Production of carbon via Electrochemical conversion of CO2 in carbonate based Molten Salt

Abstract

Carbon was successfully deposited on AISI 304 stainless steel rod cathode through electrolysis process in three molten salt mixtures, namely K2CO3-Li2CO3 (mole ratio: 1:1), CaCO3-Li2CO3-LiCl (mole ratio 0.09:0.28:0.63) and CaCO3-CaCl2-KCl-LiCl (mole ratio: 0.13:0.31:0.10:0.45), under CO2 atmospheres as continuous source of carbon. The process were carried out for 1 hour at temperature range 545–585°C and electrolysis voltage of 4.0V to drive the deposition of carbon through electrochemical conversion. EDX analysis on deposited products shown carbon as dominant element (89-98%). SEM revealed carbon with Flakes and grapes aggregation shapes for different salt mixtures. The achieved current efficiency of 83.8%, 80.46% and 92.41% were found in the respective salt mixtures, and energy consumption promotes several ways for efficiency improvement on the electrochemical conversion of CO2.