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Effect fusion using model-based clustering
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Abstract: In social and economic studies many of the collected variables are measured on a nominal
scale, often with a large number of categories. The definition of categories can be ambiguous and
different classification schemes using either a finer or a coarser grid are possible. Categorization has an
impact when such a variable is included as covariate in a regression model: a too fine grid will result in
imprecise estimates of the corresponding effects, whereas with a too coarse grid important effects will
be missed, resulting in biased effect estimates and poor predictive performance.

To achieve an automatic grouping of the levels of a categorical covariate with essentially the same
effect, we adopt a Bayesian approach and specify the prior on the level effects as a location mixture of
spiky Normal components. Model-based clustering of the effects during MCMC sampling allows to
simultaneously detect categories which have essentially the same effect size and identify variables with
no effect at all. Fusion of level effects is induced by a prior on the mixture weights which encourages
empty components. The properties of this approach are investigated in simulation studies. Finally, the
method is applied to analyse effects of high-dimensional categorical predictors on income in Austria.
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1 Introduction

Researchers in medicine, social and economic sciences routinely collect data measured
on a nominal scale as potential predictors in regression models. The usual approach to
include such categorical predictors in regression type models is to define one category
as the baseline or reference category and use dummy variables for the effects of
all other categories with respect to this baseline. Thus, the effect of one categorical
covariate with c + 1 categories is captured by a set of c regression coefficients. This
leads to several issues. Including such predictors even with a moderate number of
categories can easily lead to a high-dimensional vector of regression coefficients.
Further, only the subset of observations with a specific covariate level provides
information on its effect which may result in high standard errors and unstable
estimates for the effects of infrequent levels. These issues become even more
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2 Gertraud Malsiner-Walli et al.

pronounced if the researcher uses a fine classification grid when categorizing the data.
As often the definition of categories is not completely dictated by subject-specific
matters, the scientist could categorize observations either finer or coarser when
collecting the data. With both strategies she/he could run into problems when
categorical variables are used as covariates in a regression model: fine categories can
result in only a few subjects per category and imprecise estimates of the corresponding
effects, whereas estimated effects using too coarse categories might be biased due to
confounding effects of finer categories.

In order to avoid the risk of overlooking substantial differences in level effects, it
would be appealing to have a method which allows to start with a large regression
model including categories on a very fine classification grid and to obtain a sparser
representation of this model during estimation. Sparsity can be achieved whenever the
effects of a categorical predictor can be represented by less than c regression effects.
Basically there are three different situations, where sparsity is an issue: First, if all
level effects are zero, the whole covariate can be excluded from the model. Second,
if some of the level effects are zero, the corresponding levels can be excluded from
the model, and finally if some levels have essentially the same effect on the response,
sparsity is achieved by fusing the effects of these levels.

Usually, sparsity in regression type models is achieved by applying variable
selection methods which allow to identify regressors with non-zero effects, that is,
lasso (Tibshirani, 1996) or the elastic net (Zou and Hastie, 2005) in the frequentist
framework and shrinkage priors (Park and Casella, 2008; Griffin and Brown, 2010)
or spike and slab priors (Mitchell and Beauchamp, 1988; George and McCulloch,
1997; Ishwaran and Rao, 2005) in the Bayesian framework. However, these methods
are not appropriate for categorical covariates as only single level effects are selected
or excluded from the model. Approaches that address exclusion of a whole group
of regression effects have been proposed by Chipman (1996), Yuan and Lin (2006),
Raman et al. (2009), Kyung et al. (2010) and recently by Simon et al. (2013), but
none of these approaches allows also for effect fusion.

For metric predictors, effect fusion can be performed by the fused lasso (Tibshirani
et al., 2005) and the Bayesian fused lasso (Kyung et al., 2010). Both methods assume
some ordering of effects and shrink only effect differences of consecutive levels to
zero, and hence are not appropriate for nominal predictors where any pair of level
effects should be subject to fusion. Explicit effect fusion for nominal predictors is
considered in Bondell and Reich (2009) and by Gertheiss and Tutz (Gertheiss and
Tutz, 2009, 2010; Gertheiss et al., 2011; Tutz and Gertheiss, 2016), who specify
lasso-type penalties on effects and effect differences. In a Bayesian approach, recently
Pauger and Wagner (2017) specified a prior distribution that can be interpreted as a
spike and slab prior on effects and effect differences. However, these approaches are
limited to covariates with a moderately large number of categories, as for a covariate
with c + 1 categories

(
c+1

2

)
possible differences have to be considered which inflates

the large model even more.
An appealing approach for effect fusion which avoids classification of effect

differences and allows to fuse effects directly is to use model-based clustering
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techniques. Basford and McLachlan (1985) considered clustering of treatment
effects in analysis of variance (ANOVA) by specifying a finite mixture of Normal
components on the observed treatment means and fit the model via an EM
algorithm. In regression models, sparse modelling of effects by mixtures is so far
primarily used for continuous covariates. Yengo et al. (2014) and Yengo et al.
(2016) define a Normal mixture prior for the regression effects and determine the
number of components, that is, coefficient groups, using model choice criteria. In a
non-parametric framework, MacLehose and Dunson (2010) use an infinite mixture
of heavy-tailed double-exponential distributions on the coefficients of continuous
predictors to allow groups of coefficients to be shrunk towards the same, possibly
non-zero, mean. Only Dunson et al. (2008) consider categorical covariates. They
propose a multi-level Dirichlet process prior on the effects of single nucleotide
polymorphism (SNP) in genetic association studies. This prior takes the hierarchical
structure of the predictors into account and allows clustering of SNPs both within
and across genes. However, by considering 22 markers, each with three levels, only
a small number of levels is investigated.

Following this line of research we propose to achieve model-based clustering
of level effects by specifying a finite Normal mixture prior. Our approach is
explicitly designed to address effect fusion for categorical covariates and has several
advantageous features.

First, fusing the level effects directly instead of focusing on all effect differences
enables us to handle categorical covariates with a large number of categories, for
example, 100 or more. Second, the specified mixture prior can be interpreted as a
generalization of the standard spike and slab prior (George and McCulloch, 1993)
where a spike distribution at zero is combined with a rather flat slab distribution
to allow selective shrinkage of effects; see Malsiner-Walli and Wagner (2011) for an
overview. We replace the slab distribution by a location mixture distribution with
different, non-zero means. This mixture prior allows to shrink non-zero effects to
various non-zero values and introduces a natural clustering of the categories: if level
effects are assigned to the same mixture component, they are assumed to be (almost)
identical and can be fused.

Third, the hyperparameters of the mixture prior are chosen very carefully to
achieve the modelling aims. Their specification is based on the data to yield
recommendations that are applicable to a wide range of real data situations. The
‘fineness’ of the estimated level classification can be guided by the size of the
specified component variance, with smaller variances inducing a larger number of
estimated effect groups. The prior on the mixture weights is specified following the
concept of ‘sparse finite mixture’ (Malsiner-Walli et al., 2016). Specifying a sparsity
inducing prior on the weights in an overfitting mixture avoids unnecessary splitting of
superfluous components and encourages concentration of the posterior distribution
on a sparse cluster solution and thus allows to estimate the number of effect groups
from the data.

Fourth, remaining in the framework of finite mixture of Normals and conditionally
conjugate priors avoids a computationally intensive estimation as standard Markov
chain Monte Carlo (MCMC) methods can be used. The MCMC scheme for posterior
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4 Gertraud Malsiner-Walli et al.

inference basically combines a regression and a model-based clustering step, where
in both only standard Gibbs sampling steps are needed.

Finally, model selection is based on the posterior draws of the partitions. Two
strategies are pursued to select the final partition of the levels, by either selecting the
most frequently sampled model or determining the optimal partition of the effects
based on their joint posterior fusion probabilities.

The article is organized as follows. In Section 2 the model and the prior
distributions for the model parameters are introduced. Details on posterior inference
and model selection are given in Section 3. The method is evaluated in a simulation
study in Section 4 and applied to a regression model for income data in Austria in
Section 5. Finally, Section 6 concludes.

2 Effect clustering prior

We consider a standard linear regression model with observations i, i = 1, ...,N,
continuous response y and J categorical covariates with categories 0, ..., cj, where
j = 1, ..., J. For each covariate, 0 is defined as the baseline category and Xjk denotes
the dummy variable corresponding to the kth category of covariate j. Hence, the
regression model is given as

yi = ˇ0 +
J∑

j=1

cj∑

k=1

Xjkˇjk + �i, (2.1)

where �i ∼ N(0, �2) is a Normal error term, ˇ0 is the intercept and ˇjk, k = 1, . . . , cj,
is the effect of the kth category of covariate j with respect to the baseline category.
We call ˇjk the ‘level effect’ of category k.

To complete Bayesian model specification, prior distributions have to be assigned
to all model parameters. We assume that regression effects are independent between
covariates and use a prior of the structure

p(ˇ, �2) = p(ˇ0)
J∏

j=1

p(ˇj|�j)p(�2), (2.2)

where ˇj = (ˇj1, . . . , ˇjcj denotes the regression effects and �j additional hyperpara-
meters for covariate j. A flat Normal prior ˇ0 ∼ N(0, B0) is assigned to the intercept,
and an improper inverse gamma distribution �2 ∼ G−1(s0, S0) with s0 = S0 = 0 to the
error variance.

Our goal is to specify a prior for the level effects of covariate j which allows
the identification of effect groups. Therefore, we specify a finite mixture of Normal
distributions as a prior on the level effects ˇjk. In contrast to the popular spike and
slab priors employed for selection of regression effects, we use a location mixture of
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more than two components which have a small variance, that is, all components are
spiky.

The prior on a regression effect ˇjk is specified hierarchically as

p(ˇjk) =
Lj∑

l=0

�jlfN(ˇjk|�jl,  j) (2.3)

�j ∼ DirLj+1(e0) (2.4)

�j0 = 0 (2.5)
�jl ∼ N(mj0,Mj0) for l = 1, ..., Lj, (2.6)

where Lj + 1 is the number of Normal mixture components for covariate j with
location parameters �jl and scale parameter  j. For each covariate, the location
parameter of the first component �j0 is fixed at 0 to allow identification of categories
which have the same effect as the baseline category. If all level effects are assigned
to this component, the covariate can be completely excluded from the model. We
subsume in �j = (�j1, . . . , �jLj ) all other component means, which are assumed to
be conditionally independent and follow a flat Normal hyperprior with location and
scale parameters mj0 and Mj0. For each covariate, the variance  j is the same for all
components in order to ensure that each level effect group has the same dispersion;
however  j may vary between covariates. Finally, a symmetric Dirichlet distribution
DirLj+1(e0) with parameter e0 is specified for the mixture weights �j = (�j0, . . . , �jLj ).

An alternative to our finite mixture approach would be to specify an infinite
mixture where a Dirichlet process prior DP(˛) is specified on the mixture weights. In
this case, the a priori specification of the number of components Lj + 1, a well-known
limitation of finite mixtures, would not be necessary as it can be estimated from the
data. However, we overcome this weakness of finite mixtures by specifying a sparse
finite mixture (Malsiner-Walli et al., 2016) as prior on the level effects. This allows
to estimate the number of ‘true’ components through the number of ‘non-empty’
components in an overfitting mixture. More details on this strategy will be provided
in Section 2.1.

Additionally, it has to be pointed out that the clustering behaviour of finite
and infinite mixtures is quite different. For infinite mixtures, the a priori expected
number of groups when classifying cj items is proportional to ˛ · log(cj) (MacLehose
and Dunson, 2010; Malsiner-Walli et al., 2016). This means that with increasing
number of items cj also the number of expected clusters increases. In contrast, for
a finite mixture prior as proposed here, the a priori number of non-empty groups is
asymptotically independent of the number of items cj (Malsiner-Walli et al., 2016).
Hence, using a finite mixture prior for the cj effects of a categorical predictor seems
more suitable, as one would expect that in a hierarchical categorization scheme, there
exists an appropriate level of aggregation which is able to capture all relevant effect
differences and the number of significant effect sizes would not increase when using
a ‘finer’ classification grid.

Statistical Modelling 2018; xx(x): 1–22



6 Gertraud Malsiner-Walli et al.

2.1 Choice of hyperparameters

The specification of the prior hyperparameters is crucial to achieve our modelling
aims. To obtain recommendations that are applicable to a wide range of situations, we
take an empirical approach and choose the hyperparameters depending on the data.

The location parameter of the first mixture component �j0 is fixed at 0 in order to
allow fusion to the baseline. For the location parameters of all other components �jk,
we specify a Normal hyperprior located at the ‘centre’ of the effects and with large
variance in order to induce only little shrinkage to the prior mean. Thus, we set the
mean m0j of the Normal hyperprior to m0j = mean( ˆ̌

j) and the variance M0j to the
squared range of ˆ̌

j, that is, M0j = (maxk ˆ̌
jk − mink ˆ̌

jk)2, where ˆ̌
j is the estimated

coefficient vector of covariate j under flat prior.
Level effects should be assigned to the same component only if the sizes of their

effects are almost identical. Therefore, specification of the component variance  j is
crucial as it reflects the notion of negligible/relevant effect differences. As the prior
on the component variance  j should take into account the scaling of covariates, we
allow  j to vary across covariates, but not between levels of one covariate.

We define the component variance  j as some proportion 1/� from the variation

of the estimated level effects ˆ̌
j under a flat prior, that is,  j = 1

�
Vj, where Vj =

1
cj − 1

cj∑

k=1

( ˆ̌
jk − ¯̌

j)2 and ¯̌
j = 1

cj

cj∑

k=1

ˆ̌
jk. With increasing �, the shapes of the mixture

components become more spiky and more distinct groups of level effects will be
identified. Thus,  j implicitly controls the ‘fineness’ of the estimated partition of level
effects, and hence the size of the selected model. As mentioned earlier, the component
variances are defined covariate-specific in order to account for the dispersion of the
level estimates within a covariate. However, the component variances could also be
specified globally, that is, with the same spike size for all covariates, if interest lies in
defining a ‘global’ threshold for level effect differences across all covariates.

Figure 1 shows the prior distributions of the level effects of one of the covariates
in our application, the covariate economic sector with 83 levels, for two values
of the component variance  j. One mixture component is centred at zero and the
others at the posterior means ˆ̌

jk under a standard flat Normal prior.
Since the choice of the prior component variance  j influences effect fusion, as

an alternative, we consider  j to be random with a hyperprior  j ∼ G−1(g0,G0j).
We expect to obtain more robust cluster solutions as the influence of a fixed
parameter  j should be mitigated. For a given value of g0, we choose G0j such

that the a priori expected component variance E( j) = G0j

g0 − 1
matches a desired

size, that is, E( j) ≈ Vj

�
, and hence set G0j = Vj

�
(g0 − 1). As the variance is given

Statistical Modelling 2018; xx(x): 1–22
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Figure 1 Finite mixture prior on level effects of covariate economic sector for two different mixture
component variances, � = 102 (left panel) and � = 104 (right panel). One component is centred at zero (blue
dashed line), the others at ˆ̌

jk , k = 1, . . . cj , under flat prior

as V( j) = E( j)2/(g0 − 2), the scale parameter g0 controls the deviation from the
expected value. To allow only for small deviations from the expectation, we set
g0 = 100. Thus, a priori, the standard deviation for  j is around 1/10 of the expected
mean. We investigate the influence of the variance parameter � for fixed variance  j
as well as under a hyperprior in the simulation study in Section 4.

We now turn to the specification of the number of mixture components Lj + 1. We
set Lj = cj in order to capture the redundant case where all effects are different from
each other (and from the baseline). Thus, our prior defines an overfitting mixture
model, where the mixture distribution on the level effects has more components than
level effects to be estimated. In order to achieve a sparser estimation of the overfitting
mixture model by encouraging superfluous components to be empty, we follow
Malsiner-Walli et al. (2016), who base their approach on Rousseau and Mengersen
(2011).

Rousseau and Mengersen (2011) investigated the asymptotic behaviour of
the posterior distribution of an overfitting mixture model and showed that the
hyperparameter e0 of the Dirichlet prior on the mixture weights determines
whether superfluous components will be left empty or split in two or more
identical components. Asymptotically, if e0 < d/2, where d is the dimension of the
component-specific parameter, the posterior expectation of the weights converges to
zero for superfluous components. In contrast, for e0 > d/2, the posterior distribution
handles overfitting by defining at least two identical components with non-negligible
weights. Hence, in order to encourage empty components in the overfitting mixture
prior for the level effects, we specify a sparsity inducing prior on the mixture weights
�j with e0 < d/2, where d = 2 is the dimension of (�l,  j). Then, superfluous mixture
components should be emptied during MCMC sampling and the sampled partitions
concentrate on the model space with sparse solutions.

Following Malsiner-Walli et al. (2016, 2017), Nasserinejad et al. (2017) and
Frühwirth-Schnatter (2017), we choose e0 very small, for example, e0 = 0.01. If
e0 < 1, the Dirichlet density is unbounded at the boundaries of its support. As a
consequence, much mass is concentrated on weight vectors with only a few large but

Statistical Modelling 2018; xx(x): 1–22



8 Gertraud Malsiner-Walli et al.

many small entries. When observations are assigned to the components according to
these weight vectors, some of the Lj + 1 components will be left empty. Thus, e0 � 1
induces a grouping of the coefficients into a few K∗ clusters, where K∗ is smaller than
K with high probability.

3 Posterior inference

The posterior distribution, which results when combining the likelihood derived from
equation (2.1) with the prior distribution of (ˇ, �2) specified in equations (2.2)–(2.6),
is not of closed form and therefore MCMC methods are used for posterior inference.
During MCMC sampling the whole model space will be explored, that is, different
clustering solutions for the covariate effects will be visited, which allows to assess
model uncertainty and also to determine model averaged estimates.

However, though model averaged estimates of the coefficients may give good
results in terms of prediction, researchers are often interested in selection of a
final model and interpretation of its results. In regression models with categorical
predictors, model selection is more involved than in standard variable selection, as
the problem is to determine an appropriate clustering of level effects, which means
that both the number of clusters as well as the members of each cluster have to be
determined. We address this problem in Section 3.3, where we present two different
strategies for model selection when clustering the effects of a categorical covariate.

3.1 MCMC sampling

Model estimation is performed through MCMC sampling based on data augme-
ntation (Diebolt and Robert, 1994; Frühwirth-Schnatter, 2006). For each covariate j,
latent allocation variables Sj = Sj1, ..., Sjcj are introduced to indicate the component
a regression effect ˇjk is assigned to. Sjk takes values in {0,1, . . . , Lj}. Conditional on
Sjk = l, the prior distribution for ˇjk is the Normal mixture component distribution

ˇjk|Sjk = l ∼ N(�jl,  j).

MCMC sampling is basically performed by iterating two steps: the regression step,
where the level effects and the error variance are sampled conditional on knowing the
mixture components the effects are assigned to, and the model-based clustering step,
where the parameters of the mixture components and the latent allocation variables
are sampled. In the starting configuration, each level effect ˇjk is assigned to a separate
component l, where both the component mean and the effect are estimated under a
flat prior. The component located at zero is left empty.

The MCMC sampling scheme iterates the following steps:

Regression steps

1. Sample the regression coefficients ˇ conditional on the latent allocation
variable S from the Normal posterior N(bN,BN).

Statistical Modelling 2018; xx(x): 1–22
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2. Sample the error variance �2 from its full conditional posterior distribution
G−1(sN, SN).

Model-based clustering steps
3. For j = 1, ..., J sample the component weights �j from the Dirichlet

distribution Dir(ej0, ej1, . . . , ejLj ).
4. For j = 1, ..., J; l = 1, . . . , Lj sample the mixture component means�jl from

their Normal posterior N(mjl,Mjl).
5. If a hyperprior is specified on  j, sample the mixture component variances

 j from their inverse gamma posterior G−1(gjN,GjN) for j = 1, ..., J;
otherwise this step is omitted.

6. Sample the latent allocation indicators S from their full conditional
posterior

P(Sjk = l|ˇjk,�j,  j) ∝ �jlfN(ˇjk|�jl,  j).

More details on the sampling steps are given in Appendix A. The sampling scheme is
implemented in the R package effectFusion (Pauger et al., 2016) which is available
on CRAN.

3.2 Model-averaged estimates

MCMC draws approximate the whole posterior distribution taking into account
model uncertainty: for example, for a regression effect ˇjk, the posterior is the mixture
distribution

p(ˇjk|y) =
∑

m

p(ˇjk|y,M(m))p(M(m)|y),

where the mixture components are model-specific posterior distributions and the
mixture weights are the posterior model probabilities p(M(m)|y). Hence, the mean
over all MCMC draws for ˇjk should be a robust, model-averaged estimator. Its
predictive performance is investigated in Section 4.

3.3 Model selection

Before performing model selection, generally the samples from the mixture model
have to be identified. In the Bayesian framework, identification of a finite mixture
model requires handling the ‘label switching’ problem (Redner and Walker, 1984)
which is caused by the invariance of representation (2.3) with respect to reordering
the components:

Statistical Modelling 2018; xx(x): 1–22



10 Gertraud Malsiner-Walli et al.

p(ˇjk) =
Lj∑

l=0

�jl fN(ˇjk|�jl,  j)

=
Lj∑

l=0

�j�(l) fN(ˇj�(l)|�j�(l),  j),

where � is an arbitrary permutation of {0, . . . , Lj}. Practically, it may happen, that
during MCMC sampling, the labels associated with the components change, which
impedes component-specific inference from the MCMC output. The label switching
problem is usually solved by post-processing the MCMC output in order to obtain
a unique labelling of the draws. We avoid solving the label switching problem by
basing model selection on the information whether a pair of level effects is assigned
to the same or to different clusters. For each iteration m and each covariate j, we
construct the (Lj + 1) × (Lj + 1) matrix M

(m)
j with entry 1, if the two corresponding

levels g and h belong to the same cluster, and 0 otherwise, this is,

M
(m)
j,gh

= I{S(m)
jg =S(m)

jh
}.

This matrix is independent of the component labelling and therefore invariant to label
switching. It contains the clustering information for covariate j, this is, all information
regarding number of effect groups and group memberships.

After MCMC sampling, there are several options to summarize the posterior
clustering distribution and to select a final partition of the level effects of covariate
j. One possibility is to choose the partition Mj that was selected most often during
MCMC sampling. Since the parameter e0 of the Dirichlet distribution is specified
very small, according to Rousseau and Mengersen (2011) ‘true’ clusters should not
be split. The posterior distribution will concentrate on parsimonious partitions of the
effects and the number of clusters will depend only on the specified spike variance
size. Thus, the posterior mode estimate, that is, the model sampled most frequently
during MCMC sampling should be a good choice for the final model.

Another option to select the final partition is to average the matrix M
(m)
j over

all Nm MCMC iterations yielding the matrix Cj = 1
Nm

∑Nm

m=1 M
(m)
j . Its entries Cj,gh

correspond to the relative frequency with which effects of two levels g and h are
assigned to the same cluster and approximate the posterior probability that ˇjg and
ˇjh are members of the same cluster. Hence, each matrix Cj can be interpreted as
a ‘similarity’ matrix: a value of Cj,gh close to 1 indicates that the two level effects
are almost identical. To find a clustering of the level effects which corresponds most
closely to the similarity matrix, we follow Molitor et al. (2010) and use k-medoids
clustering.

Statistical Modelling 2018; xx(x): 1–22
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Similar to k-means clustering, k-medoids clustering aims at clustering points by
minimizing the distances between points assigned to a cluster and the point defined
as the centre of the cluster. k-medoids always chooses a data point as centre of a
cluster (‘medoid’) and works with arbitrary distance metrics between the data points.
This feature makes it attractive for our approach since the similarity matrix can
easily be transformed to a distance matrix Dj = 1 − Cj, where 1 is a matrix with
elements 1. We use the clustering algorithm Partitioning Around Medoids (PAM)
proposed by Kaufman and Rousseeuw (2005) which yields an optimal partition for
a specified number of clusters. The final partition is chosen by comparing partitions
with different numbers of clusters by their silhouette coefficients (Rousseeuw, 1987).
The definition of the silhouette coefficient is given in Appendix B.

An advantage of this approach is that clusters of effects are correctly identified even
if distances are high, that is, joint inclusion probabilities are rather small. This can
happen if the number of categories is large and the strong overlapping of the mixture
components induces a frequent switching of the levels between the components, so
that the inclusion probability of any two level effects become small, and the most
frequent model is not a good representative of the sampled models. However, a
drawback of this approach is that the silhouette coefficient cannot be computed for
a one-cluster solution. Therefore, with this strategy it is not possible to identify the
case where all level effects are assigned to the zero component and the corresponding
predictor can be excluded from the model.

4 Simulation study

A sparser representation of the effects of a categorical covariate is possible when (a)
some or (b) all of the levels have no effect or (c) some levels have the same effect and
hence can be fused. To investigate the performance of the proposed prior distribution
in these situations, we perform a simulation study where categorical covariates with
moderate as well as large number of levels represent the various types of sparsity.
We evaluate both model selection strategies proposed in Section 3.3, that is, using
either the most frequent sampled partition or the partition selected by performing
PAM and the silhouette coefficient, with respect to correct model selection. Further,
we determine estimation accuracy and predictive performance of the estimates based
on the selected models as well as the model averaged estimates.

4.1 Set-up

We define a regression model according to (2.1) with four independent categorical
predictors, the first three predictors having 10 and the forth 100 categories. All
categories have uniform prior class probabilities. The level effects of the first
covariate have three different values (ˇ1 = (0,0,0,0.5,0.5,0.5,1,1,1)), for the
second covariate only one level has a non-zero effect on the outcome (ˇ2 =
(0,0,0,0,0,0,0,0,1)), the levels of the third variable have no effect at all, and
levels of the last covariate have six different effects (0,0.5,1,1.5,2,2.5) roughly
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equally distributed among the levels. The intercept ˇ0 is set to zero. A total of
100 datasets, each consisting of n = 4 000 observations, a random design matrix
and a Normal error ε ∼ N(0,0.5), are generated. The regression model with prior
specifications as described in Section 2.1 and a flat prior on the intercept is fitted
to the datasets. In order to investigate the influence of the component variance, the
simulations are performed with varying sizes of the variance parameter �, that is, � =
10,102, . . . ,106, and fixed as well as random component variance specifications.

MCMC sampling is run for 15 000 iterations after a burn-in of 15 000. The final
model is chosen by employing both model selection strategies suggested in Section
3.3. The selected models are then refitted under a flat Normal prior N(0, IB0) with
B0 = 10 000 on all level effects. For the refit, MCMC is run for 3000 iterations after
a burn-in of 1000.

In order to compare the different final models, two model choice criteria, the
Deviance Information Criterion (DIC), proposed by Spiegelhalter et al. (2002),
and the BICmcmc, suggested by Frühwirth-Schnatter (2011), are performed. Both
measures rely on the MCMC output and can be easily computed. BICmcmc is
determined from the largest log-likelihood value observed across the MCMC draws.
Whereas the classical BIC is independent from the prior, BICmcmc depends also on
the prior of the regression parameters.

4.2 Model selection results

The model selection results are evaluated by reporting the estimated number of
level effect groups. Additionally, the clustering quality is assessed by calculating the
adjusted Rand index (Hubert and Arabie, 1985), the error rate, the false negative and
the false positive rate.

The adjusted Rand index (AR) allows to quantify the similarity between the true
and estimated partition of the level effects (Hubert and Arabie, 1985). It is a corrected
form of the Rand index (Rand, 1971), adjusted for chance agreement. A value of 1
corresponds to perfect agreement between two partitions, whereas an adjusted Rand
index of 0 corresponds to results no better than expected by randomly drawing two
partitions, each with a fixed number of clusters and a fixed number of elements in
each cluster. A formal definition of the index can be found in Appendix B.

The error rate (err) of the clustering result is the number of misclassified categories
divided by all categories. It should be as small as possible. Since interest mainly
lies in avoiding incorrect fusion of categories rather than unnecessary splitting of
‘true’ groups, additionally false negative rate (FNR) and false positive rate (FPR) are
reported. They are defined as

FNR = FN

TP+ FN
FPR = FP

TN + FP
,

where FN is the number of levels incorrectly fused, FP is the number of levels
incorrectly split, and TN and TP are the number of levels fused and split correctly,
respectively.
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Table 1 shows the clustering results for all four covariates using both model
selection strategies, that is, the most frequent model (‘most’) and the model selected
using PAM (‘pam’), for fixed component variance  j and � = 103. ‘freq’ reports the
number of iterations (out of 15 000) where the most frequent model is sampled, and
‘groups’ reports the estimated number of clusters. All results are averaged over 100
datasets. Obviously, sparsity is achieved for all covariates. The true number of clusters
is correctly identified for both strategies, except for covariate 3, where ‘pam’ is not
able to select the one-cluster solution with all level effects being 0. Also ‘most’ has
some difficulty to fuse all levels to the baseline. However, using a broader variance by
setting � to 10 or 102, fusion to the baseline is perfect for this variable (Table C.3). The
selected partitions under both model selection strategies show high values of AR and
low error rate indicating that the identified clusters capture the true group structure
of level effects well. Notably, fusion is almost perfect also for the 100 categories of
covariate 4, with an average error rate of err = 0.04.

In order to compare our clustering results to those obtained following the approach
proposed by Gertheiss and Tutz (2010) and Oelker et al. (2014), we use the R package
gvcm.cat to fit a regression model with a regularizing penalty term on the level effect
differences. The penalty parameter is chosen via cross-validation. Table 2 reports the
classification results. The approach yields large models where level effects are fused
very cautiously, resulting in small AR and FNR values and high values for err and
FPR.

To investigate the impact of the component variances j on model selection, we ran
MCMC for various values of � for fixed as well as random component variance  j.
In Table 3, we report the results for covariate 4, which is of special interest due to its
large number of levels (results for all other covariates are reported in Tables C.1–C.3).

Table 1 Model selection results for fixed  with � = 103. Comparison of the two model selection strategies
‘most’ and ‘pam’. The first three variables have 10 categories, the 4th variable 100 categories. FNR is not
defined for variable 3

groups AR err FPR FNR

Var freq true most pam most pam most pam most pam most pam

1 14 844 3 3.0 3.0 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
2 14 970 2 2.0 2.0 1.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00
3 11 897 1 1.8 2.0 0.26 0.00 0.23 0.28 0.33 0.41 – –
4 11 044 6 6.0 6.2 0.91 0.90 0.04 0.04 0.08 0.08 0.02 0.02

Table 2 Penalty approach: Model selection results

Var true groups AR err FPR FNR

1 3 9.0 0.12 0.60 0.91 0.00
2 2 7.7 0.03 0.66 0.92 0.00
3 1 7.2 0.00 0.74 0.92 –
4 6 59.8 0.05 0.83 0.96 0.01
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Table 3 Model selection results for variable 4, 100 categories, true number of groups is 6

groups AR Err FPR FNR

� freq most pam most pam most pam most pam most pam

Fixed 10 9 3.8 3.4 0.52 0.53 0.49 0.49 0.06 0.04 0.21 0.20
102 54 6.1 6.1 0.91 0.93 0.04 0.03 0.07 0.06 0.02 0.01
103 11 044 6.0 6.2 0.91 0.90 0.04 0.04 0.08 0.08 0.02 0.02
104 8 077 6.7 7.0 0.87 0.86 0.09 0.09 0.14 0.15 0.02 0.01
105 7 159 11.0 11.6 0.69 0.68 0.28 0.30 0.40 0.42 0.01 0.01
106 6 800 19.6 20.6 0.46 0.44 0.50 0.53 0.65 0.68 0.00 0.00

Random 10 9 3.7 3.4 0.52 0.53 0.49 0.49 0.06 0.04 0.21 0.20
102 46 4.2 4.3 0.62 0.64 0.35 0.30 0.07 0.10 0.14 0.12
103 38 4.7 4.8 0.70 0.73 0.26 0.21 0.06 0.09 0.11 0.08
104 42 4.9 4.9 0.73 0.73 0.24 0.21 0.06 0.09 0.09 0.08
105 44 4.8 4.9 0.72 0.73 0.25 0.21 0.05 0.09 0.10 0.08
106 45 4.8 4.9 0.72 0.74 0.24 0.20 0.06 0.09 0.10 0.08

For fixed j, as expected, the number of identified groups increases with � as the spike
variance  j decreases. To detect the ‘true’ effect clusters, a good choice for � is a value
in the range of � = 102 to � = 103, also AR and err are good for this choice. Larger
values of � lead to a finer classification of the level effects. The number of estimated
effect groups increases up to 20 for the very small spike variance (� = 106), with
AR = 0.46 and err 0.50. However, the relatively high values of FPR and low values
of FNR indicate that groups are split into subgroups, while almost no levels of truly
different groups are combined to new groups.

When a hyperprior on the component variances is specified as described in Section
2.1, the true number of effects is captured well for variables 1 to 3, where the true
number of clusters is at most three (see Tables C.1–C.3). However, for covariate 4 with
six different effects, the true number of effect groups is underestimated, regardless of
the employed model selection strategy, see Table 3. Although for larger values of �
more (splitted) groups would be expected, the number of estimated groups does not
increase. This result suggests that a hyperprior on the component variance cannot be
recommended, if a larger number of level effect groups is expected.

Table 4 shows that all models with fixed or random component variance
outperform the full model with respect to the BICmcmc; models with a fixed
component variance outperform the full model even in terms of DIC unless the
component variance is large (i.e., for � = 10). Thus, with a ‘reasonable’ variance,
that is, � between 102 and 105, a good fit of the models can be obtained.

Finally, accuracy and predictive performance of the approach is evaluated by
computing the mean squared error (MSE) of the coefficient estimates and the
mean squared predictive error (MSPE). The results are compared to those of the
full model, the true model and using penalized ML-estimates, and are reported in
Appendix C.
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Table 4 Model choice criteria for the selected models using the model selection strategies ‘most’ and
‘pam’, the penalty approach (‘penalty’), and fitting the true and the full model under flat prior

BICmcmc DIC

� most pam most pam

True 8 501 8 445

Fixed 101 9 154 9 089 9 043 9 113
102 8 644 8 643 8 579 8 587
103 8 643 8 645 8 581 8 582
104 8 646 8 648 8 570 8 571
105 8 655 8 657 8 535 8 536
106 8 735 8 731 8 527 8 527

Random 10 9 154 9 091 9046 9 114
102 8 915 8 850 8 799 8 864
103 8 836 8 771 8 716 8 782
104 8 814 8 768 8 713 8 759
105 8 826 8 768 8 713 8 772
106 8 826 8 768 8 713 8 772

Penalty 9 365 8 692

Full 9 579 8 703

5 Application

We illustrate the proposed approach for effect fusion in an application to data
from EU-Statistics on Income and Living Conditions (SILC) survey 2010 in Austria.
Relying on a questionnaire, the EU-SILC data are the main source for statistics on
income distribution and social inclusion at the European level, see Statistics Austria
(http://www.statistik.at/web de/frageboegen/private haushalte/eu silc/index.html).
We use a linear regression model to analyse the effects of socio-demographic
variables on the (log-transformed) annual income and aim at identifying levels of
categorical covariates which account for income differences.

As potential regressors, we consider the continuous covariate age (as linear and
squared term) and categorical predictors such as gender, citizenship, federal
state of residence in Austria, highest education level a person achieved, the
economic sector a person is working and the job function.

The economic sector is classified using the classification scheme NACE
(statistical classification of economic activities in the European Community), whereas
job function is determined by using a two-level scheme. Both classifications have
a hierarchical structure with 21 and 5 categories on the first level and 84 and 25
categories on the second level of aggregation, respectively. The definition of the
categories for both aggregation levels is given in Appendix D. We use the finer second
levels of aggregation and specify the effect fusion prior on the categories to achieve a
sparser representation of the effects.

We standardize the response y and restrict the analysis to observations of
full-time employees with a minimum annual income of EUR 2 000. After removing
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observations with missing values in the response or the predictors, the dataset consists
of observations from 3 865 people. As baseline categories we choose the categories
with the lowest labels in the classification schemes, except federal state where
the baseline is Upper Austria. Figure 2 shows the 95% HPD intervals for the level
effects under a flat Normal prior.

We fit regression models with prior specifications as described in Section 2,
with fixed and random component variances, � = 10, . . . ,106, and perform model
selection as described in Section 3.3. MCMC sampling is run for 15 000 iterations
after a burn-in of 25 000 iterations. Table 5 reports the estimated number of effect
groups for each of the categorical covariates under both model selection strategies
and for the different variance specifications. Additionally, we report the results when
fitting a regularized regression using gvcm.cat (‘pen’). Finally, in order to evaluate
the selected models, the BICmcmc of the refitted models is shown.

For fixed  j, as expected, the number of effect clusters increases if the component
variances decreases. Again, both model selection strategies yield similar clustering
results. BICmcmc is smallest for � = 104 with 2 effect groups for citizen and
federal state, 5 for education, and 7 and 6 effect groups for sector and

−
0.

6
−

0.
5

−
0.

4
−

0.
3

−
0.

2
−

0.
1

0.
0

0.
1

Citizenship
1 2 3 4 5 −

0.
3

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Federal State
1 2 3 4 5 6 7 8

0.
0

0.
2

0.
4

0.
6

0.
8

Education Level
1 2 3 4 5 6 7 8 9

−
1

0
1

2
3

Economic Sector
1 6 12 19 26 33 40 47 54 61 68 75 82

0.
0

0.
5

1.
0

1.
5

2.
0

Job Function
1 3 5 7 9 11 13 15 17 19 21 23

Figure 2 SILC data, posterior means and 95% HPD intervals under flat prior
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Table 5 SILC data: estimated number of level groups for the categorical covariates and BICmcmc for
various scaling factors �, with fixed and random component variances  j

Citizen Federal State Education Sector Job Function BICmcmc

� most pam most pam most pam most pam most pam most pam

Fixed 101 2 2 2 2 2 2 3 2 4 3 8 774 8 520
102 2 2 2 2 3 3 3 2 5 5 8 294 8 275
103 1 3 3 2 3 5 4 4 5 5 8 193 8 165
104 2 2 2 2 5 5 7 7 6 6 8 114 8 117
105 2 2 4 4 5 5 13 13 8 8 8 174 8 171
106 3 3 4 4 6 6 17 20 11 11 8 231 8 255

Random 101 2 2 2 2 2 2 3 2 3 2 9 204 9 189
102 2 2 2 2 3 3 3 2 4 3 8 621 8 451
103 2 2 2 2 3 3 3 2 4 3 8 563 8 451
104 2 2 3 3 3 3 3 3 4 3 8 559 8 448
105 2 2 3 3 3 3 3 2 4 3 8 559 8 440
106 2 2 3 3 3 3 3 2 4 3 8 558 8 440

Pen – 5 8 9 7 21 8 445
Full – 6 9 10 84 25 9 047

job function, respectively. The posterior means and the 95%HPD intervals of
the refitted model are plotted in Figure 3.

To visualize the cluster solutions for different values of �, the estimated effects of
the (refitted) selected models for variable job function are plotted in Figure 4.
Obviously with decreasing spike variance, the clustering of the level effects gets
‘finer’. With a higher resolution of the effects (e.g., � ≥ 105), an interesting structure
is revealed: as levels are ordered by hierarchy function within each contract type (see
Table D.1), obviously effects are fused across contract types. This structure would
have been missed by using the coarser classification level, whereas on the other hand
even for the very fine resolution with � = 106, the number of estimated effects is less
than half compared to the full model.

With a hyperprior on the component variance  j, the selected models are very
sparse and the number of effect clusters is almost constant, see Table 5. This is in
agreement with the results from the simulation study, and the considerably higher
values of BICmcmc indicate that a prior with fixed component variances should be
preferred.

6 Discussion

In this article, we proposed to specify a finite Normal mixture prior on the level
effects of a categorical predictor to obtain a sparse representation of these effects.
The mixture specification allows to shrink non-zero effects to different non-zero
locations and introduces a natural clustering of the level effects. Level effects assigned
to the same mixture component are fused, that is, their effects are replaced by the
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Figure 3 SILC data, posterior means and 95% HPD intervals under mixture prior with � = 104 and fixed
variance specification

same joint effect. The number of components as well as their locations are treated
as unknown and estimated from the data. A sparse prior on the mixture weights
helps to avoid unnecessary splitting of non-empty components and to concentrate
the posterior distribution on a sparse cluster solution. The number of estimated level
groups can be guided by the size of the component variances, with a smaller variance
inducing a larger number of estimated effect groups.

We noted that surprisingly the specification of a hyperprior on the component
variances did not work well. In contrast to the common clustering of known
data points, we aim at clustering of regression effects, which are not fixed but
have to be estimated themselves. Assigning an effect to a mixture component
corresponds to selecting a particular prior distribution for its estimation, and
hence has an impact on its value in the next parameter estimation step. Thus,
additional uncertainty is introduced when clustering regression effects. This leads
to the estimation of large component variances and only few effect groups, if the
component variances are allowed to be random. Therefore, we recommend to fix the
variances of the mixture components and investigate the resolution of level effects
with different values. To select the final model, model choice criteria can be used.
A strength of our approach is that the spike variance specification can vary across
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Figure 4 SILC data, variable ‘job function’: Level estimates with 95% HPD intervals for various
� = 10, . . . ,106 (from top left), by selecting the most frequent model and with fixed component variance  j .
In the last plot on the bottom right, the dotted lines indicate the 5 categories of the first level of
aggregation, see Table D. 1

the variables, which allows the researcher to obtain a ‘finer’ clustering for effects of
particular interest.

We investigated two different model selection strategies. We selected either the
model sampled most frequently or applied the PAM clustering algorithm (Kaufman
and Rousseeuw, 2005) to the matrix of posterior inclusion probabilities and selected
the final model maximizing the silhouette coefficient of the obtained clusterings. Both
strategies have shown to perform similar. An advantage of the first strategy is that a
one-group solution can also be selected, which is not possible for the ‘PAM’ strategy,
but the latter is robust against the switching of single effects between groups.

The approach works well even if the number of categories is high, for
example, around 100. For Gaussian response regression models, the computational
effort is low as a standard Gibbs sampling scheme can be used for MCMC estimation.
The sampling scheme is implemented in the R package effectFusion (Pauger et al.,
2016) which is available on CRAN. However, the method is not at all restricted to
Gaussian regression models. It can be easily implemented as an ‘add-on’ to an MCMC
sampling scheme for any regression type model with a multivariate Normal prior on
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the regression effects, as in each MCMC iteration only the steps for model-based
clustering as well as the update of the prior parameters of the regression effects are
required.

Acknowledgements

This research was financially supported by the Austrian Science Fund FWF (P25850,
V170 and P28740) and the Austrian National Bank (Jubiläumsfond 14663). We want
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