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A new icriodontid conodont cluster with specific mesowear supports an alternative
apparatus motion model for Icriodontidae

Thomas J. Suttner a,b*, Erika Kido a and Antonino Briguglio c

aUniversity of Graz, Institute for Earth Sciences, Heinrichstrasse 26, 8010 Graz, Austria; bGeological-Palaeontological Department,
Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria; cFaculty of Science, Universiti Brunei Darussalam, Jalan Tungku

Link, Gadong BE1410, Brunei Darussalam

(Received 28 November 2016; accepted 25 June 2017; published online 15 August 2017)

Increasing numbers of conodont discoveries with soft tissue preservation, natural assemblages and fused clusters of the
hard tissue have strengthened the hypothesis regarding the function and mechanism of the conodont feeding apparatus.
Exceptional fossil preservation serves as a solid basis for modern reconstructions of the conodont apparatus illustrating the
complex interplay of the single apparatus elements. Reliable published models concern the ozarkodinid apparatus of
Pennsylvanian and Early Triassic conodonts. Recognition of microwear and mammal-like occlusion, especially of
platform elements belonging to individuals of the genus Idiognathodus, allows rotational closure to be interpreted as the
crushing mechanism of ozarkodinid platform (P1) elements. Here we describe a new icriodontid conodont cluster of
Caudicriodus woschmidti that consists of one pair of icriodontan (I) and 10 pairs of coniform (C1–5) elements, with I
elements being preserved in interlocking position. The special kind of element arrangement within the fused cluster
provides new insights into icriodontid apparatus reconstruction and notation of elements. However, orientation of coniform
elements is limited to a certain degree by possible preservational bias. Four possible apparatus models are introduced and
discussed. Recognition of specific wear on denticle tips of one of the icriodontan elements forms the basis for an
alternative hypothesis of apparatus motion. Analysis of tip wear suggests a horizontal, slightly elliptical motion of
opposed, antagonistically operating I elements. This is supported by similar tip wear from much better preserved, but
isolated, elements of Middle Devonian icriodontids. More detailed interpretation of the masticatory movement will allow
enhanced understanding of anatomical specifications, diet and palaeobiology of different euconodont groups.

Keywords: Caudicriodus woschmidti; conodont cluster; apparatus reconstruction; mesowear; mastication model

Introduction

Fused clusters of icriodontid conodonts have been known

since the late 1960s. The first publication discussed the

apparatus of the Late Devonian species Icriodus alterna-

tus (Lange 1968). This paper concluded that about 30

coniform elements belonging to the form taxon Acodina,

together with one pair of icriodontan elements, could rep-

resent the apparatus of one individual. Concerns regarding

the absolute number of acodinan elements were raised by

Lange (1968) because the conodont elements were clus-

tered within a coprolite. In the early 1980s, more than 850

conodont clusters of Icriodus expansus from Late Devo-

nian deposits of the Canning Basin in Western Australia

were analysed and described by Nicoll (1982). He con-

cluded that the apparatus consisted of one pair of icrio-

dontan (I) elements and more than 140 cone elements.

Nicoll discriminated seven element types and changed the

common opinion of a bimembrate (Klapper & Philip

1971) or trimembrate (Nicoll 1977) into a septimembrate

icriodontid apparatus model (Nicoll 1982). Since then, the

notation and number of elements included within the indi-

vidual apparatus has changed, especially among Early

Devonian icriodontids. However, these models of the

apparatus have been reconstructed on statistical analysis

of isolated elements, which are supposed to belong to

Caudicriodus woschmidti (Serpagli 1983) and Cypricrio-

dus hesperius (Simpson 1998; Murphy et al. 2016).

Serpagli (1983) introduced an icriodontid apparatus

model that includes a set of ramiform elements.

The conodont cluster of Caudicriodus woschmidti

described here provides new insights into apparatus com-

position and notation of elements. The architecture of the

cluster is very similar to the apparatus composition

described by Nicoll (1982), except that coniform ele-

ments, which have prominent shoulder spurs, are lacking.

It differs from the reconstructions of Serpagli (1983) in

having no ramiform or denticulate elements preserved.
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Therefore, the notation of coniform elements by Nicoll

(1982) is modified here.

Although clusters of icriodontan elements in interlock-

ing position were found prior to our discovery, distinctive

tip wear was not recognized. Weddige (1990) attempted

to classify wear of isolated conodont specimens, resulting

in the identification of Occlusio, Depressio and Duplicatio

pathologies for the genera Polygnathus and Icriodus.

Based on pathologies seen on the oral surface of conodont

elements, Weddige (1990) hypothesized a permanent see-

saw movement of antagonistically working platform

element pairs. Alternative models of the motion of the

icriodontid apparatus do not exist. Thus, recognition of

denticle tip wear on one of the icriodontan elements of the

Caudicriodus cluster provides a unique opportunity to

reconsider the icriodontid apparatus motion model. Anal-

ysis of mesowear (Purnell & Jones 2012) on the fused

cluster is supported by measurements of denticle tip wear

on isolated, but much better preserved, Middle Devonian

icriodontan elements.

Material and methods

Extraction of conodonts followed the standard chemical

methods for phosphatic microfossils (Jeppsson & Anehus

1995). For dissolution of conodont-bearing rocks (marl

and limestone), we used 5% formic acid. Sodium poly-

tungstate (density 2.79 g/cm3) was used for heavy liquid

separation (Mitchell & Heckert 2010).

Scanning electron microscope (SEM) images of cono-

donts were produced using a Zeiss DSM 982 Gemini elec-

tron microscope (Institute for Earth Sciences, University

of Graz). Conodonts were coated with gold/palladium

alloy for 10 minutes.

For three-dimensional reconstruction and discrimination

of single apparatus elements, computer microtomography

(Micro-CT) was used for the icriodontid conodont cluster.

The specimen was scanned for c. 5 hours at 80 kV (source

voltage) and 100 uA (source current) with an image rota-

tion step of 0.2600 degrees using a SkyScan 1173 (Depart-

ment of Palaeontology, University of Vienna).

The material figured herein was collected from two

localities. The conodont cluster of Caudicriodus wosch-

midti was obtained from bed Ki/4/2a (hesperius Biozone,

Lochkovian) of the ‘Kottwitz’ quarry near the village of

Kirchfidisch, southern Burgenland, Austria (Suttner

2009a). Two isolated icriodontan elements of Icriodus aff.

michiganus and Icriodus sp. came from sample BL-12-

29c (kockelianus Biozone, Eifelian), Blankenheim Syn-

cline, Eifel, Germany (K€onigshof et al. 2016).
The conodont cluster of Caudicriodus woschmidti is

stored in the micropalaeontological collection of the Geo-

logical-Palaeontological Department, Natural History

Museum Vienna (Austria) under the repository number

NHMW 2011/0374/0001.

Geological setting

The icriodontid conodont cluster was found in Unit 4 of the

‘Kottwitz’ quarry near Kirchfidisch (Fig. 1), which repre-

sents one of few localities in southern Burgenland (Austria)

where Silurian to Devonian rocks are exposed. Other out-

crops are found near the villages of Hannersdorf, Punitz

and Sulz (Pollak 1962; Sch€onlaub 1984, 1994, 2000).

Additionally, the sequence is documented from subsurface

drilling cores in the Styrian Basin near the villages of

Arnwiesen and Blumau (Ebner 1988; Fl€ugel 1988).
At the ‘Kottwitz’ quarry, the latest Silurian (Pridolian)

and Early Devonian (Lochkovian) sequence is about

40 metres thick and consists of phyllitic shale, calcareous

marls, laminated limestone, dolomitic limestone and dolo-

stone (Suttner & Lukeneder 2004; Suttner 2009a). The

interval yielding the fused cluster of Caudicriodus com-

prises well-bedded, laminated argillaceous and silty lime-

stones. Beds are 7 to 25 cm thick and yield a low-diversity

invertebrate fauna including brachiopods, ostracods and

crinoid ossicles. Other specimens of fused coniform ele-

ments (icriodontids) and ramiform elements (ozarkodinids)

were found in beds Ki/4/1c and Ki/4/2a (Suttner 2009b, c).

Systematic palaeontology

General remarks. Although we use the term Conodonta

of Eichenberg (1930), the subdivisions of order (Paraco-

nodontida excluded) and family as introduced by Sweet &

Donoghue (2001, fig. 6) are followed here. A slightly

modified notation of Nicoll (1982) for coniform elements

of the Caudicriodus apparatus is used. This Early Devo-

nian species did not possess coniform elements with

prominent shoulder spurs (Ce element of Nicoll 1982) and

therefore the apparatus reconstruction of Nicoll (1982)

cannot be applied entirely, although all other element

types are recognized. In order to keep the relation to Late

Devonian icriodontids, we retain the notation of ‘C’ for

‘coniform’ but use numbers instead of letters for subdivi-

sion of elements. Our revised notation based on Nicoll

(1982) is as follows: Ca D C3; Cb D C5; Cc D C1; Cd D
C4; Ce D not observed; Cf D C2a–f; I D I.

Because in vivo orientation of icriodontid apparatus ele-

ments is unknown, we apply conventional terminology

and orientation here for description of elements and indi-

cation of relative disposition in proposed models. Terms

used follow the suggestions of Purnell et al. (2000,

pp. 117, 119, table 2).

Phylum Chordata Bateson, 1886

Class Conodonta Eichenberg, 1930 sensu Sweet &

Donoghue, 2001

Order Prioniodontida Dzik, 1976

Family IcriodontidaeM€uller & M€uller, 1957
Genus Caudicriodus Bultynck, 1976

2 T. J. Suttner et al.
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Type species. Icriodus woschmidti Ziegler, 1960;

lower Lochkovian; Untenr€uden, Rhenish Slate Mountains,

Germany.

Remarks. The generic diagnosis follows Bultynck

(1976). The outline of the widely opened basal cavity

(termed platform in earlier publications, but not

homologous to the platform in polygnathids, for exam-

ple) is identical in shape to that of other species of

Icriodus. Features which discriminate Caudicriodus

from Icriodus are the lateral process (denticulate or

adenticulate) that extends posterior of the cusp at a

specific angle, and a spur developed between the cusp

and ‘posterior’-most transverse denticle row on the

‘inner’ side of the element.

Bultynck (1976) included the following species within

Caudicriodus: Caudicriodus woschmidti, C. postwosch-

midti, C. angustoides, C. curvicauda, C. celtibericus and

C. sigmoidalis. Later, Drygant (2010) included four addi-

tional species, Caudicriodus hesperius, C. ruthmawsonae,

C. transiens and C. serus, and Drygant & Szaniawski

(2012) described Caudicriodus schoenlaubi. More

recently, Murphy et al. (2016) excluded Caudicriodus

hesperius, placing it in their new genus Cypricriodus.

Figure 1. Locality map and section log from the ‘Kottwitz’ quarry (southern Burgenland, Austria), where the Caudicriodus woschmidti
conodont cluster was found.

A new icriodontid conodont cluster 3
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Caudicriodus woschmidti (Ziegler, 1960)

(Figs 2, 4)

1960 Icriodus woschmidti Ziegler: 185, pl. 15, figs 16–18,

20–22.

1962 Icriodus woschmidti Ziegler; Jentzsch: 967, pl. 1,

figs 17–23.

1964 Icriodus woschmidti Ziegler; Walliser: 38, pl. 9, fig.

22, pl. 11, figs 14–22.

1969 Icriodus woschmidti transiens Carls & Gandl: 174,

pl. 15, figs 1–7.

1969 Icriodus woschmidti Ziegler; Klapper: 10, pl. 2,

figs 3–5.

1975 Icriodus woschmidti woschmidti Ziegler; Carls: 410,

pl. 2, figs 19–21.

1976 Caudicriodus woschmidti (Ziegler); Bultynck: 21,

figs 1, 3–4 [cum syn.].

1977 Caudicriodus woschmidti (Ziegler); Bultynck: pl.

39, fig. 10, pl. 40, fig. 24.

1977 Icriodus woschmidti woschmidti Ziegler; Chatterton

& Perry: 793, pl. 3, figs 18–22.

1980 Icriodus woschmidti woschmidti Ziegler; Jaeger &

Sch€onlaub: pl. 4, figs 4–5/16, 6/16.
1980 Icriodus woschmidti woschmidti Ziegler; Pickett: 70,

fig 3B–D.

1980 Icriodus woschmidti Ziegler; Serpagli &

Mastandrea: 39, figs 2–4.

1981 Caudicriodus woschmidti woschmidti (Ziegler);

Norris & Uyeno: pl. 5, figs 10–17.

1981 Icriodus woschmidti Ziegler; Wang: 77, pl. 1, figs

22–25.

1983 Icriodus woschmidti Ziegler; Broadhead &

McComb: 153, figs 2E, 3H–J.

1983 Icriodus woschmidti woschmidti Ziegler; Serpagli:

155, figs 2, 5–7.

1986 Caudicriodus woschmidti woschmidti (Ziegler);

Borremans & Bultynck: 52, pl. 1, figs 1–9.

1988 Icriodus woschmidti woschmidti Ziegler; Denkler &

Harris: B8, pl. 1, figs A, B.

1990 Icriodus woschmidti woschmidti Ziegler; Olivieri &

Serpagli: 63, pl. 1, figs 12–14.

1990 aff. Icriodus cf. postwoschmidti Mashkova; Weyant

& Morzadec: 752, pl. 1, figs 1, 3–5.

1994 Icriodus woschmidti woschmidti Ziegler;

Valenzuela-R�ıos: 87, pl. 8, figs 14, 15, 28.
1995 Icriodus woschmidti woschmidti Ziegler; Luppold:

pl. 2, fig. 11.

1998 Icriodus woschmidti woschmidti Ziegler;

Çapkino�glu & Bektaş: 167, pl. 5, figs 10, 11.

1999 Caudicriodus woschmidti (Ziegler); Benfrika: 318,

pl. 1, fig. 10.

2002 Icriodus woschmidti woschmidti Ziegler; Garc�ıa-
L�opez et al.: pl. 1, figs 5–7.

2003 Caudicriodus woschmidti woschmidti (Ziegler);

Bultynck: pl. 1, figs 1–3.

2005 Icriodus woschmidti woschmidti Ziegler; Corradini

et al.: fig. 5e.

2009a Icriodus woschmidti woschmidti Ziegler; Suttner:

77, pl. 1, figs 1–6.

2010 Caudicriodus woschmidti (Ziegler); Drygant: 57,

pl. 2, figs 3, 6–13.

2012 Caudicriodus woschmidti (Ziegler); Drygant &

Szaniawski: 846, figs 9B, 10C, D.

Material. NHMW 2011/0374/0001, single conodont

cluster including 10 pairs of coniform and both I elements.

Additional icriodontan elements from the same locality

were described by Suttner (2009a).

Description. The icriodontid conodont cluster consists of

crown tissue only and includes one pair of I elements and

20 coniform elements, which can be distinguished in 10

pairs (C1–C5). No basal plate is preserved. Although the

cluster shows numerous micro-fractures on the surface of

I elements with some coniform elements being broken in

two or more pieces (still attached in the cluster) or having

lost their tips, it can be reconstructed based on SEM and

micro-CT analysis (Fig. 2).

Icriodontan elements are preserved with the oral side

opposing each other in an interlocking position. Lateral

walls of the basal cavity, especially in the ‘posterior’ part

of either element, are adpressed and show strong fractures.

Therefore, the lower margin of the basal cavity is very

irregular, not reflecting the original outline. However, the

basal cavity of this species is widest below the cusp. The

initial part of the ‘anterior’ portion of both I elements is

broken off. Additionally, the ‘posterior’-most portion of

the lateral process is broken too. Four transverse denticle

rows are bar-like (denticles are connected by high ridges;

Fig. 4B) with deep interspacing on the rather low spindle.

Some of the lateral row denticles show strong fractures.

No surface ornamentation is observed.

Coniform elements are clustered in bidirectional orien-

tation around the ‘posterior’ part of the icriodontan ele-

ments (‘inner’ side). Few elements are found on the

‘outer’ side of the sinistral I element which indicate post-

mortem distortion of the original orientation of the coni-

form assemblage. Basically, two sets of different-shaped

pairs of small (C1, C2a, C2b, C2c, C2d, C4) and large

(C2e, C2f, C3, C5) coniform elements are observed. All

of these are adenticulate.

C1 elements are small, gracile coniform elements with

a recurved cusp and striate surface ornamentation. The

cusp and basal outline are elliptical in cross section

(‘posterior’ margin more convex than ‘anterior’ margin)

with sharp margins that represent costae.

C2 elements (C2a–C2f) differ in size but all possess a

circular outline of the basal margin. All are erect or

slightly recurved and show a striate surface ornament

where preserved. Generally, neither costae nor keels are

developed. Some of elements have the base fractured and

4 T. J. Suttner et al.
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Figure 2. Conodont cluster of Caudicriodus woschmidti, Early Devonian, southern Burgenland, Austria; Ki/4/2a-1, NHMW 2011/0374/
0001. A, SEM scan of the conodont cluster. B, detailed view of the coniform elements (C1–C5) close to the dextral I element. C, D, com-
puter microtomography-based three-dimensional reconstruction with identification of all elements. E, hypothetical arrangement of all
elements preserved within the fused conodont cluster.

A new icriodontid conodont cluster 5
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therefore the basal margin appears elliptically com-

pressed. C2a elements are broken into two parts: base

with major part of cusp and tip of cusp preserved close to

each other. The tip of the cusp seems elliptical in cross

section (‘posterior’ margin more convex than ‘anterior’

margin) with rather sharp margins. This differs somewhat

from other C2 elements which have a cusp with a rather

round cross section. C2e and C2f elements are larger than

other C2 elements, comparable in size to C3 and C5 ele-

ments. However, C2 elements can be discriminated easily

by having a circular basal outline and a more slender

shape in general. Because of recrystallization, surface

ornamentation of C2e and C2f is difficult to ascertain.

The largest pair of coniform elements is identified as

C3. Both cones have a widely excavated base with an

irregular, flared outline. Elements have a keel extending

from the base of the cone to the base of the cusp. The

angle between the ‘posterior’ lower part and the

‘posterior’ margin of the cusp is about 97�. The angle

between the lower and ‘anterior’ margin of the element is

about 55�, slightly curved in the lower one-fifth, continu-

ing rather straight towards the tip of the cusp. No surface

ornament is observed.

C4 elements are erect and seem symmetrical with an

oval outline of the base. Although it is rather small, one

element of the C4 pair is preserved with the same orienta-

tion between two large coniform elements, close to the

‘anterior’ margins of C3 and C5.

C5 elements are about half the size of C3 elements,

with an erect cusp and a wide, probably oval to circular

basal margin. Although the base appears rather conical,

the original outline and shape is unknown because of

post-mortem deformation. Neither costae nor keels are

observed.

Remarks. A chronological summary of the icriodontid

element notation (Fig. 3) shows that a bimembrate nature

of the apparatus was suggested by Lange (1968) based on

the first finding of clusters of Icriodus alternatus. A few

years later, coniform elements were termed S2 (acodinan)

elements by Klapper & Philip (1971). Although previ-

ously speculated upon by Klapper & Ziegler (1975),

Nicoll (1977) was the first to propose a trimembrate appa-

ratus by including an additional type of coniform element

(M2 element). Further evidence to support this model

came from statistical analysis of the apparatus reconstruc-

tion of Icriodus trojani by Johnson & Klapper (1981). In

the same year, Norris & Uyeno (1981) introduced three

coniform types (S2a, S2b and S2c) for the apparatus of

Icriodus subterminus, of which their S2a element equates

with the classically known S2 element, and their S2b ele-

ment with the M2 element of Nicoll (1977). Nicoll (1982)

set a milestone with his publication on the analysis of hun-

dreds of fused clusters of Icriodus expansus from the Can-

ning Basin in which he revised the apparatus architecture

and notation of icriodontid conodonts. His reconstruction

includes one pair of opposed platform elements (I ele-

ments) and other associated coniform elements (Ca, Cb,

Cc, Cd, Ce and Cf elements). No ramiform elements are

included within this apparatus. However, the large number

of coniform elements counted in single clusters led to the

conclusion that these were arranged serially within the

apparatus of one individual. Like Icriodus expansus, the

fused cluster of Caudicriodus woschmidti did not preserve

ramiform elements. The latter elements are part of the

apparatus reconstruction suggested by Serpagli (1983).

His analysis of disarticulated elements of Caudicriodus

woschmidti from the Early Devonian of southern Sardinia

(Italy) resulted in an apparatus that included ramiform

(a, b and c), coniform (e and f) and icriodiform (g) ele-

ments. These formed two transitional series, each consist-

ing of three morphotypes (a, b, c and e, f, g). This

hypothesis followed the analysis of Cypricriodus hesper-

ius from the Silurian to Devonian of north Queensland,

Australia, by Simpson (1998), who proposed an apparatus

that contained variably ornamented coniform elements

(Sa, Sb1, Sb2 and Sc elements), M elements, Pb elements

and Pa elements. In his model, S elements represent a

symmetry transition series. Originally introduced for the

skeletal apparatus of Oulodus by Sweet & Sch€onlaub
(1975), this notation scheme was used by Simpson (1998)

for documenting the analogous relationship regarding the

position occupied by elements in different euconodont

apparatuses. The most recent study of Cypricriodus hes-

perius by Murphy et al. (2016) suggested a new apparatus

structure followed by introduction of a new element nota-

tion based on statistical analysis of isolated elements.

These authors discriminated five elements, including three

flared elements: one with plication (Fp), a second with the

‘inner’ wall of the base straighter than the ‘outer’ wall

(Fi), and a third with the ‘outer’ wall straighter than the

‘inner’ wall (Fo). The fourth coniform element is denticu-

late (D) and the fifth is represented by the icriodontan ele-

ment (I). However, apparatus architecture and notation

schemes for Early Devonian icriodontids are based exclu-

sively on statistical analysis of isolated elements, which is

expected to suffer a higher bias error compared with anal-

ysis of fused conodont clusters (see discussion of ‘bias

and biology’ by Purnell & Donoghue 2005). Therefore,

these are not applied here.

Results

Element notation
The skeletal apparatus of Caudicriodus woschmidti con-

sists of 10 pairs of coniform (C1, C2a–f, C3, C4 and C5)

and one pair of icriodontan (I) elements. Because of the

specific arrangement of elements within the cluster, ele-

ments are considered to belong to one individual only.

6 T. J. Suttner et al.
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The in vivo orientation and position occupied by coniform

elements and their relative position to the I element pair

remain uncertain.

Recognition of meso- and microwear
Occlusion of icriodontid elements resulted in specifically

directed mesowear of denticle tips. Within the Caudicrio-

dus woschmidti cluster, mesowear is documented only

from denticles 1 and 2 of the ‘inner’ lateral denticle row

(dextral I element). Smoothly polished facets of rather

elliptical outline are inclined in a more or less ‘anterior’

direction (Fig. 4A, B, indicated by arrows). Because of

poor preservation, no further meso- or microwear could

be observed with certainty. In order to verify whether tip

wear recognized on the dextral I element of the Caudi-

criodus cluster is due to occlusal stress and not merely

post-depositional breakage, a search has been made for

additional collections of much better preserved, but iso-

lated icriodontan elements.

We found several late Eifelian icriodontan elements

(Eifel area, Germany) possessing similar wear. Tip wear

of two elements is analysed in detail and illustrated in Fig-

ures 5 and 6. The first icriodontan element of Icriodus aff.

michiganus (Figs 5A–C, 6A; Supplemental Fig. 1) shows

that tip wear of three median row denticles is located on

the ‘inner’ –‘posterior’ denticle quarter and inclined in an

‘anterior’ direction. Tip wear of lateral row denticles is

documented in opposite denticle quarters (‘outer’–

‘posterior’ vs ‘inner’–‘anterior’) with an inverted inclina-

tion angle. The largest denticle on the oral surface

(D cusp), shows wear along the ‘inner’ side, which is

inclined in an ‘outer’ direction nearly perpendicular to

the direction of wear measured from other denticles

Figure 3. Chronological listing of notation history for icriodontid apparatus elements. Morphologically similar coniform element types
and the icriodontan element evaluated for this study are highlighted in different colours or shades.

A new icriodontid conodont cluster 7
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(Fig. 6A). There is a range of variation of tip wear

observed within one element. Some denticles are damaged

more strongly compared to others possessing steeply

inclined, rather ovate to elliptical outlined wear facets that

reach deeply down to the denticle base (Fig. 5A–C:

‘inner’ lateral row denticle 2 and median row denticle 2).

Other tips show a less inclined crescent-shaped facet.

Three denticles clearly have layered microstructure

exposed on the somewhat blunted tips (Fig. 5A–C: ‘inner’

lateral row denticle 3 and ‘outer’ lateral row denticles 2

and 3, counted from the ‘posterior’ towards the ‘anterior’).

For comparison, the crown tissue of a second icrio-

dontan specimen from the same locality is illustrated

in Figures 5D–F and 6B. It shows a more strongly and

rather roughly damaged oral surface. Tips of median

row denticles possess planar wear facets without a spe-

cific inclination direction (Figs 5D–F, 6B). However,

spalling occurs on median row denticles. It is docu-

mented on the ‘inner’, ‘posterior’ and ‘outer’ side of

denticle 1, and the ‘inner’–‘posterior’ and ‘posterior’

side of denticles 2 and 3, respectively. Although a

major part of the ‘inner’ lateral row denticle 2 is bro-

ken (Fig. 5D–F), direction of wear can be recon-

structed based on the remaining damage of the

transverse ridge extending from the lateral row den-

ticles towards the base of middle row denticles. The

‘posterior’-most three ‘inner’ lateral row denticles pos-

sess facets which are inclined ‘posteriorly’. Those of

the ‘outer’ lateral row denticles and the entire fourth

denticle row show opposite inclination (the process of

facet formation is illustrated for the fourth transverse

denticle row in Supplemental Video 1). Some of the

transverse ridges also show spalling (‘inner’ lateral

row denticle 1 and ‘outer’ lateral row denticle 2 on the

‘posterior’ side of the transverse ridge, and ‘outer’ lat-

eral row denticle 3 on either side). Similar to the other

specimen, wear of the cusp (and here the pre-cusp too)

is nearly perpendicular to tip wear of the other den-

ticles. Spalling is observed within the ‘posterior’

–‘outer’ quarter of cusp and pre-cusp. Although both

Figure 4. A, denticle tip wear of the dextral I element of Caudicriodus woschmidti; Early Devonian, southern Burgenland, Austria; Ki/
4/2a-1, NHMW 2011/0374/0001. B, detailed view of oral surface of the dextral I element with extent and orientation of tip wear indi-
cated by dotted line and arrow head.

8 T. J. Suttner et al.
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specimens are dextral elements, the inclination of wear

of the cusp runs in the opposite direction.

Microwear is observed only on a few isolated late

Eifelian coniform elements from the conodont collec-

tion of the Eifel area (Germany). Well-preserved speci-

mens show a smoothly polished tip of the otherwise

striate cusp.

Discussion

A significant difference exists between the Caudicriodus

cluster and those published by Nicoll (1982). Most coni-

form elements of the specimen shown here are attached

nearly perpendicularly to the I element pair, possessing

a more or less bidirectional orientation (Fig. 2).

Figure 5. Denticle tip wear of icriodontid I elements. A–C, Icriodus aff. michiganus, dextral I element, lateral and oral view; Middle
Devonian, Eifel, Germany; sample BL-12-29c-9. D–F, Icriodus sp., dextral I element, lateral and oral view; Middle Devonian, Eifel,
Germany; sample BL-12-29c-3. Extent and orientation of tip wear are indicated by dotted lines and arrowheads.

A new icriodontid conodont cluster 9
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Compared to this, coniform elements of the Icriodus

expansus clusters are oriented either chaotically around

the icriodontan elements (Nicoll 1982, fig. 4.Aa) or show

a rather parallel unidirectional arrangement alongside the

faecal pellet (Nicoll 1982, fig. 11). Such specific orienta-

tion and the quantity of 10 element-pairs (it is unclear

whether additional elements are missing) suggest that the

conodont cluster represents skeletal remnants of one indi-

vidual only. Furthermore, the presence of coniform ele-

ments in pairs suggests bilaterally symmetrical apparatus

architecture. This is supported by microwear of some

coniform elements published by Nicoll (1982, fig. 10.Ic,

Mc), where sharp lateral margins of the cones’ cusps are

produced by polishing away the striate micro-ornament

on the lateral edges (of either one or both sides) of the

‘anterior’ and/or ‘posterior’ surface. Other cusps of coni-

form elements show removed micro-ornament only in the

tip-region of the ‘posterior’ surface (Nicoll 1982, fig. 10.

Rc). Such microwear is considered to be the result of

‘tooth-to-tooth’ contact of opposing interdigitating coni-

form elements.

However, a discrepancy can be recognized regarding

the absolute orientation of the elements when comparing

the in vivo orientation proposed for the apparatuses of

ozarkodinids (Aldridge et al. 1987, 1993; Purnell 1993,

1995; Purnell & Donoghue 1997; Purnell et al. 2000) and

prioniodontids (Gabbott et al. 1995; Freedman 1999;

Purnell et al. 2000). All of these have the denticle tips of

ramiform elements oriented in a dorsal direction with the

‘posterior’ part of the platform elements oriented in the

same direction (originally based on the apparatus model

deduced from individuals of Clydagnathus by Aldridge

et al. 1987). In the Caudicriodus cluster, almost all denti-

cle tips of coniform elements point in an opposite direc-

tion relative to the orientation of the ‘posterior’ part of the

icriodontan element. This kind of preservational bias

allows only hypothetical reconstructions. Based on the

arrangement and orientation of elements and without hav-

ing evidence of in vivo orientation of icriodontids based

on natural assemblages with soft tissue preservation, four

possible models of the icriodontid apparatus architecture

are introduced and discussed below.

Figure 6. Diagrams illustrating orientation and direction of denticle tip wear. A, Icriodus aff. michiganus; left-side illustration shows
the orientation of the inclined facet plane, right-side illustration the direction of vertically inclined facet; Middle Devonian, Eifel, Ger-
many; sample BL-12-29c-9. B, Icriodus sp. left-side illustration shows the orientation of the inclined facet plane, middle the direction of
the vertically inclined facet, and right the orientation and direction of the facet plane of median row denticles; Middle Devonian, Eifel,
Germany; sample BL-12-29c-3).

10 T. J. Suttner et al.
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In the first model (Fig. 7A), the original post-mortem

orientation of the majority of coniform elements relative to

the icriodontan pair is illustrated. Except for four coniform

elements (C2a, C2c, C2d and C3), all are clustering near

the ‘posterior’ part of the interlocked I element pair. Most

of the coniform elements are oriented with the ‘posterior’

margin of the cusp pointing ‘posteriorly’. A few elements

are oriented in the opposite direction (with the ‘anterior’

margin of the cusp pointing ‘posteriorly’: each of C2a,

C2c and C3), or with one of lateral margins, base or tip

‘posteriorly’ (each of C1, C2a, C2b and C4). Apparently,

this is due to post-mortem displacement. In the apparatus

reconstruction, these elements are reoriented such that the

‘posterior’ margin points in a ‘posterior’ direction with the

tip of the cusp dorsal, a reconstruction resembling the in

vivo orientation in the sense of Aldridge et al. (1987) for

ozarkodinids. The apparatus would have most of the small

coniform elements (C1–C2d, except for C4) in a position

Figure 7. Hypothetical apparatus reconstruction deduced from the element arrangement within the Caudicriodus woschmidti conodont
cluster. A, Model 1 with tips of coniform elements pointing dorsally and ‘posterior’ part of icriodontan elements oriented ventrally. B,
Model 2 with tips of coniform elements and ‘posterior’ part of icriodontan elements oriented ventrally. C,Model 3 with tips of coniform
elements pointing ventrally and ‘posterior’ part of icriodontan elements oriented dorsally. D, Model 4 with tips of coniform elements
and ‘posterior’ part of icriodontan elements oriented ventrally. Coniform elements are arranged in multiple rows.

A new icriodontid conodont cluster 11
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close to the icriodontan element pair. Large coniform ele-

ments (C2e–C3 and C5) would cover a position in front of

the small coniform group. Although orientation of coni-

form elements in this model (with the tip of the cusp dor-

sal) accords with the in vivo orientation suggested for

ramiform elements of ozarkodinids, the orientation of

icriodontan elements (‘posterior’ part in a ventral direc-

tion) contradicts the published in vivo orientation of most

models since Aldridge et al. (1987). Surprisingly, it fol-

lows the conventional orientation suggested for isolated

icriodontan elements (Branson & Mehl 1938).

In the second model (Fig. 7B), conventional orientation

of icriodontan elements is retained because no proof of

opposite orientation is known for icriodontid conodonts.

Here, the coniform part is reoriented with the tip of the

cusp pointing ventrally. The model is based on the

assumption that collapse of the head was followed by

post-mortem displacement of the coniform elements – at

that time still connected. Such displacement could have

resulted in rotation and partial disintegration of the coni-

form apparatus part. In this case, small elements are

located in front of the large coniform elements.

In the third model (Fig. 7C) orientation of the icriodon-

tan element pair follows the in vivo orientation of platform

elements suggested for ozarkodinids (sensu Purnell et al.

2000). Here, coniform element tips would point ventrally

and large elements would cover a position in front of

small elements.

The fourth model (Fig. 7D) hypothesizes an absolutely

different apparatus architecture consisting of multiple

rows of coniform elements. Generally, orientation of coni-

form and icriodontan elements follows the second model

(Fig. 7B), but here the coniform part of the apparatus is

divided into two rows of alternating elements. The lower

row consists of small and the upper row of large elements.

The model is based on the evidence that one of the C4 ele-

ments is preserved between C3 and C5. Additionally,

most of the small elements (C1–C2d) are preserved close

to each other within the cluster and are located between

the icriodontan pair and the group of large coniform ele-

ments (C2e–C5). Such specific sorting of coniform ele-

ments points to a neighbouring position covered by the

groups of small and large coniform elements in the origi-

nal apparatus configuration.

Existing apparatus motion models
Earlier models of the euconodont apparatus largely

resulted in the reconstruction of commonly known disar-

ticulated elements. The discovery of conodont clusters

and natural assemblages with soft tissue preservation and

the observation of meso- and microwear on the surfaces

of the crown tissue opened the path to new directions in

conodont research towards a better understanding of cono-

dont palaeobiology (Nicoll 1982, 1984, 1987, 1995;

Briggs et al. 1983; Aldridge et al. 1987, 1993, 1995;

Sweet 1988; Gabbott et al. 1995; Purnell 1995, 2001;

Donoghue & Purnell 1999a; Donoghue et al. 2000, 2008;

Purnell et al. 2000; Sweet & Donoghue 2001; Zhuravlev

2007; Jones et al. 2012; Purnell & Jones 2012; Mart�ınez-
P�erez et al. 2014a, b, 2016).

The type model for ozarkodinid apparatuses (Purnell &

Donoghue 1997, 1998) is based on the analysis of wear

and surface damage of articulated platform element pairs

from natural assemblages of Idiognathodus. It concludes

that opposing platform elements were located close to

each other in a slightly offset position, performing a rota-

tional movement, with the pivot point on the ventral part

of the element where the platform joins the free blade

(Fig. 8A). This movement resulted in a complex interlock-

ing occlusion of the oral surface of P1 elements

(Donoghue & Purnell 1999b).

A similar kind of platform element motion was sug-

gested for Early Triassic individuals of the genus Novispa-

thodus (Fig. 8B). In this reconstruction, P elements

persistently operate in synchronous rotational movement

by shearing the lateral blade surfaces against each other,

while ramiform elements (M and S types) act indepen-

dently to grasp hard tissue (Goudemand et al. 2011).

Coordination of such apparatus motion requires a complex

arrangement of muscle tissue.

Jones et al. (2012) suggested that in addition to rota-

tional occlusion, elements must have separated during the

occlusal cycle (Fig. 8C), because of smoothly polished

wear on either side of lateral surfaces of the elements

(occlusal and non-occlusal sides). Based on sharpness

analysis they concluded that the sharper dorsal edges of

cusp and denticles indicate a dorsal rotation direction of

the primary power stroke of the platform elements. The

authors pointed out that separation of platform elements

during the occlusal cycle also allowed food to move

between elements, which would otherwise be difficult.

Studies on functional morphology and element kinematics

by Jones et al. (2012) were performed on natural assemb-

lages of the Silurian speciesWurmiella excavata.

Mart�ınez-P�erez et al. (2014a) provided a slightly differ-

ent model for platform element motion after studying two

fused clusters from Slovenia (Krivic & Stojanovi�c 1978)

and additional disarticulated platform elements from

Spain (Plasencia 2009) of the Middle–Late Triassic cono-

dont Pseudofurnishius murcianus. Similar to the model

for Wurmiella excavata of Jones et al. (2012), elements

are considered to separate completely during each occlu-

sal cycle, moving more or less orthogonally to the oral

surface against each other for the next power stroke.

Occlusion was refined by interdigitation of platform den-

ticles. In this model, rotational occlusion is not a major

part of the occlusal cycle (Fig. 8D). However, it is consid-

ered possible when P1 elements are interlocked. Smooth

polishing, chipping and spalling are observed on either

12 T. J. Suttner et al.
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Figure 8. Motion of P1 elements of ozarkodinid apparatuses summarized from the literature. A, Idiognathodus (Pennsylvanian); B,
Novispathodus (Early Triassic); C, Wurmiella excavata (Silurian); D, Pseudofurnishius murcianus (Middle–Late Triassic); E, Polygna-
thus xylus xylus (Middle Devonian). Grey dots mark the pivot point; black arrows indicate the direction of occlusion and interlocking of
P1 elements, grey arrows its reversal.
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lateral surface of the cusp and denticles (more weakly

developed on the non-occlusal side), demonstrating that

occlusion was not always precise (Mart�ınez-P�erez et al.

2014a).

Another apparatus motion model based on the study of

clusters of Polygnathus xylus xylus (Fig. 8E) was introduced

by Mart�ınez-P�erez et al. (2016). Originally the material was

published by Nicoll (1984), who illustrated an apparatus

model with ‘anterior’–‘posterior’ axis of P1 and P2 ele-

ments in rostro-caudal orientation. Mart�ınez-P�erez et al.

(2016) revised the orientation of platform elements accord-

ing to the suggestions of Purnell et al. (2000) and proposed

a new motion model for P1 elements of Polygnathus. In this

model, opposing P1 elements are brought together bilater-

ally with the blade of the left element behind the right ele-

ment. Blades act as guides, aligning elements while

platforms approach each other. Once elements are in inter-

locking position, a short rotational movement follows from

ventral to dorsal along the elements’ curvature. Because of

imprecise occlusion of the carina and the platform troughs

in the dorsal region of the platform, rotational occlusion is

considered to stop in the middle part of the platform, not

contacting dorsal-most regions of the element pair.

Alternative model for icriodontid apparatus motion
Direction of breakage and stress on elements (Purnell

1995; Zhuravlev 2007; Jones et al. 2012; Purnell & Jones

2012; Mart�ınez-P�erez et al. 2014a, 2016), supported by

analogous pathodynamic mechanisms of tooth wear in

dental sciences (e.g. Grippo et al. 2004; Fondriest &

Ralgrodski 2012), results in a slightly different model of

apparatus motion for icriodontid conodonts. Compared to

other models for ozarkodinid P1 elements (Jones et al.

2012; Mart�ınez-P�erez et al. 2014a, 2016), oral surfaces of
opposed icriodontid I elements approach each other with

a slightly elliptical rather than directly orthogonal motion

(Fig. 9; Supplemental Video 2). We agree with Jones

et al. (2012) that occlusion was not always precise

depending on the morphology of the oral surface and

related to denticle guidance during the element interlock-

ing process. However, rotational movement as suggested

for ozarkodinids is not part of the occlusal cycle in icrio-

dontids. In this respect, no specific meso- and/or micro-

wear is observed.

Because of poor preservation, tip wear of coniform ele-

ments is difficult to ascertain from the Caudicriodus clus-

ter. However, some coniform elements possess narrow

‘posterior’ keels or costae on either lateral side, which

implies coniform guidance. Additional hints on apparatus

function and motion can be inferred from isolated coni-

form elements from the collection containing icriodontan

elements of the genus Icriodus (Fig. 5). Specific occlusion

patterns such as smoothing of striate micro-ornament on

the ‘posterior’ surface of the tip of the cusp or the lateral

margin of either the ‘posterior’ and/or ‘anterior’ surface

Figure 9. Model of masticatory motion of icriodontid I elements. A, oblique lateral view; B, ‘anterior’ view.

14 T. J. Suttner et al.
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can be documented. Such wear is characteristic for ele-

ment-element attrition (see Jones et al. 2012). Distinc-

tively different element types show specific attrition

patterns; thus, it is assumed that coniform elements oper-

ated – probably arranged in multiple rows – against each

other, organized in a bilaterally symmetrical disposition

during the occlusal cycle (compare tip wear published by

Nicoll 1982, fig. 10.Ic, Mc, Rc). However, architecture

and function of the coniform part of the icriodontid appa-

ratus are not understood well enough to provide a model

of apparatus motion illustrating how coniform and icrio-

dontan elements worked together within one individual

apparatus. Such studies will be the topic of future

research.

Conclusions

The fused conodont cluster of Caudicriodus woschmidti

provides new insights into the apparatus structure of Early

Devonian icriodontid conodonts. The apparatus consists

of 11 element pairs (10 pairs of coniform elements and

one pair of icriodontan elements). Specific post-mortem

arrangement of most coniform elements suggests that all

elements are skeletal remnants of one individual only.

The icriodontid element notation provided by Nicoll

(1982) for Icriodus expansus can be adopted in part. One

of the coniform element types of Nicoll (1982, Ce ele-

ment) was not observed. Contrary to earlier reconstruc-

tions of Caudicriodus woschmidti (Serpagli 1983), no

ramiform elements are preserved within the described

cluster. However, a preservational bias is evident which

restricts our conclusions regarding the absolute number of

coniform elements and its orientation relative to the I ele-

ment pair. With this in mind, we discuss four hypothetical

models on the apparatus architecture of Caudicriodus

woschmidti.

Distinctive tip wear is observed on one of the icriodon-

tan elements. Together with more significant results from

meso- and microwear analyses of additional Middle

Devonian icriodontan conodont material from the Eifel

area (Germany), a new model for icriodontid apparatus

motion is suggested. The occlusal cycle consists of a

slightly elliptical rather than straight orthogonal motion of

opposed I elements when approaching each other for the

interlocking phase. Rotational movement in interlocking

position is not considered for this euconodont group. We

recognize that neither does element-element attrition

always affect all denticles on the oral side, nor is tip wear

present within the same area of each denticle. The investi-

gated material shows that density, inclination and orienta-

tion of tip wear are related mainly to individual denticle

size, growth form and the relative position of denticles on

oral sides of opposed elements during the interlocking

phase. Compared to this, the occlusal cycle of coniform

elements based on microwear is less well understood.

Wear on the cusp is located in specific areas of different

element types and related to removed striate micro-orna-

ment. Two types of microwear are observed: (1) polished

tip of the cusp (‘anterior’ and/or ‘posterior’ side), and (2)

polished and sharpened lateral margins (left and/or right

margin of ‘anterior’ and/or ‘posterior’ side).

The many unsolved questions regarding the orientation

and position of coniform elements preclude complete

reconstruction of the icriodontid apparatus motion model.

Illustration of the interaction of coniform and icriodontan

elements during the occlusal cycle will be issue for future

study based on additional conodont clusters and natural

assemblages with soft tissue preservation.
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