has at least two irreducible factors (together

with the token PartialSplit).

The “unusual” returned values in steps PDSplitting-4(yes) and PDSplittingFiniteField-

2 just emphasize that the ideal I is primary.

The three following functions reflect the implementation in CoCoA.

21

Algorithm 7.20. (PDSplitting)
notation: P = K[x1, . . . , xn]

Input I, a zero-dimensional ideal in P

1 compute d = dimK(P/I)

2 First Loop: for i = 1, . . . , n do

2.1 compute µi = µxi,I

2.2 factorize µi =
∏s

j µ
dj

ij

2.3 if deg(µi) = d then return (xi, {µ
dj

ij | j = 1, . . . , s}, TotalSplit)

2.4 if s > 1 then return (xi, {µ
dj

ij | j = 1, . . . , s}, PartialSplit)

3 if K is finite, return PDSplittingFiniteField(I)

4 is I + 〈sqfree(µi) | i = 1, . . . , n〉 maximal?

yes return (0, {z}, TotalSplit)

no return PDSplittingInfiniteField(I)

Output (f, factorization of µf,I , TotalSplit/PartialSplit)

Algorithm 7.21. (PDSplittingFiniteField)
notation: P = K[x1, . . . , xn], K a finite field

Input I, a zero-dimensional ideal in P

1 compute FrB a K-basis of Frobq(P/I) and let s = #(FrB)

2 if s = 1 then return (0, {z}, TotalSplit)

3 pick a non-constant element f of the basis FrB

4 compute µ = µf,I

5 factorize µ =
∏

µj

6 if deg(µ) = s then return (f, {µj | j = 1, . . . , s}, TotalSplit)

7 return (f, {µj | j = 1, . . . , s}, PartialSplit)

Output (f, factorization of µf,I , TotalSplit/PartialSplit)

Remark 7.22. From Theorem 5.2.4 in [7] we know that for any zero-dimensional ideal I,
f ∈ Frobq(P/I) if and only if µf,I factorizes into distinct linear factors with multiplicity 1.

Algorithm 7.23. (PDSplittingInfiniteField)
notation: P = K[x1, . . . , xn], K an infinite field

Input I, a non-primary, zero-dimensional ideal in P

1 compute d = dimK(P/I)

2 Main Loop: repeat:

2.1 pick a random linear form ℓ ∈ P ;

2.2 compute µ = µℓ,I

2.3 factorize µ =
∏s

j µ
dj

j

22

2.4 if deg(µ) = d then return (ℓ, {µ
dj

j | j = 1, . . . , s}, TotalSplit)

2.5 if s > 1 then return (ℓ, {µ
dj

j | j = 1, . . . , s}, PartialSplit)

Output (ℓ, factorization of µℓ,I , TotalSplit/PartialSplit)

Now we are ready to see how the splittings are used to compute the primary decom-
position.

Algorithm 7.24. PrimaryDecompositionCore
notation: P = K[x1, . . . , xn]

Input I, a zero-dimensional ideal in P

1 let (f, {µdj

j | j=1, . . ., s}, TotalSplit/PartialSplit) be the output of PDSplitting(I)

2 if s = 1 then return ({I}, TotalSplit)

3 else return ({I+〈µj(f)
dj〉 | j=1, . . ., s}, TotalSplit/PartialSplit)

Output ({J1, . . . , Js}, TotalSplit/PartialSplit) such that I = J1 ∩ · · · ∩ Js

Algorithm 7.25. PrimaryDecomposition0Dim
notation: P = K[x1, . . . , xn]

Input I, a zero-dimensional ideal in P

1 let ({J1, . . . , Js}, TotalSplit/PartialSplit)
be the output of PrimaryDecompositionCore(I)

2 if it is TotalSplit, return {J1, . . . , Js}

3 Main Loop: for i = 1, . . . , s do

3.1 is Ji primary?

yes Deci = {Ji}
no Deci = PrimaryDecomposition0Dim(Ji) ←− recursive call

4 return Dec1 ∪ · · · ∪ Decs

Output the primary decomposition of I

The column Example gives the reference number to the examples listed above. The
other columns give, respectively, the timings (in seconds) of the computation of the
algorithms 7.7, 7.13, 7.16, 7.8, and 7.25, and an indication of their answers.

23

Example IsRadical IsMaximal IsPrimary Radical Primary Dec.

#Comp

6.1 6.07 false 5.13 false 5.19 false 9.77 6.94 5

6.2 0.03 true 0.00 false 0.00 false 0.02 8.31 144

6.3 9.90 false 9.72 false 9.90 false 67.92 11.78 11

6.4 2.94 false 2.72 false 2.66 false 7.65 6.06 6

6.5 0.02 true 18.02 true 18.06 true 0.02 18.38 1

Example IsRadical IsMaximal IsPrimary Radical Primary Dec.

#Comp

6.7 22.44 false 6.14 false 6.23 false 159.44 13.86 2

6.8 1.68 false 1.33 false 1.33 false 1.69 2.81 2

6.9 3.94 false 3.19 false 3.15 false 4.14 6.41 2

6.10 0.01 true 4.45 true 3.90 true 0.01 4.11 1

6.12 2.72 true 1.10 false 0.95 false 2.80 45.87 87

6.13 2.54 true 2.58 true 2.52 true 2.48 2.66 1

6.14 1.46 true 1.48 false 1.49 false 1.44 8.11 2

6.15 0.17 true 0.15 false 0.16 false 0.15 0.54 2

References

[1] J. Abbott, Fault-Tolerant Modular Reconstruction of Rational Numbers,

J. Symb. Comp. 80P3, pp. 707–718.

[2] J. Abbott and A.M. Bigatti CoCoALib: a C++ library for doing Computations in Commutative

Algebra. Available at http://cocoa.dima.unige.it/cocoalib

[3] J. Abbott, A.M. Bigatti, G. Lagorio CoCoA-5: a system for doing Computations in Commutative

Algebra. Available at http://cocoa.dima.unige.it

[4] J. Abbott, A. Bigatti, L. Robbiano, Implicitization of Hypersurfaces

J. Symb. Comput. 81 (2017), pag 20–40.

[5] J. Abbott, A. Bigatti, L. Robbiano, Ideals Modulo p, In progress.

[6] M. Kreuzer and L. Robbiano, Computational Commutative Algebra 1, Springer, Heidelberg 2000
(second edition 2008).

[7] M. Kreuzer and L. Robbiano, Computational Linear and Commutative Algebra, Springer, Heidelberg
2016.

[8] M. Monagan, Maximal Quotient Rational Reconstruction: An Almost Optimal Algorithm for

Rational Reconstruction. Proc. ISSAC 2004, pp. 243–249, ACM 2004.

24

	1 Introduction
	2 Notation, First Definitions, and Terminology
	3 Algorithms for Computing Minimal Polynomials
	4 Reductions of Ideals modulo p
	5 A Modular Approach to the Computation of Minimal Polynomials
	5.1 Usable and ugly primes
	5.2 Good and bad primes

	6 Timings
	6.1 Computing Minimal Polynomials in Finite Characteristic
	6.2 Computing Minimal Polynomials in Characteristic Zero

	7 Uses of Minimal Polynomials
	7.1 IsRadical and Radical for a Zero-Dimensional Ideal
	7.2 IsMaximal, and IsPrimary for a Zero-Dimensional Ideal
	7.3 IsMaximal
	7.4 IsPrimary for a Zero-Dimensional Ideal
	7.5 Primary Decomposition for a Zero-Dimensional Ideal

	References

