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ABSTRACT: The reported study focused on modelling the seismic response of two 

URM buildings that were damaged in the Canterbury earthquake sequence. Static and 

dynamic nonlinear analyses were undertaken using the equivalent frame approach. Actual 

time-history records attained during the earthquakes where used to undertake dynamic 

analyses and facilitate direct comparison to the observed building damage. The results 

showed that use of the equivalent frame method enabled prediction of the seismic 

response of the two case study buildings with a high level of accuracy.  

1 INTRODUCTION AND MOTIVATIONS 

Following the 2010/2011 Canterbury earthquakes there has been renewed focus on assessing the 

earthquake capacity of existing unreinforced masonry (URM) buildings, with this need being 

legislated with the earthquake prone buildings amendments bill to the Building Act 2004 (Amendment 

Bill, 2013 No 182-1). In the reported study, the attention was focused on the global response of URM 

buildings, where it was assumed that appropriate connections exist between structural elements that 

prevent the activation of local failure modes, mainly associated with the out-of-plane response of 

walls. Within this context, the global seismic response is related both to the in-plane capacity of walls 

and to the load transfer via floor and roof diaphragms. There are a number of different possible 

modelling strategies available in literature and in various codes, standards and guidelines. The focus of 

the study reported herein was on using the equivalent frame (EF) approach with a purposely developed 

software, Tremuri (Lagomarsino et al. 2013). In the EF approach, each load resisting URM element is 

subdivided into a set of URM panels (where the deformation and the nonlinear response are 

concentrated), and a companion set of rigid portions or joints, which connect the URM panels. The EF 

approach requires a limited number of degrees of freedom, and allows nonlinear dynamic analyses of 

complex three dimensional models of URM structures to be undertaken with a reasonable 

computational effort. Moreover the idealisation of the structural system as an EF allows the 

introduction of other elements, such as reinforced concrete, steel or wooden beams and columns. 

The use of the EF approach is proposed in NZSEE (2015) along with a worked example on a case 

study prototypical New Zealand URM building (Cattari et al. 2015, EQ STRUCT 2015). The case 

study URM building was damaged in the 2007 Gisborne earthquake and good correlation of the actual 

vs predicted performance was shown using the EF approach. Further research was initiated to 

investigate the reliability of this procedure by attempting to simulate the observed seismic response of 

two additional case study URM buildings that were damaged during the Canterbury earthquake 

sequence. These two case study buildings are: (1) Avonmore House (AH) that was located at 203 

Hereford Street in Christchurch and (2) Royal Hotel (RH) that was located at 34 Norwich Quay in 

Lyttelton (Fig. 1). The two case study buildings were standalone structures and exhibited a clearly 

prevailing in-plane global response during the earthquake induced shaking, and hence were selected as 

suitable exemplar cases for investigating the reliability of an EF approach. AH and RH were 

significantly damaged during the Canterbury earthquake and were subsequently demolished. Prior and 

during the building demolition, sustained damage was well documented and a detailed photographic 

record was collected. In addition, construction and alteration drawings were acquired from 

Christchurch City Council records property files and were reviewed in detail. 
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a) Avonmore House  b) The Royal Hotel  

Figure 1 - Illustrations of the subject buildings 

 (photographs taken following the 22 February 2011 earthquake) 

2 DESCRIPTION OF CASE STUDY BUILDINGS 

Figure 2 shows a plan view of both subject buildings, together with a 3D view of their geometrical 

configuration. 

  

a) Ground floor plan and Tremuri 3D model of AH b) Ground floor plan and Tremuri 3D model of RH 

(hatched area explained in Section 2.2) 

Figure 2 - General layout and geometry of the subject buildings 
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Table 1. Approximated wall characteristics of the case study buildings 

 Element Ground floor First floor Second floor 

AH 
Wall thickness (mm) 710 (6 leaves) 590 (5 leaves) 470 (leaves) 

Inter-storey height (m) 3.70 3.95  3.50 

RH 
Wall thickness (mm) 470 (4 leaves) 350 (3 leaves) - 

Inter-storey height (m) 3.57 3.60 - 

2.1 Avonmore House  

AH was a three storey building with external clay brick URM walls on three sides and an unreinforced 

concrete wall on the North side. The timber floor diaphragms were supported by the external walls and 

on internal steel frames. AH was a standalone structure located on sand and silty-sand soil that is at 

least 23 m deep (from borehole data). The building presented a significant plan irregularity due to the 

heavily perforated South and the East façades, whereas the West façade was an unperforated masonry 

wall with additional stiffness provided by the URM return walls of the elevator that were four leaves 

in thickness (470 mm). The North wall consisted of unreinforced concrete and was assumed to be non-

loadbearing due to evidence of a loadbearing independent steel frame supporting the floor gravity 

loads in the vicinity. The North wall was initially an unperforated unreinforced concrete wall, with 

openings subsequently added as part of alterations during the lifetime of the building with an RC 

lintels installed above these openings. AH was approximately 11.2 m high (excluding parapets) with a 

plan area of approximately 380 m
2
. The thicknesses of the walls were estimated from photographic 

evidence collected during the demolition, and are summarised in Table 1. Each timber floor and roof 

diaphragm spanned between perimeter URM walls and had intermediate support provided by seven 

internal steel columns located underneath steel beams that are thought to have been 500 mm high 

(shown dashed in Fig. 2). The parapet height was estimated to be 2.5 m on the South and East façades 

and 1.2 m on the North and West façades, with all parapets being four leaves in thickness (470 mm). 

On the South and East façades concrete ring beams were assumed to consist of 3 bars of ¾ inches 

(approximately 19 mm) longitudinal reinforcement, without transverse reinforcement. A lightweight 

partial extension on the roof level was not modelled in the equivalent frame model, and only its weight 

was considered.  

The AH building had undergone seismic retrofitted in 1994 where each of the floor diaphragms were 

overplyed with 20 mm particleboard. Perimeter URM walls were connected to the floor and roof 

diaphragms using a combination of adhesive anchors and steel equal angels. Furthermore, the floor 

and roof diaphragms were fixed to the unreinforced concrete North wall. For this reason, a higher 

value for the shear stiffness of the diaphragms was used than suggested in the NZSEE (2015) 

guidelines (Table 3). Steel parapet restraints were also added at the roof level around the building 

perimeter.   

2.2 Royal Hotel  

The Royal Hotel (RH) was a two storey building with external clay brick URM walls, internal steel 

frames (likely only at ground floor) and timber floors. The building was approximately 7.2 m high 

(excluding the parapets) with a plan area approximated as 290 m
2
 at ground floor and 250 m

2
 at 1

st
 

floor (excluding small rooms on ground floor that were added following subsequently construction). 

Drawings showing wall thicknesses were not available, and the dimensions were estimated based on 

limited photographs that were taken during building demolition. The assumed dimensions are reported 

in Table 1. The timber floor diaphragms spanned between perimeter URM walls and, at least at ground 

floor, they had intermediate support provided by two internal steel frames (shown dashed in Fig. 2).  

The parapet height was estimated as 1.2 m above the part of the building shown hatched in Figure 2b 

and 1.0 m on the remaining part, with both sections being 3 leaves in thickness (350 mm). Based on 

photographic evidence, concrete ring beams were identified at the ground and first floor levels. 

Evidence of steel reinforcement was only identified for the concrete ring beam located on the first 
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level and based on observed earthquake damage it was assumed that reinforcement was also present in 

the ground floor ring beam.   

2.3 Loads, seismic weight and material properties 

Table 2 provides the assumed permanent and imposed load applied to AH and RH.  

Table 2. Adopted loads for the subject buildings 

Element Description 
Permanent 

load 
Imposed load 

Timber floors and 

roof diaphragm 

Framing, floorboard and ceiling. 

Superimposed dead load from services  

0.5 kPa 0.65 kPa 

Clay brick masonry External loadbearing walls 18 kN/m
3
 Not applicable 

Concrete elements Ring beams at each storey 25 kN/m
3
 Not applicable 

Internal partitions Timber stud framing, plasterboard lining 0.65 kPa Not applicable 

For AH, the mortar compressive strength (18 MPa) was determined using samples extracted from the 

building during demolition, with the results of those tests having been reported in Lumantarna (2012). 

For cohesion and friction the values suggested in NZSEE (2015) for cement based mortars were used. 

Tests on the bricks were not carried out, but based on surveys made during the building demolition, 

the bricks were deemed to be strong and difficult to scratch. Based on these observations and the 

recommendations in NZSEE (2015), an average brick compression strength of 26 MPa was adopted. 

In order to establish the: (i) probable masonry compressive strength, (ii) the masonry Young’s 

Modulus and (iii) the masonry shear modulus, the equations proposed in NZSEE (2015) were used and 

the results are reported in Table 3. However for the masonry Young’s Modulus a values of 500 times 

the masonry compressive strength instead of 300 times was used because for the case of strong cement 

mortars this value better matched the value suggested in EN 1998-1. Material tests were not carried 

out for RH. From the photographs and site observations that were made during site inspection 

following the earthquakes, the bricks appeared soft and it was identified that lime mortar was used in 

the original construction. The procedure outlined in NZSEE 2015 was used for estimating the material 

propertied for such characteristics (reported in Table 3).  

Table 3. Summary of the mechanical properties used in the assessment 

 Masonry properties Diaphragms properties 

AH 

Young’s modulus* 10.28 GPa Young’s modulus in the joist direction 22.5 GPa 

Shear modulus* 4.11 GPa Young’s modulus in the direction 

perpendicular to E1 

10 GPa 

Compressive strength 20.55 MPa Shear modulus 875 MPa 

Brick tensile strength  3.1 MPa Thickness 40 mm 

Cohesion** 0.63 MPa   

RH 

Young’s modulus* 2.01 GPa Young’s modulus in the joist direction 22.5 GPa 

Shear modulus* 0.80 GPa Young’s modulus in the direction 

perpendicular to E1 

10 GPa 

Compressive strength 6.68 MPa Shear modulus 87.5 MPa 

Brick tensile strength  1.7 MPa Thickness 40 mm 

Cohesion** 0.28 MPa   

*Values of the cracked stiffness. The initial stiffness was assumed to be double this value. 

**The values of the cohesion were modified according to the Mann and Muller proposal (1980). 
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2.4 Basis of equivalent frame model 

The seismic response of the case study buildings was simulated by performing nonlinear analyses 

through the adoption of the Equivalent Frame (EF) modelling strategy that is based on discretisation of 

the walls into a set of masonry panels (piers and spandrels), in which the nonlinear response is 

concentrated, connected by rigid areas (nodes). The EF analysis was performed using the Tremuri 

software (Lagomarsino et al. 2013). It is highlighted that only the in-plane response was considered, 

recognising that apart from a small portion of the parapet, no out-of-plane collapse occurred in either 

building during the Canterbury earthquakes. The nonlinear response of masonry panels was modelled 

by adopting nonlinear beams with a multilinear constitutive law that was recently implemented in the 

software used (Cattari & Lagomarsino 2013). The elastic response phase is described according to 

beam theory by defining the initial Young’s (E) and shear (G) moduli of masonry, and then the 

progressive degradation is approximated using a secant stiffness (the values defined in Table 3). The 

elastic values are defined by multiplying the secant stiffness by a coefficient, in this case equal to 2 (as 

suggested in EN 1998-1). The maximum shear strength is defined on the basis of common criteria 

proposed in literature as a function of different failure modes examined (either flexural or shear). The 

progression of nonlinear response is defined through subsequent strength decay (βEi) and drift limits 

(δEi), which are associated with the achievement of reference damage levels (DLi with i=1,5, where 

DL5 is associated with “collapse” of the panel, representing as the state when the panel has lost the 

capacity to support horizontal loads) as shown in Fig. 3a and Table 4. Moreover, an accurate 

description of the hysteretic response is also included based on a phenomenological approach that is 

able to account for the typical response of panels having a prevailing shear or flexural behaviour (Fig. 

3). Mixed failure modes are also taken into account and parameters may be calibrated in order to 

differentiate between the behaviour of piers and spandrels. In case of openings with URM arches, a 

depth up to 2/3 of the radius of the arches was used for the beams of the EF. In the multilinear 

constitutive law the shear decays correspond to drift values derived from experimental evidences of 

spandrels with URM arches underneath (Beyer 2012). For their flexural behaviour an equivalent 

tensile strength contribution was considered as adopted in NZSEE (2015) and proposed in Beyer 

(2012). Finally, diaphragms are modelled as horizontal orthotropic membrane finite elements. 

 

 

 

b) Example of hysteretic response for the 

case of a shear failure mode 

 

a) Backbone response of a masonry panel and definition of the 

associated colours and symbols (adapted from Cattari and 

Lagomarsino 2013) 

c) Example of hysteretic response for the 

case of a flexural failure mode 

Figure 3 - Details of the multilinear constitutive law for a masonry panel 
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Table 4. Summary of the threshold used for piers and spandrels 

[%] δE3* δE4* δE5* βE3* βE4* 

Piers** 0.6 - 0.3 0.8 - 0.5  1 - 0.7 0 - 15 30 - 60 

Spandrels 0.2 0.6 2 50 50 

*δ Ei drift limits, βEi strength decays as shown in Figure 3a 

**The first value is assumed in case of prevailing flexural behaviour, the second in case of shear 

3 ANALYSIS OF THE DAMAGE AND NUMERICAL SIMULATIONS 

Nonlinear time history analyses using the numerical models described above were carried out in order 

to simulate the seismic response of the case study buildings. Thanks to the New Zealand GeoNet 

project it was possible to identify two time history accelerograms recorded by stations located in the 

vicinity of the subject buildings. For AH the CCCC (Christchurch Cathedral College) strong motion 

record was used, that was recorded approximately 800 m distant from the building, whereas for RH 

the LPCC (Lyttelton Port Company) strong motion data was used that was recorded approximately 

900 m distant (Fig. 4). For the recorded histories the values of the peak ground accelerations (PGA) 

are reported in Table 5. It is noted that the CCCC recording station is situated on a type of soil similar 

to the one where AH was located (Wotherspoon et al. 2015), whereas the LPCC station is instead 

situated on rock whilst RH was situated in the centre of the valley where the town of Lyttelton is built 

and therefore the case study building was expected to have at least 12 m of sediments underneath. 

 

  

a) Circled in red the location of AH, in magenta the strong 

motion recorder and in green the Cathedral 

b) Location of RH in Lyttelton (circled in red) and 

of the strong motion recorder (circled in magenta) 

Figure 4 - Locations of case study buildings. The streets where the buildings were located are marked in 

light blue (images from Google) 

In Figure 5 the comparison between the real damage to AH and the results of the simulation carried 

out with Tremuri is shown. In the simulation the model mainly presented spandrel damage, 

particularly on the South façade, and this finding is consistent with the damage observed in the 

building after the earthquake. Furthermore, in this façade (the shorter) it was also possible to identify 

wide cracks in the piers (mainly in the top storey) that the simulation was able to predict.  

RH presented less extensive damage than AH, mainly concentrated in the piers. This observation 

supports the hypothesis that reinforcement was present in the ring beams. The numerical response, 

however, seemed to show an overall lower damage if compared with the response of the building 

during the earthquake. A possible explanation could be that the strong motion was recorded on a 

different type of soil, and therefore no particular site effect was accounted for. For the meaning of the 

colours and the symbol of the numerical model screenshots refer to Figure 3. 
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a) South façade of AH after the earthquake. Damage is 

evident in the spandrels and in the exterior and top piers 

b) East façade of AH after the earthquake. Damage 

was mainly in the spandrels and external piers 

  

c) Damage in the South façade of the Tremuri model at 

the end of the dynamic analysis 
d) Damage in the East façade of the Tremuri model at 

the end of the dynamic analysis 

Figure 5 - Comparison between the real damage and the numerical analysis for AH (in the East façade the 

cracks are highlighted in red for clarity). See Figure 3 for meaning of colours and symbols. 

 

  

a) Façade of RH on Canterbury road. Cracks are 

highlighted in red for clarity 
b) Façade of RH on Norwich Quay. Cracks are 

highlighted in red for clarity 

  

c) Tremuri damage forecast in the façade on Canterbury 

road at the end of the dynamic analysis 
d) Tremuri damage forecast in the façade on Norwich 

Quay at the end of the dynamic analysis 

Figure 6 - Comparison between the observed damage and the numerical analysis for RH (cracks are 

highlighted in red for clarity). See Figure 3 for meaning of colours and symbols. 
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In Figures 7 and 8 the comparisons between the results of nonlinear dynamic analyses and those of 

nonlinear static analyses are depicted. The red curves refer to analyses where the applied load pattern 

was proportional to the masses (rectangular acceleration profile), and the blue curves refer to the 

analyses where an inverted triangular acceleration profile was assumed. On the vertical axis of the 

graphs the base shear is normalized to the weight of the building, whereas the horizontal axis reports 

the average displacement of the roof normalized to the height of the building (building drift). The 

vertical dashed lines indicate the displacement where the base shear capacity in the pushover curves 

had decayed by 20% (or the last step that reached convergence), considered here as the ultimate 

displacement du of the nonlinear static procedure. In Table 5 a summary of the main results from the 

numerical analyses is reported: the fundamental period and the corresponding mass participation, the 

ratio between the maximum base shear normalized to the weight of the building, the yield and ultimate 

displacement from the pushover analyses obtained by transforming the pushover curves to their 

bilinear equivalents (as suggested in EN 1998-1), the ductility values derived from the bilinear curves, 

and the maximum displacement from the dynamic analyses. 

In Figure 7 it is observed for AH that in the x direction similar result were obtained from the dynamic 

and static analyses. This finding is consistent with the damage observed after the earthquake, where 

the South façade exhibited extensive damage and had probably lost all of its horizontal resistance. In 

the y direction the building exhibited a lower level of damage, with a comparable extent of damage 

also implied by the rather narrow loops obtained from the dynamic analysis. In the positive x direction 

the ultimate displacement for the two load distributions was almost coincident, and in the positive y 

direction the ultimate displacement du for the inverted triangular load pattern corresponds to a drift of 

1.08% and is outside the scale for the graph. Finally, in the negative x direction when the uniform load 

distribution was applied, drift corresponding to 20% decay of shear base occurred at approximately 

0.08% (marked by the red dashed line in Figure 7). However this value is not considered as the 

ultimate displacement because the model regained its strength as lateral displacement further 

increased. Therefore this value was not reported in Table 5. 

RH exhibited less damage after the earthquake that was experienced by AH, and the results of the 

dynamic hysteresis also show narrow loops that indicate a lower extent of damage. Furthermore the 

dynamic response exhibits little strength loss, which is another indicator that the building was 

probably able to support a higher demand. 

Table 5. Summary of the main results from numerical analyses 

 Dir. 
T1 

[s] 

mX – mY 

[%] 

Vmax/W dy 

[mm]* 

du 

[mm]* 
 PGA 

[m/s
2
]** 

dmax 

[mm] 

AH X 0.2 62 – 0 0.17 2.5 42.4 12.0 3.71 36.9 

 Y 0.13 0 – 51 0.32 3.1 39.1 12.6 4.06 16.1 

RH X 0.19 48 – 0 0.22 1.8 36.7 19.8 9.03 6.56 

 Y 0.17 0.4 – 26 0.33 2.8 16.7 6.00 7.54 4.99 

*results refer to the load distribution that showed the lowest ductility: red uniform, blue triangular 

**PGA in vertical direction used for the analyses: AH = 6.78 m/s
2
, RH = 4.03 m/s

2
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a) X direction b) Y direction 

Figure 7 - Comparison of results for pushover analysis and nonlinear time history analysis for AH 

 

  

a) X direction b) Y direction 

Figure 8 - Comparison of results from pushover analysis and nonlinear time history analysis for RH 

4 CONCLUSIONS  

Numerical analyses that were undertaken using the equivalent frame approach on two models of URM 

buildings damaged during the Canterbury earthquake sequence showed that when a good level of 

knowledge of the construction is reached, this method is able to predict with rather high accuracy the 

level of damage expected (as shown in Figure 5 and 6). Furthermore this methodology has the 

advantage that a URM building may be modelled with a low number of elements and enable nonlinear 

dynamic analyses to be undertaken in a short amount of time.  

Although AH was constructed of masonry with a high compressive strength, the building exhibited 

extensive damage that was slightly overestimated by the numerical analysis, mainly in the spandrels of 

the East façade. This over-estimation was attributed to a lack of knowledge about the cohesion and the 
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tensile capacity of the bricks, where the default values proposed in NZSEE (2015) were adopted. For 

RH the nonlinear dynamic analysis slightly underestimated the real damage, which was possibly 

explained by recognising that it was not possible to fully account for site effects.   
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