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Abstract. Amyloid- (AB) has been proposed as a biomarker and a drug target for the therapy of Alzheimer’s disease (AD).
The neurotoxic entity and relevance of each conformational form of A3 to AD pathology is still under debate; A3 oligomers
are considered the major killer form of the peptide whereas monomers have been proposed to be involved in physiological
process. Here we reviewed some different effects mediated by monomers and oligomers on mechanisms involved in AD
pathogenesis such as autophagy and tau aggregation. Data reported in this review demonstrate that A3 monomers could
have a major role in sustaining the pathogenesis of AD and that AD therapy should be focused not only in the removal of

oligomers but also of monomers.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common
age-related disease [1], and it has become a very seri-
ous social and health problem with the increase of
life expectancy. Indeed, the risk of AD increases dra-
matically in individuals above the age of 70, and it
is predicted that the incidence of the disease could
further increase by 3-fold over the next 50 years [2].

Extracellular amyloid plaques formed by aggre-
gated amyloid-3 peptides (AB) and intracellular
neurofibrillary tangles composed by polymers of
altered tau protein are the two main pathological
hallmarks of the disease.

*Correspondence to: Dr. Massimo Tabaton, Department of
Internal Medicine and Medical Specialities (DIMI) Viale
Benedetto XV, 6,16132, Genova, Italy. Tel./Fax: +390103537064;
E-mail: mtabaton @neurologia.unige.it.

According to the amyloid cascade hypothesis, a
series of clues indicate that the accumulation of A3 in
the brain is the primary and early event that induces
neuronal degeneration, characterized by accumula-
tion of conformational altered and aggregated tau
protein.

AB, a 39-43 residue polypeptide, is cleaved
from the amyloid-3 protein precursor (ABPP) by
B- and +y-secretases and consists of a largely
hydrophilic N-terminal domain (1-16) and a C-
terminal hydrophobic domain [3]. The predominant
AP species end at 40 and 42 residues; the latter shows
a greater propensity for aggregation and is consid-
erably more neurotoxic because of two additional
hydrophobic amino acids [3].

Although many details in the pathogenesis of AD
remain elusive, A3 has been proposed as a biomarker
and a drug target for the therapy, being expected to
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ameliorate the accuracy of early diagnosis, and to
investigate the influence of drugs on A3 removal and
aggregation. The neurotoxic entity and relevance of
each conformational form of AP to AD pathology
is still under debate; AP oligomers are considered
the major killer form of the peptide [4] but a role
for fibrillary form of A to neurotoxicity cannot be
ignored [5]. Monomers instead have been proposed
to be involved in physiological process. Their
role in the pathogenesis of AD is unknown. Here
we reviewed some different effects mediated by
monomers and oligomers on mechanisms involved
in AD pathogenesis.

AB MONOMERS AND OLIGOMERS

AR monomers are predominantly a-helical and
random coil in structure. A4 monomers are highly
prone to aggregation and they form a wide range of
soluble oligomers which vary in morphology and size
from dimers to trimers and then up to large prefibrillar
structures [6].

Monomers are the prevalent species of the lag
phase and fibrils dominate at the final plateau, while
during the growth phase their concentrations are sim-
ilar. The concentrations of any intermediates, small
aggregates or oligomers, appear low at all time [7].

Monomers have been proposed to be involved
in physiological processes. There is concern in the
field about technical limitations of working with
such small peptides and their derivatives. The prob-
lem in studying AB4> monomers derives by their
tendency to aggregate as well as by the hetero-
geneity of the peptide solution that can assume
different conformational states [8]. Despite these
technical limitations, some researchers developed
methods to obtain ahomogeneous population of A4
monomers [9-11]. These pure monomeric prepara-
tions have been found able to protect neurons by
trophic deprivation and excitotoxicity [9] through
the activation of the phosphatidyl-inositol-3-kinase
pathway. More recently, it was also demonstrated
that AB4> monomers mediated the glucose uptake in
neurons by selectively activating the member of the
insulin receptor superfamily, IGF-IRs, and promot-
ing the translocation of glucose transported Glut3 to
the plasma membrane from the cytosol [12]. These
results suggest a positive role of A4 monomers that
would be important for neuronal survival; therefore,
therapeutic approaches should take into account this
neuroprotective function.

The oligomeric forms of A are the major toxic
agents in AD [13-15]. Interestingly, concentration
of APB4, oligomers are higher in plasma of AD
patients than control subject [16]. Several patho-
genetic mechanisms of A4y oligomers have been
proposed. Oligomers are able to bind neurons and
directly induced cell death mediating phagocytosis
and oxidative stress [17, 18]. They can also impair
the electrochemical signals by forming small chan-
nels [19-21] or by interfering with the cell signaling
pathways [22] and cause neuronal death. Finally, it
has been demonstrated that oligomers can accumulate
in mitochondria, damaging the respiratory chain [23].
During the A aggregation process, small prefibrillar
aggregates are first formed and then these assem-
ble into protofibrils and protofilaments. The level of
AP polymers with fibrillary conformation also cor-
relates with AD onset and severity, thus although
oligomers are believed to be more toxic to cells,
strong evidence indicates that the fibril formation
is related to the rates of disease progression of AD
patients [5].

We found that AB4> monomers at physiologi-
cal concentrations upregulated BACE1 activity [24]
suggesting that the limit between the physiologi-
cal and pathological functions of A is very subtle.
Our recent studies showed different effects of AB4y
monomers and oligomers in autophagy, apoptosis,
and tau aggregation.

AB42 MONOMERS VERSUS OLIGOMERS
IN AUTOPHAGY AND APOPTOSIS

Autophagy and apoptosis are two mechanisms
closely involved in the pathogenesis of AD.

The misfolded proteins, in particular those that
tend to form aggregates, are directed to autophagy,
a degradation system in which substrates are segre-
gated into autophagosomes which are then fused with
lysosomes for degradation into amino acids [25]. In
turn, an increased level of apoptosis, the programmed
cell death that leads to the destruction of cells and
organelles through the activation of catabolic path-
way, has been found increased in neurodegenerative
disease such as AD [26].

The role of autophagy and its connection with
apoptosis in AD pathogenesis is far from being clear.
This relationship has many facets since autophagy in
some cases represents a mechanism for adaptation to
stress conditions that suppresses apoptosis, while in
other cases, it is an alternative death mechanism.
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Some studies reported that the induction of
apoptosis by rapamycin, an inducer of autophagy, sig-
nificantly reduces the permeability of mitochondrial
outer membrane, which represents a crucial event
to mediate apoptotic cell death [27]. On the other
hand, stressors are able to induce damage in apoptotic
machinery, for example inhibiting caspase activities,
mediating autophagic cell death [28, 29].

Given the central role of AP in the pathogene-
sis of AD, it is plausible that it can play a role in
linking the two mechanisms. Thus, it is well known
that impairment of autophagy leads to A3 accumu-
lation in vacuoles and cell death. ABPP and AP
peptides colocalized in autophagosomes in AD cel-
lular and murine models [30, 31]. Moreover, it has
been reported that the accumulation of AB4y and
p62, a marker of the autophagic flux, precedes the
derangement of autophagic clearance and mediates
the lysosomal impairment [32]. On the other hand,
strong evidence indicates that AB is also produced
during autophagy [30]. Probably, physiologically,
autophagy does not influence the production of A3
because of the efficient clearance of lysosomal degra-
dation [33]. In pathological conditions, autophagy
becomes a site for ABPP processing and AP gen-
eration, thus many autophagic vacuoles are found
in AD brains particularly in dystrophic neurites [34]
and in perikarya of neurons containing tangles [35].
Moreover, in dystrophic neurites, an accumulation of
phagophores has been shown, suggesting that their
maturation to lysosomes may be impaired in AD [30].

We recently obtained data shedding light on
the interaction between autophagy and apoptosis
in response to oligomeric as well as monomeric
forms of AB42 [36]. We demonstrated that oligomers
induce apoptosis allowing the formation of a com-
plex between the anti-apoptotic protein Bcl-2 and
Beclinl, a protein implicated in the autophagosomes
formation [37]. Other authors demonstrated that the
regulation of this complex represents a crucial mech-
anism by which cells turn off autophagy [38], leading
to apoptosis. The mechanism through which the inhi-
bition of autophagy predisposes cells to apoptosis is
not completely clear and could be due to a bioener-
getics deficiency [39] or to oxidative stress induction
[40]. The latter mechanism is in agreement with our
previous reports demonstrating that oligomers, but
not monomers, increase oxidative stress in different
cellular models [41]. On the other hand, monomers
lead to autophagy and hamper the formation of the
complex formed by Bcl-2 and Beclin 1, through
activation of the JNK pathway and inducing Bcl-2

phosphorylation [42]. Monomers also cause a sig-
nificant accumulation of autophagosomes and also
a reduction of lysosomal activity and an accumu-
lation of substrates that are not digested such as
BACEL1 [36]. These findings confirm our previous
data demonstrating that Af42 monomers upregu-
late BACEI expression interfering with its lysosomal
degradation, inducing a cycle of AP production [43].
We also found that monomers of AB4;, but not
oligomers, inhibit the activity of Uch-L1, an abun-
dant neuronal enzyme that mediates the proteosomal
degradation; our data suggest that Uch-L1 inhibi-
tion interferes with the lysosomes as demonstrated by
the decrease of cathepsin D, a marker of lysosomal
activity [43].

AB42 MONOMERS VS OLIGOMERS ON
TAU AGGREGATION AND
PHOSPHORYLATION

The causal relationship between ‘plaques and tan-
gles’, i.e., whether and how Af3 induces the formation
of intracellular altered and aggregated protein tau, is
a crucial and a much-debated issue.

We investigated whether AB4y could modify the
conformation and/or the phosphorylation of tau
protein to render it more prone to aggregate [44]. Pre-
vious data reported three major mechanisms through
which A peptides may induce tau aggregation: 1)
A phosphorylates tau through the activation of spe-
cific kinases and this event alters the ability of tau to
bind tubulin [45, 46]; 2) A interferes with proteaso-
mal degradation of tau, thus increasing the free-state
of the protein [47]; 3) AP aggregates exert a nucle-
ation effect on tau [3, 4]. The latter hypothesis is
supported by the notion that tau pathology often co-
exists with cerebral amyloidosis [48, 49].

We demonstrated that A4 monomers, but
not oligomers, intraventricularly injected in mice
expressing wild type human tau, produce a patho-
logical conformational change of tau protein [44].
In the same experimental model, we also found
that monomers induce phosphorylation of patholog-
ical tau epitopes activating GSK3p, JNK, and ERK
kinases and that the inhibition of these kinases res-
cues the tau conformational change [44]. Finally, we
investigated whether the observed modification of tau
mediated by A monomers could be ascribed to an
increase of tau protein levels. It is well known that
the increase of total tau is a condition that favors
phosphorylation and conformational change of tau,
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as demonstrated with mutant tau [50]. We found that
AB monomers inhibit its proteasomal degradation.
Thus, AR monomers alter tau conformation through
two different mechanisms: hyperphosphorylation and
increase of protein levels [44].

CONCLUSIONS

Results of our previous works suggest that
oligomeric neurotoxicity is higher than in monomers,
possibly through the production of reactive oxygen
species or others mediators, and kill neurons inducing
apoptosis. Monomers, on the other hand, are able to
modulate ABPP processing, increase BACE1 activity
sustaining its continuous production and favoring tau
aggregation. Thus, both A3 species may be consid-
ered relevant in the pathogenesis of AD. Our results
suggest that AD therapy may be focused not only in
the removal of oligomers but also of monomers and
help to develop new therapeutic approaches to treat
the disease.
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