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Abstract

Background: Despite the increasing recognition that microbial communities within the human body are linked to health,
we have an incomplete understanding of the environmental and molecular interactions that shape the composition of
these communities. Although host genetic factors play a role in these interactions, these factors have remained relatively
unexplored given the requirement for large population-based cohorts in which both genotyping and microbiome
characterization have been performed.

Methods: We performed whole-genome sequencing of 298 donors from the Human Microbiome Project (HMP) healthy
cohort study to accompany existing deep characterization of their microbiomes at various body sites. This analysis yielded
an average sequencing depth of 32x, with which we identified 27 million (M) single nucleotide variants and 2.3 M
insertions-deletions.

Results: Taxonomic composition and functional potential of the microbiome covaried significantly with genetic
principal components in the gastrointestinal tract and oral communities, but not in the nares or vaginal microbiota.
Example associations included validation of known associations between FUT2 secretor status, as well as a variant
conferring hypolactasia near the LCT gene, with Bifidobacterium longum abundance in stool. The associations of
microbial features with both high-level genetic attributes and single variants were specific to particular body sites,
highlighting the opportunity to find unique genetic mechanisms controlling microbiome properties in the microbial
communities from multiple body sites.

Conclusions: This study adds deep sequencing of host genomes to the body-wide microbiome sequences already
extant from the HMP healthy cohort, creating a unique, versatile, and well-controlled reference for future studies
seeking to identify host genetic modulators of the microbiome.

Keywords: Human Microbiome Project, Microbiome and human genetics, Human genome sequence, Microbiome
metagenome sequence, Association studies
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Background
The Human Microbiome Project (HMP) was the first
population-scale, body-wide metagenomic microbiome
survey, with initial results published in 2012 [1]. Cover-
ing 18 clinically relevant body sites from five major body
regions in a cohort of 300 healthy adult donors, analysis
of HMP data revealed a high degree of microbial com-
munity specialization as well as considerable variation in
overall microbiome composition between individuals.
Providing a baseline of healthy microbial variation, HMP
data have served as a versatile reference in numerous
studies [2–5]. Examples of how metagenomic data from
the HMP have been used include characterizing mobile
gene content in the microbiome [6], identifying the
prevalence of specific enzymes in human microbiome
samples [7, 8], dissecting factors that shape skin micro-
bial communities [9], contrasting ancient and modern
oral microbiomes [10], and studying the gut antibiotic
resistome [11].
In this study, we provide further data to characterize

potential interactions between the microbiome and the
human host, specifically, genome sequencing for the
HMP cohort. While interpersonal variation in the micro-
biome can be considerable, the microbiome of specific
individuals can conversely be remarkably stable [12–14],
suggesting host genetic background as one factor main-
taining the composition of microbial communities across
the body. Genetic factors influencing microbiome com-
position have been previously analyzed in mouse models,
where external factors such as diet can be tightly con-
trolled. In these studies, host genotype explained a sig-
nificant proportion of variation in the gut microbiome
of intercrossed mouse lines [15–17]. The quantitative
trait loci (QTLs) emerging from these studies included
genes involved in immune function, for example, Irak3
[15] and Irak4 [17].
The study of genetic effects on the microbiome

becomes far more complex in humans. In addition to
genetics, microbiome composition is strongly influenced
by environmental factors such as diet, overall health sta-
tus, and medication use [18, 19]. With the exception of
research on special populations like the Hutterites [20],
these factors are difficult to constrain in a human study.
Nevertheless, some evidence does exist for genetic effects
on human microbiome composition. For example, the gut
microbiomes of monozygotic twins are significantly more
similar than those of dizygotic twins [21, 22]. Recent work
has suggested that microbiome heritability is lower than
many other traits, however, and not distributed equally
among taxa (e.g., with a higher heritability among Firmi-
cutes than Bacteroidetes [22, 23]).
More detailed mapping of associations between single

gene variants and microbial taxa has been successful in a
targeted approach of candidate genes or variants, where

clear molecular mechanisms have been established. For
example, inflammatory bowel disease risk loci near
NOD2 were also associated with Enterobacteriaceae in
patients with inflammatory bowel disease [24]. In
addition, variants near the lactase (LCT) gene, respon-
sible for lactose tolerance, have been associated with
abundance of Bifidobacterium [22, 25, 26]. Bifidobacter-
ium has also been associated with a loss-of-function
variant in the fucosyltransferase 2 (FUT2) gene, respon-
sible for the transfer of the terminal fucose residues to
the mucosal glycans [27].
Despite these examples, very few individual microbe-

polymorphism associations have been identified that
have reached genome-wide significance. Cohort size is
certainly a main limiting factor. Studies to date have in-
cluded up to 1800 individuals, a relatively small number
for a successful genome-wide association study of any
trait, and especially so considering that the heritability of
microbial features can be low relative to many quantita-
tive traits. Furthermore, clinically relevant associations
might be discoverable only in cohorts with particular
diseases, for example, in conditions such as inflamma-
tory bowel disease or rheumatoid arthritis, which are
both genetically complex and accompanied by microbial
dysbioses [28, 29].
To facilitate future microbiome-genetic association

meta-analyses and to provide a baseline characterization
of the HMP population, we report here on whole-
genome sequencing from the blood of 298 HMP partici-
pants. The data achieve an average of 32x coverage,
allowing us to discover two times as many variants as
were previously identified using “contaminant” human
reads from a subset of 93 whole metagenome sequen-
cing (WMS) samples [25, 30]. The common variants we
identified are consistent with findings from other large-
scale sequencing projects such as 1000 Genomes [31]
and Genome of the Netherlands (GoNL) [32]; in
addition, we identified numerous novel rare variants in
the HMP cohort. In combination with more than 7500
microbiome samples sequenced (including both 16S
rRNA gene sequencing and WMS) from multiple body
sites of the HMP cohort to date, this study creates a
unique dataset for studying the microbiome of multiple
body sites in the context of host genetics.

Methods
Genome sequencing
Genome sequencing was performed at the Broad Institute
using polymerase chain reaction (PCR)-free library prepar-
ation on Illumina HiSeq X Ten machines. Reads were
mapped to the genome using Burrows-Wheeler Aligner
[33], and variants were called with Genome Analysis Tool-
kit (GATK) version 3.4 on human genome build b37. The
sequencing quality was good in all samples according to
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multiple metrics, so no samples were excluded. We used
only variants that passed Variant Quality Score Recalibra-
tion filtering. Additionally, we filtered out variants in low-
complexity regions of the genome as defined by Li et al.
[34]. For comparison analyses, we downloaded variant files
from the GoNL consortium (https://molgenis26.target.rug.n
l/downloads/gonl_public/variants/release5/) and 1000 Ge-
nomes phase 3 (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/rel
ease/20130502/) and searched for the presence of all our var-
iants in these other cohorts.
We estimated the impact of coding variants using

Variant Effect Predictor (VEP) [35] with Ensembl version
82 together with the Loss-Of-Function Transcript Effect
Estimator (LOFTEE) plugin (https://github.com/konr
adjk/loftee). To classify mutations into severity groups,
we used the annotations provided by VEP. If one variant
was located within several transcripts and therefore had
multiple potential effects on the coding sequence, we
annotated the variant with the most severe outcome.
For principal component analysis (PCA) on the vari-

ants, we used 5.9 million (M) common (minor allele fre-
quency (MAF) > 0.05, call rate > 95%) single nucleotide
variants (SNVs) in PLINK 1.9 [36]. For joint PCA, we
first extracted a similar subset of 6.8 M SNVs from the
1000 Genomes data (MAF > 0.05, call rate > 95%),
merged the resulting files, and performed PCA using
PLINK 1.9.
Kinship analysis was performed using the Kinship-

based INference for Genome-wide association studies
(KING) algorithm [37]. The ranges used for inferring
degree of relation from kinship coefficients were taken
from the original publication and were [0.0442, 0.0884)
for third degree, [0.0884, 0.177) for second degree, and
[0.177, 0.354) for first degree relatives, and > 0.354 for
twins. Kinship coefficients below 0.0442 were considered
unrelated.

Microbiome data
All metagenomic data underwent quality control accord-
ing to the HMP protocol [38, 39]. We performed taxo-
nomic profiling of bacteria, archaea, microbial eukaryotes,
and viruses using MetaPhlAn2 [40]. Briefly, MetaPhlAn2
maps shotgun metagenomic sequencing reads against a
precomputed database of clade-specific marker genes (i.e.,
genes that tend to be found in isolate genomes from a
given clade, but are rarely seen in isolate genomes outside
that clade). Marker gene abundance is averaged within-
clade to produce a robust estimate of the clade’s genomic
coverage in the sample, which can then be normalized to
relative abundance units.
We used MetaPhlAn2’s taxonomic profiles to guide

species-resolved functional profiling with HMP Unified
Metabolic Analysis Network 2 (HUMAnN2) (http://huttenh
ower.sph.harvard.edu/humann2). For a given metagenome,

HUMAnN2 constructs a sample-specific database by concat-
enating and indexing the pangenomes of species detected in
the sample (species’ pangenomes are precomputed, reduced
representations of the protein-coding sequences from iso-
lates of a given species [41]). HUMAnN2 then maps sample
reads against the corresponding sample-specific database to
quantify gene presence and abundance on a per-species
basis; reads that fail to map to one of the detected species
(“unclassified reads”) are separately mapped by translated
search against a reduced protein sequence catalog [42].
Finally, HUMAnN2 compares community total, species-
resolved, and unclassified gene family abundance to the
MetaCyc pathway catalog [43] to reconstruct metabolic
pathway abundance and coverage using the original
HUMAnN algorithm [44].
To filter the MetaPhlAn relative abundances for fur-

ther testing, we used only species-level data and required
a species to be present in at least 25% of the samples in
a given body site. This reduced the number of species
from 567 to 119 in stool, from 428 to 119 in buccal
mucosa, from 479 to 161 in supragingival plaque, from
461 to 156 in tongue dorsum, from 380 to 29 in anterior
nares, and from 367 to 23 in posterior fornix. We then
applied log10 transformation on their relative abun-
dances (with a pseudocount of 10–5) to stabilize the vari-
ation for linear modeling.
Metabolic pathway abundance was much more stable

than species-level abundance: for example, more than
78% of the pathways detected were present in more than
75% of stool samples. As the number of samples where a
pathway was not detected was relatively small for each
pathway, we used only the abundances that were present
for statistical testing, and used only pathways that were
present in more than 75% of the samples per body site.
This reduced the number of species from 756 to 500 in
stool, from 706 to 427 in buccal mucosa, from 750 to
511 in supragingival plaque, from 744 to 509 in tongue
dorsum, from 742 to 355 in anterior nares, and from
697 to 247 in posterior fornix. Finally, we applied log10
transformation to the read-counts-per-million pathway
abundance values returned by the HUMAnN2 pipeline.
In both cases, if multiple samples were collected from

the same person and body site, we averaged the relative
abundance values. The final number of donors was 209
for stool, 159 for buccal mucosa, 169 for supragingival
plaque, 185 for tongue dorsum, 128 for anterior nares,
and 80 for posterior fornix.

Genome and microbiome associations
To associate genomic PCA with the microbiome, we fit
a linear model to each of the microbial features, predict-
ing it using the first five principal components. Based on
the residuals, we calculated the amount of variance
explained (R2). To put the calculated values into context,
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we shuffled the sample labels 10,000 times and calcu-
lated R2 for each of the shuffled datasets. The average R2

statistic per site was averaged over all features, and the
Z-score was calculated based on the same statistic in the
10,000 permuted datasets. For single features the empir-
ical p value was calculated as the proportion of per-
muted R2 scores larger than the actual score.
Starting with ranking of pathways based on their cor-

relation to genomic principal components, we sought to
identify classes enriched in the top of the rankings. For
this analysis we used the pathway superclass assignments
by MetaCyc [43]. For each superclass in the data, we
extracted the rankings of its members and calculated a p
value [45] showing how strongly the rankings were
skewed towards the top.
For genome-wise associations we employed Matrix

eQTL software [46] to fit ordinary linear models to predict
microbiome features, taking originating site, sex, and eth-
nicity into account as covariates. Given the set of donors
available for each body site, we included only the SNVs
with MAF > 0.1. The variants found in the analysis were
associated with genes that were located within 50 kb of
the variant. The variants reported in figures and supple-
mentary tables were filtered as follows: (1) we divided all
SNVs associated to a particular species into groups where
the distance between consecutive SNVs was not longer
than 10,000 bp; (2) from each group of associations, we
selected the one with the smallest p value.

Results
High-quality DNA sequencing of the HMP cohort
The HMP cohort design and sample collection has been
described in depth [47]. Briefly, the HMP cohort com-
prises 300 donors recruited in two locations in the USA.
The majority of donors (71%) were of Caucasian origin;
the remaining donors were of African (6%), Asian (9%),

Latino (11%), or mixed (3%) ancestry. The male-to-
female ratio was roughly equal, with 151 females and
149 males. The goal in selecting donors was to find
healthy individuals with no recent medication use or
disease history, who belonged to a similar age group
(19–40 years), and who had a relatively healthy body
mass index (BMI of 19–34 kg/m2).
To obtain host genome information, genomic DNA

from the blood of 298 of the 300 individuals was
sequenced using PCR-free sequencing. The average
sequencing coverage was 32.77x, with a range of 23.9×
to 56.7× (Fig. 1). Contamination and the percentage of
chimeric reads were both well under the standard cutoff
of 5% in all samples (Additional file 1: Figure S1A). The
distribution of other quality metrics such as insert size
and percentage of reads that aligned in pairs did not
highlight any clear outlier samples; therefore, all samples
were included in further analysis. The variant number
was also remarkably stable at ~ 2 M single nucleotide
polymorphisms (SNPs) and 200 K indels per person
(Fig. 1), with the exception of the African-American do-
nors, who had higher genetic diversity (Additional file 1:
Figure S1B). There was no detectable correlation be-
tween sequencing depth and number of variants recov-
ered, indicating that depth in all samples was sufficient.
These data provide an almost complete pairing of

human genome sequencing to microbial amplicons and
metagenomes across the entire HMP cohort. Genetic
variation in this cohort was previously inferred using
“contaminant” human reads from 93 subjects’ WMS
data [25, 30]. While this provided an average human
genome coverage of ~ 10×, it varied greatly between
samples and for many reached only 5×. This was suffi-
cient to detect 13 M genetic variants overall, 5.5 M with
MAF > 0.05. In comparison, our study more than tripled
the number of donors, and by directly targeting the host

Fig. 1 Overview of the Human Microbiome Project host genome and metagenome coverage. Sequencing depth for each host genome (left) and
number of reads for all available samples with whole metagenome sequencing
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DNA, we identified twice as many variants overall with
even coverage (minimum 25×) between samples. This
increased the quality over all samples and generated a
complete dataset that can be mined in this work as well
as in future studies.

Sequencing results are consistent with those of other
comparable populations
After filtering according to quality and location in low-
complexity regions, 29 M variants remained, consisting
of 26.7 M SNVs and 2.3 M insertions-deletions (indels)
(Additional file 1: Table S1). When compared to the
GoNL [32] and the 1000 Genomes [31] Projects, 5.1 M
SNVs and 856 K indels were novel, but the majority of
these were rare (Fig. 2a). In contrast, the common vari-
ants we identified (MAF > 5%) were almost universally
shared between the three cohorts. Overall, we identified
7.8 M more variants compared to the similarly sized
GoNL consortium. Since many of the variants were also
present in the 1000 Genomes Project, we attribute the
difference to the greater ethnic diversity in the HMP
cohort. Although a large number of SNVs were unique
to each cohort, the proportion of variants falling in
intronic, exonic, and intergenic regions of the genome
was almost identical between cohorts (Additional file 1:
Figure S2).
We next annotated coding variants using the LOFTEE

plugin for the VEP tool [35], which categorizes variants
into classes based on their impact on the coding
sequence. The number of high-impact variants, defined
as those that would result in loss of function of a par-
ticular gene, was 2670 (Additional file 1: Table S2); this
result is consistent with active negative selection against
these variants. Negative selection was also evident from
the allele frequency distribution, as the severity of an

allele’s impact was strongly related to its frequency in
the population. For example, high-impact variants were
greatly enriched in variants that were observed only
once in our dataset (Fig. 2b, AC1). The distribution of
coding mutations among genes was also not uniform,
with a small number of genes capturing a large number
of variants. Thirty genes showed more than five poten-
tial high-impact loss-of-function variants, and six genes
had more than ten variants. The small number of genes
with high-impact coding mutations suggested that this
cohort was too small for burden testing to draw correla-
tions between mutation frequency within a gene and
microbial features. Instead, we focused our analysis on
identifying associations between common variants and
microbial taxa or functional potential.

Microbial taxa and functional potential at six body sites
For the HMP, microbiome samples were collected from
18 body sites, falling into five major areas: gastrointes-
tinal (GI) tract, oral cavity, skin, nares, and vagina. In
some cases replicate samples were collected over time to
assess temporal stability of the microbiome. In total,
more than 5000 samples were characterized using 16S
rRNA gene sequencing and more than 2000 using shot-
gun WMS. The former approach gives a high-level over-
view of taxonomic composition, whereas the latter
allows species-level identification and profiling of func-
tional potential of the microbiome. We therefore used
WMS data in subsequent analyses. The distribution of
samples with WMS was not equivalent between body
sites, with most samples drawn from six locations repre-
senting four of the major areas described above: gut
(stool), oral (buccal mucosa, supragingival plaque,
tongue dorsum), nares (anterior nares), and vaginal (pos-
terior fornix); no WMS data were available from the skin

a

b

Fig. 2 Distribution of genetic variants and comparison with other cohorts. a Discovered variants categorized by frequency and overlap with other
cohorts. AC allele count, MAF minor allele frequency. b Distribution of the number of coding mutations by frequency and estimated impact
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samples. Within the six body sites, the number of do-
nors ranged from 80 for vaginal posterior fornix to 209
for gut samples; the average number of reads per sample
ranged from 34 M in posterior fornix to 86 M in tongue
dorsum. Using the WMS data from these samples, we
identified taxonomic composition using MetaPhlan2
[40] and functional potential using HUMAnN2 [44].
These outputs were then analyzed for associations with
host genetic variation.

Human genomic principal components correlate with
microbiome composition
To compare host genetic variation with microbial vari-
ation, we first assessed the degree to which high-level
genetic patterns could be correlated with microbiome
composition. PCA on the common SNVs (MAF > 0.05)
demonstrated that the first five principal components
predominantly represented the ethnic and racial ancestry

of the donors. For example, host genetics of the African-
American, one of two groups of Asian-American, and
the Caucasian subjects showed the strongest effect
(Fig. 3a). To further compare overall genetic variation to
other cohorts, we also jointly ordinated a combined
dataset of HMP300 and 1000 Genomes participants,
using SNVs with MAF > 0.05 in both cohorts. Individuals
from both cohorts distributed in the resulting principal
component space almost identically according to ances-
try (Additional file 1: Figure S3).
Next, for HMP300 we calculated what percentage of

microbial variation in the six body sites could be
explained (R2) by the first five host-genome principal
components. In stool samples, the percent of species-
level variation explained by the host principal compo-
nents was 3.8%, higher than expected by chance alone
(empirical p = 0.0001; Fig. 3b). The distribution of empir-
ical p values for the R2 values of the individual species

ba

c

Fig. 3 Correlation between high-level genetic variation and microbiome composition. a The first two components of the genetic principal component
analysis are shown, based on common single nucleotide variants, overlaid by self-reported donor ethnicity. AA African-American. b Shown is how much
variance in microbiome data on average can be explained by the genetic principal components, when compared to permutation on the same data. Values
shown are Z-scores based on permutations, which were also used to calculate empirical p values. c Distribution of genetic principal component R2 values
for different species and pathways in stool. Y-axis shows the variance explained, and the X-axis shows permutation-based empirical p values for each of
those numbers. Only the names of species with false discovery rate (FDR) < 0.05 and pathways’ FDR < 0.01 are shown. The histogram below displays the
distribution of empirical p values, and the Y-axis shows the number of species in a bin. Green bars under the pathway histogram show how the pathways
that are associated with fermentation are ranked by R2
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was strongly shifted towards zero (Fig. 3c), indicating
that strong correlations were not limited to a few
species, but that genetic population structure influenced
overall microbial configurations. We observed a similar
effect on the species level in oral sites. In buccal mucosa,
the genomic principal components described on average
5.2% (empirical p = 0.0008) of the species-level variation;
in tongue dorsum, this figure was 4.1% (empirical p =
0.0034). In an identical analysis of MetaCyc metabolic
pathway abundance, we found only the pathways in the gut
microbiomes to be significantly correlated with common
variant principal components. In summary, the association
between high-level host genetic features and microbiome
properties was significant at multiple body sites.
When examining the correlation of individual micro-

bial features with host genetics that contributed to these
averages, certain features showed much stronger individ-
ual associations. In stool, where the genetic correlation
was the strongest, five species out of 118 were signifi-
cantly associated (false discovery rate (FDR) < 0.05 by
permutation test), with R2 values reaching almost 10%
(Fig. 3c). Of these five species, Lachnospiraceae bacter-
ium, Roseburia intestinalis, and Subdoligranulum (un-
classified) were all positively correlated with the first
genomic principal component, demonstrating that these
species have higher abundance in donors of Caucasian ori-
gin. Another significant species, Sutterella wadsworthen-
sis, was associated with PC4, which separates donors of
Asian origin into two groups. Examining other body sites,
we found that Porphyromonas catoniae, Propionibacter-
ium propionicum, and unclassified Gemella were signifi-
cantly associated with host genomic variation in buccal
mucosa (Additional file 1: Figure S4 and Table S1).
A similar pathway-level analysis revealed a large num-

ber (82 of 541) of pathways significantly (FDR < 0.05 as
above) correlated with genetic principal components in
stool (Fig. 3c). Several pathways were related to amino
acid and short-chain fatty acid biosynthesis and degrad-
ation. In a more systematic view, we found that the
members of the fermentation superclass of the MetaCyc
database were significantly enriched in the top pathway
rankings (Fig. 3c). Most of these pathways were associ-
ated with the first genetic principal component that
distinguishes white donors from other racial or ethnic
ancestries. Such functional enrichments can point to
ethnic differences in diet, but also to genetic variability
in the ability to metabolize certain nutrients.
In other body sites, pathway-level variability was on

average not correlated with genetic principal compo-
nents, although some individual correlated pathways
were found (Additional file 1: Figure S5 and Table S1).
For example, a number of pathways in tongue dorsum
microbiomes correlated strongly with genetic principal
components. Interestingly, almost all of the associated

pathways were related to respiration and the tricarb-
oxylic acid (TCA) cycle, indicative of an oxygen gradient
and differences in aerobic respiration by oral organisms
of the tongue dorsum between donors. The enrichment
of the TCA cycle in the oral microbiome and fermenta-
tion in the gut microbiome reflect the dominant meta-
bolic features of the corresponding microbiomes and
show how these can be affected by host genetics and
environmental factors correlated with genetic ancestry.

Related donors have similar microbiomes
Although the HMP cohort included donors related to
each other, this information was not available in the col-
lected metadata. Genomic sequencing of the donors
allowed us to infer the extent of relation between all
donor pairs and identify up to third degree relatives
among them. Using common SNVs (MAF > 0.05) for the
analysis, we identified 11 pairs of first degree relatives
and one pair of third degree relatives.
We next sought to determine whether the degree of

relation was reflected in the similarity of their micro-
biomes. For this analysis we calculated the Bray-Curtis
distance between all donor pairs and divided the pairs
into three groups: same ethnicity, different ethnicity, and
relatives (Fig. 4a). As could be expected from the PCA,
the samples within ethnic groups were on average
slightly more similar than samples from different ethnic
groups, but microbiome similarity between related do-
nors was more pronounced. With the exception of the
gut, in all tested body sites, microbiome community
composition between relatives were more similar than
between random donor pairs; in anterior nares and buc-
cal mucosa, the effect was also statistically significant by
t test between unrelated and related similarity scores.
For vaginal samples the effect was also pronounced, but
we did not have enough female-female pairs to achieve
statistical significance.

FUT2 and LCT genotypes are associated with
Bifidobacterium longum
To study the influence of individual genetic variants on
microbiome composition, we began with known associa-
tions of FUT2 and LCT. FUT2 is responsible for the
transfer of terminal fucose residues to mucosal glycans
[48]. Bifidobacteria also use mucus-derived fucose as a
carbon source, and abundance and diversity of B.
longum is significantly lower in non-secretors (individ-
uals with a premature stop codon in FUT2, rs601338)
compared to secretors [27].
To determine whether this association could be

verified in the HMP cohort, we searched for microbial
species correlated with the host fucosyltransferase secre-
tor genotype (MAF = 0.41). We used linear regression to
predict the relative abundance of each individual species
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based on the secretor genotype dosage. B. longum had
the strongest correlation of the 118 tested species (FDR
= 0.018; Fig. 4b), with increased relative abundance in
the secretor genotype relative to the non-secretor geno-
type. This finding is consistent with previous experimen-
tal observations and demonstrates that the cohort is
sufficiently powered to validate targeted microbial-host
association hypotheses.
Similarly, LCT has been associated with increased

abundance of lactose-metabolizing Bifidobacteria in the
gut [22, 25]. LCT encodes lactase, the enzyme respon-
sible for breaking down lactose in the upper GI tract; in
tandem with increased Bifidobacteria, this suggests that
more dietary lactose collects in the large intestine. The
ability to produce lactase in adulthood or lactose intoler-
ance (hypolactasia) is controlled by the presence of a
homozygous G allele in rs4988235 SNV close to LCT
[49]. A recent finding that milk consumption and Bifido-
bacteria abundance is positively correlated only in
people with the hypolactasia gene variant [26] supports
this mechanism.
In the HMP cohort, we compared bacterial species

abundances in stool between donors with the hypolactasia
and alternative variants. Because hypolactasia is a reces-
sive trait, we used a t test to compare the 64 donors with
the homozygous G genotype to the rest of the 145 donors.
After testing each of the 118 individual species abundance
against the presence of this variant, we found that B.
longum had the strongest effect (FDR = 0.095), thereby
confirming the previously found association (Fig. 4c).

Microbial associations with host genome variants are
body site-specific
Finally, we assessed associations between host genome
and microbiome variation in a non-targeted manner dir-
ectly through a genome-wide association study. We per-
formed the analysis separately for each body site,
concentrating on SNVs with MAF > 0.1 and comparing
them to both microbial species- and metabolic pathway-
level abundances. We used ordinary linear regression
models, taking into account the effects of sex, ethnicity,
and sample collection location. After filtering the micro-
bial features (see Methods), we identified 120–160 spe-
cies in GI tract and oral samples and approximately 25
species in skin and vaginal samples. The number of
metabolic pathways passing filtering was considerably
higher, between 350 and 530 major pathways per site.
Together the large numbers of SNVs, body sites, and mi-
crobial features in the analysis impose a strict signifi-
cance criterion (p < 3 × 10–12 according to Bonferroni
correction for multiple testing), which, in combination
with our modest sample size, limits our discovery poten-
tial to associations with very large effect sizes.
For this reason, we first limited our analysis to SNVs

found in the National Human Genome Research
Institute (NHGRI) Genome-Wide Association Studies
(GWAS) Catalog [50], hypothesizing that these SNVs
were enriched with genomic variants that have potential
impact on microbiome properties. This set included
SNVs associated with a diverse set of quantitative traits
ranging from complex diseases to anthropometric

ba

c

Fig. 4 Kinship and microbiome similarity and replication of known associations. a Bray-Curtis similarity between the 12 pairs of close relatives (third
degree or closer) identified from genetic data compared to similarities between other pairs. The p values correspond to results of t tests between
similarity scores for relatives, against all other pairs. b Association between FUT2 secretor variant and B. longum. c Association between genetic variant
rs4988235 near the LCT gene and B. longum. In both b and c we display log10 transformed relative abundance
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measurements. A total of 16,869 of these SNVs were
found in our data, but we did not detect any significant
associations using this subset of SNVs. Furthermore,
according to the quantile-quantile plot of the compari-
sons, there was no systematic enrichment of smaller p
values among the comparisons (Additional file 1: Figures
S6 and S7). We did not obtain significant results with
even more constrained variant sets associated with
inflammatory bowel disease or with any of the high-level
GWAS Catalog subcategories (e.g., “immune system
disorders,” “digestive system”).
We next ran the association analysis on all common

SNVs. We did not see any associations with p values
smaller than multiple testing-corrected significance
limits. However, there were a number of associations
(Additional file 1: Figures S8 and S9 and Table S2) with
relatively small p values. These associations form a rich
source of information for future microbiome-wide asso-
ciation studies and investigators interested in specific
genes or microbial species.
Because of the unique design of the HMP cohort, we

were also able to investigate the nature of the associa-
tions between body sites. Studies in expression quantita-
tive trait loci have reported remarkable stability of gene
expression-genotype associations across tissues [51].
Here, we did not observe any SNV-microbe pairs in the
top of the association rankings for multiple body sites,
demonstrating the more indirect nature of these associa-
tions as well as the unique community construction
principles for each body site. When considering the
distribution of the best p values from each body site irre-
spective of the associated organism, we still could not
find any SNVs that were more strongly associated with
microbes than expected by chance. This finding further
suggests that the genetic mechanisms behind micro-
biome composition are body site-specific.

Discussion
Previous studies of the human microbiome have revealed
that microbiomes can be remarkably different between
individuals, while their composition within an individual
remains relatively stable over time. These observations
suggest that genetic factors may be one influence on
microbiome composition, in addition to recognized eco-
logical and environmental factors such as colonization,
diet, medications, and lifestyle. Although studies in twins
and mice have suggested some genetic influence on
microbiome composition, reports of direct associations
are sparse. The main obstacle for such discovery studies is
the lack of large well-described cohorts with both micro-
bial abundance and genotype measurements. Here, we re-
port host whole genome sequencing for the HMP cohort,
one of the largest and most comprehensively microbially
characterized populations in the world.

Host whole-genome sequencing provides the oppor-
tunity to associate host genetic variation with microbial
features in this cohort. We found that most microbes
are correlated to genetic principal components, espe-
cially in stool, but also in oral samples. Similar ap-
proaches have been applied on subsets of the HMP
cohort using haplogroups [30] and common variants
[25]. Both of these studies identified associations
between high-level genetic features and various micro-
biome features; however, the mechanistic bases of those
associations remain unclear. Some associations are likely
to arise from cultural differences in diet or behavior, but
human populations also vary in their ability to digest
certain nutrients and can thereby create specific micro-
environments for gut microbes.
The combination of host and microbiome sequencing

in the HMP cohort is unique, inasmuch as it represents
the first non-disease population with body-wide metage-
nomics and deep human whole-genome sequencing.
While the ~ 300 individuals of the HMP (~100 with
shotgun metagenomics) are of course not enough for a
typical association discovery study, the example applica-
tions we investigate here are representative of how this
data resource might be used in the future. In combin-
ation with larger, targeted populations, for example, the
HMP cohort can now be used as a baseline, comparator,
or validation in microbiome-genetic association studies
at most body sites of interest. The high-quality host and
microbial data here are appropriate for future meta-
analyses and as a methodological framework to make
larger discovery efforts more efficient and less costly.
Previous comparisons between monozygotic and di-

zygotic twins [22, 52] have identified a set of microbial
taxa with higher than expected heritability coefficients.
We examined the behavior of these organisms in our
cohort. Unfortunately, not all of the taxa with the high-
est heritability coefficients were present in our data,
likely due to differences in the biases introduced by 16S
and metagenomic sequencing and subsequent process-
ing. We did apply principal component correlation ana-
lysis to the nine heritable taxa that were present in the
HMP cohort; however, none were significantly correlated
with genetic principal components.
Microbial communities are highly adapted to the

environment of particular body locations [1]. We found
that associations between microbial and genetic features,
on both the host principal component and single-variant
levels, were not shared by the microbiomes between
body sites. Therefore, association studies within different
body sites have the potential to uncover distinct genetic
mechanisms influencing biogeographically distinct mi-
crobial features. The HMP cohort, with its broad sam-
pling of microorganisms across five major body regions,
represents a unique resource for such studies. While the
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number of studies concentrating on the GI tract micro-
biome is increasing [20, 22–24, 26], the microbial ecol-
ogies of other body sites have been studied to a
significantly lesser degree.
In our genome-wide association analysis, no individual

associations reached the threshold for statistical signifi-
cance. This is contrast with the findings of Blekhman et
al. [25], who reported 83 significant associations using
“contaminant” human reads from a subset of HMP
participants’ metagenomes. The main reason for the
discrepancy is the choice of significance thresholds.
Blekhman et al. used FDR multiple hypothesis test cor-
rection with a threshold of 0.1, whereas we used a more
stringent Bonferroni correction. We felt this to be more
appropriate to avoid inflation of FDR values in what is,
overall, a fairly small population, particularly due to the
numerical properties of the genetic (e.g., linkage disequi-
librium) and microbial (e.g., zero inflation and non-
normal distributions) data. Without this assumption and
using the FDR < 0.1 control instead, we see a number of
associations across body sites (Additional file 1: Table S2).
However, the statistical significance of these associations
was not confirmed in subsequent permutation testing.
Nevertheless, many findings between the two datasets

were qualitatively similar, including an association
between LCT variants and Bifidobacterium abundance
that has also been validated in additional external studies
[22, 25, 26]. Highly ranked associations from our tests
may be similarly relevant findings, such as variants near
SULT2B1 that are relatively strongly associated with Ac-
tinomyces viscocus in skin (p = 2.4 × 10–8). This gene is
involved in processing dehydroepiandrosterone, a
hormone implicated in epidermal thickness and sebum
production of the skin [53]. In addition, the endoplasmic
reticulum aminopeptidase 1 (ERAP1) gene, which is
involved in antigen presentation and associated with
inflammatory bowel disease [54] and a number of other
autoimmune diseases [55–57], appeared in two associa-
tions. In buccal mucosa samples, ERAP1 was associated
with Actinomyces graevenitzii (p = 3.9 × 10–8), a normal
member of the oral microflora that can, under some cir-
cumstances, act as an opportunistic pathogen and cause
pulmonary abscesses [58]. In the GI tract, different variants
close to ERAP1 were associated with Lachnospiraceae
bacteria (p = 3.2 × 10–8). Interestingly, Lachnospiraceae was
the most differentially regulated microbial family in the ter-
minal ileum of patients with ankylosing spondylitis [59], a
disease associated with polymorphisms in ERAP1 [60].
These and other putative associations present compelling
evidence, but will have to be confirmed by future studies.
In general, to reliably identify genetic influences on

microbial features, it will be necessary to increase the
number of samples with both host and microbial
sequencing. This is particularly true when combining

baseline “healthy” and disease-specific populations,
genetic variants, and microbial variants. For example,
based on the NOD2-Enterobacteriaceae association
found in patients with inflammatory bowel disease, it
was calculated that detecting the same association in a
genome-wide significant manner would require 3700 pa-
tients [24]. In this regard, two recent papers [23, 26]
emphasize how good validation cohorts can help to filter
results from otherwise underpowered studies.
Combining HMP data with data from other cohorts

through meta-analysis or as a validation cohort is thus
one way to facilitate future studies. By validating two
previous genotype-microbe associations (FUT2 and
LCT), we showed that the HMP genetic data provide
power to validate targeted hypotheses and contribute
evidence to meta-analyses. Given that the HMP features
broad biogeographic microbial sampling across the body,
and the human sequencing data are of high quality and
consistent with data from projects such as GoNL and
1000 Genomes, these data are well suited for such
purposes. The comprehensive nature of whole-genome
sequencing makes the data versatile, allowing the
combination of HMP data with genome analysis tech-
nologies from genotyping arrays for common variants to
exome sequencing for coding variation or other targeted
approaches.

Conclusions
Here, we present the results of whole-genome sequen-
cing of donors from the HMP healthy cohort study,
enabling the study of host genetic effects on the micro-
biome properties of multiple body sites in this cohort.
We detected significant correlations between high-level
genetic features and both microbial species and commu-
nity functional profiles. Using these data, we verified that
variants near the LCT and FUT2 genes associated signifi-
cantly with the abundance of B. longum in stool. In a
broader, untargeted genome-wide setting, we did not
identify significant associations with single variants,
mainly due to stringent multiple testing criteria imposed
by the numbers of microbial features and body sites in
combination with a relatively modest sample size. The top
associations, however, provide an initial picture of body-
wide host-microbial interaction potential. In addition, the
dataset as a whole, when paired with the comprehensive
microbiome sequencing already performed on this cohort,
constitutes an invaluable resource for further studies.
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