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Morphometry of the larger foraminifer Heterostegina explaining 

environmental dependence, evolution and paleogeographic 

diversification  

W. Eder, J. Hohenegger, A. I. Torres-Silva, Antonino Briguglio 

Abstract The cosmopolitan, symbiont-bearing, larger benthic foraminifer (LBF) 

Heterostegina sensu lato prefers oligotrophic environments in tropical and warm-temperate 

seas. Harboring diatoms enables this species to be found across a wide illumination gradient 

from intertidal pools, where H. depressa protects against strongest illumination by occupying 

cryptic habitat, down to the base of the euphotic zone. Sheltered cryptic habitat, such as in 

holes of boulders, allows this species to live in highly energetic zones down to the fair-

weather wave base. Dependence on light for photosynthesis of its endosymbionts is managed 

by increasing surface/volume ratios of the test correlated with decreasing light, resulting in 

test flattening. Hydrodynamics also influences reproductive strategies. In high energy 

environments, asexual reproduction by schizogony dominates, while sexual reproduction 

(gametogony) is the dominant mode under low energy conditions. Thus, there is a shift in 

proportions between schizonts with smaller proloculi and gamonts with larger proluculi along 

the hydrodynamic gradient. Because there is a negative correlation between proloculus size 

and the number of chambers undivided by septula (operculinid chambers), the latter character 

shows negative dependence along the hydrodynamic gradient. Both proloculus size and 

number of operculinid chambers have been used as metric characters not only in the evolution 

of Heterostegina lineages starting in the middle Eocene, but also in many other nummulitds 

(e.g., Nummulites, Spiroclypeus, Cycloclypeus), totally neglecting the environmental 

dependence. Additionally, proloculus size can differ between biogeographically different 

populations (e.g., Okinawa and Hawaii) taken under similar hydrodynamic conditions. Using 

growth-independent and growth-invariant characters to describe the internal test morphology 

can enhance interpretation of evolutionary tendencies as distinct from environmental and 

paleogeographic diversification. 
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Introduction 

The genus Heterostegina d’Orbigny, 1826 with first appearance in the late Middle Eocene 

(late Bartonian) belongs to the informal group of symbiont-bearing larger benthic 

foraminifera (LBF) with planispirally enrolled, chambered tests that follow a logarithmic 

spiral. The hyaline tests are characterized by a complete division of chambers into 

chamberlets, at least after an embryonal part (nepiont) consisting of a proloculus and 

deuteroloculus followed by a series of undivided ‘operculinid’ chambers. Whorls completely 

embrace the lateral test parts (involute tests) leading to alar chamber prolongations. Final 

whorls can lose this complete embracement, then named ‘maturo-evolute’ (Banner and 

Hodgkinson 1991). Beside molecular genetic differences (Holzmann et al. 2003), this test 

construction differentiates Heterostegina from the completely evolute genus Planostegina 

(Banner and Hodgkinson 1991). In fossil representatives, the division into the subgenera H. 

(Heterostegina) and H. (Vlerkina) Eames et al. 1968 is solely based on the difference between 

maturo-evolute and involute tests (sensu Banner and Hodgkinson 1991), where the latter are 

regarded as typical for Paleogene representatives. The genus Gryzbowskia Bieda (1949) is 

characterized in equatorial sections by irregular-polygonal chamberlets, thus differentiated 

from Heterostegina possessing rectangular chamberlets (Banner and Hodgkinson 1991; Lunt 

and Renema 2014). The transition from complete involute into maturo-evolute tests in 

Paleogene species (e.g., Less et al. 2008) and the change from rectangular to polygonal 

chamberlets within one specimen makes a division based on chamberlet outline needless. This 

is followed by Less et al. (2008) in the work on the evolution of Paleogene Tethyan 

Heterostegina.  

Today, the cosmopolitan single representative Heterostegina depressa d’Orbigny, 1826 is 

restricted to oligotrophic tropical and warm-temperate seas (Langer and Hottinger 2000). It 

has reinvaded the Mediterranean as a Lessepsian immigrant (e.g., Hyams et al. 2002). 

Molecular genetic homogeneity of the species is documented by Holzmann et al. (2003) 

checking specimens from the Caribbean and Red Sea, and the Indian and Pacific Oceans.  
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Light  

Specific Thalassionema-like diatoms harbored by Heterostegina depressa are clearly 

differentiated from related diatoms found in all other extant nummulitids (Holzmann et al. 

2006), enabling one of the broadest distributions along the light gradient within diatom-

bearing LBF. Optimum photosynthetic rates are obtained at low light levels with a maximum 

around 150 PAR µmol m-2 s-1 (e.g., Nobes et al. 2008). This allows the distribution from 

intertidal pools, where H. depressa protects against strongest illumination in the shadow of 

boulders (cryptic habitat), to the  

 

Fig. 1 The response of test shape in nummulitids to light and hydrodynamics represented in 

Zingg-diagrams. A) isolines represent surface/volume-ratios of triaxial ellipsoids with 

identical volumes. The surface/volume-ratio of a sphere is 4.836. B) isolines represent settling 

velocities expressed as percentages of the velocity of an equivalent sphere. Species are 

represented as trajectories indicating form changes, starting from thick lenticular to thin 

lenticular tests. 1. Heterostegina depressa, 2. Operculinella cumingii. 3. Palaeonummulites 

venosus, 4. Operculina complanata, 5. Planostegina operculinoides, 6. Cycloclypeus 

carpenteri (modified after Hohenegger 2009) 

 

deep euphotic zone (e.g., Hohenegger 2004). The often used thickness/diameter-ratio (or the 

inverse D/T ratio) for determining the reaction to decreasing light intensities, is primarily 

understood as a depth estimator (e.g., Hansen and Buchardt 1977; Renema 2005). But it can 

only be used for tests where flattening is obtained by thinning of the wall lamellae in 

combination with a constant test diameter, (e.g., Amphistegina by Hallock et al. 1986). This 

ratio is not useful where flattening is obtained by increasing test diameters and constant 
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volumes (e.g., Röttger and Hallock 1982). Here, the surface/volume ratios (e.g., Hohenegger 

2009) are better indicators to demonstrate the influence of decreasing light (Fig. 1a).  

An equivalent parameter compared to the thickness/diameter ratio, but growth independent, 

is used to demonstrate the dependence of test flattening from light intensity. Measuring 

thickness at diverse radii for fitting a power function representing growth, thickness is 

calculated for the jth specimen at a radius of 3000 µm by  

                              𝑡ℎ𝑗 = 𝑎𝑗𝑏𝑗
3000 + 𝑐𝑗  (1) 

Where a is the multiplicative constant, b the growth rate and c the offset from the equatorial 

plane. 

The correspondence of this growth invariant character with light intensity and depth is 

shown in Fig. 2. 

 

 

 

 Fig. 2 Test thickness at a constant marginal radius of 3000 µm in dependence of light  

 intensities correlating with depth. Bars indicate standard errors of the mean 
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Hydrodynamics 

While test flattening allows light absorption in low-illuminated environments, because a large 

number of symbionts can be positioned in ‘egg holders’ of the test wall (e.g., Hottinger 1977), 

it weakens resistance against hydrodynamics (Fig. 1b). Therefore, thick lenticular 

Heterostegina can be found in high energy environments down to the fair-weather wave base 

protected in holes of coral rocks and boulders against entrainment and transport. The 

continuous flattening with depth allows settlement on middle to fine grained sand in deeper, 

lower-energy environments (e.g., Hohenegger 2004). 

Hydrodynamics are thus the second important factor for the distribution of H. depressa. 

Beside the effect of entrainment and transport of ‘adult’ tests, the hydrodynamic regime is 

extremely important for reproduction. A trimorphic life cycle in LBF as postulated by 

Leutenegger (1977) was first documented for LBF in H. depressa by Röttger (1990). 

Morphological differences between the asexually reproduced schizonts and gamonts are 

expressed in proloculus size (e.g., Biekart et al. 1985), where proloculi of schizonts are 

significantly smaller than proloculi of gamonts. According to investigations at two depth 

transects NW of Sesoko Jima, Japan (Yordanova and Hohenegger 2002), the test characters 

‘proloculus size’ and ‘number of operculinid chambers’ (e.g., Less et al. 2008) are negatively 

correlated, independent of their partial correlation with water depth. Decomposition of the 

bimodal frequency distribution of proloculus size, combining all depth samples into normally 

distributed components, resulted in two groups, one with smaller and the other with larger 

proloculi, thus interpreted as schizonts and gamonts. Fitting depth samples using parameters 

of both distributions resulted in dominance of schizonts from 5 m to 35 m expressed in 

unimodal distributions, followed by bimodal distributions between 35 and 55 m, where both 

generations are present. Below 55 m the unimodal frequency distributions correspond to the 

distribution parameters of gamonts. Analyses of variance confirmed the stability in 

parameters of each generation with depth, thus explaining the depth trend as a sequence of 

two stable intervals, apogamic schizogeny at hydrodynamically exposed depths (5 to 35m) 

and gametogamy in quiet water (55 to 90 m), connected by a transition zone where both 

reproduction modes are present showing decreasing schizogeny and increasing gametogamy 

(Eder et al. 2016b). This distribution pattern can be explained by hydrodynamics hindering 

sexual reproduction in shallow environments exposed to strong water movement by 

destroying tiny gametes (Eder et al. 2016b). 
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Evolutionary lineages 

The depth trends in increasing proloculus size and decreasing number of undivided 

(operculinid) chambers of H. depressa perfectly mirrors the evolutionary lineages proposed 

by Less et al. (2008) for the Western Tethyan Heterostegina armenica and H. reticulata (Fig. 

3; Eder et al. 2016b). This is an argument for an intense environmental dependence of these 

lineages and may explain setbacks that have been documented also for Nummulites, where 

“more evolved” species occurred together with unreworked “primitive” species (Racey 1992). 

Hence, the distributional pattern influenced by environmental factors might pose a problem 

for the explanation of continuous character changes as evolutionary tendencies. 

Additionally, biogeographic differences may tangle the explanation as evolutionary 

lineages. Investigation on cell growth by chamber volumes using generalized logistic 

functions (Richards 1959) showed that chamber growth in the initial test part up to chamber 

25 can best be fitted by exponential function: 

𝑉𝑡𝑒𝑠𝑡 = 𝑎𝑒𝑏𝑖  i = chamber number  (2) 

with the multiplicative constant a explaining proloculus size and the multiplicative constant b 

determining the growth rate (Eder et al. 2016a). 
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Fig. 3  Depth trend in proloculus size versus number of undivided postembryonic chambers in 

Heterostegina depressa from Sesoko Island, Okinawa with ellipses marking standard errors 

(95%). This depth trend completely fits the proposed evolutionary lineage of the late Eocene 

Heterostegina reticulata with the subspecies (from top to the bottom) H. reticulata tronensis, 

H. reticulata hungarica, H. reticulata multifida, H. reticulata helvetica, H. reticulata 

reticulata, H. reticulata mossanensis and H. reticulata italica (modified after Less et al. 2008) 

 

Differences in initial growth between populations from Sesoko, Japan 20 m (collection 

Hohenegger) and Maui, Hawaii 40 m (collection Röttger) are expressed in proloculus size 

(constant a in equation 2), where individuals from Sesoko correspond to schizonts and 

individuals from Hawaii with larger proloculi correlate to gamonts (Fig. 4). Individuals from 

both natural populations have the same growth rates expressed in parameter b of equation 2. 

Cultured specimens originating from the natural population of Hawaii differ in both growth 

parameters from their natural population  
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Fig. 4   Scatter plot of the constants a (indicating proloculus volume) and b (indicating growth 

rate) for the exponential fit of the first 25 chambers, comparing megalospheres from Sesoko 

and Maui with laboratory cultures (after Eder et al. 2016b) 

 

(Fig. 4; Eder et al. 2016a).This difference in parameter a indicates that they are also schizonts. 

Hence, schizonts from Hawaii have larger proloculi than those from Japan. Parameter a has to 

be studied on a larger scale to establish a reliable biogeographic trend, while parameter b 

gives more information about individual growth. 

The above mentioned difficulties in explaining evolutionary lineages by a small set of 

internal test characters as used for stratigraphic purpose (e.g., Less et al. 2008) can be avoided 

using growth-independent and growth-invariant characters enabling a more or less general 

description of the complete test (e.g., Hohenegger 2011, 2016). Using these methods, 

constants of equations fitting the character change during growth act as “supergenes” (e.g., 

Thompson and Jiggins 2014). Their effect on individuals can then be used as characters to 

classify fossil individuals in populations by multivariate analyses. After determining 

populations using classification analyses, they can be interpreted as populations within an 

evolutionary lineage or as paleobiogeographically separated populations (subspecies; 

Hohenegger 2013). Significant differences between populations can be obtained by 

discriminant analysis. The Late Eocene Heterostegina ocalana Cushmann, 1921 from Cuba 
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and Panama (Cole 1952) can be used as an example for interpretation of populations. Here, 

the differentiation between paleogeographic distinct populations from Cuba and Panama is 

expressed in the first discriminant axis that is highly loaded by the character “number of 

undivided (operculinid) chambers” (Fig. 5). Evolutionary tendencies in populations from 

Cuba that are stratigraphically supported are also demonstrated in the first axis by a weak 

increase in the number of operculinid chambers, but strongly documented by the second 

discriminant axis with decreases in the “expansion rate of the marginal spiral”, the “number 

of chamberlets” and the “backward-bend angle of chambers” (Fig. 5). This evolutionary 

tendency is not coupled with an increase in “proloculus size” (here proloculus height and 

width), yet is regarded as the most prominent indicator for evolutionary changes in 

heterostegines (Less et al. 2008).  

 

 

Fig 5 Discriminant analysis of Heterostegina ocalana populations from Cuba and Panama 

based on growth independent and growth invariant characters, where loadings of the 

important characters are shown (after Hohenegger and Torres-Silva 2016) 

 

Paleogeographical differences leading to subspecies, together with transport, reworking 

and time-averaging, could obscure the clear dependence of fossil Heterostegina species on 

hydrodynamics and light, possibly leading to erroneous interpretations regarding evolutionary 
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lineages. Using growth-independent and growth-invariant characters describing the internal 

test morphology more or less completely allows a much better interpretation of evolutionary 

tendencies separated from paleogeographic diversification. 
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