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Abstract The results of a direct numerical simulation of oscillatory flow over a wavy bottom composed
of different layers of spherical particles are described. The amplitude of wavy bottom is much smaller in
scale than typical bed forms such as sand ripples. The spherical particles are packed in such a way to repro-
duce a bottom profile observed during an experiment conducted in a laboratory flow tunnel with well-
sorted coarse sand. The amplitude and period of the external forcing flow as well as the size of the particles
are set equal to the experimental values and the computed velocity field is compared with the measured
velocity profiles. The direct numerical simulation allows for the evaluation of quantities, which are difficult
to measure in a laboratory experiment (e.g., vorticity, seepage flow velocity, and hydrodynamic force acting
on sediment particles). In particular, attention is focused on the coherent vortex structures generated by
the vorticity shed by both the spherical particles and the bottom waviness. Results show that the wavy bot-
tom triggers transition to turbulence. Moreover, the forces acting on the spherical particles are computed
to investigate the mechanisms through which they are possibly mobilized by the oscillatory flow. It was
found that forces capable of mobilizing surface particles are strongly correlated with the particle position
above the mean bed elevation and the passage of coherent vortices above them.

1. Introduction

Vortex structures generated through the interactions of the flow with a natural sandy bottom may play a
key role in sediment transport processes. It is known that locally vortex structures generate high values of
shear stress on the bed; however, these structures may be small and difficult to measure in the field or labo-
ratory. High values of local bed shear stress may dislodge particles. Once a particle is dislodged, it either
rolls and slides along the bottom profile or is picked up and transported in suspension, depending on
the ratio of the fall velocity of the sediment particle to the local vertical velocity induced by the vortex
structures.

The evaluation of the limiting conditions, above which the sediment particles start to move or are carried
into suspension, is a complex problem. Indeed, to quantify the bottom erodibility, it is necessary to know
both the mechanical properties of the bottom material (e.g., grain size, grain density, grain shape, history
of deposition and erosion, and biological factors (Le Hir et al., 2007)) and the dynamics of the vortices pre-
sent close to the bottom that may induce, locally, large values of the forces acting on the sediment par-
ticles. The vortices may be generated either by flow separation around the sediments or by an intrinsic
instability of large-scale, coherent vortex-structures, which might induce a local increase of the bottom
shear stress.

To understand the basic mechanisms controlling sediment transport, the interaction of loose particles with
vortex structures has been extensively investigated (see review papers by Soldati & Marchioli, 2009, 2012).
However, there are still aspects of the phenomenon which are not well known yet, in particular when the
forcing flow is oscillatory. Indeed, the largest number of studies of flow and particle interaction are devoted
to the investigation of steady flows, since similar investigations in unsteady flows pose formidable problems
both using experimental techniques and numerical means. Moreover, almost all the previous investigations
consider particles resting or moving over a smooth and flat bottom; however, in natural environments, sedi-
ment grains make the bottom rough and generate small vortices. Finally, macroroughness elements (e.g.,
small-scale bed forms, pebbles, and protuberances produced by benthos) may generate large-scale,
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coherent vortex structures, which further enhance mixing phenomena (see the recent numerical simula-
tions of Mazzuoli et al., 2017).

An experimental investigation considering an oscillatory flow over macroroughness elements measured the
velocity within the boundary layer generated over spheres of large diameter, arranged in a hexagonal pat-
tern (Keiller & Sleath, 1976). The measurements show the existence of coherent vortex structures, which are
released by the roughness elements at flow reversal and move away from the bottom. The oscillatory flow
over a similar rough bottom (the roughness being generated by semispheres glued on a plane in a hexago-
nal pattern) was modeled using direct numerical simulations of momentum and continuity equations
(Fornarelli & Vittori, 2009). Both the experimental measurements and the numerical results show that the
time development of the velocity field close to the bottom is characterized by two maxima. The first maxi-
mum is in phase with the maximum of the free stream velocity while the second relative maximum is gen-
erated when the external flow reverses its direction and it is due to the passage of the vortices, previously
shed by the roughness elements, which move away from the bottom. Similar numerical simulations
(Mazzuoli & Vittori, 2016) were made by substituting the semispheres with spherical particles thus obtaining
a geometry more similar to that used in previous experiments (Keiller & Sleath, 1976). Two different
numerical studies (Ghodke & Apte, 2016; Mazzuoli & Vittori, 2016) both considering a similar geometry,
independently confirm the presence of vortices released by the roughness elements at flow reversal, a
phenomenon which is also observed in laboratory experiments of oscillatory flow over regular roughness
elements (Krstic & Fernando, 2001).

The number of papers describing the oscillatory flow over small-scale bed forms (ripples) is large. Moreover,
the dynamics of the vortices shed by sand ripples largely depends on the bottom profile and it becomes
quite complex even when periodic bottom forms are considered (Blondeaux & Vittori, 1991; Vittori &
Blondeaux, 1993). Vortex dynamics over bed forms are summarized in review papers (Blondeaux, 2001;
Mei & Liu, 1993) and books (Sleath, 1984; Nielsen, 1992). The vortex structures generated by bedforms such
as sand ripples tend to be large and scale with the size of the bedforms, whereas the vortices considered
here tend to scale more closely with particle size.

The present paper is focused on the direct numerical simulation of oscillatory flow over a wavy bottom
made of several layers of spherical particles. The amplitude of the wavy bottom in our experiment and sim-
ulation is much smaller than that of typical bed forms. The spherical particles are packed in such a way to
reproduce the bottom profile observed during an experiment carried out in a laboratory flow tunnel. The
computed velocity field is compared with velocity measurements obtained using a profiling acoustic Dopp-
ler velocimeter. However, the main aim of the present work is the investigation of the the dynamics of the
vortex structures which move close to the bottom and are difficult to measure or to visualize using any
experimental apparatus. The forcing flow is assumed to be oscillatory and the amplitude and the frequency
of the fluid oscillations were chosen to reproduce the measured free stream velocity in the laboratory. Con-
sequently, the use of direct numerical simulations allowed for the evaluation of quantities that are very diffi-
cult to measure in a laboratory experiment (e.g., vorticity, dissipation, and production of turbulence). In
addition to providing a detailed analysis of the flow field above the bed, the flow and pressure fields within
the porous, packed sediments were also analyzed to provide information on how the vortex structures
above the bed affect the fluid mechanics within the bed.

2. Numerical Methods

It is well known that, at the leading order of approximation, the flow close to the bottom of a flow tunnel
(or U-tube) and the flow at the bottom of a sea wave are coincident and can be studied by considering the
flow generated close to a rigid surface by an oscillating pressure gradient described by
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where (x�1 ; x�2 ; and x�3 ) is a Cartesian coordinate system with the x�1 axis pointing in the streanwise direction
and the x�3 axis pointing in the vertical direction (away from the bed). A star is used to denote dimensional
quantities while the same symbols without the star denote their dimensionless counterparts. In (1), q� is the
density of the sea water, assumed to be constant, and U�0 and x�5 2p

T� are the amplitude and the angular
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frequency of fluid velocity oscillations induced by the the pressure gradient (T� is the period of the oscilla-
tions). The hydrodynamic problem is written in dimensionless form introducing the following variables:
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In (2), t� is time, u�1; u�2; and u�3 are the fluid velocity components along the x�1 , x�2 , and x�3 directions, respec-
tively, ðf �1 ; f �2 ; f �3 Þ is a volume force and d�5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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is the conventional thickness of the viscous boundary

layer close to the bottom, m� being the kinematic viscosity of the fluid.

Using the variables defined by (2), continuity and Navier-Stokes equations become
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where the Reynolds number Rd is defined by
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and di1 denotes the Kronecker delta. The continuity and momentum equations are solved numerically by
means of a finite difference approach in a computational domain of dimensions Lx1; Lx2, and Lx3 in the
streamwise, spanwise, and vertical directions, respectively. Periodic boundary conditions are enforced in
the homogeneous directions (x1, x2), because the computational box is chosen large enough to include the
largest significant vortex structures of the flow. At the upper boundary, located at x35Lx3 , the free stream
condition is enforced as
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5ð0; 0Þ; u350 at x35Lx3 ; (6)

which is equivalent to enforce the vanishing of the shear stresses, since at this elevation the flow is assumed
to be irrotational.

The bottom is assumed to be made up of spherical sediments of
size d� which occupy a small part of the region x�3 � 0 and are
arranged in such a way that the centers of the sediments on the sur-
face layer are located on a given function g�ðx�1 ; x�2Þ (see Figure 1). In
particular, 14 layers of spheres were used to mitigate possible over
filtration of the fluid through the interstitial spaces between the
spheres.

To determine the flow, (3) and (4) are solved throughout the whole
computational domain including the space occupied by the solid
particles, which are presumed to be immersed in the fluid. Hence,
the force terms, fi, are added to the right-hand side of (4) to enforce
the no-slip condition at the fluid-particle interface (immersed
boundary approach). At the lower boundary of the fluid domain
(x350), where a rigid wall is located, the no-slip condition is
enforced with

ðu1; u2; u3Þ5ð0; 0; 0Þ at x350: (7)

The numerical approach solves the problem in primitive variables
and uses a second-order fractional-step method to advance the
momentum equations in time. The nonsolenoidal intermediate
velocity field is evaluated by means of a Crank-Nicolson scheme to

Figure 1. Shown is the numerical reconstruction of the bottom surface cap-
tured by laser scanner (red surface) using spheres in the numerical simulation.
Warmer (lighter) colors of the spheres indicate larger values of the coordinate
x3 of their centers.
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discretize the viscous terms and a three-step, low-storage, self-restarting Runge-Kutta method to discretize
explicitly the nonlinear terms. Then, by forcing continuity, (3), a Poisson equation for the pressure field is
obtained and solved using a multigrid approach. Once, the pressure field is obtained, the nonsolenoidal
velocity field, previously obtained, is corrected to obtain a divergence-free velocity field.

An Adaptive Mesh Refinement (AMR) powered by PARAMESH v4.1 is adopted, enabling an oct-tree-
structure local refinement of the numerical grid in the regions of the flow where a fine grid spacing is
required according to the Courant-Friedrichs-Lewy condition. The Poisson multigrid solver, which is used to
obtain the pressure field, consists of a ‘‘global’’ direct pseudo-spectral solver. ‘‘Global’’ indicates that the
problem is defined over the whole domain (i.e., on the finest common grid that can be found in each ‘‘local’’
region of the flow field). Similarly, to obtain the intermediate nonsolenoidal velocity field, a multigrid Helm-
holtz solver was used, which was developed based on an existing algorithm (Huang & Greengard, 2000)
and consists of a global solver, based on the ADI approximate factortization, exploiting a parallel version of
Thomas’ algorithm, and a local direct solver.

Finally, the immersed boundary (IB) method (Uhlmann, 2005) is used to enforce the no-slip condition on
the bed-surface elements. The IB method is implemented using 315 Lagrangian points (i.e., 10 points per
particle diameter) to discretize the surface of each sphere and to enforce the vanishing of the velocity. The
IB method requires the grid to be equispaced along the three coordinate directions. More details on the
numerical approach can be found in Mazzuoli and Vittori (2016). The reliability of both the numerical
approach and of the code, which implements it, is verified (Mazzuoli et al., 2017; Mazzuoli & Vittori, 2016)
through comparisons with experimental measurements (Keiller & Sleath, 1976) and other numerical results
(Fischer et al., 2002; Fornarelli & Vittori, 2009). In particular, both the velocity field and the hydrodynamic
forces acting on solid spherical particles were considered in the comparisons and fair agreement with previ-
ous results was found.

3. Results and Discussion

The work described herein is aimed at simulating by numerical means the oscillatory flow over a wavy and
porous bed for realistic values of the parameters. The topography of the bed surface is chosen by fitting
with spherical solid elements (particles) the surface measured by a laser scanner during a laboratory experi-
ment. As already pointed out in the introduction, the use of a direct numerical simulation allows the evalua-
tion of quantities (e.g., vorticity, bottom shear stress, and forces on sediment grains) which are difficult to
be measured during a laboratory experiment and provide useful information for the determination of the
conditions of incipient sediment motion and the study of sediment dynamics. In particular, several layers of
spheres of diameter d�50:7 mm equal to the mean size of the grains employed in the experiment are
located at the vertices of tetrahedrons of side ‘�5d�12D�d . The small quantity D�d is introduced for numeri-
cal considerations. A region of the experimental bed of sizes 10.75 cm and 0.895 cm in the x�1 and x�2 direc-
tions, respectively, was reproduced. Since the numerical approach forces periodic boundary conditions in
the streamwise and spanwise directions, the measured bottom profile was mirrored in the two horizontal
directions and the resulting numerical domain was 21.50 cm long, 1.79 cm wide, and 3.58 cm high.

Figure 1 shows a small portion of the computational domain and the particle arrangement along with the
coordinate system while Figure 2 shows a comparison between the experimental bottom profile and the
configuration of the granular bed in the numerical simulation along a single vertical plane. The reader
should notice that the light gray particles above the solid red line are the particles in the background. The

Figure 2. The experimental bottom profile captured by laser scanner (the black dashed line are the sediments at x�251:34
cm while the gray points are the sediments in the background) and the bottom profile approximated by spheres in the
numerical simulation (red line).
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amplitude U�0 of the velocity oscillations far from the bottom and their period T� are set equal to 0.28 m s21

and 2.5 s, respectively, as in the experimental apparatus. It follows that the viscous length, d� , is equal to
0.89 mm. The grid size close to the bed (the highest resolved region), denoted by Dx�fine, is equal to
0.07 mm along the three directions, while the coarsest grid, which is employed far from the bottom where
the velocity profile is uniform and is denoted by Dx�coarse , has a size equal to 0.28 mm. The local refinement
of the grid did not change during the simulation.

Since sediment particles are fixed, the problem is controlled by two dimensionless parameters, for instance
the Reynolds number, Rd5246:62, and the dimensionless grain size, d 5 0.78. The values of the dimension-
less parameters in the simulation as well as of the dimensionless size of the computational domain are
given in Table 1.

Due to the high computational cost, only 2.11 oscillation periods of the DNS were performed. The simula-
tion was run on 1,024 cores of copper (DoD HPCMP Open Research Systems) and required 4M CPU hours.
The CFL condition was equal to 0.4. Since the simulation starts from the (laminar) Stokes flow field at t 5 0,
the results of the first cycle are not considered. Even though the gross features of the velocity field mea-
sured during the experiment were reproduced by the numerical simulation, a detailed quantitative compar-
ison between the computed and measured flow fields is not possible. Indeed, the high computational costs
did not allow the numerical simulation to be carried out for a large number of cycles. Consequently, the
phase-averaged flow may not be evaluated. Since the experimental measurements show large differences
from cycle to cycle, because of the presence of turbulent eddies and the ‘‘chaotic’’ dynamics of large coher-
ent vortices generated at the bottom, a local and instantaneous comparison also is not possible. However,
to justify a quantitative analysis of the numerical results, a qualitative comparison between the numerical
results and the experimental measurements were made. Figure 3 shows the experimental values of the
streamwise, phase-averaged velocity component plus/minus its standard deviation at two different phases
of the cycle (t53:25p and t53:88p) plotted versus x3 for ðx1; x2Þ5ð170; 15:1Þ along with the instantaneous
values provided by the numerical simulation.

Flow visualizations of markers released at different phases of the oscillatory cycle were made to obtain pre-
liminary information on flow structure and mixing processes; however, the analysis of the trajectories of
passive tracers cannot be used to reliably identify vortex structures. First, passive tracers were released
along two horizontal crossing lines parallel to the x1 axis and x2 axis at fixed time intervals, Dt. Tracers were
monitored during their motion. The center of the crossing lines is located close to both a trough and a crest
of the bottom waviness. The numerical technique employed here mimics the hydrogen bubble technique
often used in laboratory experiments. While the procedure does not allow a large portion of the flow to be
visualized, it can be used to have a ready visualization of the velocity distribution along the lines of emission
and to obtain, so-called smoke lines.

Figures 4a and 4b show top and side views of the positions of the tracers (dye lines) released at t 5 9.74,
when the free stream velocity is near maximum and beginning to decelerate. The tracers were released
close to the trough of the bottom waviness and feel a spatial acceleration as the flow moves toward the
crest of the bottom waviness. However, the tracers released close to the crest of the bottom waviness feel
the effects of a slightly decelerated flow. Since the bottom slope is quite small, both the flow acceleration
and deceleration were weak, but the behavior of the two sets of tracers was notably different. In both cases
the lines of markers bend and twist because of the vortex structures shed by the roughness elements. The
process was quicker for the lines of tracers moving along the lee side of the bottom waviness. At t 5 10.05,
the tracers released close to the crest of the bottom waviness were more fully mixed than those released
close to the trough of the bottom waviness. Moreover, the behavior of the tracers depends on the phase of
emission during the oscillatory cycle. For example, Figures 5a and 5b exhibit similar behavior to Figures 4a

Table 1
Values of the Parameters for the Present Simulation

Rd d Red w .�s =.
� Lx1 Lx2 Lx3 Dxfine Dxcoarse No. spheres

246.6 0.78 193.5 6.75 2.65 241.1 20.1 40.2 0.079 0.31 67,907

Note. Red5U�0d�=m� is the sphere Reynolds number.
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and 4b, but the latter are characterized by a phase of emission at t 5 11.62, suggesting that the mixing pro-
cess is stronger during the decelerating phase of the cycle than during the accelerating phase. The results
show the existence of vortex structures characterized by a strong spanwise vorticity component which tend
to roll up the tracers around transverse horizontal axes. In particular, close to flow reversal, the tracers mov-
ing along the lee side of the bottom waviness tended to be trapped within a recirculating region formed on
the downstream side of the bottom waviness.

Additionally, passive tracers were released in a horizontal plane at t 5 9.07 along lines parallel to the x2axis
equispaced in the streamwise and spanwise directions by d and lying on the plane x3511:0. Visualizations
of tracer motion at subsequent phases were used to infer the presence of coherent vortices. Figure 6 shows
the positions of the tracers at t 5 9.17. In particular, Figures 6a and 6d show a top view while Figures 6b and
6c show lateral and front views, respectively. In Figures 6a and 6d, it is possible to observe the formation of
spanwise bands of tracers traveling in the streamwise direction. The geometry and spacing of the bands
suggest the presence of two-dimensional and three-dimensional flow structures characterized by a stream-
wise wavelength of order 10d�, which is of the order of magnitude of the size of the most unstable mode
predicted by linear stability analysis (Blondeaux & Seminara, 1979) and the resonance mechanism (Blon-
deaux & Vittori, 1994; Scandura, 2013).

Even though flow visualizations provide interesting information on the oscillatory flow over a rough and
wavy bottom, visualization techniques do not provide a complete picture of the dynamics of the vortices
characterizing the flow field. Hence, after a preliminary analysis of the flow field using tracer trajectories and
streakline patterns, vortex structures were identified by looking at contour surfaces of vorticity (not shown

Figure 3. Streamwise component of the velocity plotted versus x3 along ðx1; x2Þ5ð170:0; 15:1Þ at (a) 3:25p and
(b) t53:88p for the present simulation (solid black line). Red triangles indicate the phase-averaged values calculated
on the basis of the laboratory measurements at the same phases at the corresponding position on the bed. Broken lines
indicate the distance of the standard deviation form the averaged value.

Figure 4. (a) Top, (b) side, and (c) front views of the position of passive tracers released at t 5 9.74 and then tracked dur-
ing the deceleration phase at t59:80; 10:05, and 10.37. The positions of the most surficial spheres close to y5Ly=2 are
visualized by gray small circles. Flow is directed from left to right (see the arrow).
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here) and of k2, namely the second sorted eigenvalue of the tensor defined by the sum of the squares of
the shear rate tensor and of the rigid-like rotation tensor (Jeong & Hussain, 1995).

With the eigenvalues ordered in decreasing value (k1 > k2 > k3), Figure 7 shows surfaces characterized by
a constant negative value of k2 (k2520:25) at different phases of the cycle. At t 5 7.85 (see Figure 7a), no
clear vortex structure can be identified except for the vorticity shed by the sediment grains, and the flow
regime may be considered laminar. Close to the end of the accelerating phase, vortex structures appear,
which are characterized by a length scale much larger than the roughness size and are originated by an
instability of the oscillatory boundary layer (see Figures 7b–7e). The vortex structures pervade larger regions
of the bottom surface when the free stream velocity attains its maximum value, and during the decelerating
phase, these larger vortices break and form smaller eddies giving rise to small-scale turbulence (Figures 7f
and 7g). Later, because of the dissipative effects due to the small eddies, turbulence is damped and the
flow tends to relaminarize (Figures 7h and 7i).

Previously, for similar values of the parameters (Rd5300; 400, d 5 2.32), simulations of oscillatory flow over
spherical particles lying over a plane bed generated a laminar or an only-weakly disturbed laminar flow
(Mazzuoli & Vittori, 2016). It is likely that the waviness of the bottom profile simulated here induces spatial
accelerations/decelerations of the flow field that trigger the appearance of turbulence for values of the
Reynolds number smaller than those characterizing a flat wall (Blondeaux & Vittori, 1994; Scandura, 2013;

Figure 5. (a) Top, (b) side, and (c) front views of the position of passive tracers released at t 5 11.62 and then tracked
during the acceleration phase at instants t511:69; 11:94, and 12.25. The positions of the most surficial spheres close
to y5Ly=2 are visualized by gray small circles. Flow is directed from right to left (see the arrow).

Figure 6. (a) Top, (b) side, and (c) front views of the position of passive tracers released at t 5 9.07 (gray points) and then
plotted at t 5 9.17 (black points). The positions of the most surficial spheres close to y5Ly=2 are visualized by small gray
circles. Flow is directed from left to right (see the arrow).
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Scandura et al., 2016; Vittori & Verzicco, 1998). The possible relevance of the bottom undulation in the genera-
tion of coherent vortex structures and turbulence appearance is shown by the works of Scandura et al. (2000)
and Grigoriadis et al. (2013). In particular, for large values of the free stream velocity, the simulation presented
here exhibits complex and multiscale vortices, the dynamics of which appear to be unpredictable. However,
the presence of vortex structures which may be defined as ‘‘coherent’’ since they persist in their shape for
enough time to be clearly identified. Notably, hairpin vortices of different sizes can be identified in Figures 7d
and 7e, which is in agreement with previous observations showing the existence of hairpin vortex structures
in turbulent flows close to transition (Head & Bandyopadhyay, 1981; Wu & Moin, 2009a, 2009b). It is believed
that these vortex structures are able to generate new vortices because, close to the wall, the tail ends of hair-
pin vortices converge resulting in fluid eruptions and in the production of new hairpin vortices, thus giving
rise to a regenerative process (Marusic, 2001; Perry & Chong, 1982; Townsend, 1980; Zhou et al., 1999). Packets
of hairpin vortices in a small region of the computational domain are observed in Figure 8.

Figure 7. Shown is the top view of the computational domain with vortex structures visualized by isosurfaces for k252

0:25 at times (a) t 5 7.85, (b) t 5 9.11, (c) t 5 9.19, (d) t 5 9.27, (e) t 5 9.35, (f) t 5 9.42, (g) t 5 9.58, (h) t 5 9.94, (i) t 5 10.41,
and (j) t 5 11.11.
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Turbulence presence for Rd5246:62 and d=d50:78 is also in agreement with the transition criteria pro-
posed by various investigators and summarized in Sleath (1988, Figure 13). Indeed, for d 5 1, Sleath (1988,

Figure 13) suggests a critical value of Re5
U�20
m�x� 5

R2
d

2

� �
for transition to turbulence ranging from about 1,500

(Rd ’ 55) to about 20,000 (Rd ’ 200).

Because of the high values of the shear they induce, hairpin vortices and other coherent vortex struc-
tures which move close to the wall are very efficient in enhancing mixing processes and it is reasonable
to assume that they are also a key element in the pickup of sediment particles and in their transport.
Figure 9 shows the dynamics of a coherent vortex structure in a particular region of the flow along with
the lift force acting on the spherical particles making up the bottom.

The dimensionless hydrodynamic force,

FðsÞ5
6 F�ðsÞ

ð.�s 2.�Þg�pd�3
; (8)

and torque,

TðsÞ5
24

ffiffiffi
3
p

T�ðsÞ

ð.�s 2.�Þg�pd�4
; (9)

acting on the sth sphere are calculated using their dimensional values F�ðsÞ and T�ðsÞ, which are evaluated

by integrating over the sphere surface, S�ðsÞ, the stress vector s
�ðsÞ
n associated with the oriented element of

sphere surface ndS� and its torque, n and g* denoting the outward-facing unit normal to dS� and the

Figure 8. Packets of hairpin vortices in the near-bottom region are visualized by isosurfaces for k2520:25 at (a) t 5 9.24,
(b) t 5 9.40, (c) t 5 9.47, and (d) t 5 9.68.
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gravitational acceleration, respectively. Since our attention is focused
on the ability of the flow to displace sediment particles, the force is
scaled with the submerged weight of sediment particles, while torque
is scaled with the minimum torque that is necessary to set into rolling
motion a sphere lying within a layer of identical spheres arranged in a
hexagonal pattern. The results are obtained by fixing the value of the
relative density of sediment particles .�s=.

� equal to 2.65 and the

mobility number of sediment particles w5
U�20

ð.�s =.�21Þg�d� equal to 6.75.

In another region of the bottom, a vortex structure named VS, with
constant value of k2 (iso-k2 surface), is visualized in Figure 10 at
different phases of the cycle. Simultaneously shown are the sediment
particles colored by thresholding the absolute value of normalized lift
force, jF3j, above 0.2. The results show that the appearance and
dynamics of the coherent vortex structure, VS, have a significant effect
on the forces that the flow exerts on sediment grains. The finding is
further supported by Figure 11 which shows the time development of
the drag and lift forces along with the torque acting on the particle
marked by A in Figure 10a. The results indicate that both the drag and
lift attain a relative maximum when the coherent vortex structure
identified by means of the k2-criterion, is above the particle A. How-
ever, it should be noted that the vortex structures significantly affect
the forces acting on the particles only when they are close to the bot-
tom. Indeed their effects on particle dynamics decrease as they move
away from the bottom (see the Movie S1 presently provided as Sup-
porting Information S1).

Since the parameters of the numerical simulation are equal to those of
a laboratory experiment during which the sediments did not move, the
spherical particles which mimic the sediment were kept fixed. For larger
values of the amplitude of the fluid velocity oscillations, the spherical
particles would be set into motion and both the velocity field and the
forces felt by the particles would be modified by their motion and by
the particle-particle collisions (see for example, Mazzuoli et al., 2016).

Significant variations of the drag and lift forces were observed during
the oscillatory cycle for the sediment particles on the top-layer that
are more exposed to the fluid action. Moreover, because of the three-
dimensionality of the bed surface and the ‘‘chaotic’’ dynamics of the
coherent vortex structures, the force acting on the spherical particles
is expected not to be uniform but to experience fluctuations associ-
ated with the position of the particles (geometrical dispersion) and to
the turbulent vortices convected by the flow. The time development
of the average values of the streamwise and wall-normal force com-
ponents is shown in Figures 12a and 12b, respectively, along with
their standard deviation. The maximum average value of the drag

force is shifted by a time interval of �0:14p after flow reversal, approximately �0:11p before the bottom
shear stress predicted by the Stokes solution would be maximum, while the maximum value of the lift force
is observed approximately when the free stream velocity attains its maximum value. Moreover, the lift force
maintains large values during a significant time interval. Strong fluctuations of the drag force are present
when the free stream velocity is maximum. Additionally, the increase in lift fluctuations is approximately in
phase with the maximum average lift experienced by the surficial layer of particles, even though it is slightly
led by the maximum value of the free stream velocity.

Figures 12c and 12d show the drag and lift force components, respectively, experienced by the highest and
lowest spheres of the surficial layer of particles. For the highest sphere, the occurrence of fluctuations

Figure 9. Shown is the top view along a part of the bottom where coherent
vortex structures (green contour surfaces for k2520:15) interact with the
spheres at time (a) t53:87p, (b) t53:88p, (c) t53:89p, (d) t53:90p, and
(e) t53:91p. Spheres are colored by the dimensionless lift force, F3, when it
larger than 0.2 (red) or is smaller than 20.2 (blue). Arrows indicate the footprint
of an originating hairpin vortex (HP). (f) shown is a visualization of the spanwise
component of the dimensionless vorticity at the plane x259:8 (indicated by
the red broken line in Figure 9c). Green/red contour lines are characterized by
k2520:25. The free stream velocity is directed from right to left.
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reflects the trend of the standard deviation shown in Figures 12a and 12b, but for the lowest sphere the
fluctuations are quite small and sporadic. As previously noted, the bottom waviness triggers the appearance
of turbulence and makes the flow more similar to that of the hydraulically rough regime previously
observed (see Mazzuoli & Vittori, 2016, Figures 16 and 26). The results for the drag and lift forces on spheri-
cal particles presently simulated (d�50:625d�Þ are qualitatively different for Rd5400 and d 5 2.32, but

Figure 10. Shown is the top view along a part of the bottom where coherent vortex structures (green contour surfaces for k2520:25) interact with the spheres at
time (a) t53:89p, (b) t53:90p, (c) t53:91p, (d) t53:92p, and (e) t53:93p. Spheres are colored by the dimensionless lift force, F3, when it larger than 0.2 (red) or is
smaller than 20.2 (blue). Shown is (f) a visualization of the spanwise component of the dimensionless vorticity at the plane x2516:1 (indicated by the red broken
line in Figure 10d). Green/red contour lines are characterized by k2520:25. The free stream velocity is directed from right to left.

Figure 11. Shown are the components, i equal to 1 (black), 2 (blue), and 3 (red) of the (a) force and (b) torque acting on
the sphere marked by A in Figure 10a.
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similar for Rd5400 and d 5 6.95, where large fluctuations of the drag and lift forces were observed (Maz-
zuoli & Vittori, 2016). In particular, simulations were characterized by strong fluctuations for Rd5400, which
is a value of the Reynolds similar to the present one, and referred such flow a regime as hydraulically rough
(Mazzuoli & Vittori, 2016). The main difference in our simulation is that not all the spheres contribute evenly
to the statistics of force acting on the spherical particles.

The numerical results show also that it would be quite difficult to identify the conditions of incipient sed-
iment motion by increasing the amplitude of the fluid displacement oscillations. Indeed, by increasing
the value of U0=x, a value would be encountered so that the lift force would become larger than the
submerged weight (dimensionless values of F3 larger than one) and a few particles would be dislodged
from their equilibrium position at a particular phase of the cycle. However these conditions would be
met just for a few particles which would stop after a small displacement and no general motion of the
sediments would be observed. Further increases of U0=x would lead to an increase of the number of
moving particles but a well-defined ‘‘critical value’’ would be difficult to be identified, the process being
continuous.

It has been asserted that the ‘‘random waviness’’ of the bottom configuration plays a prominent role in trig-
gering the appearance of turbulence and the forces that would cause the motion of the spherical particles,
which mimic the sediment grains in the simulation. The bottom waviness causes a few particles to be more
exposed than other particles, but the local separation of the viscous bottom boundary layer, which is
observed even when the bottom is assumed to be flat from a macroscopic point of view, anticipates turbu-
lence appearance. Moreover, it was verified that below the top-layer of the spheres, the fluid velocity drops

Figure 12. Spatial average (black) and standard deviation (dashed red) of (a) drag and (b) lift forces acting on the top-
layer of spheres are plotted as functions of time. Also plotted are the values of the fluctuations of (c) drag and (d) lift
forces associated with the highest (–�–) and lowest (–w–) spheres of the top-layer. (e, f) The time development of the
principal mean velocity far from the bottom.
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to small values and the drag force almost coincides with the contri-
bution due to the pressure-gradient oscillations. Therefore, flow
resistance is dominated by the interaction of the flow with the top-
layer of spheres.

In order to quantify the influence of the bed geometry on the devia-
tion of the hydrodynamic force from the mean value, the normalized
cross correlations between the distance g0 of the top-layer spheres
from the average bed elevation and the fluctuations of drag and lift
force components are plotted in Figure 13 as functions of time. The
cross-correlation functions, denoted in Figure 13 by Rg0F01

and Rg0F03
,

show that a correlation equal to �25% exists between positive val-
ues of g0 and drag fluctuations while the correlation between g0 and
lift fluctuations is �20%. The correlation includes both the effect of
spatial dispersion associated with the geometrical features of the
bed surface and the effect of turbulent fluctuations induced by the

interaction of the spheres with the vortex structures. Figures 14a and 14b show the normalized probability
density functions of the drag and lift fluctuations at time, t 5 15.92, when the streamwise velocity far from
the bottom is almost maximum. The fluctuations of drag and lift of small magnitude and slightly negative
occurred much more frequently than strong fluctuations which were predominantly characterized by a pos-
itive value. Similar features were previously observed in the in the context of steady, turbulent open-
channel flow (Chan-Braun et al., 2011); however, the effect of the bed geometry considered here makes the
pdfs deviate significantly from a Gaussian distribution.

The results shown here suggest that fluctuations of the lift force acting on the spheres and the position of
the spheres with respect to the flow can determine the conditions for individual sediment particles to be
picked up. Moreover, it appears that the sediments can be set into motion under the action of turbulent
vortex structures that interact with the bed in relatively small portions of the bed surface. Since sea waves
have wavelengths much longer than the typical wavelength of the morphological patterns present on the
seafloor including those tested in the experimental apparatus described above, it is reasonable to reduce
the effect of the small morphological patterns to that of a supplementary roughness. This presumption
allows us to collect the statistics of quantities that are relevant for the problem of sediment transport (e.g.,
the shear stress) on bottom parallel planes regardless of the position of bed forms. The amount of sedi-
ments set into motion by the flow is usually correlated with the shear stress of the flow at a certain eleva-
tion near the bottom. Consequently, the incipient condition for sediment transport is often estimated, in
the absence of direct measurements, on the basis of empirical or semiempirical predictors, which consider

Figure 13. Plotted as a function of time is the cross correlation between the
distance of the top-layer of spheres from the average bed elevation and the
respective fluctuations of drag (i 5 1, black) and lift (i 5 3, red) forces, scaled by
the product of the respective standard deviations.

Figure 14. Shown is the normalized probability density functions (black) of fluctuations of (a) drag and (b) lift forces act-
ing on the top-layer of spheres at t5 15:92. Red lines indicate the Gaussian distributions characterized by average equal
to 0 and the value of the standard deviation of the respective distributions of force fluctuations.
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the shear stress experienced by the bed. The bed shear stress is estimated at an average bed elevation, gb

(e.g., the elevation at which the spanwise-averaged solid volume fraction reaches the value 0.1). In the pre-
sent case, the total bed shear stress can be computed from the streamwise component of the Reynolds
equation. By splitting the variables ui, p, and fi into their plane-averaged values huii; hpi; and hfii; and their
fluctuating u0i ; p0; and f 0i values. Continuity and momentum equations lead to

@hu1i
@t

2sin ðtÞ52
Rd

2
@hu01u03i
@x3

1
1
2
@2hu1i
@x2

3
1hf1i; (10)

where the last term is computed by transferring the Lagrangian hydro-
dynamic forces that spheres apply on the flow field onto the Eulerian
grid. Then, by integrating (10) from Lx3 downward to x3, the dimension-
less total shear stress stot5s�tot=

1
2 .�U�0x

�d�
� �

at x3 is readily obtained

stot5
@hu1i
@x3

				
x3

2Rdhu01u03ijx3
12
ðLx3

x3

hf1i dx3 (11)

and it turns out to be the sum of a viscous contribution (first term
on the right-hand side), a turbulent contribution (second term on
the right-hand side), and a contribution due to the action of the
spherical sediments on the fluid motion (last term on the right-
hand side).

The values of stot and those of the different contributions to it are
plotted along x3 at different phases of the cycle in Figure 15. The
results show that the contribution due to the viscous stress is negligi-
ble everywhere but within the porous bed where the packed spheres

Figure 15. Shown is the momentum balance, integrated from the top of the computational domain toward the wall, plot-
ted as a function of the wall-normal coordinate, computed at different phases of the wave cycle (lower). The total shear
stress, stot (red thick) is equal to the sum of the viscous (blue) and Reynolds shear stress (magenta) plus the contribution
of the volume force associated with the spheres (black).

Figure 16. The contributions shown in Figure 15 at the distance x35gb59:06
from the wall are plotted as a function of time.
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slow down the fluid velocity. Far from the bottom, the contribution due to the presence of turbulence dom-
inated the flow up to the region where the irrotational flow is found. Finally, the contribution due to the
sediment grows linearly moving within the bottom since the fluid velocity is small and only the grain-grain
interaction balances the pressure-gradient effect.

Figure 17. Distribution of pressure p at the plane x25Lx2=2 and at time (a) t53p, (b) t525=8p, (c) t513=4p, (d) t57=2p,
(e) t515=4p, (f) t531=8p, and (g) t54p. Positive and negative pressure regions are indicated by red (solid) and blue (bro-
ken) contour lines, respectively, equispaced by 0.02. The maximum and minimum elevation of the bed is visualized by
the solid and broken black lines, respectively. The instantaneous direction and intensity of the free-stream velocity Ue is
qualitatively displayed over each figure.
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The time development of the Shields parameter, h, namely the total bed shear stress, s�tot at x�35g�b normal-
ized by ð.�s 2.�Þg�d� is shown in Figure 16. Figure 16 shows that if the waviness of the bottom is filtered
out by the average operation and the contribution to the total shear stress due to the spherical particles is
not considered, it is likely that no sediment transport takes place. However, by including the contribution

2
Ð Lx3

x3
hf1i dx3

� �
due to the sediment particles, it is likely that a few sediment grains become eligible to be

set into motion when the free stream velocity and the Reynolds shear stress attain their maximum values.
Indeed, even though the critical value of the Shields parameter depends on the Reynolds number of the
sediment, the value 0.05 is often considered in sediment transport formulae and the exclusion/inclusion of
the contribution due to the spherical particles makes the Shields parameter smaller/larger than 0.05. It is
also worth pointing out that the maximum of the viscous stress lagged behind the maximum of the free
stream and the stress associated with the spherical particles attains its maximum value even earlier, as
shown in Figure 12a. In other words, a prediction of the sediment transport rate which does not take into
account the local turbulent events related to the bed profile could lead to significant underestimation of
the sediment flux.

Other quantities of interest provided by the numerical simulation are the pressure and flow fields within
the porous bed. The relative pressure, pa2p0, may be expressed as the sum of two contributions,

pa2p05pw1p ; (12)

where p0 denotes an arbitrary constant value, pw is the contribution which grows/decays linearly in the
streamwise direction and drives the free stream oscillations, and p is the pressure field that appears in (4).
The pressure p depends on ðx1; x2; x3Þ because of the flow spatial accelerations/decelerations induced by
the waviness of the bottom profile and by the large-scale vortex structures which characterize the turbulent
flow (see Figure 7). Pressure variations are also associated with the interstitial flow between the spherical
particles. However, the seepage flow through the porous bed is quite small and these pressure fluctuations
are almost negligible. Indeed, if v�sp denotes the order of magnitude of the seepage flow velocity, the pres-
sure variations are expected to have an order of magnitude equal to q�v�2sp .

Figure 17 shows the pressure field, p, at different phases of the cycle both above and within the porous bed.
When the free stream velocity is large (either positive or negative) the pressure in the trough of the bottom
profile is positive. It assumes negative values over the crest of the forcing to generate the pressure gradient
which is necessary to accelerate the flow from the trough to the crest. Then, small spatial fluctuations can be
recognized, which are induced either by a locally small waviness of the bottom or by the presence of large-
scale coherent vortex structures. These small pressure oscillations can be more easily identified when the
external velocity is relatively small. Moreover, the results show that the pressure oscillations are almost con-
stant in the vertical direction when moving within the porous bed, since the seepage flow is very weak.

4. Conclusions

A direct numerical simulation of the oscillatory flow over a wavy, rough, and porous bed made up of small
spherical particles was used to obtain the following results about the near bed flow structures and their effect
on particle stability. (i) The bottom waviness is found to play an important role in the transition process to tur-
bulence even if the amplitude and slope of the bottom undulation are quite small (the amplitude was about
five grain diameters); in particular, the appearance of turbulence was triggered for values of the Reynolds
number smaller than the critical values for a flat bed. (ii) Close to the bottom, the flow was dominated by the
vortex structures shed by the sediment grains and those generated by the transition process to the turbulent
regime. (iii) At moderate values of the Reynolds number, the oscillatory boundary layer tended to relaminarize
when the large turbulent vortex structures break and generate small eddies that dissipate due to viscous
effects. The phenomenon takes place just after the free stream velocity attains its maximum value and lasts
almost until flow reversal. (iv) Transition to turbulence generates coherent vortex structures (hairpin vortices),
which increase mixing phenomena (e.g., momentum transfer) and have a significant effect on the force and
torque felt by sediment grains. (v) The force and torque experienced by the surficial sediment particles were
found to be strongly correlated to the elevation of the particles relative to the mean bed elevation. (vi) The
fluctuations of the force acting on sediment grains were found to be large relative to their average value, sug-
gesting that the conditions of incipient motion based on average quantities would not be appropriate. (vii)
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The force fluctuations are related to both the elevation of individual grains and the passage of the turbulent
vortex structures close to the bed. (viii) Finally, the flow within the porous bed is found to be quite small and
the forces generated by the applied pressure gradient on the sediment grains are balanced by the grain-grain
interaction. The numerical simulations provide detailed information on the flow-bed profile-sediment interac-
tion, which cannot be easily obtained by means of laboratory experiments, and can be used to improve the
modeling of sediment transport and the predictors of the sediment transport rates.
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